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Preface to “Raspberry Pi Technology” 
Although many single board computers (SBC) exist, the Raspberry Pi Foundation made a huge 

impact with their range of SBCs, in part due to the availability and low-cost. The Raspberry Pi currently 
supports a variety of Operating Systems including BSD, Debian, Risc OS, Windows, and many Linux 
variants. Although originally designed for the educational sector, the Raspberry Pi is used in a variety of 
projects ranging from Engineering research to Art exhibitions. 

In this book, we try to capture a cross section of these projects and research applications to show 
how the Raspberry Pi has enabled people to experiment in new ways. We would like to thank all authors 
who have contributed their work to this Special Issue. 

Simon J. Cox and Steven J. Johnston 
Special Issue Editors 
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1. Introduction

The Raspberry Pi Foundation aims to promote the teaching of Computer Science and is inspired by
devices such as the ZX81 and Spectrum [1], the first home computers from the 1980s, and government
backed in-school devices such as the BBC Acorn [2].

The first Raspberry Pi device was released in February 2012 (Raspberry Pi 1 Model B, generation 1).
It proved to be an immediate success, in part due to the low $35 price. By adding a few peripherals,
which are not included (keyboard, mouse, monitor, SD storage), it is possible to quickly have a fully
working computer running Raspbian, a Debian-based Linux operating system.

It is often referred to as a Single Board Computer (SBC), meaning that it runs a full operating
system and has sufficient peripherals (memory, CPU, power regulation) to start execution without
the addition of hardware. The Raspberry Pi can support multiple operating system variants and
only requires power to boot. Some Raspberry Pi versions can boot direct from network but generally
file-system storage is required, for example a micro SD card.

Although other Single Board Computers (SBC) existed before the Raspberry Pi, historically they
targeted industrial platforms such as vending machines and are often referred to as development
boards. The Raspberry Pi Foundation made the SBC accessible to almost anyone, introducing not just a
low cost computer, but one that can bridge the gap to the physical world by exposing General Purpose
Input-Output (GPIO) connection pins. The Raspberry Pi pin header can be controlled programmatically
from the operating system and supports a range of features, e.g., USB, UART, SPI, I2C and Interrupts,
which can be used to connect a huge variety of electronic components.

This has led to the popularity of the Raspberry Pi, not only in education but with industry,
hobbyists, prototype builders, gamers and the curious. It has enabled people to experiment in new
ways, for example incorrectly connecting sensors to GPIO pins can result in a broken mainboard, this is
less inconvenient if it is a Raspberry Pi but, catastrophic if it is the family PC.

The increase in popularity of Cyber Physical Systems (CPS) and the Internet of Things (IoT) has
renewed the demand for embedded systems, on a large scale, greatly benefiting the Raspberry Pi.
This demand is driven by the desire to instrument and understand the fabric of human civilisations
ranging from cities to forests, in order to gain insights and produce actions, for example Smart Cities,
Smart Cars, Smart Homes. This is achieved by sensor networks and their communication systems,
the main driver is the falling cost of hardware and improvements in performance. Some predictions
state that there will be 50 billion IoT devices by 2020 [3] which, although probably an over estimate,
demonstrates a huge demand and opportunity for SBC applications.

Electronics 2017, 6, 51 1 www.mdpi.com/journal/electronics
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2. Special Issue on Raspberry Pi Technology

This Special Issue includes a wide selection of publications that demonstrates both the breadth
and depth of the capabilities of the Raspberry Pi. Almost all publications cite low cost of hardware,
ease of availability and the advantages of a substantial community as the reasons for basing their work
on the Raspberry Pi. We aim to represent a variety of use cases and area disciplines that utilise the
Raspberry Pi but it is by no means exhaustive.

The predominant usage of the Raspberry Pi is, rather unsurprisingly, for educational purposes.
This includes both hardware and software, in a range of educational and research facilities [4–6]; many of
the other publications included in this Special Issue address specific trends. For example, with the
availability of low-cost computing, we are seeing a change in architectures, whereby computing is
pushed towards the edge of the network [7,8]. This Fog or Edge [9] computing is an important change
that is required to make IoT systems more efficient and scalable. Scaling to billions of devices will
only be possible if power is used efficiently through optimised computing and intelligent monitoring
systems [10,11]. This will have an impact on the environment in which we live. Understanding climate
change, pollution and other environmental issues can benefit from IoT devices that measure and log
parameters [12,13].

With the creation of huge numbers of IoT devices, alternative networking models, strategies and
mechanisms are required; one tool in this area of research is network testbeds [14,15]. These testbeds
help bridge the worlds of pure simulation with experimental design. Physical testbeds can be costly,
making Raspberry Pi-based solutions more attractive.

The Internet of Things encompasses all aspects of the digital world and the interaction with physical
systems, for example art [16], industrial [17], medical research [18] and automotive applications [19].

As devices become embedded across the infrastructures of civilisations, more creative solutions are
required for geo-location, wireless and mesh network technologies [20], in-situ image processing [21]
and multi-agent systems [8]

Even in remote regions, Raspberry Pi devices are used for monitoring and analysing the circadian
and ultradian locomotor activity of small marine invertebrates [22].

3. Pi the Prototype

The Raspberry Pi is a powerful prototyping platform, and many of the articles in this Special
Issue are constructing prototypes [6,11,17–19].The idea of a prototype implies a partial implementation
of all the desired features, but there is often a need to build a fully functional prototype [12,22].

There are two main reasons to build a prototype:

1. to test and validate an idea or hypotheses. This follows the fail fast design philosophy where
it is best to identify the good and bad ideas early. Building a prototype in a matter of days is
acceptable even if it is too big, expensive, consumes too much power and is a bit slow, if it
provides a mechanism to prove or disprove the feasibility of an idea.

2. to validate hardware design. Before commissioning a large production run or fully optimising a
design, a prototype can be used to validate the electronic design and sensor capabilities within a
desired operating environment.

The Raspberry Pi is an ideal platform for this as it is commodity hardware, supports high-level
programming languages (e.g., Python) and runs popular variants of Unix-like operating systems.

4. Pi as the Enabler

Embedded devices are more prolific than ever before, with the IoT and its applications being a
key driver, including Smart Cities, Smart Homes, Agricultural Technology, Industry 4.0 and associated
communities [23]. The cost of Single Board Computers and the demand for such systems has resulted
in over ten million devices being sold [24].
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We see the Raspberry Pi as an enabler technology, which is part of a general trend from the
Mainframe to the envisioned tens-of-billions of deployed Internet of Things devices, as shown
in Figure 1. We predict that the SBC is a stepping stone to the ‘Nano Computer’ which will be the basis
of the Internet of Things revolution.

Figure 1. Centralised (Mainframe) processing was state of the art, which evolved to be smaller
(Minicomputer and Microcomputer) and more personal (Personal Computer) over the decades. As the
usage patterns changed, the cost dropped, and computing became more mainstream and accessible,
even extending into mobile platforms (Smart phones). The Single Board Computer, spurred by the
popularity of Internet of Things devices is the current trend, selling tens of millions of units. We predict
this will be the basis for the next generation of commodity device whose cost and accessibility will
result in billions of devices.

5. Pi in the Cloud

The desire to build IoT devices has never been stronger, and the range of creators is as wide as it
has ever been, no longer left to a handful of large technology companies. There is a progression path
for on-premises enterprise applications to migrate to cloud-based providers, and the same is true for
Raspberry Pi based applications. Multiple cloud hosting companies offer fully managed Raspberry Pi
hardware in commercial data centres, Platform As A Service (PAAS) [25,26].

Purchasing a Raspberry Pi in a data centre may seem a little strange as it is not possible to add
additional hardware (e.g., sensors) and is a rather poor performing web server. However, it does
make sense for all the millions of people who bought the devices for education, and subsequently
developed applications. The Raspberry Pi is based on an ARM architecture, the latest is ARMv8.
Migrating applications is not binary compatible with other architectures, so simply copying compiled
files to an x86/x64 cloud hosted server will not work. A hosted Raspberry Pi is OS and hardware
identical to those purchased in their millions, thus configuration files and binary file copying are
supported. From an education perspective, making a custom application available publicly does not
require port mapping, dynamic DNS or an understanding of processor architectures.

As these applications grow and need more processing power, one upgrade path could be to
migrate to an ARM based server rather that migrating architectures [27]. This is in keeping with a
rising trend to include ARM based servers in data centres.

A publicly addressable Raspberry Pi requires an internet address but IPv4 addresses are increasing
in cost, potentially rivalling the cost of the actual hardware. The time for IPv6 is here, some hosted
Raspberry Pi offerings currently only support IPv6 (with IPv4 port forwarding as a fall-back).
IPv6 offers more efficient routing, simpler configuration and better security; it also eliminates the need
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for NAT, private IP addressing and its associated problems. An environment which makes IPv6 the
default option can only be welcomed and ensures a future proofing of skills in the next generation.

6. Pi on the Edge

In many applications, for example, large sensor networks, centralising computing power has
some disadvantages. The architecture is simpler, but data has to be transmitted, processed, and then
retransmitted. This can result in the automated cat feeder missing a meal because the Internet
connection or cloud based service is down [28], despite there being enough data and processing
power locally to operate without Internet connectivity, some devices simply fail.

Large sensor networks are often network constrained, so optimising data transmissions is the
next logical progression to augment Cloud computing solutions. This is often referred to as Fog or
Edge computing, where the computing resources are pushed from the centre further out towards the
edge [29]. For example, an image sensor for detecting or monitoring cars can process images at an
edge device and only transmit the number plate details, thus greatly reducing bandwidth.

In an IoT world, this means that as computing resources move further out towards the edge, they
become geographically distributed, harder to manage and at risk of damage or theft. Raspberry Pi
devices and the clusters based on these devices [30–33] introduce a new class of computing: disposable
computing. If an edge cluster built with Raspberry Pi devices is lost, stolen or falls into a volcano,
the low-cost makes replacement palatable. This means that computational power can now be installed
in locations where it was not previously feasible and enables Fog and Edge computing architectures.

7. Pi Containers

Building testbeds or deploying IoT hardware has an associated software management problem.
One of the trending technologies that we see in large datacentres is containerisation, which wraps
applications into isolated execution packages, for example Shifter [34], Docker [35] and Singularity [36].
Some container platforms work on the Raspberry Pi, and even applications that require access
to hardware can be supported inside containers. We expect to see more deployments using
containerisation as a mechanism to manage software applications and updates [9].

8. Pi in the Future

In 2011, Cisco estimated that the number of IoT devices would exceed 50 billion by the year
2020 [37]; Gartner currently predicts 20 billion devices [38]. The number of already connected devices
is estimated to be only be around 8.3 billion in 2017. Creating the remaining 41.3 billion devices in
3 years would require a staggering 300 new devices to be created every second. We can recognise a
huge potential for a range of Internet enabled devices; for the greater good of humanity. With the
world population in excess of 7.5 billion people [39,40], 48% of which have internet connectivity and
many with multiple devices [41], the first barrier for the IoT vision becoming a reality is the limited
4.3 billion IPv4 addresses; the time for IPv6 is here today and is well supported in most Operating
Systems. Every gateway that bridges IPv4 networks consumes power and breaks end-to-end security.

In 2015, the 194 countries of the United Nations General Assembly adopted the 2030 Development
Agenda which outlines 17 Sustainable Development Goals (Figure 2), each with a clear set of targets [42].
These are designed to promote global sustainability because, in the words of the United Nations
Secretary-General, Ban Ki-Moon ‘... there is no Plan B because we do not have a Planet B ...’. These goals
are carefully researched and widely supported; more importantly, the IoT revolution is a key enabler
to achieving these goals.
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Figure 2. The United Nations General Assembly 2030 development agenda Sustainable Development
Goals mapped to the ITU Internet of Things declaration activity numbers [42].

The ‘Internet of Things Declaration to Achieve the Sustainable Development Goals’ [43] adopted in
2017 by the International Telecommunication Union (ITU) and other stakeholders, defines 10 activities
which strive to promote international dialogue and cooperation for innovation in the Internet of Things:

1. Promoting the development and adoption of IoT technologies for the benefit of humanity,
the environment and sustainable development.

2. Supporting the implementation of the IoT in urban and rural context to foster the application of
ICTs in providing services to build smarter and more sustainable cities and communities .

3. Promoting a broad, vibrant and secure ecosystem for IoT, including support for start-ups
and incubators.

4. Encouraging the development and implementation of standards that facilitate interoperability
among IoT technologies and solutions in order to pave the way to an open and interoperable
IoT ecosystem

5. Adopting new and innovative IoT applications to deal with challenges associated with hunger,
water supply, and food security

6. Galvanizing interest in the use of IoT for risk reduction and climate change mitigation
7. Identifying and supporting the growing trend of using IoT technologies for education
8. Embracing the application and use of IoT for biodiversity conservation and ecological monitoring
9. Contributing to global research and discussions on IoT for smart and sustainable cities through

global initiatives
10. Promoting international dialogue and cooperation on IoT for sustainable development

These ten activities map to the Sustainable Development Goals as shown in Figure 2 to provide
strong evidence that IoT solutions will have an impact on all of the most important global issues facing
our civilisations.

We conclude that the Raspberry Pi is an educator and enabler of ideas that will have an impact at
a global level, spanning multiple disciplines and socio-economic classes.

Acknowledgments: We would like to thank the Engineering and Physical Sciences Research Council (EPSRC)
and acknowledge the The Federated RaspberryPi Micro-Infrastructure Testbed (FRuIT) project, reference number
EP/P004024/1 for ongoing Raspberry Pi based infrastructure research.
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Abstract: The original aim when creating the Raspberry Pi was to encourage “kids”—pre-university
learners—to engage with programming, and to develop an interest in and understanding of
programming and computer science concepts. The method to achieve this was to give them their own,
low cost computer that they could use to program on, as a replacement for a family PC that often
did not allow this option. With the original release, the Raspberry Pi included two programming
environments in the standard distribution software: Scratch and IDLE, a Python environment.
In this paper, we describe two programming environments that we developed and recently ported
and optimised for the Raspberry Pi, Greenfoot and BlueJ, both using the Java programming language.
Greenfoot and BlueJ are both now included in the Raspberry Pi standard software distribution,
and they differ in many respects from IDLE; they are more graphical, more interactive, more engaging,
and illustrate concepts of object orientation more clearly. Thus, they have the potential to support the
original aim of the Raspberry Pi by creating a deeper engagement with programming. This paper
describes these two environments and how they may be used, and discusses their differences and
relationships to the two previously available systems.

Keywords: programming education; Raspberry Pi; BlueJ; Greenfoot; Java

1. Introduction

The Raspberry Pi computer has been immensely successful for countless electronics projects:
Its low cost and accessibility have made it a favourite for do-it-yourself tinkering experiments and
special purpose projects, from home control to data gathering on balloons to being shot into the upper
atmosphere, and everything in-between. Despite being a general purpose computer, its low cost has
also made it feasible to be used as a component in single-purpose devices.

These projects—impressive as many of them are—were not, however, the original main purpose
of the creation of the Raspberry Pi. In this article, we come back to the original goal that led to the
development of this low cost computer: Getting an easily programmable machine into the hands of
kids to get them to learn to program and get them engaged with computer science.

The opening statement of the “About Us” page on the Raspberry Pi website, titled “The Making
of the Pi” starts:

“The idea behind a tiny and affordable computer for kids came in 2006, when Eben Upton,
Rob Mullins, Jack Lang and Alan Mycroft, based at the University of Cambridge’s Computer
Laboratory, became concerned about the year-on-year decline in the numbers and skills levels of the
A Level students applying to read Computer Science. From a situation in the 1990s where most of
the kids applying were coming to interview as experienced hobbyist programmers, the landscape in
the 2000s was very different; a typical applicant might only have done a little web design.” ([1])

The main goal was to turn kids back into programmers again.
Part of the problem was that the typical home computer, in contrast to earlier generations such as

the BBC Micro, Commodore 64 or Spectrum ZX, was not a toy to program and experiment with anymore,
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but was used by the family for a range of important purposes, and that “programming experimentation on
them had to be forbidden by parents” [1] for fear of breaking the family machine. To get kids back into the
position where they could play and learn with programming, they needed a computer that they were in
control of, that they could experiment with and break if necessary, and—most importantly—that provided
a “platform that, like those old home computers, could boot into a programming environment” [1].

The goal was summarised in the following statement:

“We want owning a truly personal computer to be normal for children.” ([1])

Thus, the original purpose of the Raspberry Pi was not as a special purpose device employed to
gather sensor data, or as the control element in electronics projects; it was to serve as a replacement for
a general purpose personal computer to tinker with and program on. Programming environments on
the Pi were crucial.

At the same time as taking inspiration from early personal computers’ successes, such as the
BBC Micro’s lasting impact on early programming in the UK, the Raspberry Pi team set their sights
higher. Instead of just appealing to the “geeky” kids who might already have an interest in programing,
the goal was to bring this computer to a wide spectrum of the population. One means to achieve this
was the goal to “provide excellent multimedia, a feature we felt would make the board desirable to
kids who wouldn’t initially be interested in a purely programming-oriented device” [1].

These goals translate into several direct requirements for the Raspberry Pi’s software:

‚ The computer must come with an easily accessible programming environment. Programming as
an activity should not only be possible, but encouraged.

‚ To create engagement, the programming environment should be flexible and extendable. It should
also prepare learners for further engagement with computer science. This suggests using existing,
general purpose programming systems as a good option.

‚ To serve the goal of using multimedia to create engagement, the programming environment
should provide easy creation and manipulation of graphics, animation and sound.

When the Raspberry Pi was released, two general purpose programming environments were
included in its software: Scratch [2] and IDLE for Python [3]. (In fact, the “Pi” in the Raspberry’s name
derives from “Python” as the envisaged main language offered to users.)

This was a reasonable choice: The two environments represent the two main modes of
manipulation used in programming education—block-based editing for Scratch and text-based editing
for Python—and address distinctly different age groups and possible projects. While Scratch is usable
by children as young as primary school age, Python scales to large projects and professional quality
code. The two systems offer options to a wide range of users.

In addition, a Java runtime and development kit was included. Java was (and still is) one of the
most popular languages in use both in education and industry [4], and considering its inclusion is a
natural step.

Before the initial release of the Raspberry Pi standard image (the software recommended for
initial installation), BlueJ [5] and Greenfoot [6], two of our own environments which we developed
specifically for the learning and teaching of programming, were considered for inclusion as Java
development tools. Both are attractive in this context in aligning perfectly with the goals of the
Raspberry Pi foundation: They are educational development environments aimed at attracting young
learners to programming, they teach concepts of computer science, and we have more than ten years
of experience with developing and maintaining these systems for other platforms. However, in early
testing it transpired that performance was a problem: The Java runtime did not perform well enough
to run any program with a significant graphical user interface at sufficient speed to be acceptably
usable. As a result, a decision was taken not to include BlueJ or Greenfoot (or any other Java-based
applications), and not to release any educational resources or documents built around programming in
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Java. Promotion of text-based programming activities on the Raspberry Pi was exclusively structured
around Python.

The Java runtime and SDK were present, however, even though no integrated development
environment was included in the image. This made development in Java on the Raspberry Pi
theoretically possible by using a plain text editor and command line compiler. This was unattractive to
most users. Crucially, though, it made execution of Java programs possible.

In the following years, a large number of Java projects on the Raspberry Pi were published.
A representative set of examples is Simon Ritter’s collection of Raspberry Pi/Java projects [7].
Java could run on the Raspberry Pi. The development on the Java side did not, however, meet the
original goals of the Raspberry Pi project: While being a successful platform for knowledgeable
enthusiasts, it did not serve to attract kids to programming. Most importantly, the setup allowed Java
development for the Raspberry Pi, but not Java development on the Raspberry Pi.

To develop these applications, programmers typically worked in standard integrated development
environments (IDEs) on separate computers and then transferred the executable Java program to the
Raspberry Pi for execution. Thus, the Raspberry Pi did not function as a replacement for the existing
computer, as the mission statement envisaged, but in addition to the existing computer. This works well
for enthusiasts working on hobby projects, but is ineffective in providing kids with a new programming
learning platform.

Over the last few years, three separate developments have changed this situation:

‚ The Java runtime consistently improved in performance. Oracle, the developers of the main
Java platform, dedicated explicit effort to optimising the Java runtime for the ARM architecture of
the Raspberry Pi.

‚ More recently, we optimised BlueJ and Greenfoot for the Raspberry Pi. We created dedicated
Raspberry Pi versions for both systems (separate from the Linux version used before) which
included modifications specifically to improve performance on this platform.

‚ The Raspberry Pi hardware improved significantly. With the release of the Raspberry Pi 2 in early
2015, and then the Raspberry Pi 3 in 2016, hardware performance increased greatly compared to
the initial version.

As a result, running BlueJ and Greenfoot—integrated educational Java development
environments—directly on the Raspberry Pi became possible. From September 2015, both these systems
were included on the standard Raspberry Pi disk image and are now available to every Raspberry Pi user.

In this paper, we discuss what these environments have to offer, how they compare, and what they
can achieve. We present their differences (to each other, and to the Python environments available on
the Raspberry Pi), and outline how they allow users to interact directly with the Raspberry Pi hardware.

2. Why a Java IDE?

The Raspberry Pi already includes two easily accessible programming environments: Scratch and
Python. This leads to the obvious question: What do additional Java development environments offer
that is qualitatively different to what is already possible?

The difference to Scratch is more easily obvious. Java offers the same difference to Scratch
that Python presented and that justified the coexistence of these two systems in the first place.
Java, like Python, is a traditional, industry strength, text-based language. Scratch, on the other
hand, with its block-based, drag-and-drop language of limited scope, is mainly aimed at young
learners under 14 years of age. The systems serve a different market, both in targeted user group and
application domain.

The more interesting comparison is between Java and Python, since these languages share many
similar characteristics and serve the same market. There are, however, several reasons why including
both the Greenfoot and BlueJ environments leads to qualitatively new possibilities:
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1. Many teachers of programming prefer the statically typed nature of Java to the dynamic typing
of Python, as it helps clarify some programming concepts and acts as an aid to learners.

2. Some learners have the goal of not only learning programming in general, but learning Java in
particular. Java is attractive, as it is the basis for many popular systems, from many well known
web-based programs to most Android applications. More teaching material exists for Java than
for Python, as it has been used in schools and universities for a much longer time (although there
is also plenty of Python material available).

3. The most important reason is the lack of a good educational development environment for Python.
An educational environment should create engagement (the Raspberry Pi mission statement
itself suggested multimedia support to facilitate this engagement), it should be easy to use,
and it should teach programming concepts through its interactions. Greenfoot and BlueJ make it
easy to program interactive animated graphical applications (such as games and simulations),
thereby creating the engagement aimed for. They also have interfaces designed specifically for
learners with specific educational functionality. This includes a high degree of interaction to
facilitate experimentation and visualisation to illustrate important underlying programming
concepts. IDLE, the Python environment included and recommended by the Raspberry Pi
foundation [8], does not fit the requirements nearly as well. In IDLE, it is difficult to create
even simple graphical games, support for graphical interaction in the environment is poor and
pedagogical visualisations are missing in the system. Whereas Greenfoot and BlueJ are developed
based on many years of computing education research [9–13], IDLE incorporates few of the
lessons learned. It incorporates none of the pedagogical interaction and visualisation functionality
that constructivist learning requires, and its main interface abstractions remain on the low
syntactic level, offering little support for developing mental models at higher abstraction levels.

Thus, fundamentally, the attraction of including Greenfoot and BlueJ in the Raspberry Pi image
is not based mainly on a difference between the programming languages—Python and Java—but a
difference between the programming environments: Greenfoot and BlueJ versus IDLE.

3. Greenfoot—A Playful Step to Programming

In this section, we discuss the educational aspects of the Greenfoot environment, as they present
the most significant advantage in using Greenfoot over IDLE and Python.

3.1. Aims of the Greenfoot Environment

Greenfoot was created in 2006 at the University of Kent to facilitate learning and teaching of
programming for learners aged about 14 upwards. It was designed for use in both classic teaching
situations (with a teacher present) as well as for self-directed learning without a human instructor.

The main design goals of Greenfoot were four-fold:

‚ Engaging examples. Greenfoot should make it easy to create engaging programming examples.
Creation of interactive animated graphics and sound should be quick and easy, so that the
first examples—such as simple graphical games or simulations—can be achieved in the first
programming session.

‚ Visualisation. The Greenfoot environment should employ visualisation techniques to illustrate
fundamental programming concepts. The interface should not primarily concentrate on the
presentation of source code, but should add presentations of underlying concepts.

‚ Interaction. The environment should allow small scale and quick-turnaround interaction to
facilitate experimentation and exploration.

‚ Simplicity. The interface of the software must be simple and become familiar quickly. It should be
easy to learn how to use the environment, so that mental effort can be concentrated on learning
to program.

11



Electronics 2016, 5, 33

These main goals are discussed in more detail below, together with a description of the Greenfoot
functionality presenting implementations to meet these goals. They are also described at a more
detailed level in previous publications [6].

3.2. Engaging Examples

The Greenfoot framework was designed to make the creation of interactive, animated graphics and
production of sound easy for programming novices. This enables the creation of two-dimensional video
games and simulations. Figure 1 shows two simple examples that can be used for early introduction
of programming concepts, each with a keyboard controlled game character. The examples illustrate
two classes of typical games, a birds-eye view game and a platform jumper game. Game characters
(classes and their objects) can be created interactively, and character behaviour is programmed in
Java. Greenfoot provides simple movement, control and collision detection methods to enable novice
programmers to create the first interactively controlled graphical characters within a few minutes.

Figure 1. The Greenfoot main window. Two examples are shown, each of a simple computer game
(one birds-eye-view and one platform jumper game). The window displays the Greenfoot “world” in
its main part, a class diagram to the right and some control buttons along the bottom.

Greenfoot also includes a built-in sound recorder and easy functionality for sound playback,
enabling audio support.

Greenfoot scenarios do not have to be games: other often used examples include simulations
(such as an ant simulation or a simulation of solar systems) and musical examples (such as an on-screen
piano). Since the implementation language is Java, and Greenfoot provides the full standard Java
Development Kit (JDK), the system scales easily to more complex and elaborate examples. For example,
networking libraries can be used to include data from the internet in Greenfoot scenarios (such as live
weather reports), and Greenfoot can easily be connected to a number of external devices, such as the
Microsoft Kinect (a sensor board for human motion tracking). Actors in Greenfoot scenarios can also
be controlled with arbitrarily complex artificial intelligence algorithms; this is in contrast to possible
programs in Scratch, which provides a similar World/Actor model, but fails to scale to the same size
and sophistication of example programs (see further discussion below). A wide range of different
example programs with pedagogical explanations is presented in a Greenfoot specific programming
textbook [14].
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3.3. Visualisation

To learn programming, especially to learn the concepts of object orientation, it is not sufficient to learn
about lines of code; instead, sophisticated models of object interaction have to be understood by novices.
It is crucial that learners develop mental models of these underlying concepts to master the foundations
of programming. The difficulty in developing these mental models, and understanding the concepts
of programming, has often been identified as the main hurdle to the learning of programming [15].
Therefore, the Greenfoot environment provides a number of conceptual visualisations to aid in
this understanding.

3.3.1. Classes and Objects

The main window of the Greenfoot environment does not present lines of code in its main panel,
as so many other environments (including IDLE, the default Python environment on the Raspberry Pi)
do. Instead, it shows classes and objects.

The classes are represented in a simple diagram along the right side of the main window
(see Figure 1) which shows their inheritance relationships. Instances of these classes are shown
as actors (with custom images specified by their class) in the main part of the interface, the world.

Objects (actors) can be dragged and dropped in the world, and actors of the same class exhibit
similar appearance and behaviour. This design illustrates important object-oriented concepts before
learners start to interact with lines of source code.

Of course, to modify the behaviour of actors, learners will soon enough see lines of code and
edit them, but when this happens it does so in the context of changing the behaviour of an object.
The context is established first, before small scale syntax is addressed.

3.3.2. State

Objects in the world can be inspected (using an Inspect function in a right-click menu).
This displays an object inspector showing the state of the object (Figure 2). Object inspectors serve to
visualise the concept that objects have state, and the names of the fields can be associated with the
variable names defined in the source code. Comparison of inspectors can be used to illustrate the
class-based nature of field definitions (objects of the same class have the same fields; objects of different
classes have different fields) and the object-based nature of values (each object holds its own values).

Figure 2. Object inspectors. Two inspectors are shown for two different objects of type ‘Lobster’.
Each inspector shows the object’s state (its fields and their values). We can see that the fields in each
case are the same, but the values differ.
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Object inspectors may be left open when the program executes, and field values will be
dynamically updated as they change. This visualises dynamic state changes in a running program.

3.3.3. Behaviour

Another important concept in object orientation is that of behaviour of objects. Two important
mechanisms are present in Greenfoot to visualise behaviour.

The first aspect comes from the nature of Greenfoot as a micro-world, and was first popularised
with the introduction of turtle graphics in Logo [16]: The visualisation of the program as it runs. It is in
the nature of graphical micro-worlds that the execution of the program has visible visual effects in real
time during runtime. This often provides an automatic implicit debugging aid: bugs in the program
often surface as unexpected behaviour of an actor in the world. A learner might observe this behaviour
and immediately ask herself “Why did it do that now?”. This is a valuable implicit and effortless start to
program testing and debugging.

The second visualisation option of object behaviour is offered via the provision of interactive
method calls (Figure 3). Instead of running the program as a whole, individual methods of individual
objects can be invoked interactively via the mouse. Parameters may be passed in if necessary, and return
values may be displayed.

 

Figure 3. Interactive method calls. A right-click on an object in the world posts a popup menu that
displays the object’s public methods. These methods can be interactively selected to be invoked.

This mechanism serves two distinct purposes: It illustrates the concept that objects have a fixed
set of methods and that one can communicate with an object by invoking those methods, and it
allows experimentation with and exploration of the classes and objects to investigate and understand a
program’s behaviour.

3.4. Interaction

3.4.1. Method Invocation

The first example of interactive behaviour—interactive method invocation—has already been
discussed (Section 3.3.3), as visualisation and interaction are closely integrated. This can be extended
by combination with other interaction mechanisms. Objects can, for example, be freely dragged to
different locations in the world. By combining this with interactive method invocation, many concepts
and behaviours can be illustrated. For example, the getX() method (which provides an objects current
x-coordinate) may be called repeatedly after moving the object to different locations to illustrate the
world coordinate system, or a check for touching the edge of the world may be called with the object
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being or not being at the edge. Many behaviours can be experienced in exploration without the need
to write test drivers.

3.4.2. Object Creation

Another opportunity for interaction lies in the interactive creation of objects (Figure 4).
By right-clicking a class, access can be gained to a class’s constructors; invoking these interactively
creates instances that then may be placed into the world. Flexible scenarios may be created this way to
experiment with different object configurations.

(a) (b)

Figure 4. Object creation: Objects can be interactively created by right-clicking a class and choosing a
constructor (a); the resulting object can then be dragged into the world and placed there (b).

3.5. Source Level Support

While the first interactions with Greenfoot are often with existing, at least partially implemented
scenarios, and the first activities are often at the conceptual level—running programs, creating objects,
invoking methods interactively, etc.—learners very quickly get to the point where they are ready to
modify or write source code. Programming is, after all, the goal.

Source code is displayed in Greenfoot by opening the editor for a class (Figure 5). The source is
standard Java code.

One of the arguments often presented in favour of Python over Java is the larger amount of
boilerplate code needed in Java to get started. This code is a hurdle for beginners, and Python’s ability
to let users get started with individual lines of code is very attractive.

Greenfoot ameliorates this affect by partly avoiding, partly auto-generating the boilerplate code.
Java’s usual public static void main method—a major stumbling block for beginners—does not appear in
Greenfoot. Learners simply implement individual behaviour of objects, and the Greenfoot framework
arranges execution. The object model therefore is cleaner than in other Java environments.

Each class has the standard Java class structure, requiring the class header and method signatures.
These are, however, auto-generated when a new Greenfoot class is created, so that learners can indeed
create the first executable program (with a visual effect) by adding a single line of code. Once users
become more familiar with the environment and more adventurous, standard techniques such as
code-completion and links to documentation facilitate further exploration of the API.

One other educational tool that should be highlighted is Greenfoot’s scope colouring (Figure 5).
Correctly maintaining nested lexical scopes is one of the difficult challenges for beginners, and the
Greenfoot editor helps with this by automatically colouring the extent of the defined blocks. If an
opening or closing bracket is missing or misplaced, this colouring helps greatly in recognising and
localising the error.
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Figure 5. Source code display in the Greenfoot editor. The code is standard Java. The editor uses
scope highlighting to illustrate the extent of scopes and their nested structure, such as methods and
if-statements.

3.6. Greenfoot and Scratch

Scratch has been available on the Raspberry Pi for introductory programming education longer
than Greenfoot, so it is interesting to evaluate how they relate.

Greenfoot does not replace Scratch: Scratch is aimed at younger learners and uses a different
programming model (block-based programming). However, the two systems have a number of
similarities: Both are graphical, two-dimensional frameworks that let users program the behaviour of
actors in a world, and they display this world and its execution on screen. Because of these similarities,
they present an ideal sequence of instruction for younger learners: concepts learned in Scratch
transfer well into Greenfoot, with Greenfoot providing more complex and powerful abstractions and
interactions. Therefore, Greenfoot is an ideal successor system once young learners outgrow Scratch.

The characteristics of Scratch and Greenfoot, their similarities and possible educational path,
have been discussed elsewhere [17].

3.7. Greenfoot and IDLE/Python

As this discussion shows, Greenfoot may be used as an alternative to IDLE on the Raspberry Pi.
Both systems aim at similar styles and level of programming (full featured, text-based programming
languages), and both share similar models (modern object-oriented abstractions).
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While Python in IDLE has the attraction that typing in individual lines of code can have a
visible execution result, Greenfoot has many other advantages from a pedagogical point of view:
It is more interactive, allows easy creation of more engaging and more sophisticated examples,
and illustrates important programming concepts better. The output of programs is more graphical,
and the functionality it provides delivers on the goal of the initial Raspberry Pi mission statement
to “provide excellent multimedia” to “make the board desirable to kids who wouldn’t initially be
interested in a purely programming-oriented device” [1]. It delivers this multimedia capability
not only in the form of a media player for passive media consumption, but tied in to active
programming activities.

4. BlueJ

BlueJ is the second educational Java development environment included in the Raspberry Pi
image, and therefore available to all Raspberry Pi users. It differs from Greenfoot in a number of
important aspects (which we discuss in detail below). Greenfoot is aimed at programmers from 14 years
old upwards, and it specialises in the development of a specific class of application—two-dimensional
graphical games. BlueJ was initially developed for introductory university courses (although it,
too, is now often used at school age) and is more generic: It provides no special support for any
particular type of application, and in return lets users develop programs of any kind. What is especially
interesting in the context of the Raspberry Pi is that it can also interact directly with the Raspberry Pi
hardware and provides easily accessible software abstractions for its components.

4.1. Aims of the BlueJ Environment

The purpose of BlueJ is to provide a thorough introduction to the foundations and principles
of object-oriented programming. The environment is designed with pedagogical goals in mind,
to support the understanding and mastery of object-oriented principles. Where Greenfoot’s foremost
aim was to create engagement and motivation by providing special support for one particular class of
application, BlueJ aims to facilitate a full understanding of principles and details of object-oriented
programming. No framework code is automatically provided (as it is in Greenfoot), so there is no
“magic”, and no restriction as to what kinds of programs can be created. BlueJ is a general purpose
IDE. While Greenfoot was aimed at drawing people in to programming who previously may not have
thought they would like it, BlueJ’s target user group are novices who have decided they want to learn
more, and achieve a deeper understanding.

The overall design goals of BlueJ are similar to Greenfoot: visualisation, interaction and simplicity.
We will first give a short overview of the BlueJ environment (a more detailed description is provided
elsewhere [18]), and then concentrate on possible projects specific to the Raspberry Pi.

4.2. The Main Window

BlueJ differs from most IDEs for text-based languages in that its main window (Figure 6) does not
focus on the display of source code, but program structure. That main part of the window shows a
diagram of classes (in a notation that is a subset of UML) and their relationships. These classes are
interactive: A right-click on a class allows interactive invocation of a class’s constructors, and the
resulting objects are displayed on the object bench (Figure 6, bottom left). The bottom right area in
the main window is a read-eval-print loop, which allows typing in and evaluation of single expressions
or statements.
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Figure 6. The BlueJ main window. The main part of the window shows a class diagram of the
application under development. At the bottom left is the object bench, a place where interactively
created objects are displayed. At the bottom right is the Code Pad, an interactive read-eval-print loop that
can evaluate single expressions or statements.

4.3. Execution

Methods may be directly and interactively invoked by selecting them from an object’s pop-up
menu (Figure 7). As in Greenfoot, methods may have parameters (which are then supplied in a
dialogue) and return values, which are displayed after execution.

 

Figure 7. Interactive invocation of methods. Methods of objects displayed on the object bench can be
interactively invoked by selecting them from the object’s pop-up menu. Alternatively, they could be
invoked by typing the method invocation in the Code Pad.

Not all classes have to be complete, or even be able to compile, before execution, and there is no
need for a public static void main method. As soon as a single class successfully compiles, objects of this
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class may be created and methods executed. This allows much earlier experimentation and testing than
possible in other systems, without the need for written test drivers, and it aids the learning process.

If a traditional main method is present, it can be invoked (as can all static methods) from the class’s
pop-up menu. BlueJ projects are standard Java, and all Java programs can be manipulated in BlueJ.

4.4. Editing

BlueJ uses the same editor that is also integrated in the Greenfoot environment (Figure 5).
This allows easy transition from Greenfoot to BlueJ (and back), and also provides the useful educational
support, such as scope colouring.

4.5. Other Tools

Several other tools are integrated in BlueJ and can be enabled in the application’s preferences.
Some are hidden by default to initially provide a simple interface that can be mastered quickly by
beginners, and enabled when they are needed. Tools available include a debugger, support for unit
testing with JUnit [19] and support for standard source code repositories [20].

4.6. Accessing the Raspberry Pi hardware

BlueJ is a general purpose IDE, and many teaching projects making use of it have been created and
discussed in detail [21]. In the context of this paper, however, one new aspect is especially interesting:
accessing the Raspberry Pi hardware components. With the port of BlueJ to the Raspberry Pi, we have
added support for accessing the Pi’s hardware, and we provide some BlueJ projects that offer higher
level abstractions of the hardware components for pedagogical purposes. These abstractions allow
interaction with the hardware (as GUI interactions or programmatically), and they offer an easier start
into programming that addresses the hardware. We discuss this here in a little more detail.

BlueJ interfaces with the Raspberry Pi via a (slightly modified version of) the Pi4J library [22],
which is included by default with the Raspberry Pi BlueJ version and does not need to be installed
separately. In addition to the resulting ability to access the Pi4J interface directly (documentation for this
is available online [23]), we provide a set of classes that represent physical components. Once the BlueJ
project has been opened that provides these abstractions, users can interact with these components by
interactively creating objects and invoking their methods. They can also write code to perform more
complex actions.

Figure 8, for example, shows classes representing output devices connected to the general purpose
I/O (GPIO) pins and buttons (which may also be connected to the GPIO pins). If we now, for instance,
connect a LED to a pin on the Raspberry Pi, we can create an object of class GPOutput, specifying the
pin number in its constructor, to represent the LED. This LED will now be represented in BlueJ as an
object on the object bench, and methods can be called interactively on this object to communicate with
the LED (Figure 9).

This abstraction allows easy interaction and exploration of the functionality of various
components, and also makes it easy to start writing code with these. Making use of the classes
shown in Figure 8, for example, it is now easy to add a class called LightSwitch and write code to switch
the LED in reaction to the button state (Code 1).

if (button.isDown()) {

led.on();

}

else {

led.off();

}
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Code 1. A sample code snippet showing use of the Button and GPOutput abstractions being used
for simple program control. Variable button is of type Button, and variable led is of type GPOutput.

Thus, the classes provided by BlueJ provide a more interactive interface to the hardware that
provides an easier entry to starting to code on the Raspberry Pi. The initial interactive method
invocation, which requires no typing of code or memorisation of syntax, allows easy familiarisation
with the available functionality that is not available when accessing similar components from the
Python/IDLE environment.

The BlueJ projects providing the Raspberry Pi hardware abstractions are available on the BlueJ
website [24]. In addition to the GPOutput and Button abstractions shown here, classes are also available
for other components, including servo motors and analogue inputs and outputs.

The convenience and ease of use of these pre-fabricated classes comes at the price of flexibility:
While some actions are made easy by having specific methods provided to support them, some other
possible functionality is not directly supported. When users reach the point that they want to implement
behaviour not supported by these classes, they can fall back to using the Pi4J interface directly. In that
case, the implementation of the classes provided serves as a code example of how to access and use
the Pi4J library.

 

Figure 8. A BlueJ project with classes representing kinds of hardware components on the Raspberry Pi.
The Button and ButtonListener classes can be used to interact with push buttons connected to the GPIO
pins, while the GPOutput class can represent any output device connected to a pin.

Figure 9. Once an object has been created for an LED connected to a GPIO pin, the LED can be switched
on and off using methods of the GPOutput object.
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5. Discussion

Programming in Java is now available on the Raspberry Pi via the Greenfoot and BlueJ
environments. These systems provide a direct alternative for text-based programming to the IDLE
environment and Python as the language. Learners now have a choice of language and IDE.

All three approaches, IDLE, Greenfoot and BlueJ, have their strengths and weaknesses which
make them a good choice in different situations.

5.1. IDLE/Python

Starting with Python in IDLE has the advantage that single lines of code can be typed in
and evaluated, without any overhead. No boilerplate code is necessary, little “magic” is present.
Most behaviour that is observed is explainable by the lines of code immediately typed in. First experiences
of success—typing a code snippet and seeing it evaluated—are possible very quickly [8].

Many teachers and learners also like the syntax of Python: It appears somewhat simpler than Java
(although not by much), and some teachers argue that dynamic typing increases flexibility. Python is
an easy language to get started very quickly with small segments of code.

On the negative side, IDLE focuses on lines of code in its presentation of a project, offering
little support to model, understand or investigate higher order abstractions. Once programs become
larger than a few lines, and classes and objects are the natural abstractions for structuring the project,
IDLE offers little help.

Python’s characteristic of allowing, but not enforcing, object-oriented structures can be seen as an
advantage or disadvantage, depending on a user’s goals and point of view. Allowing to break out of
strict object-oriented structures allows quicker and more flexible creation of ad-hoc and experimental
small code segments. For short, spontaneous experimentation, this can be an advantage.

Users who aim at learning good, systematic programming construction, though, may be
better served with a language enforcing a stricter object-oriented style, such as Java. The ad-hoc
flexibility which is beneficial for small programs often breaks code style guidelines and violates
good object-oriented practice. If the learning of software engineering concepts is a goal, the stricter
framework may provide more help.

One of the most obvious limitations of IDLE is the lack of a good and easy to use framework for
the creation of interactive graphical programs. This misses an opportunity for creating engagement,
and fails to bring the goal of engaging multi-media from the consumption model into the creative space.

5.2. Greenfoot/Java

Greenfoot’s main advantage is the easy creation of animated, interactive, graphical applications.
Early examples typically programmed with Greenfoot are much more engaging than those used
with most other environments for text-based languages. Greenfoot also allows direct, GUI-based
interaction with objects and classes, supporting experimentation with underlying concepts (such as
classes, objects, constructors, methods, parameters, etc.) before having to get bogged down in source
code and syntax. Visible effects can be achieved by adding single lines of code.

A disadvantage of Greenfoot is that a much larger framework is at play behind the scenes.
The lines of code typed in Greenfoot—even if it is initially just a single line—is typed into an editor also
containing some boilerplate that may at first not be fully understood. The execution and effect of the
user-authored lines cannot be understood without also understanding some aspects of the embedding
framework. More functionality “just happens” automatically, presenting some “magic” to novices that
may cloud full understanding of the system.

Even though most users work without problems in Greenfoot, having to develop a mental model
of the Greenfoot execution framework in order to understand even small segments of code makes
initial understanding harder.

21



Electronics 2016, 5, 33

On the positive side, once the programs become a little larger—consisting of multiple classes
and objects, both the structure and the execution of projects can be understood more easily,
since both—structure and execution—are supported by visualisations in the environment.

Learning of good object-oriented practices is well supported, since the main abstractions—classes,
objects, methods, state—are represented explicitly in the environment, and all programming takes
place within these structures.

Greenfoot also offers an ideal sequence for learners coming from Scratch, the other programming
environment available on the Raspberry Pi. Scratch focuses on programmed micro-worlds, with actors
(named Sprites in Scratch) executing on a Stage. This model transfers directly into Greenfoot’s very
similar execution framework. Where Scratch is object-based (users program individual instances),
Greenfoot’s class-based model represents a logical next step when a programmer outgrows
Scratch’s capabilities.

5.3. BlueJ/Java

As with Greenfoot, early BlueJ examples are often larger than learning examples used with
Python. While BlueJ also offers a read-eval-print loop that makes starting by typing single statements
or expressions possible, this is not the typical entry point in pedagogical BlueJ literature. First steps
in Python typically use smaller snippets of code and fewer concepts, making the initial exercises
potentially easier to understand.

BlueJ, on the other hand, offers a conceptual overview—in the form of a class diagram and
functionality that allows interaction with existing classes and objects—that illustrates the underlying
main programming concepts more clearly. While typing and experimenting with single lines of code
is easier in IDLE, BlueJ provides better support for understanding program structures and more
fundamental abstraction concepts of object orientation.

Both BlueJ and IDLE enable users to programmatically access the hardware components of the
Raspberry Pi. BlueJ may have an advantage initially, since the available classes for the component
abstractions offer methods than can be discovered experimentally (while they have to be known and
memorised in IDLE). When programming more complex interactions with the Raspberry Pi hardware,
the complexity in both languages is comparable.

All three systems—IDLE, Greenfoot and BlueJ—enable learning of a mainstream, general purpose,
object-oriented language, and all are freely available. Both languages—Java and Python—have large
amounts of easily accessible teaching material available. More pedagogically targeted material exists
for the Greenfoot and BlueJ environments than for IDLE, and dedicated online teacher communities
are available for the two Java systems [25,26]. All three systems are currently popular in programming
education contexts (schools and universities).

6. Conclusions

The improved performance of Java on the Raspberry Pi over the last few years, and the addition
of the BlueJ and Greenfoot environments to the standard software set on the Raspberry Pi image,
have brought the initial vision of the Raspberry Pi foundation closer to reality: to provide a low cost
computer that can be used by kids to experiment with and learn programming in an engaging way.
While text-based programming was available on the Raspberry Pi since its first release—in the form of
Python—the addition of the Java environments broadens the options for learners and offers several
improvements to the situation. Greenfoot makes it possible to program much more engaging and
interactive examples much more easily, and BlueJ allows us to take the Java language forward into
more generic programming projects, including direct interaction with the Raspberry Pi hardware.

Supplementary Materials: A guide to programming BlueJ for the Raspberry Pi is available online at
http://www.bluej.org/raspberrypi/.
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Abstract: The Raspberry Pi is being increasingly adopted as a suitable platform in both research
and applications of the Internet of Things (IoT). This study presents a novel project-based teaching
and learning approach devised in an Internet of Things course for undergraduate students in the
computer science major, where the Raspberry Pi platform is used as an effective vehicle to greatly
enhance students’ learning performance and experience. The devised course begins with learning
simple hardware and moves to building a whole prototype system. This paper illustrates the outcome
of the proposed approach by demonstrating the prototype IoT systems designed and developed by
students at the end of one such IoT course. Furthermore, this study provides insights and lessons
regarding how to facilitate the use of the Raspberry Pi platform to successfully achieve the goals of
project-based teaching and learning in IoT.

Keywords: Internet of Things; Raspberry Pi; project-based learning; prototype development

1. Introduction

The Internet of Things (IoT) has been envisioned as the next wave in the era of cyber
technology, in which millions of smart devices (including various sensors and actuators) are wirelessly
connected and integrated via the Internet [1]. This emerging paradigm will fundamentally create
and boost a number of new applications across many fields, including environmental monitoring [2],
precision agriculture [3], smart grids [4], smart cities [5] and e-health systems [6]. It is of critical
importance to provide the next generation of computer scientists and engineers an opportunity to not
only understand the concepts and principles of IoT, but also to study the practical development of IoT
solidly, so that students can learn how to apply theories to real applications. Many universities have
started to introduce IoT courses into their undergraduate curriculum [7–11].

Project-based learning (PBL) can provide great opportunities for students to enhance their
engineering understanding and skills [12–17]. Students can not only gain theoretical knowledge
from lectures, but also obtain valuable hands-on experience in real-world project practice, where they
can actively improve their abilities in self-motivated learning, self-efficacy beliefs [15], problem solving,
adaptation to interdisciplinary thinking and collaborative learning [16]. The PBL approach also helps
with improving the achievement of low-performing students [17].

Real-world projects demand real resources. For example, wireless communication-enabled tiny
computers are essential for students to program and experiment with in any IoT project. The invention
of the Raspberry Pi, an inexpensive, tiny and relatively powerful computer board, not only provides a
great building block to facilitate research and various IoT application developments, but also provides
a desirable hardware platform for the project-based learning paradigm in computer science and
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engineering education. Educators have exploited Raspberry Pi either as a single device [10,18] or as
the basis of more sophisticated learning systems [7,8,19–21] for their IoT education. Bruce et al. [10]
and Jamieson et al. [18] described valuable experiences and case studies of using Raspberry Pi in
undergraduate study. Sobota et al. [19] coupled a Raspberry Pi with an Arduino to build an inexpensive
platform for students to run control algorithms. Buzz-Board [7] and DC Motor Kit [21] are more
powerful education systems that are designed based on Raspberry Pi. As an affordable solution,
Raspberry Pi has also been adopted as an educational computing system in many countries.

This paper presents the project-based teaching experience of using Raspberry Pi for the
“Introduction to Internet of Things.” This IoT course is offered for undergraduate students in the
Department of Computer and Information Science (CSCI) at Indiana University Purdue University
Indianapolis (IUPUI). In previous years, course projects were based on simulations; in fall 2015,
the Raspberry Pi computer boards and various peripherals were used to enrich students’ hands-on
experiences on IoT projects. To maximize the effectiveness of the project-based learning paradigm,
the class projects were carefully designed. Students without any previous hardware experience are
guided to finish a complete IoT prototype system at the end of the course, including both hardware
and software development.

The reminder of paper is organized as follows. Section 2 gives an overview of the Raspberry Pi
platform. Section 3 provides the design of class projects based on Raspberry Pi. Section 4 demonstrates
the outcome of our approach by presenting several final projects that students completed by the end of
the course. Section 5 shares some lessons learned from our experience. Finally, Section 6 concludes
the paper.

2. An Overview of Raspberry Pi

The Raspberry Pi [22] is a single-board computer introduced in 2012 (Figure 1) with the
intention to promote the study of computer science and related topics in schools and in developing
countries [22]. It is powered by an ARM-based processor, which operates on 700 MHz–1.2 GHz, with
a memory of 256 MB–1 GB, depending on different models. The major components include HDMI,
USB ports, Ethernet ports and SD card. The default operating system on a Raspberry Pi is Raspbian,
a Debian-based Linux distribution; Raspberry Pi 2 and 3 can also run Window 10 IoT core.

 

Figure 1. Raspberry Pi 2 Model B.

In addition to the major components, Raspberry Pi is equipped with numerous interfaces to
interact with small electronic devices. The display serial interface (DSI) can be used to connect to a
touch screen; the camera serial interface (CSI) can be used to capture pictures or videos; sensors or/and
actuators can be attached to the general purpose input/output (GPIO) pins to monitor and react to
the environmental change. The advantage of Raspberry Pi is that it provides a general programming
environment (e.g., Linux) and allows direct control of the hardware through the interfaces. This makes
it a perfect platform for development in IoT.
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Tutorials are available online to teach beginners the basics of computer programming. Step-by-step
guides for many real projects (e.g., magic mirror and robot car) are also provided by either the
community or device venders. Raspberry Pi adopts Python as a main programming language, but also
supports other mainstream programming languages, such as C/C++, Java, Perl and Ruby.

Raspberry Pi has been gaining popularity all over the world for its small size, low price,
powerful computation capability and versatility. At a cost of $25–$35, eight million devices had
been sold by February 2016 [22].

3. Project Design

The success of any project-based teaching and learning paradigm lies in the appropriate design
of the project series, through which the students are required to work. This project design should
carefully take the students’ background into consideration. Designed projects should be challenging
enough to keep students motivated and interested, but not so difficult that students cannot complete
them. In this section, we first briefly describe the course outline and then present the design of a series
of course projects to realize our project-based teaching paradigm. The hardware for the students to
use includes CanaKit Raspberry Pi 2 Ultimate Starter Kit [23], Osoyoo Sensor Modules Kit [24], and
Elegoo Sensor Module Kit [25].

3.1. Course Outline

The Introduction to Internet of Things (CSCI 49000) at IUPUI is a three-credit hour one-semester
course for undergraduate students in the Department of Computer and Information Science.
This course covers the basic concepts and fundamental principles of the Internet of Things and
wireless networks of smart devices. Topics include the concept and architecture of the Internet of
Things, communication mechanisms, IP stack, 6LoWPAN adaptation, protocols, operating systems,
sensors and actuators and IoT applications. The students taking this class are not required to have any
hardware experience or/and embedded systems background.

3.2. Project Design

We take a novel project-based teaching and learning approach in which project work is designed
as a semester-long activity. To help students to get started and gradually learn more as the class moves
forward, we apply the “divide and conquer” methodology to project design. A series of three projects
are designed and described in Sections 3.2.1–3.2.3, respectively. Each project is conducted by a team of
two students or an individual, according to the students’ preference.

3.2.1. Project 1: Hardware and Software Platform for a Single-Node System

For most students, the Raspberry Pi is a totally new computation platform, which is quite different
from their own computers, smart phones or tablets. It is a necessity to then make students familiar
with the hardware platform and the basic software development environment; this is the main purpose
of the first project. In the first step of this project, students are asked to go through the Raspberry Pi
system installation and configuration guide, and to run the Blink application, toggling an LED through
a GPIO pin. In Step 2, by learning the code logic and circuit of the Blink application, students are asked
to build an application with four LEDs and two buttons, in which buttons are used to increase/decrease
the frequency of the LED’s blinking, and three LEDs are used to display the frequency level. In Step 3,
students are required to use a temperature sensor and turn on/off an LED if the temperature is
above/below a threshold. Students are encouraged to mimic the example code to build their own
application, once they learn the usage of GPIO pins in both directions. Upon the successful completion
of Project 1, students will have learned how to build a simple single-node (i.e., smart device) system
with sensors/actuators based on the Raspberry Pi platform.
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3.2.2. Project 2: Networking Individual Node(s) to the Internet via IoT Application Protocols

Project 2 aims at helping students learn IoT-specific protocols. IoT devices are particularly resource
constrained when compared to general purpose computers and devices. New application protocols
are specifically designed and developed for IoT devices to reduce computation and bandwidth usage,
such as the Constrained Application Protocol (CoAP) [26] and Message Queuing Telemetry Transport
(MQTT) [27]. In Project 2, students learn IoT protocols and the philosophy behind them. We select
CoAP [26] as our learning tool for its relatively mature implementation, strong support from the
Eclipse Foundation [28] and ease of testing using a Firefox client. Each team is asked to run the hello
world CoAP server application, which replies with a string to any CoAP client. Then, the team is
required to attach sensors (of their own selection) to the Raspberry Pi and to add sensor readings
as resources to the CoAP server. The sensor readings can be queried using a graphical user agent,
Copper [29], which is an add-on for Firefox. In step three, each team is asked to analyze the resource
usage of CoAP on Raspberry Pi (e.g., code size, memory usage and response time) and to learn the
differences between CoAP and HTTP.

3.2.3. Final Project: A Complete IoT Prototype System

The first two projects train students to understand programming on Raspberry Pi and an
IoT-specific protocol. In the final project, students are asked to demonstrate their skills by developing a
complete IoT prototype system. To encourage and promote students’ creativity, proposals are required
for final projects; modifications to proposals are suggested based on each team’s performance in the
previous projects. Students were encouraged to use electronic elements that were not included in
the previous projects. Section 4 describes and illustrates some of the final projects that students have
completed thus far.

4. Project Demonstration

4.1. Raspberry Pi Stock Ticker

The Raspberry Pi stock ticker system tracks selected stock prices in real time and notifies the user
in multiple ways when the stock price changes within a certain amount. It was a client/server model:
the server side was written in Python, while the client side was written in Java. The system consists of
the following major electronic elements:

• 16 × 2 LCD: Displays two lines of information. The top line displays the stock symbol and
the price difference, with an up or down arrow indicating the increase or decrease in price as
compared to the previous day’s close. The bottom line displays the latest stock price.

• A red LED: Turned on if a stock’s price has decreased from the previous day’s closing price.
• A green LED: Turned on if a stock’s price has increased from the previous day’s closing price.
• A piezo buzzer: Makes a sound when a stock’s price has fallen below a predefined threshold.
• Potentiometer: Adjusts the contrast of the LCD screen.

The stock ticker system monitors the dynamics of selected stocks and generates alert signals.
The user of the stock ticker system can register an email to receive notifications when the stock price
has reached a level of interest. Figure 2 shows the prototype of the system.
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Figure 2. A prototype of the stock ticker system. The left side shows stock information in the terminal
of Raspberry Pi. The right side shows the setup of the system: the stock information is displayed in the
LCD, while the red LED indicates the price has dropped from the previous day’s closing price.

4.2. Water Leak Detector

A water leak can cause serious damage if it is not detected early. This project built a water leak
detector to notify a homeowner about a detected water leak using both emails and text messages.
The core element is a soil moisture sensor, which produces different signals according to the presence
or the absence of water. The system can be used to detect a water leak, for instance, in the kitchen
under the sink, near the toilet or near water pipe junctions.

When water is present, the system will send alerts to the user after three consecutive leak
detections. If the leak stops, the system will send “clear” messages to the user after three consecutive
checks. It also implements the request/response communication model, such that the users can request
the water leak status at any time. The system setup and alerting messages are shown in Figure 3.

 

Figure 3. The prototype of the water leak detector. When a water leak is detected, email and text
messages are sent to the user. When the water leak stops, updated email and text messages are sent to
the user.

4.3. Lock Checker

The lock checker is designed to monitor the status of the door lock and can be used to improve
home security. The major system components are an infrared obstacle avoidance sensor [30] and a
touch sensor [31]. The obstacle avoidance sensor is installed on the door frame (Figure 4) to detect the
door’s opening or closing by sensing the presence of the door handle. The touch sensor is attached
to the door handle on the inside so that it will be triggered if someone opens or closes the door from
inside the room.
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Figure 4. The prototype of the lock checker. The obstacle avoidance sensor is attached to the door
frame, and the touch sensor is attached on the door handle.

The obstacle avoidance sensor can determine the lock status of the door; it also generates
readings when people walk through the door. To effectively detect people that enter or leave the
room, a combination of sensor readings are used. For example, if the avoidance sensor is triggered
alone, the door is opened from the outside. On the other hand, if the touch sensor is triggered before
the avoidance sensor is triggered, the door is opened from the inside.

The system used Python to control the sensors, and hosted a website written in PHP to display
the status of the lock, so that the user can check the door status through the Internet. If the door is
unlocked, an email or text message is sent to notify the user.

5. Discussion and Evaluation

5.1. Discussion

We believe that the appropriate design of the projects in PBL is critical to the effectiveness of
the PBL approach itself. This not only requires deep understanding of the scientific and engineering
subjects that students are going to learn, but also needs clear understanding of students’ academic
background. In our case, the subject of the Internet of Things naturally includes two important
aspects: single-node system and networking. The single-node system is different from traditional
computer organization, because it includes sensors and actuators. If students do not really understand
a single-node system, it would be very difficult for them to move on to the networking of individual
nodes to the Internet. On the other hand, students typically did not have any hardware training and
experience before they took this class. In view of this, our strategy was to design a series of projects for
students in an incremental way. The first project only focused on a single-node system, where students
learned how to connect sensors and actuators to the CPU, how to use sensors and actuators and how to
program the node to make it smart. After students could work with a single-node system confidently,
they were allowed to move on to the second project, which focuses on the networking aspect. In the
second project, students learned communications and protocols through their hands-on project and
understood where and how IoT protocols are different from the corresponding traditional Internet
protocols. Having acquired some basic understanding of the IoT concept and system after the first two
projects, students started to work on an IoT system that can be applied to the real world in a creative
and comprehensive way, which is the goal of the third project in the project series. Indeed, we feel that
the design of this series of three projects is the key to our PBL approach, which greatly enhanced the
effectiveness of PBL for our students.

Second, our experience indicates that sufficient support related to the project platform and
environment is very helpful for undergraduates. Though the Raspberry Pi community is very active
and numerous online materials are freely available, several difficulties exist for beginners. First, it is
hard to find an entry point of necessary background knowledge and learning materials to Raspberry Pi.
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The Raspberry Pi official website [32] does not have a systematic tutorial to guide the beginners;
for example, the “Getting Started Guide” only shows how to install the system for the first time.
What to do next is not clear. In this regard, we provided various supports for our students during their
projects, including a detailed CoAP tutorial and a detailed tutorial on how to work on Raspberry Pi
with the laptop screen and keyboard [33].

When teaching/tutoring, beginners and experienced learners require different treatments.
For experienced learners, a clear problem statement is usually enough to get them started; for beginners,
the problems and learning materials must be carefully designed in order to help them progress, as well
as to keep their enthusiasm.

We encountered a networking issue during Project 2 when using Raspberry Pi (running Raspbian)
on campus. By default, Raspbian does not support connecting to a WiFi network that uses enterprise
encryption (e.g., the WiFi on the IUPUI campus uses WAP2 Enterprise). Possible solutions are either
creating another hotspot on campus for Raspberry Pi or changing the network configurations on
Raspbian. We managed to provide both solutions to students.

5.2. Evaluation

During the semester in fall 2015, 13 undergraduate students in the class selected the Raspberry
Pi platform. At the beginning of the class, an informal survey showed that none of students had
any hardware-related experience, and only two of them had used Linux-based systems before.
To evaluate the effectiveness of our approach, we monitored and analyzed the performance of
the students after each project. As an introduction-level project, the main purpose of Project 1
is to help students to build up their confidence when facing new hardware and development
environments. Encouragingly, all students completed Project 1 successfully. Project 2 requires more on
both the new protocol and the self-selected sensors/actuators, making it more difficult. As a result,
11 students successfully completed Project 2, whereas the other two students partially finished the
project. Among the 11 who completed the project, seven students understood the basic concepts
and usage of the CoAP library very well, and four students showed a good understanding of the
self-selected sensors/actuators. This result indicates that hardware seems to be more difficult for
students to grasp. In the final project, all students were able to correctly use the sensors/actuators
they selected, but several encountered software issues, since they started to use more complicated
open source libraries as the basic service providers. Nine students completed their proposed prototype
systems successfully; two students completed partially, and the other two students failed. One group
showed the ability to build a relatively complex prototype system (i.e., the Raspberry Pi stock ticker).
These results have demonstrated the effectiveness of our approach.

6. Conclusions

In this paper, we present our experience using the Raspberry Pi platform as an effective vehicle to
realize a successful project-based teaching approach in an Internet of Things class for undergraduate
students. We feel that it is important to provide students with such an engaging environment for
learning and experimentation, where the Raspberry Pi platform fits in very well. The outcome of the
class was very positive; and the prototype systems developed by the students show great potential
to be improved to be practical IoT products. We are pleased to observe that through our devised
project-based teaching and learning paradigm in this course, the students have obtained the ability
to finish IoT projects based on the Raspberry Pi platform, to come up with novel IoT ideas and to
implement them successfully.
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Abstract: Instructional laboratories are common in engineering programs. Instructional laboratories
should evolve with technology and support the changes in higher education, like the increased
popularity of online courses. In this study, an affordable and portable laboratory kit was designed
to replace the expensive on-campus equipment for two control systems courses. The complete kit
costs under $135 and weighs under 0.68 kilograms. It is comprised of off-the-shelf components
(e.g., Raspberry Pi, DC motor) and 3D printed parts. The kit has two different configurations. The first
(base) configuration is a DC motor system with a position and speed sensor. The second configuration
adds a Furuta inverted pendulum attachment with another position sensor. These configurations
replicate most of the student learning outcomes for the two control systems courses for which they
were designed.

Keywords: control systems; DC motor; inverted pendulum; Raspberry Pi; instructional laboratory;
engineering education

1. Introduction

Instructional laboratories are a common part of undergraduate engineering education. Historically,
these laboratories have taken place on campus with expensive equipment. However, with the rise
in popularity of online classes and low cost hardware there are new alternatives to the traditional
on-campus instructional laboratory. This research developed a modular, portable, and affordable
laboratory kit to support the accompanying curriculum for the introductory controls course in the
general engineering (GE) program at the University of Illinois at Urbana-Champaign. The objective
was to design each kit to be assembled for around $100 while replicating the educational functionality
of a lab bench in a university controls laboratory. A kit will also allow older analog computers to be
updated with newer technology that is more representative of what is currently used in industry [1].
Replacing expensive equipment with an affordable kit that can be shipped anywhere in the world
increases the accessibility of the controls laboratory experience for students on campus and remote
locations. Previous research shows that hands-on laboratory experiments help students understand
and apply course material [2].
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Some affordable and transportable laboratory devices for engineering education have already
been developed, such as the Mobile Studio IOBoard, which is centered on a custom-built board that
“replicates the functionality of an oscilloscope, function generator, multimeter, and power supplies”
and is primarily used in introductory circuits courses [3].

The target course for the kit is GE 320 (an introduction to control systems for general engineering
students). This course is representative of the first course in controls for many electrical, mechanical,
and aerospace engineering programs. The kit design consists of a Raspberry Pi (a fully functional
ARM-based computer that is the size of a deck of cards), a DC motor, and the various circuits required
to drive the motor, to measure position and speed, and perform system identification.

1.1. Background

The need for laboratory experiences in control systems courses has been well established in [4–7]
and others, however there are challenges associated with including them. Some hurdles include: budget
constraints, space limitations, class size, and limited teaching resources [5,8–10]. Additionally, the increasing
popularity of online courses has added a new consideration for laboratories [4,11,12].

The literature shows that the cost of equipment per laboratory station varies from $180 [13] to
$32,493.74 [14]. This research looks to replace the basic functionality of these laboratories with an
affordable kit. The target budget of $100 for the kit was used because it is the approximate cost of
a textbook. The budget is also only three times the cost of an iClicker, another common piece of
technology that students purchase for courses, and the approximate cost of other low-cost kits for other
courses found in literature [3,15]. The Arduino prototyping kit described in [15] is approximately $95
and was designed for a multidisciplinary course on perception, light, and semiconductors. The Mobile
Studio IOBoard described in [3] has multiple versions ranging in price from $80–$130. The primary
application of the Mobile Studio IOBoard is undergraduate circuits courses.

In addition to monetary cost, dedicated laboratory space is also limited and class sizes are
increasing. These factors place restrictions on the capabilities of face-to-face laboratories. Not all
students can attend and complete face-to-face laboratory experiments due to time, location, or physical
disability [16]. An alternative to face-to-face laboratory experiences are laboratory kits.

A lab kit allows students to take home the laboratory equipment to complete the experiments on
their own time [13,15]. These kits started to become more popular as the cost of the required hardware
has decreased [15]. The kits’ contents vary based on the objectives of the course and can be assembled
by the instructor [8,15], adapted from an existing kit [13] or purchased as a complete kit such as Lego
Mindstorms NXT [17,18]. These kits have been well received by students [8,10,15].

The science and engineering active learning (SEAL) system created a take-home kit for students to
develop a cart with an inverted pendulum attachment [8]. It was designed to be used in controls courses.
The cost of the kit is approximately $100 plus $179 for a myDAQ from National Instruments [8,19].
The MESAbox was also designed for controls and mechatronics courses; it uses an Arduino and costs
approximately $180 [13]. The MESABox kit includes multiple motors and sensors and is based on an
off-the-shelf kit from Sparkfun; however, this includes more components than required for the GE
courses. The laboratory experiments designed for the MESABox cover a variety of controls topics
including using the Arduino programming language and wiring all of the circuits.

The DC Motor control equipment detailed in [6] includes $80 of hardware and a motor,
gearbox, and encoder. The cost of the latter three components are not included; the motor manufacturer’s
website indicates these components are more than $100 each [20]. The total cost for each station with
this equipment is approximately $400 and it is not designed to be portable.

All undergraduate laboratory experiences still need to meet the course goals and objectives
as well as ABET accreditation requirements [7,12]. There are several goals that can be applied to
laboratory experiences based on the outcomes in the ABET Criterion; a student should have the ability
to conduct experiments, analyze and interpret data, use modern engineering tools, design experiments,
solve engineering problems, and function in teams [21]. In general, the controls laboratory experience
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should prepare students for a career in control systems [1] by performing the following steps: building
the system [5], modeling and analyzing the system, developing a controller to meet performance
requirements, simulating the controller and system, observing the physical system, collecting the
data, and using the data to improve the system model or control tuning [4,10]. Experiments based
on DC motors [6,22] have been identified to meet these goals for controls laboratory experiences.
Another advantage of using a DC motor for a control systems laboratories is the range of experiments
that are possible. One example is a simple proportional-integral-derivative (PID) control of the motor’s
position [22]. A more complex example is to add an attachment to make an inverted pendulum [6].

1.2. Motivation

There were four primary considerations driving the development of this kit: achieve the same
educational objectives as the current laboratory equipment, cost and accessibility of parts, portability
of the complete kit, and student interface. Within the first consideration, it was important to have a
seamless transition in the laboratory without changing the lecture part of the course.

A budget of approximately $100 and the desire to be able to quickly obtain replacement parts
if something breaks drove the second consideration of cost and availability of parts. The budget is
similar to other kits found in the literature and approximately the same cost as a textbook. All of the
parts in the kit are available at major online retailers or 3D printed.

Cost and accessibility is also closely tied with the third consideration of portability. Portability is
a long-term goal of the project, so that the students can take the kits home or the kits can be shipped to
students taking online courses.

The last consideration, student interface, placed the most restrictions on the current design of the
kit. The lecture portion of the course and some of the existing laboratory experiments use MATLAB
and Simulink as the simulation and development platform. Therefore the new kit uses MATLAB
and Simulink as well. At the start of the development of the kit only two small, low-cost, hardware
platforms had Simulink support: Arduino and Raspberry Pi. The latter was chosen for its flexibility
and potential to expand into other controls courses with more complex algorithms and possibly object
tracking via video.

2. Materials and Methods

The laboratory equipment was developed in two phases. The first phase developed a DC Motor
kit for an introductory control systems class (GE 320). The second phase added a Furuta inverted
pendulum attachment for a second class in digital control systems (GE 420).

2.1. DC Motor Laboratory Kit Development

From the considerations in the previous section, a goal was set to develop a kit that would
replicate the educational objectives of the existing lab for around $100. Off-the-shelf parts were selected
when possible to make replacement parts easy to obtain. Parts that could not be purchased were 3D
printed. The simplicity of the design and availability of the parts will make future expansions with the
kit feasible. Figure 1 shows the assembled kit. Table 1 details the supplies needed to build a complete
kit, including the supplier for each part.
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Figure 1. Complete DC Motor Kit.

