
Feature-Rich Distance-Based Terrain Synthesis

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Brennan Rusnell

c©Brennan Rusnell, February 2009. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of

the College in which my thesis work was done. It is understood that any copying or publication

or use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part

should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

This thesis describes a novel terrain synthesis method based on distances in a weighted graph.

The method begins with a regular lattice with arbitrary edge weights; heights are determined

by path cost from a set of generator nodes. The shapes of individual terrain features, such as

mountains, hills, and craters, are specified by a monotonically decreasing profile describing the

cross-sectional shape of a feature, while the locations of features in the terrain are specified by

placing the generators. Pathing places ridges whose initial location have a dendritic shape. The

method is robust and easy to control, making it possible to create pareidolia effects. It can produce

a wide range of realistic synthetic terrains such as mountain ranges, craters, faults, cinder cones,

and hills. The algorithm incorporates random graph edge weights, permits the inclusion of multiple

topography profiles, and allows precise control over placement of terrain features and their heights.

These properties all allow the artist to create highly heterogeneous terrains that compare quite

favorably to existing methods.

ii

Acknowledgements

I would like to thank Dr. David Mould and Dr. Mark Eramian for their continued support and

guidance as my supervisors. This work would not have been possible without their aid.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations x

1 Introduction 1
1.1 Solution . 3

1.1.1 Reference Terrains . 4
1.2 Overview . 4

2 Related Work 7
2.1 Procedural Terrain Synthesis Methods . 7
2.2 Physical Terrain Synthesis Methods . 11
2.3 Image-Based Terrain Synthesis Methods . 13
2.4 Path Planning . 15
2.5 Sketch-Based Modelling . 18
2.6 Summary . 20

3 Terrain Synthesis 22
3.1 Overview . 22
3.2 Inputs and Parameters . 23

3.2.1 Profile Creation . 28
3.3 Algorithm . 30

3.3.1 Scaling by Profile . 33
3.3.2 Blending . 36

4 Terrain Synthesis Results 40
4.1 Overview . 40
4.2 Realistic Terrains . 42

4.2.1 Valleys . 42
4.2.2 Canyon, Layered, Tower Karst, Hill, and Mountainous Landscapes 45
4.2.3 River Terrace . 53
4.2.4 Fault . 53
4.2.5 Crater, Cinder Cone Volcano, and Lunar Landscapes 55
4.2.6 Musgrave Landscape . 63

4.3 Image Driven Terrains . 63
4.3.1 Edge Detection . 65
4.3.2 Edge Weights . 65
4.3.3 Edge Detection and Edge Weight Results . 68
4.3.4 Embedded Imagery . 71

4.4 Sketch-Based Terrains . 76

iv

4.5 Methodology Evaluation . 79
4.6 Algorithm Performance . 82

5 Pareidolia 87
5.1 Overview . 87
5.2 Inputs and Parameters . 88
5.3 Algorithm . 91

5.3.1 TEXT . 100
5.3.2 Smiley Face . 100

5.4 Results . 101

6 Conclusions and Future Work 107
6.1 Conclusions . 107
6.2 Future Work . 110

References 117

A Complete Results 118
A.1 Overview . 118
A.2 Realistic Terrains . 118

A.2.1 V-Shaped Valley . 118
A.2.2 U-Shaped Valley . 118
A.2.3 Canyon . 118
A.2.4 Layers . 118
A.2.5 Tower Karst Landscape . 118
A.2.6 Hills . 123
A.2.7 Mountain Range . 123
A.2.8 River Terrace . 126
A.2.9 Fault . 126
A.2.10 Crater Landscape . 126
A.2.11 Cinder Cone Volcano . 130
A.2.12 Lunar Landscape . 130
A.2.13 Musgrave Landscape . 130

A.3 Image Driven Terrains . 134
A.3.1 Edge Detection . 134
A.3.2 Edge Weights . 134
A.3.3 Edge Detection and Edge Weights #1 . 134
A.3.4 Edge Detection and Edge Weights #2 . 137
A.3.5 Edge Detection and Edge Weights #3 . 137
A.3.6 Edge Detection and Edge Weights #4 . 140
A.3.7 “U of S” Text . 142
A.3.8 IMG Logo . 142
A.3.9 λ Symbol . 143

A.4 Sketch-Based Terrains . 145
A.4.1 Sketch-Based Terrain #1 . 145
A.4.2 Sketch-Based Terrain #2 . 145
A.4.3 Sketch-Based Terrain #3 . 145
A.4.4 Sketch-Based Terrain #4 . 145

v

List of Tables

3.1 Summary of inputs and parameters to the proposed terrain synthesis algorithm. . . . 24

5.1 Summary of inputs and parameters to the proposed terrain synthesis algorithm for
pareidolia effects. 90

A.1 Summary of the input and parameter values for each result. 119

vi

List of Figures

1.1 Two landscape images: Banner Peak and Bicaz Canyon. 2
1.2 Reference Images. 5

3.1 Visualization of the input F . 24
3.2 A hand-drawn profile. 25
3.3 Effect of parameter µw on terrain steepness. 26
3.4 Effect of parameter r on terrain roughness. 27
3.5 Effect of parameter s on maximum terrain height. 29
3.6 Visualization of the conversion from node cost to node height. 30
3.7 An approximate terrain synthesized without blending. 33
3.8 Visualization of the search space for Dijkstra’s algorithm. 34
3.9 A height field resulting from Algorithm 3. 34
3.10 A terrain that does not use input profiles. 36
3.11 The result of using raw or modified node costs for the calculation of ws(c). 37
3.12 A terrain synthesized using different values for b. 39

4.1 Reference photos for a v-shaped and u-shaped valley. 43
4.2 Visualization of generator node locations F for the v-shaped valley result. 43
4.3 Profiles for a v-shaped and u-shaped valley. 43
4.4 Visualization of feature label and cost for the v-shaped and u-shaped valley results. . 44
4.5 Final renders, height fields, and OpenGL renders for the v-shaped and u-shaped

valleys. 44
4.6 Reference photo, generator node locations, and final render for the canyon result. . . 46
4.7 Reference photo, generator node locations, and final render for the layers result. . . . 47
4.8 Reference photo, generator node locations, and final render for the tower karst land-

scape result. 49
4.9 Reference photo, generator node locations, and final render for the hills result. . . . 51
4.10 Reference photo, generator node locations, and final render for the mountain range

result. 52
4.11 Reference photo, generator node locations, and final render for the river terrace result. 54
4.12 Reference photo, generator node locations, and final render for the fault result. . . . 56
4.13 Reference photo, generator node locations, and final render for the crater landscape

result. 58
4.14 Reference photo, generator node locations, and final render for the cinder cone result. 60
4.15 Reference photo, generator node locations, and final render for the lunar landscape

result. 62
4.16 Reference photo, generator node locations, and final render for the Musgrave land-

scape result. 64
4.17 Input texture, detected edges, and final render for the edge detection result. 66
4.18 Generator node locations, input texture, and final render for the edge weights result. 67
4.19 Generator node locations, edge detection texture, edge weight texture, and final

renders for the first ED/EW result. 68
4.20 Generator node locations, edge detection texture, edge weight texture, and final

renders for the second ED/EW result. 69
4.21 Generator node locations, edge detection texture, edge weight texture, and final

renders for the third ED/EW result. 70
4.22 Generator node locations, edge detection texture, edge weight texture, and final

renders for the fourth ED/EW result. 71
4.23 Visualization of the common input image for edge weights in the embedded imagery

terrains. 72

vii

4.24 Generator node locations and final renders for the “U of S” text result. 73
4.25 Generator node locations and final renders for the IMG logo result. 74
4.26 Generator node locations and final renders for the λ symbol result. 75
4.27 Generator node locations and final render for the sketch-based #1 result. 77
4.28 Generator node locations and final render for the sketch-based #2 result. 78
4.29 Generator node locations and final render for the sketch-based #3 result. 79
4.30 Generator node locations and final render for the sketch-based #4 result. 80
4.31 A comparison between the RMF terrain model and the proposed terrain synthesis

method. 81
4.32 A comparison between Zhou et al.’s method and the proposed terrain synthesis method. 82
4.33 Generator node locations and scatter plots for the first performance example. 83
4.34 Generator node locations and scatter plots for the second performance example. . . 84
4.35 Plot of terrain synthesis time vs. total number of terrain features. 85

5.1 Face on Mars images. 88
5.2 Pareidolia terrains that embed complex shadow regions. 89
5.3 Shadow casting visualizations. 91
5.4 Original and rotated input shadow images for the “TEXT” and smiley face pareidolia

renders. 94
5.5 Visualization of the “TEXT” and smiley face anti-shadow regions. 95
5.6 Visualization of the start and end node locations in the “TEXT” and smiley face

renders. 96
5.7 Visualization of the lower bound bb in the “TEXT” and smiley face renders. 99
5.8 The smiley face terrain synthesized using two different methods. 101
5.9 Visualization of the homotopic tree for the smiley face render. 102
5.10 Terrain whose shadows spell the word “TEXT” for a pareidolia effect. 103
5.11 Terrain whose shadows create a smiley face for a pareidolia effect. 104
5.12 Base terrains for the “TEXT” and smiley face renders. 104
5.13 Smiley face render that incorporates steeper terrain features, as well as complemen-

tary terrain features. 105

6.1 Histogram of the terrain synthesis times for all presented results. 109

A.1 Input and output for the v-shaped valley result. 120
A.2 Input and output for the u-shaped valley result. 121
A.3 Input and output for the canyon result. 122
A.4 Input and output for the layers result. 123
A.5 Input and output for the tower karst landscape result. 124
A.6 Input and output for the hills result. 125
A.7 Input and output for the mountain range result. 127
A.8 Input and output for the river terrace result. 128
A.9 Input and output for the fault result. 129
A.10 Input and output for the crater landscape result. 131
A.11 Input and output for the cinder cone result. 132
A.12 Input and output for the lunar landscape result. 133
A.13 Input and output for the Musgrave landscape result. 135
A.14 Input and output for the edge detection result. 136
A.15 Input and output for the edge weights result. 137
A.16 Input and output for the first ED/EW result. 138
A.17 Input and output for the second ED/EW result. 139
A.18 Input and output for the third ED/EW result. 140
A.19 Input and output for the fourth ED/EW result. 141
A.20 Input and output for the “U of S” text result. 142
A.21 Input and output for the IMG logo result. 143
A.22 Input and output for the λ symbol result. 144

viii

A.23 Input and output for the sketch-based #1 result. 146
A.24 Input and output for the sketch-based #2 result. 147
A.25 Input and output for the sketch-based #3 result. 148
A.26 Input and output for the sketch-based #4 result. 149

ix

List of Abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional
CC Creative Commons
CPU central processing unit
DEM Digital Elevation Model
ED edge detection
EW edge weight
fBm fractional Brownian motion
GPU graphics processing unit
ID identification
IMG Imaging, Multimedia, and Graphics
I/O input/output
MRF Markov Random Field
NASA National Aeronautics and Space Administration
OpenGL Open Graphics Library
RMF ridged multifractal
SBM sketch-based modelling
U of S University of Saskatchewan
USA United States of America
USGS United States Geological Survey

x

Chapter 1

Introduction

The term terrain describes the physical or surface features of a tract of land. The aesthetics

of terrains have been well captured in photography and well researched in computer graphics.

Landscapes were photographed from the advent of photography in the mid-19th century because

they are a static medium well suited for the approximately eight hour exposure times of the first

cameras. In 2002, London et al. observed that “in addition, people were interested in faraway

places; they traveled to them when they could and bought travel books and pictures when they could

not” [47]. Examples of such pictures, which capture the Earth’s beauty, are shown in Figure 1.1 [1,

38].

The advent of computer graphics ushered in a transition from 2D to 3D; in addition to 2D

imagery such as landscape photography, the synthesis of 3D models depicting such scenes was

now possible. The ability to realistically synthesize and render, or capture, such models has been

increasing as computer hardware and software become more sophisticated. Computers can be used

as a tool to synthesize and capture terrains. Methods for terrain synthesis have been increasing in

realism, resulting in an increased ability to capture the Earth’s beauty. This thesis presents a new

terrain synthesis method, the goal of which is to create realistic terrains that capture this beauty.

