11 research outputs found

    Cognitive privacy for personal clouds

    Get PDF
    This paper proposes a novel Cognitive Privacy (CogPriv) framework that improves privacy of data sharing between Personal Clouds for different application types and across heterogeneous networks. Depending on the behaviour of neighbouring network nodes, their estimated privacy levels, resource availability, and social network connectivity, each Personal Cloud may decide to use different transmission network for different types of data and privacy requirements. CogPriv is fully distributed, uses complex graph contacts analytics and multiple implicit novel heuristics, and combines these with smart probing to identify presence and behaviour of privacy compromising nodes in the network. Based on sensed local context and through cooperation with remote nodes in the network, CogPriv is able to transparently and on-the-fly change the network in order to avoid transmissions when privacy may be compromised. We show that CogPriv achieves higher end-to-end privacy levels compared to both noncognitive cellular network communication and state-of-the-art strategies based on privacy-aware adaptive social mobile networks routing for a range of experiment scenarios based on real-world user and network traces. CogPriv is able to adapt to varying network connectivity and maintain high quality of service while managing to keep low data exposure for a wide range of privacy leakage levels in the infrastructure

    A Comparison of Name-Based Content Routing Protocols

    Full text link

    Comnet: Annual Report 2012

    Get PDF

    INDIGO: a generalized model and framework for performance prediction of data dissemination

    Get PDF
    According to recent studies, an enormous rise in location-based mobile services is expected in future. People are interested in getting and acting on the localized information retrieved from their vicinity like local events, shopping offers, local food, etc. These studies also suggested that local businesses intend to maximize the reach of their localized offers/advertisements by pushing them to the maxi- mum number of interested people. The scope of such localized services can be augmented by leveraging the capabilities of smartphones through the dissemination of such information to other interested people. To enable local businesses (or publishers) of localized services to take in- formed decision and assess the performance of their dissemination-based localized services in advance, we need to predict the performance of data dissemination in complex real-world scenarios. Some of the questions relevant to publishers could be the maximum time required to disseminate information, best relays to maximize information dissemination etc. This thesis addresses these questions and provides a solution called INDIGO that enables the prediction of data dissemination performance based on the availability of physical and social proximity information among people by collectively considering different real-world aspects of data dissemination process. INDIGO empowers publishers to assess the performance of their localized dissemination based services in advance both in physical as well as the online social world. It provides a solution called INDIGO–Physical for the cases where physical proximity plays the fundamental role and enables the tighter prediction of data dissemination time and prediction of best relays under real-world mobility, communication and data dissemination strategy aspects. Further, this thesis also contributes in providing the performance prediction of data dissemination in large-scale online social networks where the social proximity is prominent using INDIGO–OSN part of the INDIGO framework under different real-world dissemination aspects like heterogeneous activity of users, type of information that needs to be disseminated, friendship ties and the content of the published online activities. INDIGO is the first work that provides a set of solutions and enables publishers to predict the performance of their localized dissemination based services based on the availability of physical and social proximity information among people and different real-world aspects of data dissemination process in both physical and online social networks. INDIGO outperforms the existing works for physical proximity by providing 5 times tighter upper bound of data dissemination time under real-world data dissemination aspects. Further, for social proximity, INDIGO is able to predict the data dissemination with 90% accuracy and differently, from other works, it also provides the trade-off between high prediction accuracy and privacy by introducing the feature planes from an online social networks

    Enabling Censorship Tolerant Networking

    Get PDF
    Billions of people in the world live under heavy information censorship. We propose a new class of delay tolerant network (DTN), known as a censorship tolerant network (CTN), to counter the growing practice of Internet-based censorship. CTNs should provide strict guarantees on the privacy of both information shared within the network and the identities of network participants. CTN software needs to be publicly available as open source software and run on personal mobile devices with real-world computational, storage, and energy constraints. We show that these simple assumptions and system constraints have a non-obvious impact on the design and implementation of CTNs, and serve to differentiate our system design from previous work. We design data routing within a CTN using a new paradigm: one where nodes operate selfishly to maximize their own utility, make decisions based only on their own observations, and only communicate with nodes they trust. We introduce the Laissez-faire framework, an incentivized approach to CTN routing. Laissez-faire does not mandate any specific routing protocol, but requires that each node implement tit-for-tat by keeping track of the data exchanged with other trusted nodes. We propose several strategies for valuing and retrieving content within a CTN. We build a prototype BlackBerry implementation and conduct both controlled lab and field trials, and show how each strategy adapts to different network conditions. We further demonstrate that, unlike existing approaches to routing, Laissez-faire prevents free-riding. We build an efficient and reliable data transport protocol on top of the Short Message Service (SMS) to serve a control channel for the CTN. We conduct a series of experiments to characterise SMS behaviour under bursty, unconventional workloads. This study examines how variables such as the transmission order, delay between transmissions, the network interface used, and the time-of-day affect the service. We present the design and implementation of our transport protocol. We show that by adapting to the unique channel conditions of SMS we can reduce message overheads by as much as 50\% and increase data throughput by as much as 545% over the approach used by existing applications. A CTN's dependency on opportunistic communication imposes a significant burden on smartphone energy resources. We conduct a large-scale user study to measure the energy consumption characteristics of 20100 smartphone users. Our dataset is two orders of magnitude larger than any previous work. We use this dataset to build the Energy Emulation Toolkit (EET) that allows developers to evaluate the energy consumption requirements of their applications against real users' energy traces. The EET computes the successful execution rate of energy-intensive applications across all users, specific devices, and specific smartphone user-types. We also consider active adaptation to energy constraints. By classifying smartphone users based on their charging characteristics we demonstrate that energy level can be predicted within 72% accuracy a full day in advance, and through an Energy Management Oracle energy intensive applications, such as CTNs, can adapt their execution to maintain the operation of the host device