Table 1. Components of the Kit.

Item Supplier Cost

Raspberry Pi Model B Adafruit $ 39.95

12V DC motor Sparkfun $ 12.95

3D printed stand in house $ 5.00

Bread board Adafruit $ 5.95

H bridge (L293D) Adafruit $ 2.50

ADC (MCP3002) Sparkfun $ 2.30

Power supply (for RPi) Adafruit $ 9.90

Power supply (for DC Motor) Adafruit $ 14.95

Rotary Position Sensor (3382) DigiKey $ 2.60

Photo Interrupter Sparkfun $ 3.45

Pi T-cobbler breakout & cable Sparkfun $ 6.95

Wires Adafruit $ 1.60

Resistors ECE Store $ 0.15

LEDs Sparkfun $ 0.59

SD Card Amazon $ 17.09

Total $ 125.93

Note: based on approximate 2016 prices.

2.1.1. Raspberry Pi

The Raspberry Pi model B brought a lot of functionality to the kit; however, it also provided
some challenges. The Raspberry Pi includes several useful drivers in the WiringPi library [23] which
is included in the Raspberian Linux distribution. These libraries are very helpful in setting up built
in functions. The processing power and peripheral interface provide resources for potential future
functionality. There are also several predefined functions in MATLAB and Simulink that make it straight
forward for students to develop code. The cost and availability of the Raspberry Pi and accessories like
the Pi Cobbler breakout board from Sparkfun are also advantages. The Raspberry Pi also has 17 general
purpose input/output (GPIO) pins available for use; however, these pins can only be used for digital
signals and this kit requires an analog position to be used. An additional limitation is that the Raspberry
Pi requires an Ethernet communication with another computer for programming and setup. It also
requires a separate USB micro power source. There are other alternatives to the Raspberry Pi that do not
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have the limitations of Ethernet or an additional power supply, including the Arduino and BeagleBone
Black. The rest of the kit could be adapted to work with these platforms as well.

2.1.2. Circuits and Sensors

The full circuit diagram is included in Figure 2. The sections below describe the major components
in the circuit diagram.

Figure 2. Breadboard Schematic.

H-Bridge

The digital GPIO pins do not supply enough voltage or current to drive the DC motor. An H-Bridge
was selected to create the interface between the Raspberry Pi and the motor. L293D H-Bridge has four
channels; two of these are used in the kit so that the direction can also be controlled.

Speed Sensor

To measure the speed of the motor, a 3D printed encoder wheel is attached to the shaft of the DC
motor. The encoder wheel has 20 evenly spaced holes. The wheel passes through a photo interrupter
to create a digital signal that is connected to a GPIO pin on the Raspberry Pi. See 3D model in Figure 3.

Figure 3. Encoder Wheel and Motor Shaft Extension.
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Position Sensor

A rotary potentiometer is used to measure the position of the motor. The potentiometer measures
340 of the 360 degrees of travel. It is mounted on a table shaped surface that is part of the 3D printed base.
A motor shaft extension was printed as one part with the encoder wheel, see Figure 3. However, it was
found that the accuracy of 3D printing can cause inconsistencies between kits. For example, there is a
hole in the bottom of the encoder wheel that was designed to fit tightly over the shaft of the motor. In
some cases the part fit and did not wobble, however others the hole was too big and would not stay
attached to the motor. Looseness and wobbling caused the encoder wheel to hit the photo interrupter.
An aluminum hub with set screw was added to some kits for stability.

Analog-to-Digital Converter

There is not an analog input on the Raspberry Pi so an analog-to-digital converter (ADC) was
selected to convert the potentiometer voltage to a digital signal. As a substitute, the Raspberry Pi
has a built in serial peripheral interface (SPI) and inter-integrated circuit (I2C) interfaces that make
connecting the ADC straight forward. The MCP3002 and MCP3008 ADC were both tested with the kit.
These ADCs use the SPI interface and have the added benefit of having predefined functions included
in the WiringPi library that is available for the Raspberry Pi. Ultimately, the MCP3002 was selected for
cost and availability. It has two available input channels instead of eight, which is sufficient for this
course.

2.1.3. Simulink

The primary software package used in the course is MATLAB and Simulink. Therefore it was
important to use it in the laboratory experiments as well. Two non-standard blocks needed to be
developed. All of the models are run in Simulink’s external mode. This mode allows the data collected
by the Raspberry Pi to be viewed while the simulation is running on the Raspberry Pi [24]. The models
were built and tested in MATLAB Release 2014a.

Reading the Potentiometer Voltage through ADC and SPI Interface

To take advantage of the libraries provided with WiringPi, an S-Function builder block is used to
generate the output to the ADC and read the input from the ADC. The block outputs the value from
the potentiometer at a rate of 100 Hz, which is set on the Initialization tab of the S-Function Builder.
In the Libraries tab the following WiringPi libraries are included:

• wiringPi.h
• wiringPi.c
• mcp3002.h
• mcp3002.c
• piHiPri.c
• wiringPiSPI.c

39



Electronics 2016, 5, 36

The following code was added in the Outputs tab:

i f (xD [ 0 ] == 1)
{
# i f n d e f MATLAB_MEX_FILE
y0 [ 0 ] = analogRead ( 1 0 0 ) ;
# endi f
}

Additionally, the following code was added to the Discrete Update tab:

i f (xD [ 0 ] != 1 ) {
# i f n d e f MATLAB_MEX_FILE
wiringPiSetup ( ) ;
mcp3002Setup ( 1 0 0 , 0 ) ;
# endi f
//done with i n i t i a l i z a t i o n
xD [ 0 ] = 1 ;
}

The SPI interface on the Raspberry Pi also needs to be enabled through the MATLAB workspace
by entering the following commands:

mypi= r a s p i ( ’ ipaddress ’ , ’ pi ’ , ’ raspberry ’ )
mypi . enableSPI

where ipaddress in the above command refers to the actual IP address of the Raspberry Pi.

Encoder to Tachometer Reading

The digital signal created by the photo interrupter can be read directly by the Raspberry Pi.
Once the signal is in Simulink it needs to be converted from a digital signal to a speed in radians per
second. A counter block is used to count the number of pulses per tenth of a second and then the count
is converted to a speed.

Interface between a Computer and the Raspberry Pi

Based on the type of experiment students create inputs for the motor or closed-loop control
laws in Simulink. Then the software is built using Simulink’s Embedded Coder and deployed on the
Raspberry Pi via the Ethernet connection. When the Simulink model is run in External mode, data can
be collected and viewed as the code runs via scopes or other sinks provided in Simulink. This mode
requires a high volume of Ethernet traffic while the model is running; therefore it is recommended
that an independent network be created between the computer and the Raspberry Pi. The kit was
tested using an independent network within the laboratory with only traffic between the laboratory
computers and the Raspberry Pis. Manual network settings were used when setting up the Linux
distribution with MATLAB, to allow each Raspberry Pi to be assigned a known and unique IP address
on the independent network set up in the laboratory. The IP address was printed on a label and affixed
to the base for easy access during laboratory experiments.

There are other alternatives that can be used when the code is run as a standalone application on
the Raspberry Pi. Data can be collected in a file or sent back to the host computer via User Datagram
Protocol (UDP) Send and Receive blocks provided in Simulink. When the data is saved to a file on the
Raspberry Pi a File Transfer Protocol (FTP) connection can be established to transfer the file to the host
computer for analysis.
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2.2. Furuta Inverted Pendulum Kit Development

In the second phase of development, a Furuta inverted pendulum attachment was added to the
kit. Inverted pendulums are common systems for control systems laboratories. There are multiple
designs of inverted pendulums. The Furuta version of the inverted pendulum was already in use in
GE 420, the second required control systems course for general engineering majors. An illustration of
a Furuta inverted pendulum is included in Figure 4.

Figure 4. Complete Furuta Pendulum Motor Kit.

The Furuta inverted pendulum currently being used costs about $1,220. The Furuta pendulum
attachment was added to the existing DC motor kit for an additional $4. The additional cost was from an
additional potentiometer to measure the angle of Link 2, two resistors, and 3D printing the attachment.
A photo of the kit with the Furuta Pendulum attachment is in Figure 5. The resistors are used to create
a voltage divider, as in the implementation for the first potentiometer shown in Figure 2. The wiper of
the second potentiometer is connected to the second input of the ADC. All of the rest of the circuits
remain the same and the interface to the Raspberry Pi is still through MATLAB and Simulink.

Figure 5. Complete Furuta Pendulum Motor Kit.

Simulink

Just like the DC motor kit, the student interface is through MATLAB and Simulink. In order to
read the position of Link 2 from the second potentiometer, the s-function in Simulink needs to be
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modified. In the Data Properties tab, a second output y1 is added. The code on the Outputs and
Discrete Update tabs require two modifications. One line of code was added in the Outputs tab to
make an output for the second potentiometer.

i f (xD [ 0 ] == 1)
{
# i f n d e f MATLAB_MEX_FILE
y0 [ 0 ] = analogRead ( 1 0 0 ) ;
y1 [ 0 ] = analogRead ( 1 0 2 ) ;
# endi f
}

Additionally, one line of code is added to the Discrete Update tab to initialize the second SPI channel:

i f (xD [ 0 ] != 1 ) {
# i f n d e f MATLAB_MEX_FILE
wiringPiSetup ( ) ;
mcp3002Setup ( 1 0 0 , 0 ) ;
mcp3002Setup ( 1 0 2 , 1 ) ;
# endi f
//done with i n i t i a l i z a t i o n
xD [ 0 ] = 1 ;
}

The control objective with an inverted pendulum is to keep the pendulum link in the vertical
upright position. The state equations for inverted pendulums also include angular velocity. The angular
velocities can be calculated with a derivative of the position or a partial state observer. The design
depicted in Figure 6 uses derivatives and pole placement to keep the inverted pendulum in the upright
position.

Figure 6. Complete Simulink model to control the Furuta Inverted Pendulum.

42



Electronics 2016, 5, 36

3. Results

Within the two phases of this study, we developed two kits for use in instructional laboratories for
control systems courses. The total cost for the complete kit for both courses is under $135. The complete
kit weighs less 0.68 kilograms and can fit inside a shoe box. All of the components of the kit are readily
available from internet retailers or 3D printed. The availability and flexibility of parts makes it easy
to repair.

For off-campus students, the complete kit could be shipped to them directly. As 3D printers
become more available, students could be provided a parts list and 3D models. Then they could
assemble the kit themselves and complete these experiments in their own home. If the kit or parts
could not be made available to students off campus, most kit functions can be operated remotely.
The Raspberry Pi is programmed via network connection and the data is collected through the same
internet connection. However, when operating the kit remotely, the data may not be able to be viewed
in real time. If necessary, a live video feed could also be established.

While connected to a computer with MATLAB and Simulink, most of the laboratory experiments
of the GE 320 and GE 420 courses can be replicated. The following sections list the objectives and
experiments specific to each course.

3.1. GE 320

As the introductory control systems course GE 320 covers the basics of linear, continuous-time,
control development. The objectives of the GE 320 laboratory experience are to apply the following
course concepts: system identification, system frequency response, stability, and PID control.
These concepts are applied using a DC motor and the associated sensors in the kit.

During six of the fifteen weeks in a semester, students spend two hours in the laboratory
completing six different experiments [25]. The experiments with the new kit and existing equipment
are compared in Table 2. During the pilot study there were six kits purchased and assembled then
made available in the laboratory. The students use MATLAB and Simulink to deploy programs on the
Raspberry Pi and visualize data collected from the sensors. An example experiment can be viewed
here: https://youtu.be/kc52rvpZ5Mk.

Table 2. Comparison of GE 320 Experiments.

Exp. Before After

1 Introduction to GP-6 Analog Computer
Introduction to Simulink and Raspberry
Pi Interface

2 Motor and sensor characteristics Motor and sensor characteristics

3
Motor identification via physical and
electrical characteristics

Functionality not available within the cost of
the kit

4
Motor identification via step and
frequency response

Motor identification via step and
frequency response

5
Motor control (Proportional, Proportional +
Derivative, & Proportional + Speed)

Motor control (Proportional, Proportional +
Derivative, & Proportional + Integral)

6
System ID and Control of a non-linear system
via the web

System ID and Control of a non-linear system
via the web

During the GE 320 pilot study half of the laboratory sections used the existing equipment (baseline)
and the other half used the new kit (treatment). In order to keep the laboratory experiences similar,
the treatment group used the new kit in the same physical laboratory space on campus with the same
number of contact hours. The midterm and final exams scores of the existing and treatment groups
were compared using a student t-test. With a significance level, α, of 0.05 we could not reject the null
hypothesis that the average score of the two groups was different [26]. In end of semester surveys,
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students had both positive and constructive feedback for both types of equipment. After initial analysis,
the kit seems to be at least as good as the existing equipment used in GE 320.

3.2. GE 420

The digital control systems course introduces filters and control of linear, discrete-time systems.
The objectives of the GE 420 laboratory experiences are to apply the following course concepts:
linear discrete systems, control using a digital computer, digital signal processing, and digital design.
These concepts are applied using a Furuta Inverted Pendulum, digital signal processor (DSP), and the
associated sensors. The Furuta inverted pendulum kit does not include a DSP, so that part of the
laboratory cannot be replicated. However, the digital control concepts can be taught through a digital
implementation within Simulink and on the Raspberry Pi. Table 3 compares the Furuta inverted
pendulum experiments with the existing equipment and the new kit.

Table 3. Comparison of GE 420 Experiments.

Exp. Before After

1 Equipment Overview Equipment Overview

2
Introduction to DSP programming with TI
Code Composer Studio

Introduction to Raspberry Pi Programming
with Simulink

3 More DSP/BIOS More programming with Raspberry Pi

4 Introduction to the I/O Daughter Card
Introduction to Raspberry Pi GPIO through
T-Cobbler interface

5 DAC and ADC Signal I/O DAC and ADC Signal I/O

6
DC Motor Discrete Transfer
Function Identification

DC Motor Discrete Transfer
Function Identification

7 PI Motor Speed Control PI Motor Speed Control

8
Positioning Control of a Motor Using PD, PID,
and Hybrid Control

Positioning Control of a Motor Using PD, PID,
and Hybrid Control

9 Notch Filter Notch Filter

10
Discrete Full State Feedback Control of the
Furuta Pendulum

Discrete Full State Feedback Control of the
Furuta Pendulum

11
Control of the Furuta Pendulum using a Full
Order Observer

Control of the Furuta Pendulum using a Full
Order Observer

4. Discussion

The course objectives for GE 320 and GE 420 are similar to introductory courses at other
universities [1,5,6,8,11,13]. Since the kit was designed for GE 320 and GE 420, it could also meet
the objectives for these other courses. DC motor and inverted pendulum experiments are generally
popular in control systems courses.

At $135, this kit costs about the same as other kits described in the literature [3,8,13,15]. It was built
by university staff involved with the course and uses off-the-shelf parts like other kits [8,13]. Unlike the
Mobile Studio IOBoard [3] which had a printed circuit board made specifically for their kit, the kit in
this study uses a breadboard for flexibility during prototyping and future growth. Additionally, using a
breadboard also allows the flexibility for students to complete the wiring for required circuits.

Future work with the kit in this study includes a more detailed comparison of the student learning
outcomes with the kit and existing equipment. The kit has yet to be tested for use in an online course. If
these kits are proven effective, similar kits for other systems will be developed. Additionally, a detailed
comparison of hardware and kits for control systems laboratories is planned.
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5. Conclusions

A kit was developed for around $140 and replicates most of the existing experiments in the
introduction to control systems course and state-spate control systems course for general engineering
majors. The kit contains off-the-shelf parts including a Raspberry Pi as well as 3D printed parts. In the
2014-15 academic year, half of the students in the introductory course used the new kit, while the
other half used the existing equipment. With both types of equipment, students performed system
identification and designed control systems for a DC motor. Overall, the students using both types of
equipment achieved the same learning objectives in the laboratory. Feedback through focus groups
and surveys produced positive and constructive feedback for both types of equipment. The student
feedback has been used to improve the laboratory experiments in the 2015-16 academic year.

With an additional $4, the DC motor kit can be converted to a Furuta inverted pendulum kit for
the state-space control systems course. The Furuta inverted pendulum kit has been tested, however it
has yet to be deployed in this course. Plans are being made to use the inverted pendulum in other
courses as well.

In the future, the kit will be used in upper division courses and online courses. Expansions to this
kit and new kits are also being developed. In addition to instructional laboratories, there are also plans
to use these kits as low-cost platforms for applied research.
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Abstract: The concept of Smart Cities and the monitoring of environmental parameters is an area of
research that has attracted scientific attention during the last decade. These environmental parameters
are well-known as important factors in their affection towards people. Massive monitoring of this
kind of parameters in cities is an expensive and complex task. Recent technologies of low-cost
computing and low-power devices have opened researchers to a wide and more accessible research
field, developing monitoring devices for deploying Wireless Sensor Networks. Gathering information
from them, improved urban plans could be carried out and the information could help citizens.
In this work, the prototyping of a low-cost acoustic sensor based on the Raspberry Pi platform for its
use in the analysis of the sound field is described. The device is also connected to the cloud to share
results in real time. The computation resources of the Raspberry Pi allow treating high quality audio
for calculating acoustic parameters. A pilot test was carried out with the installation of two acoustic
devices in the refurbishment works of a neighbourhood. In this deployment, the evaluation of these
devices through long-term measurements was carried out, obtaining several acoustic parameters
in real time for its broadcasting and study. This test has shown the Raspberry Pi as a powerful and
affordable computing core of a low-cost device, but also the pilot test has served as a query tool for the
inhabitants of the neighbourhood to be more aware about the noise in their own place of residence.

Keywords: noise monitoring; Internet-of-Things; acoustics; Raspberry Pi; noise awareness

1. Introduction

In the last few years, world population has grown significantly and most of this increase has
happened in urban areas and cities, according to data from the World Health Organization. This has
brought new needs to cities and to urban planners. The new requirement for controlling citizens’
welfare involves monitoring cities, including variables like CO2 levels [1], water quality [2] or noise
levels [3], amongst others. The psychological comfort of people is one of the most important factors
of welfare in the cities, and noise pollution holds a key place in this ranking. Noise pollution is the
excessive noise levels or annoying sounds that unsettle people, and also animals, in their place of
residence, leisure areas or their workplaces. This kind of pollution has different effects on people’s
health, physically and psychologically [4]. Main sources of noise pollution are high volumes of
traffic, building areas and human-based sounds, for example nightlife sounds [5,6]. All these sources,
together with all the different sounds present in the cities, merge to create a unique combination
of sounds creating the soundscape of the city [7,8]. Monitoring these sources of noise pollution is
important for the understanding of how these sounds evolve with time, in order to study it, control it
and prevent it.
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The concept of Smart City has emerged in the last decade, creating the necessity of gathering more
information about their cities. Population of cities has been growing and new urban planning strategies
should be developed in order to manage this situation [9]. The collected information is widely used,
from controlling free parking spaces in a certain neighbourhood [10] or checking structural integrity of
buildings [11]. In the acoustics research field, noise monitoring has helped to delve into the knowledge
that people and institutions have of their cities. The use of wireless sensor networks with acoustic
sensor has been studied in several works [12–15].

Recently, there has emerged a new concept of computers. These new devices are also known
as Single Board Computers (SBC) [16,17], being smaller than classic computers and with the
distinguishing feature of being more economical and affordable. This new kind of small computers
has demonstrated its computing power together with its scalability for big projects [18]. There are
different SBCs in the market with different features of connectivity, computing power, size or energy
usage. Raspberry Pi, BeagleBone, Arduino, ODroid, are widely used in this development field [12,19].

The role of acoustic researching in the smart city has a series of applications and benefits such as
having more control of noise levels by permanent and real-time control, detecting new noise sources
or using these tools as a showcase for informing the citizens among others. From the point of view
of public administration, it helps to anticipate citizens’ complaints and to complement and update
the information provided by noise maps, in the design process of action plans. The investment and
maintenance costs in this kind of devices is more economical than carrying out strategic noise maps
repeatedly. These results ends up in fewer administrative works and interventions on the part of the
public administration.

Noise levels differ between day and night periods generally. In residential areas, the limits
accepted are those which not exceed 65 dBA during the day, and 55 dBA for the night period [20].
Accepted standards for recommended permissible exposure time for continuous time weighted average
noise, stated that for every 3 dBA over 85 dBA, the permissible exposure time before possible damage
can occur is cut in half, e.g., 85 dBA is linked with a permissible exposure time of 8 h; 88 dBA for 4 h,
91 dBA for 2 h [21]. The use of percentile levels in the acoustic analysis helps to have an understanding
of the noise fluctuations over time. These are commonly used for environmental noise monitoring, such
as road traffic or community noise assessments. With the use of long-term measurements, changes on
the levels can be observed from the data, and more advanced studies can be performed in order
to assess the noise annoyance. The levels extracted every day can be used for long-term analysis,
with large amounts of data from days, weeks or months of measurements.

The work presented in this paper describes the creation of an advanced acoustic sensor based
on a Raspberry Pi. It aims to fill the gap in the noise sensors research and developing field, with the
analysis and monitoring of the whole audio signal in the audible bandwidth. It also carries out the
calculation of environmental noise parameters performed on-board instead of in a server. The device
also share the results in an Internet-of-Things (IoT) publishing online platform. The result of the
research and development carried out in this paper is a reliable prototype, built using low-cost
components, of an advanced acoustic sensor for environmental noise monitoring.

This paper is divided in the following sections. First, the materials and methods for the design of
the prototype are disclosed. The choices of the materials for creating the prototype, based on some
requirements, are explained. Then, the prototype assembly is shown. The algorithms implementation
and the cloud connection are shown. After these sections, a test pilot device is deployed and outlined
in the results. Finally, the conclusions and the discussion are shown in the last section.

2. Materials and Methods

This section contains the different subsections where the design and creation of the prototype
together with the algorithms implementation and its cloud connection are explained.
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2.1. Design and Requirements

The design of the device had to accomplish some requirements for achieving the final goals
proposed. Some statements have to be achieved in order to follow the low-cost, but reliable, final device.
The requirements for this prototype were:

• The device has to use low-cost components to create affordable sensor networks of several devices
with a relation cost-quality.

• The device has to have reliability for long-term measurements.
• The device should have capability to be connected to the cloud for remote updates of the software

and for sharing results.
• The quality of the measurements has to be enough for advanced audio parameters’ calculation.
• The device has to have enough computing power to do on-board calculations.
• The device has to be able to connect to the peripherals needed for the purposes of the project

(e.g., a microphone).
• The device has to be able to interpret MATLAB programming language.
• The sound flow acquisition has to have the less noise inputs as possible, for avoiding extra

filtering steps.
• The final device has to be protected against outdoor conditions using a protective housing.
• The device needs to have different connectivity options (i.e., WiFi or Ethernet).
• The distance from the nodes to the power source should be a maximum of 100 m.

These requirements secures an affordable and suitable design for the creation of a working prototype.

2.2. Selection of the Components

The main component of the device is the processing unit, which is also used for the data acquisition
and the connectivity. For achieving the established requirements, the design of the noise monitoring
device was based in a Raspberry Pi 2 Model B single board computer [22]. The Raspberry Pi platform
offers a number of advantages as its good computing power, its high versatility and the existence
of libraries of MATLAB functions. The power consumption and the price allow the construction of
numerous devices based on this platform, resulting in affordable and durable nodes. Those qualities,
together with the upgrades that the platform undergoes in its hardware over time in the form of new
models, made the Raspberry Pi the selected option for the development of a working prototype.

The use of this kind of platform leads some limitations. In long-term measurements in outdoor
conditions, the working temperature of the board has to be monitored in order to safeguard the
integrity of the board and avoid its fault. In the proposed system, the addition of backup batteries or
a UPS (Uninterruptible Power Supply) system allows protection for power cuts. For an increase in the
computing resources of the system, a new version of the Raspberry Pi would be needed.

One important requirement is the ability of having less stages in the audio acquisition process,
decreasing the number of noise inputs while capturing the audio signal. The second main part of the
device is the sound acquisition hardware, i.e., the microphone and the sound card. In this project,
and thanks to the ports of the Raspberry Pi, a USB microphone which integrates an audio capture card
itself, a T-Bone GC 100 USB [23], was chosen. The omnidirectional directivity pattern and its frequency
response, together with the USB connectivity makes the GC100 the perfect candidate for the prototype,
reducing the stages of the acquisition process.

2.2.1. The Core: Raspberry Pi

A benefit of using the Raspberry Pi is the possibility of working under a free operating system.
In the case of this device, a Raspbian distribution [24], a GNU/Linux OS distribution for Raspberry Pi,
has been used. The algorithms were developed in MATLAB and compiled in C. The Internet connection
of the device also provides the possibility of working remotely, thanks to the SSH (Secure SHell) [25].
Through a command terminal it is possible to access the device and update the algorithms, software
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maintenance tasks or checking the system can be achieved remotely. ALSA library [26] controls the
audio configurations, managing the audio in an optimised way.

Based on the bandwidth requirements for continuous information transmission, the board allows
different options, principally Ethernet, Wi-Fi, ZigBee or a 3G connection. In the case of this device and
its deployment, the option of the Ethernet connection was chosen. For farther locations, where Ethernet
connection is not available, the nodes would be equipped with wireless communication systems and
the powering could come from different sources, such as batteries, solar panels or connected to
an electricity suppley, e.g., a lamppost. The use of a LAN connection in the deployment instead
of a wireless system seeks for two main objectives: first, while a wireless connection is subject to
more interference than a wired connection, Ethernet cables can be properly shielded, avoiding these
unwanted effects. Although Ethernet cables can also experience signal degradation, this problem is
easier to manage and avoid, taking into consideration the maximum distance, of 100 m, for proper
communications and the categories and qualities of the LAN cables. Secondly, seizing the opportunity
of using a cable network, a POE (Power Over Ethernet) scheme, based on IEEE 802.3af, for powering
the devices was chosen [27].

In this way, a POE injector [28] has been placed in the network input, and a POE splitter in the
output of the circuit, inside the box where the components are placed [29]. With the use of a category 5,
5e or 6 cable, a maximum distance of 100 m from the injector to the splitter can be used. In this work,
the maximum length used is less than 10 m and the category of the cable is 5e. The splitter is in charge
of the division between the current supply, for powering the device, and the data channel, for providing
the Raspberry Pi with Internet connection, as seen in Figure 1. The output voltage is adjustable in the
splitter model used, and it is adjusted to 5 volts, in order to correctly supply the Raspberry Pi and its
components. In this way, there is no need for using an additional voltage transformer in the device.

Figure 1. Operation scheme for the power and Internet connectivity via Power over Ethernet (POE),
IEEE 802.3af.

In Figure 2, a complete block diagram of the whole acoustic device is presented, where all the
functioning blocks of the system are shown. One of the inputs of the system is the acquisition of the
sound by the microphone capturing the ambient sound and converting the analogue sound signal
to a digital form with the sound card integrated in the microphone. Then it goes to the Raspberry
Pi processing stage for the parameters extraction. Next, the data are formatted to send the acoustic
parameters to the cloud.
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Figure 2. Block diagram of the complete system. The inputs of the system are the sound acquisition
that goes through the T-Bone GC100 and the power and the Internet connectivity that are connected to
the device through the TL-POE 150S Injector. In the Raspberry Pi 2 Model B, a digital filtering stage is
in charge of removing any power line noises. The signal analysis and the parameters’ extraction are
performed and their results are processed to send them to the cloud service.

The components used in the final version of device are listed in Table 1.

Table 1. List of the components used in the final version.

Part Comercial Name Price

Main board Raspberry Pi 2 Model B 35 $
Microphone T-Bone GC 100 USB 16 $
POE Splitter TP-Link TL-POE10R Splitter Power Over Ethernet 17 $
POE Injector TP-LINK TL-POE150S Injector Power Over Ethernet 26 $

Enclosure 150 mm × 200 mm × 85 mm IP67 Enclosure 15 $
Cables and consumables various 12 $

Total price per node 121 $

2.2.2. The Acquisition: The Microphone

The massive production of consumer electronics microphones has paved the way for using these
microphones in affordable applications for noise monitoring. These applications range from ambient
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noise monitoring to noise maps validations. The microphones are a critical stage in monitoring and
measuring devices, because its features affect to the final result of the measurements.

In [30], different affordable microphones are analysed. In the study, a deviation of around 1 dBA
was found in a 6-month continuous test. In long-term measurements, in outdoor tests, these affordable
microphones tended to deviate, in a comparison with the reference microphones. This deviation is
produced by environmental agents like humidity and temperature. The possibility of replacing the
deteriorated microphones, when the deviations with a control microphone were higher than 1 dBA,
can be easily attempted with a low economic impact. Human intervention is necessary for certain tasks
like periodic calibration, therefore, the substitution of deteriorated microphones could be integrated in
a maintenance routine of the devices.

In this work, two schemes for acquiring audio were compared (Figure 3):

1. A low-cost USB sound card together with a dynamic microphone.
2. An electrec USB microphone without an external sound card.ctrec USB microphone without an external sound card.

(a) USB Microphone with integrated soundcard

(b) Dynamic microphone connect by a USB external soundcard

Figure 3. Different sound acquisition settings. (a) An electrec USB microphone without an external
sound card; (b) Low-cost USB sound card with a dynamic microphone.

The dynamic microphone tested with the sound card was based on a multi-purpose Panasonic
capsule [31], WM-61A, which has an omnidirectional pattern, a signal-to-noise ratio of 62 dB and
a frequency response from 20 Hz to 16,000 Hz. With the use of the tested USB sound card, some
noise was detected in the acquired sound. This noise was probably originated from interferences from
the power supply. The USB sound card was not shielded and hence it is exposed to interferences.
The selection was finally to use a USB microphone [23] which had integrated the Analog-to-Digital
Converter (ADC).

The noise measurements with the USB microphone with the pre-amplifier and the ADC embedded
on it offered better results, hence, it was the option selected. A high-pass filter from 100 Hz was applied
to remove a peak of noise in the 50 Hz frequency. Because the sound pressure levels are analysed from
the band of 125 Hz, this was the frequency chosen for the filter.

The acoustic device is calibrated, as shown in Figure 4, prior to in-field measurement, to capture
audio and to calculate noise level with precision. First, using the frequency response of the microphone
a correction filter is implemented to weigh its losses. Then, a verification and level adjustment was
made comparing with a sound level calibrator Rion [32].
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(a) Polar pattern of the directivity. (b) Frequency response.

Figure 4. Characteristics of the selected microphone, T-Bone GC100.

For the assembly of all the components chosen for the final device, an isolated box was selected,
and the different parts were all connected and placed inside the protective enclosure, as it can be seen
in Figure 5a. The box is sealed and a metal anchor is placed in the back of it for its outdoor placement.
The final aspect of the installation is shown in Figure 5b.

(a) External appearance of the device (b) Interior view of the prototype

Figure 5. Views of the physical prototype built. (a) Final design of the acoustic device. In the picture,
the Raspberry Pi and the other components are inside a protected box. At the bottom part of the box,
the microphone can be observed; (b) Interior view of the waterproof case. The components inside of it
are the Raspberry Pi together with the POE splitter, the microphone at the bottom of the picture and all
the cables for the connection.

2.3. Algorithms Implementation and Cloud Connection

The Raspberry Pi platform was chosen as the core of the device because of its high versatility
and its ease implementing the algorithms using a known and wide spread programming language, C,
but implemented from MATLAB language through Simulink. The audio acquisition was made through
an ALSA Audio Capture block which uses a component from the Linux kernel meant to provide the
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system with audio functionalities, e.g., automatic configuration for sound cards and the controlling of
devices using one Linux system [26]. It is possible to configure features for the audio acquire such as
the sampling rate and the frame size, which is the number of samples per window. Once the audio
acquisition is configured, a previous filtering is performed in order to remove electrical noise from the
power line.

The audio signal is acquired in a linear way, i.e., instant pressure values, so the next step performed
is the conversion to a logarithmic scale. It is also adapted by a spectral correction factor, got from
an empirical fitting from the calibration task. Through Simulink blocks where MATLAB code is
executed, the different acoustic parameters are calculated:

• Instant sound pressure level, Lp.
• Percentile levels L10, L50, L90.
• Equivalent sound pressure level, Leq.
• Lden, day-evening-night level.
• Third octave sound pressure level (from 125 Hz to 8000 Hz)

The description of the implemented equations in the measurement algorithm for different
acoustics parameters are shown in the following:

Lp, sound pressure level is a logarithmic measure of the RMS sound pressure of a sound relative
to a reference value, that is the threshold of hearing.

Lp = 20 · log10

(
P
P0

)
(dB), (1)

where P is the instantaneous sound pressure of the sound signal and P0 is the reference sound pressure
of 20 μPa.

Leq, equivalent sound pressure level. It quantifies the noise environment to a single value of
sound level for a determined duration. This parameter correlates with the effects of noise on people.
Leq can be calculated as:

Leq = 10 · log10

[
1

TM
·
∫ TM

0

(
P(t)
P0

)2

· dt

]
, (2)

where Leq is the equivalent continuous sound pressure level determined over a time interval of TM
seconds. For the addition of the Leq levels, in order to calculate other parameters, it can be performed
as shown:

TotalLeq = 10 · log10 ·
(

10
Leq,1

10 +10
Leq,2

10 +...+10
Leq,n

10
n

)
. (3)

The parameter Lden, day-evening-night level, is the Leq measured over a 24 h period with a 10 dB
penalty added to the levels between 23:00 and 07:00 and a 5 dB penalty added to the levels between
19:00 and 23:00. This is applied to reflect people’s extra sensitivity to noise during these periods.
As the Leq correlates with the effects of noise on people, Lden extrapolates this to a daily value and,
in long-term measurements, in weekly, monthly or yearly data for more advanced studies.

Lden = 10 · log

(
12·10

Lday
10 +4·10

Levening+5
10 +8·10

Lnight+10
10

24

)
, (4)

where Lday is the level for the day period, between 07:00 and 19:00 h; Levening is the level for the evening
period, between 19:00 and 23:00 and Lnight is the level for the night period, between 23:00 and 07:00.

L90 describes the level which was exceeded for 90% of the time; L10 the level exceeded for 10% of
the time and L50 is an indicator for the median sound level. These parameters describe the behaviour
of the noise in long-term measurements and help in the study of the intervals statistics. The L90 level is
often used as approximation of the background noise level. Likewise, L10 is an approximation for the
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peak levels. A practical example would be a measurement time of 10 min, with L90 = 80 dBA and
L10 = 90 dBA. This means that for 9 min, the level has been higher than 80 dBA and for a minute,
levels above 90 dBA. With these data, it could be concluded that the acoustic environment analysed
would be too loud, with high sound pressure levels and health risks for long-term exposition.

For the frequency analysis, an inner filtering stage is performed where the spectrum of the input
signal is analysed. The processor passes the collected audio pieces through a set of a third-octave-band
filters and splits the spectrum of the sound for further sound pressure level per band calculations.
This filter analyses in third-octave bands from 125 Hz to 8000 Hz.

The main objectives to achieve on this version of the device have been the optimisation of the
parameters calculations and the presentation and publishing of the data in real time. The potential
of this audio analysis network lies in the capability of carrying out the calculation in several nodes,
using one device for each position, and in different periods of time [33]. Mover, making use of the
connectivity of the network, it is possible to monitor and remotely manage the nodes [34].

For this first prototype, it has been equipped with Internet connectivity through an Ethernet
connection and this capability has been exploited to store and show the results of the extracted acoustics
parameters. This task has been carried out using an online platform called ThingSpeak. It is an open
source IoT application and Application Programming Interface to store and retrieve data from the
devices using the Hypertext Transfer Protocol over the Internet [35]. Moreover, the platform enables
the creation of sensor logging applications with status updates. In MATLAB, the connection with
the device and ThingSpeak is performed using the API key, the number or variables to send and the
updating address.

In Thingspeak, graphs have been created showing real time data extracted directly from the
sensor, which is calculated and sent to the cloud, as shown in Figure 6 and can be consulted in [36,37].
Once the data is gathered, the channels can be set up as public or private. Data can be extracted in
different formats, e.g., JSON, XML or CSV, for offline tests, backups or analysis of the data.

Figure 6. Views of the instant sound pressure level broadband and for 125 Hz and 250 Hz third octave
bands and for the equivalent sound pressure level.
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3. Results

The laboratory test for checking the accuracy of the system was carried out with an integrating
sound level meter, Rion NL-05 with a flat-frequency-response UC-52 microphone, using a dodecahedron
speaker and an audio amplifier connected to a software-based signal generator. These tests were
performed in a semi-anechoic chamber. With the signal generator and the speaker, a white-noise signal
was emitted and with the use of the sound level meter, it was adjusted to different gains and decibels.
The readings from the sound level meter were compared with the readings of the device and results
can be observed in Table 2 and in Figure 7.

Figure 7. Waveform from the readings from the sound level meter and readings from the device.

Table 2. Levels from the sound level meter and the Raspberry Pi 2 Model B device (dB) for 15 s.

Rion NL-05 Raspberry Pi Node

90 91.1
85 85.1
80 80.3
75 75.45
70 70.39
65 65.27
60 60.2
55 55.21
50 50.18
45 46.15
40 39.85

The device was also field tested, using the integrating sound level meter, Rion NL-05. The test
consisted in measurements of the Leq in periods of 1 min. Fifteen sets of 1 min were tested and
compared. The device and the sound level meter were placed in the façade of a building at a height of
4 m in a residential area and in front of a street with low amount of traffic. The values obtained from
the sound level meter and the Raspberry node are presented in Figure 8. The differences between the
levels are attributed to the higher precision of the sound level meter in its dynamic range. The precision
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of the Raspberry Pi node offers enough accuracy for long-term measurements where the changes over
long period of time are evaluated.

Figure 8. Data obtained from the sound level meter and the Raspberry node in the field test.

Pilot Test

A pilot test was performed using the prototype. It was conducted in the refurbishment works of
the neighbourhood of “La Viña”, in the city of Lorca, Spain, which was affected by an earthquake in 2011.
In these refurbishment works, innovative devices where installed and studied and, among these, the
ambient noise metering device were set.

In this pilot test, two acoustic devices have been deployed. One of them was deployed inside
a multi-purpose room of a neighbourhood and the other outside the building, as it can be seen in
Figure 9.

Figure 9. Photography of the multi-purpose room where the devices are installed. A close-up of
the outdoor device is shown. Inside of the building there are the gateway, the server and the indoor
acoustic device.

This deployment has allowed to compare noise values between inside and outside locations and
also evaluating the sound levels’ evolution in long-term measurements. The building is placed in the
middle of a park of the neighbourhood, therefore the noise the device analyses mainly comes from
humans and human activities sources like the noise generated by the own neighbours, the different
business at the park, together with some refurbishment works next to the park, in charge of rebuilding
damaged buildings after the earthquake.
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The data obtained is published online for the neighbours where the noise levels in an user-friendly
view are available. This tool could help people to be more aware to this kind of pollution.
The understanding of the noise parameters can benefit people by adapting their activities
according to decrease the noise levels. The data used in this publication can be found in
https://doi.org/10.5281/zenodo.159359.

4. Discussion

In this work, the design of an acoustic sensor that is low-cost but reliable, its components and its
deployment in a pilot test have been presented.

In a first part, the design of the sensor, its components and the methodology followed for building
the algorithms and the cloud connection in real time are shown. In other studies of the authors [12],
low-cost platforms for ambient noise acquisition were proposed without on-board calculations and
without connectivity. In this work, a fully functional sensor with cloud connectivity have been proposed
and tested. Added features of on-board calculations and real-time data presentation remotely and
online are included.

The platform and the methods chosen for the software developed offer some advantages such as
a great versatility, a low price for the components and a big simplicity for integrating the final device
in outdoors facilities, being capable of turning into part of a sensor network as a node.

The acquisition of the audio in high-quality allows us to get more advanced results, like the
psychoacoustic parameters as a future outcomes. Also the power of the Raspberry Pi as the core of
the device gives the possibility of doing the calculations on-board, instead of sending the raw data to
a sink node or a server for doing the calculations

In a second part of the paper, a pilot test where two devices were deployed was validated. In this
deployment, the two devices were working and publishing the results in real time in an IoT publishing
platform. The analysis of the sound field in long-term measurements inside the device with on-board
calculations and the sending and publishing of the data obtained with ease and precision have been
achieved. Like an innovative challenge, and through a research process, this sensor have been used
for environmental acoustics parameters calculation and for being a platform where the inhabitants of
the neighbourhood could check the noise levels of their place. This make the deployment as a tool for
noise awareness, apart from simply a tool for gathering data with research purposes.

In future work, the use of a different programming language would be useful in order to optimise
and having more control about all the processes without the translation from the Simulink schemes to
C language. Python would be the first option due to its features, being a high-level, general purpose
and interpreted programming language. Its syntax is similar to Matlab and allows us to simplify the
codes with less lines than C or Java.

The Raspberry Pi has proved to be a powerful, versatile and affordable computer that can be
integrated in a sensor network scheme. Thanks to its connectivity options and the specifications of its
core, a standalone device for high-quality sound acquisition and noise meter platform connected to
the cloud have been proved to be feasible. Based on the hardware and the software development for
the algorithms and connectivity, it has been demonstrated by creating a fully operational prototype
deployed in a pilot test that the platform has the potential for creating a sensor network with Raspberry
Pi-based nodes.
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Abbreviations

The following abbreviations are used in this manuscript:

CO2 Carbon Dioxide
SBC Single Board Computer
IoT Internet of Things
USB Universal Serial Bus
GNU GNU is Not Unix
SO Operating System
SSH Secure Shell
ALSA Advanced Linux Sound Architecture
POE Power over Ethernet
dBA A-weighted Decibels
ADC Analog-to-digital converter
API Application Programming Interface
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
XML eXtensible Markup Language
CSV Comma-Separated Values
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Abstract: Typical Internet of Things (IoT) applications involve collecting information automatically
from diverse geographically-distributed smart sensors and concentrating the information into more
powerful computers. The Raspberry Pi platform has become a very interesting choice for IoT
applications for several reasons: (1) good computing power/cost ratio; (2) high availability; it
has become a de facto hardware standard; and (3) ease of use; it is based on operating systems with
a big community of users. In IoT applications, data are frequently carried by means of wireless sensor
networks in which energy consumption is a key issue. Energy consumption is especially relevant
for smart sensors that are scattered over wide geographical areas and may need to work unattended
on batteries for long intervals of time. In this scenario, it is convenient to ease the construction
of IoT applications while keeping energy consumption to a minimum at the sensors. This work
proposes a possible gateway implementation with specific technologies. It solves the following
research question: how to build gateways for IoT applications with Raspberry Pi and low power
IQRF communication modules. The following contributions are presented: (1) one architecture
for IoT gateways that integrates data from sensor nodes into a higher level application based on
low-cost/low-energy technologies; (2) bindings in Java and C that ease the construction of IoT
applications; (3) an empirical model that describes the consumption of the communications at the
nodes (smart sensors) and allows scaling their batteries; and (4) validation of the proposed energy
model at the battery-operated nodes.

Keywords: IoT gateways; IoT applications and drivers; Wireless Sensor Networks (WSN); low power
solutions; remote sensing; IQRF; energy consumption model

1. Introduction

The Internet of Things (IoT) aims at connecting a world of networked smart devices typically
equipped with sensors and radio frequency identification to the mainstream Internet, all sharing
information with each other without human intervention. In the future, the Internet might be
considered as comprised of billions of intelligent communicating ‘things’ that will further extend
the borders of the current Internet with physical entities and virtual components [1]. According to
a report by Cisco delivered in 2011, the number of devices connected to the Internet for the year
2020 is expected to be around 50 billion, yielding to 6.6 devices per person [2]; other estimations are
even more generous (e.g., a number of seven trillion wireless devices serving seven million people is
expected by 2017 [3]). An increasing number of IoT applications is found in different domains, such as
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transport, energy, home, healthcare, logistics or industry. IoT applications produce many data that
might be useless unless they are conveniently processed for extracting information. Since the volume
of data produced could be considerable, the process of converting raw data into information should be
automated, preferably at the nearest possible place of their acquisition to reduce the communication
bandwidth. This can be achieved with the so-called ‘data collectors’ or ‘gateways’ that: (1) collect data
from proximity sensors; (2) convert data into information near the acquisition location; and (3) send
them to higher-level computers used for storage, analysis or monitoring purposes, typically using
cloud computing techniques [4,5].

IoT infrastructures present several common characteristics, such as: (1) dealing with heterogeneity;
(2) use of resource-constrained devices; (3) applications that require spontaneous interaction;
(4) ultra-large-scale networks and large number of events; (5) dynamic network behavior requirements;
(6) context-aware and location-aware applications; and (7) the need for distributed intelligence [3].

Two important issues in distributed applications are the use of low-cost hardware platforms and
the management of the available resources at the nodes, typically processor, memory, network usage
and energy usage [6].

Raspberry Pi is very adequate for this kind of applications, since it provides a very powerful/low-cost
platform with good hardware expansion capabilities (different ports, General Purpose Input/Output
(GPIO), pins) and standard connectivity (Ethernet, WiFi interfaces) [7]. Even though alternative
Single-Board Computers (SBC) providing similar characteristics are available in the market, the price of
the Raspberry Pi is very competitive because, initially conceived of for education, it has become a mass
product [8]. Currently, there are several examples of IoT systems working on this technology [9–13].
Some of them are commercial products adapted for industrial automation [14].

One of the most critical resources in IoT applications is energy usage. Distributed nodes
(i.e., smart sensors, actuators and data collectors) are typically operated on batteries and are required to
work unattended for long periods of time (e.g., several months or even years). Communication technologies
have become one of the major battery ‘killers’ for smart sensors. There exist some communication protocols
and standards (e.g., ZigBee or Bluetooth) frequently used for IoT applications [1]. Some IoT applications
may require low power solutions that provide a longer life-time of the batteries. In other cases, the
IoT sensors must be distributed over long distances, causing propagation problems. In this scenario,
new technologies are emerging for specific applications, such as smart metering [15]. Some examples of
these technologies are LoRa/LoRaWAN (Long Range Wide Area Network) [16], Sigfox [17] or IQRF [18],
which are aimed at saving energy, working on longer distances and providing a higher degree of flexibility
to adapt to the requirements of the applications.

The creation of IoT gateway architectures and libraries that help designers and programmers to
create new applications is a matter of interest, since it will allow integrating field data into higher level
applications, such as cloud applications, while minimizing energy consumption.

This work proposes a possible gateway implementation with specific technologies. It solves the
following research question: how to build gateways for IoT applications with Raspberry Pi and low
power IQRF communication modules. The following steps [13,19] were followed to structure our
research: (1) technology/literature review; (2) design of a gateway architecture for IoT applications;
and (3) evaluation of an empirical model for the discharge of the batteries.

The literature/technology review is carried out in Sections 2 and 3: Section 2 is devoted to
analyzing previous related work, and Section 3 is dedicated to providing a short overview of the
IQRF technology. The design of our approach is presented in Section 4, which is divided into several
subsections, each aimed at explaining different issues of the IoT gateway. The evaluation is provided
in Section 5, where a simple mathematical model based on empirical data is presented. This section
also discusses the obtained results. Section 6 draws some conclusions about the work.
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2. Related Work

The concept of IoT is still under definition [1]. Kevin Ashton firstly proposed the concept
in 1999, and he referred to the IoT as uniquely identifiable interoperable connected objects with
Radio-Identification (RFID) technology. A commonly-accepted definition is: “A dynamic global
network infrastructure with self-configuring capabilities based on standard and interoperable
communication protocols where physical and virtual ‘Things’ have identities, physical attributes
and virtual personalities and use intelligent interfaces, and are seamlessly integrated into the
information network” [20]. Typically, IoT applications involve diverse technologies, including
Wireless Sensor Networks (WSN), barcodes, intelligent sensing, RFID, NFC and low-energy wireless
communications [1]. Creating IoT applications is a challenging task, since it requires working with
heterogeneous, resource-constrained, location- and context-aware distributed infrastructures in order to
provide complex applications. Several middleware solutions are available in order to help programmers [3].

The limitations of the IoT devices in terms of storage, network and computing, as well as
the requirements of complex analysis, scalability and data access benefit from a technology like
cloud computing. The IoT infrastructure can generate large amounts of varied data that must be
quickly analyzed by means of different techniques [5,21] feeding the cloud computing infrastructure.
Several authors have proposed different architectures that cover all layers. As a matter of example,
a service-oriented architecture for IoT applications presented in [1] defines the following layers:

(1) Sensing layer: integrated with available hardware objects to sense the status of the things.
(2) Network layer: provides the infrastructure that supports the link among the things over wireless

or wired connections.
(3) Service layer: creates and manages the services required by the users or applications.
(4) Interface layer: consists of the interaction methods with users or applications.

In this scenario, new challenges arise [22]; some of them are technical issues: (1) integrating social
networking with IoT solutions; (2) developing green IoT technologies; (3) developing context-aware
IoT middleware solutions; (4) employing artificial intelligence techniques to create intelligent things
or smart objects; and (5) combining IoT and cloud computing [20]. Some of these challenges may
be addressed by intelligent gateways that bridge sensor networks with traditional communication
networks [23]. These gateways are responsible for collecting data from field sensors with different
technologies, mainly wireless sensor networks, and sending them to the cloud infrastructure by means
of TCP/IP-based communication networks.

A prototype architecture aimed at monitoring applications based on the Raspberry Pi is presented
in [7]. It is relatively easy to find in the literature other examples of data acquisition systems
aimed at different domains, such as smart cities [11,24], industrial process monitoring [10] or home
automation [9,12,25], that use the Raspberry Pi. One interesting example of its capabilities in these
applications may be found in [13], where an IoT-enabled emergency information architecture for
elderly people is presented. We may conclude from these works that the Raspberry Pi is an inexpensive,
extremely versatile and small computer, with network connectivity (via Ethernet or WiFi), supported by
a large open-source community, which is adequate for building embedded applications by means of
the GPIO pins.

The use of adequate communication means is another issue of interest when building IoT
applications. Some technologies may be better suited than others to solve the requirements of particular
applications. It is easy to find in the literature survey papers aimed at helping application engineers to
select the most appropriate protocols [1,26]. ZigBee and Bluetooth are specifically designed for IoT
applications. These competing technologies present different characteristics including range, data rate,
network latency, power profile, security and complexity [27]. There are other kinds of WSN that could
be used in IoT applications, but they are less common than the previous two [28]. Energy efficiency is
also a key issue in IoT applications, especially at the sensor nodes [29,30].
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Although ZigBee is relatively new, since 2004, after discovering that due to its high complexity and
difficult usage, the implementation is not economic in smaller and some medium-sized applications,
several lighter protocols were soon established, sometimes even by the original ZigBee Alliance
members [31].

We chose IQRF technology [18] due to its versatility. It allows several communication modes by
combination of: (1) the ISM band; (2) channel; (3) transmission bit rate; (4) transmission power level;
and (5) reception level model. It also allows changing these parameters at run-time, as shown in this
paper. Several papers provide wireless sensory network solutions based on this protocol [4,32–34].

This work focuses on the following contributions: (1) providing a possible IoT gateway
architecture with specific technologies (Raspberry Pi and IQRF communication modules); (2) bindings
in Java and C that ease the construction of IoT applications; (3) an empirical model that describes the
consumption of the communications at the nodes (smart sensors) and allows scaling their batteries;
and (4) validation of the proposed energy model at the battery-operated nodes.

3. Overview of IQRF Technology

IQRF is a platform for low speed, low power, reliable and easy to use wireless connectivity
for telemetry, industrial control and building automation that can be used with different electronic
equipment [18]. It is aimed at providing wireless connectivity in applications that require remote
control, monitoring, alarming, displaying remotely-acquired data or connecting several devices to
a wireless network. IQRF is a complete ecosystem, including hardware, software, development support
and services [32].

The IQRF ecosystem covers hardware, software and protocols. At the heart of the system,
there are several RF modules that can operate at the 433-MHz, 868-MHz and 916-MHz ISM
(Industrial, Scientific and Medical) bands. Among other circuits, the modules hold an RF transceiver
and an eight-bit microcontroller, which executes an operative system (OS) responsible for, among others,
the communications and mesh networking functions. The final system can (1) extend the capabilities
of the OS new programming functions by an end-user or (2) add a ready-to-use software layer of
a Hardware Profile (HWP) plug-in responsible for supporting a dataflow-oriented Direct Peripheral
Access (DPA) mechanism to interact with all of the peripherals fitted in the module. In the second
case, there is no need for additional programming from the end-user. These modules are known as
Data-Controlled Transceivers (DCTR) in the IQRF ecosystem. It is also possible to program a third layer
of custom software to handle situations not covered by the DPA. Figure 1 represents schematically the
three possible scenarios regarding the firmware development.

Figure 1. (a) Common transceiver; (b) data-controlled TR; (c) Data-Controlled Transceivers (DCTR)
running custom software. HWP, Hardware Profile; DPA, Direct Peripheral Access.

The link layer is byte oriented with a maximum packet size of 64 bytes (56 if DPA is used).
Transmission distance is claimed to be in the range of 100 metres. In this work, a TR-52D module was
employed achieving up to 90 m without losing efficiency in the tests (other authors also report similar
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distances [33]). The manufacturer claims that the range is longer when properly oriented, but this
has not been tested in this work. According to the specifications, 240 hops between transceivers are
allowed before discarding a packet.

The energy consumption varies depending on several factors, such as transmission power,
reception and execution modes at the MCU. If the RF transceiver is disabled, the module current
consumption ranges from 1.9 μA in sleep mode to 1.6 mA in run mode. During the transmission,
the supply current depends on the selectable seven levels of transmission with power ranges that vary
from 14 mA to 24 mA. When receiving, the current drained from the power supply starts at 13 mA in
Standard mode (STD), but can be reduced to 25 μA if operated in the Extra Low Power mode (XLP) [35].

There is built-in support in the OS for a Serial Peripheral Interface (SPI) protocol to command the
module from a locally-attached controller.

The modules offered by IQRF can achieve several network topologies, but the most versatile
one is the mesh topology. In general, one module plays the coordinator role, while the others are
considered plain nodes. One of these nodes can play the role of coordinator for a subnetwork. The OS
supports node bonding, network discovery, routing packets and unbonding from the network with an
easy to use Application Programming Interface (API).

The whole ecosystem is completed with a full set of gateways, routers, development tools and
a fully-documented Software Development Kit (SDK) package for hardware deployment and cloud
services for data exchange between IQRF networks and end-users.

4. IoT Gateway Architecture and Wrappings

4.1. Description of the IoT Gateway Architecture

The proposed architecture is comprised of three levels: (1) Concentrator, implemented on
a Raspberry Pi SBC; (2) Coordinator, implemented on a privileged IQRF module attached to the
concentrator that plays the role of coordinator; and (3) End nodes, implemented on IQRF modules,
which acquire field information by means of different attached sensors (see Figure 2). This architecture
involves different types of communication technologies at every level. The connection between the
Raspberry Pi and the IQRF coordinator is implemented by means of an SPI connection, and the
connection between the coordinator and the end nodes is carried out by means of IQRF wireless
technology. In the proposed IoT gateway architecture, the Concentrator implements the interface and
service layers so that it respectively provides the interaction methods and services required by users and
higher level applications. The Coordinator implements the IoT network layer since it holds the IQRF
WSN configuration and routing information, and it is responsible for interrogating the end nodes.
End nodes implement the sensing layer by means of different sensors that let the nodes acquire field
information. End nodes will send the data when required by the Coordinator.

One of the characteristics of the IQRF technology is that devices implement the full stack allowing
them to behave either as Concentrators or End nodes. A unique type of device, the IQRF TR-52DA [35]
was used in the architecture for the roles of both coordinator, as well as end nodes. In addition to
the communication capabilities, the IQRF TR-52DA has: (1) a PIC16LF1938 microcontroller with
interrupt capability; (2) a SPI interface used at the IQRF Coordinator to establish the communication
with the Raspberry Pi; (3) an embedded temperature sensor; (4) two colors (green and red) of LEDs
to be manipulated from the microcontroller; (5) six general purpose I/O pins available to connect
external sensors; (6) a two-channel A/D converter; (7) a hardware timer; (8) power supply connections;
and (9) battery monitoring capabilities. These end nodes were powered with lithium-polymer batteries
to guarantee their autonomy.

The hardware architecture was implemented as follows (see Figure 2): (1) the Concentrator was
implemented with a Raspberry Pi B+ with Raspbian; (2) the Coordinator was implemented with
a TR-52DA IQRF node acting as coordinator; and (3) the End nodes were implemented by means of
TR-52DA IQRF nodes powered with 400-mAh lithium-polymer batteries.
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Figure 2. Implementation of the IoT gateway architecture showing the hardware modules.

4.2. Raspberry Pi IQRF Coordinator Connection

A prototype board (shown in Figure 3) was created to implement the connection between the
Concentrator (Raspberry Pi) and the Coordinator (IQRF node) with an ad hoc Printed Circuit Board
(PCB). This board provides the interface between the Raspberry Pi and the IQRF coordinator node.
This board also includes connectors to carry out the energy measurements at the IQRF Coordinator
used to obtain the empirical model discussed in the next section.

 

 
Figure 3. Prototype Raspberry Pi-IQRF Coordinator connection PCB.
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The connection between the Raspberry Pi and the IQRF coordinator is carried out by means of the
SPI protocol, the Raspberry Pi acting as the SPI master and the IQRF coordinator as the slave. The SPI
frames the protocol defined at the Raspberry Pi to manage all nodes of the IQRF IoT network.

4.3. Wireless Communication Coordinator: End Nodes

To create and configure the IQRF network, it is necessary to specify the following parameters at
the IQRF Coordinator and End nodes: (1) RF band; (2) RF channel number; (3) data transmission bit
rate; (4) transmission power level; and (5) reception level mode. The available values may be found
in Table 1. Since reconfigurations at run-time are allowed, these data were embedded in the protocol
issued by the Raspberry Pi to the IQRF Coordinator.

Table 1. Configuration parameters of the IQRF network.

Band (MHz) RF Channel TX Bit Rate TX Power RX Level Mode

433
868
916

0 to 16
0 to 67

0 to 255

1.2 Kb/s (Experimental)
19.2 Kb/s

57.6 Kb/s (Experimental)
86.2 Kb/s (Experimental)

0 (min) to 7 (max)
STD (Standard)
LP (Low Power)

XLP (Extra Low Power)

Furthermore, the IQRF nodes must be bonded to the network in order to be available. Network
bonding requires executing the process depicted in Figure 4. The IQRF coordinator expects that all
nodes issue bond requests in which they send their Module ID, so it assigns the Network ID and
Address of the end node. Once this operation is carried out, all end nodes will be bonded to the IQRF
network, and normal operation will be started. End nodes need to know all configuration parameters
(i.e., band, channel, transmission bit rate and power and reception level mode) previous to the bonding
operation in order to establish the link. The topology of the network will be internally managed by the
Coordinator using the IQMESH algorithm [31]. The IQRF technology is able to adapt to a wide range
of topologies; the authors only tested the architecture with two topologies: linear (all nodes connected in
line, in order to reach a maximum distance) and star (all nodes scattered in order to cover a broad area).

 

Figure 4. Bonding diagram of the IQRF end nodes to the coordinator.
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4.4. Protocol Description

This section describes the operations allowed by the system and the protocol that implements it.
This protocol is aimed at the TR-52DA module [35], but it could be easily adapted to other modules
by the same provider. The protocol defines the operations issued by the Raspberry Pi to the IQRF
coordinator by means of SPI, which will be respectively sent to the corresponding end node.

As shown in Table 2, the protocol allows bonding and unbonding (‘U’) end nodes to
the IQRF network dynamically, so the topology of the network may be changed in time.
Furthermore, the protocol defines the commands used to acquire data from the end nodes. These data
may be Temperature (‘T’), Voltage (‘V’) or Analog data (‘A’), by means of the embedded sensors and
available connectors at the end nodes. There are also some commands to manipulate the Red (‘R’) and
Green LEDs (‘G’). Another command allows one to reset (‘r’) all modules. There is one command to send
data via SPI to the end nodes (‘I’). Finally, there is another command to issue the network reconfiguration
(‘C’). This operation will be described in detail in the next subsection.

Table 2. Available commands to control the end nodes. SPI, Serial Peripheral Interface.

Function Command Parameters

Network bonding Node_ID None
Network unbonding ‘U’ Node_ID

Temperature acquisition ‘T’ Node_ID
Voltage acquisition ‘V’ Node_ID

Analog data acquisition ‘D’ Node_ID

Red led control ‘R’
‘0’, switch off Node_ID
‘1’, switch on ‘A’

Green led control ‘G’
‘0’, switch off Node_ID
‘1’, switch on ‘A’

Modules reset ‘r’ Node_ID
Data sending via SPI ‘I’ -
RF reconfiguration ‘C’ -

4.5. Dynamic Network Reconfiguration

One of the strengths of the IQRF technology is flexibility. For example, IQRF nodes may work
both as coordinators or end nodes since they have the same stack. Furthermore, IQRF nodes may
work in different modes according to the quality of service (QoS) requirements of the applications,
including different frequency bands, channels, data transmission rates, transmission power levels and
reception level modes (see Table 1). The authors allowed in the protocol the ability to change these
parameters ‘on the fly’, allowing one to select a new configuration for all IQRF end nodes from the
Concentrator (Raspberry Pi) in order to adapt the IoT wireless communications to new operational
requirements. This characteristic is useful in different situations, e.g., when the end nodes are low
on batteries, in order to use a new configuration, which demands lower energy or when different
operational modes are demanded, such as the alarming operation of the IoT system.

This behavior is achieved by means of the reconfiguration command, issued by the Raspberry Pi,
which requires the following information about the new configuration: (1) new transmission power
level (from zero, minimum, to seven, maximum); (2) new data transmission rate; (3) new frequency
band; and (4) new channel (see Table 1 for more information about the parameters). This command
is used by the IQRF coordinator to send all end nodes the new configuration parameters. There is
one default configuration, which is comprised by the following parameters: (1) transmission power
level: maximum, 7; (2) transmission rate: 19.2 Kb/s; (3) frequency band: 868 MHz; (4) channel:
52. The default configuration allows avoiding the IQRF nodes possibly remaining in any unknown
configuration in the case of failures, for example in the case of battery exhaustion.
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4.6. C Wrapping of the Architecture

This section describes the C bindings provided by the authors to create IoT applications with
the IQRF technology from the Raspberry Pi. The aim is to provide an easy to use wrapper that
allows programmers to integrate this technology into higher level applications. Table 3 enumerates
the available functions that map the protocol described above. These functions are provided as the
RPi_IQRF.C library. These bindings wrap: (1) the code used to connect the Raspberry Pi with the IQRF
coordinator through the SPI connection; (2) the code embedded at the IQRF coordinator to manipulate
the IQRF end nodes; and (3) the code at the IQRF end nodes to measure the field data (temperature,
voltage or analog data from the connected sensor.)

Table 3. C bindings for controlling the IQRF network from the Raspberry Pi.

C Heading Function

int bond (char node) End node bonding to the IQRF network

int unbond (char node) End node unbonding from the IQRF network

int reset (char node) Reset of one or all IQRF end nodes

char *temp (char node) Acquisition of the temperature at one IQRF end node

char *voltage (char node) Acquisition of the voltage at one IQRF end node

char *ADC (char node) Acquisition of the value read at the analog converter
at one IQRF end node

int LEDR (char onOff, char node) Red led control of one IQRF end node

int LEDG (char onOff, char node) Green led control of one IQRF end node

int config (char power, char speed, char, band, char
channel1, char channel2, char channel3) Reconfiguration of the IQRF network

4.7. Java Wrapping

Modern IoT applications, e.g., cloud applications, are frequently based on Java technology, so the
authors also provide a Java wrapping that allows using the proposed architecture from Java. Figure 5
shows the UML diagram that allows programmers to create Java applications.

Figure 5. UML diagram for the Java wrapping.
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The HandlerJava class is responsible for enabling a direct communication link between the Java
interface and the native C libraries. It provides similar methods to the functions found in Table 3.
The Net class represents the IQRF network and allows its use from the Java interface. The first time
that it is used, it gets the IQRF network configuration from “net.xml”, an xml formatted file. This class
allows the execution of serial commands aimed at communication issues. The Node class represents
every node at the IQRF network, allowing the execution of operations over the physical nodes.
The Sensor class represents every sensor connected at every node. It enables reading the data of every
physical sensor in different formats.

5. Energy Model Validation and Discussion

Some key points that influence energy consumption must be determined for a given design, such
as transmission strength and duration, amount of time elapsed between active states, as well as the
consumption in sleep and active states. The strategy followed to read the sensor is also important;
e.g., a module that is regularly pulled to know the state of a door might run out of battery faster than
a similar module that wakes up and transmits the occurrence of an opening or closing event. All of
these factors should be considered when calculating the power budget required for a given application
and the type of battery required.

Some applications may require anticipating the duration of the batteries to schedule maintenance
tasks to replace them. One typical approach involves querying field devices for their power state,
but this introduces undesired overhead on the remote devices. Most IoT infrastructures rely on
data collectors that store and post-process the magnitudes read by the sensors. An alternative
approach would involve running a model of the power consumption for the remote devices (based on
communication issues such as transmission and reception events, payload and topology of the
network) to determine in which nodes batteries must be replaced. This model also allows new
functionalities, such as to extend the periods between queries of a starving node or to reduce the
amount of data transmitted.

The accuracy of the model relays on understanding the power consumption characteristics of the
sensor nodes and the conditions of the data transmission. Some realistic models for power consumption
in wireless sensor network devices are presented in [36,37]. These works focus on obtaining realistic
models that split the overall consumption into different sources. They provide criteria to choose
design parameters once the practical aspects of the communications have been measured. Some works
measure the power consumption that the modules need to carry out transmission and reception events,
isolated from other forms of current consumption sources [38,39]. We have followed a similar approach
to obtain a model of the discharge of the remote devices.

The charge drained from the battery can be estimated following Equation (1) by measuring the
current flowing through the module over time.

Q (t) =
∫

I (t) dt (1)

As the battery capacity units are given in mAh, the obtained measurements should be converted
into submultiples of these units to estimate the duration of the battery charge. Current consumption
measurement is carried out indirectly recording the current profile on an oscilloscope by measuring
the voltage drop over a fixed 2 Ohms 1% resistor, as depicted in Figure 6.
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Figure 6. Measurement setup for obtaining the voltage drop over a fixed resistor.

The three transmission modes vary in the preamble duration from 3 ms in the Standard mode
(STD_TX), 50 ms for the Low Power mode (LP_TX) to 900 ms for the Extra Low Power mode (XLP_TX).
These different preamble times are required not to miss a packet in the reception side when configured
to work in low power modes.

Firstly, the required current to transmit the information varies according to the RF transceiver
power and the amount of bytes sent. Figure 7 shows the current profile obtained for a 64-byte
transmission carried out at full power (level 7).
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Figure 7. Current profile for a 64 byte transmission at full power (level 7).

The average current is found to be around 23 mA higher than the measured in run mode, which is
consistent with the datasheet provided by the vendor. By integrating (Expression 1) the measured
current over the transmission period, the charge drained from the battery can be calculated. Tables 4
and 5 summarize the currents measured for maximum (Level 7; green in Figure 8), minimum (Level 0;
red in Figure 9), medium transmission power (Level 4; blue in Figure 8) and for several payloads.
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Table 4. Transmission current for several payloads.

Payload
(Bytes)

Full TX Power
(mA)

Medium TX Power
(mA)

Minimum TX Power
(mA)

1 20.44 13.37 10.69
16 20.61 14.03 11.39
32 21.45 14.20 12.13
48 21.98 14.40 12.41
64 22.98 15.44 12.42

Table 5. Transmission electric charge for several payloads.

Payload
(Bytes)

Full TX Power
(nAh)

Medium TX Power
(nAh)

Minimum TX Power
(nAh)

1 64.07 39.32 26.15
16 104.78 68.38 49.88
32 151.36 97.87 74.13
48 201.75 128.49 97.62
64 241.96 157.93 120.07

Regarding the transmission side, an empirical mathematical model may be obtained from
these measurements. Since nodes may work in different working modes depending on the selected
transmission power (from zero, minimum, to seven, maximum, transmission levels), three different
linear regressions have been calculated in order to predict the electric charge at maximum (seven),
minimum (zero) and medium (four) levels (see Table 6). These regressions allow one to predict the
electric charge, expressed in nAh, required for a number n of transmitted bytes tecP(n).

Table 6. Empirical model for transmission: required electric charge to transmit n bytes.

TX Power Level Linear Fit (nAh)

7 tec7 (n) = 45.275 n + 16.96
4 tec4 (n) = 29.732 n + 9.2006
0 tec0 (n) = 23.558 n + 2.8963
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Figure 8. Electric charge for different transmission power and payloads.
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At the reception side, the TR modules implement three reception modes: Standard (STD),
Low Power (LP) and Extra Low Power (XLP). At reception, the mode control function relays on
a parameter called toutRF, which indicates the number of times the module checks for incoming packets
before exiting the reception function. In STD_RX mode, the receiver listens actively for incoming
data in intervals that are multiples of 10 ms, as determined by the parameter toutRF. In LP_RX mode,
the module listens for 10 ms and then sleeps to complete a 46-ms cycle that will be repeated toutRF
times. In XLP_RX mode, the sleep period reaches 790 ms to complete a cycle. Several experiments have
been conducted in order to measure the current in each mode. Tables 7 and 8 respectively summarize
the average current and electric charge measured at every node in reception mode.

By means of a regression fit, it is possible to obtain an empirical model that allows the authors to
predict the energy consumption at reception depending on the reception mode used (STD/LP/XLP)
and consequently scaling the capacity of the batteries.

Table 9 shows the electric charge drained from the battery at reception operations as a function of
the selected toutRF parameter.

Table 7. Average current drained in reception mode.

RX Mode ToutRF (Times) Current (mA) Average (mA)

STD
50 12.6

12.8100 12.5
200 13.3

LP
11 0.24

0.2430 0.23
43 0.24

XLP
1 0.13

0.0142 0.14
3 0.14

Table 8. Electric charge drained in reception.

RX Mode ToutRF (times) Charge (nAh)

STD
50 1758.89

100 3490.56
200 7409.46

LP
11 67.59
30 182.05
43 264.39

XLP
1 2.87
2 6.16
3 9.12

Table 9. Empirical model for reception: electric charge drained in reception mode.

RX Modes Linear Fit

STD recSTD(toutRF) = 37.887 toutRF − 200.56
LP recLP(toutRF) = 6.1408 toutRF − 0.5983

XLP recXLP(toutRF) = 3.125 toutRF − 0.2

Figure 9 represents the charge drained from the battery for the three modes when configured for
equivalent periods of time by translating the toutRF parameter into seconds.

74



Electronics 2016, 5, 54

0.5 1 1.5 2 2.5
0

1000

2000

3000

4000

5000

6000

7000

8000

TIME [s]

E
le

ct
ric

 c
ha

rg
e 

[n
Ah

]
El

ec
tr

ic 
ch

ar
ge

(n
Ah

)

Time (s)

Figure 9. Charge drained from battery over time (blue, STD; green, LP; red, XLP).

Once the current consumption is characterized by the given empirical model (see Tables 6 and 9)
expressed with equations that depend on the operating conditions (transmission level from zero
to seven and reception level, STD/LP, XLP), this model can be used to schedule the transmission
and reception events that fit an application according to the battery availability. The amount of
energy used during the acquisition of the sensors, their processing or the energy budget required by
additional hardware have not been taken into account, and their contribution should not be neglected
in practical applications.