A sub-domain of computer graphics is concerned with the realistic synthesis of terrains. Terrain

synthesis involves the creation of a model that approximates a terrain resulting from erosional

and geological processes. It is an important problem because synthetic terrains are widely used

in film and video games. Such models can depict realistic terrains found in nature, or completely

fictional terrains. The goal of terrain synthesis algorithms is to be a realistic method that is able

to synthesize a variety of features, such as peaks, ridges, hills, and valleys, within a single terrain.

Furthermore, it must be easy to control feature placement and shape.

1

(a) (b)

Figure 1.1: Two landscape images. Left, a photo of Banner Peak [38], located
at Thousand Island Lake in California’s Sierra Nevada. Right, a photo of Bicaz
Canyon [1], located in north-east Romania.

2

Terrain models can be created by hand, or procedurally by terrain synthesis algorithms that

have been developed over the past few decades. Creating models by hand involves using mod-

elling software such as 3D Studio Max (Autodesk, Inc.), Maya (Autodesk, Inc.), Blender (Stichting

Blender Foundation), and Lightwave (NewTek, Inc.). Terrain synthesis algorithms include procedu-

ral methods such as fractional Brownian motion (fBm) and the ridged multifractal (RMF) terrain

model, physically-based methods that simulate erosion, and image-based methods that, among

other techniques, patch terrain samples together.

Existing terrain synthesis methods suffer from one or more of the following drawbacks: are

difficult to control, produce homogeneous results, or are time consuming. Homogeneous results

are undesirable because realistic terrains are heterogeneous: foothills reside at the base of jagged

mountains, faults can occur in flat terrain. Procedural and physically-based methods produce

realistic, heterogeneous terrains, but are difficult to control. Image-based methods require an

initial set of terrains and synthesize a new terrain that is similar to the examples. New terrain is

synthesized, but the input sample terrain must be obtained from some other process, such as the

aforementioned procedural and physically-based methods, or satellite elevation data. Furthermore,

the synthesized terrain contains only the features of the samples – new features cannot be generated

and the result is a relatively homogeneous terrain. The creation of terrain by hand can produce

realistic results and provides user control over feature placement, but the method requires much

human time and skill. The existing literature leaves room for improvement in terrain synthesis,

providing an opportunity for new methods to emerge.

1.1 Solution

This thesis addresses the shortcomings of existing methods. It does so by presenting a new proce-

dural terrain synthesis method, based on distances in a weighted graph, that provides control over

feature placement and shape. It can synthesize a wide variety of terrains found in nature, such

as mountains, hills, and valleys. Furthermore, it can synthesize a variety of terrains that existing

methods cannot; such features include craters, faults, and volcanoes. Feature placement can be

manually or procedurally controlled; manual feature placement involves the creation of marking in

an input image. Feature shape is controlled by hand-drawn and/or procedural profiles; a profile

describes the cross-sectional shape of a feature and offers user control over terrain feature shape.

This high level of control also facilitates the synthesis of terrains whose shadows embed hidden

images for the creation of pareidolia effects. Pareidolia refers to the phenomenon where a vague or

imperfect sensory input is mistakenly interpreted as something familiar, such as a human face.

3

The algorithm incorporates random graph edge weights, permits the inclusion of multiple topogra-

phy profiles, and allows precise control over placement of terrain features and their heights. These

properties all allow the artist to create highly heterogeneous terrains that compare quite favorably

to existing methods.

1.1.1 Reference Terrains

Figure 1.2 shows reference photos for the crater, fault, cinder cone volcano, and rolling hills renders

in Chapter 4. These images serve as a basis of comparison for terrain shape: craters form large bowl-

shaped depressions, cinder cone volcanoes have a flat top with a smaller bowl-shaped depression

at the peak, faults form unnatural, sharp breaking features at the Earth’s surface, and hills are

smooth and rounded. When comparing the synthesized terrains to the provided reference photos,

the reference image is considered to be an exemplar of the feature. We are not attempting to

synthesize a clone of the reference image, in terms of feature location and height, but we are

attempting to synthesize features that are also sensible exemplars. We are interested in what ways

it reflects the ideal exemplar, and in what ways it does not. It is important that a terrain synthesis

method capture mountains, hills, and valleys, though such a method should not be limited to them.

Figure 1.2 shows formations that are also desirable to capture. Such formations, as well as others,

are presented in Chapter 4.

1.2 Overview

Chapter 2 of this thesis begins with a discussion of related and previous work in the areas of

procedural-based, physical-based, and image-based terrain synthesis methods. Attention will then

turn to path planning and sketch-based modelling. Chapter 3 focuses on general terrain synthesis

using the proposed method. The section begins with an overview of the method, followed by a

thorough description of its inputs, parameters, and profile creation. The chapter concludes with an

in-depth discussion of the proposed algorithm.

Chapter 4 focuses on the results created using the proposed method. The results are categorized

as: realistic, image driven, or sketch-based. Realistic terrain synthesis consists of topographies

found in nature such as craters, volcanoes, faults, hills, mountain ranges, tower karsts, and lunar

landscapes. Image driven terrain synthesis consists of terrains whose features are placed using edge

detection, and/or whose edge weights are calculated according to an input texture. In sketch-based

terrains, coloured pixels in an input image indicate feature location, and each colour corresponds

to an input profile.

4

(a) (b)

(c) (d)

Figure 1.2: These four reference images are a subset of the final set of reference
images used in this work. Image (a) [6] shows a crater, image (b) [86] shows the
San Andreas Fault, image (c) [35] shows a cinder cone volcano, and image (d) [26]
shows some rolling hills.

5

Motivation for each result is given – why each terrain was made, what each terrain demonstrates,

how each terrain was made, and specific input/parameter values to achieve each result will be

presented. Also, each realistic terrain is accompanied by a reference photo for comparison.

Next, Chapter 5 introduces the phenomenon of pareidolia. Two terrains synthesized to embed

imagery in their shadows are presented and discussed. The final chapter of the thesis, Chapter 6,

formulates conclusions and summarizes the main contributions of this work. Ideas for future con-

sideration are also presented. These ideas, among others, can increase the diversity of synthesized

terrains by incorporating more features, such as bodies of water and rock strata, and by increasing

the heterogeneity of terrains via different edge weight calculations.

6

Chapter 2

Related Work

2.1 Procedural Terrain Synthesis Methods

Much of the early terrain synthesis literature concentrates on procedural methods. A procedural

method is an algorithm that specifies some facet of a computer-generated model [29]. Early work

on procedural terrain synthesis methods began with the generation of fractal shapes.

Mandelbrot [49] termed fractal to mathematically describe certain natural phenomenon. Fractal

refers to a family of shapes that are self-similar. If an object is self-similar, each piece of the object

is geometrically similar to the whole – the degree of irregularity and/or fragmentation is identical

at all scales. In other words, a fractal is “a geometrically complex object, the complexity of which

arises through the repetition of a given form over a range of scales (or sizes)” [29]. Fractals introduce

a fractal dimension D: a D-dimensional self-similar object can be divided into N smaller copies,

each of which is scaled down by a factor of r, where N = 1/rD. Fractal dimension extends the idea

of integer based Euclidean dimensions to real-numbered values. The decimal part of D, also known

as the fractal increment, determines the visual complexity of the fractal, and the non-decimal part

of D indicates the underlying Euclidean dimension of the fractal. For example, as D increases

from 2 to 3, the resulting shape progresses from locally planar to locally occupying some volume

of a 3D space. Fractals are a language for describing shapes and phenomena common in nature.

However, such shapes and phenomena are fractal only over some limited range of scales, making

them band-limited.

Mandelbrot [49, 51] then proposed fractional Brownian motion (fBm), or 1/fβ surfaces; the

spectral exponent β controls the fractal dimension of the function. Fractional Brownian motion is

the archetypal fractal procedural method [29] and is a member of the class of fractional noises [51].

Fournier et al. defines such noises as, “the contribution of each frequency to the power spectrum is

nearly inversely proportional to the frequency” [33]. Musgrave’s [56] formuation for fBm is given in

Algorithm 1. This formulation is applied at each point p in the terrain, and is controlled by three

parameters: the Holder exponent H, lacunarity, and octaves. Terrain smoothness increases with

H and small-scale detail increases with octaves. Lacunarity provides the gap between successive

frequencies and Musgrave notes that in most cases, lacunarity can be fixed at 2.0; a value of 2.0

7

means that each successive frequency is doubled. Also, Perlin noise [68] is used in Algorithm 1 be-

cause it is monochromatic (single frequency), stationary (invariant under translation), and isotropic

(invariant under rotation). In Perlin noise, integer points of a lattice or grid are assigned a random

gradient value and non-integer points are defined by interpolation via a cubic function. However,

the value of the function at the integer points is zero. Algorithm 1 maintains the previously men-

tioned inverse relationship between power spectrum contribution and frequency. Unfortunately,

it is statistically homogeneous and isotropic, and is difficult to control – fBm does not provide a

method for controlling where terrain features reside, and understanding how a change to H and/or

lacunarity affects the final terrain is a difficult process.

Algorithm 1 fBm(p, H, lacunarity, octaves)

value← 0

for i← 0 to octaves do

value← value+Noise(p) · lacunarity−H·i

p← p · lacunarity

end for

return value

In contrast, Mandelbrot generated fBm using Poisson faulting. Poisson faulting involves the

application of Gaussian random displacements such as faults, or step functions, to a plane or sphere

at Poisson distributed intervals; Poisson faulting is well suited for producing naturally occurring

rough surfaces, such as mountains, with little overhead. Voss [84] called such surfaces fractal

forgeries of the natural world and noted that their success plays an important role in the rapid

establishment of fractal geometry as a new scientific discipline and graphic technique.

Like Mandelbrot, Fournier et al. [33] wanted to represent natural irregular objects and phenom-

ena with minimal overhead. The problem was solved by modelling objects, such as fBm terrains, as

sample paths of stochastic processes. Additionally, Fournier et al. introduced a realistic, visually

satisfactory approximation to fBm that can be computed in less time than the exact solution. A

major advantage of Fournier et al.’s approximation is that it facilitates surface computation to

arbitrary levels of detail without increasing the storage overhead. Unfortunately, the method still

suffers from the same drawbacks as fBm: homogeneous results and no control over terrain feature

placement.

8

Other approximations include Fourier filtering [67, 84], midpoint displacement [33], and suc-

cessive random additions [84]. Fourier filtering works by taking the Fourier transform of a 2D

Gaussian white noise, multiplying it in frequency space with an appropriate filter, and interpreting

the inverse Fourier transform of the product as a height field. A transfer function proportional to

1/fβ/2 must be used [84]; a transfer function specifies the spatial or temporal frequency relationship

between the input and output of a system.

Midpoint displacement, or recursive subdivision, methods are an approximation to fBm which

recursively subdivide an interval and generate a scalar value at the midpoint. These scalar values,

or displacements, are distributed according to a Gaussian distribution [50]. Once the value at

a point is determined, it remains fixed. Furthermore, at each stage of the process, only half of

the points are determined more accurately [84]. Unfortunately, midpoint displacement methods

generate features that catch the eye and, by their length and straightness, make the rendered

scene look unnatural. This property is known as the creasing problem [50]. More specifically,

points generated at different stages have different statistical properties in their neighbourhoods,

which often leave a visible trace that does not disappear as more stages are added. Additionally,

the final result of midpoint displacement methods is highly dependent on the displacements at

early intervals. In contrast, successive random additions adds randomness to all points at each

stage of a recursive subdivision process [84] and is useful for continuously variable levels of detail.

Unfortunately, terrain feature control is still an issue in both midpoint displacement and successive

random addition methods.

