
Radenkovic, Milena (2016) Cognitive privacy for 
personal clouds. Mobile Information Systems, 2016 . pp. 
1-17. ISSN 1875-905X 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/34225/1/7107103.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be 
reused according to the conditions of the licence.  For more details see: 
http://creativecommons.org/licenses/by/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/42493582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


Research Article

Cognitive Privacy for Personal Clouds

Milena Radenkovic

School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK

Correspondence should be addressed to Milena Radenkovic; milena.radenkovic@nottingham.ac.uk

Received 24 December 2015; Accepted 3 April 2016

Academic Editor: Chao Chen

Copyright © 2016 Milena Radenkovic.his is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

his paper proposes a novel Cognitive Privacy (CogPriv) framework that improves privacy of data sharing between Personal
Clouds for diferent application types and across heterogeneous networks. Depending on the behaviour of neighbouring network
nodes, their estimated privacy levels, resource availability, and social network connectivity, each Personal Cloud may decide to
use diferent transmission network for diferent types of data and privacy requirements. CogPriv is fully distributed, uses complex
graph contacts analytics and multiple implicit novel heuristics, and combines these with smart probing to identify presence and
behaviour of privacy compromising nodes in the network. Based on sensed local context and through cooperation with remote
nodes in the network, CogPriv is able to transparently and on-the-ly change the network in order to avoid transmissions when
privacy may be compromised. We show that CogPriv achieves higher end-to-end privacy levels compared to both noncognitive
cellular network communication and state-of-the-art strategies based on privacy-aware adaptive social mobile networks routing
for a range of experiment scenarios based on real-world user and network traces. CogPriv is able to adapt to varying network
connectivity and maintain high quality of service while managing to keep low data exposure for a wide range of privacy leakage
levels in the infrastructure.

1. Introduction

We live in the era when people expect seamless connectivity
for everyone and to everything everywhere. For the majority,
this means that potentially personal and sensitive data may
get transferred by the networks which can compromise user
privacy in diferent ways [1]. Even though some users may
use VPN overlays to improve privacy of their traic, they will
oten face diiculties when being mobile or in the areas of
intermittent connectivity. his paper addresses the problem
of end-to-end privacy in the face of possibly unreliable and
mobile networks. We argue that continuously decreasing
control that users have on their data needs to be addressed
across multiple layers (i.e., not only the application or not
only the radio level) and we propose the idea of Personal
Cloud architecture that improves privacy of storage as well
as sharing of user data. his paper describes an open-source
distributed virtual platform that allows adaptive privacy for
sharing multiple kinds of data via diferent routing protocols
and networks. In particular, we build on and expand our
early work on light weight Personal Clouds demonstration
proposed in [2] to allow adaptive and dynamic transfer

mechanisms for diferent types of user traic based on
diferent traic privacy levels required. Recent research [3]
has shown the wide spread use of transparent middleboxes in
cellular networks that actively analyse, monitor, and modify
individual’s traic without the knowledge of the individuals
and thus compromise their privacy. We propose Cognitive
Privacy (CogPriv) which allows diferent application services
(hosted in diferent virtual containers within Personal Cloud
(PC)) to route traic via most suitable networks in order to
avoid network segments that may compromise user privacy
and redirect user communication towards more secure net-
works. For example, if the Cognitive Privacy module in the
user’s Personal Cloud detects that user’s cellular network is
likely to spy on them, highly private traic will be on-the-
ly and transparently redirected to local ad hoc networks and
follow the more trusted opportunistic ad hoc route to the
destination. We propose to integrate several metrics to allow
CogPriv routing protocol to probe cellular network trustwor-
thiness and to estimate local ad hoc wireless nodes social
dynamics, nodes’ trust levels, and resources’ availability.

he paper is organised as follows. Section 2 describes
the state-of-the-art work on privacy-aware user data
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2 Mobile Information Systems

communication in mobile networks. Section 3 begins with
describing the architecture and design of our light weight
Raspberry Pi Personal Cloud testbed. We then move to
proposing an opportunistic disconnection tolerant network
framework for data forwarding that can on-the-ly adapt
to dynamic properties of access points/links and diferent
privacy requirements of user application. he Cognitive Pri-
vacy module (CogPriv) of user’s Personal Cloud can monitor
the local network access points and individually or though
collaboration make decisions on the network interface via
which to send the data (and whether to send the data)
depending on the privacy level required by the application.
Section 4 describes CogPriv decision making algorithm and
heuristics in more detail. Section 5 provides description
of the real world cellular data traces and Facebook users
connectivity traces used in our experiments and then moves
to describing experiment scenarios and discussing the results.
CogPriv shows that it outperform cellular network and
mobile social ad hoc network forwarding across a range of
metrics. Section 6 gives summary and future work directions.

2. Related Work

In [2], we propose the design and architecture of a low cost Per-
sonal Cloud testbed demonstration which uses Raspberry Pi
computer and a range of heterogeneous sensors (RasPiPCloud).
RasPiPCloud supports multiple on demand virtual contain-
ers to host diferent services and applications that can collect,
store and share data with varying diferent levels of privacy.
RasPiPCloud utilizes opportunistic networks communica-
tion among itself, heterogeneous sensors and other devices.
Figure 1 shows the architecture of the RasPiPCloudwith three
example LXC containers [4] Healthcare, Finance, and Social
Network (with a fourth container template ready for rapid on
demand deployment). Each container gets installed and runs
its purpose speciic applications to ensure secure data fencing
and protection.

In [5], the authors identify the widespread use of trans-
parent middleboxes such as HTTP and DNS proxies that
are able to analyse and actively modify user traic and thus
compromise user privacy and security.he authors argue that
it is very important to consider higher-layer relationships
when seeking to analyse mobile traic and illustrates how
mobile operators can enforce the use of HTTP proxies and
gateways through preconigured APN (Access Point Name)
settings on a device. hey identify that typical users lack
themechanisms and knowledge to prevent operator-enforced
proxies from performing header injection and to stop online
services from collecting their information. he reliance on
VPN is limiting in cases of mobile or disconnection prone
scenarios. Our paper addresses these scenarios by proposing
a way how our combined intelligent routing may exploit
maximally trusted routes based on the real time probes and
collaboration with the infrastructure or ad hoc local nodes.