6. Conclusions

This work is devoted to facilitate the construction of low-cost/ low-energy IoT applications.
Its major outcomes are: (1) one architecture for IoT gateways that integrates data from sensor nodes into
higher-level applications (e.g., cloud applications); (2) bindings in Java and C that ease the construction
of IoT applications; (3) an empirical model that describes the consumption of the communications at
the nodes (smart sensors) and allows scaling the batteries; and (4) validation of the proposed energy
model at the battery-operated nodes.

The proposed architecture is based on the Raspberry Pi platform due to its remarkable
characteristics, namely: (1) good computing power/cost ratio; (2) high availability; currently, it has
become a de facto hardware standard; and (3) ease of use, since it is based on operating systems with
a big community of users. The IQRF WSN versatile technology is also proposed to acquire information
from scattered sensors. From the energy management perspective for communications, the IQRF
technology presents interesting benefits, such as (1) modifying the power level at the sending nodes
and (2) adapting the reception times in order to save energy at the end nodes. These properties allow
specifying different network configurations that adapt better to the QoS and energy requirements of
the applications. Such low consumption levels were confirmed in this work by means of experimental
results. In addition, according to the literature, the IQRF technology provides good propagation
distances when compared with other technologies, especially in outdoor applications.

The wrappings presented by the authors allow designers to build high level applications in C and
Java programming languages easily. These wrappings allow acquiring data from scattered sensors
in an easy to use way, while keeping deep control of the IQRF WSN network energy consumption.
The programmers of the applications will be able to build new energy-efficient IoT applications
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that integrate field information without major difficulty. These wrappings can be used to specify the
configuration of the IQRF parameters of the network or even modify them at run-time (reconfiguration)
when the energy or QoS requirements of the applications demand it.

Since the management of the resources in IoT applications may become a key issue, the authors
also present an experimental model for the energy consumption of the communications at the
IQRF nodes that allows designers of IoT applications to scale the capacity of the batteries of the
scattered sensors.

In summary, this article solves the research question presented at the beginning of the article:
how to build gateways for IoT applications with Raspberry Pi and low power IQRF communication
modules. Its major outcome is providing application designers all components to build IoT applications
quickly and easily. This includes: (1) an architecture for the IoT gateways, together with all of the
selected hardware components (Raspberry Pi, IQRF nodes, etc.); (2) bindings to build high level
applications with the most common programming languages, such as C and Java (bindings for other
programming languages, like Python, could be easily created); (3) a protocol that allows collecting data
from the IQRF remote nodes (such as temperature, voltage, analog sensors, and LED manipulation);
and (4) an empirical model for selecting the capacity of the batteries that helps with predicting their
lifetime due to communication issues.

Supplementary Materials: The source code for the wrapper is available under the following doi:
http://dx.doi.org/10.5281/zenodo.61071.
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4. Bazydło, P.; Dąbrowski, S.; Szewczyk, R. Distributed temperature and humidity measurement system
utilizing IQMESH wireless routing algorithms. In Progress in Automation, Robotics and Measuring Techniques;
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Abstract: Erica the Rhino is an interactive art exhibit created by the University of Southampton,
UK. Erica was created as part of a city wide art trail in 2013 called “Go! Rhinos”, curated by Marwell
Wildlife, to raise awareness of Rhino conservation. Erica arrived as a white fibreglass shell which was
then painted and equipped with five Raspberry Pi Single Board Computers (SBC). These computers
allowed the audience to interact with Erica through a range of sensors and actuators. In particular,
the audience could feed and stroke her to prompt reactions, as well as send her Tweets to change her
behaviour. Pi SBCs were chosen because of their ready availability and their educational pedigree.
During the deployment, ‘coding clubs’ were run in the shopping centre where Erica was located,
and these allowed children to experiment with and program the same components used in Erica.
The experience gained through numerous deployments around the country has enabled Erica to be
upgraded to increase reliability and ease of maintenance, whilst the release of the Pi 2 has allowed
her responsiveness to be improved.

Keywords: Internet of Things; interactive art; Raspberry Pi; open data; image processing

1. Introduction

Interactive art involves its spectators in more than just a viewing capacity. This interactivity can
range from spectators perceiving that they are interacting with a passive art piece to pieces where
input from the spectator influences the artwork [1]. Over the years, interactive art has evolved from
simple mechanical contraptions [2] to installations involving some form of computer processing [3,4]
or that are completely virtual in their output [5,6].

Since its introduction, the Raspberry Pi Single Board Computer (SBC) has provided an all-in-one
platform that allows artists to carry out processing and hardware interaction on a single low-cost piece
of hardware. This has led to it being used in many interactive art installations and the Raspberry Pi
foundation have dedicated a section of their website [7] to documenting artistic works that incorporate
Raspberry Pi SBCs.

The Go! Rhinos campaign was a mass public art event run by Marwell Wildlife in Southampton,
UK for 10 weeks during the summer of 2013 [8]. The event involved 36 businesses and 58 schools
placing decorated fibreglass rhinos along an ‘art trail’ in Southampton City centre, with the aim of
raising awareness of the conservation threat faced by wild rhinos, and showcased local creativity and
artistic talent.

The event provided an opportunity to promote Electronics and Computer Science at the University
of Southampton and act as a platform for electronics and computing outreach activities. A team of

Electronics 2016, 5, 35 79 www.mdpi.com/journal/electronics
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electronic engineers, computer scientists, marketing specialists and artists from within the University
were brought together to design and develop a unique interactive cyber-rhino called Erica, shown in
Figure 1. Erica was designed to be a Dynamic-Interactive (varying) [9] art piece where her behaviour
is not only determined by the environment that she is in but also by her physical interactions with
viewers—very much like a cyber-physical toy or Tamagotchi [10]. Internally, Erica is powered by a
network of five Raspberry Pi SBCs connected to a series of capacitive touch sensors, cameras, servos,
stepper motors, speakers, independently addressable LEDs and Liquid Crystal Displays (LCDs).
These devices were carefully chosen to implement the desired features.

Figure 1. Erica the Rhino in her permanent home at the University of Southampton.

This article discusses in depth the impact and considerations of installing a piece of interactive
art using Raspberry Pi SBCs in a public setting as well as the implementation methods. The paper
is organised as follows. Section 2 discusses the features of Erica that brought her to life. Section 3
describes the initial implementation of Erica and the lessons learned, while Section 4 goes on to
discuss the deployment of Erica into the wild. Section 5 describes the upgrades and maintenance after
Erica’s time with the general public. Section 6 demonstrates the impact of Erica with regards to public
engagement and outreach while Section 7 provides a concluding statement.

2. Features

The initial concept of Erica was as a cyber-physical entity that merged actions inspired by natural
behaviours with a showcase of the different facets of electronics and computer science in an interactive
way. The Raspberry Pi was the platform of choice for its novelty, popularity with hobbyists and
schools and its wide availability. The media awareness of the Raspberry Pi also helped to promote
Erica. Additionally, the availability of the Raspberry Pi and open-source nature of Erica’s design
would permit interested people to inexpensively implement aspects of her at home. After several
brainstorming sessions, an extensive list of desirable features that could be implemented was compiled.
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Each of these features was classified as either an input (a ‘sense’), an output (a ‘behaviour’) or both as
shown in Table 1. A broad range of features was selected to cover different areas of electronics and
computer science, ranging from sensors and actuators to image processing and open data analytics,
leading to an initial design drawing as shown in Figure 2.

Table 1. Features that were considered for inclusion in Erica. Those in italics were considered but
not implemented.

Input Output Both Input & Output

Touch Sensor (capacitive) RGB illuminated horn Eyes (moving webcams)

Presence Sensor (PIR) Animated body LEDs Twitter

Temperature sensor Moving ears SMS text messaging

Open data Side information displays Bluetooth presence detection and messaging

QR codes Sound

Sound Level Simulated snorts (compressed air)

Speech recognition Ticker tape printing of tweets

3D Printing

Projected Output

Figure 2. Initial ideas for Erica’s features

When an input occurs, it is processed and an appropriate response is generated. These responses
can be broken down into two categories: ‘reactive’ and ‘emotive’. Reactive behaviours occur almost
immediately and are a direct response to an interaction, such as a grunt being generated when a touch
sensor is touched. This immediate feedback provides a strong link between the interaction and the
response, which is beneficial when demonstrating how the sensors and actuators are connected. Erica’s
reactive behaviours can be thought of as being similar to reflexes in humans; however, they cover a
broader range of interactions.
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Rather than each interaction having a static response, it was decided that Erica should also
have several emotive responses. This was achieved by implementing four emotive states, each with
seven distinct levels, that triggered additional output events and influenced the outcome of future
interactions. Emotive responses are based on a cumulative time-decaying set of ‘emotions’ as shown in
Table 2 alongside the input sensors that contribute to their level and output events. When Erica is left
alone for an extended period of time, she goes to sleep and recovers energy, but her interest, fullness
and mood decay.

Table 2. The four emotive states used within Erica, together with the two ‘extreme’ cases, the inputs
that affect them, and the outputs that are caused.

State Level 1 Level 7 Affected By Causes

Energy Asleep Overexcited Interaction (or lack of) Idle behaviour
Web statistics

Mood Sad Happy Cheek sensor Idle behaviour
Web statistics

Interest Bored Very interested Cheek sensor
Presence sensor Web statistics

Fullness Starving Overfed Mouth sensor Energy
Web statistics

The ‘emotion’ that turned out to be a favourite with adults and children alike is fullness.
Fullness automatically decreases over time and is incremented every time she is fed (by touching the
chin sensor), accompanied by a grunt noise. If Erica is fed too many times in quick succession, a more
juvenile sound is also played.

2.1. Visual System

It was desired that Erica should be able to see like a real rhino so a visual system consisting of two
cameras (one for each eye) was conceived. At the time of development, the Pi Camera [11] was not
available so two USB webcams were chosen. Even if the Pi Camera had been available, they would have
been less suitable than webcams due to mounting and cable length/flexibility issues. Initially, it was
planned that the eyes would have two-axis pan-tilt; however, this proved impractical in the limited
space available within the head. As such, a single servo was used to enable left-right panning about
the vertical axis.

Software was built using the OpenIMAJ libraries [12] developed at Southampton—the use of
cross-platform Java code and the inbuilt native libraries for video capture, combined with the use of
commodity webcams. This portability ensured that it was possible to test the software on various
platforms without need for recompilation or code changes, which substantially helped with rapid
prototyping of features. Additionally, this had the added benefit of improved accessibility of the public
to experiment with image processing using Erica’s open source examples.

The original idea for the visual system was that it would perform real-time face tracking and
orientate the cameras such that the dominant detected face in each image would be in the centre of
the captured frame. The restriction to panning on a single axis and performance limitations of the
Raspberry Pi meant that the tracking was not as smooth and apparent as desired. Therefore, it was
decided that the visual system should be used for interactions that did not require immediate feedback
to the user. In particular, the software for the eyes was setup to process each frame and perform
both face detection (using the standard Haar-cascade approach [13] implemented in OpenIMAJ)
and QR-code detection (using OpenIMAJ with the ZXing “Zebra Crossing” library [14]). This
achieved recognition at a rate of a few frames a second (specifically, using the Raspberry Pi model B,
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the frame-rate achieved was around five frames per second, while the Raspberry Pi 2 managed around
ten frames per second).

2.2. Open Data

Open Data, specifically Linked Open Data [15], is a subject in which the University of
Southampton has a rich research history. Linked Open Data is, in summary, information made
available in a computer-readable form with a license that allows re-use. It was decided that Erica
should both consume and publish Linked Open Data. Erica periodically checks a number of online
data sources in order to get an idea of her environment. The most novel use for this is a function for
checking the current weather conditions and reacting accordingly. Erica will get cold if the temperature
drops, and will sneeze if the pollen count is too high.

Every hour, a script runs that takes a copy of Erica’s current emotive state and converts it into
an open format known as RDF (Resource Description Framework). This is then published to Erica’s
website and can be queried by any programmers who wish to interact with Erica. If an internet
connection is not available, the script silently exits and tries again the next hour. The data in its RDF
form is held on the website [16] rather than on Erica herself, so that it is always available even when
Erica has no internet connection.

2.3. Features Summary

Having worked out a list of features to be included in Erica, how they were implemented needed
to be carefully considered. The design choice of using Raspberry Pi SBCs as preference over a small
form factor PC caused some additional challenges that would not otherwise have been faced.

3. Initial Implementation

During initial development, it was quickly found that a single Raspberry Pi was not sufficient to
handle all of the processing required for the desired features. As such, a distributed system of five
Raspberry Pi SBCs was conceived with each one being responsible for a different aspect of Erica’s
operation. Figure 3 depicts a block diagram of the initial implementation and shows how all of the
inputs and outputs are connected to the SBCs.

Figure 3. Erica’s Pi architecture as initially implemented.
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The overhead of the visual system required one Raspberry Pi per eye to give acceptable
performance. LED and servo control required a number of I/O pins so one Raspberry Pi was dedicated
to this task. To co-ordinate the actions of these Pi SBCs into a coherent entity, another Pi, the Brain Pi,
was dedicated to controlling the whole system and was responsible for the PIR sensor, touch sensors,
temperature sensor and sound output. Details of the operation of the Brain Pi are discussed further
in Section 3.3. Finally, a fifth Raspberry Pi was used to provide network connectivity to the outside
world.

Erica included two HDMI-connected 7” displays, one on each side. These were each connected to
a separate Raspberry Pi and used to display information about Erica’s mood, the Go! Rhinos campaign
and rhino conservation. These displays were deliberately positioned at different heights to allow for
easy viewing for both adults and children alike.

3.1. Physical Design

Erica was delivered as a sealed white fibreglass shell with no access to the interior. The artistic
design of Erica was outside the areas of expertise of the authors, so talent was sought elsewhere in
the University. A design competition was run at the Winchester School of Art where undergraduate
students submitted potential designs. The winning artist was invited to paint Erica in their design,
which was then displayed in the Southampton city centre for 10 weeks.

Rather than hiding the electronics inside Erica, it was felt that being able to see what was driving
her would add to her appeal and general intrigue, so it was decided to make them a visible feature. This
was achieved by making the access hatch that was cut in Erica’s belly out of clear perspex (formed to
the same shape as the fibreglass that was cut out) and placing mirror tiles on the plinth beneath to
allow viewers to see inside easily. The Raspberry Pi SBCs were mounted upside down on a board
suspended above the perspex window and illuminated by two LED strip lights.

The webcams chosen to act as Erica’s eyes had a ring of LEDs around the lens designed to be used
to provide front-light to the webcam image. A digitally controllable variable resistor allowed software
brightness control, so the LEDs could be used to simulate blinking. The webcams were then inserted
inside a plastic hemisphere that was painted to resemble an eye with an iris. For installation, the eyes
for the fibreglass moulding were carefully cut out so that the webcams would be in an anatomically
correct position. Once mounted, it was noted that the eye mechanism was vulnerable to physical
damage, especially as the eyes were at a child-friendly height, so colourless, domed perspex protective
lenses were formed to fit within the eye socket and sealed to prevent external interference, as can be
seen in Figure 4a.

(a) (b)

Figure 4. (a) detail of Erica’s eye assembly; (b) detail of Erica’s detachable ears.
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Erica’s moving ears were implemented by cutting off the fibreglass ears and remounting them to
stepper motors so that they could be rotated freely. As the only external moving components, specific
care was needed to prevent injury to people and to ensure that the mechanism could withstand being
investigated by curious bystanders. This was achieved by mounting the ears magnetically to the
stepper motor shafts, limiting the available torque. This, however, made it relatively easy to remove
the ears so they were tethered to prevent them from being dropped and to discourage theft, as shown
in Figure 4b.

Two distinct groups of LEDs were also inserted into her shell: RGB LEDs on her horn and
mono-colour LEDs of differing colours on her body. The horn LEDs were installed in differing patterns
on her short and long horns. The body LEDs were incorporated into her artistic design, being placed
at the ends of her painted wires.

3.2. Networking and Monitoring

By choosing to use multiple SBCs to provide the compute power needed to run Erica, a means to
interconnect these was essential. As Erica would need to be moved between locations, it was decided
to run an internal network to provide this connectivity, which could then connect out to the Internet at
a single point. There were two options considered for this, either an off-the-shelf router or to use a Pi.
The USB ports available on a Pi gave the flexibility required to add both additional wired Ethernet, as
well as wireless interfaces. This arrangement would give more flexibility in configuring these interfaces
(for DNS, DHCP, NAT, routing, firewalling, etc.), whereas an off-the-shelf router with its generic
firmware may have not been sufficiently configurable.

The initial design of the network ended up with the Interface Pi having three separate interfaces,
which was facilitated by connecting a powered hub to one of its USB ports to provide the required
capacity both of ports as well as power. These three interfaces consisted of:

• A wired internal interface to connect to the other four SBCs over an internal network.
• A WiFi uplink interface to connect to the Internet provided by a USB wireless dongle and high-gain

antenna.
• A WiFi access point interface to allow those in the vicinity to interact with Erica using smartphones,

provided by a USB wireless dongle with a standard antenna.

It was decided that no internet access would be available on the WiFi access point, as this
would be a publicly available unprotected network and therefore any Internet access was liable to be
abused. It was recognised early in the development process that remote access to monitor if various
electronically controlled aspects of Erica were behaving as expected was essential. This also allowed
certain features to be fixed when they were not working. This needed to be achieved in a way that was
independent of the parent network providing the uplink to the Internet.

This remote access was facilitated by two separate means, which had both previously been
investigated in earlier sensor network deployments [17]. This first of these techniques was to create
an SSH tunnel out from the Interface Pi through the parent network to a device on the Internet that
could accept SSH connections. This tunnel would allow SSH connections from this device directly
onto the Interface Pi without needing to know either the current (private) IP address of its uplink or
the IP address of the parent network’s gateway.

The second technique was to register for an IPv6 [18] tunnel with a tunnel broker. SixXS [19]
provides a variety of IPv6 tunnel options for which AICCU (Automatic IPv6 Connectivity Client
Utility) meets the key requirement for Erica, to facilitate as simply as possible, routeable global IPv6
addresses for each Pi, allowing them to be connected to directly (rather than requiring a proxy via
the device that maintained the IPv4 SSH tunnel previously described). These IPv6 addresses could
then be assigned hostnames using DNS AAAA records for the ericatherhino.org domain, significantly
simplifying the task of accessing and monitoring the Pi SBCs remotely. However, for security reasons
this was carefully firewalled, and SSH was only allowed using public key authentication.
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Monitoring of Erica was implemented using Icinga [20], a scalable open source monitoring system.
At its most basic level, Icinga allows monitoring of hosts and common services (e.g., Ping, HTTP, SSH,
DNS, etc.). It also allows dependencies between hosts and services to be defined, so some hosts or
services are only monitored when other hosts or services are available. Through this means, Erica’s
infrastructure could be represented in the status map shown in Figure 5.

Figure 5. Example output from Erica’s status monitoring, showing her current hardware as detailed in
Section 5.

One particular feature of Icinga is that an accompanying application can be run on monitored
hosts to allow scripts to be run to test bespoke features, when prompted by Icinga. This was made
use of to ensure that particular applications were running on specific Raspberry Pi SBCs, prompting
‘rhino engineers’ to restart the required programs when necessary. It also made it possible to observe
when particular interactions were not occurring in near real-time. This provided the ability to remotely
determine if a feature was broken in a timely manner, allowing remedial action to be taken. It also
provided information on simple trends that helped resolve regularly occurring faults or to evaluate
the popularity of different interactions.

3.3. Brain Development

Due to the distributed nature of Erica’s hardware, it was important that there should be a
middleware capable of both receiving events from the various sensors and triggering commands to
cause a reaction. This was deployed on the Brain Pi, with the sensors that require fast responses (touch
& presence) also connected to it.

The software itself was implemented using the Django [21] web framework, and provided a
RESTful API (REpresentation State Transfer Application Programming Interface) to the other Pi
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SBCs. Each Pi that wants to send events runs a RhinoComponent web service, using the lightweight
CherryPy [22] for simplicity. This registers with the Brain Pi on boot, indicating its name (e.g., ‘left-eye’)
and a URL that is able to receive commands.

When a sensor is triggered, the Pi responsible for that sensor sends an event to the brain. This has
the structure of ‘source.component.action’, e.g., ‘interaction.chin.press’. The source indicates what
caused the event (e.g., a sensor interaction, twitter, environment, or the brain itself); the component
informs the brain as to the originating component (e.g., the chin, or the left eye); and the action gives
the interaction that was actually performed (e.g., press, scan, detect). A dictionary of key/value pairs
can also be sent, giving extra information (e.g., which side of the chin was pressed).

As soon as an event arrives, a collection of scripts are executed, known as ‘behaviour scripts’.
These are intentionally simple and small, giving the entire team the ability to add new behaviours
without having to modify the underlying server code. They can read and modify Erica’s emotional
states, described earlier, and trigger commands. A short-term memory (capped at 100 items) and a
long-term memory (holding counts of events) are also available. For example, if a face is detected by
one of the eyes, Erica’s mood and interest are increased, the appropriate eye is told to blink, a sound
is played, and the website is updated. As a side-effect, the short-term memory will include the
face detection event, and the long-term memory will show that one more face detection event has
been handled.

The blink and sound playback actions in this example are performed by triggering commands.
When the behaviour script triggers ‘lefteye.lights.blink’, the command is sent to the Left-eye Pi via the
URL that it registered earlier. The component on the Pi can then affect the webcam’s LED.

There are also some events that are not caused by external stimuli: an idle event is triggered at
set intervals, so Erica’s hunger and tiredness can be updated; and an event is triggered every hour,
allowing Erica to send messages at appropriate times.

3.4. Electronic Interface Hardware

Each of the Pi SBCs in Erica has an interface board mounted to it. The interface boards were
made using the Humble Pi prototyping boards, which are designed to fit on top of the Pi. Each of
the Pi SBCs had a different interface board providing the necessary electronics. The Interface Pi is the
simplest just requiring an RTC to allow Erica to maintain accurate time when no internet connection is
available. The Pi SBCs responsible for eye control were provided with the hardware required to drive
servos and simulate blinking as discussed in Section 3.1. The Brain Pi has a digital temperature sensor
(TMP102) along with connections for the touch and PIR sensors. The Mech Pi interface contained
the connectors to link to the ear control boards drivers and master control hardware for the LED
subsystem. An example of an interface board from this generation of hardware is shown in Figure 6a.

(a) (b) (c)

Figure 6. (a) an original electronics interface board; (b) second generation hardware interface;
(c) current hardware interface HAT.

Erica’s other circuit boards were initially made using strip board to allow for fast iterative
development of the electronics required. Whilst this enabled Erica to be made quickly, the process of
making spares was extremely time consuming, leading to only a couple of spares of the most common
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parts being made. This led to a change in approach after the initial deployment, as at least six of each
of the main boards were required.

An example of a circuit board that was used widely in Erica’s construction was the LED controller.
Erica has 32 single colour and 15 RGB LEDs distributed around her body. Rather than have all these
LEDs connected to a single controller board, a distributed control system was used. This simplified
the cabling required inside Erica. Each LED (or colour, if RGB) had a separate PWM control channel.
The distributed dimmers were connected together using a shared SPI bus which originates from the
Mech Pi. The structure of the the lighting control can be seen in Figure 7.

Figure 7. Original design for Erica’s LED controllers.

4. Go! Rhinos Deployment

In summer 2013, Marwell Wildlife organised an ‘art trail’ around the city of Southampton,
UK. The 36 life size rhinos and 62 smaller rhinos were on display for 10 weeks, and enjoyed by
approximately 250,000 residents and visitors [8]. At the conclusion of the art trail, the life size rhinos
were sold by auction raising a total of £124,700 for three charitable causes.

Unlike the other life-size rhinos on the art trail, Erica was located inside a local shopping centre.
This location was chosen because of the availability of power, network and the realisation that making
Erica both rain proof and resilient to vandalism would not be feasible. There was one particular
unforeseen problem. The location had a large skylight which acted like a greenhouse and allowed
direct sunlight to illuminate Erica’s mostly black paintwork resulting in her internal temperature
exceeding 45 ◦C on several occasions. While the Raspberry Pi SBCs handled this without issue, it was
found that the glue holding circuit boards and cables inside of Erica was not able to cope, turning a
series of neat cable looms and mounted hardware into a mess, leading to hardware failures.

Despite the thermally induced hardware failure, Erica’s deployment was a success with Erica’s
analytics, as seen in Figure 8, showing that a significant number of people interacted with her.
This shows that the majority of the interactions observed were from the PIR sensor. This has been
attributed to the fact that this sensor did not require visitors to actively engage with Erica, meaning
a substantial proportion of the count could be people passively observing her or just walking past.
It was also observed that the other interactions available were not immediately obvious. Whilst there
was signage describing the different ways that Erica could be interacted with, this was not presented in
a child accessible way. Children would approach Erica and start randomly touching and stroking her,
until their carers explained the interaction functionality available, having read the signage provided.
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Figure 8. Daily counts of interactions with Erica during the Go! Rhinos deployment, recorded using
Google Analytics.

Areas where public expectations differed significantly from the design were at the screens
embedded in Erica’s sides. These displays cycled automatically through a set content sequence
including: details of the other rhinos on the art-trail, Erica’s mood, and details of conservation efforts
in the wild. The public expectation, however, was for these to be touch screens that would provide
additional methods of interacting with Erica.

One of the features built into Erica that is immediately accessible is the window in her belly to
view the electronics. Whilst adults tended to use the mirrors to save having to bend down, children
were much more likely to crawl around underneath Erica herself in order to get the best view possible.
The team of “Rhino Engineers” responsible for maintaining Erica were all issued with bright red
branded t-shirts. Whilst wearing these t-shirts, team members were approached by members of the
public who were wanting to know more, or provide feedback including bug reports. This feedback
combined with team members’ own observations were used to steer decisions behind the upgrades
detailed in Section 5.

5. Upgrades and Maintenance

After the Go! Rhinos deployment, Erica returned to the University and the opportunity was taken
to carry out general maintenance, perform upgrades based on feedback received and repair damage
sustained during the deployment. The majority of the upgrades, with the exception of upgrading to
Raspberry Pi 2s, were done in order that Erica could be taken to the 2014 Big Bang fair [23] as part of
the University exhibit.

5.1. Physical Changes

Whilst performing maintenance on Erica during her time on the art trail, it was found that
removing the main board was a time consuming task, due to the numerous connections to the
body electronics. To address this, the electronics were redesigned to use a limited number of
category 5 network cables for all signals connected to the Raspberry Pi SBCs. The new design of
cabling infrastructure is shown in Figure 9, with changes to the electronics discussed in Section 5.3.
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Figure 9. Erica’s main computing board.

The cabling redesign was also extended into the plinth on which Erica is mounted. During
the Go! Rhinos deployment, Erica’s only physical external connection was the main power. This
was ideal when Erica was left unattended in a shopping centre but was limiting for exhibition use
and debugging. To improve usability, the plinth was fitted with PowerCon input and output power
connections, network connections for both internal and external network, audio outputs (for when her
internal speaker is not loud enough) and HDMI & USB connections to the interface Pi for debugging.
All these connections were carried up from the plinth through Erica’s legs, but can be unplugged to
enable the plinth to be removed for transport.

5.2. Processing Upgrades

The performance offered by the original Raspberry Pi model B proved to be a significant limitation
and affected all stages of the project, influencing architecture decisions and limiting responsiveness
to interactions. When the Raspberry Pi 2 [24] was announced in 2015, it was an obvious decision to
upgrade all Erica’s Raspberry Pi SBCs to this new model to increase performance. Erica’s overall
responsiveness improved and allowed for more complex interactions, but the biggest difference
observed was in the improvement in the performance of her eyes. Face detection now happens
significantly faster and it was possible to implement the ‘QR Cubes’ and ‘See what I see’ as discussed
in Section 5.4.

During the deployment, issues with SD card reliability were encountered. These issues have been
explained by the fact that, in all deployment scenarios, the power has occasionally been cut off without
performing a graceful shutdown first. This has been a recurring problem through Erica’s multi-year
lifetime. In order to simplify the process of recreating SD cards when needed and keeping the systems
up to date, Puppet [25] scripts were created allowing the images to be rebuilt on replacement cards.

The LED subsystem had proven to be unreliable and susceptible to RF interference during the Go!
Rhinos deployment. This was primarily due to the use of 3.3-volt SPI signals over excessively long
cables. The replacement communication protocol chosen was DMX512 [26] as this is designed to cope
with cable lengths significantly greater than needed. Given this change, a new design of hardware
was needed, as shown in Figure 10. The hardware required for the main control interface is shown in
Figure 6b. Having learnt from the scalability issues of using stripboard and having more development
time, a PCB was created and the interface on the Pi was replaced with an open source DMX controller.

90



Electronics 2016, 5, 35

Figure 10. New DMX based design for Erica’s LED controllers.

5.3. LED Hardware Upgrades

The form factor change of the Pi 2 when compared to the model B Pi required a redesign of
the hardware interface boards. This new generation of boards was designed to be HAT-compliant
(Hardware Attached on Top) [27]. Rather than create a separate HAT for each function, it was decided
that a single modular HAT design (as shown diagrammatically in Figure 11 and built in Figure 6c)
would simplify deployment and maintenance. These HATs contain an RTC, eye control hardware, a
DMX controller and GPIO (General Purpose Input/Output) breakout. The designs for these HATs and
all the associated software is Open Source and is available from the Erica github [28].

Figure 11. Block Diagram of Erica HATs.

5.4. Screens & Interaction

Initially, the 7” screens mounted in Erica’s sides were HDMI monitors attached to the Brain
and Interface Pi SBCs. These were intended to display a loop of static pages for visitors to consume.
However, shortly after deploying them onto the art trail, several passers by commented that they were
expecting them to be touch screens with interactive content. This reaction continued throughout the
deployment. Therefore, it was decided to make an architectural change and replace these screens with
Android-based tablet devices connected to Erica’s local wireless network to provide touch interaction
with dynamic content. This was done before the Pi touch [29] displays were available, and if this were
to be done now, these displays would be the more obvious choice.
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The tablets display a web-based menu system in a kiosk-mode browser that allows visitors to
interactively view information about Erica, her mood, rhino conservation and the other Rhinos from
the Go! Rhinos campaign. They also allow visitors to trigger Erica’s eye movement, ear movement,
horn LED colour change and body LED animation. The decision was also taken to allow people to
see what Erica could see as it was a requested feature. A screen shot of the web interface is shown
in Figure 12.

Figure 12. The home screen on the tablets in Erica’s side.

Even after introducing interactive touch screens, it was still felt that the range and ease of
interactions with Erica was lacking. The ability to identify QR cubes using Erica’s two webcam
eyes had never been fully exploited in a way that was simple and intuitive to an average visitor.
Therefore, in June 2015, prior to the University of Southampton’s open days, a number of cardboard
cubes were constructed, as illustrated in Figure 13.

Figure 13. A two-dimensional net for a QR cube developed to aid interacting with Erica.

Each of the five QR codes on each cube represent a word within a theme and will lead to some
reaction from Erica. One set of codes plays samples of music across a particular theme. Another set
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allows all of the body LEDs of one colour to be switched on or off depending on which eye the
QR code is presented. The final set express one of five different emotions that involve at least two
separate outputs.

These cubes have been particularly useful in increasing the amount of interactions with Erica on
a day-to-day basis in her permanent home at the University of Southampton. The amount of time a
right eye QR code scan has spent in Erica’s short time memory has increased twenty-fold, and, for the
left eye, this has increased over one-hundred-fold.

Whilst these improvements were being developed and deployed, Erica was touring the country
and receiving visitors at her permanent home in Southampton.

6. Public Engagement and Impact

In terms of public engagement, there were three key outcomes from developing Erica.
While Erica was being initially developed, nine classes (approximately 230 pupils) were invited

to see Erica at the University and discuss the sorts of interactions that they could imagine having with
her. The pupils then learned about the basics of programming and how the hardware and software
inside Erica worked. This was evaluated using questionnaires given to all students, which showed
that the classes enjoyed understanding the potential of technology. All of these classes have since
returned to the university for follow-up computing workshops.

Evaluating feedback from the general public, the mirror tiles placed underneath Erica to allow
people to easily see the technology inside and the visits from the ‘rhino engineers’ when things needed
fixing were both received positively. In particular, it helped make the public aware that this was
a research project rather than a commercial one and gave people the opportunity to find out how
Erica functioned.

While on display during the Go! Rhinos campaign, a pop-up classroom was run that taught
programming to almost 1200 young people from the local community. They were told about
Raspberry Pi computers, and how they could use software to build their own rhino components.
Several participants made return visits to this workshop and parents were impressed at how much
their children had learnt and carried on learning at home. These sessions were run in addition to
the outreach sessions organised by Marwell Wildlife as part of the wider Go! Rhinos campaign.
This campaign proved so successful that Marwell Wildlife are organising a follow on event this year
focusing on Zebras [30].

As a result of the project, the authors have been approached by the organisers of science public
engagement events to take Erica on tour. Erica was on display at the Big Bang Fair in March 2014
where there were approximately 5000 interactions over the four-day long event. Approximately 4000
of these interactions were people “feeding” Erica by touching her chin sensor as shown in Figure 14.
Erica was also at the 2015 Cheltenham Science Festival. In addition to external visits, she has been
part of the internal university science days for the last three years, which see approximately 4000
to 5000 people through the door each year.
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Figure 14. Daily counts of interactions with Erica at the Big Bang fair, recorded using Google Analytics.

No matter where Erica has been displayed she has received interest from parents and children
alike, with conversations ranging from electronics and programming to rhino conversation via
her artwork. She was a finalist in the UK Public Engagement Awards, obtained a University of
Southampton Vice-Chancellor’s award, appeared in international media [31] and has been used as an
example of Pi outreach by companies such as RS [32], and Rapid Electronics [33].

Erica is now on permanent display in the foyer of the Mountbatten building at the University of
Southampton where she has regular interactions with staff and students of the University along with
members of the local community. It is safe to say that Erica is now a local celebrity!

7. Conclusions

Erica the Rhino was created as a piece of interactive artwork to promote Electronics and Computer
Science and the University of Southampton. In order to achieve this, an inter-disciplinary team was
brought together from across the University. A feature set was decided upon and implemented,
along with an artistic design for Erica’s exterior. In order to implement these features, it was decided
to use Raspberry Pi SBCs, as this way anyone interested in the technologies in use could acquire the
same hardware cheaply to enable them to experiment themselves. Furthermore, as all the software
and custom hardware created for this project is Open Source, other parties could develop their own art
pieces using the same foundations.

The choice of using Raspberry Pi SBCs inside Erica to provide the compute power has influenced
the entire design of Erica, both in terms of features available and how they are implemented. The same
features could have been implemented using a less complicated architecture by combining a few
Arduinos [34] with a small form factor PC. The outreach and engagement benefits of using the Pi have
vastly outweighed the additional complication that it brought. In terms of outreach, Erica has been
seen by several thousand young people and has prompted conversations on a wide variety of topics,
some of whom have been inspired to continue learning at home. Overall, the entire project has been
very successful, surpassing any expectations that the team had when the project was started.
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Abstract: Power consumption has become an increasingly important metric when building large
supercomputing clusters. One way to reduce power usage in large clusters is to use low-power
embedded processors rather than the more typical high-end server CPUs (central processing units).
We investigate various power-related metrics for seventeen different embedded ARM development
boards in order to judge the appropriateness of using them in a computing cluster. We then build
a custom cluster out of Raspberry Pi boards, which is specially designed for per-node detailed
power measurement. In addition to serving as an embedded cluster testbed, our cluster’s power
measurement, visualization and thermal features make it an excellent low-cost platform for education
and experimentation.

Keywords: Raspberry Pi; embedded supercomputers; GFLOPS/W; cluster construction;
power measurement

1. Introduction

Embedded systems and modern supercomputers, while at opposite ends of the computing
spectrum, share an important design constraint: the need to have the highest possible performance
while staying inside of a power budget. As the number of cores in large computers increases,
the per-core power usage becomes increasingly important.

One way to address this power consumption problem is to replace high-end server central
processing units (CPUs) with the low power processors more traditionally found in embedded systems.
The use of embedded processors in supercomputers is not new; the various BlueGene [1–3] machines
use embedded-derived PowerPC chips. The ARM embedded architecture has drastically increased in
performance, including the introduction of 64-bit processors for use in high-end cell phones. This has
led to a new source of well-supported, inexpensive, relatively high-performing embedded processors
ready for use in supercomputing and cluster applications.

Despite the seeming inevitability of large ARM supercomputers, the actual uptake has been extremely
slow. As of November 2015, there are still no ARM-based systems on the Top500 supercomputer list [4].

In order to evaluate the future potential of large ARM-based systems we have built a computing
cluster out of commodity ARM development boards. We first evaluate seventeen different ARM-based
systems with the goal of finding a low-cost, low-power, high-performance board suitable for cluster
use. By using existing boards, we reduce development time and cost, at the expense of possibly missing
out on some features that are key to large-scale cluster development (most notably, graphics processing
unit (GPU) acceleration, fast memory hierarchies and high-speed network interconnects).
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After weighing the various tradeoffs, we chose the Raspberry Pi as the basis for our cluster.
Our current cluster is made out of 25 Raspberry Pi Model 2B systems linked together with 100 MB
Ethernet. It can obtain 15.4 billion floating point operations per second (GFLOPS) of performance,
while consuming 93 W. While these results are not remarkable compared to a high-end Intel x86
server, we have included some features in our cluster that make it an interesting measurement and
educational tool. We have per-node visualization via 8×8 light-emitting diode (LED) displays that
allow the detailed machine state to be seen at a glance. We also have detailed, per-node power
measurement capabilities, which allow fine granularity measurements of cluster power consumption.
We primarily use this cluster as an educational tool to provide low-cost hands-on experience in a
cluster computing class.

2. Experimental Section

2.1. Board Comparison

Before designing our cluster, we evaluated the power and performance tradeoffs found in
seventeen different commodity 32-bit and 64-bit ARM boards, as listed in Table 1. The boards,
all running Linux, span a wide variety of speeds, cost and processor types. More complete info
on the hardware capabilities of the boards can be found in Appendix A.

Table 1. Overview of the ARM systems examined in this work. Cost is given in U.S. dollars at the time
of purchase in late 2015 or early 2016. More details can be found in Appendix A.

System Family CPU (Central Processing Unit) Memory Cost (USD)

Raspberry Pi Zero ARM1176 1 1 GHz Broadcom 2835 512 MB $5

Raspberry Pi Model A+ ARM1176 1 700 MHz Broadcom 2835 256 MB $20

Raspberry Pi Compute Module ARM1176 1 700 MHz Broadcom 2835 512 MB $40

Raspberry Pi Model B ARM1176 1 700 MHz Broadcom 2835 512 MB $35

Raspberry Pi Model B+ ARM1176 1 700 MHz Broadcom 2835 512 MB $35

Gumstix Overo Cortex A8 1 600 MHz TI OMAP3530 256 MB $199

Beagleboard-xm Cortex A8 1 1 GHz TI DM3730 512 MB $149

Beaglebone Black Cortex A8 1 1 GHz TI AM3358/9 512 MB $45

Pandaboard ES Cortex A9 2 1.2 GHz TI OMAP4460 1 GB $199

Trimslice Cortex A9 2 1 GHz NVIDIA Tegra2 1 GB $99

Raspberry Pi Model 2-B Cortex A7 4 900 MHz Broadcom 2836 1 GB $35

Cubieboard2 Cortex A7 2 912 MHz AllWinner A20 1 GB $60

Chromebook Cortex A15 2 1.7 GHz Exynos 5 Dual 2 GB $184

ODROID-xU Cortex A15 4 1.6 GHz Exynos 5 Octa 2 GB $169Cortex A7 4 1.2 GHz

Raspberry Pi Model 3-B Cortex A53 4 1.2 GHz Broadcom 2837 1 GB $35

Dragonboard Cortex A53 4 1.2 GHz Snapdragon 410 1 GB $75

Jetson TX-1 Cortex A57 4 1.9 GHz Tegra X1 4 GB $600Cortex A53 4 unknown
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2.1.1. Experimental Setup

During the experiments we configure the machines as if they were a node in a larger cluster.
No extraneous devices (keyboards, mice, monitors, external drives) are attached during testing;
the only connections are the power supplies and network cables (with the exception of the Chromebook,
which has a wireless network connection and a laptop screen). Machines that did not have native
Ethernet were provided with a USB Ethernet adapter.

2.1.2. Benchmarking Programs

Choosing a representative set of High Performance Computing (HPC) benchmarks remains
difficult, as cluster performance is tightly tied to the underlying workload. We chose two HPC
benchmarks that are widely used in cluster benchmarking: Linpack and STREAM.

High-performance Linpack (HPL) [5] is a portable version of the Linpack linear algebra
benchmark for distributed-memory computers. It is commonly used to measure the performance of
supercomputers worldwide, including the twice-a-year Top500 Supercomputer list [4]. The program
tests the performance of a machine by solving complex linear systems through use of basic linear
algebra subprograms (BLAS) and the message-passing interface (MPI).

For our experiments, mpich2 [6] was installed on each machine to provide a message passing
interface (MPI), and the OpenBLAS [7] library was installed on each machine to serve as the BLAS.

The second benchmark we use is STREAM [8], which tests a machine’s memory performance.
STREAM performs operations, such as copying bytes in memory, adding values together and scaling
values by another number. STREAM completes these operations and reports the time it took, as well
as the speed of the operations.

We compiled our benchmarks with the version of gcc that was installed on the various machines
(typically it was gcc 4.9, as most machines were running the Raspbian Jessie Linux distribution).
We used the default compiler options when compiling.

We did not use any digital signal processing (DSP) or graphics programming unit (GPU)
acceleration, even though many of the boards support this. In general, the boards do not support
Open Computing Language (OpenCL) or any other abstraction layer on top of the accelerators. To gain
access to the DSP or GPU would require extensive custom coding for each individual board, and often,
these interfaces are not well documented. The Jetson TX-1 board does support NVIDIA CUDA, so we
tried running HPL_cuda on the board. This consistently crashed the system, so we were unable to
obtain results. The TX-1 GPU is optimized for single-precision floating point, so direct comparisons
against the CPU results (which use double-precision) would not be possible.

2.1.3. Power Measurement

The power consumed by each machine was measured and logged using a WattsUpPro [9] power
meter. The meter was configured to log the power at its maximum sampling speed of once per second.

The power readings were gathered on a separate machine from the one running the benchmarks.
For proper analysis, the timestamps of the power readings need to match up with the start and stop
times of the benchmarks. We did this by synchronizing the clocks of the two machines to the same
network time protocol (NTP) time server before starting the runs. There is some potential for drift,
but since our power meter only provides one second of resolution, this solution was deemed to be
good enough.

2.1.4. HPL FLOPS Results

Table 2 summarizes the floating point operations per second (FLOPS) results when running HPL.
We took many results for each board, varying the N term to find the maximum performance. N is the
problem size: usually higher is better, but at some point, performance starts declining as the amount of
memory available is exhausted.
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The FLOPS value is unexpectedly low on the Cortex-A8 machines; the much less advanced
ARM1176 Raspberry-Pi obtains better results. This is most likely due to the “VFP-lite” floating point
unit found in the Cortex-A8, which takes 10 cycles per operation rather than just one. It may be possible
to improve these results by changing the gcc compiler options; by default, strict IEEE-FP correctness is
chosen over raw speed.

The ARM1176-based systems (low-end Raspberry Pis) all cluster together with similar
performance, differing mostly by the CPU clock frequency.

The more advanced Cortex-A9 and Cortex-A7 systems have a noticeable improvement in floating
point performance. This includes the Pandaboard, Cubieboard2 and Raspberry Pi Model 2B. Some of
this is due to these machines having multiple cores. We do not have numbers for the Trimslice:
building a BLAS for it proved difficult, as it lacks NEON support (NEON is optional on Cortex-A9),
and a later hardware failure prevented further testing.

Table 2. Performance (FLOPS) and power summary for the various ARM boards, with three x86 systems
shown for comparison. Many runs were done, with the peak FLOPS result (as well as the corresponding
high-performance Linpack (HPL) benchmark N matrix size parameter) reported. Some of the high-end
ARM boards compare favorably with the x86 systems on the GFLOPS per Watt and MFLOPS per US
dollar metrics.

System N GFLOPS
Idle AvgLoad GFLOPS MFLOPS

Power Power per Watt per US$

Gumstix Overo 4000 0.041 2.0 2.7 0.015 0.20

Beagleboard-xm 5000 0.054 3.2 4.0 0.014 0.36

Beaglebone Black 5000 0.068 1.9 2.6 0.026 1.51

Raspberry Pi Model B 5000 0.213 2.7 2.9 0.073 6.09

Raspberry Pi Model B+ 5000 0.213 1.6 1.8 0.118 6.09

Raspberry Pi Compute Module 6000 0.217 1.9 2.1 0.103 5.43

Raspberry Pi Model A+ 4000 0.218 0.8 1.0 0.223 10.9

Raspberry Pi Zero 5000 0.319 0.8 1.3 0.236 63.8

Cubieboard2 8000 0.861 2.2 4.4 0.194 14.4

Pandaboard ES 4000 0.951 3.0 5.8 0.163 4.78

Raspberry Pi Model 2B 10,000 1.47 1.8 3.4 0.432 42.0

Dragonboard 8000 2.10 2.4 4.7 0.450 28.0

Chromebook 10,000 3.0 5.9 10.7 0.277 16.3

Raspberry Pi Model 3B 10,000 3.7 * 1.8 4.4 0.844 106

ODROID-xU 12,000 8.3 2.7 13.9 0.599 49.1

Jetson TX-1 20,000 16.0 2.1 13.4 1.20 26.7

pi-cluster 48,000 15.5 71.3 93.1 0.166 7.75

2 core Intel Atom S1260 20,000 2.6 18.6 22.1 0.149 4.33

16 core AMD Opteron 6376 40,000 122 167 262 0.466 30.5

16 core Intel Haswell-EP 80,000 428 58.7 201 2.13 107

With extra cooling, the Pi3 can get 6.4 GFLOPS.

The Cortex-A15 machines (Chromebook and Odroid-xU) have an even greater boost in FLOPS,
with the highest performance of the 32-bit systems.

The 64-bit systems have high performance, as well, with the high-end Cortex-A57 (Jetson TX-1)
with the best performance and the lower end Cortex-A53 systems (Dragonboard, Raspberry Pi
Model 3B) not far behind.
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The Raspberry Pi Model 3B posed some interesting challenges. Unlike previous models,
when running HPL, the chip can overheat and produce wrong results or even crash [10]. With an
adequate heat sink, cooling and boot loader over-volt settings, an impressive 6.4 GFLOPS can be
obtained, but on stock systems, the CPU overheats and/or clocks down the CPU, with much lower
results are obtained.

For comparison, we show results from a few x86 machines. We find that while the high-end ARM
systems can outperform a low-end atom-based x86 server, recent high-end AMD and Intel servers
have at least an order of magnitude more FLOPS than any of the ARM systems.

2.1.5. HPL FLOPS per Watt Results

Table 2 also shows the GFLOPS per average power results (GFLOPS/W). This is shown graphically
in Figure 1, where an ideal system optimizing both metrics would have points in the upper left. In this
metric, the 64-bit machines perform best by a large margin. The Jetson TX-1 (and properly-cooled
Raspberry Pi 3B) break the 1 GFLOP/W barrier. The Chromebook is at a disadvantage compared to
the other boards, as it is a laptop and has a display that was operating while the test was running.
This is most noticeable in the idle power being higher than all of the other boards.

While the 64-bit machines have much better efficiency than earlier processors, a high-end x86
server can still obtain twice the power per watt than even the best ARM system to which we have access.
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Figure 1. Performance (GFLOPS) compared to average power. Upper left is the best.

2.1.6. HPL FLOPS per Cost Results

Table 2 also shows the FLOPS per dollar cost (purchase price) of the system (higher is better);
this is also shown in Figure 2, where an ideal system optimizing both would have points in the upper
left. The Raspberry Pi 3 performs impressively on the MFLOPS/US$ metric, matching a high-end x86
server. The Raspberry Pi Zero is a surprise contender, due mostly to its extremely low cost.
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2.1.7. STREAM Results

We ran Version 5.10 of the STREAM benchmark on all of the machines. We use the default array
size of 10 million (except for the Gumstix Overo, which only has 256 MB of RAM, so a problem size
of 9 million was used). Figure 3 shows a graph of the performance of each benchmark. The more
advanced Cortex-A15 chips have much better memory performance than the earlier boards, most likely
due to the use of dual-channel low-power double-data rate (LPDDR3) memory. The Jetson-TX1 has
extremely high memory performance, although not quite as high as a full x86 server system.

To fully understand the results, some knowledge of modern memory infrastructure is needed.
On desktop and server machines, synchronous dynamic random access memory (SDRAM) is used,
and the interface has been gradually improving over the years from DDR (double data rate) to DDR2,
DDR3 and now DDR4. Each new generation improves the bandwidth by increasing how much data can
be sent per clock cycle, as well as by increasing the frequency. Power consumption is also important,
and the newer generations reduce the bus voltage to save energy (2.5 V in DDR, 1.8 V in DDR2, 1.5 V in
DDR3 and down to 1.2 V in DDR4). Embedded systems can use standard memory, but often they
use mobile embedded SDRAM (low-power), such as LPDDR2, LPDDR3 or LPDDR4. This memory
is designed with embedded systems in mind, so often trade off performance for lower voltages,
extra sleep states and other features that allow using less power.

One factor affecting performance is the number of DRAM (dynamic random access memory)
channels the device has: despite having similar CPUs, the Trimslice only has a single channel to
memory, while the Pandaboard has two, and the memory performance is correspondingly better.
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Figure 3. STREAM benchmark results.

The bus frequency can also make a difference. Note that the Odroid-xU and the Dragonboard
both have LPDDR3 memory; however, the Odroid runs the memory bus at 800 MHz versus the
Dragonboard’s 533 MHz, and the STREAM results for Odroid are correspondingly better.

2.1.8. Summary

Results of both the HPL and STREAM benchmarks show the Jetson TX1 machine as the
clear winner on performance, STREAM and performance per Watt metrics. If cost is factored
in, the Raspberry Pi 3B makes a strong case, although it has the aforementioned problems
with overheating.

The Pi 3B and Jetson TX-1 were not yet released when we started building our cluster, so our
design choice was made without those as options. At the time, the best performing options other
than the Pi were the Chromebook (which has a laptop form factor and no wired Ethernet) and the
Odroid-xU (which was hard to purchase through our university’s procurement system). We chose
to use Raspberry Pi B boards for various practical reasons. A primary one was cost and the ease of
ordering large numbers at once. Another important concern is the long-term availability of operating
support and updates; the Raspberry Pi foundation has a much stronger history of this than the
manufacturers of other embedded boards.

Our cluster originally used Model B boards, and we have since updated to B+ and then 2B.
The compatible design of the Raspberry Pi form factor means it should be easy to further upgrade the
system to use the newer and better performing Model 3B boards.

2.2. Cluster Design

Based on the analysis in Section 2.1, we chose Raspberry Pi Model 2B boards as the basis of
our cluster. The Raspberry Pi boards provide many positive features, including small size, low cost,
low power consumption, a well-supported operating system and easy access to general-purpose
input/output (GPIO) pins for external devices. Figure 4 shows the cluster in action. The compute part
of the cluster (compute nodes plus network switch) costs roughly US$2200; power measurement adds
roughly $200; and the visualization display costs an additional $700.
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Figure 4. The raspberry-pi cluster.

2.2.1. Node Installation and Software

Each node in the cluster consists of a Raspberry Pi Model 2B with its own 4 GB SD card. Each node
has an installation of the Raspbian operating system, which is based on Debian Linux and designed
specifically for the Raspberry Pi.

One node is designated as the head node and acts as a job submission server, central file server
and network gateway. The file system is shared via Network File System (NFS) and subsequently
mounted by the sub-nodes. Using NFS allows programs, packages and features to be installed on a
single file system and then shared throughout the network, which is faster and easier to maintain than
manually copying files and programs around. Passwordless SSH (Secure Shell) allows easily running
commands on the sub-nodes. MPI (message passing interface) is installed to allow cluster-wide parallel
jobs. The MPI implementation used for this cluster is MPICH2, a free MPI distribution written for
UNIX-like operating systems. For job submission, the Slurm [11] batch scheduler is used.

The nodes are connected by 100 MB Ethernet, consisting of a 48-port 10/100 network switch,
which draws approximately 20 Watts of power.

2.2.2. Node Arrangement and Construction

The initial cluster has 24 compute nodes plus one head node. It is designed so expansion to
48 nodes is possible.

A Corsair CX430 ATX power supply powers the cluster. The Pi boards are powered by the supply’s
5-V lines, as well as via the 12-V lines through a direct current (DC-DC) converter that reduces this
to 5-V. We found it necessary to draw power from both the 5-V and 12-V lines of the power supply,
otherwise the voltages provided would become unstable. This is typical behavior of most desktop
power supplies, as they are designed to provide a minimum load on the 12-V lines, and if this load is
not present, the output voltages can drift outside of specifications.

The head node is powered by the supply’s standby voltage, which allows the node to be powered
up even when the rest of the cluster is off. The head node can power on and off the rest of the cluster
by toggling the ATX power enable line via GPIO.

Power can be supplied to a Raspberry Pi in two ways, through the micro USB connector or through
the GPIO header. The power pins on the GPIO header connect directly to the main power planes
and have no protection circuitry. We use the micro USB power connector to take advantage of the
fuses and smoothing capacitors that add an extra layer of protection. This did complicate construction,
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as we had to crimp custom micro-USB power cords to connect the Pis to the power measurement and
distribution boards.

The boards are attached via aluminum standoffs in stacks of four and are placed in a large server
case that has had wooden shelving added.

2.2.3. Visualization Displays

Two main external displays are used to visualize the cluster activity.
The first is a series of 1.2 inch bi-color 8×8 LED matrix displays (Adafruit, New York, NY, USA)

attached to each node’s GPIO ribbon cable. These LED displays can be individually programmed
via the nodes’ i2c interface. These per-node displays can be controlled in parallel via MPI programs.
This not only allows interesting visualization and per-node system information, but provides the
possibility for students to experience plainly visible representations of their underlying MPI programs.

The second piece of the front end is an LCD-PI32 3.2 inch LCD touchscreen
(Adafruit, New York, NY, USA) that is programmed and controlled using the head node’s SPI
interface. This screen allows a user to view overall power and performance information, as well as check
the status of jobs running on all nodes of the cluster.

2.2.4. Power Measurement

Each node has detailed power measurement provided by a circuit as shown in Figure 5.
The current consumed is calculated from the voltage drop across a 0.1-Ohm sense resistor, which is
amplified by 20 with an MCP6044 op-amp and then measured with an MCP3008 SPI A/D converter.
Multiplying overall voltage by the calculated current gives the instantaneous power being consumed.
There is one power measurement board for each group of four nodes; the first node in each group is
responsible for reading the power via the SPI interface.

Level
ShifterA/D

SPI Pi
−

+

+5V

0.1
Ohm

10k

10k
+5v

to
Pi

200k

200k

to additional PIs

5V 3.3V

Figure 5. The circuit used to measure power. An op-amp provides a gain of 20 to the voltage drop
across a sense resistor. This can be used to calculate current and then power. The values from four Pis
are fed to a measurement node using an SPI A/D converter. The 5-V SPI bus is converted down to the
3.3 V expected by the Pi measurement node.

An example power measurement for the full cluster is shown in Figure 6. The workload is a 10 k
12-node HPL run with 5 s of sleep on either side. While sampling frequencies up to at least 1 kHz are
possible, in this run, the power is sampled at 4 Hz in order to not clutter up the graph.

One of the nodes (node05–2) is currently down, and the power measurement of three of the nodes
(node03–0, node03–3 and node01–0) is currently malfunctioning. The rest of the nodes are measuring
fine, and you can see detailed behavior across the cluster. Half of the nodes are idle, and the rest show
periodic matching peaks and troughs as the workload calculates and then transmits results.
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Figure 6. Detailed per-node power measurement with 4-Hz sampling while running a 12-node 10 k
HPL (high-performance Linpack) run. All 24 nodes are shown, but only half are being used, which is
why 12 remain at idle throughout the run. node05–2 is currently down and node03–0, node03–3 and
node01–0 have malfunctioning power measurement.

One advantage of our custom power measurement circuits is that we can sample at a high
granularity. We can alternately measure system-wide power with a WattsUpPro [9] power meter.
The WattsUpPro can only sample power at 1-Hz resolution, which can miss fine-grained behaviors.
Figure 7 shows the loss of detail found if the sampling frequency is limited to 1-Hz.
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Figure 7. Comparison showing increased details available with the STREAM benchmark when using a
higher sample rate of 100 Hz vs. the 1-Hz sampling available with a WattsUpPro meter.

106



Electronics 2016, 5, 61

2.2.5. Temperature Measurement

In addition to power usage, it is often useful to track per-node temperature. The Raspberry Pi
has an on-chip thermometer that can be used to gather per-board temperature readings. Our power
measurement boards also support the later addition of 1-wire protocol temperature probes if additional
sensors are needed.

3. Results

We ran the HPL benchmark on our 25-node Raspberry Pi 2B cluster while measuring the power
consumption. For comparison, we show earlier results with our prototype 32-node Pi B+ cluster
(both stock, as well as overclocked to 1 GHz).

3.1. Peak FLOPS Results

Table 3 shows the peak performance of our Raspberry Pi Model 2B cluster running with 24 nodes.
We find a peak of 15.5 GFLOPS while using 93.1 W for a GFLOPS/W rating of 0.166. This is much better
than the results found with our prototype Raspberry Pi Model B+ cluster, even when overclocked.
For comparison, we show a few Intel x86 servers; our cluster still lags those both in performance
and FLOPS/W. Part of this inefficiency is due to the 20-W overhead of the network switch, which is
amortized as more nodes are added.

Our cluster would have been Number 7 on the first Top500 list from June 1993 [12].

Table 3. Peak FLOPS cluster comparison.

Type Nodes Cores Freq Memory
Peak Idle Busy GFLOPS

GFLOPS Power Power per Watt

Pi2 Cluster 24 96 900 MHz 24 GB 15.5 71.3 93.1 0.166
Pi B+ Cluster 32 32 700 MHz 16 GB 4.37 86.8 93.0 0.047

Pi B+ Overclock 32 32 1 GHz 16 GB 6.25 94.5 112.1 0.055
AMD Opteron 6376 1 16 2.3 GHz 16 GB 122 167 262 0.466

Intel Haswell-EP 1 16 2.6 GHz 80 GB 428 58.7 201 2.13

3.2. Cluster Scaling

Figure 8a shows the performance results of our prototype Model B cluster scaling as more nodes
are added. Scaling behavior will be similar with our Model 2B cluster. Adding nodes continues to
increase performance in an almost linear fashion, this gives hope that we can continue to improve
performance by adding more nodes to the cluster.

Figure 8b shows the average power increase as nodes are added. This scales linearly, roughly
proportional to 18 W (for the router) with 3.1 W for each additional node. The increase when moving
from 16 to 32 nodes is less; that is because those additional nodes are Model B+ boards, which draw
less power.

Figure 8c shows the performance per Watt numbers scaling as more nodes are added. This value is
still increasing as nodes are added, but at a much lower level than pure performance. This is expected,
as all of the boards have the same core MFLOPS/W value, so adding more is simply mitigating the
static overhead power rather than making the cluster more efficient.

Figure 8d shows how many Joules of energy are used on average for each floating point operation.
The optimum for a number of problem sizes is with an eight-node cluster, but the value does get lower
as more nodes are added.
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Figure 8. Scaling behavior of a 32-node B+ Cluster. (a) MFLOPS with the number of nodes for the
Raspberry Pi cluster, no overclocking; (b) average power with the number of nodes for the Raspberry
Pi cluster, no overclocking; the drop off with 32 nodes is because the additional 16 nodes use Model B+
(instead of Model B), which uses less power; (c) nanoJoulesper floating point operation with the number
of nodes for the Raspberry Pi cluster, no overclocking; (d) nanoJoules per floating point operation with
the number of nodes for the Raspberry Pi cluster, no overclocking.

3.3. Summary

We find that it is possible to build a low-cost, power-instrumented, Raspberry Pi cluster that is
capable of over 15 GFLOPS of performance. Due to the modular design of the Raspberry Pi boards,
it should be easy to upgrade this to the newer Model 3B designs, which have GFLOPS/W results
approaching those of high-end x86 servers. Despite the poor networking hardware in the Pis, we find
that cluster performance keeps increasing even up to the 32 node mark. Our cluster serves as an
excellent educational tool for general parallel programming, as well as for conducting detailed ARM
power/performance code optimization.

4. Discussion

4.1. Related Work

We perform a price, performance and cost comparison of a large number of ARM boards. We use
those results to guide the design of a cluster with per-node power instrumentation and visualization.
We break the related work out by topic, as previous papers have investigated various subsets of
these topics.
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4.1.1. Cluster Power Measurement

Other work has been done on gathering fine-grained cluster power measurement;
usually, the cluster in question runs x86 processors. Powerpack [13] is one such instrumented x86
cluster. The PowerMon2 [14] project describes small boards that can be used to instrument a large
x86 cluster. Hackenberg et al. [15] describe various power measurement techniques (including Intel
running average power limit (RAPL) power estimates), but again, primarily looking at x86 devices.

4.1.2. ARM HPC Performance Comparisons

Dongarra and Luszczek [16] were one of the first groups attempting to optimize for HPC
performance on small boards; they created an iPad2 (Cortex A9) Linpack app showing that performance
was on par with early Cray supercomputers.

Aroca et al. [17] compare Pandaboard, Beagleboard and various x86 boards with FLOPS and
FLOPS/W. Their Pandaboard and Beagleboard performance numbers are much lower than the
ones we measure. Jarus et al. [18] compare the power and energy efficiency of Cortex-A8 systems
with x86 systems. Blem et al. [19] compare Pandaboard, Beagleboard and x86. Stanley-Marbell and
Cabezas [20] compare Beagleboard, PowerPC and x86 low-power systems for thermal and power.
Pinto et al. [21] compare Atom x86 vs. Cortex A9. Padoin et al. [22–24] compare various Cortex A8
and Cortex A9 boards. Pleiter and Richter [25] compare Pandaboard vs. Tegra2. Laurenzano et al. [26]
compare Cortex A9, Cortex A15 and Intel Sandybridge and measure power and performance on a
wide variety of HPC benchmarks.

Our ARM comparisons are different from the previously-mentioned work primarily by how many
different boards (seventeen) that we investigated.

4.1.3. ARM Cluster Building

There are many documented cases of compute clusters built from commodity 32-bit ARM boards.
Many are just brief descriptions found online; we concentrate on those that include writeups with
power and HPL performance numbers.

Geveler et al. [27] build a 60-node Tegra-K1 cluster capable of being powered by solar panels.
The cluster has a theoretical peak performance of 21 TFLOPS while consuming 2 kW of power, which is
an efficiency of 10.5 GFLOPS/W.

Rajovic et al. [28,29] describe creating the Tibidabo cluster out of 128 Tegra 2 boards. They obtain
97 GFLOPS when running HPL on 96 nodes. Göddecke et al. [30] use this cluster on a wide variety of
scientific applications and find that the energy use compares favorably with an x86 cluster.

Sukaridhoto et al. [31] create a cluster out of 16 Pandaboard-ES boards. They run STREAM and
HPL on it, but do not take power measurements. Their STREAM results are much lower than ours,
but the HPL FLOPS values are close.

Balakrishnan [32] investigates a six-node Pandaboard cluster, as well as a two-node Raspberry Pi
cluster. He uses a WattsUpPro as we do, but only runs HPL on the Pandaboard. He finds lower results
than we do with STREAM, but his HPL results on Pandaboard are much higher than ours.

Ou et al. [33] create a four-board Pandaboard cluster and measure the energy and cost efficiency
of web workloads on ARM compared to x86 servers.

Fürlinger et al. [34] build a cluster out of four Apple TV devices with Cortex A8 processors.
They find 16 MFlop/W. Their single-node HPL measurements are close to ours.

4.1.4. Raspberry Pi Clusters

Various groups have built Raspberry Pi clusters, we focus here on ones that were reported
with HPL as a benchmark or else have large numbers of nodes. None of them are instrumented for
per-node power measurements like ours is. Pfalzgraf and Driscoll [35] create a 25-node Raspberry Pi
cluster, but do not provide power or FLOPS results. Kiepert [36] builds a 32-node Raspberry Pi cluster.
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He includes total power usage of the cluster, but does not include floating point performance results.
Tso et al. [37] build a 56-node Raspberry Pi “cloud” cluster. Cox et al. [38] construct a 64-node Raspberry
Pi cluster. They obtain a peak performance of 1.14 GFLOPS, which is much less than we find with 32
nodes on our cluster. Abrahamsson et al. [39] built a 300-node Raspberry Pi cluster.

4.1.5. Summary

There is much existing related work; our work is different primarily in the number of boards
investigated and in the per-node power measurement capabilities of the finished cluster.

One worrying trend found in the related works is the wide variation in performance
measurements. For the various ARM boards, the STREAM and HPL FLOPS results should be consistent,
yet the various studies give widely varying results for identical hardware.

Differences in HPL results are most likely due to different BLAS libraries being used, as well as
the difficulty finding a “peak” HPL.datfile that gives the best performance.

It is unclear why STREAM results differ so widely, as there are fewer variables involved. It could
be due to differences in compiler, compiler options or problem size, but most papers do not give details
on how the benchmarks were built, nor are the compiled binaries available for download.

Power measurement is also something that is hard to measure exactly, especially on embedded
boards that use a variety of power supplies. Raspberry Pi machines in particular have no standard
power supply; any USB supply (with unknown efficiency) can be used, and since the total power being
measured is small, the efficiency of the supply can make a big difference in the results.

4.2. Future Work

Our cluster is fully functional and is used for computing tasks, as well as class assignments. We do
have some future plans to enhance the cluster:

• Expand the size: We have parts to expand to 48 nodes. This can be done without requiring a larger
network switch.

• Upgrade the cluster to use Raspberry Pi Model 3B nodes: The 3B has the same footprint as
the 2B, so this would require minimal changes. This would improve the performance of the
cluster by at least a factor of two, if not more. The main worry is the possible need for heat
sinks and extra cooling as the 3B systems are known to have problems under extreme loads
(i.e., while running Linpack).

• Enable distributed hardware performance counter support: The tools we have currently can gather
power measurements cluster-wide. It would be useful to gather hardware performance counter
measures (such as cycles, cache misses, etc.) at the same time.

• Harness the GPUs. Table A2 shows the GPU capabilities available on the various boards.
The Raspberry Pi has a potential 24 GFLOPS available perf node, which is over an order of
magnitude more than found on the CPU. Grasso et al. [40] use OpenCL on a Cortex A15 board
with a Mali GPU and find that they can get 8.7-times better performance than the CPU with
1/3 the energy. If similar work could be done to obtain GPGPU support on the Raspberry Pi,
our cluster could obtain a huge performance boost.

• Perform power and performance optimization: We now have the capability to do detailed
performance and power optimizations on an ARM cluster. We need to develop new tools and
methodologies to take advantage of this.

4.3. Conclusions

We measure the power and performance tradeoffs found in seventeen different ARM development
boards. Upon careful consideration of the boards’ merits, we choose the Raspberry Pi as the basis
of an ARM HPC cluster. We design and build a 24-node cluster that has per-node real-time power
measurement available. We plan to use this machine to enable advanced power and performance

110



Electronics 2016, 5, 61

analysis of HPC workloads on ARM systems. It will be useful for educational and classroom use,
as well as a testbed for the coming use of ARM64 processors in server machines.

The overall performance per Watt may not match that of an x86 server, but that was not the overall
end goal of this project. Clusters made of embedded processors might not win on raw numerical power,
but they have an amazingly low barrier to entry with an extremely low cost. This makes affordable and
accessible cluster computing available to the public and is extremely valuable in education. Low-power
parallel programming is the future of computing, and students will need access to low-cost clusters to
properly hone their skills. A Raspberry Pi cluster as described in this paper efficiently and accessibly
meets those needs.

Author Contributions: Michael F. Cloutier built the prototype cluster and gathered the initial power/
performance results. Chad Paradis helped design the power measurement circuitry. Vincent M. Weaver analyzed
the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detailed System Information

Detailed system information is provided for the various ARM boards. This supplements the
information found earlier in Table 1. Table A1 gives more details on CPU capabilities. Table A2
describes the floating point, vector and GPU capabilities. Table A3 describes the memory hierarchies.

Table A1. Overview of the ARM systems examined in this work.

System Family Type Process CPU Design BrPred Network

RPi Zero ARM1176 Broadcom 2835 40 nm InOrder 1-issue YES n/a

RPi Model A+ ARM1176 Broadcom 2835 40 nm InOrder 1-issue YES n/a

RPi Compute Module ARM1176 Broadcom 2835 40 nm InOrder 1-issue YES n/a

RPi Model B ARM1176 Broadcom 2835 40 nm InOrder 1-issue YES 100 USB

RPi Model B+ ARM1176 Broadcom 2835 40 nm InOrder 1-issue YES 100 USB

Gumstix Overo Cortex A8 TI OMAP3530 65 nm InOrder 2-issue YES 100

Beagleboard-xm Cortex A8 TI DM3730 45 nm InOrder 2-issue YES 100

Beaglebone Black Cortex A8 TI AM3358/9 45 nm InOrder 2-issue YES 100

Pandaboard ES Cortex A9 TI OMAP4460 45 nm OutOfOrder YES 100

Trimslice Cortex A9 NVIDIA Tegra2 40 nm OutOfOrder YES 1000

RPi Model 2-B Cortex A7 Broadcom 2836 40 nm InOrder YES 100 USB

Cubieboard2 Cortex A7 AllWinner A20 40 nm InOrder Partl-2-Issue YES 100

Chromebook Cortex A15 Exynos 5 Dual 32 nm OutOfOrder YES Wireless

ODROID-xU Cortex A7 Exynos 5 Octa 28 nm InOrder YES 100Cortex A15 OutOfOrder

RPi Model 3-B Cortex A53 Broadcom 2837 40 nm InOrder 2-issue YES 100 USB

Dragonboard Cortex A53 Snapdragon 410c 28 nm InOrder 2-issue YES n/a

Jetson-TX1 Cortex A53 Tegra X1 20 nm InOrder 2-issue YES 1000Cortex A57 OutOfOrder
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Table A2. Floating point and GPU configurations of the boards.