Similar in construction to midpoint displacement methods, Lewis [46] argued that spectral

modelling provides a more powerful and intuitive perceptual characterization of random processes

than does the fractal model. In spectral modelling, the user is able to control the spectral properties

of the synthesized random functions. As a result, Lewis presented generalized stochastic subdivision,

the basis of which is a midpoint estimation problem: given two samples of the noise, a new sample

midway between the two is estimated as a weighted sum of the known noise values from the previous

stages of the construction, in some neighborhood. This generalized construction was suitable for

generating a variety of perceptually distinct, high-quality random functions, including those with

non-fractal spectra and directional or oscillatory characteristics. However, feature placement control

still remained an issue and the implementation was more complex than that of other methods.

Mandelbrot [50] then observed and addressed the symmetry of valleys and mountains resulting

from the symmetry of the Gaussian distribution used in midpoint displacement methods. The

solution involved replacing the Gaussian with suitable non-symmetric distributions, such as the the

gamma distribution. In a gamma distribution, most of the area under the density function is located

near the origin, and the density function drops gradually as x increases (in a 2D plot); examples of

its use include queuing models [85]. Using a gamma distribution resulted in an increase in realism.

9

In addition to addressing the symmetry of valleys and mountains, Mandelbrot [50] also noted that a

basic defect in past fractal forgeries of landscapes is the failure to include river networks. In response

to this defect, Mandelbrot presented a fully random combined model of rivers and of mountains

based on midpoint displacements and fractal curves. Midpoint displacements provide the relief

along watersheds, and fractal curves provide the relief along the rivers; watershed refers to a ridge

of land that separates adjacent river systems. More specifically, an input map showing the locations

of rivers and watersheds is used to guide/constrain this random model. Mandelbrot’s method

provided terrain feature control, but it was used only for rivers and watersheds. Furthermore, the

randomness of the model limited this level of control.

Another contribution by Musgrave et al. [55, 56] came in response to a known drawback of fBm.

They noted that the statistical character of fBm surfaces is the same everywhere, an undesirable

property that does not capture the majority of topographies found in nature. As a result, Musgrave

et al. presented a new synthesis model called noise synthesis which provides locally independent

control of the frequencies composing the surface, and thus local control of fractal dimension D. In

Musgrave et al.’s work, each point in the terrain is determined procedurally, independently of its

neighbours. An example of point evaluation for fBm is given in Algorithm 1. The evaluation of

points is a distinguishing property of the noise synthesis method. Musgrave et al. approximated

eroded landscapes by varying the fractal dimension D with altitude, as well as other functions.

Their model incorporated arbitrary lacunarity, varied terrain smoothness and asymmetry, and

addressed the issue of creases and periodicity in previous works. Periodicity is commonly seen in

terrain synthesis methods based on Fourier filtering [55]. Musgrave et al.’s work was an major step

forward which addressed many important issues in previous works. Unfortunately, feature control

was not addressed and remained an issue.

Musgrave then formulated another important contribution to procedural terrain synthesis known

as the ridged multifractal (RMF) terrain model [56]. The RMF model is a well known terrain

synthesis method that addresses the homogeneity of fBm by producing heterogeneous terrains with

valleys at varying altitudes. However, the RMF model is not adept at synthesizing extended features

such as ridges, and lacks various specific features such as craters and cinder cones. Furthermore,

the model is controlled by difficult to use parameters, making feature placement a tedious process.

Similar to Mandelbrot’s combined model of rivers and mountains, Prusinkiewicz and Ham-

mel [70] addressed the problem of combining fractal mountains with rivers. As a result, they

presented a partial solution that incorporated a squig-curve model of a river’s course into the mid-

point displacement model for mountains. Mandelbrot [49] used squigs to refer to a family of fractal

shapes. Some of these fractals are self-avoiding and nonbranching curves while others are loops or

trees. Mandelbrot noted that the simplest squig-curve “is a model of a river’s course, patterned

after the well-known pictures in geology or geography that show the successive stages of a river

10

that burrows into its valley, defining its course with increasing precision”. Both squig-curve and

midpoint displacement models were observed to be expressed by similar context-sensitive rewriting

mechanisms. As a result, a mountain landscape with a river could be generated using a single

integrated process. However, terrain synthesis itself was not addressed, and the known drawbacks

to midpoint displacement methods still existed.

In addition, Sapozhnikov and Nikora [74] proposed a model for river networks based on a random

walk. Their approach produced individual streams that display self-similar behavior at shorter

lengths and self-affine behavior at longer lengths; self-affine refers to a fractal whose components

are scaled by different amounts in each direction. Similar behavior was also observed for simulated

river networks. Again, actual synthesis of the surrounding terrain was not addressed, so known

issues in current terrain synthesis methods still existed.

An important attribute of our work is user control over terrain feature placement. User control

over terrain feature placement has been addressed by Szeliski and Terzopoulos [82]. Szeliski and

Terzopoulos combine variational splines and stochastic fractals to produce realistic, controllable

terrains; the splines serve as the interpolant between the input elevation values and provide the

fractal shape. Unfortunately, local control over the continuity of the spline is provided via difficult

to use parameters of a deformational energy functional. Szeliski and Terzopoulos’s work and this

thesis both use a sparse set of known elevation values and algorithmically determine the remaining

elevations, in the former case by interpolating using splines, and in the latter case by extrapolating

using least-cost paths.

Much of the recent work on procedural terrain synthesis has focused on efficient processing.

This is in response to the increase in CPU and GPU processing power. The work by Musgrave

et al. [55, 56] has remained largely unchanged. Select works include that of Dollins [27] and

Schneider [75]. Dollins worked on the authoring and emulation of highly interactive, large-scale

synthetic environments and Schneider developed a new GPU method for real-time editing, synthesis,

and rendering of infinite landscapes exhibiting a wide range of geological structures. However, the

problem of control still remains an issue with previous procedural methods. Also, specific features

such as craters, cinder cones, and faults, cannot be synthesized with these methods.

2.2 Physical Terrain Synthesis Methods

Physically-based synthesis methods simulate actual erosional processes. Most algorithms in this

category can each be divided into four distinct and independent steps [9]. These methods proceed

by 1) distributing water on the terrain’s surface, 2) eroding the underlying terrain structures, 3)

transporting the material captured in the water, and 4) depositing this material. Because the steps

are independent, any step can be run an arbitrary number of times to simulate heavy rains, or dry

11

seasons. Additionally, many physically-based methods are inspired by Musgrave’s [55, 56] simple

physical erosion model that simulates hydraulic and thermal erosion processes to create global

stream/valley networks and talus slopes; talus slopes consist of rock debris located at the base of

a cliff or steep mountain slope [53].

Prior to Musgrave’s work, Kelley et al. [42] simulated the erosion of stream networks on an

initially uneroded surface. In this context, stream erosion simulation was based upon empirical

geomorphology models; empirical geomorphology is the study of landscape development [53]. Na-

gashima [57] then improved upon these erosion models. Valley and mountain terrains were created

in this work and were based on erosion due to river flows, rainfall, and weathering. Terrains with

differing surfaces were created by adjusting the erosion intensities of rainfall and thermal weather-

ing.

Chiba et al. [14] noted that terrains created using fBm or midpoint displacement cannot create

clear ridge and valley lines, both of which are important characteristics of mountains resulting from

erosional processes. To solve this problem, they presented a quasi-physically based method for

simulating the topography of eroded mountains based on velocity fields of water flow.

Benes and Forsbach [8] developed a new data structure for the visual simulation of terrain

erosion. Their representation was inspired by real geological measurements and acted as a good

trade-off between height fields and memory demanding voxel representations. The classical erosion

algorithm by Musgrave [55, 56] was supported by this new representation and a new property could

be simulated: their algorithm could capture the conversion of non-deposed material (very dense)

to dust (less dense).

Benes and Forsbach [9] followed this work by developing a new algorithm for hydraulic terrain

erosion. Their main goal was to provide a technique which is inspired by physics and allows for a high

level of control. Unfortunately, their method was non-interactive. Neidhold et al. [61] addressed

this issue by developing an interactive system for physically based fluid and erosion simulation. The

key attribute of this work was that the artist is able to influence the erosion process in real-time

by changing the simulation parameters or by applying additional water to the scene.

Finally, Benes et al. [10] generalized earlier work [9] on modelling hydraulic erosion. This

generalization was made possible by using ideas from fluid mechanics. Specifically, the model was

based on the Navier-Stokes equations, which provided the dynamics of velocity and pressure. The

resulting model was fully 3D and was able to simulate a variety of phenomena including meandering

streams, low hill sediment wash, natural water springs, and receding waterfalls.

The previously described erosional-based methods focus on the erosion process itself and are

usually quite complex [9]. Furthermore, the techniques are not well related to physics – they use

a large number of constants that influence each other and a numerically stable implementation

of these techniques is not easy to formulate. Furthermore, some algorithms tend to result in

12

water oscillating between two states as a result of the simple underlying water transport model. In

contrast, more control has been added over the years, such as in the work by Neidhold et al. [61]. In

relation to procedural and image-based terrain synthesis, the results possible with these methods

are more accurate because they are based on physics engines. However, designing a terrain via

water simulation parameters and water volume is not as easy to use as simply placing features via

markings in an input image. Furthermore, non-erosional features, such as craters and cinder cones,

have yet to be addressed by these methods.

2.3 Image-Based Terrain Synthesis Methods

Image-based terrain synthesis methods begin with an initial set of terrains and synthesize a new

terrain that is similar to the examples. New terrain is synthesized, but a major drawback to these

methods is that the input sample terrain must be obtained from some other process, such as the

aforementioned procedural and physically-based methods, or satellite elevation data. Unfortunately,

the final set of terrain features is limited to those in the provided example textures – new features

cannot be synthesized. Furthermore, the resulting terrains tend to be homogeneous because of the

methods used to incorporate the input textures, such as non-parametric and patch-based sampling.

The common representation for terrains in these methods is a height field: a 2D scalar field where

the field value is interpreted as vertical distance.

For terrain synthesis, Arakawa and Krotkov [5] worked on surface reconstruction with range

data; range data refers to natural terrain patterns acquired by a laser rangefinder. They initially

estimated the fractal dimension of natural surfaces given range data and then reconstructed natural

surfaces using this estimate and the given sparse range data. Their approach extended fBm to

incorporate the sparse data, and imposed roughness constraints in order to create natural surfaces.

Dachsbacher et al. [18, 19] presented a method to synthesize or grow height-fields from an

initial input field (they demonstrate their model using Efros and Leung’s Texture Synthesis by

Non-Parametric Sampling [30]) and describe how it can be adapted to height field synthesis. Non-

parametric sampling [30] grows a texture by matching the neighbourhoods of the pixel to be synthe-

sized with pixels in the input texture. Textures are modelled as a Markov Random Field (MRF):

the probability distribution for the brightness of a pixel depends on the brightness values of its

spatial neighbourhood. The neighbourhood is a square region about a given pixel, and it is as-

sumed that the input texture is regular at high spatial frequencies and stochastic at low spatial

frequencies.

13

Dachsbacher et al. treat a height field as a texture and apply non-parametric sampling to synthesize

new terrain, but note that their method is not restricted to Efros and Leung’s work and simply

use it as a proof of concept. Similar to Arakawa and Krotkov’s work, the use of non-parametric

sampling allows gaps to be extended or filled in satellite elevation data and allows transitions to be

computed between different procedural models.

As previously mentioned in Section 2.1, Szeliski and Terzopoulos [82] addressed user control

over terrain feature placement. An image-based method that also addresses user control is the

work of Zhou et al. [92]. Their work presented an example-based system for terrain synthesis.

Specifically, patches from a provided sample height field are joined using graph cuts to generate

new terrain. The synthesis is guided by a user-sketched feature location map that specifies where

terrain features occur in the resulting synthetic terrain. This synthesis method addresses the

issue of feature control, but still suffers from the same problems as other image-based methods:

dependence on an input sample terrain, new terrain features cannot be synthesized, and relatively

homogeneous results. These dependencies limit the range of results possible with Zhou et al.’s

method. Furthermore, heterogeneous terrains, resulting from non-stationary textures, are difficult

to synthesize using patch-based sampling. User control has been addressed, but usage of an input

sample terrain severely limits the diversity of the results.