In [3], authors consider cellular networks where the
growth of capacity provision is still behind the user and
application demands [6]. Because of this, mobile network
operators increasingly use auxiliary networks (e.g., WiFi
networks) to oload mobile traic for additional capacity. In

Mobile (GSM, WiFI, and BT) or opportunistic
(DTN) network
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Figure 1: RasPiPCloud architecture.

recent years, WiFi oloading has been rapidly emerging as
the preferred technique tomeet the needs. Other research has
addressed WiFi oloading eiciency [7, 8], energy eiciency
[9, 10], user incentives [11] and operator support [12, 13].
Reference [3] focuses on improving the balanced control
of WiFi oloading and avoid poor network utilization and
undesirable user experience [9, 14] by proposing SotOf-
load that aims to enhance deployability and collaboration
amongmobile network operators,WiFi providers andmobile
users. SotOload employs collaborative hierarchical design
between its central controller and local agents in order to
balance between global control and responsiveness at the
network edge.

In [15] authors propose cognitive testbed for wireless
sensor networks as an emerging technology with a vast
potential to avoid traditional wireless problems such as
reliability, interferences and spectrum scarcity in wireless
sensor networks. In addition to the testbed, [15] also proposes
the design of a cognitive simulator for networks with a
high number of nodes and the implementation of a new
platformwith three wireless interfaces and cognitive sotware
for extracting real data.

State of the art work in [16] proposes Haystack system
which aims to allow unobtrusive and comprehensive moni-
toring of network communications onmobile phones entirely
from user space. Haystack correlates disparate contextual
information such with speciic traic lows destined to illu-
minate mobile phone app performance, privacy and security.

Authors in [5] use data collected by the Netalyzr net-
work service over 16 months to identify and characterize
HTTP header enrichment in modern mobile networks.
hey present an overview of HTTP header usage for 299
mobile service providers from 112 countries to show three
main categories: unique user and device identiiers, headers
related to advertising programs, and headers associated with
network operations which present signiicant compromise to
user privacy. In our paper, we use traces of 17 mobile service
providers of one country provided in this dataset with real
world social network connectivity traces.
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Reference [17] identify that typical privacy preserving
solutions for data analysis which utilise cryptographic algo-
rithms introduce high computation costs or restrict the
possible range of values due to the need of discrete logarithm
computation. Reference [18] propose a solution with a fully
trusted dealer which may not be suitable for real world appli-
cations due to increased communication overheads necessary
for their static key management scheme. Emerging work in
[19] proposes to eliminate the need for key redistribution
following a user join or leave as well as the need for fully
trusted key dealer thus moving to a more P2P paradigm
which is core to our approach too.

In [20, 21] we propose a new P2P adaptive anonymity
technique for mobile opportunistic networks that improves
traditional competitive research which is not well suited to
sparse and disconnection prone networks. Reference [22]
propose opportunistic, adaptive, fully localized reputation
aware obfuscationmechanism that comprises of collaborative
testing of nodes’ obfuscation behaviour (OCOT) and mul-
tidimensional adaptive anonymisation (AA). We show that
OCOT-AA is very eicient in terms of achieving high levels
of node identity obfuscation and managing low delays while
enabling fast detection and avoidance of malicious nodes.
his paper moves beyond this to propose Cognitive Privacy
for Personal Clouds with multiple application domains.

3. Cognitive Privacy and Personal Clouds

3.1. Personal Cloud: Prototype Testbed and Architectural
Overview. Increasing demand for using a range of applica-
tionswith diferent privacy requirements onmobile handheld
devices raises challenges of how to choose the network (i.e.,
network interface) with the most suitable levels of privacy.
We argue that handheld cognitive devices with several
heterogeneous network interfaces (e.g., cellular networks,
wireless networks, ad hoc wireless, and Bluetooth) are core
for supporting a range of applications with diferent privacy
requirements hosted in diferent virtual containers [2]. For
example, consider a userwho can be running a social network
that allows them to stay in contact with their friends at the
same time as regularly monitoring their long-term medical
condition and being in contact with the hospital. hese two
types of applications have diferent privacy requirements
and need their data to be stored and shared in diferent
ways that can adapt to the required privacy requirements
dynamically. We refer to this as Personal Cloud [2] which
is in line with the proposals described in [23, 24]. Figure 2
shows deployment of a Personal Cloud prototype demo on
a Raspberry Pi device equipped with Xtrinsic sensor board
comprising temperature, pressure, and acceleration sensors.
Figure 3 shows Raspberry Pi device that captures, stores,
and processes a range of user and environment data such
as heart rate and pedometer. Figure 4 shows a dashboard
visualisation of the heart rate sensor readings and Figure 5
shows a social network hosted by the user and displayed on
the user’s handheld device.

his paper expands on the idea in [2, 23] in several
ways in order to enable reliable and adaptive data sharing.

Figure 2: Raspberry Pi B with Xtrinsic sensor board and a WiPi
wireless adapter.

Figure 3: Raspberry Pi with Suunto andWiPi USBmodule, Garmin
heartrate sensor, and smartphone displaying readings.

Figure 4: Visualisation of heart rate readings from the Garmin
sensor.

While some social media data can be transferred via cellular
network independently of whether there are middleboxes
present in transit, medical personal data requires higher level
of privacy that should not be compromised nor should it
be allowed that the frequency and patterns of communi-
cation to the hospital are gathered by the cellular network
provider infrastructure. Figure 6 shows a Personal Cloud
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Figure 5: RasPiPCloud personal social network.

Figure 6: Testbed architecture and visualisation.

prototype demo utilising multiple Raspberry Pis where the
leaf Raspberry Pis with heterogeneous sensors aim to send
their data (camera and heart rate) to the hub destination node
via diferent routes. Intermediary nodes may have diferent
privacy levels associated with them. Nodes are conigured
so that leaf nodes have connectivity to intermediary nodes
but not directly to destinations. his is important as it allows
us to test multiple Personal Clouds communications over
variable network conditions and topologies. Note that all
nodes are equipped with WiPi wireless adapters that support
both infrastructure and ad hoc mode.