System FPSupport NEON GPU DSP/Offload Engine

RPi Zero VFPv2 no VideoCore IV (24 GFLOPS) DSP

RPi Model A+ VFPv2 no VideoCore IV (24 GFLOPS) DSP

RPi Compute Node VFPv2 no VideoCore IV (24 GFLOPS) DSP

RPi Model B VFPv2 no VideoCore IV (24 GFLOPS) DSP

RPi Model B+ VFPv2 no VideoCore IV (24 GFLOPS) DSP

Gumstix Overo VFPv3 (lite) YES PowerVR SGX530 (1.6 GFLOPS) n/a

Beagleboard-xm VFPv3 (lite) YES PowerVR SGX530 (1.6 GFLOPS) TMS320C64x+

Beaglebone Black VFPv3 (lite) YES PowerVR SGX530 (1.6 GFLOPS) n/a

Pandaboard ES VFPv3 YES PowerVR SGX540 (3.2 GFLOPS) IVA3 HW Accel
2 × Cortex-M3 Codec

Trimslice VFPv3, VFPv3d16 no 8-core GeForce ULP GPU n/a

RPi Model 2-B VFPv4 YES VideoCore IV (24 GFLOPS) DSP

Cubieboard2 VFPv4 YES Mali-400MP2 (10 GFLOPS) n/a

Chromebook VFPv4 YES Mali-T604MP4 (68 GFLOPS) Image Processor

ODROID-xU VFPv4 YES PowerVR SGX544MP3 (21 GFLOPS) n/a

RPi Model 3-B VFPv4 YES VideoCore IV (24 GFLOPS) DSP

Dragonboard VFPv4 YES Qualcomm Adreno 306 Hexagon QDSP6

Jetson TX-1 VFPv4 YES NVIDIA GM20B Maxwell (1 TFLOP) n/a

Table A3. Memory hierarchy details for the boards.

System RAM L1-I Cache L1-D Cache L2 Cache Prefetch

RPi Zero 512 MB LPDDR2 16 k,4-way, 32 B 16 k,4-way, 32 B 128 k * no

RPi Model A+ 256 MB LPDDR2 16 k, 4-way, 32 B 16 k, 4-way, 32 B 128 k * no

RPi Compute Module 512 MB LPDDR2 16 k, 4-way, 32 B 16 k, 4-way, 32 B 128 k * no

RPi Model B 512 MB LPDDR2 16 k, 4-way, 32 B 16 k, 4-way, 32 B 128 k * no

RPi Model B+ 512 MB LPDDR2 16 k, 4-way, 32 B 16 k, 4-way, 32 B 128 k * no

Gumstix Overo 256 MB DDR 16 k, 4-way 16 k, 4-way 256 k no

Beagleboard-xm 512 MB DDR2 32 k, 4-way, 64 B 32 k, 4-way, 64 B 256 k, 64 B no

Beaglebone Black 512 MB DDR3 32 k, 4-way, 64 B 42 k, 4-way, 64 B 256 k, 64 B no

Pandaboard ES 1 GB LPDDR2 Dual 32 k, 4-way,32B 32 k, 4-way,32B 1 MB (external) yes

Trimslice 1 GB LPDDR2 Single 32 k 32 k 1 MB yes

RPi Model 2B 1 GB LPDDR2 32 k 32 k 512 k yes

Cubieboard2 1 GB DDR3 32 k 32 k 256 k shared yes

Chromebook 2 GB LPDDR3, Dual 32 k 32 k 1 M yes

ODROID-xU 2 GB LPDDR3 32 k 32 k 512 k/2 MB yes
Dual 800 MHz

RPi Model 3B 1 GB LPDDR2 16 k 16 k 512 k yes

Dragonboard 1 GB LPDDR3 unknown unknown unknown yes
533 MHz yes

Jetson TX-1 4 GB LPDDR4 48 kB, 3-way, 32 kB, 2-way 2 MB/512 kB yes

* By default, the L2 on the ARM1176 Pis belong to the GPU, but Raspbian reconfigures it for CPU use.
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Appendix B. Materials and Methods

More information can be found on the project’s website: http://web.eece.maine.edu/~vweaver/
projects/pi-cluster/.

The raw performance data and detailed instructions on how it was gathered can be found here:
http://dx.doi.org/10.5281/zenodo.61993.
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Abstract: This work demonstrates a low-cost, miniature data repository proof-of-concept.
Such a system needs to be resilient to power and network failures, and expose adequate processing
power for persistent, long-term storage. Additional services are required for interoperable data
sharing and visualization. We designed and implemented a software tool called Airchive to run on
a Raspberry Pi, in order to assemble a data repository for archiving and openly sharing timeseries
data. Airchive employs a relational database for storing data and implements two standards for
sharing data (namely the Sensor Observation Service by the Open Geospatial Consortium and the
Protocol for Metadata Harvesting by the Open Archives Initiative). The system is demonstrated in
a realistic indoor air pollution data acquisition scenario in a four-month experiment evaluating its
autonomy and robustness under power and network disruptions. A stress test was also conducted to
evaluate its performance against concurrent client requests.

Keywords: Raspberry Pi; data repository; interoperability; data archive; data sharing;
Sensor Observation Service; Protocol for Metadata Harvesting; indoor air pollution; data acquisition;
persistent storage; low cost hardware; Internet of Things

1. Introduction

Raspberry Pi has emerged as a key component in research, education and amateur cyber-physical
systems. Raspberry Pi is a low-cost, mini-computer featuring processing, networking and video
decoding capabilities [1]. It has no permanent storage; the user may instead attach an SD card. It also
exposes General Purpose Input–Output pins (GPIO) to connect with low-level peripheral devices
through Hardware Attached on Top (HAT). Popular HATs include LEDs, motor controllers, sensors,
and GPS devices [2].

Raspberry Pi has been developed primarily with the intention to encourage computer education
in schools and the developing world, with the open philosophy in mind, as both the hardware
design and operating system are open-licensed. Raspberry Pi has been demonstrated in a variety
of applications beyond an educational context, including home-automation systems [3], fire alarm
systems [4], home-security [5,6], health supply chains monitoring [7], smart city applications [8–10]
and environmental monitoring systems [11]. Tanenbaum et al. [12] viewed Raspberry Pi and similar
technologies as enablers for democratizing technology and enabling creativity.

Despite the diversity of Raspberry Pi applications, little research has been done to investigate
Raspberry Pi as a performing data repository. The low acquisition cost, the open hardware and
software philosophy, and its capacity for interfacing with a variety of peripherals, renders Raspberry Pi
a very good candidate for boosting open data, crowd-sourcing and citizen science movements.
For instance, Raspberry Pi was employed to create a citizen observatory for water and flood
management [13]. Muller et al. [14] discuss its potential use for crowdsourcing applications in climate
and atmospheric sciences.
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In this work, we present a proof-of-concept that Raspberry Pi can be used as a miniature,
low-cost data repository that offers persistent data storage, and interoperable data sharing services
over the Internet. We demonstrate Airchive, a system that stores and serves timeseries data recorded by
a HAT equipped with air quality sensors, and investigate the system’s robustness against power
and network shortages. We also conducted a stress test in order to identify system limitations.
The rest of the paper is structured as follows: in Section 2, we study the feasibility of the approach,
by reviewing related work. Section 3 presents the overall system architecture, along with user types,
system requirements, and key functionality. Section 4 presents the software platform developed and
hardware utilized. Section 5 details our experiments with the system and presents the lessons learned,
documenting difficulties and incidents arisen during the experiment period. Finally, Section 6 provides
a discussion and lays the groundwork for future work. Section 7 provides a conclusion of the research.

2. Related Work

In principle, a data repository needs to offer persistent data storage, along with added-value
services, as those for data processing, dissemination and visualization. Such services are similar
to those offered by a Wireless Sensor Network (WSN) [15], an area where Raspberry Pi has been
thoroughly investigated as a gateway node (or base station). A gateway node is the intermediate
among sensor nodes and external networks. Its functionalities are regarded with (a) coordination
(e.g., configuration of sensor nodes); (b) data storage; (c) data processing and (d) data dissemination to
external clients [16]. Most prominent advances in the usage of Raspberry Pi in WSNs have been done
in the domains of (a), (c), and advanced data visualization.

Raspberry Pi has been used as a coordinator in a ZigBee mesh network interfacing with the
World Wide Web. In [17], a Raspberry Pi performs as a gateway node and processes observations
derived from the sensor nodes, stores them on a local database and provides visualization services to
external users.

Data processing on the Raspberry Pi to offline calibrate sensor readings and provide data
visualization is presented in [18]. Specifically, a Round Robin Database [19] was used for fast storage
of sensor data with a constant disk footprint. This was done by keeping only the recent measurements
in high resolution and statistical summaries for older recordings.

Advanced data visualization and image capturing is demonstrated in a volcanic monitoring
system based on a Raspberry Pi [20]. The Raspberry Pi creates and communicates graphs through
commercial messenger applications—for example Whatsapp—while data are transferred daily to
an external system for archival.

From the works above, it becomes clear that a Raspberry Pi may serve as a node that offers data
storage, processing and visualization services, while still remaining a coordinating device interfacing
sensors with the Internet. In most cases, data are forwarded to a remote, resourceful node in order to
be archived in the long term. In this work, we aim to demonstrate that a Raspberry Pi can become
an active archiver of its own sensor recordings, and investigate whether it is powerful enough to
provide data storage and dissemination services on site.

3. The Airchive System

3.1. Objectives

Airchive [21] is a software product intended for being deployed on a Raspberry Pi to turn it
into a self-contained data repository. Airchive provides data capture and dissemination services for
timeseries measurements. There are two objectives in developing this system.

The first is to investigate long-term storage potential on a Raspberry Pi. The challenge here
is inherited by the Raspberry Pi hardware limitations. Airchive provides with a persistent storage
mechanism that is able to safe-keep its data in a trustworthy manner. We experimented this feature
further, considering storage on both SD cards and USB disks attached with the Raspberry Pi.
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The second is to demonstrate Raspberry Pi capacity to interoperate at the machine level
through standard protocols for data sharing. Airchive adopts two mainstream standards to exhibit
interoperability at the machine level. The first is the Sensor Observation Service (SOS), the Open
Geospatial Consortium (OGC) standard tailored for sharing sensor observations [22]. SOS defines
a Web service interface which allows querying observations and metadata of heterogeneous sensor
systems. The second is the Protocol for Metadata Harvesting (OAI/PMH), an Open Archives Initiative
low-barrier mechanism for repository interoperability [23]. OAI/PMH is a generic protocol for sharing
metadata among archives and has been widely adopted by digital libraries. Both SOS and OAI/PMH
offer services that are invoked over the HTTP protocol.

3.2. Requirements

Airchive operates as a self-contained, autonomous repository for timeseries data archival and
dissemination. It is a technical system that involves both software and hardware components,
and needs to comply with certain non-functional requirements. From a software perspective,
Airchive needs to be built with open-source tools and frameworks and be extensible, in order to
respect the philosophy of the Raspberry Pi movement and maximize the potential for future uptake.
Hardware support Airchive should be low-cost and resilient to power and network shortages. This will
allow its use in remote locations, or in the developing world. The overall Airchive system should
require low-technical skills to install, operate and maintain.

We identified three use cases for the Airchive system.

(a) Web users access the system through the Internet via a public webpage. They explore current
or historical Airchive data, and they are interested in graphical representations of the content.
Typically, a Web user is able to query for the data stored in Airchive, and the system will
respond with a graph of the data requested. They may also download data in common formats,
such as JSON (JavaScript Object Notation), CSV (Comma-separated values), GeoJSON [24] and
GeoRSS [25].

(b) Software agents interact with Airchive for retrieving data or harvesting metadata. They may use
different protocols and vocabularies to submit their requests. One may follow the SOS protocol for
retrieving raw timeseries data, while another could use the OAI/PMH to get meta-information of
the digital resources stored. Software agents interact with the system with RESTful Web services
(Representational state transfer services) [26] over the HTTP protocol.

(c) The system owner has full access both locally and from the Internet via Secure Shell (SSH).
Her responsibilities are to administer the system by updating system software or restarting the
device.

Interoperability is an essential requirement of such a system. Airchive offers query services
for software agents via SOS and OAI/PMH standards. SOS queries return responses in Extensible
Markup Language (XML) using OGC vocabularies (as Observation & Measurements (O&M) [27],
or Sensor Model Language (SensorML) [28]). OAI/PMH responses may be encoded in more than one
metadata profile, including Dublin Core, a generic purpose metadata schema for annotating digital
artifacts [29]. By incorporating a variety of service offerings, we demonstrate the capabilities of a
Raspberry Pi to operate with several clients, using different protocols and vocabularies, and support
for syntactic interoperability.

Software development is based on our previous work reported in [30]. We further improved
the software system to host generic timeseries data. The current version has been thoroughly tested
and is available as an open source software package [21]. In this version, all of the metadata that
are disseminated through OAI/PMH are calculated on-the-fly (instead of being stored permanently).
This is a design choice to demonstrate the powerful processing power of Raspberry Pi.

Airchive can operate autonomously and with minimal user interventions. In the experiments
discussed below, Airchive has been operating unattended for four months in order to evaluate
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its capabilities for long-term operation, as reliability, self-recovery and resilience to power and
network failures.

3.3. Abstract Architectural Design

Airchive software platform was designed for the Raspberry Pi to turn it into a self-contained station
for timeseries data archival and dissemination. It serves both real-time access and long-term storage
and retrieval of sensor data, while also offering services for metadata harvesting. Airchive follows
the Sensing as a Service paradigm [31] and is composed of five components that are implemented as
loosely-coupled services, rendering the software highly extensible. The abstract architectural design is
depicted in Figure 1.

Figure 1. Airchive abstract architecture. System services are shown as layered components on the left,
with relevant technologies. On the right, corresponding Raspberry Pi features are illustrated.

The data capture component (optional) comes first that actually collects sensed measurements
from one or more sensor devices connected to the Raspberry Pi. This component is custom to hardware
and/or sensors used. Our implementation interfaces with the sensors of the AirPi HAT. Nevertheless,
the general behavior remains the same: at certain time intervals, it acquires the results from the sensors.

A data validation component (optional) may sit between data capture and data storage
components. Its role is to apply quality assurance/quality control process and identify hardware or
sensor errors. Additionally, it could associate the measurement with a quality flag by applying rules
or more empirical procedures (i.e., statistical, data driven) [32–35]. Such a component is essential for
ensuring data reliability and user confidence.

The data storage component permanently stores sensor data in a relational database along with a
time stamp. In order to be database-independent, an Object Relational Mapping (ORM) framework was
utilized. The data storage component is also responsible for retrieving the data from permanent storage.

The data processing component is an intermediate layer between data storage and Web services.
It transforms arguments (submitted by users/harvesters with their queries) into appropriate database
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queries, using the ORM framework. It also works in the other way around, as it formats database
outputs according to user requests, using different formats (i.e., XML, JSON, CSV) or dictionaries
(i.e., O&M, SensorML, Dublin Core). Finally, it offers descriptive statistics calculations on-the-fly
(e.g., maximum, minimum, rolling mean, average and percentiles).

Last, but not least, the Web services components offer outlets for interaction with users and agents
over the Internet. There are four Web service components in the current system, but more could
be added in the future: Web users browse the repository and submit queries using a Graphical User
Interface (GUI). Software agents interact with the SOS server, the OAI/PMH endpoint, or the Airchive’s
own Application Programming Interface (API).

4. Implementation

4.1. Hardware

Airchive was deployed on a Raspberry Pi Model B. This model is equipped with a 700 MHz ARM
processor, weights 45 g and has 512 MB of RAM. It is connected to the Internet through an Ethernet
controller and features two USB ports. Instead of a hard disk, it uses an SD card. It is also equipped
with 26 GPIO pins (General Purpose Input–Output) for interfacing with various peripherals (HATs).
The chosen Operation System was Raspbian; a Linux based distribution for Raspberry Pi.

In order to generate data (i.e., actual observations) to be stored on the Airchive, we have chosen to
use AirPi, a Raspberry Pi sensory HAT. AirPi is an interface board that connects over GPIO pins and is
equipped with low cost air quality and weather sensors. It also follows the open hardware philosophy,
and can be further extended with other sensors, including a GPS module [36]. It costs roughly 90 USD
including the sensors shown in Table 1. AirPi includes a software module that is able to log sensed
data on the cloud.

Table 1. AirPi sensors with their respected observed properties.

Sensor Name Observed Property Type Interface

DHT22 Relative humidity, Temperature Digital SPI
BMP085 Atmospheric pressure, Temperature Digital SPI

MICS-2710 Nitrogen dioxide Analog I2C
MICS-5525 Carbon monoxide Analog I2C

The overall system hardware is comprised of a Raspberry Pi Model B equipped with the AirPi
HAT, an SD card and a USB memory drive, and it was connected to Internet with an ethernet cable,
shown in Figure 2.

Figure 2. Raspberry Pi Model B with AirPi attached on top.
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4.2. Software Development

Airchive software has been developed in Python, and is available as open-source software on
github [21] under the GNU Affero General Public License Version 3 [37].

The data capture component interfaces with the AirPi libraries [38] that transform electrical signals
into human-understandable values. Data storage employs SQlite [39], an open-source, lightweight
relational database for Python and SQLAlchemy library [40] for object-relational mapping. An outline
of the data validation component is provided, but not fully implemented, as it is out of the core scope.

The data processing component was developed in three modules. The Query module handles
client-requested queries and raises appropriate exceptions. Requests must include the sensor, the
property and the corresponding timeframe for which the observations will be retrieved. A typical
workflow is as depicted in Figure 3. The Filter module comprises of a set of statistical filters
implemented as Python classes using pandas library [41]. Filters may be instantiated and applied
on-the-fly on a query result. The Format module is responsible for serializing the query results.
Jinja2 template engine [42] was used and the formats implemented correspond to the Web services
offered. They include XML, GeoRSS, GeoJSON, JSON and CSV formats.

Figure 3. A typical data processing workflow.

The Web service components were developed using the Flask web framework [43], in order to
provide clients with static and dynamic content. Flask web framework deploys a web server which
responds to HTTP GET requests with formatted data. Data requests can be submitted through the
three API endpoints that we developed: the Airchive own API, SOS and OAI/PMH. A fourth outlet is
the Airchive GUI, which is meant for the Web users to render graphs upon request. It uses the Airchive
API for getting data, which are subsequently visualized on the client’s web browser using Javascript.
Graph rendering is facilitated by FLOT [44] and JQuery [45]. Visualizing data occurs on the client
browser, which also economizes resources of the Raspberry Pi.

Airchive software is generic in nature, in the sense that is does not require the data capture and
validation components, and one could deploy it only with historical data. The system is configured
via a file that aligns the timeseries with their semantics, including measured properties and units.
The configuration allows for alternative definitions of the same observed properties, which enables the
system to serve the same observations with a variety of vocabularies. Currently, we use the definitions
of the Semantic Web for Earth and Environmental Terminology (SWEET) [46].
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5. Demonstration

5.1. Experimental Design

We deployed the Airchive system in a realistic scenario for indoor air quality monitoring.
Airchive software was installed on a Raspberry Pi equipped with AirPi HAT, and installed indoors,
connected to a power supply and the Internet via Ethernet port. We performed two experiments in
order to evaluate the system autonomy and robustness, and its performance under load pressure.

5.2. Experiment 1: Autonomy and Robustness

In the first experiment, which lasted for more than 120 days, Airchive was exposed to irregular
power and network disruptions. We did not interfere in system restoration during the “down” incidents
and let the system self-recover.

In this experiment, a moderate sampling frequency to data capture component was set, in order
to investigate the system’s long-term storage capabilities. A measurement was retrieved from each
sensor every 5 min. During this experiment, 183,850 measurements were gradually collected and
served. In Table 2, there is a summary of the 24 network outage events observed during this period.
Outage events were logged with UptimeRobot [47], a service that monitors web applications and
notifies interested parties when an application is not accessible via the Internet. UptimeRobot was
used only to log network failures, and did not interfere with our system.

Table 2. Statistics of the 24 the outage events, collected using UptimeRobot.com services.

Metric Duration

Total downtime 10 days
Median downtime 7 min
Average downtime 543.6 min
St. dev. downtime 2572.4 min

During the first experiment, different users were submitting data queries to the system,
in an ad-hoc manner, using the various interfaces: graph visualizations were requested by Web users,
raw observations by SOS clients and derived metadata by OAI/PMH harvesters. We did not observe
any malfunction for any of the client operations. Current and historical data were monitored, stored
and disseminated appropriately, while the automated recovery worked as expected. OAI featured
records were calculated on-the-fly, upon harvester requests in a timely fashion. We did not observe any
notable delays in the capacity of the system to serve its clients.

5.3. Experiment 2: Stress Testing

During the second experiment, we conducted a stress test, in order to provide more insights
regarding the system limitations. We investigated the number of concurrent user requests, after which
the Airchive system delayed to respond. The sampling frequency was increased to 5 s. The experiment
lasted for three days, and it collected and served more than 259,000 measurements. We utilized
Locust [48], an open source load testing tool written in Python. In Locust, a variable number of clients
are deployed to submit concurrent requests to a service. Each Locust client submits a new request only
when it receives a response to its previous request.

Locust takes as input the following parameters: (a) the number of concurrent clients; (b) the total
number of requests; and (c) a url pointing to the requested resource. We set up three tests. In all cases,
clients submitted a hundred requests altogether. The three tests involved the following requests over
the Internet, via HTTP GET.

In the first test, clients request only the Airchive frontpage, which is a static HTML document.
No transactions to the database were involved and the response size is constant (8740 bytes). Test 1
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verifies that Airchive operates properly and examines if pressure on the Web services/dissemination
components has an impact on the data capture component.

In the second test, clients request a set of 20 observations using Airchive’s API, and the response is
formatted as a JSON document. This request requires an SQL query to be submitted to the database,
and the response size is 538 bytes. Test 2 corresponds to the use case of a Web user that asks for a graph,
as Airchive transmits the JSON document and the graph is rendered on the client-side.

In the third test, clients ask for the same set of observations as in Test 2, but this time over the
SOS protocol, which returns an XML document. This request requires exactly the same SQL query
to be submitted to the database but needs additional formatting for rendering the result in XML.
The response size is 16,504 bytes. Test 3 corresponds to the use case of an SOS client asking data
from Airchive.

We simulated four scenarios, in each of which we deployed a different number of concurrent
clients. We tried one, five, 10 and 25 concurrent clients. This is a realistic assumption as the current
system is not intended for large-scale deployment. We repeated the process five times for each test
and scenario combination and reported two metrics in Table 3: (a) the average response time (ART) in
milliseconds; and (b) the number of requests served per second (RPS).

Table 3. Experimental results for the three tests and for different numbers of concurrent clients.
Average response time (ART) across a hundred requests for each document are reported in milliseconds.
System throughput is expressed in requests per second (RPS).

Concurrent Clients
Test 1: Static HTML Test 2: API/JSON Test 3: SOS/XML

ART (std) RPS (std) ART (std) RPS (std) ART (std) RPS (std)

1 66.4 (0.5) 16.2 (0.7) 1830 (27) 0.55 (0.01) 2171 (64) 0.46 (0.01)
5 344 (11) 15.4 (0.6) 9467 (178) 0.52 (0.01) 11,125 (90) 0.44 (0.00)
10 662 (7) 15.4 (0.3) 18,874 (397) 0.51 (0.01) 21,651 (281) 0.44 (0.01)
25 1576 (25) 16.6 (0.7) 45,607 (410) 0.49 (0.01) 49,427 (935) 0.45 (0.01)

Average response time (ART) is a proxy of the average delay to an external user request.
For example, a user would have to wait 49.5 s (on average) plus the response time of their submitted
request, under the scenario of the 25 concurrent clients for Test 3. As indicated by the results in
Table 3, average response time is linearly correlated with the product of (a) number of concurrent users;
and (b) average response time achieved when one client submits requests. We verify that requests per
second (RPS) depend on the type of the requested document, and is rather stable regardless of the
number of concurrent clients.

The introduced overhead to the system response times depends on the request and format type.
Requests involving dynamic content are roughly 30 times slower than requests of static content. In the
case of dynamic content requests, JSON-formatted responses are served 16% faster than the equivalent
in XML.

Interpreting the results, we derive the number of concurrent (human) Web users that the system
may serve. Assuming that a human user should not wait more than 6 s, we conclude that Airchive can
serve simultaneously up to two Web users of the SOS/XML Web service (Test 3), or three Web users of
the API/JSON Web service (Test 2). In the case of static content (Test 1), Airchive is able to serve up
to 82 clients simultaneously. The numbers above do not represent Airchive’s maximum capabilities,
rather its capacity for serving content to Web users.

In contrast, software agents interacting with such a system are usually not bound to any time
limitation. We conducted further experiments to determine the threshold after which the system
started failing to respond to requests. We increased the total number of requests to 500. We started
increasing the number of concurrent users by multiples of 5, until requests started to fail. Airchive can
serve simultaneously, without failure up to 254 (Test 1), 141 (Test 2) and 138 clients (Test 3). In excess of
the client numbers above, the system continued to respond with more than one failure. The results are
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summarized in Table 4. These tests demonstrate Airchive’s capacity to work reliably with a significant
number of clients.

We underline that despite the heavy workload we introduced during the stress tests,
AirPi continued to operate normally. In all cases, we verified with the database content that observations
were recorded every 5 s without any loss in all the experiments above (i.e., the data dissemination does
not interfere with data capture).

Table 4. Estimates on the number of clients that Airchive can serve simultaneously.

User Types Test 1: Static HTML Test 2: API/JSON Test 3: SOS/XML

Human Web users 82 3 2(response in less than 6 s)

Software agents 254 141 138(response guaranteed)

5.4. Incidents and Lessons Learned

During experiment 1, network failures occurred quite often. Those failures, impeded only Web
connectivity and apart from the web server, the rest of the Airchive components continued to operate
properly. We verified that no data loss occurred by cross-checking the time down intervals logged with
UptimeRobot with the actual observations stored in the database.

We observed that the system was able to handle power failures, and it self-restored without human
intervention. For all 24 outage events during experiment 1, Airchive recovered properly by making
the Web service available as soon as the Internet connection returned. In this respect, the system
demonstrated its persistence and credibility as a repository.

Calculating derived data (metadata) on-the-fly provided us with evidence regarding the system’s
extensibility and enhanced capabilities. Derived metadata, which were disseminated through
OAI/PMH, were calculated upon client request. We observed that data were transmitted as fast as if
they had been stored in the system. In addition, utilizing a Javascript framework for rendering graphs
upon user request added no extra performance overhead to the Raspberry Pi. We did extensively
evaluate these features with stress tests in experiment 2, and our experience was that the system
performed as expected.

During experiment setup, we stumbled upon a recurring security incident. Given that
Raspberry Pi was constantly connected to the Internet, it attracted malicious users after its first boot.
We experienced a brute force attack to the SSH protocol that was trying to get unauthorized access
to the device. We toughened up Airchive with a dedicated security software solution (fail2ban [49]),
which prevented any further security incidents of that kind.

Another lesson learned had to do with a potential issue that may arise when power and networks
fail at the same time. Raspberry Pi lacks a Real-Time built-in Clock (RTC), and it synchronizes its
system clock through the Internet. In the case that an Internet connection is not available upon system
boot, the Raspberry Pi system time is misconfigured. In the general use case of Airchive, this will
not be a problem, but, in our experiments, this will result in errors in the data capture component,
which will assign incorrect timestamps to data sensed from the HAT. This problem can be overcome so
that the data capture component retrospectively reviews these timestamps when the Internet becomes
available. An RTC HAT can be purchased and applied to Raspberry Pi. However, this option increases
the total cost.

Last but not least, during the setup phase, we experimented with booting Raspbian and
running Airchive from the USB disk instead of the SD card. First of all, this is a task that requires
advanced technical skills and is still an experimental option not endorsed by the Raspberry Pi makers,
and performance is not guaranteed. USB disks provide a cheaper storage option but are prone to failure.
We experimented with this option for one month, during which the filesystem was corrupted twice,
requiring the operating system and Airchive to be re-installed. Observed data were not permanently
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lost, but their retrieval required technical skills. In contrast, no such incidents occurred when the
system operated on an SD card for a much longer period.

6. Discussion

Data persistence is a prerequisite for a data repository. In most efforts made with a Raspberry Pi
and reported in the literature in the WSN context, data were periodically backed up in an external
device and were not permanently stored on the embedded device. In the work presented here,
Airchive relied solely on Raspberry Pi for permanent data storage. Our four-month experiments
demonstrated that a Raspberry Pi equipped with an SD card can handle moderate and extensive
read/write cycles without any issue; the resilience of SD cards is constantly evolving [50].

The processing capabilities of Raspberry Pi have been investigated in the light of several
applications. In Airchive, we studied its capacity to calculate and disseminate added-value data
and indexes on-the-fly, i.e., upon user request. This way, less data are permanently stored and less
write cycles are performed, which puts less pressure on SD card life.

Self-restoration from failures is another attribute of WSNs [16], which is also applicable in our
work. Self-restoration contributes towards diminishing the technical skills that Airchive system owner
should possess. During the experiments, the system self-restored from all power and network shortages
that have been triggered, demonstrating that after its installation, the system can operate autonomously
and without assistance.

We also consider that the Airchive system presented here also indirectly contributes to the open data
movement, especially for the developing world. Besides the low acquisition cost and the low-technical
skills required for its deployment, the system by-design responds to the “weak enabling environment”
of the developing countries, i.e., intermittent, opportunistic Internet connection. In the frame of this
work, we did not demonstrate the system in such conditions. However, we demonstrated that is able
to attend to network and power failures.

Security and privacy are also two important attributes of a data repository system, and lay
the foundation for future work. The brute force attack incident that occurred during the experiments
is an illustration of the potential dangers. In addition, given that a data repository system may
host personal and/or confidential data, more research should be focused on addressing privacy
issues. There is a lack of any authentication mechanism, even in well-established, data dissemination
protocols, such as OGC/SOS and OAI/PMH. An authentication mechanism can ensure privacy, and
such issues should be addressed in the light of interoperable data dissemination on the application
layer.

7. Conclusions

To summarize, we provided a proof-of-concept that current low-cost hardware is reliable
enough to boost the open data movement. We demonstrated that a Raspberry Pi accompanied with
an appropriate software can support persistent data storage, and provide added-value services on
site. We designed and implemented an open-source, highly-extensible data repository software,
called Airchive, to support data visualization, and interoperable data dissemination. We adopted
two well-established data dissemination protocols: OGC Sensor Observation Service and Open
Archive Initiative/Protocol Metadata Harvesting. Finally, we demonstrated its long-term data storage
capabilities and resilience under harsh conditions of power and/or network failures, which take
place irregularly. The load testing experiments provided us with insights about the Raspberry Pi
performance under simultaneous requests from concurrent external clients.

Supplementary Materials: Airchive software is available on github: https://www.github.com/ecologismico/
airchive. Airchive uptime statistics are available on Zenodo: http://doi.org/10.5281/zenodo.167318. Airchive stress
test results are available on Zenodo: http://doi.org/10.5281/zenodo.167319. The locust configuration used for
the Airchive stress test is available on Zenodo: http://doi.org/10.5281/zenodo.167326.
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Abstract: In the near future, upcoming communications and storage networks are expected to tolerate
major difficulties produced by huge amounts of data being generated from the Internet of Things (IoT).
For these types of networks, strategies and mechanisms based on network coding have appeared
as an alternative to overcome these difficulties in a holistic manner, e.g., without sacrificing the
benefit of a given network metric when improving another. There has been recurrent issues on:
(i) making large-scale deployments akin to the Internet of Things; (ii) assessing and (iii) replicating
the obtained results in preliminary studies. Therefore, finding testbeds that can deal with large-scale
deployments and not lose historic data in order to evaluate these mechanisms are greatly needed
and desirable from a research perspective. However, this can be hard to manage, not only due to the
inherent costs of the hardware, but also due to maintenance challenges. In this paper, we present the
required key steps to design, setup and maintain an inexpensive testbed using Raspberry Pi devices
for communications and storage networks with network coding capabilities. This testbed can be
utilized for any applications requiring results replicability.

Keywords: Linux; network coding; Raspberry Pi; testbed; C++

1. Introduction

Upcoming 5G technology is targeting the controlling and steering of the Internet of Things (IoT)
in real-time on a global scale. This will break new ground for new markets such as driverless vehicles,
manufacturing, humanoid robots, and smart grids. The number of wireless devices is expected to
increase by five times to up to 50 billion devices [1]. It is generally believed that those devices will not
be connected in the same manner as current devices are connected today. Centralized systems will
collapse in terms of capacity, while distributed systems appear as an alternative. Therefore, we believe
mesh technologies will play a major role in the communication architecture in future systems.
Mesh technology has been known for sensor and ad hoc networks or mobile cloud scenarios,
but the technical requirements on 5G mesh-based communication systems are dramatically increasing.
Future mesh networks need to support high data rate, low latency, security, network availability and
heterogeneous devices to ensure high Quality of Experience (QoE) for the final user. In state-of-the-art
systems, those requirements are traded-off with each other, but in the 5G context, we cannot do
this anymore.
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Introduced by Ahlswede et al. [2], network coding constitutes a paradigm shift in the way that
researchers and industry understand and operate networks, by changing the role of intermediate relays
in the process of transmission of information. Relays are no longer limited to storing and forwarding
data, but also take part in the coding process, through a process called recoding, where the relay
generates new linear combinations of incoming coded packets without previously decoding the data.
Network coding allows the increase of throughput, reliability, security and delay performance of the
networks. In previous works, we have shown that Random Linear Network Coding (RLNC) [3,4] is
able to satisfy the aforementioned technical requirements. We have actually shown how to increase
the throughput [5], reduce the delay [6] or support heterogeneity for coding enabled communication
nodes [7].

In our prior works, the C++11 Kodo library [8] was used as the common building block containing
the basic RLNC functionalities. Most of the work was focusing on small mesh networks with a handful
of communication nodes, though the expected scenarios are fairly beyond this order of magnitude.
Despite this successful deployment in real systems, many of these protocols and contributions have
been implemented in separate testbeds and the experiences are hard to reproduce. Deploying a
large-scale and configurable testbed for networking and storage can be challenging, not only due
to the inherent costs of the hardware, but due to maintenance challenges and ability to replicate
results consistently. The latter requires not only the devices to run the same Operating System (OS),
but also have exactly the same configurations and software packages. There is a need to evaluate
large-scale network deployments of low-cost devices in a quick, easy-to-deploy, reproducible and
maintainable fashion.

The emergence of powerful and inexpensive single-board computers opens new possibilities in
this area. By running a standard OS, they allow implementations that are compatible with higher end
devices. In addition, they utilize stable software supported by their communities. For example,
the Iridis-pi platform [9] provides a detailed description of a Raspberry Pi (Raspi) [10] testbed
ideal for educational applications. Here, the authors present computational speed benchmarks,
inter-node communication throughput and memory card writing speeds for data storage to assess
the testbed performance. This work indicates only a basic description of how to set up the required
software and also mentions that its maintenance could be time-consuming. Moreover, this work does
not consider possible network coding applications. Different studies of IoT applications consider using
the Raspi for data processing: In [11], the Raspi is the processing unit that coordinates and controls the
activity of an isle of lamps on a public road and reports it to a monitoring center. A use case regarding
remote environment surveillance using the Raspi and the Arduino [12] technologies is presented
in [13]. Here, both devices report air pressure, humidity and temperature of the locations of cultural
paintings plus high-resolution images of the paintings themselves. This data is sent to a monitoring
center to ensure the preservation of the paintings. Furthermore, authors in [14] consider FingerScanner,
a technology that utilizes the Raspi to act as the data server in a finger scanning application that collects
the fingerprints. Even though all these applications consider the use of the Raspi as a core block,
they provide few to no descriptions of their procedures to configure the Raspi. These applications
become cumbersome to maintain as their considered systems could potentially scale when aiming
to serve more users. The current way that the data is sent in the considered networks for these IoT
applications will not be feasible in future 5G systems as mentioned previously.

Given this set of specific needs, in this work, we present the design, key step-by-step
instructions and mechanisms to setup, configure and maintain an inexpensive testbed using potentially
several Raspi devices for networking (wireless or wired) and storage applications including RLNC
functionalities into the testbed through Kodo. The architecture itself is not bounded to the networking
area and can be used for other applications that require replicable results with the Raspi. Our work for
the testbed procedure is organized as follows: Section 2 introduces the testbed system. In Section 3,
we provide details about the testbed setup, scripts, configuration files and connectivity. In Section 4,
we elaborate on the need and setup for an overlay filesystem for our testbed in order to have both
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persistent and non-persistent data on it as an optional step. Section 5 describes a set of automation and
monitoring tools that can be included in the testbed to simplify the execution of routinary and repetitive
tasks. Section 6 elaborates on the compilation of the Kodo library for the Raspi. Conclusions and future
work are reviewed in Section 7. Finally, a set of alternative commands, in case the ones presented in
this work might not be executed, are discussed in the Appendices.

2. Testbed Overview and Design Criteria

A sketch of the testbed is depicted in Figure 1. The testbed consists of up to 100 Raspis of different
models. More specifically, in our design, we consider: Raspberry Pi 1 model B rev. 2, Raspberry Pi
2 model B V1.1 and Raspberry Pi 3 model B V1.2. All Raspis are each equipped with a 8 GB Secure
Digital (SD) memory card, a wired and wireless network interface and a power supply. All the Raspi
are connected to a common Local Area Network (LAN) that provides internal and external connectivity.
Without loss of generality, in our case, they are connected to a university network using their wired
Ethernet interface that is named eth0 according to the legacy naming convention of Ethernet interfaces
in Linux [15]. We consider the university network since our testbed is used by students and academic
staff to perform measurements and experimentation of controlled and reproducible scenarios as part
of academic research. The testbed description and procedures for setting it up are not restricted to this
academic scenario. All Raspis are configured to run a Secure Shell (SSH) daemon for easy remote access
within the university network. We requested the university Information Technology (IT) department
to configure the university Dynamic Host Configuration Protocol (DHCP) server to assign each Raspi
a static Internet Protocol (IP) address. This eliminates the demand for monitors and keyboards with
the Raspis for non-graphical applications. Finally, our design aims to configure all Raspis identically
from a customized bootable image in their respective memory cards, while still allowing the end-users
to store files locally in each of the Raspis.

Figure 1. Testbed setup.

We will refer to the testbed administrator as the person(s) in charge of setting up and configuring
the testbed with administrator privileges from the OS point of view. The setting and configuration
procedures are performed by the testbed administrator in a PC running a Linux distribution as shown
in Figure 1. Although in principle the administrator Linux distribution is not a restriction, we present
our procedure in a Debian-based Linux distribution. Our basic design considers to create a customized
image to store it later on a memory card for each Raspi. Once configured, we store the resulting image
file in a Hyper Text Transfer Protocol (HTTP) server as backup and in case the testbed administrator
requires the making of new changes to this file. In our case, we store all files at Zenodo [16], but
the testbed administrator should copy the our files to his/her own HTTP server to get read/write
permissions. We also put all the required configuration files and scripts for the Raspis setup in the HTTP
server so there is a single place where system setup is stored and could be modified. This simplifies the
system maintenance, as it may not always be desirable to make persistent changes on the Raspis—for
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example, when different users are interested in running experiments on a rebooted testbed. We later
present how to utilize stacked filesystems to enable both persistent and temporary storage to have
this capability. Its purpose is to remove non-desired data after a reboot while keeping the original
customized image structure. This step of the procedure is optional if the testbed administrator decides
to keep only persistent changes regardless of the testbed use. Finally, we include a set of automation,
monitoring and cross-compilation tools over the top of our system in order to simplify the execution
of repetitive and long tasks, be able to follow the progress of long task processes and compile relevant
C++ source code for the testbed administrator.

3. OS Image Setup

In this section, we review the steps to create a common OS image for all the Raspis. The image
setup is composed of three major steps: select and download the OS image file, alter the image structure
and configure the OS files. We proceed to detail all these steps providing brief discussions to our setup
choices when required. To perform these steps, we indicate with command-line blocks the required
sequential commands to be typed by the testbed administrator on his/her PC to obtain the desired
setting. In all the command blocks in the paper, we indicate if a command needs to be run with root
permissions (#) or common user permissions ($). These signs will prefix the commands.

3.1. OS Selection and Download

To get started, we first need to install an OS that works properly on all the Raspi models. We will
download and setup the image in the testbed administrator PC using a Debian-based distribution.
An alternative to this method, is to create a tailoared Linux distribution for the Raspi platform using
the Yocto Project [17]. However, this process would require assembly and compilation of all the
software for the Raspi platform from scratch, which goes beyond the scope of our work. We use
the popular Debian-based Raspbian Linux [18] given that is the recommended and default OS for
the Raspi. Raspbian is made available in two bundles: Raspbian and Raspbian Lite. The difference
between the two is that Raspbian contains a pre-installed desktop environment for user interaction,
and Raspbian Lite by default only permits interaction through a command shell. Given that the Raspis
in our testbed are not connected to monitors, we decide to work with Raspbian Lite. If required,
a desktop environment can be installed using the package manager later.

The latest Raspbian Lite bundle can be downloaded from the Raspbian official webpage [18].
At the time of this writing, the latest available bundle was 2016-05-27-raspbian-jessie-lite.zip.
To ensure that the content of the bundle does not change, this procedure is based on that particular
version of Raspbian Lite, which we have made available at [16]. All other files used in this paper are
also available there. The testbed administrator has to move these files to his/her own HTTP server.
To get started, the testbed administrator must open a Linux shell (terminal) on his/her PC and declare
the environment variables shown in the command block below. We show the whole procedure by
performing the role of the testbed administrator.

1 $ export URL="https://zenodo.org/record/154328/files/"

2 $ export IMAGE="2016-05-27-raspbian-jessie-lite"

3 $ export WORKDIR="${HOME}/Raspbian"

In this code block, the ${URL} and ${IMAGE} variables specify where the Linux bundle is located
and ${WORKDIR} specifies a working directory where the Raspbian Lite bundle will be downloaded
and customized. If the testbed administrator allocates his/her files into another location, then it will
be required to change the ${URL} environment variable. Notice that even though we use the $ and
# signs in the shell, in general, these signs will be particular to the testbed administrator OS shell.
Next, we create the working directory and change to it with the cd command. To download the image,
we utilize the wget command before unpacking the zip file as follows:
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1 $ mkdir -p ${WORKDIR}

2 $ cd ${WORKDIR}

3 $ wget ${URL%/}/${IMAGE}.zip

4 $ unzip ${IMAGE}.zip

3.2. Image Customization

After Raspbian Lite has been unpacked, there should be an .img file in the working directory
${WORKDIR}. fdisk can be used to display the content of the image. We parse the arguments -u
sectors to display the sizes in sectors and -l to display the partitions within the image. The fdisk
command should output to the terminal something similar to:

1 $ fdisk -u=sectors -l ${IMAGE}.img

2 Disk 2016-05-27-raspbian-jessie-lite.img: 1.3 GiB, 1387266048 bytes, 2709504 sectors

3 Units: sectors of 1 * 512 = 512 bytes

4 Sector size (logical/physical): 512 bytes / 512 bytes

5 I/O size (minimum/optimal): 512 bytes / 512 bytes

6 Disklabel type: dos

7 Disk identifier: 0x6fcf21f3

8

9 Device Boot Start End Sectors Size Id Type

10 2016-05-27-raspbian-jessie-lite.img1 8192 137215 129024 63M c W95 FAT32 (LBA)

11 2016-05-27-raspbian-jessie-lite.img2 137216 2709503 2572288 1.2G 83 Linux

The output provides relevant information about the image. The image is in total 2,709,504 sectors
(1.3 GiB) in size and contains two partitions. The first partition starts at sector 8192 and the other
partition starts at sector 137,216. The first partition type is FAT32 with a size of 63 MB and the second
partition is of type Linux with a size of 1.2 GB. This indicates that the first partition is a boot partition,
and the second one is a traditional Linux filesystem. In this case, the root filesystem, i.e., /.

3.3. Image Resizing

Given that we want to customize the root filesystem in the Raspis, we need to expand the image
file since 1.2 GB might not be enough to store the existing root filesystem plus additional files and
software packages. Thus, we need to increase the partition size. The following procedure illustrates
how the image and its root filesystem can be expanded by one GB. First, to expand the image one GB,
we execute:

1 $ dd if=/dev/zero bs=1M count=1024 >> ${IMAGE}.img && sync

Later, we use fdisk with the same arguments as before to see that the image is now one GB larger:

1 $ fdisk -u=sectors -l ${IMAGE}.img

2 Disk 2016-05-27-raspbian-jessie-lite.img: 2.3 GiB, 2461007872 bytes, 4806656 sectors

3 Units: sectors of 1 * 512 = 512 bytes

4 Sector size (logical/physical): 512 bytes / 512 bytes

5 I/O size (minimum/optimal): 512 bytes / 512 bytes

6 Disklabel type: dos

7 Disk identifier: 0x6fcf21f3

8

9 Device Boot Start End Sectors Size Id Type

10 2016-05-27-raspbian-jessie-lite.img1 8192 137215 129024 63M c W95 FAT32 (LBA)

11 2016-05-27-raspbian-jessie-lite.img2 137216 2709503 2572288 1.2G 83 Linux

Now, in the above command block output, we observe that the change has taken effect by noticing
the total available image size is 2.3 GiB. To expand the root filesystem, we replace the Linux partition
with a new partition one GB larger. The starting point of this new partition should be the same as
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the old one. We make use of fdisk to alter the partition table in the commands below. They (i) delete
partition number 2; (ii) create a new primary partition and (iii) set the new partition starting point.
The new partition starting point value is 137,216 in our case; Finally, we (iv) write the new partition
table to the image file. This is made as follows:

1 $ fdisk ${IMAGE}.img << EOF

2 d

3 2

4 n

5 p

6 2

7 137216

8

9 w

10 EOF

If the partitions commands were correct, the partition table should now look like the following:

1 $ fdisk -u=sectors -l ${IMAGE}.img

2 Disk 2016-05-27-raspbian-jessie-lite.img: 2.3 GiB, 2461007872 bytes, 4806656 sectors

3 Units: sectors of 1 * 512 = 512 bytes

4 Sector size (logical/physical): 512 bytes / 512 bytes

5 I/O size (minimum/optimal): 512 bytes / 512 bytes

6 Disklabel type: dos

7 Disk identifier: 0x6fcf21f3

8

9 Device Boot Start End Sectors Size Id Type

10 2016-05-27-raspbian-jessie-lite.img1 8192 137215 129024 63M c W95 FAT32 (LBA)

11 2016-05-27-raspbian-jessie-lite.img2 137216 4806655 4669440 2.2G 83 Linux

3.4. Loopback Device Setup

After successfully resizing the image file, we use a loopback device to make the Raspbian image
available as a block device in the filesystem. For this command to work, the testbed administrator
distribution must have the util-linux package with version 2.21 or higher. Otherwise, the -P
argument of losetup will appear as invalid. If the version of losetup can not be updated for some
reason, an alternative option for this part is presented in Appendix A.1 of the Appendices.

1 $ export DEV=$(sudo losetup --show -f -P ${IMAGE}.img); echo $DEV

2 /dev/loop0

If the previous command was succesful, the lsblk command can be used to list the available
block devices in the filesystem as follows:

1 # lsblk

2 NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

3 ...

4 loop0 7:0 0 2.3G 0 loop

5 |-loop0p1 259:2 0 63M 0 loop

6 |-loop0p2 259:3 0 2.2G 0 loop

7 ...

The image block device appears as /dev/loop0. This block device has two partitions associated
with it, e.g., loop0p1 and loop0p2. Finally, we check the filesystem of the block device with e2fsck
and resize it with the resize2fs command:
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1 # e2fsck -f ${DEV}p2

2 e2fsck 1.42.8 (20-Jun-2013)

3 Pass 1: Checking inodes, blocks, and sizes

4 Pass 2: Checking directory structure

5 Pass 3: Checking directory connectivity

6 Pass 4: Checking reference counts

7 Pass 5: Checking group summary information

8 /dev/loop0p2: 35392/80480 files (0.1% non-contiguous), 201968/321536 blocks

9 # resize2fs ${DEV}p2

10 resize2fs 1.42.8 (20-Jun-2013)

11 Resizing the filesystem on /dev/loop0 to 583680 (4k) blocks.

12 The filesystem on /dev/loop0 is now 583680 blocks long.

3.5. Block Device Mounting

For browsing and altering the files in the image, we mount the block device partitions into a
particular path of our ${WORKDIR} in order to customize them. We mount the block device partition
that contains the root filesystem and later the boot partition. This is done by creating an empty directory
that is used as a mountpoint. We name it root and create it in the working directory before mounting
the root filesystem onto the mountpoint. We mount the root filesystem as follows:

1 $ export ROOTDIR="${WORKDIR}/root"

2 $ mkdir -p ${ROOTDIR}

3 # mount ${DEV}p2 ${ROOTDIR}

The root filesystem mounted in ${ROOTDIR} already has a boot directory that can be used as the
mount point for the boot partition in the block device /dev/loop0p1. This is convenient because the
final edited partition from ${ROOTDIR}/boot will be mounted on this same directory when a Raspi
starts up with a memory card containing the raw final image. Hence, to mount boot partition we do:

1 # mount ${DEV}p1 ${ROOTDIR}/boot

In this way, it is now possible to change all files within the Raspbian image as desired by editing
the files in ${ROOTDIR}. We take advantage of this to edit configuration files, append new files and
even update and install packages.

3.6. Image OS Files and Configuration Scripts Setup

In general, the Raspis should be setup as similarly as possible. However, some particularities
exist to differentiate the devices in principle. In addition, scripts containing further configurations for
the Raspis are desirable to be distributed as part of the common image. Therefore, we present here
the steps to setup basic properties of the Raspis and distributing configuration scripts to each of them
through the image. For this, we first indicate how to obtain and put our configuration scripts in the
image. Later, we describe the tasks performed by these configuration scripts. Finally, we indicate how
and in which order the scripts are executed to configure all the devices. Any testbed administrator
might modify or include other tasks according to his / her needs as we will show.

3.6.1. Image Default Configuration Scripts Download

In our case, we have our default configuration scripts stored in a file rasp_config.zip located in
the same URL of the HTTP server where the image was retrieved from, i.e., the one in the environment
variable ${URL}. We first download this compressed file with wget and extract it locally into our
Raspbian Lite image. These commands and the output of the last one are shown as follows:
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1 $ wget ${URL%/}/rasp_config.zip

2 $ unzip rasp_config.zip -d ${ROOTDIR}/home/pi/

3 Archive: rasp_config.zip

4 creating: ${ROOTDIR}/home/pi/rasp_config/

5 inflating: ${ROOTDIR}/home/pi/rasp_config/nodes.csv

6 inflating: ${ROOTDIR}/home/pi/rasp_config/set_hostname

7 inflating: ${ROOTDIR}/home/pi/rasp_config/main

8 inflating: ${ROOTDIR}/home/pi/rasp_config/update_rasp_config

The unzippped files are one configuration file and three configuration scripts in the newly created
${ROOTDIR}/home/pi/rasp_config/ folder in the image. We describe which features that we require
all the Raspis to have and how are they achieved with these configuration scripts.

3.6.2. Device Hostnames

The hostname helps the user to physically distinguish the devices from each other. In our case,
we require the devices in our testbed to have different hostnames. We define the hostnames based on
the Medium Access Control (MAC) addresses of the Raspis wired Ethernet interface.

Prior to this stage, the MAC address of a network card can be found using the command
ifconfig or ip addr on a given Raspi. We store the MAC addresses and hostnames of the Raspis in
the configuration file ${ROOTDIR}/home/pi/rasp_config/nodes.csv. A sample of our file is shown
as follows:

${ROOTDIR}/home/pi/rasp_config/nodes.csv

––––––––––––––––––––––––––––––––––––––––

1 # Ethernet MAC Hostname

2 b8:27:eb:5b:da:20 rasp00

3 b8:27:eb:7b:c3:91 rasp01

4 b8:27:eb:54:9c:64 rasp02

5 b8:27:eb:95:bd:11 rasp03

6 ...

The testbed administrator has to insert the MAC addresses and hostnames of his/her
Raspis obtained previously in the format shown in the configuration file. For each given Raspi,
there is a MAC address and the corresponding hostname. This file will be employed by the
${ROOTDIR}/home/pi/rasp_config/set_hostname Bourne Again SHell (Bash) script to assign the
hostname of each Raspi. The script content is the following:

${ROOTDIR}/home/pi/rasp_config/set_hostname

––––––––––––––––––––––––––––––––––––––––––-

1 #!/usr/bin/env bash

2

3 script_path="$(dirname $(realpath $0))"

4 config_file=${script_path}/nodes.csv

5 mac=$(cat /sys/class/net/eth0/address)

6 old_hostname=$(hostname)

7 new_hostname=$(grep $mac $config_file | cut -f2 -d' ')

8

9 # Assign hostname found in nodes.csv

10 if [ ! -z ${new_hostname} ]; then

11 echo ${new_hostname} > /etc/hostname

12 hostname ${new_hostname}

13 sed -i.old -e "s:${old_hostname}:${new_hostname}:g" /etc/hosts

14 fi

The script (in lines): (1) tells the system to interpret the script using Bash; (3–4) gets the path to the
script itself and the list of hostnames; (5) gets the MAC address of the node itself; (6) gets the current
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hostname; (7) gets the new hostname from the hostname list; and (10–14) assigns the new hostname to
the Raspi where the script will be executed.

3.6.3. Updating Default Configuration Files and Scripts

Besides the single script with its configuration file introduced up to this point of our
procedure, it is possible that the testbed administrator may require to add other scripts
to configure his/her Raspis. We want to ensure that all the Raspi configuration scripts of
any testbed administrators are obtained in a simple way. We automate this task by including the
${ROOTDIR}/home/pi/rasp_config/update_rasp_config script in our procedure. The purpose of
this script is to make all the Raspis fetch all the configuration scripts located with the image during a
testbed start up.

In our case, as the testbed administrator for presenting the procedure, we want to fetch all our
configuration scripts in ${URL%/}/raspi_config.zip. The update script automatically downloads all
the required configuration files in rasp_config.zip file from a remote location. This is the same that
we manually did earlier to get our files, but this will be made in an automated way after booting up
the system. This script content is:

${ROOTDIR}/home/pi/rasp_config/update_rasp_config

–––––––––––––––––––––––––––––––––––––––––––––––––

1 #!/usr/bin/env bash

2

3 url="https://zenodo.org/record/154328/files/"

4 config_file="rasp_config.zip"

5

6 # Attempt to fetch new configuration files

7 if ! wget -q --show-progress -O /tmp/${config_file} ${url%/}/${config_file}; then

8 echo "Warning: Unable to update rasp_config files"

9 exit 1

10 fi

11

12 # Unzip and overwrite configurationn files to root's home directory

13 unzip -q -o /tmp/${config_file} -d /home/pi/

The update script lines (3–4) specify the URL and .zip file that should be downloaded.
Lines (7–10) download the configuration files to /tmp folder in the corresponding Raspi. It also
prints a warning in case of errors and line (13) unzips the files to /home/pi/, the Raspi home directory.
Existing files and directories are simply overwritten.

For the above scripts to work in the Raspis, it is required that the Raspis MAC addresses are
found in nodes.csv. In addition, it should be noted that for other testbed administrators besides
ourselves, the URL for file fetching and the configuration scripts themselves can be modified to fit their
requirements. If required for a testbed administrator, the rasp_config.zip will need to be edited to
include all the required configuration files and scripts. In addition, it might be necessary to edit the URL
in the script update_rasp_config to store and fetch from a different location. Nevertheless, both the
URL and configuration files presented here can be used as a starting boilerplate if desired.

3.6.4. Configuration Scripts Execution Order

To actually make the Raspis change hostnames and any other considered configurations, we have
to make each Raspi call the above scripts when it starts up. After finishing the setup process, all the
unzipped files presented in Section 3.6.1 should be locally available at each Raspi after getting the root
filesystem. We first need to run the update script before running any other configuration scripts. To do
this after boot up, we include a call for the update script in ${ROOTDIR}/etc/rc.local before exit 0
in the file:
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# sed -i '/^exit 0/i bash /home/pi/rasp_config/update_rasp_config' ${ROOTDIR}/etc/rc.local

If it is required to have more configuration scripts, adding them in the rc.local
file makes maintenance by the testbed administrator difficult since this needs to be both
in the image and the downloaded rasp_config.zip. To avoid this problem, we include
the ${ROOTDIR}/home/pi/rasp_config/main script that calls all other configuration scripts
(besides update_rasp_config) in a sequential order. This script content is:

${ROOTDIR}/home/pi/rasp_config/main

––––––––––––––––––––––––––––––––––-

-2 #!/usr/bin/env bash

-2

-1 bash /home/pi/rasp_config/set_hostname

-1 # Any other required configuration scripts...

In this way, the automation process is simplified since we do not need to modify
${ROOTDIR}/etc/rc.local again after the image has been written to the memory cards.
Now, we insert a call to the main script in ${ROOTDIR}/etc/rc.local as follows:

# sed -i '/^exit 0/i bash /home/pi/rasp_config/main' ${ROOTDIR}/etc/rc.local

Finally, ${ROOTDIR}/etc/rc.local should look like the following:

${ROOTDIR}/etc/rc.local

––––––––––––––––––––––-

-5 ...

-6 bash /home/pi/rasp_config/update_rasp_config

-7 bash /home/pi/rasp_config/main

-8 exit 0

Notice that set_hostname is now called by the main script instead. The update script is still called
directly. This ensures that all configuration scripts are updated before executed. Changes to the update
script itself will first take effect at the next system startup.

3.7. Image Package Updating by Changing the Apparent Root Directory

Besides adding and configuring files within the image, the testbed administrator may want to
install and update the software packages within the image before it is written to all the memory
cards that goes into the Raspis. From any Linux x86 machine as the testbed administrator PC,
this can be done using chroot command in the Quick Emulator (QEMU) [19] hypervisor for Advanced
RISC Machine (ARM) processors.

chroot is a method in Linux that modifies the apparent root filesystem location from / to any
other path. Consequently, in our case, we can use the Raspbian Lite image root filesystem within
the testbed administrator Linux distribution. Then, QEMU allows the execution of commands for
the Raspi image (ARM instructions) through the ones from the testbed administrator PC architecture.
Due to the ARM processor that the Raspis employ, installation of the QEMU related software is
required first and verification that QEMU is ARM enabled. To do so, run the following commands:
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-1 # apt-get install binfmt-support qemu qemu-user-static

-2 # update-binfmts --display qemu-arm

-3 qemu-arm (enabled):

-4 package = qemu-user-static

-5 type = magic

-6 offset = 0

-7 magic = \x7fELF\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x28\x00

-8 mask = \xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff\xff\xff\xff\xff\xff\xfe\xff\xff\xff

-9 interpreter = /usr/bin/qemu-arm-static

-10 detector =

In the previous output, the testbed administrator must be sure that the second command writes
qemu-arm (enabled) as indicated. If that is not the case, then it should be possible to enable it
by running:

-1 # update-binfmts --enable qemu-arm

Provided that qemu-arm is enabled, we should now be able to chroot into our Raspbian lite
image. There are a few commands to be performed before actually changing root into the root partion
of the image. First, to get internet access from within the Raspbian lite image, copying the testbed
administrator Linux distribution resolv.conf file into the image root filesystem is required. To do
this, it is necessary to run the following:

-1 $ cd $ROOTDIR

-2 # cp /etc/resolv.conf ${ROOTDIR}/etc/resolv.conf

Now, because of the ARM architecture, the /usr/bin/qemu-arm-static command needs to be
copied into the image before continuing by running:

-1 # cp /usr/bin/qemu-arm-static ${ROOTDIR}/usr/bin

Before changing the root, it is necessary to populate the directories proc, sys and dev for the
image to get control as the testbed administrator apparent root filesystem. This is made by the
following commands:

-1 # mount -t proc proc proc/

-2 # mount --bind /sys sys/

-3 # mount --bind /dev dev/

-4 # mount --bind /dev/pts dev/pts

Finally, run the following command to change root:

-1 # chroot ${ROOTDIR} /usr/bin/qemu-arm-static /bin/bash

If successfully executed, our terminal should have changed the prompt, indicating that we are the
root user in the Raspbian lite root filesystem as the apparent root. In case the chroot command is not
successful, we provide an alternative command in Appendix A.2 of the Appendices. To be aware of the
mode that we are working now, we change the prompt title to indicate that it is a chroot environment
as follows:

-1 # export PS1="(chroot) $PS1"
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The Raspbian lite image should now be possible to use almost as if it had been booted in a Raspi.
A major difference is that the testbed administrator PC is likely significantly faster than a Raspi. Hence,
enabling updates, upgrades and installing new software packages should be faster than in a Raspi.
Still updating and upgrading the packages for the Raspi might take some amount of time. To update
the system package list, run the following command:

-1 (chroot) # apt-get update

We further install some packages that we consider useful:

-1 (chroot) # apt-get install vim git screen

vim is the improved vi editor for Linux, git for managing Git repositories and screen [20] for
better handling of long-runnning processes. When writing the image to a memory card, all the changes
that have been made to the image so far will exist in all Raspis after fetching it.

4. Overlay File System

In principle, our procedure modifies the image file only once in the testbed administrator PC
when its setup is made. In addition, keeping this image in the Raspis provides the same initial system
for all the devices. If we do not make any further modifications during the image setup, any files
created after the initial boot of a Raspi will remain in the memory card. This is cumbersome to maintain
since the size of the memory card is relatively small (8 GB), and there might be various users utilizing
the testbed. In addition, different testbed users could be interested in running their experiments in a
fresh rebooted system with the original customized image. We emphasize that this step is not necessary
if the tesbed administrator wants to consider only persistent storage for its devices. A use case for this
scenario could be a single user for the testbed or when a testbed administrator only wants to setup a
few Raspis.

If both persistent and non-persistent storage are required for the Raspis, we present here the steps
to setup an overlay filesystem. This type of filesystem enables an upper filesystem to overlay into a lower
filesystem. Whenever a file is requested, the upper filesystem will forward the request to the lower
filesystem in case it does not have it itself. If the upper filesystem has the requested file, it will simply
return the file. This idea can be used in our setup to mount the root filesystem (i.e., Raspbian Lite) in
the Raspis during startup as read-only filesystem. On the one hand, the image configuration files will
remain after a reboot but the local data in these directories will be erased after a reboot. To enable
the possibility of persistent changes, we overlay the upper filesystem that is mounted in the Raspi
Random Access Memory (RAM), i.e., /tmp as rewritable on top of the lower root filesystem. Reading a
file may return a file from the lower filesytem, but if it is stored, it will be saved in the upper filesystem.
Accessing this file again will return the stored file from the upper layer. After a reboot, all the stored
files in the upper filesystem will be retrieved, but the ones in the lower filesystem that are not part of
the original image will be removed.

4.1. Filesystem Installation

Assuming that we are still in the chroot environment of the Raspbian Lite root filesystem for
installing packages, we can setup the overlay filesystem at this point of the procedure. There already
exists implementations overlaying the root filesystem. We use an implementation available at the Git
repository in [21]. Since we have installed git in a previous step, we clone the repository. The command
block below stores it in /tmp which is really mounted in RAM. All the files stored here will disappear
when the system is rebooted.
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-1 (chroot) # OVERLAYROOTDIR="/tmp/overlayroot"

-2 (chroot) # git clone https://github.com/chesty/overlayroot.git ${OVERLAYROOTDIR}

Before enabling the overlaying filesystem, it is necessary to generate an initial RAM filesystem or
initramfs. This is an initial filesystem that is loaded into RAM during the startup process of a Linux
machine to prepare the real filesystem. For this purpose, we need the BusyBox package by running:

-1 (chroot) # apt-get install busybox

To create and activate the overlaying filesystem, we need to first add the required system scripts
to do so. This is done as follows:

-1 (chroot) # cp ${OVERLAYROOTDIR}/hooks-overlay /etc/initramfs-tools/hooks/

-2 (chroot) # cp ${OVERLAYROOTDIR}/init-bottom-overlay /etc/initramfs-tools/scripts/init-bottom/

-3 (chroot) # echo "overlay" > /etc/initramfs-tools/modules

To generate the initial RAM filesystem, we have to utilize the mkinitramfs command.
This searches by default for the available kernel modules in the system. Since we are in chroot
mode, we need to specify the correct kernel modules to search for. The available kernel modules are
located in /lib/modules. To see them, we just run:

-1 (chroot) # ls /lib/modules/

-2 4.4.13+ 4.4.13-v7+

Now, the initial RAM filesystem can be generated. Raspi version 1 needs a different kernel than
Raspi version 2 and version 3. Kernel version 4.4.13+ is for Raspi version 1 and kernel 4.4.13-v7+ for
Raspi version 2 and version 3. We proceed to generate an initial RAM filesystem for these kernels
by running:

-1 (chroot) # mkinitramfs -o /boot/init.gz -k 4.4.13+

-2 (chroot) # mkinitramfs -o /boot/init-v7.gz -k 4.4.13-v7+

Although these commands might output some warnings, they should successfully generate
working initial RAM filesystems. Later, an initial RAM filesystem will need to be called by the
bootloader. In Raspbian, this is done by adding a command to config.txt file in the boot partition.
If the system should be run in a Raspi version 1, then use init.gz by executing only the first code line
below; otherwise, use init-v7.gz by executing only the second code line:

-1 (chroot) # echo "initramfs init.gz" >> /boot/config.txt # For Raspberry Pi version 1

-2 (chroot) # echo "initramfs init-v7.gz" >> /boot/config.txt # For Raspberry Pi version 2 or 3

After this point, it is no longer required to be in chroot mode. The following commands exit the
chroot environment, unmount all partitions and detach the loopback devices:

-1 (chroot) # exit

-2 # cd ..

-3 # umount --recursive ${ROOTDIR}

-4 # losetup -d ${DEV}

For the ––recursive option to work properly, it is necessary that the package util-linux version
is greater than or equal to 2.22. Otherwise, an alternative is to either update the package or follow the
procedure in Appendix A.3 of the Appendices.
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4.2. Persistent and Non-Persistent Image Directories

Provided the stacked filesystem is configured, it is now possible to have directories where files are
removed or not upon rebooting the Raspis. The following procedure creates an extra partition in the
image for the Raspi user home directory that will be made storage persistent. We first expand image
according to the desired home directory size, but avoid to making the image bigger than the target
memory card size.

-1 $ dd if=/dev/zero bs=1M count=1024 >> ${IMAGE}.img && sync

We create a partition for the home directory after the root partition. To do this, we again use fdisk
to find the next available sector in the image. To verify the new available space for the full image and
observe the next available sector, we run:

-1 $ fdisk -u=sectors -l ${IMAGE}.img

-2 Disk 2016-05-27-raspbian-jessie-lite.img: 3.3 GiB, 3534749696 bytes, 6903808 sectors

-3 Units: sectors of 1 * 512 = 512 bytes

-4 Sector size (logical/physical): 512 bytes / 512 bytes

-5 I/O size (minimum/optimal): 512 bytes / 512 bytes

-6 Disklabel type: dos

-7 Disk identifier: 0x6fcf21f3

-8

-7 Device Boot Start End Sectors Size Id Type

-8 2016-05-27-raspbian-jessie-lite.img1 8192 137215 129024 63M c W95 FAT32 (LBA)

-9 2016-05-27-raspbian-jessie-lite.img2 137216 4806655 4669440 2.2G 83 Linux

We notice that one GB is now available to be used in the partitions. In addition, we observe the
new partition should start at sector 4806656. To create it, we use fdisk as follows:

-1 $ fdisk ${IMAGE}.img << EOF

-2 n

-3 p

-4 3

-5 4806656

-6

-5 w

-6 EOF

We create a loopback device again and format the new partition, as follows:

-1 # export DEV=$(sudo losetup --show -f -P ${IMAGE}.img); echo $DEV

-2 /dev/loop0

-3 # mkfs.ext4 ${DEV}p3

If the -P option is not available for losetup, we provide an alternative command line in
Appendix A.1. Finally, if the previous filesystem formatting was successful, the filesystem is now
available for use. We need to inform the Raspbian OS to mount the home partition that we have just
created. This can be done by adding an entry in fstab as follows:

-1 # mount ${DEV}p2 ${ROOTDIR}

-2 # sed -i '$a /dev/mmcblk0p3 /home ext4 defaults,noatime 0 2' ${ROOTDIR}/etc/fstab

If the last command was executed correctly, the ${ROOTDIR}/etc/fstab file should have the new
line. The resulting file should look like the following:
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-1 ${ROOTDIR}/etc/fstab

-2 ––––––––––––––––––––

-2 proc /proc proc defaults 0 0

-2 /dev/mmcblk0p1 /boot vfat defaults 0 2

-2 /dev/mmcblk0p2 / ext4 defaults,noatime 0 1

-2 /dev/mmcblk0p3 /home ext4 defaults,noatime 0 2

Originally, the home folder is located in the root filesystem. However, we have to move its content
to the new home partition and store it properly. We do that as follows:

0 # mount ${DEV}p3 ${ROOTDIR}/mnt

0 # mv ${ROOTDIR}/home/* ${ROOTDIR}/mnt/

Now, unmount again all the partitions and detach the loop devices as follows:

0 # umount --recursive ${ROOTDIR}

0 # losetup -d ${DEV}

If the ––recursive option is not available, then follow the procedure in Appendix A.3 of the
Appendices. If the steps are successfully executed up to this point, the customized image is available in
the ${IMAGE}.img file and is ready to be deployed into the Raspis. In the following section, we indicate
how to proceed with the writing of the image into various memory cards.

4.3. Writing Customized Image to SD Memory Cards

For a basic system setup, the final step is to write the customized image to all the memory cards
before they can be used in the Raspis. For our current considered system, we do this manually for
each card. The testbed administrator needs to insert each memory card in his/her PC and follow the
procedure in this section. A given card will be available as /dev/mmcblkX or /dev/sdYX where X is a
natural number and Y is a letter.

It is very important to write to the correct device as everything will be overwritten. To avoid
removing information from the wrong device, a testbed administrator can use the commands lsblk
and/or df -h before and after inserting the memory card to deduce its correct device name. For our
case, the device was /dev/mmcblk0. Once identified, to write the image to a memory card, the following
command is used:

0 # dd if=${IMAGE}.img of=/dev/mmcblk0 bs=4M && sync

The previous dd and sync commands for copying the image to the memory card and flushing the
remainder in memory to the filesystem will take tens of minutes depending on the memory card speed
and the size of the image. After this is made, it is only necessary to eject the memory card and now
plug it in a Raspi so it can boot up.

5. Automation and Monitoring Tools

Within the daily testbed use, there exists frequent tasks that require a set of various commands in
a given Raspi. This could be tedious, prone to errors and time-consuming to realize every time the
task is required to be made. Therefore, in this section, we introduce a set of tools that help to automate
and monitor routinary task execution in the Raspis and show relevant example commands with them.
To be able to run all the following commands, it is necessary to have SSH connectivity with the Raspis;
otherwise, the commands need to be run locally on a Raspi making necessary to use a keyboard and a
monitor. The testbed administrator needs to put the memory cards in the Raspis and turn them on for
them to be able to boot. The devices should now be bootable.
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5.1. Fabric

Controlling multiple devices using SSH from a single PC often leads to many repetitive tasks.
Among these, we can mention: (i) rebooting a set of devices; (ii) installing applications in multiple
devices; and (iii) copying files to/from multiple devices. Fabric [22] provides a Python library
that simplifies the management of working with many devices from a single PC. First, the testbed
administrator creates a directory to hold the Fabric source code:

0 $ export CODEDIR="${HOME}/code"

0 $ mkdir -p ${CODEDIR}

0 $ cd ${CODEDIR}

Then, the ${CODEDIR}/fabfile.py file below provides a script with some basic functionalities
that can perform the few items above (i–iii). In general, other administrators may require different
functionalities, but this is out of the scope of this work. The following file serves as a starting boilerplate:

${CODEDIR}/fabfile.py

––––––––––––––––––––-

-2 from fabric.api import env, task, sudo

-2 # Python Fabric script to run commands on multiple hosts through ssh

-2 #

-2 # Run script as 'fab <task>', where <task> is one of the scripts functions

-2 # marked as a tesk. The task marked as 'default' will be run if <task> is not

-2 # specified

-2

-1 env.hosts = ['10.0.0.100','10.0.0.101','10.0.0.102']

-1 env.user = 'pi'

-1 env.password = 'raspberry'

-1

0 @task

0 def reboot():

0 """ Reboot device """

0 sudo('reboot', quiet=True)

0

1 @task

1 def install(program):

1 """

1 Install a program

1 program: program name

1 """

1 result = sudo('apt-get install -y {}'.format(program), quiet=True)

1 print(result)

1

2 @task

2 def push(src,dst):

2 """

2 Copy file to device

2 src: source file path

2 dst: destination file path

2 """

2 put(src, dst)

The previous fabfile shows three functions that perform our example tasks. These functions
utilize variables and subsequent functions from the Fabric Application Programming Interface (API)
such as env, task and sudo among others. Each of these API functions permits defining environment
variables, creating the administrator tasks through decorators or running the mentioned task in sudo
mode, respectively. When a task is called from the terminal, Fabric searches the directory for the
fabfile.py file and executes the desired task. The syntax for executing a task with arguments is in the
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form fab <TASK>:arg1,arg2,... We denote the IP address of a generic Raspi for test as <RASP_IP>.
The executions from the terminal of some of these commands are shown as follows:

0 $ fab reboot

0 [<RASP_IP>] Executing task 'reboot'

0

1 Done.

1 Disconnecting from <RASP_IP>... done.

1 $ fab install:tmux

1 [<RASP_IP>] Executing task 'install'

1 ...