Further image-based work involved that of Brosz et al. [11] and Yu and Chang [90]. Brosz et al.

developed a terrain synthesis technique that uses an existing terrain to synthesize new terrain. This

is accomplished by first using multiresolution analysis to extract the high-resolution details from

existing models. Then, these details are applied to the original terrain to increase its resolution,

retaining large-scale characteristics of the original terrain.

Yu and Chang developed shadow graphs for surface reconstruction – an image-based method

that motivated the synthesis of terrains for pareidolia effects in Chapter 5. In their work, a set of

images from a fixed viewpoint is taken as input, as well as the height values for a small number of

pixels. Each image contains the shadows cast by some unknown surface from a unique light source

location. The method then generates a height field for the unknown surface using these inputs.

Specifically, the shadow graph is built from shadow constraints for which an upper bound at each

pixel can be derived using the provided absolute height values; these height values can be recovered

from other approaches such as stereo processing. Finally, the results from shape-from-shading are

made consistent with the aforementioned upper bounds using a constrained optimization procedure.

Chapter 5 introduces the synthesis of terrains that embed imagery in their shadows. Both this thesis

and the work of Yu and Chang rely on input images for the creation of pareidolia effects and surfaces,

respectively. However, shadow graphs use input images as the sole source of constraints – many

images are required to generate enough constraints for a given surface. In Chapter 5, this thesis

uses one constraint image for pareidolia effects, but additional constraints result from the fact that

14

the final terrain must look realistic. In contrast, Yu and Chang place relatively little emphasis on

what the reconstructed surface looks like, so long as it accurately represents the shadow data.

2.4 Path Planning

The terrain synthesis method proposed in Chapter 3 creates a height field using path planning.

Winston [87] describes path planning as the process of finding a least-cost traversal through a

weighted graph; this thesis uses Dijkstra’s algorithm [64] to calculate such least-cost traversals.

Prior to this work, path planning has not been used for terrain synthesis. The majority of the

literature attempts to solve robot navigation. However, path planning has recently been used as

an artistic tool [48, 89]. Both types of applications will be discussed in turn. However, before these

applications are presented, Dijkstra’s algorithm is discussed.

Dijkstra’s algorithm finds the shortest path in a weighted graph G, consisting of nodes N and

edges E; the cost of a node n is represented by cn and the weight of an edge e is represented by we.

Our application of Dijkstra’s algorithm in this thesis is described in Chapters 3 through 5. The

algorithm maintains a set of nodes T , rooted at a generator node ng, that consists of all nodes with

a tentative cost; the set T is known as the frontier. The algorithm begins by setting cng
= cinit and

the cost of all remaining nodes to ∞, where cinit is the initial cost of the generator node. Then,

the least-cost node no is removed from T and each edge e incident to no is examined. If the cost to

ne, going though no via edge e, is less than its existing cost, cne
is updated to reflect the smaller

cost and ne is added to T . This process repeats until T is empty. Dijkstra’s algorithm is given in

Algorithm 2.

Select examples of path planning for robot navigation include the work of Gewali et al. [36]. In

their work, Gewali et al. considered the terrain navigation problem in a 2D polygonal subdivision

consisting of obstacles, free regions (travelling without cost), and regions in which cost is propor-

tional to distance traveled. The problem of interest was a generalization of the planar shortest path

problem in the presence of obstacles.

Pai and Reissell [65] described an approach to motion planning for mobile robots on natural,

non-homogeneous terrain. The path planning algorithm uses a non-scalar path cost measure based

on the sorted terrain costs along the path and can be incorporated into standard global path search

algorithms. The non-scalar path cost measure attempts to model terrain roughness, causing robots

to avoid peak edge costs even if it means taking an alternate route with a higher total cost. This

would typically result in a longer, more winding path.

Shortly thereafter, Chen [13] discussed different contexts for solving geometric shortest path

problems, such as finding paths connecting different locations in geometric space and paths that

optimize a given cost function. De Carvalho et al. [22] then described a complete coverage path

15

Algorithm 2 Dijkstra’s Algorithm
cng
← cinit

cn ←∞,∀n ∈ N\ng
T ← {ng}

while T not empty do

no ← remove minimum cost node from T

for each edge e incident to no do

c← cno
+ we

ne ← node connected to no via e

if c < cne
then

cne ← c

T ← T + {ne}

end if

end for

end while

planning and guidance methodology for a mobile robot. The novelty of the proposed approach was

the capability of the path planner to deal with prior mapped or unexpected obstacles.

Amato et al. [3] evaluated different distance metrics and local planners for planning the motion

of rigid objects in 3D workspaces. Also, a new local planning method was developed which often

outperformed similar, competing methods. Choset [15] focused on coverage path planning algo-

rithms for mobile robots, and Kuffner [43] presented techniques for rigid body path planning whose

paths need to meet specific criteria (eg. various distance metrics).

Performance of these algorithms quickly became important because path planning was being

applied in real-time, such as video games [20]. Niederberger et al. [62] addressed the need with

a fast/real-time and robust path planning algorithm for generic static terrains with polygonal

obstacles. Similarly, Kallmann [41] developed techniques for efficiently computing collision-free

paths in a triangular planar environment. A triangular planar environment facilitated much more

efficient planning, when compared to grid-based environments.

Path planning as a method for image and model synthesis has recently been explored by, among

others, Davis [21], Xu and Mould [89], and Long and Mould [48]. Similarly, Worley [88] created

cellular textures, a texture synthesis method based on distances from points in an image. Our

terrain synthesis method is based on least-cost paths – a more complex function of distance. This

thesis uses Xu and Mould’s path planning algorithm [89] for the synthesis of terrains. Least-cost

paths to every non-generator node, from a set of generator nodes, are used to define the field value

at each index in the height field. Each of the aforementioned artistic methods is now presented.

16

Davis addressed the problem of creating mosaics in the presence of moving objects. Existing

methods have focused on capturing static scenes, but Davis’s work remained unbiased by movement

(i.e. image registration accounted for translation and rotation) and avoided blurred areas due to

moving objects; standard compositing techniques produce a blurred image in moving regions. Of

particular importance is Davis’s method of compositing images. In the compositing stage, each

source image is compared to the mosaic created thus far and the best path dividing the overlapping

section is found using Dijkstra’s algorithm [64]; edge weights are drawn from the intensity difference

in the overlapping section. On one side of this path the pixels from the mosaic are preserved; on

the other, previous information is discarded in favor of samples from the current source image.

Long and Mould presented a procedural method for modelling stylized dendritic structures

based on path planning. Their method included the partial non-scalar distance metric previously

introduced by Pai and Reissell [65]. This non-scalar distance metric was used because it avoids

taking short cuts over high cost areas, a characteristic of the traditional distance metric consisting

of accumulated cost along the path. The avoidance of such short cuts preserves high frequency

details that are important for artistic effects.

Similar to the work of Long and Mould, Xu and Mould presented a method for creating geometric

models of dendritic forms. Their work first generates a regular lattice with random edge weights,

then finds least-cost paths through the lattice using Dijkstra’s algorithm. Multiple paths from a

single generator are connected into a single dendritic shape. Alternatively, path costs can be used

to segment volumes into irregular shapes. In this case, each lattice node stores the generator node

it is closest to; the closest generator node is updated as Dijkstra’s algorithm searches the graph.

Then, a region is created for each generator, consisting of all the points nearest that node. Shapes

are defined as the mesh marking the boundary of one of these regions.

Finally, the terrain synthesis method presented in this thesis calculates distances for terrain syn-

thesis; distances are least-cost paths, from a set of generator nodes, in a weighted graph. Worley’s

cellular textures [88] uses distances as well, only for texture synthesis. Cellular textures are created

by calculating Euclidean distances from randomly positioned points. These distances partition the

resulting scalar field into cellular regions, where all the points within each region are closer to its

defining point than any other point. These regions are exactly the regions given by a Voronoi

diagram. Worley then extends this notion to calculating the distance between a given location and

the random point that it is nth closest to. In contrast, this thesis defines distances as least-cost

paths through a weighted graph, and such distances can be computed from structures that need

not be points.

The interpretation of path cost as a complex function of distance from a one or more generator

nodes, along with control over generator placement, makes path-planning an ideal candidate for

terrain synthesis (see Chapter 3). Terrain height can be interpreted as a function of distance from

17

terrain features such as ridges and mountain tops. Shortest paths are a mechanism for evaluating

a complex function of distance that incorporates information embedded in a graph’s edge weights,

such as terrain roughness and style.

2.5 Sketch-Based Modelling

An image that defines the locations of terrain features such as peaks, ridges, and hills, is provided

as input to the method proposed in this thesis. Thus, the markings in this image can be thought

of as a method for model creation and manipulation. Sketch-based modelling (SBM) deals with

the conversion of a user’s freeform markings into 2D curves, or 3D models. Notable works include

that of Akeo et al. [2], Igarashi et al. [40], and Zeleznik et al. [91]. Sketch-based modelling is

not limited to 3D model creation though. It can also be used, among other applications, for 3D

surface editing [44, 91] (based on a 2D painting technique), specifying 2D curves [7], and in 3D I/O

devices [23, 24].

Akeo et al. allows users to scan real sketches into the computer where perspective lines, vanishing

lines, and 3D cross sections are added to the digital sketch to aid in the creation of the resulting 3D

shape. Finally, the scanned data is then projected onto the 3D mark-up to complete the process.

Igarashi et al. provide a sketching interface for quickly and easily designing freeform models and

were inspired by Zeleznik et al. [91] and Eggli et al. [31]. Their system uses real-time pen-and-ink

rendering [52] for input.

Zeleznik et al. combine the rapid exchange of ideas in sketching and the detail of 3D com-

puter modelling systems. The user sketches the important properties of any of a variety of 3D

primitives and, following simple placement rules, the corresponding 3D primitive is instantiated

in the 3D scene. Zeleznik et al. also used a variety of direct-manipulation interaction techniques

for transforming 3D objects, similar to the work of Snibbe et al. [78] and Strauss and Cary [81].

Additionally, Zeleznik et al. exploited some simple flexible constrained manipulation techniques

that are similar to those of Bukowski and Séquin [12].

Snibbe et al. developed a framework for creating interactive 3D environments. Their framework

resulted in the development of 3D widgets, or objects, called racks that encapsulate 3D geometry

and behavior and control over other objects in the scene. Racks consist of a bar specifying the

axis of deformation and multiple handles attached to the bar specify additional deformation pa-

rameters. Strauss and Cary presented an object-orientated toolkit for developers of interactive

3D graphics applications that facilitates techniques such as direct object manipulation. Picking an

object consists of finding a path to the frontmost object under the cursor and manipulation consists

of operations such as one-axis scale and one-axis translate.

18

Bukowski and Séquin described a software framework to aid in designing and implementing

manipulation behaviors for objects in a 3D virtual environment. This framework disambiguates

the mapping of 2D cursor motion to 3D object motion, determines a valid and desirable final lo-

cation for the 3D objects, and relocating objects actively look for nearby objects to associate and

align themselves with. A desirable final location and nearby object associations attempt to satisfy

some of the physical realities of the environment. However, Zeleznik et al. had less semantic in-

formation than Bukowski which limited the automation of constraint generation. Therefore, the

user is occasionally required to sketch constraints, similar to Gleicher [37], in addition to geometry.

Gleicher integrated constraint and direct manipulation approaches for geometric modelling. Specif-

ically, snapping techniques, such as grids, and constraint techniques are combined; grids establish

geometrical relationships and constraint techniques maintain them. Constraints can then be edited

by directly manipulating objects to show how they are to move (the desired effect updates the

relationship), eliminating the need to refer to the constraint itself.

Pugh [71] developed a system similar to the work of Igarashi et al. and Zeleznik et al. that

uses a constraint based approach to derive 3D geometry from 2D sketches. Unfortunately, the

method was slow, difficult to implement, and could interpret only line drawings of objects with

planar faces that correspond to a general view – a view where a small change in the view direction

makes correspondingly small changes in the line drawing.