3.2. Cognitive Privacy. In this section, we describe how we
extend our early work on Personal Cloud testbed [2] to
include transparent, eicient, and adaptive Cognitive Privacy
(CogPriv) which negotiates access to various networks in
real time to suit the privacy requirements of the applications.
One of the core building modules of the Cognitive Privacy
framework is Intelligent Forwarder which is a P2P DTN
module. We extend the DTN bundle protocol (RFC 5050
[25–27]) which provides API for DTN applications with
intelligent P2P forwarding. More speciically, our P2P DTN
intelligent forwarding module provides multilow real time
bundle forwarding based on a range of criteria such as
source ID, Virtual Machine (VM) ID, application privacy
requirements, and destination ID so that diferent incoming
bundles can be matched to the appropriate network interface
in real time. Additionally, CogPriv comprises the following
multiple stages: it probes local cellular network to identify
the likelihood of any middleboxes that may compromise
user traic, requests the remote destination nodes to provide
their estimations of the cellular network privacy levels, and
collaborates and cooperates with the local network nodes.
In this way, CogPriv can range dynamically and adaptively

from providing fully cellular single hop end-to-end com-
munication to fully localised multihop mobile opportunistic
communication.

Intelligent Forwarder makes the decision on the choice
of the next forwarding node and network interface based
on multiple criteria and objectives: (1) it aims to either
maximise end-to-end privacy for a particular application
or meet the requirements of the application, (2) it aims to
minimise end-to-end delays, and (3) it aims to be resource
aware and adaptively avoid congestion. In this way, Intelligent
Forwarder manages privacy requirements while being aware
and adaptive to the dynamic quality of service challenges.

hrough collaborations and cooperation in the local
neighbourhoods, each node aims to understand its environ-
ment better and learn about its neighbours. More speciically,
each node exchanges the following: (1) their own cellular
network privacy statistics and predictions to negotiate feasi-
bility of using cellular network for a particular application, (2)
predictive analytics of their resources, and (3) mobile social
graph network connectivity analytics. Social connectivity
analytics is important as it keeps directionality of the data to
be routed for ad hoc opportunistic communication. Resource
considerations are important as they enable higher reliability
of ad hoc opportunistic routing. More speciically, CogPriv
builds on implicit heuristics on predictive in-network storage
and delays we proposed in [28–31].

Each node’s privacy level estimations are important to
consider as they are the core criteria for choosing the interface
to use for forwarding the data for privacy-aware applications;
that is, neighbouring nodes may communicate via WiFi,
GSM, or Bluetooth each having diferent privacy levels. More
speciically, each interface will have diferent probabilities
and utilities associated with it (described in Section 4) so
that each bundle can be forwarded via the most appropriate
interface. Towards this goal, we extend simple static (interface
and bundle) forwarding paradigm to the more dynamic
(interface, bundle, and forwarding probability) paradigm.
Figure 7 shows Personal Cloud extended with the CogPriv
framework.

3.3. An Overview of Cognitive Privacy Distributed Decision-
Making. Depending on the level of privacy an application
requires, the Cognitive Privacy (CogPriv) module in the
Personal Cloud will send the data via either cellular network
(e.g., default for mobile phones) or WiFi (e.g., default for
laptops) when privacy is not required; on the other hand, it
will run probes on its local area network and communicate
with the destination about the remote cellular network
privacy levels, as well as collaborating with the nearby nodes
before deciding via which network and next hop to send the
data as shown in Figure 8.

hese steps are described in more detail as follows:

(i) If the desired privacy level is high, the Personal Cloud
irst checks its cellular network by running probes
to identify possible presence of middleboxes. If it
discovers any, it does not use cellular network.

(ii) If the cellular network of the sender does not
detect presence of middleboxes, the sender contacts
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Figure 7: Cognitive Privacy design for Personal Clouds.
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Figure 8: Functional overview of the probing and local collabora-
tion stages.

the destination to enquire if the destination can detect
any middleboxes at their end.

(iii) If both the destination and the sender are clear of
the middleboxes or the level of middleboxes privacy
meets the application requirements, the data gets
communicated via the cellular networks.

(iv) If either the destination or the sender is not clear
of infrastructure middleboxes, the sender checks its

local neighbourhood using ad hoc networks and local
contacts with trusted nodes only (for high levels of
privacy requirements) andWiFi for medium levels of
privacy requirements.

(v) If the next hop node gets a bundle with high level
of privacy requirements, it will irst probe its cellular
network and send the bundle via it only if its cellular
network does not have any middleboxes detected.
Otherwise, it will scan opportunistically its local
nodes and will exchange its social, resource, and
privacymatrix in order to determine which nodemay
be the most suitable bundle carrier to the particular
destination.

(vi) For each bundle carrier, the same set of steps gets pre-
formed in a fully distributed manner at every node.

Figure 9 illustrates combined, diverse communication ap-
proaches that comprise CogPriv and Figure 10 gives architec-
tural overview of CogPriv.