1 The following NEW packages will be installed:

1 tmux

1 0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

1 ...

1 Preparing to unpack .../archives/tmux_1.9-6_armhf.deb ...

1 Unpacking tmux (1.9-6) ...

1 Processing triggers for man-db (2.7.0.2-5) ...

1 Setting up tmux (1.9-6) ...

1

2 Done.

2 Disconnecting from <RASP_IP>... done.

The first function above reboots the Raspis in the lists of hosts and the second function installs
a program given by an argument. For the connection to the devices, Fabric calls the Paramiko [23]
module from Python to make an SSH connection. For this to work properly, the Paramiko version
needs to be higher than or equal to 1.15.1. If not available, the SSH connections from Fabric may
fail. In case of any problems, some instructions for updating the Paramiko package are available in
Appendix A.4 of the Appendices. This is a standard recommendation from the Fabric troubleshooting
guide [24].

After a successful SSH connection is made, in the previous two commands towards the Raspi,
Fabric employs the Raspi’s reboot and apt-get commands in sudo mode to do the required tasks.
Below, an example is shown for the push task which uses two arguments. Here, we copy my_file from
the testbed administrator PC to a test host Raspi:

0 $ fab push:"${CODEDIR}/my_file",'~/'

0 [<RASP_IP>] Executing task 'push'

0 [<RASP_IP>] put: /home/<USER>/code/my_file -> /home/pi/my_file

0

1 Done.

1 Disconnecting from <RASP_IP>... done.

To control a large set of devices, we simply need to include them in the env.hosts list
in the ${CODEDIR}/fabfile.py file. Fabric has many other functionalities that are useful in
controlling a large set of Raspis. For example, we may extract files or run automated experiments.
The included functionalities in the ${CODEDIR}/fabfile.py file will depend on the requirements of
the testbed administrator.

5.2. Long-Running Jobs Using SSH

There are times when a task may need to run for several hours or even days on the Raspis,
particularly when related to simulations or measurement campaigns. For this purpose, it might be
necessary to keep open an SSH connection on the Raspis without risking that the connection will be
interrupted and a given Raspi will terminate the task.

There are methods to enable the Raspis to continue running applications although the connection
is terminated either on purpose or unexpectedly. One method is to run programs within a screen
session. screen enables a user to run applications within a shell window, a screen session, which does
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not terminate even with connectivity interruptions. Users can attach and detach from a screen session
as desired. The following procedure presents how to use screen with SSH to: (i) login to a generic
Raspi; (ii) open a screen session; (iii) execute an example command; (iv) detach from the screen session;
(v) terminate the SSH connection; (vi) login to the Raspi again; and (vii) attach to screen session to
see the program still running. From the testbed administrator PC, we start by establishing an SSH
connection to a Raspi and open a screen session:

0 $ ssh pi@<RASP_IP>

0 ...

0 pi@<RASP_IP>'s password:

0

1 The programs included with the Debian GNU/Linux system are free software;

1 the exact distribution terms for each program are described in the

1 individual files in /usr/share/doc/*/copyright.

1

2 Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

2 permitted by applicable law.

2 Last login: Tue Jul 12 13:04:31 2016

2

3 $ screen

3 Screen version 4.02.01 (GNU) 28-Apr-14

3 ...

3 [Press space or Return to end.]

To enter in the screen session after the introduction message, we have to press either the Space
or Return key in the keyboard to clear the shell. After doing so, we should be in a screen session
although its appearance is the same as a regular terminal shell. Inside this example session, we execute
a program that never ends:

0 $ top

The top command simply continuously shows the table of processes executed on the Raspi like in
any Linux distribution. When top is running, we first press Ctrl+a and later Crtl+d in the keyboard
to detach from the screen session. We now terminate the SSH connection and login again to verify
that the top command is still running. Without using screen, the top program should terminate since
its hosting shell was terminated. To log out, we run:

0 $ exit

0 logout

0 Connection to <RASP_IP> closed.

0 $ ssh pi@<RASP_IP>

Now that we are logged in to the Raspi again, we first check the available detached sessions
by running:

0 $ screen -list

0 There is a screen on:

0 824.pts-0.raspXX (07/12/16 13:17:30) (Detached)

0 1 Socket in /var/run/screen/S-pi.

From the command output, we can see that the session is still running in our generic Raspi
number XX and that no user is currently attached to the session. To attach to the session, we execute:

0 $ screen -r 824.pts-0.raspXX
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After attaching again, we should see top still running. screen has more functionalities that can
be used in this or other contexts, but this is outside the scope of this work. To terminate the screen
session, first terminate top by pressing q in the keyboard. Once top is terminated, we need to type exit
two times in order to first exit the screen session and then terminate the SSH connection. An output
should be as follows:

0 [screen is terminating]

0 pi@<RASP_IP>:~ $ exit

0 logout

0 Connection to <RASP_IP> closed.

0 $

6. Cross-Compilation: From the PC to the Raspberry Pi

An important case of a computational expensive task is to compile software packages and
large libraries. Given the computing capabilities of the Raspi, such tasks can be challenging if not
prohibitive in terms of Central Processing Unit (CPU), memory or space usage and/or compilation
time. In this section, we present a procedure of how to cross-compile C++ source code from the testbed
administrator PC for the ARM architecture of the Raspis. By doing this, we take advantage of the
(typically) much higher computing power of the testbed administrator PC in order to save time and
computational resources. Hence, we give an example of compiling a simple C++ program and copying
the generated binaries with SSH to run locally on a Raspi.

Furthermore, given that our testbed purpose is for network coding applications, we also present
how to cross-compile Kodo [8], a C++11 network coding library to perform encoding, decoding and
recoding operations. In this way, we aim to present a fully configurable and manageable testbed
with the capabilities to evaluate network coding protocols with several Raspis and locally store
measurements from different evaluations. Therefore, we also show how kodo-cpp, a set of high-level
C++ bindings for Kodo, can be cross-compiled for applications with the Raspi.

6.1. Toolchain Setup

To compile in a given architecture that is aimed for a different one, the testbed administrator
needs to install a toolchain on his/her PC. The toolchain is mandatory due to the different processor
architectures where the source can be compiled from. Given that compiling a toolchain can be an
arduous task, we get the toolchain recommended for the ARM architecture of the Raspis. This toolchain
is available from [16] and it already contains the binaries for different compilers based on gcc 4.9.
We extract the binaries adjusting them to our coding style and compiling convention. For this, we use
the ${TOOLCHAIN} directory as the working directory. The testbed administrator may choose some
other working directory of its preference if desired. First, we create the toolchain directory:

0 $ export TOOLCHAINDIR="${HOME}/toolchains"

0 $ mkdir -p ${TOOLCHAINDIR}

0 $ cd ${TOOLCHAINDIR}

Later, we download a Raspi toolchain with the binaries for a 64-bit Linux distribution available
in [16]. Finally, we unzip the downloaded file. This is made as follows:

0 $ wget https://zenodo.org/record/154328/files/raspberry-gxx493-arm.zip

0 $ unzip raspberry-gxx493-arm.zip

Instead of calling the ARM cross compiler using its full path, we make the binaries accessible
from the command shell systemwide. A way to do this is by adding the following commands in the
${HOME}/.profile as follows:
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0 $ sed -i '$a export TOOLCHAINDIR=\"$HOME/toolchains\"' ${HOME}/.profile

0 $ sed -i '$a export TOOLCHAINBINARY=\"raspberry-gxx49-arm-g++\"' ${HOME}/.profile

0 $ sed -i '$a PATH=\"\$PATH:${TOOLCHAINDIR}/arm-rpi-4.9.3-linux-gnueabihf/bin\"' ${HOME}/.profile

This helps the OS to recognize the location of the compiler command when a new shell is opened.
The .profile should now contain the lines we inserted. There might be other code in the file of other
testbed administrators. We recommend to leave other parts unmodified.

$HOME/.profile

–––––––––––––-

-2 ...

-2 export TOOLCHAINDIR="$HOME/toolchains"

-2 export TOOLCHAINBINARY="raspberry-gxx49-arm-g++"

-2 PATH="$PATH:${TOOLCHAINDIR}/arm-rpi-4.9.3-linux-gnueabihf/bin"

-2 ...

To update the ${PATH} variable and the .profile, we use the source command for the changes
take effect in the administrator system:

0 $ source ${HOME}/.profile

A working ARM cross-compiler in the testbed administrator PC should output the following:

0 $ ${TOOLCHAINBINARY} --version

0 raspberry-gxx49-arm-g++ (crosstool-NG crosstool-ng-1.22.0-88-g8460611) 4.9.3

0 Copyright (C) 2015 Free Software Foundation, Inc.

0 This is free software; see the source for copying conditions. There is NO

0 warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

6.2. Cross-Compile Example

The following shows: (i) how to cross compile the classic hello_world C++ example for the Raspi
ARM architecture and (ii) how to copy and execute the binary in a Raspi using Secure Copy (SCP) and
SSH. First, we create the file hello_world.cpp. For simplicity, we create it in the directory where we
stored the fabfile.py file with the following content using any text editor:

${CODEDIR}/hello_world.cpp

–––––––––––––––––––––––––-

-2 #include <iostream>

-2

-1 int main()

-1 {

-1 std::cout << "Hello World!" << std::endl;

-1 return 0;

-1 }

We save the previous file and compile it for Raspi in the testbed administrator PC by doing:

0 $ ${TOOLCHAINBINARY} hello_world.cpp -o hello_world

This should produce a binary hello_world that is executable on the Raspi. We copy it to
a Raspi using SCP and using Fabric instead if we are interested in deploying a compiled binary
for many Raspis.
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0 $ scp hello_world pi@<RASP_IP>:~/

After the executable has been copied to the Raspi, we login through SSH to it:

0 $ ssh pi:<RASP_IP>

We can list the directory content after we have logged into the Raspi and verify that the compiled
hello_world binary is there:

0 pi@<RASP_IP>:~ $ ls

0 hello_world rasp_config

Finally, we simply execute the hello_world to confirm that the cross-compiling of hello_world
worked properly:

0 pi@<RASP_IP>:~ $ ./hello_world

0 Hello World!

6.3. Cross-Compile Kodo

As we originally mentioned, Kodo is a C++11 network coding library that permits implementation
of network coding functionalities by allowing any network protocol designer to use and test the
primitive encoding, decoding and recoding operations of RLNC. In this way, a designer only needs
to focus on the design and test of a network coding-based protocol. Kodo is available through
programming bindings for a variety of popular programming languages. This procedure will present
how to configure the Kodo C++ bindings kodo-cpp to cross-compile applications that can run in
Raspi. kodo-cpp provides a simple interface to the underlying C++11 code that exists in the libraries
kodo-core for the object structure and kodo-rlnc for the RLNC codec implementation. More details
about Kodo are provided in the code documentation [25].

To use Kodo for research, it is necessary to obtain a research free license. To do this, a request
form needs to be filled in [26] and wait for it to be processed by the Kodo developers. Once the access
for Kodo has been granted, the source code can be pulled from its Git repositories to be compiled.
Assuming that the testbed administrator already has access, we clone the kodo-cpp repository locally
in $CODEDIR and change directory into the repository by doing:

0 $ cd ${CODEDIR}

0 $ git clone git@github.com:steinwurf/kodo-cpp.git

0 $ cd kodo-cpp

We first configure kodo-cpp to build executables for the ARM architecture using the Raspi
toolchain and later build them by running:

0 $ python waf configure --cxx_mkspec=cxx_raspberry_gxx49_arm

0 ...

0 'configure' finished successfully (X.XXXs)

0 $ python waf build

0 ...

0 'build' finished successfully (XmXX.XXs)

If the configuration and build steps are successful, the binaries should have been created. To be
able to use them, we need to create a shared library that we will use in the Raspi. To do this, we run
the following command:
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0 $ python waf install --install_shared_libs --install_path="./shared_test"

0 ...

0 'install' finished successfully (X.XXXs)

Now, we copy the shared library, binary files and related headers to the Raspi home directory
as follows:

0 $ scp -r shared_test/include shared_test/libkodoc.so pi@<RASP_IP>:~/

Alternatively, and for the testbed administrator reference, Kodo can also generate static libraries.
We log in to the Raspi and execute the unit tests and one of the binaries by running:

0 $ ssh pi@<RASP_IP>

0 $ ./kodocpp_tests

0 ...

0 [ PASSED ] X tests.

0 $ ./encode_decode_simple

0 Data decoded correctly

If the Kodo cross-compilation worked properly, both the unit tests and binaries run should
provide the shown outputs.

7. Conclusions

Observing the expectation of the IoT and lack for a low-cost, easy-to-configure testbed in this area
for reproducible research, we provide an in-depth description of the new Aalborg University’s Raspi
testbed for network coding evaluation and how to guarantee replicability and scaling management of
this system. The description shows how to set up interconnected Raspis with memory cards for local
storage, a Raspbian Lite image, network connectivity and proper system administration privileges.
Using the presented procedure permits setting up a Raspbian Lite image for the Raspis. A tailored
Linux distribution might be created from the scratch using the Yocto project. However, to assemble and
compile the software for the Raspi can be a tedious and time-consuming task. However, this method
could be adequate for an expert user. We hope this work permits researchers to replicate setups
and scenarios for evaluating their strategies in a rapid and manageable way. Future work in the
use of Raspi devices will focus on expanding the setup and automation of tasks to run the testbed,
configure specified network topologies (e.g., with specific connectivity or packet loss ratios), reserve the
use of these sub-networks for running tailored experiments and open the use of the testbed beyond
our team at Aalborg University. Future work in this area will consider making the testbed fetch the
image through the HTTP server. This is expected to simplify the maintenance of the memory cards.
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Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interface
ARM Advanced RISC Machine
Bash Bourne Again SHell
CPU Central Processing Unit
DHCP Dynamic Host Configuration Protocol
HTTP Hyper Text Transfer Protocol
IoT Internet of Things
IP Internet Protocol
IT Information Technology
LAN Local Area Network
MAC Medium Access Control
NC Network Coding
NFS Network File System
OS Operating System
PC Personal Computer
QEMU Quick Emulator
RAM Random Access Memory
Raspi Raspberry Pi
RLNC Random Linear Network Coding
SCP Secure Copy
SD Secure Digital
SSH Secure Shell
URL Uniform Resource Locator

Appendix A. Alternative Commands for Outdated Packages

This section describes alternative commands in case the testbed administrator is not able to
update old packages on his/her Linux distribution for performing the commands, particularly the ones
regarding the util-linux package or if a command just fails.

Appendix A.1. Losetup for Loopback Devices

If the losetup -P command shows the invalid option message, an alternative is to manually
set all the loopback devices used during the whole procedure with mknod. To do this, the alternative
commands are:

0 $ export DEV="/dev/loop0"

0 # mknod ${DEV}p1 b 7 1

0 # mknod ${DEV}p2 b 7 2

0 # losetup -o $((8192*512)) --sizelimit $(( (137215-8192+1)*512) )) ${DEV}p1 ${IMAGE}.img

0 # losetup -o $((137216*512)) --sizelimit $(( (4806655-137216+1)*512) )) ${DEV}p2 ${IMAGE}.img

However, there will be a few differences by using the above code as an alternative to the losetup
-P case. First, the output from lsblk will look different:

0 # lsblsk

0 NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

0 ...

0 loop1 7:1 0 67M 0 loop

0 loop2 7:2 0 2.2G 0 loop

0 ...

Second, detaching the loop devices will also be different:

151



Electronics 2016, 5, 67

0 # losetup -d ${DEV}p{1,2}

Working with these loopback devices will be transparent for the remainding procedure.
In addition, when creating the persistent home directory partition in Section 4.2, for recreating the

loopback devices, the commands are:

0 $ export DEV="/dev/loop0"

0 # mknod ${DEV}p2 b 7 2

0 # mknod ${DEV}p3 b 7 3

0 # losetup -o $((137216*512)) --sizelimit $(( (4806655-137216+1)*512) ) ${DEV}p2 ${IMAGE}.img

0 # losetup -o $((4806656*512)) --sizelimit $(( (6903807-4806656+1)*512)) ${DEV}p3 ${IMAGE}.img

Finally, for detaching in this case, the command is:

0 # losetup -d ${DEV}p{2,3}

Appendix A.2. Image Chroot with Proot

In some cases, chroot may not work properly. In this case, an alternative can be proot. It might
be required to install it before changing the root with apt-get install proot. Then, it should be
possible for the testbed administrator to run the following:

0 # proot -q qemu-arm-static -S ${ROOTDIR}

Appendix A.3. Umount after Image Chroot

In case the umount ––recursive command shows the invalid option message, an alternative
is to manually unmount all the partitions used during the chroot environment in the reverse order
from which they were mounted. These commands are:

0 # umount ${ROOTDIR}/dev/pts

0 # umount ${ROOTDIR}/dev

0 # umount ${ROOTDIR}/sys

0 # umount ${ROOTDIR}/proc

Appendix A.4. Paramiko Package Update

In case Paramiko version 1.15.1 or higher is not installed, we may observe a key exchange
algorithm error when trying to log in through SSH to a Raspi with Open SSH. In this case, it might be
necessary to update the Paramiko package that Fabric uses to remove this error by running:

0 # pip install --upgrade paramiko

0 ...

0 Successfully installed cffi-1.7.0 cryptography-1.4 paramiko-2.0.1

0 # pip show paramiko

0 ...

0 Name: paramiko

0 Version: 2.0.1

0 ...
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Abstract: Given that next generation networks are expected to be populated by a large number of
devices, there is a need for quick deployment and evaluation of alternative mechanisms to cope with
the possible generated traffic in large-scale distributed data networks. In this sense, the Raspberry Pi
has been a popular network node choice due to its reduced size, processing capabilities, low cost and
its support by widely-used operating systems. For information transport, network coding is a new
paradigm for fast and reliable data processing in networking and storage systems, which overcomes
various limitations of state-of-the-art routing techniques. Therefore, in this work, we provide an
in-depth performance evaluation of Random Linear Network Coding (RLNC)-based schemes for
the Raspberry Pi Models 1 and 2, by showing the processing speed of the encoding and decoding
operations and the corresponding energy consumption. Our results show that, in several scenarios,
processing speeds of more than 80 Mbps in the Raspberry Pi Model 1 and 800 Mbps in the Raspberry
Pi Model 2 are attainable. Moreover, we show that the processing energy per bit for network coding
is below 1 nJ or even an order of magnitude less in these scenarios.

Keywords: network coding; Raspberry Pi; goodput; energy; performance

1. Introduction

Due to the advent of the Internet of Things (IoT), approximately 50 billion devices ranging
from sensors to phones are expected to be connected through data networks in a relatively short
period of time [1]. This massive deployment requires the design and testing of new distributed
systems that permit one to manage the amount of traffic from the proposed services provided by
these devices. Therefore, development platforms that help to quickly deploy, analyze and evaluate
this type of scenario are highly desirable for research. With the emergence of the Raspberry Pi (Raspi),
a lrelatively powerful low-cost computer with the size of a credit card, these evaluations are becoming
possible now. This platform has been used as general purpose hardware for IoT applications as
reported in surveys, such as [2]. In these applications, the Raspi might be the sensoring or computing
entity (or even both) for a required task. To achieve this, it can be extended from being a simple
computer using self-designed or already available extension modules.

A benefit of using the Raspi as a development platform is its large community of supporters.
By running standard operating systems, such as Linux or Windows, this permits one to utilize
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standard, well-tested and reliable tools to administrate and maintain these networks in a flexible,
stable and supported manner, which is a major requirement to make a scalable deployment. Moreover,
by enabling system designers to configure and deploy several devices at the same time, possible
deployments of tens, hundreds or even thousands of Raspberry Pi’s would allow one to analyze
representative data patterns of the IoT. Different use cases of IoT applications employing the Raspi
as a building block can be found in the literature. A basic study of the Raspi as a possible device for
sensor applications can be found in [3]. The authors in [4] consider using the Raspi as an IPv6 over
Low power Wireless Personal Area Networks (6LoWPAN) gateway for a set of sensor and mobile
devices to an Internet Protocol (IP) Version 6 network. In [5], a general purpose sensoring platform
for IoT is presented using the Raspi as its basic building block. Various interesting IoT use cases are
the works presented in [6–9]. In [6], many Raspis are used as controllable smart devices with network
connectivity that may ubiquitously interact with different users, each represented by a mobile device
through a smartphone application. The study in [7] considers Raspis as a data processing unit for
disseminating artwork content in smart museums. An IoT setting where the Raspi is employed as
a nano-server in distributed storage and computing can be found in [8]. Finally, in [9], the authors
present the Raspi as the processing entity of an unmanned areal vehicle application to increase the
resilience of wireless sensor networks. However, despite all of these advances in the IoT area regarding
the exploitation of the Raspi capabilities, the application data are forwarded using former conventional
routing methods, which may not satisfy the need of a distributed network for IoT applications as
mentioned earlier.

In this context, introduced in [10], Network Coding (NC) constitutes a paradigm shift in the way
data networks are understood by changing how information is sent through them and stored at the
end devices. Instead of treating the packets as atomic unmodifiable units, packets are seen as algebraic
entities in a Galois Field (GF) that can be operated on to create new coded packets. This permits one to
remove the limitation of sending specific packets by now sending coded packets as linear equations of
the original ones. This change in the way of seeing how the data are represented brings new features
that can be exploited. In this way, instead of typically encoding and decoding on a hop basis, relaying
nodes can take part in the coding process without needing to decode. Therefore, a relay can recode
packets, i.e., encode again previously-received encoded (but not decoded) packets in order to reduce
delay and still take advantage of the data representation for the next hop. This new type of coding
across the network is proven to achieve the multicast capacity [10,11].

Compared to other broadly-used coding schemes, such as Low Density Parity Check (LDPC)
codes [12] or Reed–Solomon codes [13], network coding is a technology that has been studied and
implemented in real systems since the early years of its conception. A decentralized network code
that has been proven to achieve the multicast capacity with very high probability is RLNC [14].
Later, a work observing the benefits of employing RLNC in meshed networks is the Multi-path
Opportunistic Routing Engine (MORE) protocol addressed in [15]. Shortly afterwards, the authors
in [16] showed the performance of an implementation of the COPE protocol for the two-way relay
channel in a wireless network, which relied on minimalistic coding and obtaining gains over
a forwarding scheme. Later, the work in [17] used commercially-available Symbian OS mobile
phones to implement network coding in a Device to Device (D2D) cooperation-based application.
Furthermore, in [18], the Kodo library was introduced. Kodo is a C++11 network coding library
intended to make network coding basic functionalities easily available for both the research community
and commercial entities. Based on Kodo, the Coding Applied To Wireless On Mobile Ad-hoc Networks
(CATWOMAN) protocol [19] is implemented on top of the Better Approach To Mobile Ad-hoc
Networking (BATMAN) protocol [20] for WiFi multi-hop meshed networks. It uses some of the
intuition from COPE, but it is deployed within the X topology with overhearing links. Its source code
is available as open source in the Linux kernel. Moreover, many other successful implementations have
been tested on real-world systems, such as found in [21–24]. For the Raspberry Pi device, an evaluation
of RLNC can be found in [25]. However, this evaluation focused particularly on observing the
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achievable speeds only for RLNC with different configurations of the code parameters. In this
previous work, a relevant practical aspect that was not evaluated was the use of hardware acceleration
through Single Instruction Multiple Data (SIMD) or the multi-core capabilities of more advanced
Raspi models. These features are becoming more frequent in new processors to largely increase their
computational power for the upcoming demand. In this sense, the Raspberry Pi posses an Advanced
RISC Machine (ARM) architecture that could be multi-core, as mentioned, and also exploits the SIMD
feature with the optimized NEON instruction set, but still to the best of our knowledge, there has been
no documentation in the literature about these capabilities.

Therefore, in this work, we provide detailed measurements of the goodput (processing speed)
and energy consumption of Raspi Models 1 and 2, when performing network coding operations with
different codecs based on RLNC such as: full dense RLNC, multi-core enabled RLNC, sparse RLNC
and tunable sparse RLNC. For these coding schemes, the encoder and decoder implementations from
Kodo are able to detect and make use of the SIMD through the NEON instruction set of the Raspberry
Pi by recognizing the ARM architecture with its multicore capabilities. We assess the Raspi performance
excluding the effect of packet losses or delays in order to have a description of the processing and
energy consumption for only the codes in terms of their parameters. To achieve this, we perform a
measurement campaign with the indicated coding schemes and their parameters in various models of
a Raspberry Pi device. Our measurements permit us to characterize the mentioned metrics of these
devices showing that processing speeds of 800 Mbps and processing energy per bit values of 0.1 nJ are
possible. Our work is organized as follows. Section 2 defines the coding schemes employed in our
study. Later, in Section 3, we describe the considered metrics and methodology for the performance
comparison of the codes deployed in the Raspi. In Section 4, we show the measurements in the Raspi
models of the mentioned metrics providing full discussions about the observed operational regimes
and effects. Final conclusions and future work are reviewed in Section 5.

2. Coding Schemes

In this section, we present the considered coding schemes that are evaluated in the Raspi 1 and 2.
We introduce a definition for the primitive coding operations, e.g., encoding, decoding and recoding
(where it applies) for each coding scheme. Later, we address particular schemes, which are obtained
by modifying the basic coding operations that provide better processing speeds, which is particularly
relevant for the Raspi. Finally, we include a review of algorithms for network coding that exploit the
multicore capabilities of the Raspi 2.

2.1. Random Linear Network Coding

RLNC is an example of intra-session NC, i.e., data symbols from a single flow are combined
with each other. In this type of network coding, g original data packets, also called a generation [26],
Pj, j ∈ [1, 2, . . . , g], each of B bytes, are used to create coded packets using random linear combinations
of the original ones. In the following subsections, we describe the basic functionalities of RLNC.

2.1.1. Encoding

In RLNC, any coded packet is a linear combination of all of the original packets. For the coding
scheme, packets are seen as algebraic entities formed as a sequence of elements from GF(q), which is
a GF of size q. Later, each original packet is multiplied by a coding coefficient from GF(q). The coding
coefficients are chosen uniformly at random from the GF by the encoder. To perform the multiplication
of a packet by a coding coefficient, the coefficient is multiplied for each of the elements in the
concatenation that composes an original packet, preserving the concatenation. Later, all resulting
packets are added within the GF arithmetics together to generate a coded packet. Thus, a coded packet
can be written as:
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Ci =
g⊕

j= 1

vij ⊗ Pj, ∀i ∈ [1, 2, . . .) (1)

In (1), Ci is the generic coded packet. In principle, the encoder may produce any number
of coded packets, but a finite number is produced in practice given that a decoder needs only g
linearly-independent coded packets to decode the batch. Furthermore, in (1), vij is the coding coefficient
used in the i-th coded packet and assigned to multiply the j-th original packet.

For indicating to a receiver how the packets were combined to create a coded one, a simple, yet
versatile choice is to append its coding coefficients as a header in the coded packet. Hence, an amount
of overhead is included in every coded packet given that we need to provide some signaling needed
for decoding. The coding coefficients overhead amount for packet i, |vi|, can be quantified as:

|vi| =
g

∑
j= 1

|vij| = g × �log2(q)� [bits]. (2)

2.1.2. Decoding

To be able to decode a batch of g packets, a linearly-independent set of g coded packets, Ci,
i ∈ [1, 2, . . . , g], is required at a decoder. Once this set has been collected for a decoder, the original
packets can be found by computing the solution of a system of linear equations using GF arithmetics.
Thus, we define C =

[
C1 . . . Cg

]T , P =
[
P1 . . . Pg

]T and the coding matrix V that collects the coding
coefficients for each of the g coded packets, as follows:

V =

⎡
⎢⎢⎣

v1
...

vg

⎤
⎥⎥⎦ =

⎡
⎢⎣

v11 . . . v1g
...

. . .
...

vg1 . . . vgg

⎤
⎥⎦ . (3)

Algebraically, decoding simplifies to finding the inverse of V in the linear system C = VP,
which can be achieved using efficient Gaussian elimination techniques [27]. On real applications,
decoding is performed on-the-fly, e.g., the pivots are computed as packets are progressively received,
in order to minimize the computation delay for each step.

A decoder starts to calculate and subtract contributions from each of the pivot elements, e.g.,
leftmost elements in the main diagonal of (3), from top to bottom. The purpose is to obtain the
equivalence V in its reduced echelon form. The steps for reducing the matrix by elementary row
operations are carried out each time a linearly-independent packet is received. Once in reduced
echelon form, packets can be retrieved by doing a substitution starting from the latest coded packet.
In this way, the amount of elementary operations at the end of the decoding process is diminished.

2.1.3. Recoding

As an inherent property of RLNC, an intermediate node in the network is able to create new
coded packets without needing to decode previously-received packets from an encoding source.
Therefore, RLNC is an end-to-end coding scheme that permits one to recode former coded packets at
any point in the network without requiring a local decoding of the data. In principle, a recoded packet
should be indistinguishable from a coded one. Thus, we define a recoded packet as Ri and consider
the coding coefficients wi1, . . . , wig as used to create Ri. Later, a recoded packet can be written as:

Ri =
g⊕

j= 1

wij ⊗ Cj, ∀i ∈ [1, . . .). (4)
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In (4), wij is the coding coefficient used in the i-th recoded packet and assigned to multiply
a previously-coded packet Cj. These coding coefficients are again uniformly and randomly chosen from
GF(q). However, these wij’s are not appended to the previous coding coefficients. Instead, the system
will update the previous coefficients. Due to the linearity of the operation, this update reduces
to recombining the coding coefficients equivalent to each original packet with the weight of
the wi,j.Therefore, we define the local coding matrix W in the same way as it was made for V.
Thus, the local coding matrix can be written as:

W =

⎡
⎢⎢⎣

w1
...

wg

⎤
⎥⎥⎦ =

⎡
⎢⎣

w11 . . . w1g
...

. . .
...

wg1 . . . wgg

⎤
⎥⎦ . (5)

With the definitions from (3) and (5), the recoded packets R =
[
R1 . . . Rg

]T are written as
R = (WV)P. Here, we recognize the relationship between original and recoded packets. The resulting
coding matrix is the multiplication of matrices W and V. Denoting (WV)ij as the element in the i-th
row and j-th column of (WV), this term is the resulting coding coefficient used to create Ri after
encoding the original packet Pj recoding it locally in an intermediate node. Finally, the appended
coefficients for Ri are (WV)ik with k ∈ [1, 2, . . . , g]. By doing some algebra, each (WV)ij term can be
verified to be computed as:

(WV)ij =
g

∑
k = 1

wikvkj , ∀i, j ∈ [1, 2, . . . , g]× [1, 2, . . . , g]. (6)

This update procedure on the coding coefficients is carried by all of the recoders in a given
network, therefore allowing any decoder to compute the original data after Gaussian elimination,
regardless of the amount of times recoding was performed and without incurring in any additional
overhead cost for signaling. Similar to the encoding operation, any decoder that collects a set of g
linearly-independent recoded packets with their respective coefficients will be able to decode the data
as mentioned before in Section 2.1.2.

2.2. Sparse Random Linear Network Coding

In Sparse Random Linear Network Coding (SRLNC), instead of considering all of the packets to
create a coded packet as in RLNC, an encoder sets more coding coefficients to zero when generating
a coded packet with the purpose of reducing the overall processing. Decoding is the same as in RLNC,
but given that the coding matrices are now sparse means that there will be less operations to perform
in the decoding process. Recoding, although theoretically possible, is omitted since it requires the use
of heuristics to keep packets sparse after recoding, which is inherently sub-optimal. In what follows,
we describe the coding scheme with two different methods to produce sparse coded packets.

2.2.1. Method 1: Fixing the Coding Density

A way to control the amount of non-zero coding coefficients is to set a fixed ratio of non-zero
coefficients in the encoding vector of size g. We refer to this fixed ratio as the average coding density d.
Thus, for any coded packet Ci with coding coefficients vij, j ∈ [1, 2, . . . , g], its coding density is defined
as follows:

d =
∑

g
j= 1 f (vij)

g
, f (vij) =

{
0 , vij = 0

1 , vij �= 0
(7)

From the density definition in (7), it can be observed that 0 ≤ d ≤ 1. As g increased, we obtain
more granularity in the density. Notice that the special case of d = 0 has no practical purpose,
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since it implies just zero padded data. Therefore, a practical range for the density excludes the zero
case, 0 < d ≤ 1. Furthermore, in GF(2), there is no benefit of using d > 0.5 in terms of generating
linearly-independent packets [28]. Thus, we limit the range to 0 < d ≤ 0.5 in GF(2).

To achieve a desired average coding density in the coefficients, for each of them, we utilize a set
of Bernoulli random variables all with parameter d as its success probability, i.e., Bj ∼ Bernoulli(d),
∀j ∈ [1, 2, . . . , g]. In this way, we can represent a coded packet in SRLNC as:

Ci =
g⊕

j= 1

Bjvij ⊗ Pj, vij �= 0 ∀i ∈ [1, . . .), d ∈
{
(0, 0.5] , q = 2

(0, 1] , q > 2
(8)

In (8), we have the requirement for the coding coefficient to not be zero, since we want to
ensure that a coding coefficient is generated for any random trial, where Bj = 1. Therefore, in our
implementation of SRLNC, we exclude the zero element and then pick uniformly-distributed random
elements from GF(q)−{0}. Furthermore, we have specified a dependency on the field size for practical
density values. In the case of employing GF(2), the maximum plausible density is restricted up to 0.5,
since higher values incur in more frequent linearly-dependent coded packets [28] accompanied by
higher coding complexity.

Reducing d enables the encoder to decrease the average number of packets mixed to make a coded
one. This reduces the complexity of the encoder since it needs to mix less packets. Moreover, it also
simplifies the decoder processing given that less nonzero coding coefficients are required to be operated
during the Gaussian elimination stage.

The drawback of this scheme is that coded packets from the encoder become more linearly
dependent on each other as the density is reduced. This leads to transmission overhead since another
coded packet is required to be sent for every reception of a redundant packet. Furthermore, this method
may still generate a coded packet, which does not contain any information. For example, we might
find the case where

[
B1, . . . ,Bg

]
= 0 to occur frequently for low densities. In that case, the encoder

discards the coded packet and tries to generate a new one to avoid the negative impact on overall
system performance.

2.2.2. Method 2: Sampling the Amount of Packets to Combine

The method described from (8) results in a fast implementation in terms of execution time for
d ≥ 0.3 [29]. It is however not able to utilize the full performance potential for low densities, as the
total number of Bernoulli trials remains unchanged independently of the density. Thus, we introduce
a second method that permits a faster implementation for low coding densities [29].

For this method, we first obtain the amount of packets that we will combine to create
a coded packet. To do so, a random number, M, of the original packets is used to produce
a coded packet. For our case, M is binomially distributed with parameters g for the number of
trials and d for its success probability, e.g., M ∼ Binomial(g, d). However, when sampling from this
distribution, the case M = 0 occurs with a non-zero probability. In order to handle this special case,
our implementation considers K = max(1,M) as the final amount of packets to be mixed together.
In this way, we always ensure that at least one packet is encoded.

The only caveat is that the case of K = 1 occurs slightly more often than M = 1 in the
original distribution, but for the considered density range in this method, this is not a significant
modification [29]. Then, once the distribution for the number of packets to mix has been defined,
we sample a value m from M and compute k = max(1, m). Later, we create a set K with cardinality k,
e.g., |K| = k, where the elements in K are the indexes of the packets that are going to be considered
for making a coded packet. To compute the indexes of the set K, we do the following algorithm in
pseudo-code:
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Algorithm 1: Computation of the set of indexes for packet combination in SRLNC.
Data: k: Size of K. g: Generation Size
Result: K: The set of non-repeated indexes
K = { };
while |K| �= k do

i = Sample from U(1, g);
if i /∈ K then

Insert i in K;
end

end

In Algorithm 1, the notation U(1, g) stands for a uniform discrete random variable with limits one
and g. The pseudo-code in Algorithm 1 indicates that the set K is filled with non-repeated elements
taken uniformly at random from the continuous interval [1, . . . , g]. Finally, once the set of indexes has
been defined, a coded packet using SRLNC can be written as shown in (9):

Ci =
⊕

m∈K
vim ⊗ Pm, vim �= 0, ∀i ∈ [1, . . .) (9)

2.3. Tunable Sparse Network Coding

Tunable Sparse Network Coding (TSNC) can be considered an extension to SRLNC. The key idea
is not only for the encoder to generate sparse coded packets, but also to modify the code density of the
packets progressively as required. As a decoder accumulates more coded packets, the probability that
the next received coded packet will be linearly dependent increases [30].

Therefore, in TSNC, a simple procedure for controlling this probability is to gradually increase
the coding density as the degrees of freedom (dof) (we refer as the degrees of freedom to the
dimension of the linear span from the coded packets that a decoder has at a given point) increases,
e.g., as the cardinality of the set of linearly-independent coded packets increases. This enables TSNC to
significantly reduce the complexity, particularly in the beginning of the transmission process, and also
to control the decoding delay. For TSNC, we define the budget, b ≥ g, to be a target number of coded
packets a transmitter wants to send to a receiver for decoding a generation of g packets. In some
scenarios, we may set e defined as the excess of linearly-dependent packets sent from the encoder.
This helps to also define the budget as b = g + e.

The difference between b and g is equal to the losses in the channel and the losses due to
linear dependencies. Therefore, in a lossless channel, the budget is:

b(g, d) =
g− 1

∑
i = 0

1
P(i, g, d)

, (10)

where P(i, g, d) is the probability of receiving an innovative coded packet after receiving i
linearly-independent packets with a coding density d. In our implementations, we considered the
lower bound for the innovation probability from [31], given as:

P(i, g, d) ≥ 1 − (1 − d)g− i (11)

Provided a desired budget b and the dof of the decoder, an encoder can estimate the required
coding density for the packets to not exceed the budget. In our implementation, we use feedback
packets to provide the encoder an estimate of the decoder dof at pre-defined points of the
transmission process. The points in the process occur when a decoder obtains a given amount of
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dof. In our implementation, we define r(k) as the dofs of the decoder where it has to send the k-th
feedback in (12).

r(k) =

⌊
g ·
[

2k − 1
2k

]⌋
, k ∈

[
1, 2, . . . , �log2(g)�+ 1

]
(12)

At the beginning of the transmission process, we assume that the encoder starts with an initial
coding density that has been calculated depending on the budget. According to (12), a decoder
sends feedback once it has obtained (rounded down) g/2, 3g/4, 7g/8, . . . degrees of freedom.
The total amount of feedback for this scheme will depend on the generation size. Still, we have
an implementation that limits the amount of feedback to be sent from the decoder in [29].

The transmissions made between feedback packets are called the density regions since the same
estimated density is used for encoding sparse packets. Once a new feedback is received, an encoder
recalculates the coding density for the new region until the next feedback packet is received. Before the
coding density can be estimated, it is essential that the encoder has a good estimate of the decoder’s
dof, but also the remainder of the total budget. To calculate the density, we use bisection to estimate
a fixed density for the density region that satisfies the budget for the k-th density region:

b(r(k), r(k + 1), g, d) =
r(k+1)

∑
i = r(k)

1
P(i, g, d)

=
r(k + 1)

∑
i = r(k)

1
1 − (1 − d)g− i =

b
2k , k ∈ [1, . . .) (13)

The feedback scheme based on the rank reports in (12) roughly splits the remaining coding
regions into two halves. In other words, the first half is the region where the encoder currently operates.
Once an encoder finishes with this region, it proceeds with the second half, where again, it splits this
into two new regions, and so on, until it finishes the transmission for the whole generation. This is also
the case for the budget that is split equally among the two new regions. The very last region will be
assigned the full remainder of the total budget, and the coding density will not vary.

2.4. Network Coding Implementation for the Raspberry Pi Multicore Architecture

The arithmetic operations needed to encode and decode data are, in general, similar. To encode
packets, the encoder needs to perform the matrix multiplication C = VP. On the other hand, decoding
the information requires the decoder to find V−1 and to perform the matrix multiplication P = V−1C.
In both cases, a matrix multiplication is needed. Therefore, to make a practical implementation of
network coding, it is valuable to find a way to optimize the matrix multiplication operations for
multicore architectures.

When designing multi-threaded algorithms for network coding operations, it is possible
to implement the decoding by combining the matrix inversion and the matrix multiplication,
e.g., performing the Gauss–Jordan algorithm over the coding matrix V while performing, in
parallel, row operations on the coded data C. For example, in [32,33], the parallelization of the
row operations are optimized for Graphic Processing Unit (GPU) and Symmetric Multiprocessor (SMP)
systems, respectively. However, the parallelization of such operations provides limited speed ups for
small block sizes (≤2048 bytes). The reason is that operating in a parallel fashion over the same coded
packet Ci requires strained synchronization.

Therefore, to overcome the constraints of tight synchronization, a preferable option is to explicitly
invert the matrix V and then take advantage of optimizations for matrix multiplications, both at
encoding and decoding time. With that purpose, the authors in [34] implemented an algorithm that
adopts the ideas of efficient Basic Linear Algebra Subprograms (BLAS) [35] operations reimplementing
them for finite field operations. Although there are libraries, such as [36,37], that allow highly
optimized finite field BLAS implementations, they work on converting the GF elements into floating
point numbers and back. Even though the approach is efficient for large matrix sizes, the numerical
type conversion overhead is not suitable for matrix sizes of network coding implementations.
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The implemented algorithm in [34] aims to be cache efficient by maximizing the number of
operations performed over a fetched data block. Here, the matrices are divided into square sub-blocks
where we can operate each of them. As a consequence, this technique exploits the spatial locality of
the data, at least for O(n3) algorithms [38]. The optimal block size is architecture dependent. The ideal
block has a number of operands that fit into the system L1 cache, and it is a multiple of the SIMD
operation size.

The idea of the implemented algorithm is to represent each one of the sub-block matrix operations,
matrix-matrix multiplication, matrix-triangle matrix multiplication, triangle-matrix system solving, etc.,
as a base or kernel operation that can be optimized individually using SIMD operations. Each kernel
operation, at the same time, can be represented as a task with inputs and outputs in memory that can
be assigned to the cores as soon as the dependencies are satisfied. The benefit of this method is that
the synchronization relies only on data dependencies, and it does not require the insertion of artificial
synchronization points. Using this technique, the matrix inversion is performed using an algorithm
based on LU factorization [39], and the matrix multiplication is performed by making the various
matrix-matrix multiplications on the sub-blocks.

3. Metrics and Measurement Methodology

Once having defined the coding schemes behavior in terms of encoding and decoding, we
proceed to describe the metrics considered in our study. The goodput is a measure for the effective
processing speed, since it excludes protocol overhead, but considers all delays related with algorithmic
procedures, field operations, hardware processing, multicore coordination (where it applies), etc.
Moreover, both encoding and decoding goodput permit one to observe if coding is a system-block
that limits the end-to-end performance. If a system presents a low goodput, this will affect the Quality
of Experience (QoE) of delay-intolerant applications for the end user. For example, mobile user
applications are typically delay-intolerant. Furthermore, Raspi processors are based on the ARM
architecture, which is the same as in mobile devices, such as smartphones or tablets. Thus, the Raspi
might be used as an experimental tool to get an estimate of the mobile device processing capability,
which is easy-deployable and at a much lower cost than a smartphone.

To complement our study, we review the energy consumption of the Raspi, since this platform is
deployed at a large scale in scenarios where (i) energy is constrained to the lifetime of the device battery
and (ii) the devices could be established in locations that are unavailable for regular maintenance.
Typical use cases of these types of scenarios are sensor applications where devices are positioned for
measurement retrieval without any supervision for large periods of time.

3.1. Goodput

We consider the goodput defined as the ratio of the useful delivered information at the application
layer and the total processing time. We focus on the goodput considering only the coding process,
i.e., we assume that the application data have been properly generated before encoding and also
correctly post-processed after decoding. In this way, we define the goodput for either an encoder or a
decoder as follows:

Rproc =
gB

Tproc
[Byte/second] (14)

In (14), B and g are the packet and generation size, as defined previously, and both represent the
data to be processed. For goodput measurements, we are concerned with quantifying the processing
time for either encoding or decoding g linearly-independent packets. Thus, Tproc is the processing
time required for this processing. In the next subsections, we define two time benchmarks available
in [40]. The purpose of the benchmarks is to quantify the processing time for any of the coding schemes
considered in Section 2.
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3.1.1. Encoding Benchmark

Figure 1 refers to the benchmark setup made for measuring the encoding processing time.
The time benchmark is divided into two parts as a way to exclude the decoding processing time
from the measurements. In the first part, called a pre-run, we quantify the amount of transmitted
coded packets, from Encoder 1 in Figure 1, required for decoding a generation of packets in a
single encoder-decoder link with no packet erasures for a defined configuration of coding scheme,
coding parameters and amount of feedback. In the case of TSNC, we also record the feedback packets
received from the decoder. The purpose of the pre-run is to observe how an encoder behaves with a
given seed within its random number generator. This part of the benchmark is not measured.

The second part is the actual simulation. The objective of this part is to replicate the pre-run to
obtain the encoding speed without spending time decoding the packets. A Reset Encoder 2 in Figure 1
is given the same seed as in the pre-run, and then, we measure the time from which the process start
until we reach the amount of transmitted packets in the pre-run. The measurement is stored as the
encoder Tproc for this generic configuration. For TSNC simulations, the recorded feedback packets are
injected according to the observations in the pre-run.

Figure 1. Encoding goodput benchmark.

3.1.2. Decoding Benchmark

Figure 2 shows the benchmark setup for measuring the decoding processing time. The time
benchmark is divided into two parts as its encoding counterpart, e.g., a pre-run and the actual
simulation. However, some differences occur.

In the pre-run, we still quantify the amount of transmitted coded packets from Encoder 1. Notice that
we include the feedback case because it is necessary for the TSNC scheme. However, now, we store the
transmitted packets instead. The reason being that we want to feed the decoder with the same packets in
the same order. Later, in the actual simulation, a new decoder is given the same packets in the same order
from the pre-run, and then, we measure the time from which the process starts until the decoder finishes
to retrieve the original packets. Finally, this measurement is saved as the decoder Tproc for this general
configuration.
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Figure 2. Decoding goodput benchmark.

3.2. Energetic Expenditure

In large-scale networks where several Raspis might be deployed, both average power and energy
per bit consumption of the devices are relevant parameters that impact the network performance for
a given coding scheme. Hence, we consider a study of these energy expenditure parameters for the
encoding and decoding. We define these metrics and propose a setup to measure them.

The average power specifies the rate at which energy is consumed in the Raspi. Thus, for a given
energy value in the device battery without any external supplies, this metric permits one to infer
the amount of time for which the Raspi can operate autonomously before draining out its battery.
For the energy per bit consumption, it indicates how much energy is expended to effectively transmit
or receive one bit of information taking into account the encoding or decoding operations, respectively.

For our energy measurement campaign, we automate the setup presented in Figure 3 to
sequentially run a series of simulations for a given configuration of a coding scheme and its parameters,
to estimate the energetic expenditure in both of our Raspi models. The energy measurement setup
goal is to quantify the energy consumption of the Raspi over long periods of processing time to obtain
accurate results. A representative sketch of the setup is shown on the computer monitor in Figure 3.

The energy measurement setup presents a Raspi device whose power supply is an Agilent 66319D
Direct Current (DC) source, instead of a conventional power chord supply. To compute the power,
we just need to measure the current, since the Raspi feeds from a fixed input voltage of 5 V set by the
Agilent device, but its electric current demand is variable. Hence, the measured variable is the current
consumed by the device for this fixed input voltage. The output of the measurements are later sent to
a workstation where the raw measurement data are processed.

Figure 3. Energy measurement setup.

To identify each experiment, we classified the electrical current samples into two groups based
on the magnitude. In our measurements, the groups to be reported are the idle current Iidle and the
processing current Iproc. The former is the current the Raspi requires while in idle state, meaning that
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no processing is being carried out. The latter stands for the current needed during the encoding or
decoding processing of the packets. Measurements are taken either when Iidle or Iproc are observed.
For the processing currents, its current measurements are made while the goodput benchmarks are
running for a given configuration of a coding scheme with its parameters. For each configuration,
103 simulations from the goodput benchmarks are carried out during the period of time where Iproc

occurs. We remark that a simulation is the conveying of g linearly-independent coded packets.
Finally, for each configuration, each set of current measurements is enumerated to map it with its
average power value and the corresponding goodput measurements. At post-processing, from the
average power expenditure and the results from the goodput measurements, it is possible to extract
the energy per bit consumption. We elaborate further on this post-processing in the next subsections.

3.2.1. Average Power Expenditure

To extract the average power for a given configuration in our setup, we first calculate the average
current in the idle state Iidle,avg and the processing state Iproc,avg for all of the available sample for the
given configuration. Regardless of the current type, the average value of the sample set of a given
number of samples Ns is:

Iavg =
1

Ns

Ns

∑
k = 1

Ik [Ampere] (15)

With the average current from (15), we compute the average current used for processing with
respect to the idle state, by subtracting Iidle,avg from Iproc,avg. Then, the result is multiplied by the
supply voltage to obtain the average power during the considered configuration, given as:

Pavg = Vsupply(Iproc,avg − Iidle,avg) [Watt] (16)

3.2.2. Energy per Bit Consumption

To get this metric for a given configuration, we express the energy as the product of the
average power by the processing time Tproc (s/byte) obtained from the goodput measurement for the
same configuration. In this way, we can relate the processing time with the goodput, the packet and
the generation size as shown:

Eb = PavgTproc,bit = Pavg × Tproc

8gB
=

Pavg

8Rproc
[Joule] (17)

4. Measurements and Discussion

With the methodology and setups from the previous sections, we proceed to obtain the
measurements for the Raspi 1 and 2 devices. We consider the following set of parameters for
our study: For all of the codes, we use g = [16, 32, 64, 128, 256, 512] and q = [2, 28].
For the single-core implementations and cases when the generation size is varied,
B = 1600 bytes. We consider another setup where only the packet size varies, B = [64, 128,
256, 512, 1024, 2048, 4096, 8192, 16, 384, 32, 768, 65, 536, 131, 072] bytes with a generation size fixed on
g = [16, 128] to see the performance of the Raspis in low and high packet size regimes. The third
setup we considered used B = 1536 bytes for the optimized multicore implementation. SRLNC was
measured with the densities d = [0.02, 0.1]. For TSNC, we considered excess packets, e = [8, 16],
so that the budget is b = g + e. In all our measurement reports, to simplify their review, we first
present the results for the Raspi 1 and later continue with the Raspi 2.
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4.1. Goodput

For the goodput, we separate the results according to their time benchmarks as we did in Section 3.
We proceed first with the measurements related to the encoder and later review the case of the decoder.

4.1.1. Encoding

Figure 4 shows the results of the encoder goodput measurements for the Raspi 1. Figure 4a,b
presents goodput as a function of the generation size for GF(2) and GF(28), respectively, for a packet
size of B = 1600 bytes. Figure 4c,d presents the same metric, but now as a function of the packet size
for GF(2) and GF(28), respectively. In this case, the generation size was set to g = 16 packets.

Similarly, Figure 5 shows the same set of measurements for the Raspi 2. Hence, Figure 5a,b
presents goodput as a function of the generation size and Figure 5c,d as a function of the packet size
for the same cases mentioned previously. Therefore, we will proceed to make the results analysis with
Raspi 1 and indicate which similarities or differences occur for the Raspi 2 and when they occur.

As can seen from Figures 4a,b and 5a,b, which indicate the goodput dependency on the generation
size, the encoding goodput gets reduced as the generation size increases, regardless of the Raspi
model observed. The reason is that the encoding operation processing is O(g) because it is required to
create g coding coefficients and to do g multiplications for each packet. This makes the goodput scale
as the inverse of the generation size.

In the sets of figures shown in Figures 4 and 5, it can be observed that the goodput for GF(2) is
higher than for GF(28), but still around the same order of magnitude. This difference is explained by
noticing that GF arithmetics in the binary field are simply XOR or AND operations. These operations
are implemented efficiently in architectures nowadays. However, the operations in GF(28) are more
complex given that the finite field arithmetics have to be performed with lookup tables, which at the
end reduces the computing speed giving a lower goodput when compared with the binary field.
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(a) (b)

(c) (d)

Figure 4. Encoder goodput measurements for the Raspi 1. (a) Goodput vs. generation size for q = 2;
(b) goodput vs. generation size for q = 28; (c) goodput vs. packet size for q = 2, g = 16; (d) goodput vs.
packet size for q = 28, g = 16.
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(a) (b)

(c) (d)

Figure 5. Encoder goodput measurements for the Raspi 2. (a) Goodput vs. generation size for q = 2;
(b) goodput vs. generation size for q = 28; (c) goodput vs. packet size for q = 2, g = 16;
(d) goodput vs. packet size for q = 28, g = 16.

In Figures 4a,b and 5a,b, it can be seen that the goodput trends of five codes are a function
of the generation size: RLNC, SRLNC with d = [0.02, 0.1] and TSNC, with an extra parameter
that we mention. We define C as the number of density regions in the TSNC transmission process.
The maximum number of possible regions depends on the generation size (12). The larger the
generation, the more density regions may be formed and the more density changes are possible.
Throughout this paper, TSNC is configured to use the maximum number of density regions possible.
As there can be at least C = 1 density region in a transmission, we use C = 0 to indicate the maximum
possible density regions. This is used for TSNC in plots where the generation size is not fixed. For the
plots in the mentioned figures from the encoder goodput measurements, RLNC presents the lowest
performance in terms of goodput and TSNC with e = 16, the highest regardless of the Raspi model.
Given that the processing time depends on the amount of coded packets required to be created, RLNC is
the slowest to process since it must use all of the g original packets. Later, sparse codes process the
data at a larger rate since less packets are being mixed when creating a coded packet. The caveat of
these schemes is that the sparser the code, the more probable the occurrences of linearly-dependent
packets are. Therefore, basically, the sparser the codes, the more overhead due to the transmissions
of linearly-dependent packets. Excluding the coding coefficients overhead, the overhead due to
transmissions of linearly-dependent packets might be high for the sparse schemes. For example, if we
consider TSNC with e = 16 and g = 16 in Figure 4a, the budget in this case permits one to send up
to 32 packets, which is 2× the generation size for an overhead of 100% excluding the overhead from
appending the coding coefficients. This happens because TSNC has been allowed to add too much
redundancy in this case. For RLNC, this is not the case, since the occurrence of linearly-dependent
coded packets is small, because all coding coefficients are used. Even for GF(2), the average amount of
redundant packets for RLNC has been proven to be 1.6 packets after g have been transmitted [41,42],
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but less than the cases where sparse codes are utilized. Overall, we observe that there is a trade-off
between goodput and linearly-dependent coded packets’ transmission overhead.

For Figures 4c,d and 5c,d, we see the packet size effect in the encoding goodput in both Raspi
models and for a fixed generation size. For TSNC in this case, we allow for five density changes during
the generation transmission and again consider the same budgets as before. In all of the cases, we
observe that there is an optimal packet size with which to operate. When reviewing the specifications
of the Raspi 1, it uses an L1 cache of 16 KiB. Hence, the trends in the packet size can be explained in
the following way: For low packet sizes, the data processing does not overload the Central Processing
Unit (CPU) of the Raspi, so the goodput progressively increases given that we process more data as
the packet size increases. However, after a certain packet size, the goodput gets affected, since the
cache starts to saturate. The packets towards the cache needs to have more processing. Beyond this
critical packet size, the CPU just queues processing, which incurs larger delay reducing the goodput.

If we consider the previous effect when reviewing the trends in the mentioned figures, in all of
the models, we observe that the maximum coding performance is not at 16 KiB, but at a smaller value
depending on the model, field size and coding scheme considered. The reason is that the CPU needs
to allocate computational resources to other processes from the different tasks running in the Raspi.
Then, given that there are various tasks from other applications for proper functioning running in the
Raspi at the same time as coding, the cache space is filled also with the data from these tasks, thus
diminishing the cache space available for coding operations.

For the Raspi 1 model, we observe in Figure 4c that the critical packet size for RLNC using GF(2)
occurs at 1 KiB, whereas for the sparse codes, it is close to 8 KiB in most cases for GF(2). This difference
takes place since the sparse codes mix less packets than RLNC, which turns into less data loading in
the cache for doing computations. For a density of d = 0.1, a packet size of B = 8 KiB and g = 16
packets, we observe that roughly �gd� = 2 packets are inserted in the cache when calculating a coded
packet with this sparse code. Loading this into the cache, this stands for 16 KiB, which is the cache size.
A similar effect occurs for the other sparse codes. However, for RLNC given that it is a dense code
since d → 1, RLNC packets load data from all of the g = 16 coding coefficients, which accounts for the
16 KiB of the cache size. In Figure 4d, although the ideal packet size remains the same for RLNC and
the sparse codes, the final goodput is lower due to the field size effect.

The effects mentioned for the Raspi 1 were also observed for the Raspi 2 as mentioned previously.
Still, the Raspi 2 achieves roughly 5× to 7× gains in terms of encoding speed when comparing the
goodputs in Figures 4 and 5, given that it has an ARM Cortex A7 (v7) CPU and twice the Random
Access Memory (RAM) size than the ARM1176JZF-S (v6) core of the Raspi 1 model.

In Figure 5c,d, we observe that the packet size for the maximum RLNC goodput has shifted
towards 8 KiB, indicating that the Raspi 2 is able to handle 16 × 8 KiB = 128 KiB. This is possible
because the Raspi 2 has a shared L2 cache of 256 KiB allowing it to still allocate some space for the
data to be processed while achieving a maximum goodput of 105 MB/s.

4.1.2. Decoding

Similar to the encoding goodput, in this section, we review decoder goodput in terms of
performance and configurations. Figure 6 shows the results of the decoder goodput measurements for
the Raspi 1 and Figure 7 for the Raspi 2.

In Figures 6 and 7, we observe the same generation and packet size effects reported in the
encoding case. However, we do observe in Figures 6a,b and 7a,b that doubling the generation size
does not reduce the goodput by a factor of four. In principle, given that Gaussian elimination
scales as O(g3) (and thus, the processing time), we would expect the goodput to scale as
O(Rproc,dec) = O(g/g3) = O(g−2). This would imply that doubling the generation size should
reduce the goodput by a factor of four, which is not the case. Instead, the goodput is only reduced by
a factor of two. This is only possible if the Gaussian elimination is O(g2). A study in [23] for RLNC
speeds in commercial devices indicated that this is effectively the case. The reason is that the g2 scaling
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factor in the scaling law of the Gaussian elimination is much higher than the g3 scaling for g < 512.
Particularly, this factor relates to the number of field elements in a packet size as mentioned in [23].

Another difference with the encoding goodput resulting in the same figures is that even
though TSNC with e = 16 packets provides the fastest encoding, it does not happen to be the
same for the decoding. For this very sparse scheme, the decoding is affected by the amount of
linearly-dependent packets generated, which leads to a higher delay in some cases (particularly in
g = [64, 128]). For other generation sizes, the performance of sparse codes is similar.

(a) (b)

(c) (d)

Figure 6. Decoder goodput measurements for the Raspi 1. (a) Goodput vs. generation size for q = 2;
(b) goodput vs. generation size for q = 28; (c) goodput vs. packet size for q = 2, g = 16;
(d) goodput vs. packet size for q = 28, g = 16.

(a) (b)

Figure 7. Cont.

170



Electronics 2016, 5, 66

(c) (d)

Figure 7. Decoder goodput measurements for the Raspi 2. (a) Goodput vs. generation size for q = 2;
(b) goodput vs. generation size for q = 28; (c) goodput vs. packet size for q = 2, g = 16; (d) goodput vs.
packet size for q = 28, g = 16.

4.2. Average Power

With the energy measurement setup described in Section 3.2, we compute the average power
of each device from their electric current consumption across time in Figure 8a,b. In each figure,
the electric current values are classified into three possible currents: idle, transition and processing.
These values are identified by our post-processing. Later, the values in red are idle currents, green for
transitions and blue for processing.

(a)

(b)

Figure 8. Electric current for each Raspi model. (a) Electric current for the Raspi 1 model;
(b) electric current for the Raspi 2 model.

For a given configuration of a coding scheme, device type and its parameters, only electrical
current processing values are present. In general, we associate the current samples from a given
configuration with its goodput through a timestamp. In this way, we relate goodput and
power/energy measurements. Once having identified the electric current values, we compute the
averages for each configuration as described in Section 3.2. In the presented current samples,
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we observe the presence of bursty noise. Nevertheless, by taking the average as described in (15),
we remove this contribution in the average processing current.

By reviewing the processing current samples in Figure 8a,b, we observe that the average
processing current does not change significantly for each Raspi model in all of the shown configurations.
Therefore, we approximate the electric current consumption for the devices and compute the average
power as indicated in (16). The results are shown in Table 1.

Table 1. Average power for the Raspi models.

Raspi Model Iidle,avg (A) Iproc,avg (A) Pavg (W)

Raspi 1 0.320 0.360 0.200
Raspi 2 0.216 0.285 0.345

From Table 1, we notice that the power expenditure for both models is almost the same. Thus, the
energy behavior is mostly dependent on the goodput trends, since the power is just a scaling constant.

4.3. Energy per Bit

With power and goodput measurements, we compute the energy per bit of the
previously-mentioned cases as described in (17). The trends of the energy per bit are the inverse of
the goodput since both metrics are related by an inverse law. As made with the goodput, we separate
the result descriptions according to the operation carried out by the Raspi: encoding and decoding.
Besides this, we differentiate between the models in our study. The energy per bit consumption
removes the dependency on the amount of packets, helping to normalize the results and indicating
energy consumption on a fair basis for all of the configurations and coding operations involved in
the study.

4.3.1. Encoding

Figures 9 and 10 show the encoding energy per bit measurements for the Raspi 1 and 2
models, respectively. We now proceed to analyze first the Raspi 1 case pointing out proper differences
with the Raspi 2 when applicable.

In Figure 9a,b, we see the dependency of the energy per bit processed on the generation size for
the Raspi 1 model. In these types of plots, incrementing the generation size incurs more processing
time per byte sent, which leads to more processing time per bit sent. For RLNC, the energy trends
scale as the processing time scales, which is O(g). For sparse codes, this trend is scaled by the density,
thus for sparse, we have O(�gd�), which can be appreciated in the same figures. We do also notice
that using GF(2) is energy-wise efficient on a per-bit basis since less operations are used to perform
the GF arithmetics, which reduces the amount of energy spent.

In Figure 9c,d for the same device, we exhibit the relationship between the energy per bit processed
on the packet size, which is the inverse of the goodput vs. the packet size scaling law. We set g = 128 in
this case to observe energy per bit consumption in the regime where the processing time is considerable.
As we notice again in this case, GF(2) presents as the field with the smallest energy per bit consumption
given that is the one that has the least complex operations. The trends for the energy can be explained
as follows: As the packet size increases, we process more coded bits at the same time, which increases
the encoding speed, until we hit the critical packet size. After this value, we spend more time queueing
data towards the cache besides the processing, which increases the time spent per processed bit and,
thus, the energy.

In Figure 10a–d, we show the encoding energy per bit consumption for the Raspi 2. We clearly
see that the effects discussed for the Raspi 1 also apply as well for the Raspi 2. Moreover, given that
the average power is in the same order, but the Raspi 2 is a faster device, the energy costs for the
Raspi 2 are 2× less than the Raspi 1 when referring to variable generation sizes and a fixed packet size.
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Furthermore, these costs are one order of magnitude less for the Raspi 2 with respect to the Raspi 1
regarding the case of a fixed generation size and a variable packet size. This makes the Raspi 2
achieve a minimum encoding energy consumption per bit processed of 0.2 nJ for the binary field in the
mentioned regime.

(a) (b)

(c) (d)

Figure 9. Encoder energy measurements for the Raspi 1. (a) Energy per bit vs. generation size for q = 2;
(b) energy per bit vs. generation size for q = 28; (c) energy per bit vs. packet size for q = 2, g = 128;
(d) energy per bit vs. packet size for q = 28, g = 128.

(a) (b)

Figure 10. Cont.
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(c) (d)

Figure 10. Encoder energy measurements for the Raspi 2. (a) Energy per bit vs. generation size
for q = 2; (b) energy per bit vs. generation size for q = 28; (c) energy per bit vs. packet size for
q = 2, g = 128; (d) energy per bit vs. packet size for q = 28, g = 128.

4.3.2. Decoding

In Figure 11a–d, we show the encoding energy per bit consumption for the Raspi 1.
Again, we notice very similar behavior and trends as previously reviewed for the encoding energy per
bit expenditure. In this case, we focus on performance among the coding schemes since the behavior
and trends were previously explained for the encoding case. Later, we introduce the decoding energy
results for the Raspi 2 doing relevant comparisons with the Raspi 1.

Some differences occur due to the nature of decoding. In this situation, the reception of
linearly-dependent coded packets just increases the decoding delay, therefore reducing the performance
of some coding schemes in terms of the energy per bit consumption. For example, we notice that
using SRLNC with d = 0.02 outperforms TSNC with C = 0 and e = 16, for most of the cases of the
variable generation size curves and in all of the cases of the variable packet size curves of Figure 11.
This is a clear scenario, where the decoding delay is energy-wise susceptible to the transmissions of
linearly-dependent coded packets. With the Raspi 1, decoding energies per processed bit of 2 nJ or
similar are possible.

(a) (b)

Figure 11. Cont.
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(c) (d)

Figure 11. Encoder energy measurements for the Raspi 1. (a) Energy per bit vs. generation size
for q = 2; (b) energy per bit vs. generation size for q = 28; (c) energy per bit vs. packet size for
q = 2, g = 128; (d) energy per bit vs. packet size for q = 28, g = 128.

Finally, in Figure 12a–d; we introduce the decoding energy per bit consumption for the Raspi 2.
Here, we obtain a reduction of an order of magnitude in energy per processed bit due to the speed
of the Raspi 2. For example, it can be seen that for the binary field with g = 16 packets, we achieve
a decoding energy consumption per bit processed close to 0.1 nJ in practical systems.

(a) (b)

(c) (d)

Figure 12. Decoder energy measurements for the Raspi 2. (a) Energy per bit vs. generation size
for q = 2; (b) energy per bit vs. generation size for q = 28; (c) energy per bit vs. packet size for
q = 2, g = 128; (d) energy per bit vs. packet size for q = 28, g = 128.
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4.4. Multicore Network Coding

To review the performance of NC in a multicore architecture, we implemented the algorithm
described in Section 2.4 on the Raspi 2 Model B, which features four ARMv7 cores in a Broadcom
BCM2836 System on Chip (SOC) with a 900-MHz clock. Each core has a 32-KiB L1 data cache
and a 32-KiB L1 instruction cache. The cores share a 512-KiB L2 cache. All of the measured results,
including the baseline results, were obtained with NEON enabled. The Raspi 2 has a NEON
extension instruction set, which provides 128-bit SIMD instructions that speed the computations.
Figures 13–15 show the encoding and decoding goodput in MB per second for different generation sizes,
g = [1024, 128, 16], respectively. For g = [128, 16], the displayed results are the mean values
over 1000 measurements, while for g = 1024, they are the mean values over 100 measurements.
The size of each coded packet was fixed to 1536 bytes, since that is the typical size of an Ethernet
frame. The blocked operations were performed dividing the matrices in squared sub-blocks of
16, 32 , 64, . . . , 1024 operands (words in the Galois field) in height and width. The figures show only
block sizes of 16 × 16 and 128 × 128 operands, since with bigger block sizes, the operands do not fit in
the cache. Several test cases are considered and detailed.

4.4.1. Baseline Encoding

The baseline results involve no recording of the Direct Acyclic Graph (DAG) and are performed
in a by-the-book fashion. The encoder uses only one thread. The difference between the non-blocked
and blocked encoding schemes is that in the blocked scheme, the matrix multiplications are performed
dividing the matrices into sub-blocks in order to make the algorithm cache efficient, as described in
Section 2.4.

4.4.2. Encoding Blocked

The encoding results are obtained using the method described in Section 2.4. The time recorded
includes the dependencies resolving, creation of the DAG and the task scheduling. In practice, it would
suffice to calculate and store this information only once per generation size.

4.4.3. Decoding Blocked

The difference between encoding and decoding is that the decoding task also involves the matrix
inversion. Similarly, as with the encoding results, the time recorded includes the dependencies
resolving, the creation of the DAG and the task scheduling. However, to decode, these calculations are
also made for inverting the matrix of coding coefficients.

For g = 1024, the blocked baseline measurements outperforms the non-blocked variant.
This means that making the matrix multiplication algorithm cache efficient brings an increase in
goodput by a factor of 3.24. When using the algorithm described in Section 2.4, encoding with
four cores is on average 3.9× faster than with one core. Similarly, decoding with four codes is 3.9×
faster, on average, than decoding with a single core. Figure 13 shows that the implemented algorithm,
by exploiting cache efficiency and only three extra cores provides a 13× gain compared with traditional
non-blocked algorithms. With g = 1024, the matrix inversion becomes more expensive than at smaller
generations sizes. Therefore, the decoding goodput is 58% of the encoding goodput.

For g = 128, the differences between the baselines operations show that a blocked algorithm is 8%
faster than the non-blocked variant. Encoding with four cores is 2.89× faster than with a single core.
Due to the smaller matrix sizes, the gain when using blocked operations in the baselines is not that
significant when compared with g = 1024. For the same reason, the matrix inversion is less expensive.
As a consequence, the decoding goodput is 46% of the encoding goodput.

176



Electronics 2016, 5, 66

Figure 13. Encoding and decoding performance for g = 1024. Block size: 128 × 128.

Figure 14. Encoding and decoding performance for g = 128. Block size: 128 × 128.

Figure 15. Encoding and decoding performance for g = 16. Block size: 16 × 16.
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When g = 16, the gains of blocked operations are negligible compared with the non-blocked ones.
The reason behind this behavior is that all of the data fits in the L1 cache. For the scheduled version,
since the problem to solve is so small, the gain when using four cores is a factor of 2.45 compared with
a single core and 1.46 compared with two cores. Therefore, the practical benefits in using four cores
instead of two are reduced.