Interactive surface deformations via model painting, similar to Zeleznik et al.’s and Igarashi et

al.’s ability to edit geometry, was addressed by Lawrence and Funkhouser [44]. Here, interactive

manipulation and physical simulation are combined with a painting interface that gives the user

direct, local control over a physical simulation. The painting interface allows the user to define

the instantaneous surface velocity of a model, and by interactively simulating this velocity, the

user can deform the surface. However, similar to using water as a tool for model manipulation in

physically-based terrain synthesis [61], editing via velocities is not an easy process – mapping a

velocity field to a specific model is difficult (eg. what is a chair’s velocity field?). Furthermore, the

underlying physical simulation model can cause the method to perform slowly at higher polygon

counts.

Finally, Singh and Fiume [77] developed an implicit modelling technique called Wires. This

work was inspired by armatures used by sculptors, in which wire curves give definition to an

object and shape its deformable components. Domain curves were also introduced as a method

for defining the domain of deformation about an object. Wires are bound to an object, directly

reflect an object’s geometry, and provide a coarse geometric representation of an object that can be

created through sketching. A wire deformation is independent of the complexity of the underlying

object and the animator can interact with the wires without ever having to deal directly with the

object representation itself. Of particular interest is the method in which Singh and Fiume combine

19

deformations resulting from multiple wires whose domains intersect. Their solution is used in this

thesis to blend individual terrain features together. This blending step removes creases/seams in the

resulting synthetic terrain. The blend proposed by Singh and Fiume varies with a scalar blending

bias b. The average of the deformations is calculated when b = 0, and the method converges to

the maximum deformation for larger values of b. Their blending formulation has two desirable

properties: 1) in a region with only one wire, the result is the deformation of just that wire and 2)

when several wires produce the same deformation, the result is the deformation of any one of those

wires. These properties are a nice fit for blending terrain features together. Furthermore, b can be

re-interpreted as a method for controlling terrain roughness because larger values for b create more

creases/seams in the resulting terrain.

The reviewed SBM literature consists of transforming input markings into 3D objects, followed

by varying levels of object and constraint manipulation. The work presented in this thesis takes

markings from an input image and, along with a description of terrain profile, converts them into

terrain features – the markings indicate the location of peaks and/or ridges. Individual terrain

features are then blended together according the work of Singh and Fiume [77]. However, this

thesis does not facilitate the direct manipulation of the resulting synthetic terrain. This is an area

for future consideration.

2.6 Summary

Work related to this thesis can be categorized as: Procedural Terrain Synthesis Methods, Physical

Terrain Synthesis Methods, Image-Based Terrain Synthesis Methods, Path Planning, and Sketch-

Based Modelling. Procedural terrain synthesis methods can synthesize heterogeneous terrains but

lack direct control over feature placement (see Algorithm 1) and cannot render specific terrain

features such as craters and cinder cones. Physical terrain synthesis methods create a more realistic

result, but still lack direct control over feature placement. Furthermore, the final synthetic terrain

is a function of an initial water distribution. Manipulating a model via a water distribution is

not easy to do. Image-based terrain synthesis methods require input example height fields, but

have addressed the problem of controlling terrain feature placement. Unfortunately, the quality

of the resulting terrain is highly dependent on the quality of the input height field and these

methods require another terrain synthesis method to be used before a new terrain can be created.

Furthermore, image-based methods cannot synthesize new features – they are limited to the features

present in the input textures. Path planning has shown promise in artistic/graphical applications,

but has not been used for terrain synthesis.

20

Terrain height as a function of distance from terrain features such as ridges and mountain tops

makes path planning a promising candidate for terrain synthesis. Finally, the success of input

markings in sketch-based modelling makes the use of markings for terrain feature placement an

attractive solution to the problem of terrain feature control.

The terrain synthesis method presented in this thesis addresses the known shortcomings of

existing terrain synthesis methods. Terrain features are placed via easy-to-use input markings and

the proposed solution incorporates random graph edge weights, permits the inclusion of multiple

topography profiles, and allows precise control over placement of terrain features and their heights.

These properties all facilitate the creation of highly heterogeneous terrains. Path planning over

a weighted graph facilitates the combination of diverse features, and edge weights embed terrain

roughness and style. Finally, the method does not require an input sample terrain that will serve

as an exemplar for the resulting terrain, making the proposed algorithm an attractive new option

for terrain synthesis.

21

Chapter 3

Terrain Synthesis

3.1 Overview

This chapter introduces the proposed terrain synthesis algorithm. The algorithm uses path planning

to create synthetic terrains. Careful initialization of edge weights and generator node costs in a

weighted graph G, consisting of nodes N and edges E, results in the creation of a cost field that can

be interpreted as a height field. The nodes in N are arranged in an 8-connected grid corresponding

to the spatial points on a height field and the edges in E are undirected. The aforementioned cost

field is calculated by determining a series of shortest paths in G from a set of generator nodes,

which define both the location and height of terrain features such as ridges and peaks. We use

the term stroke to refer to a contiguous set of generator nodes that collectively define the height

and location of a single terrain feature. A height field represents the synthesized terrain because

it is simple to implement and has minimal storage overhead. This work focuses on control over

terrain feature placement and terrain heterogeneity, not on synthesis speed, thus a height field is

an appropriate choice for representing terrains.

Our method is similar to those of Zhou et al. [92], Szeliski and Terzopoulos [82], and Worley [88].

Zhou et al. presented an example-based system for terrain synthesis, where patches from an input

height field and a user-sketched feature location map are used to synthesize new terrain. Szeliski

and Terzopoulos combine variational splines and stochastic fractals to produce realistic, controllable

terrains. Finally, Worley’s cellular textures [88] use Euclidean distances from randomly positioned

points as a basis for texture synthesis. Zhou et al.’s, Szeliski and Terzopoulos’s, and our work aim

to address the issue of terrain feature control. Furthermore, both Szeliski and Terzopoulos’s and

our work use a sparse set of known elevation values and algorithmically determine the remaining

elevations. However, our method uses a different underlying approach based on distances in a

weighted graph, similar to Worley’s cellular textures. In addition, our work is not limited to the

features found in an input terrain, accepts hand-drawn feature placement and terrain style, and

makes it easy to create heterogeneous terrains by placing many diverse features within a single

scene.

22

In our approach, smaller costs correspond to greater heights. This relationship results from the

fact that our method provides user control over the location of terrain features such as ridges and

peaks. Shortest path algorithms such as Dijkstra’s algorithm assign a cost to all non-generator

nodes. The cost of a node n is the least-cost path J ’s cost (sum of edge weights) to n from one or

more generator nodes. As a result, the cost of the generator node that J originates at will be less

than the cost of n. The previously mentioned relationship between cost and height is required to

convert such lower-cost generator nodes into taller features such as peaks and ridges.

This chapter discusses the proposed terrain synthesis algorithm in detail. A simple example

terrain consisting of 25 peaks and 38 ridges is used to illustrate inputs, parameters, and decisions

made in this research. Section 3.2 introduces the inputs and parameters to the method and their

impact on G, and Subsection 3.2.1 introduces a novel method for terrain shape control using profiles.

Finally, Section 3.3 discusses each step of the proposed algorithm, as well as the the creation of

scaling functions (Subsection 3.3.1) and the blending of individual height fields (Subsection 3.3.2).

3.2 Inputs and Parameters

The creation of the renders in Chapter 4 requires three inputs and seven parameters which provide

control over the synthesized terrain. We distinguish between an input and parameter as follows: a

parameter identifies a software setting – a scalar value (though it can be an enumerated or vector

quantity) that informs how the system operates. An input identifies data that the system relies

on, such as an image or scalar field. Each input and parameter is summarized in Table 3.1. It is

shown that terrain feature placement and shape are easy to control using the provided inputs and

parameters.

The input F is typically provided as an image buffer such as that in Figure 3.1. The input P

can also be provided as image buffers (see Figure 3.2), but explicit sets of (x, f(x)) pairs can be

provided as well.

The first input F represents every generator node used to synthesize the current terrain. Sets

of contiguous nodes are called strokes and define the location of a single feature in the resulting

terrain. Connected component labelling assigns each stroke a unique ID/label, the generator nodes

associated with a given stroke define the corresponding feature’s location, and the cost of these

nodes define the initial height of the feature. The method in which the locations and costs of nodes

in F is determined is application dependent. Their locations can be manually determined using a

paint program or procedurally determined (see Chapter 4), and their costs can be calculated by any

means; good choices for node cost include any of the procedural, physical, or image-based terrain

synthesis methods discussed in Chapter 2. Figure 3.1 shows the locations of the generator nodes

for the running example terrain in this chapter.

23

Table 3.1: Summary of inputs and parameters to the proposed terrain synthesis
algorithm. Inputs consist of F , P , and Cg(n). Parameters consist of µw, r, s, b, εs,
pf , and min{ts}.

Input/Parameter Description

F Generator node locations

P Terrain profiles

Cg(n) Generator node costs

µw Mean edge weight

r Maximum edge weight deviation

s Sea level scale

b Blending bias

εs Sea level cost threshold

pf Approximate terrain threshold

min{ts} Minimum scaling value threshold

Figure 3.1: This figure depicts a binary image where black pixels correspond to
the location of generator nodes. This figure visualizes the input F used for the
running example terrain in this chapter.

24

Figure 3.2: The hand-drawn profile used in the synthesis of the running example
terrain. The labelled axes are added for interpretation and are not part of the
profile.

The second input P refers to every profile used in the current render. A profile describes the

cross-sectional shape of a feature and offers user control over terrain feature shape. Profiles are

discussed in Subsections 3.2.1 and 3.3.1. Figure 3.2 shows the hand-drawn profile used in this

chapter’s running example terrain.

The third and final input Cg(n) provides the cost for every generator node. These costs define

the initial height of the terrain features, before the application of Dijkstra’s algorithm. The method

in which these costs are created is application dependent; they can be user-specified, they can be

calculated using any terrain synthesis method that produces a height field, or the user can sketch

input for heights (initial costs) along each stroke. For example, the majority of the results in

Chapter 4 use fBm for Cg(n).

The first parameter µw is the mean weight of the edges in E and controls overall terrain steep-

ness. The method requires µw > 0.0 and as µw increases, so does terrain steepness. Figure 3.3

shows a sample terrain with different values for µw. The second parameter r is the maximum

edge weight deviation in E and controls overall terrain roughness. The method also requires that

0.0 ≤ r < µw to ensure that all edge weights are positive. As r approaches µw, terrain roughness

increases. Figure 3.4 shows a sample terrain with different values for r.

The third parameter s is called the sea level scale and it is assumed that s ≥ 0.0. Equation 3.1

shows that the product of the sea level scale and the maximum cost of a generator node cmax in F

produce the sea level cost cs.

cs = s · cmax (3.1)

25

(a) (b)

(c) (d)

Figure 3.3: Effect of parameter µw on terrain steepness. From (a) to (d): µw = 1.0,
µw = 2.0, µw = 3.0, and µw = 4.0. All other variables are constant (s = 1.1, r = 0.5,
and b = 3). To emphasize the effect of µw, no profiles were used to shape the terrain;
fBm was used to calculate the cost of generator nodes. Terrain steepness increases
with µw.

26

(a) (b)

(c) (d)

Figure 3.4: Effect of parameter r on terrain roughness. From (a) to (d): r = 0.1,
r = 0.37, r = 0.64, and r = 0.9. All other variables are constant (s = 1.1, µw = 1.0,
and b = 3). To emphasize the effect of r, no profiles were used to shape the terrain;
fBm was used to calculate the cost of generator nodes. Terrain roughness increases
with r.

27

More specifically, the sea level scale s serves to adjust the computed sea level cost cs – the maximum

permitted cost in the graph. The sea level scale is an aesthetic parameter that determines the

maximum permissible height in the synthesized terrain. It controls the maximum height because

of the relationship between cost and height, which is now discussed. The final height h of a node

is calculated as a function of its cost c, and cs, as shown in Equation 3.2.

h = (cs − c) (3.2)

Figure 3.5 shows a sample terrain with different values for s, and Figure 3.6 visualizes the rela-

tionship between cost and height. Figure 3.6 illustrates how smaller costs are converted into larger

heights using s = 1.0, cmax = 55, cs = 55, along a profile through a single generator node with cost

c = 10; the maximum cost of the profile is 50. After the application of Equation 3.2, the generator

has a height of 45 units and the minimum height of the profile is 5 units. However, if s = 1.2, then

cs = 66. As a result, the height of the generator will be 56 units – increasing s by 0.2 increases the

height of the generator and its profile by 11 units.