A key challenge that CogPriv solves regarding cellular-
local switching is that valuable middlebox and contextual
information are distributed across local and remote users.he
irregular distribution means that the contextual information
possessed by any node alone is not suicient to guide the
switching process. Cellular network infrastructure can vary
with the location of access and times users use the network
so that diferent middleboxes may be present or removed
without user’s knowledge. For example, a Vodafone user in
Karsruhe can send traic without it being intercepted by a
middlebox, while a Vodafone user in Berlin might pass via a
web cache middlebox. Similarly, a T-Mobile user at a given



6 Mobile Information Systems

Personal Cloud 1

Personal Cloud 2

Personal Cloud 3

Personal Cloud 4

Personal Cloud 5

Cellular networks probing

Local collaboration

Data transfer

Graph of interconnected 

cellular networks 

Intelligent forwarded and
ibr dtn

Real time bundle management for
diferent VMs, applications, 

destinations, and privacy requirements 

WiFi direct, WIFI,
Bluetooth, and cellular network 

Cellular networks for 
remote cooperation 
and communication

Local context sensing and 
local communications and 
collaboration and cooperation 

Intelligent forwarded and
ibr dtn

Real time bundle management for
diferent VMs, applications, 
destinations, and privacy requirements 

WiFi direct, WIFI,
Bluetooth, and cellular network 

Cellular networks for 
remote cooperation 
and communication

Local context sensing and 
local communications and 
collaboration and cooperation 

Intelligent forwarded and
ibr dtn

Real time bundle management for
diferent VMs, applications, 
destinations, and privacy requirements 

WiFi direct, WIFI,
Bluetooth, and cellular network 

Cellular networks for 
remote cooperation 
and communication

Local context sensing and 
local communications and 
collaboration and cooperation 

Intelligent forwarded and
ibr dtn

Real time bundle management for
diferent VMs, applications, 
destinations, and privacy requirements 

WiFi direct, WIFI,
Bluetooth, and cellular network 

Cellular networks for 
remote cooperation 
and communication

Local context sensing and 
local communications and 
collaboration and cooperation 

Intelligent forwarded and
ibr dtn

Real time bundle management for
diferent VMs, applications, 
destinations, and privacy requirements 

WiFi direct, WIFI,
Bluetooth, and cellular network 

Cellular networks for 
remote cooperation 
and communication

Local context sensing and 
local communications and 
collaboration and cooperation 

Figure 9: Cellular network interactions with local Personal Clouds.

Complex network topologies

Cognitive Privacy

Congestion layer 

and social layer

and privacy leakage probing

User requirements for sharing 

with diferent levels of privacy

Mobile Personal Clouds 

interactions

Network layer

Application

S

D
S

D

Personal Cloud 

Personal Cloud 
Personal Cloud 

Figure 10: Architectural overview of Cognitive Privacy.



Mobile Information Systems 7

Estimation of 

local cellular 

network privacy 

likelihood

Estimation of

remote cellular

network privacy

likelihood

Local nodes 

collaboration and

cooperation

ranking 

Local cellular 
network privacy 
probes

Remote cellular 
network privacy 
probes

Local context trust 
and privacy sensing

Local social 
connectivity 
analytics

Local and ego 
social network 
resource analytics 

Adaptive 
forwarding

Adaptive 
storage 

Probe query

Incoming bundles Ruleset

Aggregate, adaptive

prediction and 

collaborative

decision-making

across multiple 

dimensions for

mapping bundles

to interfaces and 

protocols

Dynamic low 
management 
and adaptive 
weighing

Probe 
noti�cation

Bundles

Bundles

Outgoing bundles

Privacy and urgency 
requirements

Multiple

cognitive 

network 

interfaces

WiFi

BT

Cellular

Figure 11: Architectural overview of the decision-making in the Personal Cloud Cognitive Privacy module.

VM ID App ID SRC ID
Privacy 
required

Personal 
Cloud 
contact list 

Probe Local 
Estimation

Probe Remote 
Estimation Betweeness Tie strength Resources

Figure 12: Extended CogPriv bundle header format.

location using 4G might detect a web middlebox, while a T-
Mobile user on 3G could identify a DNS middlebox.

Because both the number and the location as well as
the functionality of the middleboxes in cellular networks
can change randomly, the cellular network probes need to
be performed either before each data transfer (which may
increase control traic especially for real time multimedia
traic) or each sensible time interval (e.g., every day or half
a day). Based on the statistical and temporal analysis of the
probes each node performs for diferent cellular networks,
nodes can adjust their time intervals diferently so that they
perform probes for some networks more frequently than for
others.

In Figure 11, we show that ater estimating the privacy
levels of local and remote nodes they get ranked via the
Ruleset as well as privacy and urgency requirements. Each
low is dynamicallymanaged to enable adaptive weightings of
the input parameters. CogPriv then maps the incoming bun-
dles to suitable outgoing interfaces and protocols. Possible
decisions that CogPriv can take include adaptive forwarding
(choosing the best hop), adaptive storing (choosing to retain
the bundle), probe query (issuing the query on behalf of
another node), responding to query when being asked.

4. Cognitive Privacy Algorithm
and Decision Heuristics

In this section, we propose and describe several new heuris-
tics for driving local collaborative decisions and discuss
in detail cooperative probing mechanism as integral and
complementary parts of CogPriv.

Cooperative CogPriv module includes intelligent dy-
namic probing of the local cellular network for any privacy
threatening middleboxes and cooperation with the destina-
tion about its cellular network. he results of these probes
are stored in two ields (Probe Local Estimation and Probe
Remote Estimation) as part of extension of the bundle header
format referred to as ExtendedCogPriv bundle header format
shown in Figure 12.

Collaborative CogPriv module uses several metrics for
heuristics and analytics of ad hoc neighbours privacy levels
in order to predict the level of privacy each node can provide.
More speciically, each node generates information on its esti-
mated privacy level and exchanges it with its neighbours.he
Extended CogPriv bundle header contains information on
node social and resource metrics: betweenness, tie strength,
and resources as shown in Figure 12.
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Adaptive forwarding decision (InfrastructureprivUtil) is
a function of estimated local and remote privacy as well as
collaboration involving message exchange on these estima-
tions (formula (1)). In addition to the exchange of measure-
ments of local privacy levels (LocalProbUtil) collaboration

involves QoS metrics in order to achieve maximum quality
of service in terms of minimal delays and minimal resource
overload while achieving maximum required privacy. his is
shown in formula (2). Consider

InfrastructureprivUtil = � (local cell probe, remote cell probe) , (1)

LocalProbUtil = � (local cell probe, social analytics, resource analytics, cooperation) . (2)

herefore, the headers need to include in-network delays
prediction, in-network storage, social betweenness, central-
ity, and tie strengths with the destination in order to allow
bundles to keep directionality of the sent bundles, as shown
in the following:

ℎ ∈ � = {�1 ∗ Priv, �2 ∗ (Ret, Rec) , �3 ∗ social) , (3)

where�1 is weight that depends on the privacy requirements
identiied for this traic type, �2 is the weight of the local
resource estimation, and �3 is the weight of the local social
estimation.

