746 research outputs found

    Potential impacts of green infrastructure on NOx and PM10 in different local climate zones of Brindisi, Italy

    Get PDF
    This study delves into Green Infrastructure (GI) planning in Brindisi, Italy, evaluating its influence on urban air quality and thermal comfort. Employing an LCZ-centred Geographic Information System (GIS) based classification protocol, the prevalence of LCZ 6 (Open low-rise) and LCZ 2 (Compact mid-rise) is highlighted. Despite generally low PM10 levels in Brindisi, intermittent NOx spikes surpassing WHO and EU standards pose health risks. Within LCZ 2, diverse GI interventions (green walls, hedges, trees) were tested, with green walls emerging as the most effective, albeit falling short of expectations, while trees exhibited adverse air quality impacts. LCZ 6 demonstrated enhanced air quality attributed to wind patterns, GI, and urban canyon improvements. Thermal comfort analysis consistently revealed positive outcomes across various GI types, reducing discomfort by a minimum of 10%. The study emphasized GI's favourable com-fort impact on sidewalks but cautioned against trees in street canyons with aspect ratios exceeding 0.7, heightening pollutant levels and implying increased exposure risks. Conversely, street canyons with lower aspect ratios displayed variable conditions influenced by prevailing regional wind patterns. In conclusion, the integrated assessment of LCZ and GI holds promise for in-formed urban planning, guiding decisions that prioritize healthier, more sustainable cities. This underscores the crucial need to balance GI strategies for optimal urban development, aligning with the overarching goal of promoting urban well-being and sustainability

    On Improving Urban Environment Representations

    Get PDF
    Computer Graphics has evolved into a mature and powerful field that offers many opportunities to enhance different disciplines, adapting to the specific needs of each. One of these important fields is the design and analysis of Urban Environments. In this article we try to offer a perspective of one of the sectors identified in Urban Environment studies: Urbanization. More precisely we focus on geometric and appearance modeling, rendering and simulation tools to help stakeholders in key decision stages of the process

    Generation of Folded Terrains from Simple Vector Maps

    Get PDF
    International audienceWhile several terrain generation methods focused on plausible watersheds, the fact that most mountains should not be isolated but rather be part of wider scale mountain ranges was seldom considered. In this work, we present the first procedural method that generates folded terrains from simple user input, in the form of some sparse peak distribution on a vector map. The key idea is to infer possible continental plates from this distribution and to use simplified plate tectonics to generate relevant terrain folds. The resulting terrain with large-scale folds, computed in real-time, can be further refined using standard erosion simulation. This leads to detailed terrains with plausible mountain ranges that match the peak distributions and main rivers specified on simple vector maps

    Feature-rich distance-based terrain synthesis

    Get PDF
    This thesis describes a novel terrain synthesis method based on distances in a weighted graph. The method begins with a regular lattice with arbitrary edge weights; heights are determined by path cost from a set of generator nodes. The shapes of individual terrain features, such as mountains, hills, and craters, are specified by a monotonically decreasing profile describing the cross-sectional shape of a feature, while the locations of features in the terrain are specified by placing the generators. Pathing places ridges whose initial location have a dendritic shape. The method is robust and easy to control, making it possible to create pareidolia effects. It can produce a wide range of realistic synthetic terrains such as mountain ranges, craters, faults, cinder cones, and hills. The algorithm incorporates random graph edge weights, permits the inclusion of multiple topography profiles, and allows precise control over placement of terrain features and their heights. These properties all allow the artist to create highly heterogeneous terrains that compare quite favorably to existing methods

    RiverLand 2.0: Blending of Multiple User-defined Slopes in a Procedurally Modeled Terrain

    Get PDF
    This writing project attempts to improve on and add features to the current program called RiverLand originally designed and implemented by Dr. Soon Tee Teoh. I discuss the original methods used by RiverLand to create procedurally generated terrain. I then explore the weaknesses of the original RiverLand which include having only linear ridges and undesirable medial axis cells. I then tackle the problem of recurring patterns when texturizing a surface with very few textures. I propose how to solve these problems and explain the methods used to accomplish this. I discuss the user interfaces that were designed to accommodate the added features to RiverLand. I also discuss the open problems with the updated RiverLand

    Methods for Procedural Terrain Generation

    Get PDF
    Procedural generation has been utilized in the automatic generation of data for a long time. This automated processing has been utilized in the entertainment industry as well as in research work in order to be able to quickly produce large amounts of just the kind of data needed, for example, in system testing. In this thesis, we examine different ways to utilize procedural generation to produce different synthetic terrains. First, we will take a closer look at what procedural generation is, where it originally started, and where it was utilized. From this we move on to look at how this technology is utilized in the creation of terrains and what terrain is generally visually required. From this we move on to look at different ways to implement terrain generation. As part of this thesis, we have selected three methods and implemented our own implementations for terrain generation. We look at the performance of these implementations, and what a test group thinks about those synthetic terrains. The results obtained from this are analyzed and presented at the end of the thesis.Proseduraalista generointia on hyödynnetty datan automaattisessa tuottamisessa jo pitkään. Tätä automatisoitua prosessointia on niin hyödynnetty viihdeteollisuudessa kuin tutkimustyössä, jotta ollaan voitu tuottaa nopeasti suuria määriä juuri sellaista dataa kuin tarvitaan esimerkiksi järjestelmän testauksessa. Tässä tutkielmassa tarkastellaan erilaisia tapoja hyödyntää proseduraalista generointia erilaisten synteettisten maastojen tuottamiseksi. Aluksi tutustutaan hieman tarkemmin siihen mitä proseduraalinen generointi on, mistä se on alunperin lähtenyt ja mihin sitä on hyödynnetty. Tästä siirrytään tarkastelemaan miten kyseistä tekniikkaa hyödynnetään maastojen luomisessa ja mitä maastoilta yleensä visuaalisesti vaaditaan. Tästä siirrytään tarkastelemaan eri tapoja toteuttaa maaston generointia. Osana tätä tutkielmaa, on valittu kolme menetelmää ja laadittu niistä kullekin oma toteutus maaston generointiin. Työssä tarkastellaan näiden toteutusten suoritustuloksia, ja mitä mieltä testiryhmä on kyseisistä synteettisistä maastoista. Saadut tulokset ja niiden analyyysi esitellään tutkielman lopussa

    REMOTE SENSING AND CITY INFORMATION MODELING FOR REVEALING THE COMPLEXITY OF HISTORICAL CENTERS

    Get PDF
    Abstract. Historical centers represent the outcome of transformations and stratifications of the cities across the centuries. The knowledge of a historical urban environment requires an analytical methodology articulated on several interconnected levels of investigation to model a multi-layered complexity that encompasses the geometric and stylistic features of places (blocks irregularities, narrow streets, stratified buildings), the accessibility (pedestrial zone, no flyzone), the use of existing data (GIS, cartographies). Today the challenge for historical centers is dual: on the one side to make use of expeditious technologies to acquire data, on the other one to create 3D city models that allow to manage, visualize, enquire and use these data in a unique digital ecosystem. Our research deals with a multi-sensor data acquisition, evaluation and integration with the aim of creating informed and responsive 3D city models (CIM) that constitute a synthesis of the survey conducted and become the support for simulations in various contexts (seismic risk, hydraulic, energy performance)
    corecore