The assumption that s ≥ 0.0 is made so that the sea level cost cs is a positive value; negative

costs are problematic for Dijkstra’s algorithm. However, the behavior of s ≥ 1.0 differs from that

of s < 1.0. When s ≥ 1.0, every generator has a cost less than or equal to cs. Thus, all generator

nodes will be visible in the final terrain because they will have a height greater than or equal to

the sea level height. In contrast, when s < 1.0, all generator costs greater than or equal to cs will

be clipped at a cost of cs; the cost of these nodes is clipped and the portions of the strokes they

define are not included in the final synthetic terrain. Figure 3.5a shows a terrain synthesized with

s = 0.50.

The fourth parameter b controls the bias when blending individual features together. Blending

is discussed in Section 3.3. The fifth and sixth parameters are the sea level cost threshold εs

and approximate terrain threshold pf , respectively. These parameters control the termination of

Dijkstra’s algorithm and are also discussed in Section 3.3. Finally, the seventh parameter min{ts}

specifies the minimum value returned by a scaling function embedding a profile’s slope in the weights

of edges in E (see Subsections 3.2.1 and 3.3.1).

3.2.1 Profile Creation

The shape of individual terrain features, such as mountains, hills, and craters, are specified by a

monotonically decreasing profile. Terrain profiles P are an input to Algorithm 3.3 that offer user

control over feature shape. Profiles can be hand-drawn or procedurally generated, but must be

monotonically decreasing to avoid negative edge weights which can lead to ill-defined path costs.

The goal of a profile is to replace the slopes and heights computed from edge weights with user-

sketched slopes and heights. More specifically, a profile causes the final shape of terrain feature fi to

28

(a) (b)

(c) (d)

(e)

Figure 3.5: Effect of parameter s on maximum terrain height. From (a) to (e):
s = 0.5, s = 1.0, s = 1.33, s = 1.66, and s = 2.0. All other variables are constant
(µw = 2.0, r = 1.0, and b = 3). One profile was used to shape the terrain and fBm
was used to calculate the cost of generator nodes. Terrain height increases with s
and image (a) shows that generator nodes whose cost exceeds or is equal to half of
the maximum cost of a generator node will not be included in the final synthetic
terrain.

29

(a) (b)

Figure 3.6: Visualization of the conversion from node cost to node height. In both
images, s = 1.0 and cmax = 55; the sea level cost cs = 55 (see Equation 3.1). Image
(a) shows a profile through a single generator node with a cost of 10. The maximum
cost of this profile is 50. Image (b) shows that the corresponding height of this node
is 45 units and the minimum cost of this profile is 5 units; the conversion from cost
to height is calculated using Equation 3.2.

be similar to the shape of profile pj with which it is paired. This is accomplished by forcing the slope

of a least-cost path originating at a generator in fi to be similar to the slope of pj . The conversion

of an input profile to a scaling function that enforces this slope is detailed in Subsection 3.3.1.

3.3 Algorithm

The proposed terrain synthesis method is summarized in Algorithm 3. The algorithm is simple

and incorporates random graph edge weights, permits the inclusion of multiple topography profiles,

and allows precise control over placement of terrain features and their heights. These properties

all allow the artist to create highly heterogeneous terrains. Furthermore, it addresses many of the

known deficiencies in existing methods (Section 2.6).

The algorithm begins by initializing F (step 1 of Algorithm 3). The nodes of G are arranged

in an 8-connected grid corresponding to the spatial points on a height field. Edge weights we are

initialized as shown in Equation 3.3: the weights are uniform random values with a mean of µw

and a maximum deviation of ±r (the random variable vr is uniformly distributed over the range

[−1, 1]) where 0.0 ≤ r < µw.

we = µw + r · vr (3.3)

30

Algorithm 3 Terrain synthesis algorithm summary

Input: mean edge weight µw, maximum edge weight deviation r, generator locations F ,

sea level scale s, terrain profiles P , generator node costs Cg(n), blending bias b,

sea level cost threshold εs, approximate terrain threshold pf , and

minimum scaling value threshold min{ts}

Output: Height field

1. Initialize graph G, consisting of nodes N and edges E, with mean edge weight µw

and maximum edge weight deviation r

2. Mark nodes at locations F as generator nodes with costs Cg(n)

3. Calculate sea level cost cs as the product of s and the maximum cost of a generator node

4. Create a scaling function, with a minimum scale of min{ts}, for each profile in P

5. Apply Dijkstra’s algorithm with frontier consisting of all generator nodes

6. Store resulting approximate cost field Ca(n)

7. For each individual feature f in F :

a) Apply Dijkstra’s algorithm (using a modified search space based on

Ca(n), cs, εs, and pf) with frontier consisting of only f ’s generator nodes

b) Blend f ’s height field, as a function of b, into the final height field

31

With graph node n we store a cost cn, a scaling term ws(c) (a function of cost), a feature

identification number fid, a profile identification number pid, and the generator node ng on the

least-cost path that includes n. Feature IDs must be unique to each stroke, but many strokes may

use the same profile ID. The costs of generator nodes, which govern the initial height of the feature,

are user-specified. Smaller costs indicate higher elevation. The cost, cn, of a non-generator node,

n, is the cost of the shortest path to n from a generator node ng, as determined by Dijkstra’s

algorithm. Equation 3.4 defines the the cost of the i-th node on the path n1, n2, . . . , nk, where

n1 = ng, cn1 = cng
, we is the weight of the edge from ni−1 to ni, ws(cni−1) is the node scaling

value for ni, and k is the number of nodes on the path.

cni
= cni−1 + we · ws(cni−1) (3.4)

Node scaling values are derived from the profile associated with ng (see Section 3.3.1) and are used

to enforce the shape of the profile on the landscape. When profiles are not used, ws(c) = 1 for all

c.

Step 2 of Algorithm 3 proceeds by setting the cost (cn) according to Cg(n). The feature ID (fid)

and profile ID (pid) of generator nodes are also set at this time. Each contiguous set of generator

nodes, that collectively define the height and location of a single terrain feature, defines a stroke.

Each stroke’s generator nodes share the same fid and pid values, and the costs and locations of

these nodes collectively define the initial height and location of the feature. Figure 3.1 shows the

locations of such nodes for the running example terrain in this chapter.

In step 3 of Algorithm 3 the sea level cost cs is the product of the input scaling value s (s ≥ 0.0)

and the maximum cost cmax of any generator node. This calculation is given in Equation 3.1.

Setting cs below cmax will prevent some features from appearing in the synthesized terrain. As

already discussed in Section 3.2, cs provides the maximum permissible cost in the graph. Fur-

thermore, it aids in converting cost to height (Equation 3.2), and in limiting the search space of

Dijkstra’s algorithm. The termination of Dijkstra’s algorithm is discussed next.

Step 4 of Algorithm 3 creates from each user-provided profile the corresponding node scaling

function ws(c) (see Subsection 3.3.1). Steps 5–6 create an approximate cost field Ca(n) which is

used to guide the termination of Dijkstra’s algorithm. The approximate cost field is created by

running Dijkstra’s algorithm using all generator nodes, and their associated profiles, as the initial

frontier. As previously mentioned in Section 2.4, the frontier consists of all nodes with a tentative

cost. The approximate cost field is visualized in Figure 3.7. The profiles are included in this step

to define each feature’s shape. Step 7a then individually generates the cost fields for each feature –

a cost field is created for each feature using only the associated stroke’s generator nodes. Therein,

Dijkstra’s algorithm is halted when the cost of a node is within εs of cs, or is a sufficiently small

fraction pf of Ca(n). Figure 3.8 visualizes the search space of four select strokes from the running

example terrain in this chapter. Black pixels collectively define a stroke and feature location, and

32

Figure 3.7: An approximate terrain synthesized without blending. Discontinuities
appear where least-cost paths from differing generators are nearly identical in cost.
Input parameter values: µw = 2.0, r = 1.0, s = 1.1, and b = 3. Generator node
locations F is given in Figure 3.1 and P is shown in Figure 3.2.

blue pixels indicate halting due to cost being within εs of cs. Red pixels indicate halting due to

cost being smaller than pf percentage of the approximate cost field and green pixels indicate that

both conditions have been met simultaneously. Halting Dijkstra’s algorithm in this fashion prevents

traversal of nodes that contribute negligible cost, saving computation. Step 7b blends together the

height fields from individual features. Blending eliminates the discontinuities that appear where

least-cost paths from differing generators are nearly identical in cost (see Section 3.3.2). The result

is a height field such as that in Figure 3.9.

3.3.1 Scaling by Profile

Terrain profiles offer user control over feature shape by specifying local slope as a function of path

cost. Profiles can be hand-drawn or procedurally generated, but must be monotonically decreasing

to avoid ill-defined path costs arising from negative edge weights. Figure 3.2 shows the profile used

in the running example terrain; Figure 3.11 uses a different profile.

However, profiles are not required. Profiles aid in the creation of heterogeneous terrains because

several different profiles can be used in a single render. Profile removal forces raw edge weights

to be used for terrain shape and the heterogeneity of the resulting terrain is limited, in part, to

the heterogeneity of the edge weight calculation process, such as that in Figure 3.10. Applying

the same random edge weight calculation to every edge in the graph can result in homogeneous

terrains, but other functions for edge weight calculation are considered in Chapters 4 and 6.

33

Figure 3.8: This figure shows the search space for Dijkstra’s algorithm in four
select strokes from the running example terrain in this chapter. Black pixels collec-
tively define a stroke and feature location, and blue pixels indicate halting due to
cost being within εs of cs. Red pixels indicate halting due to cost being smaller than
some small percentage pf of the approximate cost field and green pixels indicate
that both conditions have been met simultaneously. Each coloured pixel has been
scaled to 3× 3 for visualization purposes.

Figure 3.9: The final height field resulting from Algorithm 3 for the running
example terrain in this chapter. Input parameter values: µw = 2.0, r = 1.0,
s = 1.1, and b = 3. Generator node locations F is given in Figure 3.1 and P is
shown in Figure 3.2.

34

To construct a scaling function, the profile is first flipped vertically about the x-axis and is then

scaled vertically to the range [0, cs]. The profile is flipped vertically because of the relationship

between cost and height provided in Equation 3.2. Scaling vertically to the range [0, cs] ensures

that the scaling function will adequately cover all possible costs. Next, the slope sm(c) of the profile

is calculated as a function of cost c. The scaling function ws(c), also a function of cost c, enforces

the profile’s slope by multiplying a given node’s outgoing edge weights by the value of the scaling

function at its cost (Equation 3.4). The calculation for ws(c) is given in Equation 3.5.

ws(c) = sm(c)/µw (3.5)

If there are multiple occurrences of a given cost c in the provided profile, the average ws(c) for c is

stored. The average is taken to produce a single scaling value at c that accounts for the difference

in profile slopes at c. The scaling function replaces the slopes and heights computed from edge

weights with user-sketched slopes and heights.

It is important to note that the scaling function is defined as the slope sm(c) divided by the

mean edge weight µw. Division by µw ensures that some edge weight randomness is preserved

after the given edge weight is multiplied by ws(c). Recall from Table 3.1 that µw is the mean edge

weight and that edge weights can deviate a maximum of ±r from this value; actual edge weights

are calculated according to Equation 3.3. If the slope was divided by an edge’s weight we, then

this weight would cancel out when multiplying ws(c) and we in Equation 3.4. The division by

µw preserves some of the edge weight deviation from µw. This means that the roughness of the

resulting synthetic terrains is not lost during this process.

If a given node n’s scaling value ws(c) is less than a minimum scaling value threshold min{ts},

ws(c) is updated by linear interpolation between the value of the scaling function at the next lowest

and greatest scaled profile costs (compared to n’s cost cn). To avoid re-assigning a cost less than

min{ts}, the value of the scaling function at the next lowest and greatest costs must be greater

than min{ts}. This check avoids the addition of small edge weights to least-cost paths that create

artificially flat areas in the resulting cost field. Boundary cases (cn < 0.0 or cn > cs) are not

considered because negative node costs are not permitted in G and Dijkstra’s algorithm is halted

when the cost of a node is sufficiently close to cs (see Section 3.3).