When a forwarding node (�) meets contacts on its way, it
exchanges relevant heuristics and calculates the CogPrivUtil
of each contact. his is shown in formulas (4) and (5).
he CogPrivUtil allows the node � to detect how well
connected its contact � is and how available � is in terms of
estimated privacy levels it supports, storage, delay, and social
connectivity parameters.

Formula (5) proposes new metric (UtilPriv) for
calculating relative utility of the infrastructure privacy
(Infrastructurepriv) when compared to the local privacy
(Localpriv):

CogPrivUtil� (�) = ∑
ℎ∈�
�ℎUtilℎ (�) , (4)

UtilPriv (�)

=
ℎ (Infrastructurepriv (�))

ℎ (Infrastructurepriv (�)) + ℎ (Localpriv (�))
.

(5)

Retentiveness (Ret) [28–31] refers to the node’s available
storage for the new bundles that are sent to them. Reten-
tiveness is an important attribute to consider because of the
store and forward nature of opportunistic DTN networks
[32]. Nodes with limited storage, either due to popularity or
simply due to Personal Cloud hardware constraints, are more
susceptible to bundle loss. Retentiveness is calculated as an
exponentially weighted moving average of a Personal Cloud
remaining storage. Formula (6) shows that retentiveness of�
is calculated as the sum of all bundle occupancy subtracted
from the node’s bufer capacity (��(�)):

Ret (�) = �� (�) −
�
∑
�=1
��size (�) . (6)

Receptiveness (Rec) [28–31] refers to the Personal Clouds’
ability to receive bundles and forward them on. his is an
important observation as increasing in-network delays is
an indication that the volume of traic a node or region
is receiving is greater than the bandwidth available to it
for oloading. he delay between receiving a bundle and
forwarding a bundle is constrained by the size of the bufer
and the bandwidth available for a node to oload the bundles.
Nodes with large size of storage are more susceptible to
receiving more bundles than being capable of oloading.
Formula (7) shows that receptiveness is the total current
bundle delay, calculated as the sum of diferences between the
current time (�now) and the time each bundle was received
(�received):

Rec (�) =
�
∑
�=1
(�now − ��received (�)) . (7)

Each node keeps track of its centrality degree deined as
the number of its encounters during predeined time and
betweenness deined as the existing indirect links between
each pair of its neighbours.

Degree is computed as total number of direct links to a
given user �:

�� (�0) =
�
∑
�=1
� (�0, ��) . (8)

Related work on online social networks [33] presents large-
scale study of ine grained privacy preferences for Facebook
users which provides the information on how users specify
social access control lists (SACL) on a social networking ser-
vice. hey show that SACL membership has little correlation
with proile information and online social network links; and
making recent SACLs available to users is more promising as
users tend to reuse SACLs. We expand on these indings and
propose to use the recency, betweenness, and frequency social
metrics for choosing themore trusted data carriers as suitable
for mobile (disconnection prone) social networks.

We deine betweenness in line with [34] by building
and processing adjacency matrix. he adjacency matrix is
updated based on the application requirements:

�� (��) =
�
∑
�=1

�−1
∑
�=1

��� (��)
���
. (9)
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Frequency refers to the number of times a given user �
encounters a destination �. Frequency graph of user � to the
destination � is calculated as follows:

�� (�) =
� (�)
� (�) − � (�) , (10)

where �(�) is the number of times destination � has been
encountered and �(�) is the total time that user � has
encountered � from the beginning of the simulation.

Recency is deined as how recently a user � last met a
destination � shown in the following:

Recency� (�) =
recency (�)
� (�) − recency (�) . (11)

Tie Predictor. Once a user encounters destination, it computes
the similarity to the destination and updates. More specii-
cally, the similarity refers to the number of direct neighbours
and indirect encounters. he higher the number of common
neighbours is, the higher the probability that a given user
moves regularly to this destination is. To account for more
synchronous communication, we use similarity as a core
metric for calculating tie prediction:

TsUtil� (�) =
TS� (�)

TS� (�) + TS� (�)
,

SimUtil� (�) =
Sim� (�)

Sim� (�) + Sim� (�)
.

(12)

Choosing Carrier. he decision on forwarding of the stored
bundle is based on the utility calculation whenever a source
or a carrier detects a new neighbour. If the new neighbour has
a higher total utility compared to the given user, the bundle
will be forwarded. he utilities are computed by pairwise
comparison:

CogPrivUtil� (�) =
CogPriv� (�)

CogPriv� (�) + CogPriv� (�)
. (13)

5. Experiment Setup and Results

5.1. Experiment Scenario and Datasets. We begin with
describing two real-world data traces that we use in our
experiments and then describe our methodology of running
experiments and clarify our criteria before we give and
discuss our results.

We base our experiments on the real-world data traces
of diferent probes for mobile networks across 112 countries
andover 200mobile providers obtained byNetalyzr in [1]. Ex-
amples of the probes in [1] include Web probes such as http
content change, http hdr reorder, http hdr injection, invalid
host name vulnerability, http enforcement, http default
compression, andTranscoding aswell asDNSprobeswhich in-
clude dns direct mangled, dns direct proxy, and dns direct
changed id.

We select traces of one country (Germany) as its number
of mobile networks’ providers best suits our real-world user
communication trace [35] so that every user can be on

Table 1: Overview ofmiddlebox distribution identiied in a range of
mobile providers in Germany.