The differences in goodput, for all generation sizes, between the blocked baseline and the
single threaded scheduled measurements are due the time spent resolving the dependencies and
the scheduling overhead. These effects are negligible for big generation sizes, while considerable for
small matrices. For instance, Figure 15 shows that the encoding speed when using one core with the
described algorithm is 78% the encoding speed without the recording and calculation of the DAG.

4.4.4. Comparison of the Load of Matrix Multiplications and Inversions

To compare how much slower the matrix multiplication is with respect to the matrix inversion
for different generation sizes, we ran a set of tests. We used a single core to perform the operations.
We changed the generation sizes, performed matrices multiplications and matrix inversions and
measured the time spent doing so, which we name Tmult and Tinv. We calculate the ratio between
these two measured times defined as r = Tmult

Tinv
. Table 2 summarizes the results. The bigger the matrix

size, the smaller is the calculated ratio. This means that when the problems are bigger, the decoding
goodput decreases compared with the encoding goodput.

Table 2. Multiplication and inversion run-times for different generation sizes with one thread.

g Tmult (ms) Tinv (ms) r

16 1.495 0.169 8.8

32 5.365 0.514 10.4

64 20.573 2.024 10.1

128 81.357 11.755 6.9

256 326.587 75.451 4.3

512 1354.012 540.469 2.5

1024 5965.284 4373.329 1.3

5. Conclusions

Given the usefulness of the Raspi as a low-complex processing node in large-scale networks and
network coding techniques against state-of-the-art routing, we provide a performance evaluation of
network coding schemes focusing on processing speed and energy consumption for two Raspi models.
The evaluation includes algorithms that exploit both SIMD instructions and multicore capabilities of
the Raspi 2. Our measurements show that processing speeds of more than 80 Mbps and 800 Mbps are
attainable for the Raspi Model 1 and 2, respectively, for a wide range of network coding configurations
and maintaining a processing energy below 1 nJ/bit (or even an order of magnitude lower) in similar
configurations. For the use of multithreading, we quantify processing gains ranging from 2× for
g = 16 to 13× for g = 1024 when employing four threads each in a different core. Future work
in the use of Raspi devices will focus on considering: (i) the performance of the Raspi in scenarios
with synthetic packet losses; (ii) wireless networks where real packet losses can occur; and (iii) other
topologies, such as broadcast or the cooperative scenario, to compare with theoretical results in order
to evaluate the performance of different network codes with the Raspi.
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Abbreviations

The following abbreviations are used in this manuscript:

6LoWPAN IPv6 over low power Wireless Personal Area Networks
ARM advanced RISC machine
BLAS basic linear algebra subprograms
CPU central processing unit
D2D device to device
DAG direct acyclic graph
DC direct current
dof degrees of freedom
GB Gigabyte
GF Galois field
GPU graphic processing unit
IoT Internet of Things
IP Internet Protocol
LAN local area network
LDPC low density parity check
MAC medium access control
NC network coding
NFS network file system
OS operating system
PC personal computer
QoE quality of experience
RAM random access memory
Raspi Raspberry Pi
RLNC random linear network coding
SCP secure copy
SIMD single instruction multiple data
SMP symmetric multiprocessor
SOC system on chip
SRLNC sparse random linear network coding
SSH secure shell
Telnet Telnet
TSNC tunable sparse network coding
USB Universal Serial Bus
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3. Vujović, V.; Maksimović, M. Raspberry Pi as a Wireless Sensor node: Performances and constraints.
In Proceedings of the 2014 37th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, 26–30 May 2014; pp. 1013–1018.

4. Kruger, C.P.; Abu-Mahfouz, A.M.; Hancke, G.P. Rapid prototyping of a wireless sensor network gateway
for the internet of things using off-the-shelf components. In Proceedings of the 2015 IEEE International
Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; pp. 1926–1931.

5. Mahmoud, Q.H.; Qendri, D. The Sensorian IoT platform. In Proceedings of the 2016 13th IEEE Annual
Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2016;
pp. 286–287.

179



Electronics 2016, 5, 66

6. Wirtz, H.; Rüth, J.; Serror, M.; Zimmermann, T.; Wehrle, K. Enabling ubiquitous interaction with
smart things. In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), Seattle, WA, USA, 22–25 June 2015; pp. 256–264.

7. Alletto, S.; Cucchiara, R.; Fiore, G.D.; Mainetti, L.; Mighali, V.; Patrono, L.; Serra, G. An indoor
location-aware system for an IoT-based smart museum. IEEE Internet Things J. 2016, 3, 244–253.

8. Jalali, F.; Hinton, K.; Ayre, R.; Alpcan, T.; Tucker, R.S. Fog computing may help to save energy in
cloud computing. IEEE J. Sel. Areas Commun. 2016, 34, 1728–1739.

9. Ueyama, J.; Freitas, H.; Faical, B.S.; Filho, G.P.R.; Fini, P.; Pessin, G.; Gomes, P.H.; Villas, L.A. Exploiting the
use of unmanned aerial vehicles to provide resilience in wireless sensor networks. IEEE Commun. Mag.
2014, 52, 81–87.

10. Ahlswede, R.; Cai, N.; Li, S.Y.; Yeung, R.W. Network information flow. IEEE Trans. Inf. Theory 2000,
46, 1204–1216.

11. Koetter, R.; Médard, M. An algebraic approach to network coding. IEEE/ACM Trans. Netw. 2003,
11, 782–795.

12. Gallager, R.G. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, 8, 21–28.
13. Reed, I.S.; Solomon, G. Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304.
14. Ho, T.; Médard, M.; Koetter, R.; Karger, D.R.; Effros, M.; Shi, J.; Leong, B. A random linear network coding

approach to multicast. IEEE Trans. Inf. Theory 2006, 52, 4413–4430.
15. Chachulski, S.; Jennings, M.; Katti, S.; Katabi, D. Trading structure for randomness in wireless

opportunistic routing. SIGCOMM Comput. Commun. Rev. 2007, 37, 169–180.
16. Katti, S.; Rahul, H.; Hu, W.; Katabi, D.; Médard, M.; Crowcroft, J. XORs in the air: Practical wireless

network coding. IEEE/ACM Trans. Netw. 2008, 16, 497–510.
17. Pedersen, M.V.; Fitzek, F.H. Implementation and performance evaluation of network coding for cooperative

mobile devices. In Proceedings of the 2008 IEEE International Conference on Communications Workshops
(ICC Workshops’ 08), Beijing, China, 19–23 May 2008; pp. 91–96.

18. Pedersen, M.; Heide, J.; Fitzek, F. Kodo: An open and research oriented network coding library.
In Networking 2011 Workshops; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2011; Volume 6827, pp. 145–152.

19. Hundebøll, M.; Ledet-Pedersen, J.; Heide, J.; Pedersen, M.V.; Rein, S.A.; Fitzek, F.H.
Catwoman: Implementation and performance evaluation of IEEE 802.11 based multi-hop networks using
network coding. In Proceedings of the 2012 76th IEEE Vehicular Technology Conference (VTC Fall), Québec
City, QC, Canada, 3–6 September 2012; pp. 1–5.

20. Johnson, D.; Ntlatlapa, N.; Aichele, C. Simple pragmatic approach to mesh routing using BATMAN.
In Proceedings of the 2nd IFIP International Symposium on Wireless Communications and Information
Technology in Developing Countries, CSIR, Pretoria, South Africa, 6–7 October 2008.

21. Pahlevani, P.; Lucani, D.E.; Pedersen, M.V.; Fitzek, F.H. Playncool: Opportunistic network coding for local
optimization of routing in wireless mesh networks. In Proceedings of the 2013 IEEE Globecom Workshops
(GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 812–817.

22. Krigslund, J.; Hansen, J.; Hundebøll, M.; Lucani, D.; Fitzek, F. CORE: COPE with MORE in Wireless
Meshed Networks. In Proceedings of the 2013 77th IEEE Vehicular Technology Conference (VTC Spring),
Dresden, Germany, 2–5 June 2013; pp. 1–6.

23. Paramanathan, A.; Pedersen, M.; Lucani, D.; Fitzek, F.; Katz, M. Lean and mean: Network coding for
commercial devices. IEEE Wirel. Commun. Mag. 2013, 20, 54–61.

24. Seferoglu, H.; Markopoulou, A.; Ramakrishnan, K.K. I2NC: Intra- and inter-session network coding for
unicast flows in wireless networks. In Proceedings of the 30th IEEE International Conference on Computer
Communications ( INFOCOM), Shanghai, China, 10–15 April 2011; pp. 1035–1043.

25. Paramanathan, A.; Pahlevani, P.; Thorsteinsson, S.; Hundebøll, M.; Lucani, D.; Fitzek, F. Sharing the Pi:
Testbed Description and Performance Evaluation of Network Coding on the Raspberry Pi. In Proceedings
of the 2014 IEEE 79th Vehicular Technology Conference, Seoul, Korea, 18–21 May 2014.

26. Chou, P.A.; Wu, Y.; Jain, K. Practical network coding. In Proceedings of the 41st Annual Allerton
Conference on Communication, Control, and Computing, Monticello, IL, USA, 1–3 October 2003.

27. Fragouli, C.; Le Boudec, J.Y.; Widmer, J. Network coding: An instant primer. ACM SIGCOMM Comput.
Commun. Rev. 2006, 36, 63–68.

180



Electronics 2016, 5, 66

28. Pedersen, M.V.; Lucani, D.E.; Fitzek, F.H.P.; Soerensen, C.W.; Badr, A.S. Network coding designs suited for
the real world: What works, what doesn’t, what’s promising. In Proceedings of the 2013 IEEE Information
Theory Workshop (ITW), Seville, Spain, 9–13 September 2013; pp. 1–5.

29. Sorensen, C.W.; Badr, A.S.; Cabrera, J.A.; Lucani, D.E.; Heide, J.; Fitzek, F.H.P. A Practical View on Tunable
Sparse Network Coding. In Proceedings of the 21th European Wireless Conference European Wireless,
Budapest, Hungary, 20–22 May 2015; pp. 1–6.

30. Feizi, S.; Lucani, D.E.; Médard, M. Tunable sparse network coding. In Proceedings of the 2012 International
Zurich Seminar on Communications (IZS), Zurich, Switzerland, 29 February–2 March 2012; pp. 107–110.

31. Feizi, S.; Lucani, D.E.; Sorensen, C.W.; Makhdoumi, A.; Medard, M. Tunable sparse network coding for
multicast networks. In Proceedings of the 2014 International Symposium on Network Coding (NetCod),
Aalborg Oest, Denmark, 27–28 June 2014; pp. 1–6.

32. Shojania, H.; Li, B.; Wang, X. Nuclei: GPU-Accelerated Many-Core Network Coding. In Proceedings
of the IEEE 28th Conference on Computer Communications (INFOCOM 2009), Rio de Janeiro, Brazil,
20–25 April 2009; pp. 459–467.

33. Shojania, H.; Li, B. Parallelized progressive network coding with hardware acceleration. In Proceedings of
the 2007 Fifteenth IEEE International Workshop on Quality of Service, Evanston, IL, USA, 21–22 June 2007;
pp. 47–55.

34. Wunderlich, S.; Cabrera, J.; Fitzek, F.H.; Pedersen, M.V. Network coding parallelization based on matrix
operations for multicore architectures. In Proceedings of the 2015 IEEE International Conference on
Ubiquitous Wireless Broadband (ICUWB), Montreal, QC, Canada, 4–7 October 2015; pp. 1–5.

35. Lawson, C.L.; Hanson, R.J.; Kincaid, D.R.; Krogh, F.T. Basic linear algebra subprograms for Fortran usage.
ACM Trans. Math. Softw. (TOMS) 1979, 5, 308–323.

36. Dumas, J.G.; Giorgi, P.; Pernet, C. Dense linear algebra over word-size prime fields: The FFLAS and
FFPACK packages. ACM Trans. Math. Softw. (TOMS) 2008, 35, 19.

37. Dumas, J.G.; Gautier, T.; Giesbrecht, M.; Giorgi, P.; Hovinen, B.; Kaltofen, E.; Saunders, B.D.; Turner, W.J.;
Villard, G. LinBox: A generic library for exact linear algebra. In Proceedings of the 2002 International
Congress of Mathematical Software, Beijing, China, 17–19 August 2002; pp. 40–50.

38. Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2012; Volume 3.
39. Dongarra, J.; Faverge, M.; Ltaief, H.; Luszczek, P. High performance matrix inversion based on LU

factorization for multicore architectures. In Proceedings of the 2011 ACM International Workshop on
Many Task Computing on Grids and Supercomputers (MTAGS ’11), Seattle, WA, USA, 14 November 2011;
ACM: New York, NY, USA, 2011; pp. 33–42.

40. Sparse Network Codes Implementation Based in the Kodo Library. Available online: https://github.com/
chres/kodo/tree/sparse-feedback2 (accessed on 2 September 2016).

41. Trullols-Cruces, O.; Barcelo-Ordinas, J.M.; Fiore, M. Exact decoding probability under random linear
network coding. IEEE Commun. Lett. 2011, 15, 67–69.

42. Zhao, X. Notes on “Exact decoding probability under random linear network coding”. IEEE Commun. Lett.
2012, 16, 720–721.

Sample Availability: The testbed and measurements in this publication are both available from the authors.

© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

181



electronics

Article

Understanding the Performance of Low Power
Raspberry Pi Cloud for Big Data

Wajdi Hajji * and Fung Po Tso *

Department of Computer Science, Liverpool John Moores University, Liverpool L3 3AF, UK
* Correspondence: w.hajji@2015.ljmu.ac.uk (W.H.); p.tso@ljmu.ac.uk (F.P.T.); Tel.: +44-7438-981273 (W.H.)

Academic Editors: Simon Cox and Steven Johnston
Received: 30 April 2016; Accepted: 31 May 2016; Published: 6 June 2016

Abstract: Nowadays, Internet-of-Things (IoT) devices generate data at high speed and large volume.
Often the data require real-time processing to support high system responsiveness which can be
supported by localised Cloud and/or Fog computing paradigms. However, there are considerably
large deployments of IoT such as sensor networks in remote areas where Internet connectivity is
sparse, challenging the localised Cloud and/or Fog computing paradigms. With the advent of the
Raspberry Pi, a credit card-sized single board computer, there is a great opportunity to construct
low-cost, low-power portable cloud to support real-time data processing next to IoT deployments.
In this paper, we extend our previous work on constructing Raspberry Pi Cloud to study its
feasibility for real-time big data analytics under realistic application-level workload in both native
and virtualised environments. We have extensively tested the performance of a single node Raspberry
Pi 2 Model B with httperf and a cluster of 12 nodes with Apache Spark and HDFS (Hadoop Distributed
File System). Our results have demonstrated that our portable cloud is useful for supporting real-time
big data analytics. On the other hand, our results have also unveiled that overhead for CPU-bound
workload in virtualised environment is surprisingly high, at 67.2%. We have found that, for big data
applications, the virtualisation overhead is fractional for small jobs but becomes more significant for
large jobs, up to 28.6%.

Keywords: internet of things; Raspberry Pi; Raspberry Pi Cloud; Micro Data Centre; big data;
virtualisation; Docker; energy consumption

1. Introduction

Low-cost, low-power embedded devices are ubiquitous, part of the Internet-of-Things (IoT).
These devices or things include RFID tags, sensors, actuators, smartphones, etc., which have substantial
impact on our everyday-life and behaviour [1]. Today’s IoT devices generate data at remarkable speed
which requires near real-time processing [2]. Such need has inspired a new computing paradigm
that advocates moving computation to the edge, closer to where data are generated for ensuring
low-latency and responsive data analytics [2]. Examples are localised Cloud Computing [3] and Fog
Computing [2].

Both localised Cloud and Fog Computing paradigms work only in populous environment
embedded with rich and high-speed connectivity. However, in many cases IoT devices are deployed
in inaccessible remote areas which have limited or no Internet connectivity to the outside world [4].
Lacking of connectivity effectively prevents these isolated IoT devices from accessing to either localised
Cloud or Fog Computing. This calls for a radically new computing paradigm which: (1) is capable of
processing data efficiently; (2) has the agility of Cloud Computing; (3) is portable to support on-demand
physical mobility; and (4) is low-cost, low-power for sustainable computing in remote areas.

This new computing paradigm has been made possible by the emergence of low-cost, low-power
credit card-sized single board computer—the Raspberry Pi [5]. As a result, there has been some
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pioneering novel networked systems with the Raspberry Pi. These innovative systems include a high
performance computing (HPC) cluster [6] and a scale model cloud data centre [7].

This style of system offers many advantages. The system is easy to provision at small scale and
requires minimal outlay. We have extended our original project in [7] and constructed a cloud of
200 networked Raspberry Pi 2 boards for US$ 9,000. Such systems are highly portable, running from a
single AC mains socket, and capable of being carried in a luggage.

In this paper, we have carried out an extensive set of experiments with representative real-life
workloads in order to understand the performance of such system in big data analytics. In summary,
the contribution of this paper is as follows:

• We designed and conducted a set of experiments to test the performance of a single node and
a cluster of 12 Raspberry Pi 2 boards with realistic network and CPU bound workload in both
native and virtualised environments.

• We have found that overhead for CPU-bound workload in virtualised environment is significant,
giving up to 67.2% performance impairment.

• We have found that the performance of running big data analytic in virtualised environment
comparable to native counterpart, albeit noticeable but trivial overhead for CPU, memory and energy.

The rest of this paper is organised as follows: Section 3 gives an overview of background
technologies on Apache Spark and HDFS, the big data analytic tools used for experiments. We present
details of our experiment setups in Section 4, followed by description and analysis of our experiment
results in Section 5. We survey related literature and highlight our contribution in Section 2.
And Section 6 concludes the paper.

2. Related Work

Since its launch in 2012, the Raspberry Pi has quickly become one of the best-selling computers
and has stimulated various interesting projects across both industry and academia that fully exploit
the low cost low power full feature computer [6–11]. As of 29 February 2016, the total number of units
sold worldwide has passed 8 million [12].

Iridis-pi [6] and Glasgow Raspberry Pi Cloud [7] are among the first to use a large collection
of Raspberry Pi boards to construct clusters. Despite their similarity in hardware construction, their
nature is distinctively different. Iridis-pi is an educational platform that can be used to inspire and
enable students to understand and apply high-performance computing and data handling to tackle
complex engineering and scientific challenges. On the contrary, the Glasgow Raspberry Pi cloud is an
educational and research platform which emphasises development and understanding virtualisation
and Cloud Computing technologies. Other similar Raspberry Pi clusters include [8,13,14].

In spite of their popularity, there is surprisingly limited study on the performance of ab individual
node and a whole cluster under realistic workload. The author of [15], has run experiments to test
container-based technology on a single node Raspberry Pi. They evaluate the virtualisation impact on
CPU, Memory I/O, Disk I/O, and Network I/O and conclude that overhead is negligible compared
with native execution. However, the experiments focus mainly on the system level benchmarking and
do not represent realistic workload. The author of [8], studies energy consumption out of a 300-node
cluster but without a more representative workload. The author of [16], has studied the feasibility
of Raspberry Pi 2 based cluster built out of seven nodes for big data applications with more realistic
workloads using Apache Hadoop framework. The TeraSort is used to evaluate the cluster performance
and energy consumption that is reported.

In contrast to [8,15,16], our work concentrates on evaluation of system performance under
realistic application layer workload, featuring various workloads in httperf and Apache Spark.
In addition, we study and report the performance with and without virtualisation layer, which offers
improved insight into the suitability of virtualisation for a low-power, low-cost computer cluster.
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Our methodology is also partly inspired by [17], which evaluated the performance of Spark and
MapReduce through a set of diverse experiments for an x86 cluster.

3. Background

3.1. Spark

Apache Spark (https://spark.apache.org/docs/latest) is a general-purpose cluster computing
system. Spark can play the role of traditional ETL (extract, transform, and load) for data processing
and feeding data warehouses, and it can also perform other operations such as on-line pattern spotting
or interactive analysis.

Figure 1a illustrates the ways in which Spark can be built and deployed upon Hadoop components.
There are: (1) Standalone mode: where Spark interacts with HDFS directly but MapReduce could
collaborate with it in the same level to run jobs in cluster; (2) Hadoop Yarn: Spark just runs over Yarn
which is a Hadoop distributed container manager; (3) Spark in MapReduce (SIMR): in this case Spark
can run Spark jobs in addition to the standalone deployment.

SSpark
Spark

MapReduceYarn / Mesos

HDFS

Spark

HDFSHDFS

Standalone Hadoop 2.x (YARN) Hadoop V1 (SIMR)

(a)

Namenode (Pi1)

Client

Client

Datanode
(Pi2)

Datanode
        (Pi3)

D d Datanode
(Pi12)

DD d

Write

Replication

...

(b)

Figure 1. Spark and HDFS (Hadoop Distributed File System) overview. (a) Spark deployment;
(b) HDFS architecture.

Spark generally processes data through the following stages: (1) the input data are distributed
on worker nodes; (2) then data are processed by the mapper functions; (3) following that, shuffling
process performs aggregation of similar patterns; and finally (4) reducers combine them all to get a
consolidated output.

In our experiments we have adopted Spark Standalone deployment. Both Spark and HDFS are
in cluster mode. In total there are 12 nodes, one Raspberry Pi represents the master and the others
represent workers.

3.2. HDFS

HDFS (https://wiki.apache.org/hadoop/HDFS/) is a distributed file system designed to run on
commodity hardware. It is designed to handle large datasets. HDFS distributes and replicates data on
the cluster members to protect system against failure that could happen due to nodes unavailability.

HDFS follows the master-slave paradigm. A HDFS cluster is composed of a namenode which is
the master (Pi1), it manages the file system name-space and regulates clients’ access to files, and it also
distributes blocks/data on the datanodes. Datanode can be present in each node of the cluster. It is
responsible for serving read and write requests from the file system’s clients, it also manages blocks
creation, deletion, and replication according to the instructions coming from the namenode. Figure 1b
depicts the HDFS architecture.
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3.3. Docker

Docker (https://www.docker.com/what-docker) allows applications packaging with all their
dependencies into software containers. Different from the Virtual Machine design which requires an
entire operating system to run the applications on, Docker enables sharing the system kernel between
containers by using the resource isolation features available on Linux environment such as cgroups
and kernel namespaces. Figure 2 illustrates Docker’s approach.

Infrastructure

Operating System

Docker Engine

App 1

Bins/Libs

App 2

Bins/Libs

App 3

Bins/Libs

Figure 2. Docker containers.

4. Experiment Setup

We describe in detail our testbed, methodology and performance metrics used to evaluate different
combinations of tests in this section.

In an edge cloud we anticipate two distinctive environments—either a native environment for high
performance or a virtualised environment for high elasticity. Therefore, we have tested the performance
of single nodes and clusters in both environments. In all experiments we either use a single node
Raspberry Pi 2 Model B, which has a 900 MHz quad-core ARM Cortex-A7 CPU, 1 G RAM, and a
100 Mbps Ethernet connection, or a cluster of 12 nodes. For their virtualised counterparts, we have
configured the node(s) with Docker, a lightweight Linux Container virtualisation, on each Raspberry
Pi with Spark and HDFS running atop. We have chosen Spark because it has become one of the most
popular big data analytics tools. We selected Docker not only because it is low-overhead OS level
virtualisation but also the full virtualisation has not been fully supported by Raspberry Pi 2’s hardware.
The operating system (OS) installed on the Raspberry Pis is Raspbian (https://www.raspbian.org/).

4.1. Single Node Experiments

In this set of experiments, we attempt to find the baseline performance with and without
virtualisation for a single Raspberry Pi 2 Model B board. The experiments include using a client,
which has an Intel i7-3770 3.4 GHz quad-core CPU, 16 GB RAM and 1 Gbp/s Ethernet, sending various
workload to server, a Raspberry Pi node, using httperf [18]. The client used is remarkably more
powerful than the server for ensuring that performance will only be limited by server’s bottleneck.
The server runs Apache web server to process web requests from client. The client is instructed to
generate a large number of Web (HTTP) requests for pulling web documents of size 1 KB, 4 KB, 10 KB,
50 KB, 70 KB and 100 KB respectively from servers using httperf. These workload sizes are chosen
because traffic in cloud data centre is comprised of 99% small mice flows and 1% large flows [19].
For each specific workload size, the client starts from sending a very small number of requests per
second to the server initially, and gradually increases the number of requests per second by 100 until
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the server cannot accommodate any additional requests. This means that the server has reached its
full capacity.

4.2. Cluster Experiments

We have conducted all experiments on a low-power compute cluster consist of 12 Raspberry
Pi 2 Model B. All Raspberry Pis are interconnected with a 16-Port Gbp/s switch. Alongside with
system performance metrics, we are equally interested in energy consumption of the whole cluster
when experiment is underway. We used MAGEEC (http://mageec.org/wiki/Workshop) ARM Cortex
M4-based STM32F4DISCOVERY board to measure energy consumption of individual Raspberry Pi
throughout experiments. This board was designed by the University of Bristol for high frequency
measurement of energy usage.

Also on each node, we installed Spark 1.4.0 and Hadoop 2.6.4 for its HDFS. We configured node 1,
i.e., Pi 1, as a master for Hadoop and Spark, and others, i.e., Pi 2–12, as workers.

For Spark, each worker was allocating 768 MB RAM and all 4 CPU cores. For HDFS, we set the
number of replica to 11 so that data are replicated on each worker node. This set-up was not only
considered for high availability but also to avoid high network traffic between nodes as we predict
that Raspberry Pi has a hardware limitation on the network interface speed. Figure 3a shows the
cluster design.
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Figure 3. Cluster Layout. (a) Native set-up; (b) Virtualised set-up.

In the second phase of the experiment, we installed Docker and created a Docker container on
each node of the cluster. Docker container hosts both Spark 1.4.0 and Hadoop 2.6.4 with the same
setup as in the native environment. So the container is considered as a Virtual Machine running on the
Raspberry Pi. We have established a network connection between the 12 containers and have made
them able to communicate between each other. Figure 3b illustrates this set-up.

In both native and virtualised environments, we have run both Wordcount and Sort jobs on our
low-power cluster with job sizes varying from 1 GB to 4 GB and to 6 GB, representing small, medium
and large job sizes respectively. The large job size was set to 6 GB because we have found that
job size greater than this will cause Docker daemon forcibly killed by the OS because the CPU is
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significantly overloaded with the process. Also in all experiments we left the system idle for 20 s and
the experiments started at the 21-st s.

In all experiments, we have measured and collected the following metrics to examine
the performance:

• Execution time: the time taken by each job running different workloads.
• Network throughput: the transmission and reception rates in each node of the cluster.
• CPU utilisation: the CPU usage in each cluster node.
• Energy consumption: energy consumed by a Raspberry Pi worker node (chosen randomly).

5. Experiment Results

5.1. Single Node Performance

Our test results for single node performance are shown in Figure 4. We first examine the results
for native environment. Obviously, Figure 4a shows that the average number of network requests
served by the server decreases from 2809 req/s to 98 req/s for 1 KB and 100 KB workloads respectively.
In the meantime, their corresponding network throughput, as shown in Figure 4b and CPU utilisation,
as shown in Figure 4c exhibit monotonically increasing and decreasing patterns respectively, but with
flatter tails. The average network throughput for 1 KB and 100 KB workloads are 22.5 Mbp/s and
78.4 Mbp/s respectively, whereas CPU utilisation for 1 KB and 100 KB workloads are 67.2% and 22.3%
respectively. These observations demonstrate that small-sized workloads such as 1 KB and large-sized
workloads such as 100 KB are CPU and network bounded respectively.
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Figure 4. Single server performance. (a) Server throughput; (b) Network throughput;
(c) CPU utilisation.

Next we examine the results for virtualised environment. At first glance we can clearly
observe that all results for virtualised environment exhibit identical patterns as native environment.
However, our performance has pinpointed significant virtualisation overhead, particularly for small
workloads. Figure 4a shows that server throughput for 1 KB workload is profoundly impaired by
65.9%, dropping from 2, 809 req/s to 957.5 req/s, leading to significant degradation in network
throughput (Figure 4b) while the CPU utilisation remains equally high as native counterpart.
Similarly the impairment for 4 KB and 10 KB workloads are 59.6% and 36.4% respectively.
Nevertheless, the performance for large workloads including 30 KB, 50 KB, 70 KB and 100 KB, in terms
of server and network throughput, are on par with their native counterparts. In comparison the CPU
utilisation for these workloads are only 12%–23%, representing fractional but significant overhead.

The remarkable overhead observed for the small-sized workloads has inspired us to investigate
this issue further. When Docker is installed, a software-based bridged network, by which
the Docker daemon connects containers to this network by default, is automatically created.
Therefore, when workload is small not only the hardware network interface frequently interrupts CPU
for packet delivery but also the software bridge triggers similar amount of interrupts for container
under test. On the contrary, when workload is large, fewer hardware and software interruptions arise
from both physical and virtual network interface.
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5.2. Spark and HDFS in the Native Environment

We first present Spark’s performance in the native environment. Table 1 shows the total execution
time for 1 GB, 4 GB and 6 GB jobs. We observed that job completion time varies with actual job sizes.
For instance, for WordCount, it increases slightly from 60.2 s for 1 GB job by 9.3% to 65.8 s for 4 GB job
but increases substantially by 82.4% to 109.8 s for 6 GB job. Similar trend is observed in Sort, it takes
122.4 s to complete 1 GB job, then 129.7 s and 224.8 s, or 5.96% and 83.7% longer, for 4 GB and 6 GB files
respectively. Comparing job completion time between WordCount and Sort, it is apparent that Sort is
more CPU demanding because time taken by Sort job is almost usually double of what is consumed by
WordCount. This is because in Sort, words need to be counted and then sorted, whereas in WordCount
words need only to be counted.

Table 1. Execution times for WordCount and Sort jobs in the Native Environment.

File Size “Native” WordCount “Native” Sort

1 GB 60.2 s 122.4 s
4 GB 65.8 s 129.7 s
6 GB 109.8 s 224.8 s

To explain this non-linear increase in completion time between 4 GB and 6 GB jobs, we have
investigated further and found that Sort for 4 GB job requires 32 tasks whilst 6 GB file needs 46.
Given that there are 44 cores available in the cluster, there is sufficient computation capacity for
accommodating 32 task concurrently. However, in the case when 45 or more tasks are spawn,
all available cores are used, as demonstrated in Figure 5c, and the remaining tasks will have to
wait for CPU time. Worse still, if they depend on some specific tasks, they will have to wait until their
completion although free CPU time will arise when some non-dependent tasks finish early. On the
other hand, Spark is memory hungry whilst Raspberry Pi’s RAM is sparse. As evidenced by Figure 5c,
memory has been fully utilised at most of the time throughout experiments. This implies that there
may be constant memory swapping that could further lengthen the completion time. In WordCount,
there are 15 tasks for 4 GB file versus 44 for 6 GB file, in the former case there are enough CPU resources
to run all tasks whereas in the latter all CPU cores are dedicated to run the job, this can be observed in
Figure 5c where CPU usage is at 100% over data processing time whilst it is at nearly 80% for 4 GB file
in Figure 5b.

(a) (b) (c)

Figure 5. CPU and memory usage. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

Next, we describe the CPU, memory and network usage performance results. In WordCount of
1 GB job, in Figure 5a memory consumption increases to about 75% and remains steady till the end of
the operation. For CPU utilisation, we can see that it rises from nearly 1% (idle) to nearly 20% (busy)
and remains unchanged all over the computation process. For network throughput, Figure 6a shows
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that there is no significant traffic activity, at the beginning of the job, data are received by workers at
the rate of 40 kb/s, and this is the client (namenode) request message for workers to start computing.
For files of 4 GB and 6 GB, we noted the same behaviour but the increase in CPU and memory usage is
more prominent. For instance, in Figure 5b for 4 GB file, memory usage increases gradually from 50%
to 100% in about 70 s and CPU goes up from nearly 1% to 30% in the tasks submission stage and then
sharply reaches 80% at the second 40 for the count stage as indicated in the log files.

(a) (b) (c)

Figure 6. Network transmission (TX) and reception (RX) rates. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

As reflected by Figure 5c the increase is sharper for the 6 GB file where both memory and CPU
reach 100%. In the 6 GB file, as explained above, since there are more tasks (46 tasks) than available
CPU cores (44 cores), the CPU and memory are exhaustively used for an extended period of time.
Moreover, we observe the same two stages as in the 4 GB file.

In Sort, CPU and network usage patterns are different from those observed in WordCount job.
For example, in Figure 5a for the 1 GB job, CPU usage increases to the same level as WordCount job
for the same file size, and it remains steady throughout the experiment, but at the end of the job CPU
decreases dramatically to a very low level and then suddenly reaches a peak. When analysing log files,
we have found an explanation for these changes. In the beginning, tasks submission stage takes a few
seconds to complete, this is happening also in WordCount, it explains both CPU and memory increase
to 30% and 60% respectively. Afterwards, map stage starts and consumes most of the time taken by the
job, lastly the shuffling process causes the peak witnessed by CPU usage.

In addition, Sort is accompanied with a peak in the network transmission and reception rates
where they reach nearly 3.2 Mbps as shown in Figure 6a. Same changes have been witnessed for 4 GB
and 6 GB files but with quantitative differences. For instance, as illustrated in Figure 6b,c network
transmission and reception rates reach at the end of the Sort job 9.6 Mbps and nearly 11.2 Mbps for
4 GB and 6 GB files respectively. CPU and memory usages increase as well to nearly 80% and 100% for
4 GB file and to 100% and 100% for 6 GB file respectively as reflected in Figure 5b,c. These changes
are explained above by the fact that Sort job witnesses three phases; task submission, map, and shuffling.
In the shuffling stage, a high network activity is noticed at the end of Sort job (e.g., Figure 5a at 130 s,
Figure 5b at 140 s, and Figure 5c at 235 s). Furthermore, outputs coming from workers need to be
consolidated to have the final result, this is achieved in the reduce stage (combining results of workers)
and it causes the high CPU and memory usage.

Regarding the energy consumption, through Figures 7a and 8a we can obviously observe that
actual energy consumption depends on the job sizes. It is slightly higher for 6 GB files than for 1 GB
and 4 GB files in both WordCount and Sort jobs. To confirm this observation, we run WordCount and
Sort on file of 8 GB, even with some task failures on some Raspberry Pis, we noticed the behaviour
more clearly as shown in Figures 7b and 8b. Therefore, workload affects the energy consumption,
the more intensive the workload is, the more important is the energy consumption by the Raspberry
Pi device.
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(a) (b)

Figure 7. Energy measurement in a Raspberry Pi Worker node in WordCount job. (a) WordCount Job
(1-4-6 GB files); (b) WordCount Job (1-4-8 GB files).

(a) (b)

Figure 8. Energy measurement in a Raspberry Pi Worker node in Sort job. (a) Sort job (1-4-6 GB files);
(b) Sort job (1-4-8 GB files).

5.3. Spark and HDFS in Docker-Based Virtualised Environment

In the second phase of our experiments, we present results from virtualised environment, followed
by comparing and contrasting the results with that of native ones.

We first have a look at the job completion time as shown in Table 2. At the first glance, we can
clearly see that job completion times for 1 GB and 4 GB exhibit fractional difference, smaller than 3%,
between native and virtualised platforms for both WordCount and Sort.

Table 2. Execution times for WordCount and Sort jobs in Virtualised Environment.

File Size WordCount in Docker Sort in Docker

1 GB 58.2 s 121.1 s
4 GB 64.7 s 132.2 s
6 GB 116.5 s 236.5 s

However, in WordCount of 6 GB file, execution with Docker clearly takes more time than the case
without it, at 109.8 s and 116.5 s respectively, an increase of nearly 6.1%. Similarly, Sort on the 6 GB
file takes more time in Docker than in the native environment, an increase from 224.8 s to 236.5 s,
representing 5.2% longer completion time.

190



Electronics 2016, 5, 29

5.3.1. Virtualisation Impact on CPU and Memory Usage

Figure 9a shows that CPU usage, in 1 GB file WordCount job, has same behaviour in both native and
virtualised environments but with a few irregularities where Docker is running (at 20-th and 50-th s).
Memory consumption is higher in virtualised platform as Docker daemon requires already memory
resources to run its processes. In WordCount of 4 GB file, CPU and memory usages have the same
patterns in both environments (Figure 9b). Whereas, in WordCount of 6 GB file, we have noticed
remarkable difference in the CPU usage, Figure 9c shows that it is more important and extended in the
virtualised set-up.

(a) (b) (c)

Figure 9. CPU and memory usage in WordCount job. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

In Sort job of 1 GB file, the difference only resides in the memory usage. With Docker,
memory consumption is higher than is the case in the native environment as unveiled in Figure
10a. We have also noticed a few irregularities in CPU usage in virtualised environment. As for the
4 GB Sort job, Figure 10b demonstrates nearly identical patterns in both environments. Figure 10c
demonstrates a more obvious difference in CPU utilisation between two environments in which
virtualised platform exhausts CPU resource earlier and for longer periods of time.

(a) (b) (c)

Figure 10. CPU and memory usage in Sort job. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

These set of experiments have demonstrated that virtualisation incurs a more prominent overhead
when the jobs are more demanding.

5.3.2. Virtualisation Impact on Network Usage

Figure 11a shows that WordCount does not produce significant network traffic with two spikes at
the rate of 140 kb/s. Similarly, Figure 11b shows very small difference in network throughput for 4 GB
job in WordCount. However, the network behaviour becomes different for 6 GB job. Network reception
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rate becomes more intensive in the native environment than it is in the virtualised counterpart as
shown in Figure 11b. For example, at 28-th s reception rate in virtualised environment reaches nearly
600 kb/s while in the native environment it is nearly at 900 kb/s.

(a) (b) (c)

Figure 11. Transmission (TX) and reception (RX) rates in WordCount job. (a) 1 GB file; (b) 4 GB file;
(c) 6 GB file.

In Sort job, we have noticed a different network behaviour from the case in WordCount.
In Figure 12a there is a high network traffic at the end of the experiment, this is a consequence of the
shuffling process where workers are sharing results for consolidation. Reception and transmission rates
are more intensive in the native environment than where Docker is running. In Figure 12b we have
found identical behaviour in network usage in both environments, however the rate is higher than it is
in 1 GB file for the same job; transmission and reception rates reach nearly 9.600 Mbps.

(a) (b) (c)

Figure 12. Transmission (TX) and reception (RX) rates in Sort job. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

Lastly, we can see from Figure 12c that network usage is remarkably more intensive in the native
environment. For instance reception and transmission rates reach 11.2 Mbps in the native environment
while they are at nearly only 8 Mbps in virtualised one. The difference is about 3.2 Mbps or 28.6%.

5.3.3. Virtualisation Impact on Energy Consumption

In this section, we will investigate how much overhead, if any, virtualisation has in terms of
energy consumption.

Figure 13a depicts the energy consumed by a Raspberry Pi cluster worker member when it is
involved in WordCount job on 1 GB file, energy levels are very similar. However for WordCount on 4 GB
file, energy is more important in the native environment than in virtualised one as shown in Figure 13b.
However, in WordCount for 6 GB job, as revealed in Figure 13c energy level becomes clearly higher
when jobs are running inside Docker containers. It arises from 3.66×10−5 Joule to 3.71×10−5 Joule, so
an increase of 1.3%. For Sort job, same patterns have been observed for the case of 4 GB and 6 GB jobs
as shown in Figure 14b,c.
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(a) (b) (c)

Figure 13. Energy measurement in WordCount job. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

(a) (b) (c)

Figure 14. Energy measurement in Sort job. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

6. Conclusions

In this paper, we have designed and presented a set of extensive experiments on a Raspberry
Pi cloud using Apache Spark and HDFS. We have evaluated their performance through CPU and
memory usage, Network I/O, and energy consumption. In addition, we have investigated the
virtualisation impact introduced by Docker, a container-based solution that relies on resources isolation
features available on Linux kernel. Unfortunately, it has not been possible to use Virtual Machines as a
virtualisation layer because this technology is not yet supported in the current releases on Raspberry Pi.

Our results have shown that the virtualisation effect becomes more clear and distinguishable
with high workloads, e.g., when operating on a big amount of data. In a virtualised environment,
CPU and memory consumption becomes higher, network throughput decreases, and burstiness occurs
less often and less intensively. Furthermore, it has been proven that energy level consumed by the
Raspberry Pi arises with the high workload and it is additionally affected by the virtualisation layer
where it becomes more important. As a future work, we are interested in attenuating the virtualisation
overhead by investigating a novel traffic management scheme that will take into consideration both
network latency and throughput metrics. This scheme will mitigate network queues and congestion at
the levels of virtual appliances deployed in the virtualised environment. More precisely, it will rely on
three keystones; (1) controlling end-hosts packets rate; (2) virtual machines and network functions
placement; and (3) fine-grained load-balancing mechanism. We believe this will improve the network
and applications performance but it will not have a significant impact on the energy consumption.
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Abstract: Geometry measurements are very important to monitor a machine part’s health and
performance. Optical measurement system have several advantages for the acquisition of a parts
geometry: measurement speed, precision, point density and contactless operation. Measuring parts
inside of assembled machines is also desirable to keep maintenance cost low. The Raspberry Pi is a
small and cost efficient computer that creates new opportunities for compact measurement systems.
We have developed a fringe projection system which is capable of measuring in very limited space.
A Raspberry Pi 2 is used to generate the projection patterns, acquire the image and reconstruct the
geometry. Together with a small LED projector, the measurement system is small and easy to handle.
It consists of off-the-shelf products which are nonetheless capable of measuring with an uncertainty
of less than 100 μm.

Keywords: measurement; endoscopy; fringe projection; triangulation; optics

1. Introduction

In order to monitor a parts manufacturing quality, reliability and performance,
geometry measurements are very important [1]. Optical means of measurement are very fast,
contact less and deliver precise geometry information. Fringe projection, for example, is used for
a wide range of measurement tasks and multiple scales. It is based on the triangulation principle.
A simple setup for fringe projection consists of a camera and a projector set up in a known angle,
e.g., 30 degree. The projector then projects certain structured light patterns onto an object to determine
a relation between camera pixels and projector pixels. This relation is used to calculate a 3D point
cloud of the objects surface. One disadvantage of most fringe projections systems is the size and shape
of the projector. While the volume of measurement is usually adjusted for a specific task, only a
few systems are capable of measuring inside complex geometries. There are some endoscopic fringe
projection systems used to scan rows of teeth in a dental lab [2]. The measurement head is still relatively
large and the resolution and capabilities of the projector are limited. Storz offers the MULTIPOINT
endoscope which uses 49 laser dots to acquire 3d information of an object [3]. The position of each
measurement point is computed using the triangulation principle. General Electric developed a
fringe projection system with a fixed pattern projector and a chip on tip camera on a flexible shaft
[4]. A similar measurement system was developed by Matthias [5]. It uses a bundle of 100,000 single
fibers for projection and image acquisition and has therefore a more flexible measurement head.
A disadvantage is the limited resolution of 100,000 pixels. Although these systems all have some
capability in measuring in limited space, all of them sacrifice pattern projection quality for a small
measurement head. The measurement system presented in this paper uses a borescope with a chip on
tip Raspberry Pi camera to deliver high quality measurements with fully adaptable color patterns. With

Electronics 2016, 5, 43 195 www.mdpi.com/journal/electronics



Electronics 2016, 5, 43

those patterns our measurement system delivers superior measurement quality compared to products
on the market. The Raspberry Pi is used for image acquisition as well as pattern generation via built in
HDMI output.

2. The Measurement System

The measurement system consists of a Raspberry Pi with a camera, a borescope and a projector.
The camera is the standard Raspberry Pi camera with a special ribbon cable that is only 6 mm wide.
The projector Texas Instruments LCR4500 is used because it is very compact and delivers a linear
light intensity profile. The borescope is a 86290 CF from Storz. It has a length of 20 mm, an angle of
view of 90◦ and a direction of view of 70◦. The cameras is pointed 90◦ relative to the shaft. Therefore
the system has a triangulation angle of approximately 20◦. Additionally, a camera adapter is used to
couple the light of the projector into the borescope. The optical properties of the projector are very
similar to that of a pinhole camera. Therefore the camera adapter is also suitable to be used with the
projector. The adapter was originally developed to combine the borescope with an industrial camera
with a “C mount” lens mount.

As shown in Figure 1 the Raspberry Pi is connected to the measurement workstation via ethernet.
The workstation sends requests for a image pattern sequence to the Raspberry Pi. The Raspberry Pi
calculates the patterns and transmits them to the projector via HDMI. The camera is controlled with
the Camera Serial Interface (CSI) embedded onto the Raspberry Pi and transmits the images to the
Raspberry Pi. Finally the Raspberry Pi transmits the images to the workstation for further processing.

The reconstruction of the measurement is done on the workstation, because it is more suitable to
display and manage the measurements. The measurement system itself only needs a power supply
and ethernet connection to the workstation and is very compact and portable (see Figures 2 and 3).
The base plate of the projector was designed to provide mounting points for the borescope shaft and
the camera adapter.

raspberry pi

camera
CSI

projector
HDMI

measurement computer

ethernet

HDMI illumination
borescope

object
illumination

illumination

Figure 1. Signal plan for the measurement system.
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Figure 2. Rendering of the measurements system. The system is mounted on a goniometer.
The following parts are labeled: (a) projector; (b) camera adapter; (c) Raspberry Pi 2; (d) borescope
shaft; (e) camera (f) fields of view of the projector (green) and the camera (blue).

a
b

c

d e

Figure 3. Photograph of the measurement system from the top. The labels are consistent with Figure 2.

2.1. Image Acquisition

In most scenarios, the Raspberry Pi camera is used with image compression, which is suitable
for most consumer applications. The precision of optical measurements though strongly relies on
high quality camera images. Lossy image compression would therefore have a negative impact on the
measurement quality. On the other hand, most optical measurement systems rely on grayscale images
instead of color images. Unfortunately, receiving the raw-data from the image sensor is rather time
consuming and takes more than one second per image.

For the measurement systems, the standard application to capture images with the Raspberry Pi,
raspistill, has been altered to receive only the intensity value of the camera image. For the developers
convenience, a wrapper for python programming language was written.

The adapted application is based on raspistillYUV from the userland library. The image data is
converted to the YUF442 format and not compressed. The application then extracts only the luminance
part of the image and copies it into a buffer. The buffer has been provided by the caller of the method.
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In practice the buffer was allocated by the python interpreter, so that the interpreter takes care of the
memory management. Figure 4 contains a sequence of patterns used for a measurement. Only one
phase per frequency is shown.

Figure 4. Example sequence of fringe patterns. Three frequencies (waves per pattern) are used: 1, 6, 36.
Only one pattern per frequency is shown.

2.2. Calibration

The calibration of the measurement system is based on the calibration of a stereo camera system
with an extended pinhole camera model. It is roughly based on the work of Zhang [6]. The light
path of the projector is very similar to that of a camera so that the same model is applied to both.
The pinhole model is a linear equation

s
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v
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⎞
⎟⎠ = KPx (1)

K =

⎛
⎜⎝ fu 0 u0

0 fv v0
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⎞
⎟⎠ (2)
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(

R t
)

(3)

with the scaling factor s, the pixel coordinates u and v the focal length fu and fv the camera principal
point (u0, v0)

T , the rotation matrix R, the translation vector t and the homogeneous extension of a
point in space x. Additionally the lens distortion is modelled as two non linear functions

u′ = u + k1r2 + k2r4 + k3r6 + 2p1uv + p2(r2 + 2u2) (4)

and
v′ = v + k1r2 + k2r4 + k3r6 + p1(r2 + 2v2) + 2p2uv, (5)

with the undistorted pixel values u′ and v′, the distance of the pixel from the camera principle point r,
the radial distortion coefficients k1, k2, k3, and the tangential distortion coefficients p1 and p2. The high
manufacturing quality and precise alignment of optics of modern industrial cameras usually leads
to p1 and p2 being close to 0, so that they have not to be determined. With our measurement system,
identifying these parameters improves the results a lot, because the borescope is not aligned perfectly
to the projector. The mediocre quality of the raspberry pi camera also makes the identification of these
parameters necessary.

The pose P of the camera is assumed to be the identity, so that the world coordinate system lies in
the centre of the camera. A standard with printed dots with a distance of 1 mm was used to calibrate
the measurement system. For a full calibration, the standard has to be viewed from different poses and
angles. The computer vision library openCV was used to calculate the parameters for the camera and
the projector. The projector is, obviously, not capable of viewing the printed features. In a first step
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the camera was calibrated using the printed features. In a second step the projector projects circular
features onto the same calibration standard. The pose of the standard is known from the camera
calibration, so that the 3D position if the projected features is are also known. The model for camera
and projector can be inverted numerically.

The quality of the calibration is influenced by several sources of error. First the calibration standard
has some uncertainty. Additionally quantisation of the image sensor and projector mirror array cause
some error in the detection and projection of the markers. The round markers are approximated with
fitted ellipses. Variances in the illumination around an ellipse will have an influence on which pixels
that are detected as being part of the contour.

2.3. Pattern Projection and Reconstruction

For the calibration and measurements, the projector has to project certain patterns. Those patterns
are transferred to the Raspberry Pi with the xmlrpc protocol. Two major pattern types are used:
calibration and sinusoidal waves. The first has the parameters size and density, the latter frequency,
phase and undistortion parameters. The Raspberry Pi calculates the projector image according to the
parameters. The images are undistorted prior to projection, so that the sinusoidal waves projected are
already undistorted when reflected by the objects surface.

The measurement algorithm is based on the work of Peng [7]. The points on the objects surface are
reconstructed using the triangulation principle. Projecting certain patterns allows us to link each camera
pixel to a row or column of the projector. In this example the sinusoidal patterns are projected vertically,
so that the row may be determined. The line of sight of each camera pixel and the corresponding plane
of the projectors row are calculated. The surface point in 3D space is where both, the line and the point,
intersect.

The row of the projector pixels is determined using arctan(xy−1) and a sine and a cosine pattern.
Unfortunately the reflectivity and background illumination are unknown. A minimum of three patterns
are used: A sinusoidal pattern with the wavelength equal to the projector image height and three
phases, 0◦, 90◦ and 180◦. Those patterns lead to the following signals in the three camera images:

s0 = h0 + f0 ∗ sin(φ), (6)

s1 = h0 + f0 ∗ cos(φ), (7)

s2 = h0 − f0 ∗ sin(φ), (8)

with the background illumination h0, the reflectivity of the surface f0 and the projector image row φ.
From these equation we derive

φ = arctan(
s0 − s0+s2

2

s1 − s0−s2
2

). (9)

The tangens function is not injective so that the range of its inverse, arctan, is only a subset of the
domain of the original funtion. Nevertheless the true quadrant of the result of arctan can be computed
observing the signs of the nominator and the denominator of the argument.

Higher frequency patterns lead to an improved sensitivity of the phase signal and more precise
measurements. Using more than one wave per pattern makes it necessary to identify each of the fringes.
In practice, patterns with a low frequency are used for disambiguation and the highest frequency
patterns are used for precise phase measurement. Additionally, using four instead of three phases is
more robust towards a dynamic background illumination. The background illumination computed
from one frequency, can be used with the other frequencies. In practice the following patterns are
used: 1 wave with phases 0 and 90 degree (global disambiguation), 6 waves with 0 and 90 degree
(another level of disambiguation) and 36 waves with 0, 90, 180 and 270 degree (best phase signal and
background illumination).
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3. Results

The measurement uncertainty was characterized following the GUM from the Joint Committee
for Guides in Metrology. Four features on two contour standards have been measured: A gap with a
depth of 1 mm and a convex cylinder with a radius of 1 mm on a standard from the company Alicona
and two convex cylinders with a radius of 6 mm and 10 mm on a standard from the company Hommel.
The standards have been calibrated with known uncertainties. Images of sample measurements can be
seen in Figures 5 and 6. The gap depth and the small cylinders radius have been measured 25 times
from the exact same pose. The latter two cylinders radius has been measured in three different poses
with 30 measurements each. Pose one is a top down view, with the cylinder axis being parallel to the
image plane. For pose two and three the cylinder axis was rotated to have an angle of 70◦ and 110◦ in
respect to the normal of the image plane.

Figure 5. Distances of the sample measurements points to the nominal geometry of the gap (top left),
the cylinder with radius 1 mm.

Figure 6. Sample measurements of the cylinder with a radius of 10 mm in pose 1 (left), pose 2 (middle)
and pose 3 (right).

The results can been seen in Tables 1 and 2. The measurement system is capable of determining
the depth of the gap with very high precision while the measured cylinder radius has a much higher
error. Additionally one can see, that the pose has some major influence on the measurement quality.
The results vary especially for the large cylinder.

Table 1. Evaluation of a gap with a depth of 1 mm and the cylinder with a radius of 1 mm.

Gap with Depth 1 mm Cylinder with Radius 1 mm

calibrated value 1000.5 ± 0.4 μm 1001.5 ± 0.7 μm
measured value 992.6 ± 0.5 μm 935.4 ± 1.1 μm

deviation 7.9 μm 66.1 μm
single point distance (σ) 16.7 μm 18.6 μm
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Table 2. Evaluation of two cylinders with a radius of 6 mm and 10 mm.

Cylinder with Radius 6 mm Cylinder with Radius 10 mm

calibrated value 5994.0 ± 1.2 μm 10 002.1 ± 0.9 μm

pose one

measured value 6037.4 ± 1.6 μm 9945.1 ± 1.1 μm
deviation 43.4 μm 57.0 μm

single point distance (σ) 83.4 μm 100.0 μm

pose two

measured value 5971.5 ± 4.4 μm 9851.0 ± 4.0 μm
deviation 22.4 μm 151.1 μm

single point distance (σ) 29.3 μm 23.1 μm

pose three

measured value 5911.7 ± 2.8 μm 9905.1 ± 4.3 μm
deviation 82.3 μm 97.0 μm

single point distance (σ) 71.0 μm 35.0 μm

4. Conclusions

The measurement system is capable of measuring in very limited space while it produces very
good results. On the other hand side, it is relatively slow compared to fringe projection systems on
the market. The camera is currently only capable of taking a few uncompressed images per second.
So that a full measurement with eight images takes several seconds. The fringe projection system from
Matthias [5] is faster because it uses an industrial camera, but is limited to a smaller resolution.

A huge advantage is the relative simple setup with off-the-shelf components. A key element is the
5 mega pixel micro camera which is currently only supported by the Raspberry Pi. The single board
computer proved very handy for the generation of the projector patterns, controlling the projector and
the camera and processing the images.

Future work will include an improved calibration technique, relying on common calibration
standards and more sophisticates calibration patterns. The effect of gravitation on the borescope
and the camera are currently under research. A better camera, like the Pi Camera Module v2 with
the 8 megapixel Sony IMX219 sensor, will be used in a future setup.
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Abstract: A new device based on the Raspberry-Pi to monitor the locomotion of Arctic marine
invertebrates and to analyze chronobiologic data has been made, tested and deployed. The device
uses infrared sensors to monitor and record the locomotor activity of the animals, which is later
analyzed. The software package consists of two separate scripts: the first designed to manage the
acquisition and the evolution of the experiment, the second designed to generate actograms and
perform various analyses to detect periodicity in the data (e.g., Fourier power spectra, chi-squared
periodograms, and Lomb–Scargle periodograms). The data acquisition hardware and the software
has been previously tested during an Arctic mission with an arctic marine invertebrate.

Keywords: Raspberry-Pi; I/O (Input/Output) board; data-logger; locomotor activity;
single-board computer

1. Introduction

The spontaneous locomotor activity of animals is a useful parameter in ecological studies [1] and
in chronobiology, in particular for circadian analysis. Animals show daily rhythms in their various
physiological and behavioral functions. These rhythms are synchronized to environmental cycles,
such as light–dark cycles (LD), which are related to the Earth’s rotation. Rhythmicity may be controlled
by a circadian clock located in the central nervous system, such as the optic lobe or central brain mass,
depending on the species [2].

The analysis of behavioral rhythmicity has led to the development of specialized hardware and
software for a variety of different applications, with target organisms ranging from fruit flies to humans,
and data acquisition based on methods including infrared (IR) sensors, accelerometers, and radio-
and video-tracking [3–8]. Associated with these systems, a range of commercially available analysis
packages have been developed to run on Windows or MacOS operating systems [9–11].

In this article, we present a new system for the acquisition and analysis of the behavioral data
in chronobiological studies, based on an inexpensive hardware, coupled to a Raspberry-Pi computer
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(Raspberry Pi Foundation, Cambridge, United Kingdom). This configuration provides an inexpensive,
platform-independent, and open-source platform to circadian analysis, similar to those utilized in
other fields [12–17]. The data acquisition hardware is connected to the Raspberry-Pi computer by
an electronic interface designed to operate under field conditions. The software for data acquisition and
analysis was developed in the Astrophysics laboratory of Sapienza University in Rome, using a free
programming language (Python). The design aim was to integrate algorithms typically used for the
analysis of periodic signals with both specific functions for signal filtering, and functions allowing
user specification of the statistical stringency in the signal detection. This approach increases flexibility
in the analytical capability of the software.

The system has been tested under field conditions in the Svalbard Islands using a marine
invertebrate Gammarus Setosus as a model. An image of the field test is also shown.

2. Monitoring and Data Analysis

Our system was designed to acquire data on 17 channels, 15 of which are IR activity sensors,
and two of which are sensors for environmental light and temperature. As shown in Figure 1,
the monitoring system consists of aquaria, electronics mounted on the aquaria and the signal
conditioning circuit, light and temperature sensors, and a connector box interfaced with the
Raspberry-Pi through a flat cable.

The software is composed of two sections: the first handles the data acquisition and the storage,
the second manages the data analysis.

Figure 1. Block diagram of the monitoring system.

2.1. Aquaria

This device has been designed for small (0.5–3 cm) freshwater and sea invertebrates. This device
does not filter or oxygenate the water, and therefore relies on regular water changes by the user.
The system is built around Corning 225 cm2 culture flasks, which are made of transparent plastic
that permits natural or artificial illumination of the aquarium environment. Two squared sheets of
transparent Plexiglas (6 mm thick) were cut to match the area of the large faces of the culture flask and
glued in place using plastic cement (e.g., Loctite, Super Attack). These sheets were used to locate the
IR emitters and sensors on the outside of the aquarium (Figure 2).
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Figure 2. The electronic aquaria, with a Gammarus shrimp inside and with the IR emitters mounted on
the aquarium roof. The IR sensors are in the floor of the aquarium (not visible here).

2.2. Electronics

The optoelectronics components (OPTEK Inc., Carrollton, TX, USA) were: (a) Ø3 mm GaAlAs
plastic IR emitting diodes OP298B narrow irradiance pattern, λ 890 nm, φ 25◦, max output power
4.8 mW/cm2 [18]; (b) Ø3 mm NPN plastic silicon phototransistors OP598B wide receiving angle,
λ 860 nm, and φ 25◦ [19] (Figure 2).

These emitter and sensor devices give a narrow beam, necessary for sensitive detection of activity
of small invertebrates. Additionally, these devices offer optimal electronic coupling, and have proven
high reliability at low temperatures [18,19]. The output signal of each sensor was amplified by
operational amplifiers MC3303 [20]. This device offers a Gain Bandwidth product and operational
temperature range ideal for this application. Then a positive-OR gate (74LS21 [21]) was used to
sum all signals. The input signal for the Raspberry-Pi GPIO digital I/O pins was supplied from
a LM 555 [22] in mono-stable mode, which provides an impulse of 15 ms limited to +3.3 Vdc such
that compatibility with the GPIO (General Purpose Input Output) input dynamic is ensured. Figure 3
shows the schematic of the signal conditioning circuit reduced to only two IR sensors.

Figure 3. Schematic of the signal conditioning circuit reduced to only two IR sensors.
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Figure 4 shows the conditioning circuit housed in a watertight box.

 
Figure 4. Signal conditioning circuit.

2.3. Connector Box

The connector box was built to facilitate the connection between different devices and sensors
(e.g., IR devices, radar devices, and light/temperature sensors). It is composed of two lines of PCB
(polychlorinated biphenyl) screw connectors and a flat cable connector to pick up the signals and send
them to the GPIO of the Raspberry (Figure 5).

 

Figure 5. Connector box. Flat cable connector between two line of PCB (polychlorinated biphenyl)
screw connectors.
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2.4. Software Package

The software package included in our setup consists of two separate scripts designed to interact
with each other such that data acquisition and analysis is more easily managed. The acquisition
program has the same structure of the one presented in [23] (Pasquali et al., 2016) but is modified to
include multiple channels.

The Raspberry Pi has a limited amount of computing resources and the acquisition of several
signals has a high computational cost. For this reason, we decided not to include in our package
any real-time data visualization tools; nevertheless, the user is able to control the execution of the
experiment by examining the main data file that is updated periodically with incoming data.

To achieve this goal, we designed the second script as an on-demand analyzer. The user is
able to recall the data for a defined period of acquisition and for selected channels. The software will
immediately perform the requested analysis without interrupting the acquisition. This user defined call
generates files containing the requested data and plots of the quantities of interest, e.g., data streams,
actograms, power spectra and Lomb–Scargle periodogram analysis to catch eventual periods in the
data. In this way, the preliminary analysis will be performed on a branch of the main data file.
When the on-demand analysis is completed, the user can transfer the output files remotely.

2.4.1. Main Software

The main software running on Raspberry is temporized by using a Unix C-Time library [24].
A single internal clock self-generated from another routine, or by an external hardware clock, gives the
start for all operations. When the clock rises up, the software reads the sensors and records the binary
state of the logic channel to a temporary array. This value is modified every 10 min and the software
accumulates total counts for each channel and writes the results to a dedicated external file. The file
is updated and every hour the Raspberry-Pi backs up the data in another file saved on internal SD
memory and sends it on Ethernet to remote users. The time series data can be divided into up into
four sections for subsequent analysis.

2.4.2. Real Time Analysis

The automatic generation of “actograms” can be activated or disabled by the user. The user
can specify the length of the time segment and how to bin the dataset for analysis. The subroutine
reads the last four chunks of data (one day) and produces four actograms on a table configuration
(two rows, two columns) where an actogram is repeated on the second and third plot. To ensure
minimal computation time with the hardware limitations, the software performs several controls on
the dataset before starting the calculation.

The user can see the plot automatically updated on his screen using a virtual graphics server like
Xming [25].

2.4.3. A Posteriori Analysis

Total Actogram Generator

The same subroutine that generates the real time actograms are used to produce the total actogram
of the dataset. As example, an output plot is shown in Figure 6 (all underlying data used in this
publication can be found here [26]).
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Figure 6. Example of double-plot actograms on the screen of the Raspberry-Pi.

The Fourier Transform Module

One of the steps required in the data analysis of our project is to perform Fourier analysis
on the time streams. For this purpose, we developed a Python module that collects the powerful
functions distributed under the numpy and scipy packages, which are freely distributed under the
GNU (General Public License) license. Once the module is included in the main analysis script, all the
functions are ready to be used. Below are descriptions of the functions.

After the main library is fed with the time stream data, an algorithm retrieves the data acquisition
rate. This step is fundamental for the construction of the frequency axis, and to evaluate the Discrete
Fast Fourier Transform (FFT) of the stream applying a window function. The result is a relative power
spectral density (rPSD), and, if not specified, the module uses default values for the spectral range.

Advanced users will be able to choose the window function for their analysis, divide the sample
into chunks with lengths corresponding to powers of two, evaluate the FT as the mean value of the
chunks, and make an estimation of the response and phase of the complex FT. The outputs of the
module are a file, an image for inspection of the results, and a numpy array that can be used for
further analysis.

Figure 7 shows an example of the FFT output from this algorithm, where the x-axis is time in
minutes on a logarithmic scale, and the y-axis is the relative magnitude of the peaks, where the total
power (i.e., the area under the FFT curve) has been normalized to 100, to calculate relative power
spectral densities (rPSD) [27].

Lomb–Scargle Periodogram

To better study the FT analysis, a statistical test, such as the Lomb–Scargle method [28,29],
can be applied.

For this purpose, we have included in our package an easy access to the scipy function for the
evaluation of a Lomb–Scargle periodogram. The package calculates the periodogram using a slightly
modified algorithm from Townsend [30], which allows the periodogram to be calculated using only
a single pass through the input arrays for each frequency. The function takes the time series data array
and the sampling frequency and outputs the periodogram formatted as a numpy array.
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Figure 7. Example of spectral analysis by FT (Fourier Transform). Power values are shown on the
y-axis; periods (in minute) on a logarithmic scale are shown on the x-axis.

Health Monitoring System Subroutines (HMSS)

The main software has different sub-routines, which are synchronized with the data acquisition
but are only executed occasionally. The Raspberry-Pi often works without user control, and thus
it must control itself with a subroutine that checks the set-up health state. There are two different
categories of HMSS: the first ones are for the external set-up control and the second ones are for the
Raspberry-Pi state analysis. The first category of HMSS is:

• Photodiode control: if the logical binary state of photodiode does not change over an extended
period, it is probably broken, and a warning message appears on the screen. Using an external
GSM (Global System for Mobile Communications) module, the Raspberry-Pi sends an SMS
message or an email to the user.

• Battery control: the Raspberry-Pi can be powered by an external battery, so it is important to
control the charge state of this battery.

• Physical state of the set-up: the Raspberry-Pi performs a continuous control on intensity of light,
temperature, and humidity in the room.

The second category HMSS are:

• Memory control: the Raspberry has a SD memory card on which data is written. If the available
memory falls below ten percent, the Raspberry-Pi compresses the data on the SD card. After the
compression, the Raspberry-Pi enters a low-resolution mode where it reduces the bit size of data
acquired and starts to overwrite the oldest data. A warning message is sent to the user.

• CPU temperature: the Raspberry can operate in strenuous environments, often with a high
demand on the CPU, so its temperature is monitored. If the temperature becomes critical
(around 90 ◦C), all activities are stopped.

Figure 8 shows the block scheme of the software that runs inside the Raspberry-Pi.
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Figure 8. Shows the block scheme of the software that runs inside the Raspberry-Pi.

3. Comparison with Previous System

To highlight the advantages offered by this system, a comparison between the actual and the
standard system is necessary.

The classical setup of this kind of instrument includes a PC-based measurement chain that drives
the hardware section with a custom software. The hardware consists of several aquaria where the
animals are located, electronic circuits inside the aquaria for the detection of the animal’s motion,
and an acquisition card inserted inside of the personal computer that receives the signals coming from
the aquaria. The software section manages two different processes: the acquisition and the analysis of
the data. The data are processed offline, and this allows researchers more flexibility in configuring both
the hardware and software. Figure 9 shows the classical architecture (left side) and the Raspberry-Pi
based architecture (right side).

Figure 9. Classical and Raspberry-based architecture.

Although a classical system has the undoubted advantage to be already certified and used by
many research groups in the world, it presents several drawbacks:
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(1) The hardware sections, available on the market, are preset and custom configurations are not
allowed, e.g., they may not afford the use of a combination of sensors with different technologies
in the same measurement bench or to conceive different spatial geometries for the placing of the
sensors, themselves, reducing the overall flexibility.

(2) Acquisition cards have prefixed characteristics that could not match the exigencies of new
configurations. Hardware upgrades are usually impossible.

(3) The PC-based architectures are required to be installed in lab facilities. This requires moving the
animals away from their natural environment. This prevents the possibility of in-field activity
and could even introduce a bias.

(4) The software for the data elaboration available on the market need an operative system as
Windows or MacOS to run. This increases the overall cost of the system.

(5) The overall dimensions are usually big.
(6) The overall costs of these systems could be extremely high.

A custom system based on the Raspberry-Pi allows overcoming these drawbacks. In fact:

(1) It allows designing of specific configurations (combination of sensors with different technologies
and different spatial geometries for the placing of the sensors),

(2) It avoids buying a specific acquisition card.
(3) It allows the use of batteries to supply the system allowing in field acquisition campaigns.
(4) Using a release of Linux, it avoids use of proprietary OSs.
(5) It allows for direct programming by the user; therefore, it is possible to develop both the standard

algorithms already used for this kind of research and new statistical functions that could show
new interesting parameters for the study of these animals.

(6) The overall dimensions are extremely reduced with respect to a PC-based system.
(7) The costs are very low.

Table 1 shows the comparison between the costs of the Raspberry-based system with a PC one.

Table 1. Costs comparison between the Standard and the Raspberry system.

Raspberry-Pi System Standard System

Hardware ~75 € Hardware From 500 to 10,000 €

Software Free Software (Operative System)
OS + elaboration tool) From 500 to 3,500 €

Total ~75 € Total From 1,000 to 13,500 €

Despite the clear disadvantage to develop the software in house, the costs of a Raspberry-Pi
system are extremely lower, about 1%, than commercial ones.

The most important drawback of a custom system, especially if used in harsh environment,
could be the reliability.

To verify if the system was able to work at low temperatures, some preliminary tests were
performed in laboratory using a climate chamber. The temperature was decreased to −20 ◦C (that is at
least 10 degrees under the lower operative temperature during the measurements season). In order
to verify the correct activity of the board, a stress test script, designed to push the CPU at 100% of its
duty cycle, has been loaded on the Raspberry Pi and executed for all the duration of the test. The next
graphs show three examples of the test done.

Figure 10 shows the temperature of the chamber, of the CPU and of the board. The first has been
measured by the embedded sensor, the temperature of the CPU has been obtained by the internal
sensor and the temperature of the board has been obtained by a PT100 sensor directly mounted on
the board.
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Figure 10. Temperature of climate chamber, CPU and board.

The figure shows that, jointly with the temperature of the chamber, the temperature of the CPU
and of the board constantly decrease, but the device activity is always ensured.

Figure 11 presents an image of the board taken with an infrared camera that shows the uniformity
of the temperature on the board [31].

 

Figure 11. Temperature on the board caught using an infrared camera.

The second test shows the current consumption of the Raspberry as a function of the time
(Figure 12).

Figure 12. Current consumption as a function of the variation of time.
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After a brief transitory, the current consumption reaches a stable value that ensures the regular
activity of the Raspberry.

Figure 13 shows the current consumption of the Raspberry as a function of the CPU temperature.

Figure 13. Current consumption as a function of the variation of the CPU temperature.

The plot clearly shows that the power consumption, through the current flow, rise accordingly
with the board’s temperature. These tests have been made to confirm that the Raspberry Pi is able to
behave correctly even in extreme operating conditions. For the sake of consistency, we repeated the
test on five boards, which, tested in the same configuration, with the same stress test script, shown
concordant results, always ensuring the full efficiency of the board.

Testing the device in the field, requires a battery pack capable of providing the right power for the
system. The power consumption of our setup has been experimentally measured, and it is about 4 W;
for a comparison, the power consumption of other commercial systems is around 130 W. We tested,
with a 12 V, 24 Ah battery, that we were able to operate our setup for more than a week. We planned
a campaign duration of seven days (168 h) with a single battery. The test was run in a climate chamber.
For comparison, the same power supply, modified to power a classic PC-based setup with an AC/DC
converter, would ensure an autonomy of just 10 h.

After this preliminary lab phase, the device has been tested in the field confirming the Raspberry
Pi reliability.

4. Experiment, Results and Discussions

Marine and freshwater Arctic invertebrates relevant to ecological studies were chosen for the
experiments [32]. We analyzed the activity of the Gammarus Setosus that is a marine invertebrate
(order of the amphipods). This animal commonly lives in intertidal zones and is a useful biomarker
for pollution [33,34]. In this study, we applied a typical chronobiological design [35,36].