As Dijkstra’s algorithm searches the graph, ws(c) is calculated for every visited node. If a node

n’s cost cn is not present in the scaled profile, ws(c) is calculated by linear interpolation between

the value of the scaling function at the next lowest and greatest profile costs (compared to cn).

Furthermore, the costs that ws(c) is evaluated over are modified so that every feature will fully

depict its profile regardless of its overall height. If the raw cost of a node is used, the upper part of

the profile might never be incorporated. Therefore, the raw node cost is used to determine a new

cost cm, allowing for the inclusion of the full profile.

35

Figure 3.10: A synthesized terrain that does not use any input profiles. Input
parameter values: µw = 2.0, r = 1.0, s = 1.1, and b = 3. Generator node locations
F is given in Figure 3.1.

The cost cm used as the argument to the scaling function is calculated by linearly interpolating

between zero and sea level. Thus, cm is a function of the current node n’s cost cn, its source node

ng’s cost cng
, and sea level cost cs (Equation 3.6).

cm =
cn − cng

cs − cng

· cs (3.6)

Figure 3.11(a–b) shows a hypothetical scenario that uses raw node costs. It is evident from this

figure that features with larger costs exhibit the slope near the bottom of the profile. Figure 3.11(c–

d) visualizes the usage of cm.

The profile framework allows for the inclusion of any custom profile, providing user control over

the shape of synthesized terrains. Furthermore, profiles can be hand-drawn in any graphics painting

software, making profile creation an easy process.

3.3.2 Blending

Algorithm 3 creates an individual height field for each feature, M features total. The individual

height fields are then blended into a single height field with a modified version of the blending

function proposed by Singh and Fiume [77]. Blending avoids the synthesis of terrains such as that

in Figure 3.7. Such terrains exhibit noticeable seams/discontinuities that appear where least-cost

paths from differing generators are nearly identical in cost. Sometimes these seams are desirable,

such as in a v-shaped valley, but having control over the presence of the seam is more desirable.

36

(a) (b)

(c) (d)

Figure 3.11: Images (a–b) show the result of using raw node costs for the calcu-
lation of ws(c). Image (a) visualizes that raw node cost usage may never index the
entire profile. A node whose cost is that of the red, horizontal line will incorpo-
rate only profile slopes that exist below this line; profile slopes above this line will
not be incorporated. Image (b) shows a synthetic terrain resulting from raw node
cost usage. Images (c–d) show the result of using modified node costs cm for the
calculation of ws(c). Image (c) visualizes how Equation 3.6 ensures that the full
profile will be indexed using cm, regardless of starting cost. The first node on a
least-cost path will always have a value of cm equal to the cost of the red, horizontal
line. This ensures that every feature indexes into the full profile. Image (d) shows
a synthetic terrain resulting from cm usage. Input parameter values: µw = 2.0,
r = 1.0, s = 1.1, and b = 3. Generator node locations F is given in Figure 3.1 and
P is shown in image (a,c).

37

The final height hn of a node n is a function of its costs cn,i and the sea level cost cs. The quantity

cn,i is the cost of node n according to feature i, 1 ≤ i ≤M . We may terminate Dijkstra’s algorithm

with unvisited nodes; such nodes do not contribute a height to the final blend. Equation 3.7 gives

the blending metric whose behavior varies with the bias b from an average of the heights at each

node when b = 0, approaching max{(cs − ci)} (the maximum height) as b increases. Recall that

Equation 3.2 shows how costs are converted to heights.

hn =
∑M
i=1(cs − ci)b+1∑M
i=1(cs − ci)b

(3.7)

As previously mentioned, we may terminate Dijkstra’s algorithm with unvisited nodes, and such

nodes do not contribute a height to the final blend. The final height hn of a node n is calculated as

a function of the features that visited n; this calculation is given in Equation 3.7. Discontinuities

can arise at the boundary dividing the nodes visited by a feature from those not visited. Inside

the boundary, the feature’s cost is included in the weighted average, and outside, the feature is

excluded. Since a feature has a small height near the boundary, excluding it from the calculation

can discontinuously increase the average. For larger b, larger heights have more weight, reducing

the visibility of the discontinuity; however, for small b, the discontinuities are quite evident, and

can be clearly seen in Figure 3.12(a–b). The effect of bias b for b = 0, b = 2, b = 4, and b = 8 is

visualized in Figure 3.12. However, when an appropriate value for b is used (b = 3 or b = 4), the

result of applying Algorithm 3 is a height field such as that in Figure 3.9.

38

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.12: A terrain synthesized using different values for b. Images are grouped
in the following pairs: (a–b) b = 0, (c–d) b = 2, (e–f) b = 4, and (g–h) b = 8; each
plot visualizes the cross-section given by the red horizontal line in the corresponding
terrain. The red line has a width of 5 pixels to aid in visualization, and the cross-
section passes through the middle. All other variables are constant (µw = 2.0,
r = 1.0, and s = 1.1). As b increases from b = 0 to b = 8, the final height at each
location goes from an average to the maximum height at that location.

39

Chapter 4

Terrain Synthesis Results

4.1 Overview

This chapter presents the results of terrain synthesis using Algorithm 3, as well as methodology

evaluation and an assessment of our algorithm’s performance. The results can be categorized as

follows: realistic, image driven, and sketch-based. Realistic terrain synthesis produces terrains

found in nature such as craters, image driven terrain synthesis consists of terrains whose features

are placed and/or shaped using an input texture, and sketch-based terrains are where coloured

pixels in an input image indicate strokes, providing feature location and feature profile. Some of

the above sections are further categorized with respect to the synthesis of each result. For example,

in the realistic terrain category, the canyon, layered, tower karst, hill, and mountainous landscapes

were all synthesized using a combination of manual and procedural input strokes. In contrast,

the crater, cinder cone volcano, and lunar landscapes selectively apply profiles and selectively add

terrain heights in order to create the crater effect.

The evaluation of our methodology involves a comparison to the RMF terrain model and the

work of Zhou et al. [92] – the current state-of-the-art in procedural and controllable terrain synthesis

methods, respectively. The assessment of our algorithm shows that per-stroke cost is consistent

across height field resolutions when feature density is fixed; per-stroke cost refers to the area that

Dijkstra’s algorithm searches when synthesizing each feature individually.

Feature locations (F from Section 3.2) are both procedurally and manually created as warranted

by the situation. Generator nodes for some ridges are formed by running Dijkstra’s algorithm from

select generator nodes and then selecting a random node (uniformly distributed over the graph)

and tracing back on the least-cost path to the originating node. The process is used to extend the

location of existing features and does not add new features; the nodes on the least-cost path contain

the same feature and profile ID as the originating node – they are part of the same stroke. This

creates ridges with a dendritic shape. For more elaborate results that combine multiple feature

styles, pixel colour in an input image defining F indicates which profile provides its style. This

scenario is discussed in Section 4.4. Also, reference photos are provided for each result in Section 4.2

as real examples of the type and character of the terrain element(s) being synthesized.

40

Algorithm 3 was coded in C++ (compiled using G++ 4.2.3) and executed in Mandriva 2008.1

running on a Pentium 4 2.80GHz processor with 1GB RAM. Unless otherwise indicated, a height-

field resolution of 512×512 was used, and values of pf = 0.05 (height-field percentage threshold) and

εs = 0.5 (sea level proximity threshold) were used to terminate Dijkstra’s algorithm. Additionally,

the minimum scaling value threshold min{ts} = 0.001 avoids the addition of small edge weights to

path costs that create artificially flat areas in the resulting cost field.

The default method for calculating generator node costs is fBm using H = 3.0, Lacunarity=2.0,

and Octaves=2. As previously mentioned in Section 2.1, the parameter H is known as the Holder

exponent [55]. The value of H determines the fractal dimension of the roughest areas (the smaller

H is, the rougher the terrain becomes); using H = 3 produces a smooth terrain. Lacunarity is the

gap between successive frequencies, and octaves is the number of frequencies in the fBm terrain.

The calculation for fBm takes place over a 4× 4 grid scaled to the height-field resolution – the step

size along each axis is 0.0078 = 4.0/512 for a 512×512 height field. This step reduces the number of

integer points where Perlin noise is zero (see Algorithm 1); the size of the grid controls the frequency

of the fBm surface. Furthermore, the resulting fBm values are scaled by 30.0 so that the resulting

heights are appropriate for the chosen height field resolution. Deviations from these parameters are

noted where applicable. Finally, all renders were created by importing the resulting height fields

into Planetside’s Terragen [79] terrain rendering system with procedural textures (determined by

height and slope) overlaid on top of the terrain geometry.

For each result, its inputs and parameters (Section 3.2), cost assignments to generator nodes,

and running time are presented. Complete details, including inputs and parameters, for each result

are provided in Appendix A. With the exception of sketch-based terrains, all parameters are

hard-coded (completely defined within the code). The selected results show the ease of use of the

method, and the diversity and realism of the features. Furthermore, the results can accommodate

differing structures within the same scene, resulting in heterogeneous terrains. As each result in

Section 4.2 is presented, a comparison between it and its reference photo is made. When comparing

the synthesized terrains to the provided reference photos, the reference image is considered to be

an exemplar of the feature. We are not attempting to synthesize a clone of the reference image

in terms of feature location and height, but we are attempting to synthesize features that are also

sensible exemplars. We are interested in what ways it reflects the exemplar, and in what ways it

does not. Furthermore, desirable characteristics of edge weight textures used in Section 4.3 are

discussed as well.

41

4.2 Realistic Terrains

Realistic terrain synthesis produces terrains found in nature such as craters, volcanoes, faults, hills,

mountain ranges, and tower karst and lunar landscapes. A reference photo, inputs, parameters,

and outputs are provided for the results in Subsection 4.2.1, while subsequent results show only

the reference photo, generator node locations F , and a final render. All reference photos, with

the exception of images [58, 59, 60] and [86], are used under the Creative Commons (CC) license.

Images [58, 59, 60] and [86] are non-copyrighted works provided courtesy of NASA and USGS,

respectively.

4.2.1 Valleys

V-shaped and u-shaped valleys are commonly seen in mountain ranges and larger groups of foothills,

so it is desirable to realistically synthesize these features. Reference photos are provided in Fig-

ure 4.1 [72, 73]. Figure 4.1 shows the characteristics of such valleys: v-shaped valleys contain

a noticeable discontinuity between the two opposing ridges, whereas u-shaped valleys contain a

smooth, round transition at this point. Two opposing ridges were manually placed, and their

strokes are visualized in Figure 4.2. To distinguish between the valley types, two different profiles

were used, as shown in Figure 4.3(a–b); all other parameters (with the exception of bias b) were

identical.

Two profiles were used per result; the profile in Figure 4.3c is applied when Dijkstra’s algorithm

searches the non-valley regions. The profile in Figure 4.3a creates the discontinuity seen in a v-

shaped valley by terminating with a slope larger than zero, whereas the the profile in Figure 4.3b

terminates with a near zero slope, facilitating the smooth, round transition seen in a u-shaped

valley. The flatter, smoother topography of the non-valley regions is created using the profile in

Figure 4.3c. Feature identification is visualized in Figure 4.4a and this information is used in Step

7 of Algorithm 3.

Generator node costs were assigned using fBm, which are visualized in Figure 4.4b. The final

renders and height fields in Figure 4.5 were achieved using the previously mentioned inputs and

parameters, along with µw = 2.0, r = 1.5, and s = 2.0; the OpenGL renders are included to

emphasize the valley topographies. A larger scaling value s helped define the opposing ridges, a

bias value of b = 15 was used for the v-shaped valley, and b = 3 was used for the u-shaped valley.

Increasing b reduced the effect of blending, which is ideal for the discontinuity of v-shaped valleys.

The synthesis took 7 seconds for the v-shaped valley and 8 seconds for the u-shaped valley.