Name Probes Web DNS Web % DNS %

1&1 1 1 0 100 0

ALICE 1 0 0 0 0

BASE 12 0 12 0 100

BLAU 3 0 3 0 100

CONGSTAR 6 6 3 100 50

DEBITEL 1 0 1 0 100

E-PLUS 9 0 9 0 100

FONIC 1 0 1 0 100

FYVE 5 5 3 100 60

KABELBW 1 0 1 0 100

LIDL 2 0 0 0 0

MEDION 5 0 5 0 100

M-NET 2 0 1 0 50

NETZCLUB 1 0 0 0 0

O2 35 0 16 0 45.71429

T-Mobile 83 83 27 100 32.53012

Vodafone 36 36 10 100 27.77778

the diferent network. For every mobile node, we obtain the
probability for the network spying on the web traic by
calculating the percentage of test returning positive versus the
total number of tests performed. For every mobile network,
we obtain the probability of it spying on web traic by
averaging the values obtained by all individual mobile nodes
on this particular network.

he table ofmobile networks, probes, and analysis is given
in Table 1.

We carry out performance evaluation of CogPriv versus
cellular communication and local social opportunistic net-
works across a range of network conditions and user traic
types across a range of metrics.

Based on the real cellular networks inGermany (shown in
Table 1), we average privacy levels into ive evenly distributed
privacy threat levels, for example, minimum (0%) such as
ALICE andNETZCLUB, low (25%) such asM-NET,medium
(50%) such as BASE and MEDION, high (75%) such as
CONGSTAR, and maximum (100%) such as FYVE.

We developed extensions to the one simulator [36] that
utilises data from Table 1 in order to return middleboxes
presence probability discovered when performing probing of
diferent cellular networks.

We run experiments with the entire time of real-world
Facebook connectivity traces UNICAL [35] for maximum
privacy requirements with ive diferent levels of cellular
network privacy to which users are connected. UNICAL
contains Bluetooth device proximity data, collected by an ad
hoc Android application, and the social proiles in terms of
Facebook friendships and interests of a group of 15 students.
Experimental data were collected at the campus of University
of Calabria in Rende, Italy. In order to gather the proximity
information, the aforementioned ad hoc application was
installed on each student’s smartphone. Each participant was
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instructed to keep with themselves the device that ran the
SocialBlueConn application.he experiment lasted one week
during student’s lessons, from January 28, 2014, to February 5,
2014, including only the working days. Unlike [37, 38] traces,
[35] does not identify beginnings and ends of contacts but
only sightings. We have assumed that the sightings last at
least 60 seconds based on the interval duration between the
most frequent sightings. Detailed analysis of mobile social
networks and online social networks for UNICAL has been
done in [35] and has shown high degree correlation which
we exploit in our ad hoc local message forwarding in our
experiments.

We assume that all sending nodes aim to send highly
personal but not urgent messages (e.g., self-monitoring
ongoing long-term health conditions) for large number of
experiments, but we also investigate CogPriv performance in
the face of varying privacy requirements. We assign varying
privacy requirements to each bundle and each CogPriv node
can check if the reported levels of middlebox presence in
the network can be tolerated for each bundle based on the
comparison of levels of middleboxes and privacy required.

In our experiments, we measure end-to-end achieved
privacy levels, end-to-end delays, and number of hops
between the end points. We run extensive experiments in
three increments with steps of 4 (26% of all nodes), 8 (48%
of all nodes), and 12 (80% of all nodes) which we repeat for
5 randomly selected combinations of sources and receivers
for each cellular network privacy level. his is important
for allowing us to get medium, minimum, maximum, and
average for each metric. Our results showed that there are
no signiicant diferences between diferent percentages of
nodes actively generating and sharing content for the privacy
related metrics. We provide Figure 13 to show this. Regarding
the resource metrics (retentiveness), we give Figure 19 that
focuses on exploring diferences between wide range of send-
ing nodes and privacy requirements. Figure 19 does not show
signiicant resource availability diferences due to CogPriv
utilising an efective congestion aware forwarding heuristics
on retentiveness and receptiveness introduced in [28–31].

he following results show that adaptive Cognitive Pri-
vacy approach is fundamental for future pervasive appli-
cations where Personal Clouds need to communicate via
diferent levels of network privacy for diferent applications.
CogPriv module that is adaptive, real time, collaborative,
and cooperative is the core component of future Personal
Clouds and necessary extension of the virtualisation of the
application storage and hosting. We show that CogPriv is
able to gracefully and transparently adapt to local context
(both social and network) and remote context (via probes and
communication with the destination).

5.2. Results

5.2.1. Achieved End-to-End Privacy and Analysis. Figure 13
shows that end-to-end privacy levels remain higher for
CogPriv approach than for cellular only and mobile social
ad hoc communication independently of the level of pres-
ence of middleboxes in the cellular infrastructure, that is,
ranging from no middleboxes to wide range of middleboxes;

the performance of Cognitive Privacy drops from 100% pri-
vacy level to 85%.his is in contrast with the cellular network
which drops end-to-end privacy linearly with the amount of
the middleboxes in the cellular network. CogPriv approach
also outperforms fully local social ad hoc approach because of
the delays that are associated with the bundles time-out and
invoke the nodes to utilise cellular infrastructure that may
have privacy leaks.

In order to cover wide range of nodes and more condi-
tions they may face (e.g., not to miss a node or nodes that are
disconnected), we have done performance analysis for 27%
(4 nodes out of 15), 53% (8 nodes out of 15), and 80% (12
nodes out of 15) of randomly selected nodes acting as senders
and receivers and each experiment run has been repeated
5 times. We show that there are very minor diferences in
the performance in the three graphs in Figure 13. Figure 13
shows constant achieved end-to-end privacy for local ad hoc
routing for each random selection of senders/receivers. his
is due to the use of the real-world trace where the conditions
in the node connectivity among the selected nodes do not
change for one selection of the nodes for one experiment run
as well as due to ad hoc local not detectingmiddleboxes in the
cellular infrastructure and thus not changing its behaviour in
the face of the increasing levels of middleboxes.

From Figures 13(a), 13(b), and 13(c), we can see that the
diferences in E2E privacy for local ad hoc network may
slightly change for diferent numbers of senders and receivers
but this diference is also low. his is due to the trace having
strong mobile social network characteristic (as it is based
on the real-world students traces) and us using local ad
hoc routing which exploits social connectivity patterns for
forwarding.