4.1. Animals

Gammarus setosus (n = 20) were collected in June and July 2015 (CNR and NP Summer Campaign
2015 Pasquali V. and Granberg M.) during the low tide from the coastal area on the Kongsfjorden,
Spitsbergen Svalbard (78◦55′40′ ′ N, 11◦54′22′ ′ E), using a hand-nest and stored in a 10 L plastic
tank. Permits to conduct this research were issued by the Governor of Svalbard (Fieldwork 2015,
RIS-ID 10211, Granberg M.).

4.2. Experimental Procedure

After capture, animals were carried to the laboratory where they were randomly selected and
individually transferred into a 1 L plastic flask at a temperature of 10 ± 1 ◦C that was exposed to
continuous light (LL). The aquaria were not provided with pumps for circulation and filtration
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of the water because of possible interference with the electronic monitoring system. Water was
changed every three days to maintain normal levels of oxygen, salinity, and pH. The seawater used for
replenishment was obtained from KingsBay Marine Laboratory (Ny-Alesund, Svalbard). No food was
provided during the tests in order to prevent synchronization of activity rhythms with feeding time,
as previously reported in marine decapods and fish held in similar laboratory conditions [37]. Animals
were monitored continuously for 15 days; Figure 14 shows the complete set-up.

 

Figure 14. The complete set-up inside the cold room.

4.3. Results and Discussion

Chronobiologic parameters were calculated with Lomb–Scargle periodograms to obtain the length
of the circadian period (between 20 and 28 h) and the tidal period (between 10 and 14 h). Power spectra
analysis by FFT was used to observe the peaks and their magnitudes (corresponding to amplitude) at
circadian and tidal periods. For the circadian periodicity under LL, only four out of 15 animals showed
circadian rhythms, and these had a period length of 23.2 ± 2.8 h (Mean ± SD). Tidal periodicity was
also calculated and analysed; and we observed a period of 12.0 ± 1.1 h (Mean ± SD) for only nine
animals that showed tidal rhythms. Spectral analysis confirmed the presence of the circadian periods
lower than twenty-four hours, and the presence of tidal rhythms. The amplitude of the circadian
rhythm is 6.7% ± 4.0% rPSD (Mean ± SD), and the amplitude of the tidal rhythm is 6.9% ± 4.3% rPSD
(Mean ± SD).

From a chronobiological point of view, the results show that this device can be useful for recording
and characterizing chronobiologic parameters of these and other animals, not only in the circadian
range, but also the ultradian (see reference [38] where different methodological approaches to study
these rhythms is shown). This species has never been studied before in this way, and it could be
an interesting model for studying the biological rhythms, particularly in marine high arctic animals.

From an electronic point of view, many challenges have been faced and overcome, and we have
compiled a list of obtained goals:

(1) The reliability offered by the Raspberry-Pi is certified by field tests carried out for many days and
has demonstrated that the Raspberry can be used to fabricate an instrument suitable for extremely
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harsh environments, such as those in Arctic and Antarctic. Consequently, this technology presents
new opportunities for researchers working in similarly difficult situations, e.g., in outer space.

(2) The challenge to reduce the dimensions and the weight with respect to a PC-based, has been
accomplished. This is also extremely important for various research where the weight and the
dimensions are a variable fundamental for keeping shipment costs low.

(3) The device, which works @ 12 Vdc; therefore, it can be supplied by a battery as in our case.
This allows one to place the device directly in the field without the mains, as contrasted with
a PC-based system. This allow researchers to leave the animal in its natural environment without
disturbing it.

(4) The use of the Raspberry allows researchers to conceive of new hardware for specific tasks.
(5) The possibility to directly program the device increases the overall flexibility of the instrument.

In fact, new algorithms can be conceived by researchers to find new information. This feature is
not always present in commercial tools that provide only predetermined functions.

5. Conclusions

The article shows the development and application of a new device based on the Raspberry-Pi
to monitor the locomotor activity of small marine invertebrates. The device has been conceived
to emulate more costly and complex commercially available systems. The use of IR sensors for the
continuous monitoring of the activity of the animal and the use of specific software for data analysis
is similar to that done in commercial alternatives but is performed at a lower cost. Apart from cost,
the great advantage of our system is that the use of the Raspberry-Pi allows increasing overall flexibility,
allowing creation of specific hardware configurations or specific analysis routines not provided by
commercial systems. Moreover, the substitution of the computer with the Raspberry allows the
reduction of the overall dimensions compared to a classical system, and thus reduces the shipping
costs, which is an important factor for in-field research. This project demonstrates how the overall
reduction of costs and the increase in performance flexibility may increase the interest towards this
kind of research.
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Abstract: This article describes a new instrument for power quality (PQ) measurements based
on the Raspberry-Pi. This is the latest step of a long study started by the Electric and Electronic
Measurements Laboratory of “Roma Tre” University 12 years ago. During this time, the Laboratory
developed and refined instrumentation for high accuracy power quality measurements. Through its
own architecture, the new instrument allows the use of the Raspberry instead of a personal computer
(PC). The data acquired and locally processed are then sent to a remote server where they can be
shown to users. Imagines of the system and of the data prove the activity of the system.
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1. Introduction

The constant growth of electrical energy use and its inherent problems have forced the scientific
and legislator communities to be involved in power quality (PQ) problems. Modern life depends on
electrical energy. This makes the reliability of an electrical system and power quality important topics
in electric power research. In literature there are many contributions in the power quality, but, in this
research field, many things have to be better investigated [1–3].

There is still no complete definition of the concept of power quality [4]. One definition could be
that it is the branch of science that studies all variations that can appear on the ideal waveform of the
current and in the voltage in a generic electric power network. Another good definition could be the
combination of phenomena that points out that the energy of the mains is corrupted compared with
the ideal sinusoidal shape [5].

There have been many deviations such as disturbances, unbalances, distortions, voltage fluctuations,
and voltage flickers that, acting on the sine wave, allow the evaluation of energy quality [4,6].

In addition, the definitions of some of these deviations are not yet definitive, but they evolve with
the progress of the knowledge associated with the phenomena.

These deviations are due to many causes, e.g., switching operations, flows of heavy currents,
flows of fault currents, blown fuses, breaker openings, etc. [1–7], and their effects can sometimes create
very expensive economic problems [8–15].

For most of these deviations, it is possible to use some techniques to limit their effects;
however, up to now, it has not been possible to eliminate the causes.

To quantify the effects of these phenomena, we need to study the power quality parameters.
For this purpose, the International Electrotechnical Commission (IEC) defined a series of standards
to deal with power quality issues. The IEC 61000-x-y (with x:1-6 and y:1-7) and the IEEE 1159 [7,16]
are the most widely standards used in this field. These guidelines concern the description and the
characterization of the phenomena, the principals sources of power quality problems, the impact on the
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equipment and on the power system, the mathematical description of the phenomena using indices or
statistical analysis to provide a quantitative assessment of its significance, the measurements techniques
and guidelines, the emission limits for different types and classes of equipment, the immunity or
around the tolerance level of different types of equipment, the testing methods, the procedures for
compliance with the limits, and the mitigation guidelines. To limit or better prevent the negative
effects due to these phenomena, blocking them quickly is necessary. For this purpose, some studies
have proposed passive technical approaches as the use of transformers or of passive filters able to
cut or reduce the effects of some specific frequencies generated by some machines (e.g., 30 Hz for
air-conditioning compressor motors). This approach has a limit: the problem must be a priori known
in order to promptly act, but, unluckily, this condition is not common in an electrical network [14].

Today, the great calculus capability of the digital systems allows for the development of
instruments that are able to limit the effects of the deviations [17]. To evaluate the PQ [18], it is
necessary to make measurements. Over the years, we realized and perfected a probe able to determine
the quality parameters with a high confidence level in real time, and we developed an ad hoc instrument
to satisfy some characteristics that are usually difficult to find in instruments available in the market.

The Electric and Electronic Measurement Laboratory of “Roma Tre” University has been engaged
in the PQ evaluation for 12 years, and this article shows the innovations made on PQ instruments
previously realized. These innovations are based on the Raspberry-Pi. It has the dual aim of controlling
the acquisition card and of transferring data toward a remote server where they are evaluated.
If necessary, this instrument can also locally evaluate the acquired data.

2. The First Version of the Instrument

We present here a synthesis of the first version of the instrument and of its upgrades over
time [19–24].

The instrument allows for the determination of quality parameters with a high confidence level in
real time. In particular, the instrument has been conceived to satisfy some exigencies that are usually
difficult to find in a single instrument available on the market:

• the provision of high accuracy measurements;
• the assurance of a certain energy autonomy in case of black out—this allows for the accurate

determination of the duration of the blackout;
• the storage of the PQ parameters and the allowance of a great data storage capacity;
• constant connection to the Internet to create an open data for constant monitoring of the trends of

the PQ parameters from all over the world. Figure 1 shows the block scheme of the first version
of our instrument.

Figure 1. Block scheme of the first version of the instrument for the evaluation of power quality
(PQ).PC, personal computer.

219



Electronics 2016, 5, 64

Figure 1 shows an eight-channel acquisition card mounted on a personal computer. This samples
voltages and currents of a three-phase four-wire system (three phases and one neutral). The instrument
was conceived for utilization in small environments; therefore, it was important that the overall
dimensions of the system were small. The first version of the instrument used a mini personal
computer (a Mini ITX), whose dimensions were 20.4 × 10.2 × 20.4 cm. The instrument’s case was
60 × 40 × 40 cm.

The acquisition card mounted inside the personal computer (PC) was a Measurement Computing
Data Acquisition System (DAS) 8/12 [19,20] with eight input channels—four connected to the current
sensors and four connected to the voltage ones. The current sensors were four Rogowskies (Rocoil Ltd.,
Harrogate, UK) [25] with an accuracy of ±1%, whose pass band was typically at least three orders
of magnitude wider than a current clamp. This allowed for the avoidance of the typical distortion
introduced by ferromagnetic core devices. The output signal is proportional to the derivative of the
current; therefore, an integration stage placed before the acquisition card was necessary. The sensors
for the voltage were dividers built up with resistors, which have an accuracy of 0.1% mounted on
a custom card. The dividers were necessary to reduce the high voltages of the mains to the values
accepted by the input dynamic range of the acquisition card.

The sampling was managed by external timing that, in the first applications, was directly
linked to the clock provided by the “INRIM” Institute (the Italian National Time Metrological
Institute, Strada delle Cacce, Turin, Italy), which assures an accuracy of one part in 10−14 for the
time standard [26].

A custom Uninterruptible Power Supply (UPS) with a 12-V battery powered by a battery charger
ensured operation in the case of a blackout for a period of at least eight hours. We developed a custom
UPS to directly supply the Mini ITX at 12 V DC instead of the usual UPS’s, which provide a 220/230 V
AC. The instrument was connected to a modem by an Ethernet interface to transmit data toward a
central server. This received the data from the probe and organized them to evaluate the PQ parameters
during the day using a modified version of the well-known curve-fitting algorithm [4,27–30].

Despite the fact that the instrument was conceived to satisfy many exigencies, the device showed
some important drawbacks:

• The acquisition card used a multiplexer to manage the input channels; therefore, the use of a
high accuracy time reference did not ensure high accuracy in the timing of the sampling. This
produced an incorrect registration of the phases of the signals under analysis. This problem was
partially solved by a complex analysis of the uncertainty, as shown in [27].

• The acquisition card used a bus PCI (peripheral component interconnect). This obliged us to use a
personal computer exclusively with this kind of bus, strongly limiting the flexibility of the system
and preventing the possibility of reducing overall costs.

• In case of operative system crash, there was no possibility of restarting the system using a
remote control.

• The voltage reference was integrated in the acquisition card, preventing us from using a more
accurate reference.

• The voltage sensors were spatially separated from the acquisition card, thus incurring
assembly difficulties.

• The mini personal computer, if used in stressful environment such as an electric cabin,
showed serious reliability problems.

During the time, in order to face these problems, many improvements were implemented:

• In order to limit the interventions in case of probe malfunctions, we realized a remote control
device that, using a common phone line, namely a PSTN (public switched telephone network),
allowed us to manage the base functionality of the PC. In fact, the device, interpreting the
command tones (DTMF (dual-tone multi-frequency)) generated the signals to switch on or reset
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the PC [24]. Moreover, the device was able to check the status of the PC (on or off) and the
charging status of the battery.

• Then, we developed a custom acquisition board that improved the overall performance of the
instrumentation [19,20,31–33]. In order to preserve all the information of the phases between the
voltages and the currents, the new acquisition card was capable of simultaneously acquiring eight
channels without multiplexing.

It worked at 24.976 kHz per 499 samples per period of the fundamental frequency, beyond the
limit of 256 samples recommended by standards such as IEC 61850 [34]. The A/D resolution was
14 bit and used the FT2232HQ USB, which is a high speed USB 2.0 interface whose drivers are
available for Windows©, Linux, and Mac OSX operative systems. The possibility of setting up external
references for metrological purposes was still present. The board had its own time and voltage
reference mounted. The system control was carried out with a very simple command set over a
bidirectional 9600 bps null modem channel obtained by a Virtual Com Port (VCP) driver. A second
VCP realized on a high-speed one-way channel was dedicated to transmit captured data over a
USB connection. The driver manages both the control and the data channel according to the RS232
protocol. The proposed solution was a universal cross platform interface for all hardware equipped
with a USB 2.0 interface. Despite the PCI interface, this solution provides important advantages in
terms of software and hardware compatibility. This solution allows the possibility of developing
software in ANSI C or C++ languages to write its own custom data acquisition software rather
than using a proprietary SDK (software development kit) package for control applications of the
board, usually made with inaccessible precompiled program libraries. Our DAS was designed to
be simple and to be used on different hardware and powered via USB bus (power consumption of
1.5 W). Finally, the core of the new board was the data acquisition obtained using a Maxim ADC
MAX1320 [35]. It used a very fast SAR (Successive Approximation Register) technology and was able
to acquire eight channels simultaneously at a frequency of 250 kS/s per channel with a resolution of
14 bits. Each channel has a “Track and Hold” circuit, which ensured an aperture time of 10 ns and a
channel-to-channel matching of 50 ps. In order to obtain the optimal operating setup, at the beginning,
it works on its original Evaluation Kit. Analogue input ranges were ±5 V, 77 dB SNR at 100 kHz.
The voltage inputs were scaled down with high precision dividers (accuracy of 0.01%) to tolerate
peaks up to 500 V. Current signals still arrived from integrators by Rocoil Ltd. [25], which allows us to
integrate the signal incoming from the Rogowsky coils. Voltage and current channels were disposed
alternately and spaced on the board to reduce cross-talking noise and capacitive couplings as much as
possible. Figure 2 shows the structure of the new acquisition card.

Figure 2. Block scheme of the architecture of the acquisition card. CPLD Complex Programmable
Logic Device.
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• In order to increase the overall reliability of the probe, another improvement was the substitution
of the Mini-ITX with an industrial PC. We chose an ADVANTECH PC, the ARK-1360 [36],
which was an ultra-compact fanless embedded computer conceived to work in stressful
environments such as electric cabins that are dusty and hot. In fact, the absence of the fan
eliminates the necessity of cooling the processor, drawing air from the outside of the case while
avoiding the accumulation of dust inside the case, which is the primary cause of fan breakdown.
The wide range of working temperatures, from −40 to 60 ◦C, assured that performances would
be suitable for our operational needs.

• To certify a possible event on the mains with the highest accuracy, it was fundamental to
join the acquisitions to a time reference. For this aim, the first version of the acquisition
card had an input for an external time reference useful in our first application of the probe
located inside the transformer cabin, where the time reference provided by INRIM was present.
Unfortunately, an application outside of these cabins makes the use of this timing impossible,
corrupting the time accuracy of the measurements. To face this problem, the card was modified to
accept a time reference coming from the Global Positioning System (GPS). This was obtained by
adopting the module Resolution T [37] of the Trimble, responding to the need of accurate timing
when you need it, linking the card to the UTC (Universal Time Coordinated) time. This device
was able to provide an accuracy of less than 15 ns (1 Sigma, Sigma, St. Louis, MO, USA) for the
one PPS (pulse per second) output. The rising edge of the pulse was less than 20 ns and was
synchronized to the GPS. Figure 3 shows the improvements implemented over time that highlight
the new architecture for the system compared to the first version.

Figure 3. Block scheme of the last architecture of the PQ instrument.

3. The Revolution: The Introduction of the Raspberry-Pi

The numerous changes deeply modified the architecture of the first version of the instrument
opening new scenarios in terms of further improvements. In particular, the separation between the
PC and the acquisition card that, in the last version of the instrument, talked back and forth through
a USB connection, allows for the introduction of a further revolutionary innovation: the use of
the Raspberry-Pi.

The hardware and software characteristics of the Raspberry-Pi Model B (CPU: 700 MHz;
RAM: 256 MB; FLASH/HD: 4 GB; O. S.: Linux; USB and Ethernet connections) were sufficient
to control the acquisition card and allowed data transmission to the remote server. The algorithms
for the PQ parameter evaluation that were translated for the Raspberry ran easily. Being a fanless
device, it preserves the advantages in terms of reliability warranted by the ADVANTECH PC.
These preliminary checks certified the possibility of use, thus realizing the substitution of the PC
with the Raspberry.

As is known, the Raspberry offers a long series of positive characteristics that have been well
described in many articles [38–41], indicating numerous advantages of our instrument:
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• Its power consumption is about four times less than the PC of the ADVANTECH; this leads to a
further advantage that the UPS needs a battery with a capacity four times lower and a volume at
least 5 times lower.

• Its dimensions are about nine times less than the PC; this, joined with the reduced dimensions of
the battery, allows for the reduction of the overall dimensions of the instrument that is now encased
in a box of 30 cm × 40 cm × 12 cm. This allows its easier positioning inside uncomfortable sites.

• It costs less than half that of a PC. Summing this cost reduction with the lower cost of the battery
and the box, the instrument cost is lowered by 60% (from about 2000 to 600 Euros).

Figure 4 shows the new architecture of the instrument in which the Raspberry is highlighted.

Figure 4. Block scheme of the PQ measurement device.

As is possible to see, in this new architecture, the Raspberry has the fundamental role of control
of the acquisition, of data storage, and of data transmission to the Internet server. All the activities
previously performed by the PC are now fully satisfied by the Raspberry, including data elaboration.
The functional diagram of the algorithms that run on the Raspberry is represented in Figure 5.

Figure 5. Functional diagram of the algorithms running on the Raspberry-Pi.

As Figure 5 shows, the Raspberry performs both the role of data processing and the role of data
sorting. It manages all acquisition chains up to the elaboration of the data, and builds the text files and
the binary files ready to be sent to a remote server. In the binary files, there are raw data, and they
are stored only when the limits of the PQ parameters are exceeded; instead, in the text files, there are
elaborations that give summary information on the PQ parameters.

A more explicit flux diagram shows the single steps of the programs that run in the Raspberry-Pi
(see Figure 6).
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Figure 6. Flux diagram of the programs uploaded on the Raspberry-Pi.

The most important step in the last flow chart is the data processing. Figure 7 shows a
schematic representation of the signal processing implemented. Once the signal samples si is acquired,
the fundamental frequency ω̂ is estimated. The algorithm used for the estimation of the frequency is
the multi-harmonic least squares fitting [4,22,24]. Compared with the more widely used methods such
as FFT and zero crossing [4,22,24,27], these methods do not require a coherent sampling and produce
good estimations also acquiring few cycle of the fundamental [4,22,24,27]. To reduce the computational
burden of the algorithm, a non-recursive approach presented in [28] was used.

Knowledge of the frequency allowed for the estimation of the amplitudes and the phases of the
harmonics simply solving a linear system [42]. These characteristics provide the harmonic analysis
as shown in the harmonic analysis graph in Figure 7. The amplitudes and phases of the three-phase
system produce information in order to study the unbalance and the symmetry of the system, as shown
in the three-phase system analysis graph in Figure 7.

Moreover, the phases and the amplitudes of the harmonics are used to reconstruct the signal
using a multi-harmonic model. The difference between the acquired signal and the reconstructed one
only has the non-harmonic components, as shown in the residual analysis graph in Figure 7. For this
reason, the residual analysis is useful for studying interharmonics, subharmonics, and transients.

An interface to show the results of the processing was implemented. A screenshot of this interface
is shown at the end of the article.
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Figure 7. Calculus scheme of the implemented signal processing.

At the end, an image of the system is shown in Figure 8.

Figure 8. Image of the instrument placed in its box; the detail of the acquisition card is also shown.

4. Discussion

The use of the Raspberry-Pi to replace the PC allowed for many advantages as the reduction of
the overall costs and of the power consumption increased the autonomy in case of blackout.

The cost of an old probe was about €2000, while the introduction of the Raspberry allowed savings
up to 60% for a final cost of €600.
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The power consumption of the whole probe was experimentally measured and was about 5 W,
while the device with the ADVANTECH PC was 20 W (saving up to 75%). Figure 9 shows the power
consumption comparison between the new instrument and the previous versions.
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The whole system had an energetic autonomy of 36 hours in case of blackout. The last probe
satisfied this requirement with a battery of 12 V and 12 Ah (experimental tests showed activity up to
48 h). Using the same battery, Figure 10 shows the autonomy between the last version of the probe and
the previous versions.

 

200

30
20

5
0

50

100

150

200

250

New System with
Raspberry Pi

Old System with
Industrial PC

Old System with mini-
ITX

Old System with
Pentium4

ho
ur

Energetic Autonomy comparison
(with 12 V - 48 Ah Battery)
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At the end, Figure 11 shows the comparison between the dimensions of the older probes and the
new version. This graph well shows how the use of the Raspberry changes the perspectives to use of
the probe.
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5. Application

The instrument so made is active in providing information on the PQ of the mains and is part of a
network of instruments already operative and distributed in Italy, as shown in Figure 12. There are
six probes placed in Palermo and five in Rome. Each probe acts independently, analyzing the mains of
the transformer cabin where they are placed, and sends PQ data towards the remote server placed
in Rome inside the Electric and Electronic Measurements Laboratory of “Roma Tre” University.
Here, the data are stored in a database and can be visualized both locally and from a remote client
using a graphical interface.

Figure 12. Geographical distribution of the probes in Italy: five in Rome and six in Palermo.

Figure 13 shows a screenshot of the data: on the top, it is possible to see the time trend of one
of the measured parameters, while the recorded waveforms, in a given timestamp, are shown in the
bottom of the figure. For the site called “Corviale” (probe RM3), located in Rome, the figure shows the
time evolution of the 11th harmonic on the top, while the trend of the voltages and current waveforms
are viewable on the bottom of the figure.

Using a graphical interface, the Raspberry can display the PQ information.
All underlying data used in this publication can be found in [43].
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Figure 13. The figure shows the main page of the web site. The control bar on the top allows for the
selection and visualization of the measurement point, the parameter, and the period on the graph.
In the screenshot, the time evolution of the 11th harmonic from 1 to 5 of December 2014 is displayed.
By right-clicking on a point of the graph, it is possible to show the waveforms of the voltages and of
the currents recorded in the period related to the specific point. A series of buttons allow accessing
additional analysis windows.

6. Conclusions

A general architecture for distributed PQ monitoring foresees a wide network with many
instruments that are deployed on a territory and that locally sample the mains and elaborate the
data to find PQ parameters. Until now, the cost and the size of the instrument have been a disincentive
to the development of this network. Instead, the characteristics of the Raspberry open new perspectives
in these studies. Its performances allow for its substitution for the personal computer that has usually
been used with instruments, obtaining a reduction of volume and costs.

In the future, the integration between the Raspberry and the acquisition card will allow further
additional savings that will make the use of the instrument and the expansion of the PQ network easier.
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Abstract: The Internet of Things is predicted to consist of over 50 billion devices aiming to solve
problems in most areas of our digital society. A large part of the data communicated is expected
to consist of various multimedia contents, such as live audio and video. This article presents a
solution for the communication of high definition video in low-delay scenarios (<200 ms) under the
constraints of devices with limited hardware resources, such as the Raspberry Pi. We verify that it
is possible to enable low delay video streaming between Raspberry Pi devices using a distributed
Internet of Things system called the SensibleThings platform. Specifically, our implementation
transfers a 6 Mbps H.264 video stream of 1280 × 720 pixels at 25 frames per second between devices
with a total delay of 181 ms on the public Internet, of which the overhead of the distributed Internet
of Things communication platform only accounts for 18 ms of this delay. We have found that the
most significant bottleneck of video transfer on limited Internet of Things devices is the video coding
and not the distributed communication platform, since the video coding accounts for 90% of the
total delay.

Keywords: Raspberry Pi; Internet of Things; video; streaming; low delay

1. Introduction

The number of smart electronic devices, such as smartphones, different wearables, and connected
appliances, has increased significantly. A network of electronic devices like these, capable of
communicating with each other to reach common goals, can be referred to as the Internet of
Things (IoT) [1]. The devices are able to observe and interact with the physical environment,
which allows the IoT to influence our lives significantly via applications in home automation, security,
automated devices, health monitoring, and management of daily tasks. Current estimations claim that
there will be over 50 billion connected devices as soon as 2020 [2], of which many will be typical IoT
devices, such as small embedded computers (e.g., Raspberry Pi devices) or different wireless sensor
networks. It is expected that the majority of the data traffic generated from these devices will be
multimedia data, and this multimedia traffic will account for 80% of all Internet Protocol (IP) traffic by
2019 [3]. Some even claim that multimedia is such an essential part of IoT that a new paradigm has
been suggested: “the Internet of Multimedia Things” [4].

There are many articles that research IoT problems in the area of identification, sensing,
communication technologies, security, and multimedia streaming. The area of multimedia
communication in the IoT for low end-to-end delay video streaming in time critical applications
using resource constrained hardware is however little explored. Therefore, this article focuses
on the problem of communicating high definition live video for IoT applications in surveillance
scenarios with low delay under the constraints of typical cheap IoT devices such as the Raspberry Pi.
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A particular scenario under consideration is the temporary surveillance deployment for a construction
site, where live surveillance of equipment and personal safety is required. Another interesting scenario
is surveillance of different types of events, such as concerts or festivals. The novelty of this research is
not in the scenario itself, but in the results of our investigation regarding whether or not it is possible
to communicate high definition live video on the IoT with low delay under the constraints of typical
cheap IoT enabled devices. This article seeks to find a system that meets the following requirements:

1. A low delay from source to sink of <200 ms, providing a video viewing experience as close to
live as possible.

2. High definition video content of 1280 × 720 at 25 frames per second (FPS), to be able to make out
details in the captured video.

3. Runs on a cheap resource constrained device such as a Raspberry Pi, to show that the solution
will be viable for the IoT.

We expect our results to show that it is possible to enable low delay multimedia IoT applications
using distributed systems techniques under the constraints of typical IoT devices with limited
hardware capabilities. The remainder of this article is organized as follows: Section 2 presents related
work and our approach to meet the stated requirements. Section 3 presents our results, verification,
and measurements. Finally, Section 4 presents our final discussion and conclusion.

2. Materials and Methods

Our approach is based on the idea of using distributed systems techniques to enable real-time
video streaming on the IoT. In particular, it combines peer-to-peer (P2P) technology with Distributed
Hash Tables (DHT) to enable scalable communication with low delay, in order to send minimal chunks
of encoded video as small P2P packets to minimize delay of the video transmission. This section will
be split into two parts. The first part will provide information about related work and background
theory of our work. The second part will present our method and detailed approach to meet the
requirements and solve the problem.

2.1. Related Work

The related work presented in this section will provide an understanding of the state-of-the-art in
low delay video streaming over the Internet, and the IoT communication systems that are currently
employed on the IoT.

2.1.1. Low Delay Video Streaming

There is much related work in the area of multimedia transfer and in particular surveillance
applications. Jiang et al. analyse current research in real-time data exchange and propose a platform
and a Control over UDP (CoUDP) protocol for performing multimedia transmission on the IoT [5].
Their system is, however, built on several centralized components which can add unnecessary overhead
when it comes to minimizing delay. Martinez et al. study the performance of Dynamic Adaptive
Streaming over HTTP (DASH) when it streams a video over a Content Centric Networking (CCN)
architecture in typical IoT scenarios [6]. Since the system is built on CCN, it is not particulary feasible
in real world scenarios where almost all networks are IP-based. Similar work related to surveillance
on the IoT using resource constrained devices can be found in [7–10]; however, none of these focus
specifically on low latency video and they do not present any measurements on how low delay they
achieved in their applications.

Multimedia data represents the majority of Internet traffic today. As a result, there is an increased
demand for high resolution video. In order to not saturate the connection bandwidth and to achieve a
real-time transmission, adequate video compression is required. One of the most prominent video
compression standards today is H.264, which is what we will be using. H.264 was developed as
a response to the need for higher compression of moving pictures for several applications, such as
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Internet streaming [11,12]. The main goal of this standard is to provide high quality video at much
lower bit rates than previous standards, without increasing the complexity of the implementation.
The aim is to make the standard flexible enough to be applied into a wide variety of applications,
networks and systems. It has also been shown that H.264 clearly outperforms previous standards [13],
partly due to the fact that many devices currently have built in hardware decoders for H.264.
This improved compression performance entails a greater computational cost, enabling the H.264
to use significantly more processing power for the encoding and decoding. Pereira et al. present
an analysis of the suitability of the H.264 standard for encoding IoT related video data for a low
power personal area network in [14,15]. Worth noting, is that there is a successor to H.264 called High
Efficiency Video Coding (HEVC) [16]. The HEVC codec does, however, lack hardware decoders built
into the typical resource constrained IoT devices such as the Raspberry Pi.

We aim to use the H.264 standard for the coding of video data in our proposal because of the
characteristics and simplicity of the H.264 byte stream format, and because of the hardware decoders
on the Raspberry Pi devices. H.264 defines structures like the Network Abstraction Layer (NAL)
units, facilitating access of the data within a stream. The first byte of each NAL unit is a header byte,
which indicates which kind of data is present in the unit. The remaining bytes contain the payload
data of the type indicated in the header. We will send these raw NAL units over an IoT communication
system, directly from source to sink. The sink will then, on the fly, assemble the NAL units, decode the
stream, and display the video. This approach should yield the lowest possible delay due to minimum
buffering and stream parsing.

2.1.2. Internet of Things Communication Systems

Currently, there is a vast number of different systems used to connect IoT applications to
sensors and actuators. Most are typical cloud-based systems with one or more centralized servers
on the Internet, such as Nimbits, Azure IoT, Serviocity, Evrythng, Dweet, and Thingsquare [17].
These cloud-based systems are far from optimal when it comes to creating a future proof and
ubiquitous IoT system [18], especially when it comes to large-scale communication, low delays, and
avoiding central points of failure. Our approach will be a fully distributed and peer-to-peer approach,
because the traditional cloud-based systems will have difficulties keeping the delay low, since all data
need to be proxied through the cloud. Cloud systems also add a significant delay compared to true
P2P communication, since P2P communication in its rawest form always takes place directly between
source and sink. The IoT communication system we use will send the video stream directly from
source to sink without any unnecessary proxying and without any intermediate nodes, creating a
stream of data and achieving as low a delay as possible for the communication.

Most fully distributed IoT systems create an overlay using a DHT to enable logarithmic or better
scaling when the participants increase in magnitude. There is some communication overhead related
to the maintenance of the DHT itself, since it needs to maintain references between the participants of
the DHT. In this paper we will focus on one of these DHT based systems, namely the SensibleThings
platform [19], which is a fully distributed open source platform for enabling IoT applications
supporting P2P communication with low overhead. There are several other IoT communication
platform options. For example, closely related work is being done as a part of the TerraSwarm
project [18]. Their solution is based on a data centric approach which can create unnecessary overhead
since all new data is appended to long chains of distributed objects. The RELOAD architecture is
another related work [20], which is also based on a fully distributed P2P system, but the solution
uses the Session Initiation Protocol (SIP) which induces unnecessary overhead when applied to IoT
scenarios and devices. There is also the Global Sensor Network (GSN) [21], but they have limited
support for video streaming since originally, it aimed to connect data from wireless sensor networks
to the Internet. Other relevant competing work preserves a cloud type system but moves it closer to
the end users, so-called fog computing [22]. The response times are significantly lowered, but never
become as low as for true P2P communication.
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2.2. Our Method and Approach

Our approach is based on sending H.264 baseline coded NAL units as P2P packets over the
SensibleThings Platform using Raspberry Pi 2 model B devices with attached camera modules.
We selected this particular hardware to verify that our approach is viable for typical IoT devices.
The SensibleThings platform was chosen since it is an openly available middleware platform for
creating distributed IoT applications, capable of very low delay communication. An overview of our
implementation can be seen in Figure 1; a Raspberry Pi 2 model B device with an attached camera
module as the video source, the SensibleThings platform which will communicate the video data in a
P2P manner, and finally a second Raspberry Pi 2 model B device, which will act as the video sink and
render the video stream on a display connected via High-Definition Multimedia Interface (HDMI).

Figure 1. An overview of the implementation.

2.2.1. The Raspberry Pi Devices

The Raspberry Pi 2 model B [23] is a small computer with video and media coding capabilities.
It was mainly developed for the promotion of computer science teaching in schools. It is, however,
also used by a large community of different people and companies/organizations. The Raspberry Pi
2 model B has a Camera Serial Interface (CSI-2) connector to attach a camera module directly to the
Broadcom VideoCore 4 Graphics Processing Unit (GPU) using the CSI-2 protocol. The camera is a
high definition camera, capable of producing H.264 video using the hardware encoder built into the
GPU. The camera can be controlled by an application called raspivid, which takes full advantage of
the hardware encoding capabilities.

2.2.2. The SensibleThings Platform

The SensibleThings platform [19] is an open source communication platform enabling IoT based
applications. The platform offers an open source framework for connecting sensors and actuators,
in order to enable scalable real-time communication between applications. The main characteristics
of the platform is that it scales logarithmically with communication load in the end-points; it has no
central points of failure; it is capable of signaling in real-time between end points in a peer-to-peer
manner, it has the ability to run on mobile devices with limited resources; and it is able to reliably
handle transient nodes joining and leaving with high churn rates.

In order to find the sensors and actuators, the SensibleThings platform uses a DHT, where it
associates the IP address of the sensors or actuators with a Universal Context Identifier (UCI).
The UCI is akin to a combination between a Universal Resource Identifier (URI) and an e-mail
address. For example, a temperature sensor belonging to a specific person could have the UCI:
stefan.forsstrom@miun.se/temperature. The platform can also encrypt the P2P communication using
the Secure Sockets Layer (SSL) protocol to prevent eavesdropping. If SSL is enabled there will,
however, be additional overhead to the communication both in terms of delay and computational
complexity, since SSL uses a six way handshake and both symmetric and asymmetric key calculations.
A camera can be seen as a sensor, and the video stream can be considered a large set of continuous
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sensor values to be sent over the platform. In this way we have taken advantage of all the peculiarities
of the platform and can transfer the video stream from sources and sinks globally connected on the
Internet in a very low delay P2P manner.

2.2.3. The Video Stream

The video stream is encoded using the H.264 encoder present in the Raspberry Pi 2 model B
hardware. The H.264 compression offers enough performance to address any bandwidth concerns.
Other video stream issues, such as packet loss and delay variation, are addressed by the IoT
communication platform. For example, the SensibleThings platform ensures ordered reception of
packets because of its reliable transmission protocol.

The operation starts with the session initialization, in which the two devices makes the initial
connection. This includes the resolving of the camera name in the IoT platform and sending the initial
get request for the video source to start the streaming. The application on the source side obtains the
byte stream from the video encoder which in our implementation is solved by the raspivid command.
Next, the source side will send an encoded NAL unit to the sink over the IoT communication platform.
On the sink side, the application will retrieve the NAL units, one by one, and push them to the
hardware decoder, which will decode and render the video stream on the display.

3. Results

There are many different methods for measuring the delay of streaming video. The easiest
way is to observe both the video capturing and video displaying and compare them manually by
inspecting triggers in the video. However, there are also more automated tools such as VideoLat [24],
vDelay [25], and AvCloak [26]. To measure the low delay performance of our system, we have set
up a simple manual measurement testbed. The measurements were made using a simulated digital
clock (with an accuracy of one millisecond) on a laptop screen (HP EliteBook 8460p, Hewlett-Packard,
Palo Alto, CA, USA) and a Raspberry Pi 2 model B with an attached camera (Raspberry Pi NoIR Rev.
1.3, Raspberry Pi Foundation, Cambridge, UK) facing the clock. It recorded and encoded the digital
clock at a resolution of 1280 × 720 at 25 FPS, with the default bitrate setting for the raspivid application,
creating a video stream with a bitrate of 6 mbit per second. The exact raspivid command used in all
our measurements were: raspivid -n -vf -hf -ih -w 1280 -h 720 -fps 25 -t 0 -o -.

The recorded clock was then displayed on the second display (Samsung SyncMaster SA450,
Samsung, Seoul, South Korea) to be compared with the live clock. This comparison was possible as
the two displays were recorded simultaneously with a 300 FPS camera, and saved for later analysis.
The complete system delay video could be calculated by comparing the clock difference, which was
done by investigating the recorded still frames of the two screens. A figure displaying the resulting
view of the two displays can be seen in Figure 2.

Figure 2. The recorded view of the two displays.

These measurements could then easily be repeated and the scenario altered by changing the
network and device configurations. This was one of the reasons why we chose a manual measurement
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testbed, because it would allow us to control all the steps in our evaluation and easily change
the measurement set up. Another reason why we chose to manually record the digital clocks and
compare them, rather than using a network packet analyzer or any other automatic methods to
measure the video delay, is that we wanted to measure the complete delay from recording to display.
A network packet analyzer can, for example, only measure on network level; it would not have
included measurements of the encoding, decoding, and display delays.

3.1. Measurement Configurations

Five different measurement configurations were used to investigate different scenarios. This in
order to isolate where the different delays came from and determine to what extent certain parts
contributed to the delay as a whole. We chose to only use wired connections in all the scenarios,
since the Raspberry Pi 2 model B does not have any wireless interfaces unless additional hardware is
attached. The different configurations were: Capturing only, without network, with local network,
SensibleThings with public IP, and finally SensibleThings with Network Address Translation (NAT) IP.

3.1.1. Capturing Only

In the first measurement setup we only measured the capturing time. This was done by using
the “Preview” option on the Raspberry Pi 2 model B device, with the camera recording the digital
clock. The video was shown directly on the connected screen in order to isolate the capture delay.
See Figure 3 for an overview of how this measurement was set up. The measurements performed
in this configuration showed that the capturing delay of the Raspberry Pi 2 model B device was on
average 86.6 ms with a standard deviation of 0.713 ms.

Figure 3. Measurement setup for capturing only.

3.1.2. Without Network

In the second setup we created a pipe to redirect the encoded video to a decoder which decoded
the video on the same device. Both this measurement and the previous measurement were performed
locally on a single device. This could therefore isolate the encoding and decoding delay. See Figure 4 for
an overview of how this measurement was set up. The measurements performed in this configuration
showed that the encoding and decoding delay of the Raspberry Pi 2 model B device was on average
163 ms with a standard deviation of 18.4 ms.
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Figure 4. Measurement setup without network.

3.1.3. Only Local Network

The third measurement was similar to the second setup, but it used two different Raspberry
Pi 2 model B devices and sent the video over a local gigabit network created by the local wired
network of a Linksys WRT54GL v1.1 router (Linksys, Irvine, CA, USA). The encoded video was
streamed directly using Transmission Control Protocol (TCP) from the Raspberry with the camera
to the Raspberry with the screen. The receiving Raspberry then fed the received data directly to the
decoder and displayed it on the screen. See Figure 5 for an overview of how this measurement was set
up. The measurements performed in this configuration showed that the total delay of encoding and
decoding on two Raspberry Pi 2 model B devices with a network between them was on average 163 ms
with a standard deviation of 18.5 ms. This was very close to the previous measurement without the
network, which indicates that the network communication itself does not add any significant overhead
if it is on a local gigabit speed network.

Figure 5. Measurement setup with local network.

3.1.4. SensibleThings and Public IP

The fourth measurement was done over the public Internet with the SensibleThings platform
as communication method. In this measurement each of the Raspberry Pi 2 model B devices had
a unique public IP address, as if they were directly connected to the Internet, without any home
routers or firewalls. Both devices were connected with a 100/100 mbit connection to the same Internet
service provider, namely the Swedish University Computer Network (SUNET). See Figure 6 for an
overview of how this measurement was set up. This scenario is, however, not particularly realistic
since public IP addresses are now quite uncommon and rarely issued to these types of end user devices.
The measurements performed in this configuration showed that the delay of the Raspberry Pi 2 model
B device when on the public Internet with the SensibleThings platform was on average 172 ms with a
standard deviation of 11.0 ms. Indicating that the SensibleThings platform and the noise on the public
Internet added roughly 9 ms on average to the delay.
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Figure 6. Measurement setup with SensibleThings with public Internet Protocol (IP).

3.1.5. SensibleThings and NAT IP

The final measurement scenario was in as realistic a setup as possible. In this scenario,
both Raspberry Pi 2 model B devices were behind an NAT router and had private IP addresses.
The SensibleThings platform had to apply different NAT penetration techniques to enable the P2P
communication. This is a quite likely scenario, since most IoT devices will be behind home routers
or behind a mobile carrier’s router or firewall. The NAT networks were created using the Linksys
WRT54GL v1.1 router connected to the public Internet via the 100/100 mbit SUNET connection.
See Figure 7 for an overview of how this measurement was set up. The measurements performed in
this configuration showed that the delay of the video streaming in this more realistic scenario was
on average 181 ms with a standard deviation of 19.2 ms. Indicating that the added layer of NAT and
complexity of the communication increased the delay further by roughly 9 ms.

Figure 7. Measurement setup with SensibleThings with Network Address Translation (NAT) IP.

3.2. Measurement Summary

Our results are summarized in Table 1, showing the average video latency and standard deviation
for each of the measurement setups. The raw data of all our measurements can be found online at:
http://dx.doi.org/10.5281/zenodo.60681.

Table 1. Summary of all measurements.

Configuration Average Delay Standard Deviation

Capture only 86.6 ms 0.713 ms
Without network 163 ms 18.4 ms

Only local network 163 ms 18.5 ms
SensibleThings with public Internet Protocol (IP) address 172 ms 11.0 ms

SensibleThings with network address translation (NAT) IP 181 ms 19.2 ms

The summary shows that a fully distributed IoT platform such as the SensibleThings platform only
accounts for 10% of the total delay in the worst case scenario, such as the more realistic scenario with
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devices behind NAT, where the average delay was increased by 18 milliseconds. Another notable result
is that a significant part of the delay is related to the video capture and encoding/decoding. We do not
directly address the issue of scalability in this article. However, we can see that the system will scale
well if both the communicating devices use public IP addresses, because the video is transferred in a
peer-to-peer fashion. If both devices are behind NAT then the video must be proxied through relays,
thus increasing the load of the proxy devices and the communication links.

4. Discussion

This article focused on the problem of communicating high definition live multimedia for IoT
applications in scenarios with low delay under the constraints of typical IoT devices and hardware.
That this is possible was shown by sending H.264 NAL units over a P2P-based IoT communication
system on a typical IoT device. This article has also shown that our approach satisfies the three stated
requirements. It has a low source to sink delay, which was requirement 1. We measured a 181 ms
delay from source to sink, if both the source and sink are behind NAT networks. The transferred
video was of a high definition quality of 1280 × 720 at 25 FPS, which was requirement 2. Finally it
satisfies requirement 3, because it was shown to work on a Raspberry Pi 2 model B device, which can
be considered a typical IoT devices with resource constrained hardware. In conclusion, when using
a fully distributed IoT system 90% of the total delay is due to the encoding and to the decoding of
the video.

Future Work

Real world deployment in the scenarios mentioned is our main future work, for example, to
investigate the scalability aspects of our approach. In particular, there is a need to investigate the
support and scaling for 50 billion devices which is the expected scale of the IoT. We also plan to
make a survey of all the different IoT communication platforms and the interoperability between
them. This includes measurements of the network capacities of the different IoT platforms and
network architectures, especially to perform a quantitative comparison with streaming on typical
cloud-based IoT systems and wireless networks. We would also like to evaluate other types of IoT
devices, such as other types of single board computers, e.g., Raspberry Pi Zero and Raspberry Pi 3
and different smartphones. The impact of the video quality and contents of the streamed video was
not considered in this work, hence the impact of realistic surveillance scenarios under different bitrate
conditions and the implications on video quality is a relevant topic for future work. With new IoT
devices released every year it would also make sense to investigate devices capable of HEVC (H.265).
Security aspects are paramount to the proliferation of these types of IoT services and should therefore
also be studied in more detail, especially if the IoT will be a reality in industrial and more critical
scenarios. Finally, an industrial context also imposes other constraints, such as harsh physical and
radio environment, that challenge the device shielding and wireless communication.
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Abstract: Driving with too short of a safety distance is a common problem in road traffic, often
with traffic accidents as a consequence. Research has identified a lack of vehicle-mountable devices
for alerting the drivers of trailing vehicles about keeping a sufficient safe distance. The principal
requirements for such a device were defined. A conceptual study was performed in order to select
the components for the integration of the device. Based on the results of this study, a working
prototype of a flexible, self-contained device was designed, built and tested. The device is intended
to be mounted on the rear of a vehicle. It uses radar as the primary distance sensor, assisted with
a GPS receiver for velocity measurement. A Raspberry Pi single-board computer is used for data
acquisition and processing. The alerts are shown on an LED-matrix display mounted on the rear of
the host vehicle. The device software is written in Python and provides automatic operation without
requiring any user intervention. The tests have shown that the device is usable on almost any motor
vehicle and performs reliably in simulated and real traffic. The open issues and possibilities for future
improvements are presented in the Discussion.

Keywords: safety distance; traffic; vehicle; sensor; radar; Raspberry Pi

1. Introduction

Driving at a too short of a safety distance is a common problem in road traffic and presents one of
the principal causes of traffic accidents. From 1994 to 2012 in Slovenia, about 15% of all traffic accidents
were due to ignoring the safety distance [1–3]. The drivers often tend to drive too close to the leading
vehicle, because they are unaware of the distance required to stop the vehicle at the given velocity
and because they inadvertently wish to increase the traffic throughput and, thus, shorten the trip
time. On the other hand, the commonly-known scenario involves impatient drivers on multi-lane
motorways who try to force the vehicles in front of them off the fast lane by intentional “tailgating”.
The constant improvement of road vehicle performance and the inclusion of driver-assistance systems
may increase the problem even further, as it gives the drivers a false confidence in their vehicle’s
abilities to stop and prevent the impact consequences [4–7]. This leads to frequent rear-end collisions,
often with devastating consequences and even fatal injuries [3].

The regulations regarding the required safety distance on roads in most countries include the
so-called “two-second-rule” [8,9]. This defines the safety distance to be at least as long as the distance
travelled by the vehicle at its current velocity in two seconds. Enforcement of this rule in everyday
traffic can be achieved with different measures. In many countries, the safety distance is measured
by the police at strategic spots by hand-held radar detectors [10] or by employment of in-vehicle
surveillance systems [11]. On selected spots on the highways, there are also test fields that allow
the drivers to self-evaluate their safety distance [12]. These test fields are sometimes combined with
variable-content traffic signs for visually alerting the drivers about their safety distance. All of those
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measures are passive and can only be carried out on discrete spots on the road network. A survey
of available active measures for continuous monitoring of the safety distance reveals that there is a
serious lack of devices for continuous safety distance monitoring. Many of those devices are not easily
installable into existing vehicles and are not able to alert the drivers of the trailing vehicles about
keeping the required safety distance. Most of those devices are integral parts of the equipment of
higher-priced vehicles [13–15] and are mostly designed to communicate the safety distance to the driver
of the vehicle carrying the device [16] rather than those behind it and violating the safety distance.

The work described in this paper was initiated to fill this void and to develop a device for
continuous safety distance monitoring and visually alerting the drivers of the trailing vehicles
whenever their safety distance decreases below a safe level. The result of the research and development
is a working prototype of a low-cost device that is almost universally applicable in any road vehicle
and reliably performs this task automatically with no required human intervention. Its flexibility
allows the device to be installed on different positions of the vehicle and to alert either the driver of
the vehicle carrying the device or the drivers of other vehicles about their insufficient safety distance.

2. Materials and Methods

2.1. Defining the Functional Requirements and Conceptual Design

Prior to starting the development of the concepts, the functional requirements of the system were
set. For the sake of brevity, the “vehicle carrying the safety distance measuring device” is henceforth
referred to as the “host vehicle” and the vehicle driving behind the host vehicle in the same direction
as the “trailing vehicle”. The functional requirements for the device are as follows:

1. The device has to be able to measure the distance from the rear end of the host vehicle
with sufficient range and sufficient accuracy to be able to operate at motorway speed limits
(130 km/h).

2. The device has to be able to measure the instant velocity of the host vehicle with sufficient
accuracy to calculate the required safety distance.

3. The device has to visually alert the driver(s) of the trailing vehicle(s) whenever their safety
distance to the host vehicle is too short.

4. The device has to alert the driver of the host vehicle of a possible or inevitable rear-end collision.
5. The device has to be able to record all of the ride parameters (time, location, velocity, acceleration)

for the last 1000 km of travel.
6. The concept of the device must be such that a realization of a working prototype with the basic

subset of functions will be possible by integrating components that are either readily available or
can be made using the existing workshop equipment.

7. The device must be installable into any motor vehicle with on-board electrical power without
requiring any permanent changes to the vehicle or its systems.

8. The previous seven requirements shall be fully fulfilled while minimizing the cost of
the components.

Following these requirements, five concept solutions were synthesized and evaluated.
The morphological matrix of the available options for providing the required functions is presented
in Table 1.

The morphological matrix was used to propose the following feasible design concepts:

‚ C-1 = a2 + b1 + c2 + d1 + e1 + e2 + f1 + g1 + h2 + i1 + j2 + k2 + l3
‚ C-2 = a3 + b1 + c2 + d1 + e1 + e2 + f1 + g1 + h2 + i1 + j2 + k2 + l3
‚ C-3 = a2 + b3 + c2 + d2 + e1 + e2 + f1 + g1 + h2 + i1 + j2 + k2 + l3
‚ C-4 = a4 + b1 + c2 + d4 + e1 + e2 + f1 + g1 + h4 + i1 + j2 + k2 + l1 + l5
‚ C-5 = a2 + b2 + c2 + d5 + e1 + f3 + f4 + g1 + h2 + i1 + j1 + k1 + l1 + l3
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The proposed concepts were evaluated using functional value analysis from the technical and
economical point of view. The set of technical criteria contained the following: distance measurement
accuracy, velocity measurement accuracy, alert display visibility, power consumption, ease of
maintenance, required mounting effort, mounting versatility and aesthetics. The set of economic
criteria contained the following: development cost, homologation cost, component acquisition cost,
manufacturing cost and marketability. In both cases, the utility function was unweighted. The results
of the evaluation are shown in Figure 1.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Ec
on

om
ic

al
 v

al
ue

Technical value

C-1
C-2
C-3
C-4
C-5
balance line

Figure 1. Graphical representation of the concept evaluation results.

Based on the evaluation results, the concept C-1 was chosen for implementation as the highest
ranked among the proposed concepts. The evaluation results also indicate the importance of the
evaluation process, since the value difference between the concepts is relatively small.

2.2. Design and Adaptation of the Selected Concept

The selected concept of the device is based on an embedded computer and includes an LED-matrix
display for visual alert, a radar sensor for distance measurement, a digital accelerometer, a GPS module
for velocity measurement, a GSM module for sending distress alerts as text messages and a speaker for
host vehicle warnings. It is powered either from the vehicle on-board power system or from a separate
battery; it records the data on the built-in memory card and is attached to the vehicle with a suction
cup mount. Figure 2 shows the required components and their connections used in the concept.

2.3. Selection of the Components

The first component that had to be selected carefully was the radar distance sensor, because
it represents a significant cost. The tests were started with a radar sensor as is used in vehicles
with adaptive cruise control [17]. Although conveniently sized and available at an attractive price,
this sensor soon had to be rejected as unsuitable due to the unavailability of data transfer protocol
documentation and a lack of resources for reverse-engineering. The next option was a purpose-built
radar sensor. A K-MC3 Doppler radar sensor by RFbeam Microwave GmbH [18] was chosen. It is
used, among other applications, in adaptive traffic signage. The sensor comes with a configurable
DSP board that communicates with its host via a UART serial interface. The preliminary tests have
shown that the sensor system largely fulfils the requirements regarding the measurement range and
response time.
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Figure 2. Required components for the selected concept.

After deciding upon the distance sensor, the decision was made about the processing unit.
Based on its versatility, low power consumption and largely positive experience from other projects,
we opted for the Raspberry Pi Model B single-board computer [19]. Since it runs a standard Linux-based
OS and provides a large set of on-board communication interfaces, it was a natural choice for use in
the prototype development.

Other components were selected mainly from what was available in the lab equipment pool,
so that they were connectable to and supported by software on the Raspberry Pi. Due to their
unavailability at the time of the prototype construction, the GSM module, the accelerometer and
the speaker were left out from the final version of the prototype. This, however, did in no regard hinder
its principal functions. The list of the actual components used in the final version of the prototype
together with a conservative cost estimate is presented in Table 2.

Table 2. The components used in the final prototype.

Component Manufacturer and Type Cost Estimate (€)

Radar sensor with DSP board RFbeam Microwave GmbH K-MC3 560

Single-board computer Raspberry Pi Foundation Model B 30

SDHC memory card SanDisk Ultra (8 GB Class 10) 8

GPS module u-blox AG Antaris 4 AEK-4T 200

Power supply voltage regulator + accessories
(capacitors and heat sink) Generic 7805-TO 220 4

LED-matrix display (including a driver MC) Olimex Shield-LOL-10 mm-Green 25

polypropylene (PP) enclosure TRACON Electric Co. 200 ˆ 150 ˆ 75 mm 6

Suction cup mount Bohle AG Veribor 35

Mounting accessories various 4

Cables, connectors, adapters various 18

Total 890
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2.4. Prototype Assembly

The acquired components were electrically connected and assembled inside a protective plastic
enclosure with an attached suction cup for mounting on a vehicle rear window or panel. Research and
testing was carried out [20,21] in order to find the correct enclosure material that does not hinder the
radar function. It was found out that the 4 mm-thick polypropylene shell of the enclosure is transparent
to the RF waves as long as the radar antenna is mounted 6.2 mm from the inner surface of the shell.
This distance was achieved by inserting suitable spacers. A 3D model of the prototype device assembly
was created for studying and optimization of the component layout within the enclosure. The model,
together with the actual assembly of the components in the enclosure and its mounting on a vehicle
rear window, is shown in Figure 3.

(a) 
 

(b)

Figure 3. Components mounted in the enclosure. (a) Explosion drawing of the assembly model used
for component layout design; (b) actual assembly and mounting on a vehicle.

The electrical connections for the purpose of the prototype were made using readily-available
cables and connectors in order to avoid physical alterations to the components. The connection diagram
of the prototype system is shown in Figure 4.

Once assembled, the system was preliminary tested for power requirements and physical
suitability for attaching to a vehicle.
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Figure 4. Connection diagram of the prototype device.

2.5. Software Setup and Development

The first step of the software setup was getting and installing the operating system for the
Raspberry Pi computer. We opted for the ready-made disk image of Raspbian Jessie [22], provided by
the Raspberry Pi Foundation [23]. The image was transferred to the SDHC memory card. The system
was configured for its specific purpose. The most important steps in this process were maximizing
the storage space by purging the unneeded software packages, disabling the unnecessary services,
enabling the SSH server and setting up a static IP address for the on-board Ethernet adapter. Only
the following services are configured to start at boot: systemd-udevd, ifplugd, cron, dbus-daemon,
samba (nmbd, smbd), getty (with only two virtual consoles) and sshd. The debug output to the
serial console was disabled in /boot/cmdline.txt to free the Raspberry Pi on-board serial interface
for communication with the radar sensor DSP board. The allocated GPU memory was reduced to
16 MB by editing /boot/config.txt. The configured Raspberry Pi is accessible over Ethernet from
another computer using a SSH connection, eliminating the need for a separate display and keyboard.
Running ifplugd ensures automatic network interface configuration on cable connection. Running
samba provides access to the recorded data files on the Raspberry Pi from a computer running MS
Windows without additional software.

The bi-directional serial connection to the radar sensor DSP board was tested by sending command
strings and receiving the response. The bi-directional USB-to-serial connection to the GPS module
was tested by sending the command to initiate continuous operation and receiving the NMEA
0183-compliant output. The transmit-only serial connection to the display microcontroller using
a Prolific PL-2303 USB-to-UART converter chip was tested by sending command strings and observing
the display.

The core function software was developed in Python 2.7. The main reason for this was the
extensive support for various communication protocols, ease of debugging and the amount of
available documentation with code examples. The user software consists of separate routines for
getting the data from sensors. This enables isolated testing of the individual protocols and the use of
the developed routines for thorough testing of each individual sensor. After the data manipulation
routines were tested and proven working, the routines for user alerts were written and tested, and once
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the results were satisfactory, the main program subroutine was written. In normal device operation,
this subroutine is run in an endless loop, which is automatically started at system boot as a cron job.
Figure 5 shows a simplified flow chart of the main subroutine.

START read velocity v1
from GPS v1 > 30 km/h ? read ds,closest and 

v2 from radar

calculate 
required safety 
distance ds,req

ds,closest < ds,req?

show alert on 
display END

Yes

Yes

No
No

Figure 5. Simplified flow chart of the main subroutine running on the device in an endless loop.

To determine the actual safety distance SDa, a list of detected targets in the measuring range
is acquired from the radar sensor. This is accomplished by sending a command to the DSP board
over serial connection. Upon receiving this command, the DSP board returns a text string, including
the positions and velocities of all of the detected targets. From these targets, the one closest to the
sensor (and thus, to the host vehicle) is determined, and its required safety distance ds,req is calculated
as follows:

ds,req “ v2 ˆ tR ` v2
2 ´ v2

1
2¨ a

, (1)

where v1 is the longitudinal velocity of the host vehicle, v2 is the longitudinal velocity of the trailing
vehicle, tR is the reaction time (constant at tR = 2 s) and a the achievable braking deceleration in wet
conditions (a = 4 m/s2). The host vehicle velocity v1 is acquired from the GPS sensor by continually
receiving and processing its output in the form of NMEA 0183 strings.

The distance to the closest target, ds,closest is continuously compared to the calculated required
safety distance. The alert on the LED-matrix display is initiated whenever the following condition
is true:

ds,closest ă ds,req, (2)

The alert is sent as a command string over the serial connection and interpreted by the matrix
display controller firmware. An animated double-arrow (Figure 6) is shown followed by the scrolling
“KEEP DISTANCE!” message. This sequence runs in a continuous loop until the condition in
Equation (2) becomes false again.

Figure 6. Double arrow shown on the LED-matrix display.
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2.6. Testing the Finished Prototype

Once the operating system and the initial version of the main program on the Raspberry Pi were
ready and running, the power consumption of the entire system under load was again tested connected
to a laboratory power supply. It was found out that the steady electrical current draw of the entire
system (including the Raspberry Pi) on the 5-V DC output of the regulator never exceeded 0.8 A,
which is why we decided to keep the 7805 linear voltage regulator rather than replacing it with a
switching type regulator. The prototype was tested on a vehicle in a controlled environment. For this
purpose, the following test protocol comprising several Pass/Fail criteria was developed:

1. The allowed relative measurement error of the host vehicle velocity (from the GPS module) in
the 30–200-km/h range is below 5%.

2. The allowed relative measurement error of the host vehicle velocity (from the radar sensor) in
the 30–200-km/h range is below 10%.

3. The allowed relative measurement error of the trailing vehicle velocity (from the radar sensor) in
the 30–200-km/h range is below 10%.

4. The measurement range of the radar sensor when measuring the distance to target is within
the 5–70-m range.

5. The allowed relative measurement error of the measured distance from the rear-most point of
the host vehicle to the front-most point of the trailing vehicle on the same traffic lane within
the 5–110-m range is below 10%.

6. The reliability of the alert activation when the measured safety distance of the trailing vehicle is
too short must not be below 95%; in other words, the alert shall activate in at least 19 of 20 cases
of safety distance rules violations.

7. The radar sensor must always provide reliable distance-to-target measurement without any
disturbances in the form of unexplained values or significant oscillations.

8. The radar sensor must be able to sense a vehicle abruptly cutting in onto the traffic lane on which
the host vehicle is driving.

9. The radar sensor must not sense objects outside the roadway or vehicles driving on other traffic
lanes as a trailing vehicle.

To test the criteria, several test scenarios were devised and carried out. All of the tests were
performed using one or two passenger cars on a closed road. The tests included measurements of
velocity (Criteria 1–3), distance (Criteria 4 and 5) and combined tests in simulated and real traffic
(Criteria 6–9).

3. Results

In the first test, the host vehicle velocity was simultaneously measured with the radar sensor and
the GPS. Figure 7 shows an excerpt from one of the measurements, where it can be observed that the
agreement between the two curves is generally very good. The slight time shift occurs due to the GPS
velocity being sampled only twice per second due to a limitation imposed by the GPS receiver used in
the prototype. The mean values of magnitude (excluding the radar sensor noise) follow each other
with an average relative error of 3.12%, which is well within the required 10% relative error margin.

In the second test, the distance from the host vehicle to several different stationary objects (a flat
wall, a shipping container, a car) was measured in order to determine the radar sensor range and
accuracy. The example measurement was performed with the device attached to a car slowly driving
away from a steel shipping container approximately 6 m wide and 2.6 m high. The points at 20, 30 and
50 m from the container were marked by using a calibrated measuring wheel. The car was stopped at
these points during the test in order to test the stability and accuracy of the measurement. Figure 8
shows that the measured distance is stable and accurate. All of the measurements are well within the
required 10% relative error; statistics for all of the tests are shown in Table 3. It is also obvious that the
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maximum reliable range of the measured distance is approximately 75 m. It is possible to increase this
value by adjusting the radar target sensing amplitude level, albeit at the expense of lower distance
measurement accuracy.
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Figure 7. Example host vehicle velocity measurement comparison.
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Figure 8. Example distance measurement from a stationary object.

Table 3. Distance-to-object measurement test statistics.

Measuring Wheel
Distance (m)

Average Radar
Measurement (m)

Average Absolute
Error (m)

Average Relative
Error (%)

20.00 20.65 0.72 3.49
30.00 29.79 1.08 3.62
60.00 59.59 0.95 1.59
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Similar measurements were done with a stationary passenger car as the target object. In those
measurements, the upper limit of the maximum reliable measurement range was also between
70 and 80 m.

One of the requirements was also a reliable, disturbance-free distance measurement throughout
the whole measuring range of the radar sensor. To test this, the device was mounted on the host
vehicle driving in a straight line at 30–40 km/h while the trailing vehicle was approaching it from
behind with a constant relative velocity of approximately 0.8 m/s. During the test, the distance of
the trailing vehicle to the host vehicle has thus approximately linearly decreased from 75 m down
to 15 m. The time vs. distance curve is shown in Figure 9. It can be observed that the otherwise
prevailingly straight curve contains three significant anomalies at approximately 71 m (reading 0 m),
at approximately 46 m (reading 23 m) and at approximately 23 m (reading 0 m). After some research
and discussion with the radar sensor manufacturer, it was determined that the interference most likely
comes from the MAX232 RS-232-to-TTL converter chip on the sensor DSP board. To remedy this,
the known false readings of 23, 46 and 71 m were filtered out in the final version of the device software
and substituted by interpolating the adjacent readings. This does not significantly hinder the device
performance, as the distance between vehicles in normal traffic is dynamic and, thus, the probability
of remaining at exactly the filtered-out values for any prolonged time is fairly low.
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Figure 9. Anomalies in the distance measurement.

The same test setup was also used to determine the influence of the driving surface itself
on the distance measurement. Due to the shape of the microwave propagation field of the radar
transceiver [18], it was expected that the nature of its mounting on the host vehicle may cause the
detection of the driving surface as one of the targets, thus causing false alert triggering. To determine
this, the signal amplitude vs. distance chart was drawn. Figure 10 shows an example where two
vehicles were located at distances of 12 m and 37 m from the radar sensor. The target sensing amplitude
threshold in this case was set to 3500 in order to reliably sense the targets, but this setting almost
always returned a target at the distance of just over 1 m, determined to be the reflection of the driving
surface. To overcome this, the targets closer than 3 m were subsequently programmed to be filtered
out in the final version of the device software.

The next test was performed in order to test the reliability of the alert message activation on the
LED-matrix display. To satisfy the sixth Pass/Fail criterion, a drive of two test vehicles on a closed
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road in simulated traffic was performed. The device was mounted on the host vehicle, and the trailing
vehicle was driving behind it with varying velocity and distance. During the test, the driver of the
trailing vehicle intentionally initiated a series of 20 obvious safety distance violations with different
severity (an example video is available as a supplement). The results of this test show that the alert
on the display was successfully activated in all 20 instances and that there were no false activations.
It was observed that the alert activated with slight delay whenever the trailing vehicle approached
the host vehicle very rapidly due to the low sampling rate of the GPS velocity readings. This test was
repeated on an open road with normal traffic and objects along the roadsides (an example video is
also available as a supplement). There, it was determined that in curves with a very small radius, it a
false alert can be triggered. Therefore, we had to declare the ninth criterion as a Fail, although the false
alerts triggered by the roadside stationary objects usually do not seriously affect the function of the
device in slow city traffic or on a motorway with large curve radii.
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Figure 10. Target sensing level: problem of sensing the driving surface.

Table 4 shows the summary of the Pass/Fail criteria and their fulfilment. It is obvious that the
prototype device fulfils five out of nine test criteria; two criteria were not tested; and the device
fails two of the test criteria. We were not able to adequately test Criteria 1 and 3 due to the lack of
a reference measurement device for velocity and due to limited testing space not allowing vehicle
velocities over 50 km/h. It was assumed, based on previous research [24–26], that the GPS velocity
measurements are sufficiently accurate to be used as the velocity reference. For the criteria that had
to be declared as Fail (7 and 9), the cause of failure was determined and, in the case of Criterion 7,
corrected programmatically or, in the case of Criterion 9, found as not being heavily detrimental to the
function of the device.
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Table 4. Summary of Pass/Fail criteria and their fulfilment.

Criterion Description Pass Fail Remark

1 GPS host vehicle velocity measurement error under 5% - - not checked, GPS used as the reference

2 Radar host vehicle velocity measurement error under 10%
‘

3 Radar trailing vehicle velocity measurement error under 10% - - not checked, assumed OK due to
fulfilled Criterion 2

4 Radar measuring range 5–70 m
‘

5 Radar distance measurement error under 10%
‘

6 Alert activation rate over 95%
‘

7 Radar provides reliable, disturbance-free distance measurement x false targets due to electrical
interference

8 Radar senses trailing vehicle cutting in onto the host vehicle lane
‘

9 Radar must not sense objects outside the roadway or vehicles on
other lanes x false alerts in tight curves

4. Discussion

The research of the traffic accident statistics, on the one hand, and of the state-of-the-art devices, on
the other, yielded the conclusion that there is the need for a device for alerting the motor vehicle drivers
about following a particular vehicle on a too short of a safety distance. The market survey revealed
that a universal low cost device that would be suitable for the task does not yet exist. The analysis
of the traffic legislation proved that such a device can be made compliant with existing regulations.
These findings were the basis for the development of a self-contained device that can be attached to
almost any motor vehicle and automatically provide visual alert to the drivers of the trailing vehicles
violating the two-second safety distance rule.

The development started by setting out the functional requirements of the system. In the early
stages of the development, several concepts were synthesized. A morphological matrix was compiled
to define them, and the functional value analysis was carried out to evaluate the concepts and to
select the most appropriate one regarding their technical and economic value. The highest priority
evaluation criterion was the optimization of the cost while still satisfying the functional requirements.

After some initial considerations, the principal measurement method was selected to be a radar
sensor. The rationale behind this decision is the relative insensitivity to environment parameter
variations and sensors with suitable characteristics available at a relatively modest cost. In the
beginning of the actual sensor selection process, there were considerations whether to use a
readily-available adaptive cruise control sensor. While this is an attractive option as far as its price
and mounting possibilities are concerned, the lack of documentation describing electrical connections
and data transfer protocols prevented its implementation for the time being. Instead, a Doppler radar,
as found in adaptive traffic signage, was used.

From the beginning of the design process, a single-board computer was intended to be used for
sensor control, data processing and alert activation. Based on the research of the market and previous
positive experience, the Raspberry Pi Model B was chosen for the task. Throughout the design process,
from the initial data transfer tests to testing the finished prototype in real traffic, the Raspberry Pi
has continuously proven itself exactly the right choice. It owes its suitability mostly to the excellent
balance between the processing power and the flexibility of a Linux-running system, on the one
hand, and its small form factor and modest power requirements, on the other. This is the balance
that was almost impossible to achieve as recently as a few years ago when the gap between “classic”
microcontroller-based embedded systems and small PCs was still wide open. An added bonus of the
Raspberry Pi is its on-board interfaces, which eliminate the need for overly-complicated connection
interfaces required for communication with the system components.

The chosen components were integrated into a working prototype of the device. As per the
functional requirements, the device can be used on any vehicle, as long as it can provide on-board
electricity and a suitable surface to mount the sensor enclosure and the LED-matrix display.
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The control software is written in Python 2.x. In its basic version, the software consists of
modules for sensor data acquisition, data processing and comparison and for activating the visual
alert. These modules are called from the endless main loop, providing continuous operation without
the need for user intervention. Should additional functionality ever be required, the existing routines
can be altered and new ones added to the existing code. For debugging and service purposes, an SSH
connection over Ethernet can be used to connect an external computer to monitor the operation and/or
adjust the operating parameters.

The finished prototype was extensively tested. The first tests were performed in laboratory
conditions in order to test the compatibility and performance of sensors. After reviewing the
preliminary results, a series of Pass/Fail criteria was set out to test the function of the device in
expected conditions in traffic. A test protocol was devised to test these criteria. Generally, the test
results were satisfactory, passing five out of nine criteria. As expected, some of the tests yielded results
that required adjustments to the system. These were all implemented by software changes only and
included only minor additions to the data processing algorithms. With those adjustments, the system
proved itself reliable and robust in daily traffic. The cost of the components used in the final version of
the prototype was kept significantly under 1000 €, which is within the desired target budget, as well.
To display the alerts on the prototype device, a relatively small (150 ˆ 100 mm) 14 ˆ 9 LED-matrix
display was used as a proof-of-concept. To increase the visibility, a new, larger, transparent LED-matrix
display (Figure 11) has been designed and is currently awaiting prototype production.

(a) (b) 

Figure 11. Model of the proposed transparent display design. (a) LED-matrix detail; (b) mounting on
the rear window of a vehicle.

The prototype device as described is currently used on a road surveying vehicle during various
continuous measurements to keep the trailing vehicles at a safe distance in order to not disturb
the measurement. The direct benefit of this use is a reduced need for road closures, since the
measurements can now take place on the roads open for traffic even without employing a separate
distance-keeping vehicle.