    Délestage de données en D2D : de la modélisation à la mise en oeuvre

    Get PDF
    Mobile data traffic is expected to reach 24.3 exabytes by 2019. Accommodating this growth in a traditional way would require major investments in the radio access network. In this thesis, we turn our attention to an unconventional solution: mobile data offloading through device-to-device (D2D) communications. Our first contribution is DROiD, an offloading strategy that exploits the availability of the cellular infrastructure as a feedback channel. DROiD adapts the injection strategy to the pace of the dissemination, resulting at the same time reactive and relatively simple, allowing to save a relevant amount of data traffic even in the case of tight delivery delay constraints.Then, we shift the focus to the gains that D2D communications could bring if coupled with multicast wireless networks. We demonstrate that by employing a wise balance of multicast and D2D communications we can improve both the spectral efficiency and the load in cellular networks. In order to let the network adapt to current conditions, we devise a learning strategy based on the multi-armed bandit algorithm to identify the best mix of multicast and D2D communications. Finally, we investigate the cost models for operators wanting to reward users who cooperate in D2D offloading. We propose separating the notion of seeders (users that carry content but do not distribute it) and forwarders (users that are tasked to distribute content). With the aid of the analytic framework based on Pontryagin's Maximum Principle, we develop an optimal offloading strategy. Results provide us with an insight on the interactions between seeders, forwarders, and the evolution of data dissemination.Le trafic mobile global atteindra 24,3 exa-octets en 2019. Accueillir cette croissance dans les réseaux d’accès radio devient un véritable casse-tête. Nous porterons donc toute notre attention sur l'une des solutions à ce problème : le délestage (offloading) grâce à des communications de dispositif à dispositif (D2D). Notre première contribution est DROiD, une stratégie qui exploite la disponibilité de l'infrastructure cellulaire comme un canal de retour afin de suivre l'évolution de la diffusion d’un contenu. DROiD s’adapte au rythme de la diffusion, permettant d'économiser une quantité élevée de données cellulaires, même dans le cas de contraintes de réception très serrées. Ensuite, nous mettons l'accent sur les gains que les communications D2D pourraient apporter si elles étaient couplées avec les transmissions multicast. Par l’utilisation équilibrée d'un mix de multicast, et de communications D2D, nous pouvons améliorer, à la fois, l'efficacité spectrale ainsi que la charge du réseau. Afin de permettre l’adaptation aux conditions réelles, nous élaborons une stratégie d'apprentissage basée sur l'algorithme dit ‘’bandit manchot’’ pour identifier la meilleure combinaison de communications multicast et D2D. Enfin, nous mettrons en avant des modèles de coûts pour les opérateurs, désireux de récompenser les utilisateurs qui coopèrent dans le délestage D2D. Nous proposons, pour cela, de séparer la notion de seeders (utilisateurs qui transportent contenu, mais ne le distribuent pas) et de forwarders (utilisateurs qui sont chargés de distribuer le contenu). Avec l'aide d’un outil analytique basée sur le principe maximal de Pontryagin, nous développons une stratégie optimale de délestage

    Flexible Application-Layer Multicast in Heterogeneous Networks

    Get PDF
    This work develops a set of peer-to-peer-based protocols and extensions in order to provide Internet-wide group communication. The focus is put to the question how different access technologies can be integrated in order to face the growing traffic load problem. Thereby, protocols are developed that allow autonomous adaptation to the current network situation on the one hand and the integration of WiFi domains where applicable on the other hand

    Predictive smart relaying schemes for decentralized wireless systems

    Get PDF
    Recent developments in decentralized wireless networks make the technology potentially deployable in an extremely broad scenarios and applications. These include mobile Internet of Things (IoT) networks, smart cities, future innovative communication systems with multiple aerial layer flying network platforms and other advanced mobile communication networks. The approach also could be the solution for traditional operated mobile network backup plans, balancing traffic flow, emergency communication systems and so on. This thesis reveals and addresses several issues and challenges in conventional wireless communication systems, particular for the cases where there is a lack of resources and the disconnection of radio links. There are two message routing plans in the data packet store, carry and forwarding form are proposed, known as KaFiR and PaFiR. These employ the Bayesian filtering approach to track and predict the motion of surrounding portable devices and determine the next layer among candidate nodes. The relaying strategies endow smart devices with the intelligent capability to optimize the message routing path and improve the overall network performance with respect to resilience, tolerance and scalability. The simulation and test results present that the KaFiR routing protocol performs well when network subscribers are less mobile and the relaying protocol can be deployed on a wide range of portable terminals as the algorithm is rather simple to operate. The PaFiR routing strategy takes advantages of the Particle Filter algorithm, which can cope with complex network scenarios and applications, particularly when unmanned aerial vehicles are involved as the assisted intermediate layers. When compared with other existing DTN routing protocols and some of the latest relaying plans, both relaying protocols deliver an excellent overall performance for the key wireless communication network evolution metrics, which shows the promising future for this brand new research direction. Further extension work directions based on the tracking and prediction methods are suggested and reviewed. Future work on some new applications and services are also addressed

    Raspberry Pi Technology

    Get PDF
    corecore