Figure 14 shows statistical analysis of end-to-end privacy
levels for bundles (mean, max, andmin) for diferent levels of
presence ofmiddleboxes in the cellular networks.We observe
that there are no drastic oscillations in the level of end-to-
end privacy and quality of services for the end-to-end nodes.
his is because CogPriv approach adapts very efectively
and is able to optimally utilise both local and infrastructure
resources.

In order to better understand the inluence on end-to-
end privacy for diferent levels of centralities for mobile
ad hoc local networks, we investigate a range of scenarios
where the local ad hoc nodes have low, medium, and high
centrality in the face of varying levels of cellular infrastructure
surveillance. In oline analysis, we ordered the nodes’ degree
centralities and choose top 33% as high central nodes and
medium (33–66%) as medium centrality and low centrality
(below 33%). Due to the sparse connectivity of UNICAL
dataset with peak degree connectivity of 6, these centralities
result in 2 top ranked, 2medium ranked, and 2 bottom ranked
nodes. Figure 15 shows that, for all levels of connectivity
degrees of the local ad hoc nodes, the achieved end-to-end
privacy levels for CogPriv are signiicantly higher than those
when cellular network is utilised. CogPriv performs more
than 40% better compared to local ad hoc communications
for all centrality levels.

In order to show how CogPriv approach adapts to difer-
ent requirements for privacy, we have performed experiments
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Figure 13: End-to-end privacy.

with diferent traic types ranging from highly personal
through intermediary and not personal types. We assign
diferent privacy requirements to each bundle at the source.
At each forwarding decision-making point, CogPriv nodes
compare the bundle privacy requirement against the proba-
bility of leakage in a network that CogPriv returns. Bundles

that have lower privacy requirements than the probability of
leakage in a network can be sent via that network. Otherwise,
the bundles will be sent via another network or stored at the
node if no network meets the bundle privacy requirements.
In Section 3, we explain that for bundles which are urgent,
the bundles can be sent via cellular network if no trusted
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Figure 14: End-to-end privacy statistics.
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local ad hoc route is found within a predetermined time-
out period suitable for that bundle which is determined at
the application level. Figure 16 shows that Cognitive Privacy
approach manages to keep above 98% of achieved end-to-
end privacy for medium personal traic while it keeps above
92% for medium to high privacy traic. For highly personal
traic, Cognitive Privacy manages to keep above 82% for
all levels of middle boxes presence in the cellular network.
As expected, we show that the higher the node centralities
are, the higher the achieved end-to-end privacy levels are
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Figure 16: Security with varying privacy requirements.

for all protocols. It is important to observe that the achieved
end-to-end privacy levels for CogPriv are above 90% for all
levels of degree centralities for low to medium-high level
of middlebox presence in the cellular network. For high
levels of middlebox presence in the cellular network and for
high node centralities, the archived end-to-end privacy for
CogPriv is still very high (96%). For medium and low node
connectivity, CogPriv manages privacy of around 85% and
75%, respectively, in the face of high levels of middlebox
presence in the cellular network. his is very important as
it shows that even in both cases when the cellular network
is highly compromised and the trusted local ad hoc network
is very disconnected and sparse, CogPriv can keep high
levels of privacy which converge to the performance of local
ad hoc approach that utilises social network structure for
forwarding.

5.2.2. End-to-End Delays and Retentiveness Analysis. Fig-
ure 17 shows that CogPriv end-to-end delays increase slowly
until the infrastructure is fully compromised at which point
the delays become the same as they are for the local ad
hoc approach. he cellular network approach has the lowest
delays but this is due to privacy being compromised and the
traic taking single hop (direct) cellular link between the end
nodes.

Figure 18 shows delay distributions for highly private
traic bundles when the cellular infrastructure contains
dramatically diferent amount of middleboxes. We observe
that the delays are the lowest when the infrastructure is
not compromised as the CogPriv approach takes cellular
single hop router to the destination. As CogPriv discovers
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Figure 18: End-to-end delay statistics.

increasing number of middleboxes in the cellular networks,
the delays increase but are signiicantly lower than the local
ad hoc approach. Even though there are some bundles that
may take up to 25 minutes until 50% of surveillance of the
cellular network, the average still remains low and below
17 minutes. For the cellular network where there is 75%
to 100% of middlebox presence, the delays range from 10
minutes (min) to 100 minutes (max) and from 3 minute to
75 minutes (average). hese sorts of delays are appropriate
for nonemergency applications where the users value their
privacy and can tolerate delays such as regular daily checks
for users with long-term medical conditions.
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Figure 19: Retentiveness.

Figure 19 shows that CogPriv manages to maintain high
levels of retentiveness (available storage) which is 85% for
all levels of privacy requirements and for increasing number
of active sources. It is important to investigate inluence of
diferent levels of privacy requirements as retentiveness gets
measured only in ad hoc local forwarding (not cellular).More
speciically, as privacy requirements increase and the more
CogPriv chooses local forwarding over cellular forwarding
which has middleboxes, we show that CogPriv does not
signiicantly decrease available storage. Moreover, even for
signiicant increase of active sources from 27% to 80%, the
decrease in retentiveness is only around 1%. his is due to
CogPriv utilising efective heuristics on congestion awareness
and social graph analytics to predict the best next hop (the
heuristic is described in Section 4). It is important to note that
for the highest privacy requirements CogPriv will behave as
local ad hoc protocol as it will always use only local ad hoc
communications and not the cellular network infrastructure.

5.2.3. End-to-End Forwarding Hop Count and Transition
Analysis. It is interesting to see in Figure 20 that CogPriv
approach does not add additional number of hops compared
to local ad hoc communication. We observe that end-to-end
number of hops increases as the cellular network privacy
decreases but remains lower than it is for local ad hoc
forwarding. his is because CogPriv can efectively utilise an
opportunity for middlebox-free cellular network whenever
possible which allows it to connect to the destination via a
single hop. his means that CogPriv does not add to delays
compared to the local ad hoc approach while it increases the
delays only when the cellular network signiicantly compro-
mises user privacy.
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Figure 21 shows statistical analyses of CogPriv number of
hops with increased number of middleboxes in the cellular
architecture. We observe that the numbers range between 1
and 4 across all levels of middleboxes presence.