Although the device has proven to perform soundly, there is, of course, always room for
improvement. The most apparent challenge is false alert triggering due to roadside objects in tight
curves. While it does not really affect the robustness and reliability of the operation on straight roads,
it is nevertheless an inconvenience that has to be considered and possibly addressed. The possibilities
of including target angle sensing are currently being studied, either from the existing vehicle steering
wheel sensors or by implementing lateral distance sensing by the radar. Before the device is ready
for wider implementation, its operation in unfavorable conditions will also have to be tested more
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thoroughly. This includes tests in extreme weather, such as rain and fog, and under the influence
of other radar devices (vehicles with adaptive cruise control, police speed guns, etc.). None of these
tests have yet been conducted, but are planned in the near future. Using the Raspberry Pi as the
processing unit makes the design of the prototype device ready for future functionality expansion by
employing additional sensors or by implementing additional software algorithms if the need arises.
The replacement of the originally-used Model B Raspberry Pi with one of the newly-available models
also opens new possibilities. By using a quad-core Raspberry Pi 2 or Raspberry Pi 3, it may be possible
to eliminate the radar DSP board by relegating the signal processing to the Raspberry Pi itself; by using
a Raspberry Pi zero, it is possible to minimize the physical dimensions and the power requirements of
the device. The design of the Raspberry Pi ensures the compatibility of the operating system and the
user software across the model range.

Supplementary Materials: The following are available online at http://dx.doi.org/10.5281/zenodo.50478:
Video S1: Test of the prototype device in simulated traffic; Video S2: Test of the prototype device in real traffic.
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The following abbreviations are used in this manuscript:

GPS Global Positioning System
LED Light-Emitting Diode
RADAR (also “radar”) RAdio Detection And Ranging
LIDAR LIght Detection And Ranging
LASER Light Amplification by Stimulated Emission of Radiation
LCD Liquid Crystal Display
accmtr. Accelerometer
GSM Global System for Mobile Communications
USB Universal Serial Bus
DSP Digital Signal Processor
UART Universal Asynchronous Receiver and Transmitter
OS Operating System
SDHC Secure Digital High-Capacity
MC Microcontroller
PC Personal Computer
IP Internet Protocol
SSH Secure Shell
NMEA National Marine Electronics Association
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2. Prometne Nesreče (Total Traffic Accidents in Slovenia Caused by Insufficient Safety
Distance—Statistics for 1994–2012, in Slovenian). Available online: http://nesrece.avp-rs.si/?layers
=B00FFFFFFFFT&DatumOd=1.1.1994&DatumDo=31.12.2012&Vzrok=11 (accessed on 19 January 2016).
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Abstract: The Raspberry Pi and its variants have brought with them an aura of change in the world
of embedded systems. With their impressive computation and communication capabilities and low
footprint, these devices have thrown open the possibility of realizing a network of things in a very
cost-effective manner. While such networks offer good solutions to prominent issues, they are indeed
a long way from being smart or intelligent. Most of the currently available implementations of such a
network of devices involve a centralized cloud-based server that contributes to making the necessary
intelligent decisions, leaving these devices fairly underutilized. Though this paradigm provides for
an easy and rapid solution, they have limited scalability, are less robust and at times prove to be
expensive. In this paper, we introduce the concept of Agents on Raspberry Pi (AgPi) as a cyber solution to
enhance the smartness and flexibility of such embedded networks of physical devices in a decentralized
manner. The use of a Multi-Agent System (MAS) running on Raspberry Pis aids agents, both static
and mobile, to govern the various activities within the network. Agents can act autonomously or
on behalf of a human user and can collaborate, learn, adapt and act, thus contributing to embedded
intelligence. This paper describes how Tartarus, a multi-agent platform, embedded on Raspberry Pis
that constitute a network, can bring the best out of the system. To reveal the versatility of the concept
of AgPi, an application for a Location-Aware and Tracking Service (LATS) is presented. The results
obtained from a comparison of data transfer cost between the conventional cloud-based approach
with AgPi have also been included.

Keywords: Multi-Agent Systems; Cyber Physical Systems; Mobile Agents; Raspberry Pi; Internet of
Things (IoT); BLE (Bluetooth Low Energy); Fog Computing

1. Introduction

The advent of the Internet of Things (IoT) [1] has facilitated devices to be connected with ease
and enhanced to communicate and share data. Gartner Inc. (Stamford, CT, USA) [2] has predicted that
by 2020, the IoT will form the basis for most business processes and systems. It has also conjectured
that, by this year, more than 6.4 billion such devices will become connected. This drastic increase in
connected devices is bound to revolutionize and greatly enhance Information and Communication
Technologies (ICT) [3]. The Internet serves as an easy, reliable and accessible means for communication
but is not without issues. Two of the major issues that crop up in the implementation of a typical IoT
are security and the cost incurred in cellular communication. For applications such as a cab enquiry
and booking system, which involves devices spread across an enormous geographic area, the use of
the Internet can be traded off with some aspects in security. This may not be true for critical areas
such as in military applications, hospitals, industries, smart buildings, etc. where security could be
the major concern. Current IoT architecture [4,5] makes use of cloud-based solutions for imparting
services to the users. The integrity, safety and insecurity of data stored in a cloud, along with the
associated services for sensitive domains like medical and industrial ones, remain matters of concern.
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The other issue is that in the conventional cloud-based IoT architecture, a device communicates through
a central server supporting the cloud platform. This increases the cellular communication costs. A set
of devices within a networked infrastructure can communicate locally and also perform computations,
thus preventing a very large number of interactions with the cloud [6]. For scenarios such as an IoT for
military or health care application, an Intranet based solution could perform effectively. Issues like
security and communication expenses in an Intranet can be greatly contained. Another important
issue is data privacy which is crucial in the case of medical hospitals, government and also for a
consumer. Leakage of personal information and data ownership are at risk in a cloud-based centralized
architecture.

In cloud-based systems, most of the data and intelligence churning activities are performed by a
server hosted elsewhere in a centralized manner. For an Intranet-based solution, a framework that
can facilitate this in a decentralized manner needs to be evolved. The devices participating in such an
Intranet of Things, could include a range of connected embedded devices with their associated interfaces
that connect them to the real physical world through sensors and actuators. The word “things” in an IoT
refers to passive devices which seldom inherit any form of smartness within them. This is due to the
fact that it is the cloud which is responsible for the intelligence and not the actual device. What is thus
required to make an intelligent Intranet of Things is a cyber counterpart that can induce and embed
intelligence into these devices. Multi-Agent Systems (MAS) [7] can act and provide as a fitting solution
for realizing embedded intelligence. If such agents are made to operate on top of each embedded
device, they can make decisions autonomously at the lower levels, thus transforming a network of
such devices into a smart Cyber-Physical System (CPS). Figure 1 depicts such a CPS wherein the core
comprises the real physical world being sensed and controlled via the sensors and actuators. The actual
decision making and intelligence churning process is carried out by the agents (static and mobile)
within the cyber world. These agents are programs that run on the connected embedded devices.

Figure 1. An agent-based Cyber-Physical System.

The concept of using agents in an Intranet of Things is very similar to an implementation of
a Fog Computing environment [8]. The cloud is extended to the user side and constitutes a set of
distributed and decentralized computing nodes which form the edge of the network. Such a concept
has several advantages which include:

1. Privacy: Most of the cloud servers are owned by multinational corporations such as Amazon
(Seattle, WA, USA), Google (Mountain View, CA, USA), Microsoft (Redmond, WA, USA),
Cisco (San Jose, CA, USA), etc. which continuously receive data from the user side. Leakage of
personal information and data ownership becomes a critical issue when all of the user’s data
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is collected for analytics purpose in the cloud [6]. A safer solution would be to have a local
infrastructure on which the user has more control than the cloud server. This would allow local
data filtering and computation before sending it over to the cloud. An agent-based system could
be a better solution for ensuring privacy.

2. Cost: Cloud services follow a “Pay-as-you-go” model which adds to the cost as the storage and
network communication increases [8]. In a local computational infrastructure model, these costs
can be reduced if the data collected is filtered locally and only pertinent information is sent to
the cloud.

3. Network Latency: A cloud has inherent latency issues and thus may not be a viable solution for
applications such as live video streaming in connected vehicles, real-time data analytics in smart
grids [8], etc., all of which require a rapid response. An Intranet of Things that uses agents, on the
contrary, can provide fast local computations, thereby decreasing latency.

4. Energy: As already mentioned, agents in an Intranet of Things can filter the acquired data prior
to sending it over to the cloud. Since this reduces communication overheads, it also reduces
the energy consumed and consequently increases the battery life of the devices constituting the
network [9].

In this paper, we emphasize the importance of agents (both static and mobile) and describe
the use of Tartarus (Version 1.1, Robotics Lab., IIT Guwahati, India) [10], a Multi-Agent platform,
on the Raspberry Pi (Raspberry Pi Foundation, London, UK). With a Location-Aware and Tracking
Service (LATS) as a CPS application using Tartarus running on Raspberry Pi (henceforth, in this paper,
Pi strictly refers to the Raspberry Pi) boards, we demonstrate the viability and versatility of the use
of agents. The Tartarus agents are responsible for monitoring and tracking people within an indoor
environment. Providing LATS is a challenging task in a dynamic environment [11]. Such scenarios
call for queries that relate to where and when a person was or is in the area being monitored, what is
the direction of the person’s movement, etc. Firing queries to a database of related information stored
centrally is fairly simple. However, if the person being tracked is in continuous motion, the database
becomes dynamic in nature, which makes the task of querying, a complex one. This complexity further
increases when the devices that track and store the data are numerous and have limited computational
and storage resources. Data, in this case, is thus both dynamic and distributed across a network.
Furthermore, new queries may also need to be fired at any point of time, which adds to the complexity
of the system. This agent-based LATS portrays how agents, both static and mobile, can aid in satisfying
such queries.

The rest of the paper is organized as follows. Section 2 provides a brief overview of Multi-Agent
Systems (MAS) and the related platforms, while Section 3 gives the background on earlier realized
LATS applications. Section 4 describes the architecture of AgPi and is followed by the LATS application
in Section 5. The paper culminates with the results obtained and conclusions reached.

2. Multi-Agent Systems (MAS)

Agents are software entities that are capable of performing task(s) on behalf of a user [12]. They are
autonomous and possess the ability to make their own decisions and drive themselves towards a goal.
Maes et al. [13] refer to agents as computational systems that can sense and act autonomously in an
environment in order to realize a set of goals. Just as human beings and robots form entities in the
Physical world, these agents can be considered to be their counterparts in the Cyber world.

Multi-Agent Systems (MAS) can be defined as a compendium of different agents with their
own problem solving capabilities and goals [14]. An MAS aids in abstracting a complex system into
subsystems, each of which is represented by an agent. It is not just a collection of agents, but a system
where agents coordinate to achieve a common goal. An agent may in addition possess the ability to
migrate from one node to another in a network. Such Mobile Agents carry all their functionalities with
them to enable execution at remote locations. Since the work described herein exploits mobile agents
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to accomplish data processing and dissemination, a brief description of such agents has been provided
in the next subsection.

2.1. Mobile Agents

A mobile agent [15] is basically a piece of code that has the ability to migrate from one node
in a network to another and carry out certain task(s). In addition to exhibiting mobility, a mobile
agent can also clone and multiply itself, carry a payload (data or a program), make local decisions,
execute a program on a remote site or node, etc. Mobile agents can also be used to churn out and
carry intelligence along with them as they migrate within a network [16]. They have been used
in a wide range of applications which include wireless sensor networks [17], robot control [18,19],
e-commerce [20], security [21,22], e-learning [23], robotics [24,25], IoT [10,26], etc. Some of the major
advantages of using mobile agents are:

1. Bandwidth and latency reduction: A mobile agent has the innate ability to carry the computation in
the form of code to a remote site. Instead of fetching the whole raw or unprocessed data from
a remote site, the mobility allows for the computing program or logic to migrate to this site and
process the data therein. This results in reducing network traffic and latency.

2. Discontinuous operation: In a dynamic network where the devices are mobile, it is rare that a
continuous connection is maintained between two nodes for a long time. In a conventional
client-server system, a sudden disconnection may cause the server to resend the whole data,
making it an expensive affair. On the contrary, in a mobile agent-based scenario, migration occurs
only when a connection is established. The mobile agent then resides in the new node till the
connection to the next node is available. Unlike the large amount of data to be processed, a mobile
agent is comparatively lightweight. Thus, a failure in migration does not compound into large
losses in bandwidth and time.

3. Adaptivity and flexibility: In a traditional centralized system, any upgrade would require the system
to be brought down, changes made and then restarted. In a mobile agent-based system, upgrades
could be packaged within the mobile agent and released into the network. This On-The-Fly
Programming (OTFP) [10] support facilitates a higher amount of flexibility. Agents have the ability
to sense and perceive their environment and change their behaviours accordingly. A mobile agent
can add new behaviours in the form of a payload and can also adapt to different situations.

Mobile agents thus have the potential to provide a viable distributed solution to problems related
to a network [27].

2.2. Multi-Agent Frameworks

Agent related processes such as its creation, programming, migration, cloning, etc., require a
software environment or framework that runs on the supporting hardware platform. A Multi-Agent
Framework (MAF) provides for such an environment and facilitates the rapid development and
deployment of agent-based systems. These frameworks allow users to create, program and release
mobile agents into a network and also aid the execution of the relevant programs within JADE [28],
JADE-LEAP [29], TACOMA [30], Agent TCL [31], AgentSpace [32], Aglets [33], etc., are Java
based MAFs. Mobile-C is an agent framework that is written purely in C/C++ programming
language. Its light footprint makes it ideally suited to small embedded systems. Some of the real
world deployments where such frameworks have been used include a taxi booking system developed
over JADE-LEAP (Multi-Agent Systems Group, University Rovira i Virgili (URV), Tarragona, Spain)
[34], a multi-agent traffic control system [35], etc. C/C++ and Java are basically structural and
functional programming paradigms on which such event-based applications are developed. A majority
of MAFs are based on such languages and thus do not inherit the semantic structure available
in logical languages such as Prolog [36]. Prolog is widely used in applications involving Artificial
Intelligence (AI) [37] techniques, natural language processing [38], intelligent searching in databases [39],
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rule based logical queries [40], etc. Some of the multi-agent platforms built over logical languages
include Jinni [41], ALBA [42], IMAGO [43], Typhon (Robotics Lab., IIT Guwahati, India) [44]
and Tartarus [10]. In this work, we have used Tartarus, a multi-agent platform developed using
SWI-Prolog (Version 7.2.3, University of Amsterdam, Amsterdam, Netherlands) [45]. Tartarus and
its former version Typhon has been used in a variety of applications ranging from multi-robot
synchronization [46], learning using sharing [47], realizing a green-corridor for emergency
services [48], rescue robots [10], monitoring from a remote base station [49], etc. It thus forms a fitting cyber
counterpart for applications that involve AI, distributed data processing and search.

3. Location-Aware and Tracking Service (LATS)

Since the work described herein uses LATS as an agent-based application embedded on Pi, a brief
survey on the same is presented below. Location-dependent services are part of a dynamic model
where either the object or the observer or both can be mobile with respect to their geo-location [50].
Some of the classical approaches for tracking of a moving object include the use of GPS, RFID, camera,
etc. The most popular method of positioning is by using a GPS on board a mobile phone. This method is
however, effective mainly outdoors where the device can reach out to the satellites. Indoor localization
using such GPS is unreliable due to the topology of the rooms and the erratic and low intensity
satellite signals received within. This calls for an efficient yet cost-effective solution to provide for a
reliable indoor positioning and tracking system. Catarinucci et al. [51] have proposed an IoT-aware
architecture for smart healthcare. They have leveraged the use of combining UHF RFIDs [52] and
WSNs [53] for deploying a healthcare system. Each patient has an RFID tag that transmits its data to an
RFID receiver, which, in turn, transmits the data to the associated doctor. Since RFID tags are passive
devices, the system uses minimum power and is thus quite efficient in terms of energy consumption.
The major drawback is that, for proper data transfer, the patient has to be in very close proximity to
the RFID receiver.

Bluetooth Low Energy (BLE) technologies [54] can offer a far more superior solution than RFIDs.
Yoshimura et al. [55] portray a system for analyzing the visitors’ length of stay in an art museum
through the use of non-invasive Bluetooth based monitoring. In their work, eight Bluetooth sensors
were installed in the busiest locations at the Denon wing of the Louvre museum. The data on the
number of visitors visiting these places was collected for a period of five months and then analyzed to
get meaningful results. They have claimed that the use of non-invasive technologies (such as Bluetooth)
allows them to gather honest results. This is so since visitors change their behaviours if they are aware
of the fact that they are being tracked.

Early work in location-aware services by Wolfson et al. [11] describe a mechanism for tracking
moving objects through the use of database. They present a Database for Moving Objects (DOMINO)
on top of an existing database, which allows the database management system to predict the future
location of the moving object. Every time the object in motion updates its location, its future location is
also predicted.

Wolfson et al. [56] has also proposed a trajectory location management system to model the
moving object. They highlight the critical issues associated with the point-location management model
[56]. A point-location model does not provide facilities for interpolation or extrapolation of location
data of the moving object and is not accurate.

In a trajectory location model, an estimate of the source and destination of a moving object
is determined. This information is coupled with an electronic map and a trajectory is constructed
based on the travel time information. In the real world, the relevant data is not always available at
a centralized location. Wolfson et al. [56] conclude that their model needs to be improved to suit
scenarios where data is available in a distributed form. In the latter part of this paper, we show how
LATS can be implemented when the data is distributed across a network of devices.
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4. AgPi: The Cyber and Physical Confluence

The Pi is an inexpensive low footprint mini-computing device. It boasts of a System-On-Chip
(SOC) architecture that includes a 64-bit microprocessor, a Graphical Processing Unit (GPU) and
peripherals, making it compact in size. It can be used in conjunction with a TV or a computer monitor.
The Pi has a range of peripherals to allow use of input and output devices [57]. It comes in different
versions, the more recent ones being the Raspberry Pi 3 (Raspberry Pi Foundation, London, UK) and
the Raspberry Pi Zero (Raspberry Pi Foundation, London, UK). The latter Zero version costs just
around US $5, possibly making it one of the cheapest and most affordable mini-computing devices [58].
The availability of General Purpose Input and Output (GPIO) pins along with multiplexed I2C, SPI
and UART pins, which can be easily accessed through an open source Linux operating system running
on it, makes the Pi an appropriate device to sense and control an environment. Such high end features
allow a user to create and deploy systems in the real world, making the Pi an ideal device for IoT
applications.

Features such as autonomous decision making, robustness, flexibility, intelligence, etc. which are
generally associated with agents are seldom found in current IoT solutions. In this paper, we have
described the working of a full-fledged MAS-based IoT application by leveraging the use of Tartarus
running on Pi. The application has been described with a view to enthuse Pi developers and users
to create new and intelligent applications using the concept of Agents on Pi (AgPi). The mobile agent
framework used, Tartarus plays the role of controlling the Cyber entities (agents), which, in turn,
command their physical counterparts (sensors and actuators). Tartarus comes with a dedicated plugin
to access peripherals within the Pi. This facility provides for a coupling between the Pi and its cyber
counterpart, Tartarus. Figure 2 shows how several Pis, each running Tartarus, are connected to form
a network. It also depicts static agents residing at some nodes and migrating mobile agents. It may
be noted that these mobile agents can move over to any node, sense the data within (as also actuate
a motor for instance, if required), take a decision and then move on in the network. Figure 2 thus
conforms to the agent-based CPS depicted in Figure 1. Unique behaviours could be programmed and
embedded within each agent, thus allowing for an autonomous or semi-autonomous control of the
physical world.

Figure 2. Top level architecture of AgPi (Agents on Pi).

In the next section, we describe an application that will throw more light on the benefits of using
agents on a network of Pis. This application is a multi-agent-based distributed and decentralized
solution for LATS for an indoor environment using the AgPi concept.
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5. AgPi in the Real World

A complex system can be divided into subsystems, each controlled by an agent. This form of
abstraction eases the designing and realization of systems. With Pi in the scenario, such complex
systems can now be deployed as real-world applications. One of these applications for LATS that uses
the AgPi concept is described below.

5.1. AgPi based LATS application

As a proof-of-concept, we have implemented an LATS for dynamic tracking of users in a corridor
of a building. The following subsections describe the detection mechanism and the main units that
comprise the application.

5.1.1. Detection Mechanism

The lower portion of Figure 3 portrays the manner in which Pi-nodes have been deployed along
the corridor. A Pi-node consists of a Pi interfaced to a BLE receiver and Wi-Fi adaptor. A Cyber
Computing Unit comprising Tartarus and its associated plugins runs on the Pi. Each Pi-node within
the corridor is connected to its neighbour(s) through Wi-Fi.

A person who is to be tracked (depicted as a stick figure with a red band on the wrist in the figure)
needs to wear a BLE tag that emits beacons at a certain rate. This BLE tag along with the Pi-node forms
a Wearable and Acquisition Unit (WAU).

Users who need to track a person(s) are provided with a User Interaction Unit (UIU) running
on their respective computing machine. The functioning of the WAU, CCU (Bluetooth Low Energy)
and UIU shown in the upper portion of the Figure 3 has been detailed in the subsequent subsections.
As can be seen in the lower portion of the figure, the corridor is divided into virtual zones (indicated
by different colours) whose areas are preset based on the RSS (Received Signal Strength) values from
the BLE tag received by the associated Pi-node.

Figure 3. AgPi based LATS (Location-Aware and Tracking Services) application.

When a person enters a zone within the corridor, the BLE receiver of the Pi-node within that
zone detects his/her presence in that zone. As the person moves away from this zone and enters the
neighbouring one, the RSS in the new zone increases while in the former’s decreases. This indicates
the transition of the user from one zone to another. Eventually, when the RSS detected at the previous
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zone becomes minimum and that at the next zone becomes maximum, the system detects the presence
of the person in the latter zone.

5.1.2. Wearable and Acquisition Unit (WAU)

This unit includes a wearable Bluetooth Low Energy (BLE) device (HM-10) that emits data packets
in the form of beacons at preset intervals. These packets are received by a BLE receiver interfaced to a
Pi via its on-board UART module. Figure 4a,b show a BLE tag (comprising a BLE device and a battery)
as a wearable unit (configured as a beacon transmitter) and a Pi-node comprising a Pi interfaced to a
BLE receiver as the acquisition unit. The Pi also has a USB Wi-Fi adaptor. Each data packet transmitted
by the wearable BLE device is 30 bytes long and contains five fields of information as given below:

1. Preamble: This read-only field is 9 bytes wide and contains the manufacturer’s data.
2. Universally Unique Identifier (UUID): This field, which is 16 bytes wide, can be preset to contain

the identity of the BLE device.
3. Major: This is a user writable field which helps in identifying a subset of such devices within a

large group.
4. Minor: It is also a writable field which is used for specifying a subset of the Major field.
5. Tx Power: This field is a calibrated 2’s complement value denoting the signal strength at 1 m from

the device. This field is compared with the measured signal strength at the receiving end in order
to ascertain the distance between the transmitter and receiver.

The BLE receiver extracts the information within these five fields and forwards it to the CCU.

(a) (b)

Figure 4. (a) a BLE (Bluetooth Low Energy) tag; (b) A Pi-node.

5.1.3. Cyber Computing Unit (CCU)

A CPS is a tight coupling between the physical and the cyber worlds. The Tartarus platform serves
the purpose of a cyber unit which runs on top of the physical unit (Pi in the present case). Tartarus comes
with a plugin to access the peripherals on board the Pi. A static agent named a Database agent within
a Tartarus instantiation running on a Pi fetches the beacon data from the buffer register within the
BLE receiver via the UART [59] interface. The Database agent then stores the data in an SQL database
along with the time-stamp on the memory card in the Pi. If a user remains within a zone for a long
period, there will be a large accumulation of data, most of which could be redundant. To avoid this,
beacon data is read always but stored only under some conditions. Thus, data is logged only when
there is considerable change in the RSS of the beacon. Furthermore, instead of making decision based
on the normally noisy RSS values, three regions—Beyond, Far and Near have been used to describe the
position of a user within a zone. The three regions can be defined as follows:
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(i) Beyond: When the RSS value is zero, it means that the person is not detected and is beyond the
concerned zone.

(ii) Far: This is a case when the person being tracked is far from the Pi-node. This is detected by a
weak RSS value at the Pi-node of the concerned zone and would mean that the person wearing
the BLE tag is in between 2 m to 5 m of the radial distance from the associated Pi-node.

(iii) Near: A strong RSS value indicates the person to be well within the range i.e., less than 2 m in the
present case.

Each SQL entry comprises a total of six fields of information — the Timestamp, UUID, Major,
Minor, RSS and Region. A sample snapshot of the data entered at a Pi-node is shown in Figure 5.

Figure 5. A sample snapshot of the part of the database maintained at a Pi-node.

An entry is made to the SQL database only when the value of the sixth field changes in terms of
the Region. For instance, if the sixth field changes from beyond to near, an entry is logged with the new
Region. If the next consecutive entry is also near, then no entry to the database is made. Similarly, if the
sixth field changes to either far or beyond, an entry is made. It may be observed that from the database
the information about the period of stay of a user in a particular region or zone can be easily computed.
Furthermore, a person may also be tracked as s/he moves from one zone to another. One may also
easily infer as to exactly when s/he entered a zone, the amount of time spent within that zone and
when s/he exited the same. Thus, as a person passes through a corridor comprising several such
zones, the respective Pi-nodes keep track of the next zone to which the person has moved. This is done
through the concept of a Motion Vector which has been described below.
Motion Vector: Let Z = ZP1 , ZP2 , ZP3 , . . . , ZPn be a set of zones, where Pj represents the jth Pi-node and

n is the total number of Pi-nodes in the network (one per zone). A Motion Vector (
−−→
MV) describes the

movement of a person wearing the BLE tag, from one zone to another and is given by,
−−→
MV = ZPa → ZPb ; a, b ε {1, 2, . . . , n}.

Each Pi-node in a CCU stores and updates two types of Motion Vectors—Motion Vector Forward
(
−−→
MVF) and Motion Vector Backward (

−−→
MVB). When a person wearing the BLE tag moves from the

far region to the beyond region of a certain zone, say ZPx , the corresponding Pi-node, Px within that
zone, sends a message to all its neighbouring Pi-nodes announcing that the person bearing the specific
UUID is now in the process of leaving its zone ZPx . If any of the neighbouring Pi-nodes, say Py,
detects this UUID within its zone, ZPy , it will acknowledge the presence of the person to the Pi-node,

Px. This causes the Pi-node, Px to update its Motion Vector Forward,
−−→
MVF = ZPx → ZPy , against the

associated person. Similarly, the Pi-node Py updates its
−−→
MVB = ZPx → ZPy and

−−→
MVF = ZPy → ZPy .

The
−−→
MVF = ZPy → ZPy represents a transition from ZPy to itself. This indicates that the user is

currently in that zone and acts as a presence indicator. Table 1 shows the Motion Vectors at Pi-nodes

267



Electronics 2016, 5, 72

Px and Py after a user transits from zone ZPx to zone ZPy (zone ZPx is assumed to be the very first entry
zone). Here, INFINITY represents that a user is not traceable at any of the zones, and thus can be
considered to be outside of the infrastructure where agent-based LATS is deployed.

Table 1. Motion vectors at Pi (Raspberry Pi)-nodes Px and Py after an inter-zonal transition.

INFINITY → Zone ZPx → Zone ZPy

MVF ZPx → ZPy ZPy → ZPy

MVB INFINITY → ZPX ZPx → ZPy

The UUID and Major-Minor values allow for classifying a particular BLE device wearer.
For example, one can track the faculty members and students in an academic department using
the content within these fields. This makes the database contain finer details and thus allow a range of
queries to be satisfied. As can be seen, the database agent thus manages the database and the Motion
Vectors within the associated Pi-node.

5.1.4. User Interaction Unit (UIU)

This unit provides an interface for the users to access the tracking service of the agent-based LATS.
The interface could be in the form of a mobile app or a Graphical User Interface (GUI) running on
a Pi, a laptop or a PC, all connected to the same network as that of WAU. We have used a Tartarus
instantiation running on a Pi and a laptop to fire queries to the system. To fire a query, a user can
release an agent from the same Tartarus instantiation. The UIU was populated with mobile agent
programs for a set of queries. Since Tartarus facilitates agent programming [10], users and developers
could write custom mobile agent programs for a range of queries and add them to the UIU to improve
its functionality. The code for the agent of the associated query shall be already available with the
Tartarus as part of the UIU.

Querying: A mobile agent serves the purpose of query processing. Since the databases are distributed
over the various Pi-nodes, these mobile agents move from one such node to another and search and
retrieve the information that can satisfy the user’s query. The mobile agent then aggregates the relevant
data concerning the person being tracked and delivers it to the UIU for processing and rendering.
A user wearing the BLE device or a third party may wish to query this LATS to gather a range of
information which include:

1. Where am I?: Such a query invariably emanates from a person who is lost within the building
or does not know how to move around or needs to convey his/her bearings to someone else.
Under such conditions, the user can fire an SQL query packaged in a mobile agent to the nearest
one-hop neighbouring Pi-node. Once the mobile agent enters this Pi-node, it executes its code and
eventually lands up in the Pi-node of the zone in which the person is currently present. The agent
then retrieves the location information stored a priori within this Pi-node and provides it to the
user. A segment of the relevant mobile agent code is presented in Figure 6.

2. Where is X?: A query of this kind is required for a person to know whether X is within the
building under consideration and, if so, where. This agent-based LATS allows for a non-intrusive
mechanism to find the location of X. The user packs this query into a mobile agent and transmits
it onto the Tartarus platform of the closest Pi, the one within the zone s/he is in currently.
On reaching this Pi, the mobile agent scans the database within it to find whether X is/was in
this zone. (i) If it discovers that X is within a particular zone currently, it retrieves the location
information from the Pi-node and backtracks its path to the user’s system and provides the
information on X; (ii) if the agent finds a Motion Vector Forward for X in that zone, then it uses
the vector to find the next zone visited by X and migrates to the concerned Pi-node of this zone.
It continues to do so until it eventually lands in a Pi-node of a zone where X is currently present.
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On reaching this, it retrieves the relevant information and retraces its path back to the user’s
system to provide the information on X. In case X has left the place, the Motion Vector Forward
within the Pi-node in the zone where X was last present will point to INFINITY. The agent would
then assume that X is no more in the area and report accordingly to the user; (iii) if no trace
of X is found in the database, the mobile agent continues its migration along the Pi-nodes in a
conscientious manner [60] (Appendix A) until it eventually finds that X has been within the zone
of some Pi or left the place. It may be noted that a user who wishes to know the bearings of
another can alter his query to extract a range of information on the person being tracked.

3. Trace(X): This query will provide a list of locations associated with all those zones which X visited
in order. The query can again be packed into a mobile agent and sent to the network of Pi-nodes
to search the individual databases and retrieve the list. A mobile agent algorithm to trace the path
of a BLE tag bearer is shown in Algorithm 1 and an example of mobile agent routing for the same
is described in Appendix B.

Result: Path followed by X ; // X is a person whose path is to be traced

Stack S = Empty;
Queue Q = Empty;
while while Path followed by X is not retrieved by Agent ; // Agent continues the search

// until the total path traced by X is found

do

MVF(X) = Motion Vector Forward of X at visited Pi-node, Pv ;
MVB(X) = Motion Vector Backward of X at visited Pi-node, Pv ;
if (MVF(X) = Nil) OR (MVB(X) = Nil) ; // If trace is not found by the agent

then

Select a neighbouring node at random and migrate to it ; // Agent migrates

// to another node

else

if (MVF(X) = ZPv → ZPv ) OR (MVF(X) = ZPv → INFINITY) ; // If agent has found last node

// visited by X

then

insertStack(S , v) ; // Agent inserts the node ID into its internal stack

while X’s starting position is not found do

Use MVB of each earlier visited Pi-nodes to trace back the path;
insertStack(S , Pi-nodes visited before v );

end

Path followed by X = getStack(S);
return Path followed by X ; // Agent returns the path followed by X

else

if (MVF(X) = ZPv → ZPw ); // If Agent finds the intermediate node visited

// by X

then

while X’s starting position is not found do

Use MVB(X) of each earlier visited Pi-nodes to find the start position ;
end

while X’s last/current position is not found do

Use MVF(X) of each next visited Pi-nodes to reach the last/current position ;
insertQueue(Q , Pi-nodes visited from the start position);

end

Path followed by X = getQueue(Q);
return Path followed by X;

else

end

end

end

end

Algorithm 1: An algorithm performed by an agent to trace the path of a BLE tag bearer.
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Figure 6. Mobile Agent code snippet for the query, Where am I?.

6. Experiments and Results

Experiments conducted involved users who were asked to move from one zone to another.
In addition, experiments involving acquisition of raw BLE data were also conducted to get more
insights into the behavior of the device. In subsequent sub-sections, we discuss the experiments
conducted to acquire and store tracking information, which, in turn, are used and processed by mobile
agents to satisfy user queries.

6.1. Data Acquisition

A BLE tag bearer was asked to move back and forth across the radial axis of a Pi-node. The actual
RSS values received at the Pi-node nominally ranged from −40 dBm to +20 dBm (depending upon
the manufacturer, the actual raw RSS values for a BLE device may range from −80 dbm to +25 dbm).
In order to portray the graph in the 1st quadrant for clarity, we biased these values by adding +200 dBm
to each of the data points. Figure 7 shows the biased raw and filtered BLE data taken over a certain
number of sample points. As expected, a trend similar to a sinusoidal wave can be observed in the
figure thereby validating the performance of the BLE. The RSS received from a BLE device is subject to
noise due to various reasons such as multi-path propagation, signal absorption, signal interference,
etc. Based on the analysis by Faragher et al. [61], different filters may be applied to the raw BLE
data. After a series of empirical experimentation on data filtering, it was found that a moving average
filter with a window size of 6 samples at a time provides satisfactory results. Analysis revealed a
rule of thumb that indicates that as the window size increases, the filtered data becomes more stable.
However, this may take more time to produce tracking results. Hence, a compromise needs to be made
in terms of accuracy and reactiveness of the deployed tracking system.

An experiment wherein each user was made to wear a BLE tag and asked to move from one
zone to another in order to obtain their respective tracking profiles was performed. The experiment
was conducted at the ground floor of the Department of Computer Science and Engineering block of
the Indian Institute of Technology Guwahati. Since it is logical to assume that the profile generated
between two consecutive zones can be extended to other such multiple consecutive zones, we describe
herein the inter-zonal movement for a single user. The results portraying a user’s movement within
two zones, ZP1 and ZP2 along with the three regions, beyond, far and near, categorized on the basis of
RSS is shown is shown in Figure 8. As in Figure 7, the y-axis denotes the filtered and biased RSS values
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from the BLE receiver at the Pi-node, while the x-axis indicates the sampling index ranging from 1 to
the number of samples taken at a sampling rate of 1 s.

Figure 7. BLE raw and filtered data.

Figure 8. Graph showing inter-zonal movement for a single BLE tag bearer.

The graph shows two different coloured series each corresponding to the RSS at Pi-node within a
particular zone. The orange coloured series denotes the same for Zone 1 (ZP1 ) while the blue coloured
series indicates that for Zone 2 (ZP2 ). Initially, the user is outside the coverage area of both ZP1 and ZP2 .
As seen from Figure 8, when the user starts moving towards ZP1 , the RSS (orange colour) increases
from sample number 41 onwards and attains a maximum when the user is nearest to the associated
Pi-node of ZP1 . It then starts to decrease as the user moves away from the Pi-node in ZP1 . When the
user enters the periphery of ZP2 , where both the zones overlap to an extent, an increase in the RSS
at ZP2 is observed with a corresponding decrease of the same at ZP1 . A similar pattern is exhibited
when the user moves away from ZP2 to the next neighbouring zone. A similar experiment that was
conducted when the person moved from ZP2 to ZP1 is recorded with ZP2 as entrance zone and ZP1 as
the exit zone. The relevant plots are depicted in the latter part of Figure 8. It may be observed that
there are some random spikes generated due to noise and reflections. Since these peaks cross from the
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beyond region to the far region and again go back within a second, the corresponding vectors are not
stored in the database.

6.2. Query Processing

The post data acquisition step involves satisfying queries fired from the user side. In order
to compare the results of query processing using the conventional cloud-based method and the
distributed AgPi approach, we conducted experiments for the two scenarios described in this section.
Since testing on a real system would mean the requirement of a large number of Pis, for both of the
experiments, we emulated a multi-floor building using a 50-node overlay network [62] using Tartarus,
formed over a network of four Pi-nodes and two PCs. Each PC hosted 23 emulated Pi-nodes. The BLE
tag bearers who move around in the building and need to be tracked, were emulated by mobile
agents that move from one node to another. A total of 10 BLE tag bearer were introduced into the
network, out of which six were made to move randomly within the building. The remaining four,
designated as Head, Professor, Janitor and Guard, were programmed to have predefined movements.
In addition, a separate dedicated server acted as the Cloud for both the systems. Figure 9 portrays
the conceptual layout of the network deployed in a building. For the conventional cloud-based
method, the Pi-nodes may or may not be connected to one another. For the AgPi approach (as shown
in Figure 9), these connections are mandatory since there needs to be paths for the mobile agents
to migrate.

Figure 9. AgPi deployed in a multi-floor building.

Scenario 1: Conventional Cloud Approach

In this approach, every Pi-node was capable of directly communicating with the Cloud. As the
BLE tag bearers (mobile agents) move around the building (network), all pertinent data within the
Pi-node (such as Timestamp, UUID, Motion Vectors, etc.) are directly sent to the Cloud. This is done by
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each of the Pi-nodes as and when new data is generated within them. Thus, all the data acquired and
generated at the Pi-nodes is stored and managed at the cloud. All queries in this scenario are directly
sent to the cloud, which are, in turn, processed at the cloud and returned to the concerned user.

Scenario 2: AgPi Scenario

In this scenario, a user fires a query in the form of a program within a mobile agent via the UIU.
This agent then knits through the connected Pi-nodes in the network, performs the concerned task(s)
and processes the data within these nodes, thereby processing the query. While doing so, it also sends
the acquired data at each node to the cloud. It may be noted that, in this case, the cloud is updated
only with the relevant information pertaining to the query. Unlike the previous centralized scenario,
the cloud connectivity is made only from those Pi-nodes where the mobile agent finds query related
information. This drastically reduces data traffic between the networked devices and the cloud.

Comparison of Scenario 1 with Scenario 2

Experiments were performed where queries were fired by the user in both the centralized
cloud-based and AgPi scenarios. Data transfer cost in terms of the number of times the Pi-nodes
connect to the cloud was logged in both these cases. Figure 10 shows the cumulative number of
connections made between the Pi-nodes and the cloud server for a set of Trace (X) queries, where X is
the person being tracked.

Figure 10. Traffic flow for centralized cloud-based and AgPi systems.

In the case of a centralized cloud-based approach, one can infer that the cumulative number of
connections made to the cloud increases steadily with time. As mentioned earlier, this is because,
for every new data generated at a Pi-node, a connection is made to the cloud.

On the contrary, in the case of AgPi, such connections are made to the cloud only when information
found is relevant to the query fired. The cumulative number of connections made by the mobile agents
during the execution of the queries Trace (Head), Trace (Janitor), Trace (Guard) and Trace (Professor)
are shown in the figure. These numbers are far lower than that for the centralized scenario, clearly
indicating the viability of the AgPi approach. The horizontal flat portions, termed as voids in the
curves, denote the absence of any connections made to the cloud. Such portions could occur in the
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centralized scenario when the BLE tag bearers are stationary i.e., when no new data is generated at the
Pi-nodes. For the AgPi scenario too, such voids could occur provided no queries are fired.

7. AgPi: Applications Envisaged

The concept of AgPi opens up a plethora of areas where the characteristics of agents, both static
and mobile, can be exploited. As mentioned earlier, our stress in this paper is to generate more interest
in the use of agents on Pi and encourage the creation of real and working systems. The following are
some of the areas where agents and Pi could blend well to produce such systems:

Health Care: One of the most sensitive areas where AgPi can be envisaged is in the unobtrusive
monitoring of the health of a patient. For instance, a wearable Bluetooth based wrist band equipped
with a pulse monitor, temperature sensor, pedometer and similar medical sensors could feed the live
data to an agent on a Pi. This static agent could be programmed to cross check this data, make a report
on the status of the health of the person and then forward the same to a doctor, if required. In an
alternative scenario, a mobile agent can be programmed to continuously patrol the network of such
Pi-nodes set up in a hospital, gather the health information and status of the concerned patients and
deliver the reports to the concerned doctors on their mobile devices. Mobile agents could also track,
trace and inform a doctor in case of an emergency. With AgPi on an Intranet of Things in a health care
scenario, information could be filtered and then sent to a cloud, thereby ensuring the integrity and
security of a patient’s medical data.

Vehicular Networks: The concept of Vehicular Networks (VANET) and connected cars have
opened up numerous application domains. Vehicles, which constitute a node in the network,
could have an on-board Pi with all networking facilities. Such vehicles can form a network among
themselves to allow inter-vehicle communications. This can aid in solving a variety of problems
associated with urban traffic conditions. Agents within such Pi-nodes can migrate around the network
to learn about the traffic conditions in advance and provide valuable route information to the driver.
Such information could also be disseminated to other cars by the agents. Agents can also aid in the
generation of partial green-corridors for the movement of emergency vehicles [48].

Robotics: An intranet of Pi-nodes connected to a network of robots can aid the latter in carrying
out tasks in a coordinated manner. Semwal et al.[10] portray how agents can search and guide a
rescue robot to an area where they are required. Mobile agents can also be used to synchronize tasks
performed by a set of robots [46]. Sharing information using mobile agents can facilitate learning from
within a network as has been described by Jha et al. [47].

The concept of AgPi thus can be used to churn out as well as embed intelligence in a network of
embedded systems.

8. Conclusions

The paper introduces the concept of Agents on Pi (AgPi) and describes how it can be realized
by using Tartarus, a multi-agent platform running on a Raspberry Pi. The platform supports both
static and mobile agents and also allows them to access and control the various ports and peripheral
devices on the Pi through a dedicated plugin. This allows for the creation of a CPS that has both the
hardware and software constituents. An agent-based Location-Aware and Tracking Service (LATS)
application has also been described to bring out the versatility of using agents on a Pi. The system
can track people wearing a BLE device indoors with fair reliability and accuracy and also provide
answers to a range of queries as regards the person being tracked. Experimental results reveal that the
AgPi approach seems to perform better than the conventional cloud-based method. In addition, the
use of mobile agents allows multiple queries to be fired using multiple agents concurrently. Queries
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need not be pre-programmed or preset. Since mobile agents can be released even during run time,
these queries can be fired on-the-fly. The use of agents on Pi can thus make a network of things smarter
and flexible unlike those that do not use agents. Since agents in Tartarus can be created and released
even during run-time [10], the AgPi based system can be scaled, upgraded and programmed to be
adaptable. The range of diverse areas where agents have been used until the date makes the concept of
AgPi a powerful mechanism to realize intelligent applications in the realm of embedded and connected
devices.
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Abbreviations

The following abbreviations are used in this manuscript:

Pi: Raspberry Pi
AgPi: Agents on Pi
BLE: Bluetooth Low Energy
IoT: Internet of Things
CPS: Cyber-Physical System
MAS: Multi-Agent Systems
GPS: Global Position System
LATS: Location-Aware and Tracking Services
SQL: Structured Query Language
RSS: Received Signal Strength
PC: Personal Computer (Desktop)
UHF: Ultra High Frequency
RFID: Radio Frequency Identification
I2C: Inter-Integrated Circuit
UART: Universal Asynchronous Receiver Transmitter
SPI: Serial Peripheral Interface
WSN : Wireless Sensor Network

Appendix A. Conscientious Migration Strategy

In the Conscientious Migration Strategy [60], the mobile agents migrate to the neighbouring node
only when that node has not been not visited or happens to be the least visited one. In order to keep
track of the visited nodes, a mobile agent appends the recently visited node to a list, comprising the
nodes already visited, maintained within itself. Thus, before moving to the next node, an agent checks
if the next visited node is a member of this list. If so, it chooses another neighbouring node or the least
visited neighbour.

Appendix B. Query Processing

Figure A1 shows 10 Pi-nodes connected to each other in a topology similar to the geographical map
of a floor of a building. The 10 Pi-nodes are denoted by a, b, c, d, e, f , g, h, i, j and their corresponding
zonal areas by ZPa , ZPb ,.., and ZPj , respectively. For the sake of simplicity, only part of the database
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relevant to agent routing is shown in each Pi-node. Let us assume that the path followed by a BLE tag
bearer X is: d → e → f → i → h.

In the figure, MVF(X) and MVB(X) denotes Moving Vector Forward and Moving Vector Backward
for X, respectively. Imagine a user fires a query from node a to trace X. The associated mobile agent now
has three neighbouring nodes (b, c and d) to migrate. Since there is no motion vector for X in the node a,
the mobile agent opts for the conscientious strategy and chooses one of these neighbours. Assume that
it chooses node b and migrates to it. Since the motion vectors for X are absent in b, the conscientious
strategy forces it to backtrack to a. If it now selects node d and migrates to it, the motions vectors of X
within d will force the agent to switch to the strategy of following motion vectors. From d onwards,
the motion vectors will guide the agent through nodes e, f, i and h in that order and thereby retrieve
the trace for X.

Figure A1. Agent migration an AgPi network.

If the query was fired from node e, since the MVB for X point to node d, the agent migrates to d,
after which it follows the MVFs to discover the trace d → e → f → i → h as in the previous case.

Handling Failures

In the current implementation of AgPi system, handling node failures are implemented in a very
naive manner. A simple handshake protocol is used where mobile agents first ping the neighbouring
node. If an acknowledgment is received from this node, the mobile agent migrates to that node;
otherwise, it informs a local server about this potentially faulty node and chooses another neighbouring
node to migrate.
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Abstract: Ulceration of the diabetic foot is currently difficult to detect reliably in a timely manner
causing undue suffering and cost. Current best practice is for daily monitoring by those living with
diabetes coupled to scheduled monitoring by the incumbent care provider. Although some metrics
have proven useful in the detection or prediction of ulceration, no single metric can currently be
relied upon for diagnosis. We have developed a prototype multivariate extensible sensor platform
with which we demonstrate the ability to gather acceleration, rotation, galvanic skin response,
environmental temperature, humidity, force, skin temperature and bioimpedance signals in real
time, for later analysis, utilising low cost Raspberry Pi and Arduino devices. We demonstrate
the utility of the Raspberry Pi computer in research which is of particular interest to this issue of
electronics—Raspberry Pi edition. We conclude that the hardware presented shows potential as an
adaptable research tool capable of gathering synchronous data over multiple sensor modalities.
This research tool will be utilised to optimise sensor selection, placement and algorithm development
prior to translation into a sock, insole or platform diagnostic device at a later date. The combination
of a number of clinically relevant parameters is expected to provide greater understanding of tissue
state in the foot but requires further volunteer testing and analysis beyond the scope of this paper
which will be reported in due course.

Keywords: diabetes; skin; monitoring; multi-sensor; remote sensing; shoe; wearable; evaluation;
Raspberry Pi; Arduino

1. Introduction

In this paper we concentrate on the design and implementation of a prototype in shoe
sensing device with which to investigate diabetic foot disorder. We have endeavoured to use low
cost commodity technology as cost is a significant inhibitor to the adoption of new technology.
This approach made the Raspberry Pi [1] an attractive option for controlling data acquisition with low
purchase cost, native python environment together with LAN connection, multiple USB ports and
a native desktop environment significantly reducing development time. The Rasbian OS [2] proved
to be a very stable data collection platform benefiting from having few background tasks running,
dramatically improving the stability of time critical tasks when compared to a PC or Apple computer.

Diabetes is a chronic endocrine condition that can develop at any stage of life and affects the
body’s production and/or utilisation of insulin leading to poor regulation of blood glucose levels.
Unless well controlled this can cause vascular disease and neuropathy throughout the body often
leading to serious comorbidities such as retinopathy, renal failure and diabetic foot disorder [3].
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Diabetic foot disorder is classed as a medical emergency as it can become sufficiently severe as to
require amputation and is the second most feared comorbidity of diabetes after blindness. Diabetes is
also financially constraining currently costing the NHS 10% of its annual budget which is expected to
rise to 17% by 2035 in direct costs [3,4].

Current best practice recommends patients perform daily monitoring of their feet supported
by regular physical examination by trained specialists, with the use of non-contact thermometry for
those at greatest risk. With a ΔT of 2.2 ◦C between the same sites on opposing feet being a reliable
indicator of infection [5] and ΔT of 4.6 ◦C being indicative of neuropathic ulcers [6]. Although non
contact thermometry reduces the chance of ulceration it remains a significant risk.

Many single metrics such as temperature [7,8], plantar pressure/force [9,10] in various forms,
gait change [11] and blood flow have been shown to be indicative of ulceration but none are wholly
reliable predictors of ulceration. Comercial devices such as the Sensoria sock [12], which incorporates
three force sensors and a triple axis accelerometer, are available as commodity devices. Devices such
as the TekScan mat [13] and F-Scan [14] are specifically for laboratory or clinical use. We present a
new extensible, wearable composite sensing system that is capable of measuring multiple factors
simultaneously, providing an alternate multifactorial pathway for predicting tissue failure. The device
increases the number of metrics previously measured in concert in predicate devices from 3 to 8 [15,16].

In Section 2 we present the design of the experimental platform noting architecture, module
design considerations, structure, validation and calibration. In Section 3 we present our experimental
method with results discussed in Section 4. Finally a discussion of the benefits, risks and challenges
for in shoe monitoring both in the laboratory and free living environments is presented in Section 5.

2. Experimental Platform

In this section we consider the design and configuration of the experimental platform. The new
device incorporates measuring metrics useful in the determination or prediction of ulceration [5,17–19]
as a means of establishing a baseline multivariate data set. The metrics include temperature, humidity,
applied force, acceleration, rotation rate and galvanic skin response (GSR). We also propose the novel
addition of capacitively coupled bioimpedance as a means of measuring inflammation. The sensors
and instrumentation were mounted on each foot with data transmitted via Bluetooth to a Raspberry
Pi acting as data acquisition controller and user interface. The use of wireless technology enables
the devices’ use in many environments such as the laboratory, home, clinic, gymnasium or sports
field without the incumbent trip hazard associated with wired sensors. The device is not limited
to the observation of diabetic feet but holds promise for the monitoring of other conditions, sports
performance and testing of novel worn sensing devices such as those developed by Segev-Bar [20].

Bioimpedance is a complex measurement comprising real (resistance) and imaginary (capacitive)
components. Extracellular fluid forms the resistive path while intracellular fluid forms the capacitive
component with the plasma membrane between the two acting as the dielectric. Inflammation is a
systemic response to injury in the soft tissues where increased blood flow and blood vessel permeability
results in extravasation. Fluid entering the intra cellular space changes the balance of resistive and
capacitive pathways. Impedance examines a materials’ response to a range of induced frequencies with
phase shift and gain being the metrics. The outer layer of the skin, the stratum corneum, comprises
a layer of densely packed dead skin cells which have high electrical resistivity. As the thickness,
hydration, sweat gland density and sweat gland activity vary from individual to individual and are
affected by pathology skin resistance is also extremely variable. To over come this, techniques such
as skin stripping and or conductive gells have been utilised for normalising skin contact resistance.
Short term use of such contact mediums are a minor inconvenience however they are known to
predicate dermal irritation if used for extended periods. By utilising capacitive coupling we have
removed the need to use galvanic contact mediums reducing the likelihood of skin irritation where
used for extended periods.
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The data acquisition system comprises five separate components with either wired or wireless
interfaces dependent on function and physical location. Figure 1 shows the use of the Raspberry
Pi operating as the master controller to capture both in-shoe, environemntal and bioimpedance
measurement devices while Table 1 presents the chosen sensors.

Figure 1. Ambulatory and bioimpedance data-capture schematic.

Table 1. Sensor table.

Sensing Modality Part Number Manufacturer Interface Range Units
Calibration

or Validation

Accelerometer MPU6050 Invensense I2C ±16 g Validation
Rotation MPU6050 Invensense I2C ±2000 ◦s−1 Validation

Humidity HYT271 Hygrochip I2C 0–99 % RH Validation
Temperature HYT271 Hygrochip I2C –40–125 ◦C Validation

GSR - Self built Analogue 0–5000 kΩ Validation
Bioimpedance AD9850 AD8302 Analogue Devices Analogue 0–1023 AU Validation

Force A401-25 Flexiforce Analogue 0–140 N Calibration
Temperature skin 104JT-25 ATC-Semitec Analogue 20–40 ◦C Calibration

2.1. System Modules

Master control, see Figure 1—module 1, the Raspberry Pi 2 model B V1.1 single board computer
performs data acquisition, control, formatting and recording. This device was chosen due to the
low cost, availability, connectivity and the native python support allowing rapid development and
deployment of the data acquisition system. For any such solution to be viable in the longer term, cost
of deployment becomes as big a hurdle as the many technical problems faced.

Ambulatory data was gathered from the environmental monitor first, see Figure 1—module 2,
followed by the left foot, module 3, and then right foot, module 4, in shoe monitors with a single
CSR 4.0 Bluetooth device being utilised to communicate with the in shoe sensors. With biological
frequencies of interest being below 1.5 Hz (heart rate while walking) [21] we utilised a sampling
frequency of 20 Hz to enable the gathering of larger data sets with the available hardware. Inputs were
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low pass filtered at 10 Hz and sampled at 20 Hz to obey the Nyquist sampling theorem. Utilising this
sample frequency any signal of less than 10 Hz can be accurately reproduced.

Bioimpedance data was gathered directly from the bioimpedance sensor, module 5, at 20 Hz.

2.2. Enviromental Monitor

The environmental monitor, see Figure 1—module 2, controlled event timing while providing
environmental temperature and humidity monitoring for the test environment. An HYT271 sensor
was locally controlled by a dedicated Arduino Nano with USB connection to the controller.

2.3. In Shoe Data Acquisition Circuit

The left and right data acquisition circuits, see Figure 1—modules 3 and 4—are controlled by
dedicated Arduino Nano processors with Bluetooth connection to the master controller. A custom
PCB was designed to provide connectivity and signal conditioning for the sensors with the sensor
modalities noted in Figure 1 and Table 1.

2.4. Bioimpedance Sensor

The bioimpedance circuit from the in shoe data acquisition circuit was utilised for stand alone
bioimpedance testing. The software was reconfigured to output only bioimpedance data and control
the sample frequency to 20 Hz.

2.5. Foot Mounted Sensor Array

The sensors for temperature, humidity, acceleration and rotation were wired to a micro USB
connector for robustness also allowing the flexibility to re-configure the sensors. The bioimpedance
sensor was designed as a flexible printed circuit (FPC) as shown in Figure 2, produced by electroless
copper plating on Polyethylene Terephthalate (PET) film. This enabled the fitting of sensors inside
the shoe maintaining comfort of fit and flexibility while minimising cost. The sensors for force,
skin temperature and GSR were connected with multi-strand wire for robustness. The FPCs were
found to be unreliable in this application during early testing due to the fragile nature of the
FPC—sensor interface.

Figure 2. Sensors fitted to the foot.

2.6. Calibration and Validation

Devices that were pre-calibrated at manufacture were validated to ensure conformance to
expected performance criteria, those that were not required calibration (see Table 1) for further details.
The following section provides an overview of the procedures used.
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Humidity validation was undertaken using a small humidity chamber in which sensor output
was compared to a calibrated Rotronic HygroWin HC2-Win-USB humidity probe. Sensors were tested
in ambient conditions, 2% and 73.5%RH with a ±1.0% error being accepted. Desiccated colloidal silica
gel and saturated NaCl water solution were used to generate the respective conditions.

Temperature validation was undertaken in a PID controlled oven in which sensors were compared
to a calibrated Pico Technology PT104. Sensors were tested at ambient temperature, ≈30 and ≈38 ◦C
with a ±0.5 ◦C error being accepted.

GSR was validated against reference resistances of 100–5000 kΩ calibrated to ±1%, a ±2% error
was accepted. By convention electrical conductivity (S/m) would be used for GSR but as the cell factor
was unknowable due to the changing morphology of the skin as a response to exercise and/or disease
state [18,22], resistance was utilised.

The acceleration and rotation validation was performed by presenting each axis of the sensor to
accelerations of +1 g, 0 g and −1 g utilising the reference block shown in Figure 3. Errors of ±0.05 g
were accepted. Integrating the rotation data with respect to time and comparing this with the known
rotation angle validated rotation with ±2 ◦ error accepted. Implementation of the on-board low pass
filter was verified by changing the filter cut off frequency while exciting the accelerometer with a
mechanically coupled 44 Hz input frequency and verifying that appropriate attenuation in signal
was achieved.

Figure 3. Accelerometer reference block.

Bioimpedance excitation signal was validated against a Picoscope 2206A oscilloscope over the
frequencies of 5, 10, 20, 100, 400, 700, 1000 kHz at a voltage of ±2.0 V (peak-peak). Signal analysis was
validated against a dual channel signal generator (UDB1300), providing artificial excitation and sensor
signal, monitored with a Picoscope 2206A oscilloscope utilising a dummy sensor. The on board signal
output amplifier was temporarily disconnected. The excitation signal was set at ±1.73 V (peak-peak)
with a sensor signal of ±0.09 V (peak-peak). For each frequency of 5, 10, 20, 100, 400, 700, 1000 kHz
the phase was changed through the range 0, 45, 90, 135, 180, 225, 270, 315, 360 degrees and output
recorded. This calibration method was chosen over the use of phantom materials as the input phase
and gain could be readily compared against output phase and gain though calibrated phantoms would
be the preferred validation technique once appropriate ranges could be established for the new device.
As can be seen in Figure 4 the gain response is linear over phase and frequency at approximately 1% of
full scale deflection over the range 100–1000 kHz. For frequencies lower than 100 kHz the response is
non linear in both phase and gain. A similar effect can be seen in phase Figure 5 which again occurs
below 100 kHz. Output was left in 10bit format without calibration to enable the collection of data
over a broad range of frequencies. This approach allows greater variation in measured frequency with
frequency specific calibration applied post hoc if required.
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Figure 4. Bioimpedance effect of drive frequency and phase change on measured gain.
Gain measurement is constant, 990–1010 from 100–1000 kHz, though an inflection in the data is
clearly visible showing the output to be non linear below this range.

Figure 5. Bioimpedance effect of drive frequency and phase change on measured phase.
Phase measurement is proportional to the phase from 100–1000 kHz, below this range a perturbation is
seen that increases with decreasing signal frequency.

Force transducers were calibrated utilising an Applied Measurements DBBSMM-50kg-002-000
calibrated for output in Newtons. Sensors were first clamped at 170 N for 5 min to precondition them
as advised in the manufacturers data-sheet. Five cycles of loading with 0, 10, 20, 50, 90, 140, 90, 50, 20,
10, 0 N were manually applied to the sensors. Sensor output was quadratically matched to the applied
force as a means of calibration with R2 values of higher than 0.995 obtained in all cases.

Temperature transducers were calibrated in a PID controlled oven, monitored by calibrated Pico
Technology PT104 and probes. Temperature was sequentially stabilised at room temperature (≈22)
and ≈24, ≈28, ≈33, ≈37 ◦C. Sensor output was quadratically matched to the test temperatures as a
means of calibration with R2 values of higher than 0.995 obtained in all cases.
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2.7. Sensor Evaluation

To fit the sensors in the correct anatomical positions a sensor map was generated for each of the
volunteers feet on PET film at known high load sites [18,23]. Sensor positions were established for the
calcaneus, 1st metatarsal, 5th metatarsal and the pad of the great toe by palpation and transferred to
the map using soft pigmented wax. The calcaneus force sensor was positioned so as to detect heal
strike while all other force sensors were positioned under the local load centre. Temperature was
sensed adjacent to the force sensor on the calcaneus, 1st metatarsal and great toe while GSR was
fitted behind the 5th metatarsal with bioimpedance sited between the 1st and 5th metatarsals over a
sensed area 22 mm wide ×55 mm long. The sensors were mounted on zinc oxide tape as shown in
Figure 6 prior to aligning the foot to the map and taping the sensors into position as seen in Figure 2.
Shoes were then fitted to the volunteer and the appropriate (left/right) data acquisition circuit installed
over the dorsal surface of the foot. The footwear chosen for the task were walking sandals which
provide a secure fit while maintaining access to the insole for fitting sensors with multiple access
points for wiring. Having fitted the footwear the system was allowed to stabilise for a period of 5 min,
during which time the volunteer was seated and data was recorded to demonstrate that the system
was operational.

Figure 6. Sensor layout over the foot profile. Force and temperature sensors are positioned over the
calcaneus (heal), great toe, 1st metatarsal (joint at the base of the great toe), 5th metatarsal (joint at
the base of the small toe). GSR can be seen below the 5th metatarsal force sensor with bioimpedance
placed mid foot.

The bioimpedance sensor was attached to the foot sensor map with the whole ensemble mounted
on a toughened glass plate for stability. Batteries were fitted to the sensor circuit which was connected
to the Master control via USB cable see Figure 1.

3. Test Protocol

3.1. Laboratory Setup

All testing was undertaken in the same laboratory setup in an office environment with temperature
kept above 21 ◦C. No air conditioning or humidity control was available. A JLL S300 digital treadmill
was used to control walking speed with the platform horizontal. A Tanita segmental body impedance
scale BC-545N was used to characterise volunteers’ body types. Resting blood pressure was obtained
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with a Kodea KD202F automatic blood pressure cuff with heart rate and SPO2 obtained using a Contec
Pulse Oxymeter CMS50DL. Occlusion of blood supply to the leg was effected with an A&D Medical
UM101 sphygmomanometer and Banmanometer V-Loc pressure cuff manually inflated by hand pump.
The study protocol was approved by the University of Southampton ethics committee (ID: 8997)
and conformed to the principles outlined in the Declaration of Helsinki. All participants gave their
informed consent to participate in the study. All data were stored in an open format.

3.2. Test Subject Demographic

In line with the ethics approval stated above all volunteers involved in this study were nominally
healthy individuals without a diagnosis of diabetes. Table 2 presents volunteer data for graphical data
presented while Table 3 gives a statistical summery of those male volunteers (n = 15) involved in the
test program. 1 female participant took part in the study. Volunteer 009 has been diagnosed with mild
arthritis in both ankles.

Table 2. Volunteer details for graphical data presented in this article.

Volunteer Gender Age Height (m) Weight (kg) BMI

001 M 46.00 1.78 97.00 30.61
009 M 29.00 1.80 75.80 23.40

1001 F 27.00 1.70 55.70 19.27

Table 3. Male volunteer details.

Participants Age Height (m) Weight (kg) BMI

Min 24.00 1.67 59.80 19.31
n = 15 Mean 33.40 1.80 80.83 24.88

Max 49.00 1.90 99.00 30.61

3.3. Test Setup

Basic biometric data was gathered from each volunteer including: age, gender, blood pressure,
height and weight. The volunteer then walked on the treadmill in their own footwear for 4 min to
acclimatise prior to fitting the sensors and sandals. After fitting, the sensors were allowed to stabilise
for a period of 5 min with the volunteer seated prior to testing. Table 4 presents.

3.4. In Shoe Testing

A sequence of 9 tests were undertaken to characterise the in-shoe conditions for the events
shown in Table 4. For each test 200 s of data was captured on the Raspberry Pi master controller to
ensure 3 × 60 s data cycles were acquired per test.

Table 4. Test table.

Test Exercise Description

1 Stand 1 free standing
2 Sit 1 sitting in a rigid office chair
3 Walk 1 walk at 2.0 km/h on the treadmill
4 Walk 2 walk at 4.5 km/h on the treadmill
5 Stand 2 free standing
6 Walk 3 walk at a self-selected pace
7 Walk 4 walk at a self-selected pace
8 Stand 3 free standing
9 Sit 2 sitting in a rigid office chair
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3.5. Bioimpedance Testing

Two bioimpedance tests were undertaken on each foot utilising a range of 100–1000 kHz at
100 kHz increments. The first investigated the sensors ability to differentiate between unloaded,
lightly loaded and standing load on the sensor. For this each volunteer placed a foot on the sensor
10 s into the test while seated, then standing at 100 s with weight evenly distributed between both
feet, the test concluding at 200 s. The second test investigated the difference between occluded and
non occluded blood flow. We utilised this test to increase fluid load to the tissue hence creating a
perturbation in the balance of resistive and capacitive conduction pathways. The volunteer was seated
and a pressure cuff placed around the upper thigh of the test leg, data recording was started, with the
foot placed on the sensor after 10 s. The cuff was manually inflated to 20 mmHg above the volunteers
systolic pressure 70 s after the start of data recording and maintained for 60 s before rapid deflation.
500 s of data was collected during this test.

4. Results and Discussion

The following section presents illustrative results to demonstrate the system measurement
capability. From this data it is possible to elucidate the relationship between events measured
with different sensors or modalities, for example vertical acceleration in opposing feet or force and
acceleration on the same foot. The use of our bioimpedance meter is also discussed, demonstrating
changes in output due changes to tissue loading and blood flow. Finally we discuss the limitations of
the current device.

4.1. Vertical Acceleration

Typical acceleration data is shown in Figure 7 asymmetry in the gate pattern. The accelerations
in the left foot are rapidly followed by similar accelerations in the right foot with a lag before the
accelerations repeat in the left foot, indicating an irregular gait.

Figure 7. Comparison of vertical accelerations between the left and right feet while walking at 4.5 km/h.
Asymmetry in the gait cycle is shown.

4.2. Acceleration and Force

The vertical acceleration and force data shown in Figure 8 clearly demonstrates the timing of the
heal strike as being coincident with the deceleration from ≈ −2.5 to −1.0 g of the foot under test.
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Figure 8. Comparison of vertical acceleration to timing of peak force at the calcaneus (heal) while
walking at 4.5 m/s.

4.3. Humidity and GSR

Sweat and in shoe humidity are useful factors for monitoring podiatric skin health, both dry and
overly hydrated skin are prone to breakdown and infection. GSR is a useful metric for monitoring
the moisture content of the skin and aids the prediction of future condition [24]. Humidity affects
evaporation of sweat which may be significant in some environments. Gait frequency can be observed
in both signals in Figure 9.

Figure 9. Comparison of GSR and humidity on the left foot while walking at 4.5 m/s.

4.4. Bioimpedance

The data in Figure 10 shows the tissue response to 500 kHz capacitively coupled to the sole of the
foot and is given for indication. The test causes a reduction in blood flow from the base line due to the
pressure exerted while standing and as can be seen in the figure a reduction in frequency of oscillation
can be observed. In Figure 11 we see opposite phenomena where the release of the restriction causes
hyperaemia and an increase in frequency of osccilation can be observed. This implies that it is feasible
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to measure the no-load, light load and high load states with the capacitively coupled impedance
measurement device presented.

Figure 10. Bioimpedance sensor measuring unloaded—light load (foot resting on sensor, volunteer
seated)—high load (volunteer standing). The data for gain show differences in the frequency and
magnitude of signal for all three load conditions confirming the sensors ability to sense such changes.

Figure 11. Bioimpedance of occluded and un-occluded blood flow. The characteristic frequency for
each condition was estimated by dividing the cycle count by the corresponding Δt.

4.5. Occluded Blood Flow

The occluded blood flow test was undertaken with a 1 min occlusion which provided adequate
change in the measurable signal to demonstrate device efficacy with minimal volunteer discomfort.
As can be seen from Figure 11 the frequency of the signal has increased from 0.16 Hz prior to the
occlusion to –0.26 Hz post occlusion in the example given, with some change in the magnitude of the
phase measurement. As with a post-occlusive reactive hyperemia test it was noted that stabilisation to
a the pre-test condition took a number of minutes [25] this is due to the time taken to normalise the O2,
CO2, NO and metabolites in the tissues after restoration of blood flow. We are currently investigating
the utility of this new metric as we are able to observe a measurable effect in tissue in vivo.
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4.6. Limitations of the Current Device for Long Term Use

The current device is a useful research tool as sensor positions can be adapted or alternate sensors
utilised to suit the test in hand, though it is intended that this be developed into a wearable device for
long term monitoring. Sensors currently require ≈ 30 min to fit and ≈ 10 min to remove with batteries
being replaced every two hours. The current electronic package, though not physically intrusive,
allowing full articulation of the foot and weighing only 172 g is visually intrusive at 28 × 70 × 130 mm.

Further investigations will be required, after gaining a revised ethical approval, to ensure that the
device has a suitable sensitivity and specificity to detect the conditions of concern in a timely manner
with diabetic patients. Furthermore output from the device must be intuitive to both the patient and
the clinician.

To make this a viable daily wearable monitoring device a number of modifications would be
necessary. The embedded electronics and batteries need to be a third of the current volume or smaller.
Sensors would be fitted to a standard insole or sock and wearable in any shoe with discrete monitoring
and data storage as the sensing must be unobtrusive. Though none of the volunteers complained
about discomfort during of after the test careful re-design and subsequent review of the sensor layout,
wiring and implementation should be undertaken to ensure there is no hazard to the diabetic foot.

Currently the main 3.7 V 900 mA h battery lasts ≈ 2.5 h though no power saving measures have
been implemented and a simple though inefficient BlueTooth 2.0 device is used for communication.
Consequently low power electronics capable of achieving 16 h of continuous use per day would be
required. Finally a robust sensor connection will be required for daily use.

5. Conclusions

Previous devices have combined up to three measurement modalities. The device presented
measures eight, 42 individual sensors, bilaterally plus environmental temperature and humidity.
This gives the opportunity to evaluate interdependencies in the metrics used and hence quantify the
value of each measurement and multifactorial sensing algorithm. Evaluation of the interrelationship
of some factors has historically been difficult due the inability to measure multifactorial data in an
unconstrained manner, this device alleviates that restriction.

With eight metrics implemented it is now possible to gather comprehensive data from the in shoe
environment. This development will give an enhanced understanding of the biomechanics and local
environmental considerations that affect the well-being of the foot.

With an increasing understanding of the problems associated with the diabetic foot it will be
necessary to modify the sensor arrays to suit specific investigations. This device is an extensible and
adaptable measurement system which can be modified to optimise the sensor choices and location
as required. The presented device demonstrated the measurement of multifactorial data utilising
both analogue, 10 bit, and I2C interfaces in real time. These interfaces can be rapidly adapted
to measure other sensors required by individual investigators enabling the customisation of the
measurement array.

The presented system demonstrates the feasibility of measuring complex multifactorial data in
the laboratory, clinic, gymnasium or sports field based on commodity hardware. Though the use
of a battery pack and touch screen would allow the Raspberry Pi to be used in a mobile situation,
further development could lead to either conversion to BTLe (BT4) with data logging on other mobile
devices or peer to peer, in shoe, data logging for increased utility at a later date. We utilised a sampling
frequency, 20 Hz, which is lower than commercially available devices such as the Sensoria Sock [12]
35 Hz or the TekScan MatScan [13] 40 Hz to enable the gathering of larger data sets with the available
hardware. Inputs were low pass filtered at 10 Hz and sampled at 20 Hz to obey the Nyquist sampling
theorem. Utilising this sample frequency any signal of less than 10 Hz can be accurately reproduced.

The Raspberry Pi has been a reliable, robust and adaptable device for conducting this research.
The basic Rasbian OS has been stable in the laboratory allowing the Python scripts to run unhindered
by the background tasks that affect desktop computers. The low cost has enabled us to leave test set
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ups permanently configured, reducing the time to commence testing, while networking the devices
allowed remote access over a secure local network.
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