In Figure 22, we show the number of transitions between
infrastructure and local ad hoc protocol when the security
of the cellular network decreases. It is interesting to see that
while the number of hops is relatively low (reaching 4 for
highly compromised cellular networks), up to 50% of these
hops are transitions between the infrastructure and local
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Figure 22: End-to-end number of transitions.
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Figure 23: End-to-end transitions statistics.

communication. his shows that supporting adaptive transi-
tioning between infrastructure and local communication is
highly beneicial.

Figure 23 shows that the CogPriv approach keeps the
average level of transitions below 2 for all levels of cellular
network surveillance but occasionally peaks to 3 for high
level of middleboxes in the network.his shows that CogPriv
approach adapts well to the presence of middleboxes in the
cellular networks while efectively utilising local communi-
cation to keep the end-to-end quality of service as high as
possible.

he previous igures have shown that delays and hop by
hop counts increase as CogPriv moves adaptively from fully



Mobile Information Systems 15

Ad hoc network node types

E
xp

o
su

re
 (

%
)

Tier 1

Tier 2

0 25 50 75 100

Presence of middleboxes (%)

0

20

40

60

80

100

Figure 24: Exposure for increasing presence of middleboxes.

cellular mode to the fully opportunistic mode while manag-
ing very high levels of end-to-end privacy. More speciically,
we show that the CogPriv achieves privacy of end-to-end
connectionswhich is almost constant while neither the delays
nor the hop count is signiicantly increased.

5.2.4. Exposure Analysis. We are particularly interested in
the issues of privacy being afected negatively despite the
fact that no access control was violated. Emerging research
shows that users of social media and remote health care
applications increasingly prefer to have more control on who
sees their data even among the users who are allowed to
see their data via user access control rules. For example,
while users may be happy that several closest friends of theirs
can see and forward their data, they may not be happy that
the other friends see some other data (e.g., social versus
health related). Even in case of healthcare context, it has been
argued that allowing local data control and privileges should
be increasingly supported in addition to the central basic
services. In this respect,more context sensitive policies can be
enforced throughout the distributed communication cloud
architecture.

Figure 24 shows percentage of data being exposed to the
second tier of friends (those that are not the most trusted
but who can still view the content) for increasing percentage
of middleboxes in the cellular network. We observe that
when percentage of middleboxes is lower than 25%, end-
to-end traic is not exposed to any second-tier friends. For
increasing percentage of cellular network spying, we can
see the increased reliance on all friends (both irst- and
second-tier) ranging from 1% to 7%. his is a very low
exposure that shows the importance of local context driven
data management.
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Figure 25: Exposure in end-to-end distinct cellular networks.

Related research in social networks has shown that users
consider their privacy violated when more diferent pieces
of their data can be linked [39]. Towards this end, our
proposal for adaptive privacy-aware forwarding is beneicial
as it minimises multiple separate pieces of user data to be
viewed, stored, and forwarded by the same node.

In Figure 25, we show the number of distinct networks on
end-to-end routes that CongPriv takes for increasing levels
of middlebox presence in the infrastructure. For medium to
high level of privacy leakage in the cellular infrastructure,
CogPriv utilises up to 4 distinct mobile networks and thus
prevents the same compromised network provider from
accessing and gathering diferent pieces of information about
the user. For example, if we assume that a bundle gets
forwarded via three mobile privacy providers with 25%
privacy leakage, this does not add up to a total of 75% privacy
leakage but remains in the low 25%.

6. Conclusions and Future Work

We proposed Cognitive Privacy (CogPriv) framework as
an integral and core part of future Personal Clouds and
pervasive communications. At the core of our proposal is
the idea that, in mobile social world, privacy raises new
challenges that go beyond typical binary allowed/forbidden
access control and should take the form of cooperative,
collaborative, and context dependent stochastic distributed
decision-making. We argue that this new type of privacy
can be called “Cognitive Privacy” as it on-the-ly senses and
adapts to the infrastructure behaviour, strength/frequency of
(mobile) social ties, and/or reputation of other nodes/people.
herefore, for diferent types of data and user context, the user
may prefer to negotiate diferent levels of privacy.

We showed that CogPriv preserves end-to-end privacy
levels to a high level across diferent network topologies
and cellular network ad hoc middlebox distributions as well
as diferent traic types. As our future work, we plan to
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deploy CogPriv and Personal Clouds in real-world scenarios
in collaboration with Nottingham CityCare Partnership’s
initiatives to build healthier communities and improving
long-term health and wellbeing of local people [40]. We plan
to design new user-friendly interfaces that would improve
usability of Personal Clouds particularly in respect of pro-
viding real time feedback to the user on the levels of privacy
of their data. More speciically, we argue that it would be
beneicial to allow users to disrupt some decisions of CogPriv
at certain circumstances such as changed level of urgency,
for example, when the user may prefer to wait longer and
maintain higher level of privacy versus delivering the data to
the destinations.
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tor for DTN protocol evaluation,” in Proceedings of the 2nd
International Conference on Simulation Tools and Techniques
(Simutools ’09), article 55, p. 10, ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engi-
neering), Brussels, Belgium, 2009.

[37] J. Scott, R. Gass, J. Crowcrot, P. Hui, C. Diot, andA. Chaintreau,
CRAWDAD Dataset Cambridge/Haggle (v. 20090529), 2009.

[38] F. Benbadis and J. Leguay, “CRAWDAD dataset upmc/rollernet
(v. 20090202),” February 2009, http://crawdad.org/upmc/roller-
net/20090202.

[39] M. Mondal, P. Druschel, K. P. Gummadi, and A. Mislove,
“Beyond access control: managing online privacy via exposure,”
in Proceedings of the Workshop on Usable Security, 2014.

[40] NottinghamCityCare Partnership, http://www.nottinghamcity-
care.nhs.uk/.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artiicial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal ofComputer Networks and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artiicial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientiic 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