The striking characteristic of v-shaped and u-shaped valleys is the profile of the valley that

separates the two or more opposing features. Figure 4.1a shows a noticeable discontinuity where

the opposing features meet, whereas Figure 4.1b does not contain this discontinuity. Also, erosional

42

(a) (b)

Figure 4.1: a) Reference photos for a v-shaped [73] and (b) u-shaped [72] valley.

Figure 4.2: Visualization of generator node locations F for the v-shaped valley
result.

(a) (b) (c)

Figure 4.3: (a) Profiles for a v-shaped and (b) u-shaped valley. Image (c) provides
the profile for the non-valley regions and is used in both renders.

43

(a) (b)

Figure 4.4: (a) Visualization of feature label and (b) cost for the v-shaped and
u-shaped valley results. False colouring has been used to increase label and cost
visibility. The colourbar associated with each image maps pixel colour to a pixel
intensity in the interval [0,255]; lower pixel intensity corresponds to smaller cost.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Final renders, height fields, and OpenGL renders for the v-shaped
and u-shaped valleys. Images (a–c) are the final render, height field, and OpenGL
render for the v-shaped valley, respectively. Images (d–f) are the final render, height
field, and OpenGL render for the u-shaped valley, respectively.

44

forces have caused the terrain to be relatively smooth near this meeting point. The synthesized

results in Figure 4.5 accurately showcase such features. The provided profiles create the v-shape

or u-shape valley and the chosen blending function helps shape the terrain near the middle of the

valley. The proposed method synthesizes valleys that reflect the exemplars in Figure 4.1.

4.2.2 Canyon, Layered, Tower Karst, Hill, and Mountainous Landscapes

Canyons are common in the southern United States of America (USA); the Canyon de Chelly

National Monument, located in Arizona, USA, is an example. A reference photo of this canyon

is provided in Figure 4.6a [69] which shows the characteristics of canyons; erosional processes,

typically river streams, carve through a relatively flat terrain creating steep-sided gorges. Canyons

often contain pillar-like structures of denser rock that are less prone to erosion.

To synthesize Figure 4.6c, seven flat areas were manually placed, as shown in Figure 4.6b. A

single profile was used to create a consistent erosional process, as shown in Figure A.3b. The profile’s

steep slope creates the steep-sided gorges. Feature identification is visualized in Figure A.3c, and

generator node costs were assigned using fBm and are visualized in Figure A.3d. The final render

in Figure 4.6c and height field in Figure A.3f result from these inputs, parameters, and processes,

along with µw = 2.0, r = 1.5, s = 2.0, and b = 4. A larger scaling value s was needed to create the

deep gorge, and the synthesis completed in 7 seconds.

The provided reference canyon in Figure 4.6a shows that canyons contain steep gorges with a

relatively flat basin, isolated tall features can reside within the interior of the canyon, and rock

strata is present in the steep sides of the gorge. The synthesized result in Figure 4.6c demonstrates

that the proposed method can create the steep gorge walls, rock strata, and isolated features.

Unfortunately, not all canyon features can be captured using the proposed method. Features that

overhang lower features are not possible in a height-field representation because only one height

value can exist at each index in the field. Even though Figure 4.6c is able to produce the steep

gorge walls, many more profiles would be needed to match the feature diversity seen in Figure 4.6a.

Additionally, a given profile is incorporated in all directions. Thus, individual features, such as

the isolated taller features within the canyon interior, tend to be isotropic; this is an undesirable

property for the gorges. The gorges should not be isotropic – one side should be relatively flat,

the other should be steep. There are two ways to circumvent this situation: 1) identify the canyon

exterior and apply a different profile in that region, or 2) place exterior generator nodes, adjacent

to the generators defining the gorge, and assign a different profile ID to these nodes. Unfortunately,

both solutions require more work by the user. Though synthetic canyons require additional work

to match the feature diversity of the reference image and to avoid isotropy, the proposed method

synthesizes canyons that reflect the exemplar.

45

(a)

(b) (c)

Figure 4.6: (a) Reference photo [69], (b) generator node locations F , and (c) final
render for the canyon result.

46

(a)

(b) (c)

Figure 4.7: (a) Reference photo [32], (b) generator node locations F , and (c) final
render for the layers result.

Visually, distant objects become increasingly abstract; detail is lost. Such arrangements of

features, specifically layers of features, that elicit this visual effect are easy to create with the

proposed method. Seven features were manually placed, and the corresponding strokes are shown

in Figure 4.7b. A single profile (Figure A.4b) was used to create a uniform terrain style, such as

that in Figure 4.7a. The profile begins with a steep slope and quickly descends, resulting in steep

features. Feature identification is visualized in Figure A.4c, and generator node costs were assigned

using fBm (H = 1.0 and Octaves=8) evaluated over a 6 × 6 grid. These costs are visualized in

Figure A.4d. The final render in Figure 4.7c and height field in Figure A.4f result from these inputs,

parameters, and processes, along with µw = 2.25, r = 1.25, s = 1.75, and b = 4. A larger scaling

value s was needed to create the taller ridges, and the synthesis completed in 13 seconds.

Series of roughly parallel mountain ranges result in scenic landscapes such as that in Figure 4.7a.

This arrangement of features results in a layered look, and Figure 4.7c shows that such scenes are

easy to synthesize using the proposed method. The render in Figure 4.7c results from drawing a

series of curved line segments that are roughly parallel, as in Figure 4.7b, and using the profile

47

depicted in Figure A.4b. The rough topography of the ridges is accomplished by lowering the

value of H in fBm to 1.0. The parameter H controls terrain roughness; smaller values of H create

a rougher surface. The proposed method synthesizes layered mountain ranges that reflect the

exemplar in Figure 4.7a.

Karst landscapes are formed by the underground erosion of rocks, such as limestone and marble,

that dissolve in water. They display distinctive surface attributes, with sinkholes being the most

common; sinkholes are small to medium sized closed depressions that form where the roof of a

subterranean cave collapses [53]. Such terrains are beautiful, but are difficult to synthesize using

existing procedural methods because of their unique shape and style.

Fortunately, the proposed method requires minimal input to create these effects. The reference

photo in Figure 4.8a [83] shows a tower karst. Tower karst are characterized by steep-sided forma-

tions between sinkholes and are formed in regions where vertical joints (natural cracks) control the

collapse of subterranean caves [53]. Eight features were manually placed, and the corresponding

strokes are shown in Figure 4.8b. Figures A.5(b–d) show the three profiles that were used to create

a similar, yet varying landscape; profile ID was calculated as feature ID number modulo three.

The sharing of a steep, rounded profile among the terrain features provides this similarity. Feature

identification is visualized in Figure A.5e, and generator node costs were assigned using fBm (see

Figure A.5g). The final render in Figure 4.8c and height field in Figure A.5i result from these

inputs, parameters, and processes. Additional parameter values were µw = 0.5, r = 0.35, s = 4.0,

and b = 3. A larger scaling value s was needed to create the deep valleys seen in Figure 4.8c and

the synthesis completed in 7 seconds.

Tower karst are characterized by large, round, and isolated foothills, as seen in Figure 4.8a.

Of particular importance are the height and style of these terrains, and their level of isolation.

Many of these foothills can reside near one another, but deep valleys typically reside between their

respective peaks. Furthermore, they have a rougher topography than that of the hills in Figure 4.9a.

Such landscapes can be accurately synthesized using the proposed method. Input profiles control

feature style, and the careful selection of the sea level cost facilitates the synthesis of deep valleys

between the foothills. Due to the steepness of these features, overhanging features are not possible

to synthesize for the same reason as the canyon result. Furthermore, care must be taken to avoid

the isotropic features seen in Figure 4.8c. Within a given feature, its profile is the same in all

directions and this results in an isotropic feature. However, this can be alleviated by assigning

adjacent generator nodes different profile IDs. With a few minor exceptions, the proposed method

synthesizes tower karst landscapes that reflect the exemplar in Figure 4.8a.

Rolling hills are a common topography on earth that results from erosional forces such as rain

and wind. Therefore, existing physically-based methods can accurately synthesize such topogra-

phies. Procedural methods such as fractional Brownian motion can create this effect as well. One

48

(a)

(b) (c)

Figure 4.8: (a) Reference photo [83], (b) generator node locations F , and (c) final
render for the tower karst landscape result.

49

way to create hills via fBm is by using a small number of octaves; the higher frequencies associ-

ated with the upper octaves are not required to synthesize hill shapes. Some hills are shown in

Figure 4.9a [26]. Six features were manually placed, and their corresponding strokes are shown in

Figure 4.9b. Figures A.6(b–d) show three similar, yet different profiles. Their differences decrease

the homogeneity of the resulting synthetic terrain. Also, the profiles are rounded and smooth, and

are assigned to a stroke’s generators via feature ID number modulo three, in order to add diversity

to the hills. This assignment is visualized in Figure A.6f. Feature identification is visualized in

Figure A.6e.

Generator node costs were calculated using fBm evaluated over a 3×3 grid. Then, the generator

node costs at the locations visualized in Figure 4.9b are calculated by scaling fBm within a cost

range of [0.0, 20.0]. The final render in Figure 4.9c and height field in Figure A.6i result from the

previously mentioned inputs, parameters, and processes, along with µw = 0.75, r = 0.375, s = 2.5,

and b = 3. A larger scaling value s helped emphasize the local minima between hills, and the

synthesis completed in 7 seconds.

Hills are characterized by their smooth rounded shape – there are minimal discontinuities in

the terrain. Figure 4.9c shows such a terrain. The hills are smooth and rounded, and the blending

function ensures a smooth transition between features. The terrain style is controlled by providing

profiles that are smooth and rounded, as well as edge weights that have a smaller deviation from the

mean edge weight. The proposed method synthesizes hills that reflect the exemplar in Figure 4.9a.

Mountain ranges are another common topography, and they result from tectonic forces and

erosion. Therefore, existing physically-based methods can accurately synthesize mountain ranges.

Additionally, fBm and the RMF terrain model can achieve this as well by using a large number of

octaves and a smaller value of H. Some mountains are shown in Figure 4.10a [17]. One hundred

features were randomly placed with the constraint that they cannot appear in the dark region of

Figure A.7b. The final placement is given in Figure 4.10b. The terrain depicts a series of mountain

ranges, whose styles are controlled by the three profiles in Figures A.7(c–e). These profiles range

from smooth and rounded to sharp and steep, producing a heterogeneous terrain. However, the

smooth profiles used here are not as smooth as the previously mentioned hill profiles. Furthermore,

profiles were assigned to a stroke’s generators via feature ID number modulo three, in order to create

this diversity. This assignment is visualized in Figure A.7g. Feature identification is visualized in

Figure A.7f.

The initial costs of these peaks were calculated using fBm directly. The ridges in this result were

formed by running Dijkstra’s algorithm from select generator nodes and then selecting another set

of random nodes (uniformly distributed over the graph) and tracing back on the least-cost path to

the originating set. Running Dijkstra’s algorithm assigns a cost to every ridge node. These costs

were scaled by 50% in order to create well defined ridge lines. The final render in Figure 4.10c and

50

(a)

(b) (c)

Figure 4.9: (a) Reference photo [26], (b) generator node locations F , and (c) final
render for the hills result.

51

(a)

(b) (c)

Figure 4.10: (a) Reference photo [17], (b) generator node locations F , and (c)
final render for the mountain range result.

height field in Figure A.7j result from the aforementioned inputs, parameters, and processes, along

with µw = 1.0, r = 0.75, s = 1.01, and b = 4. A smaller scaling value s increases the diversity of

feature altitude by allowing some features to be near sea level, and the synthesis completed in 24

seconds.

Mountain ranges contain many tall, rough peaks and ridges that are heterogeneous, such as

that in Figure 4.10a. They are usually grouped into distinct regions and stretch over large areas

of land. Note that the initial location of ridges has a dendritic shape and that the features are

heterogeneous: peak and ridge altitude vary, as well as their shape. Figure 4.10c shows a mountain

range synthesized using the proposed methodology. There are three distinct regions of mountains,

and peak and ridge altitude and shape varying across the scene. The resulting heterogeneous height

field is aided by the use of multiple steep, yet varying profiles.

52

Edge weight randomness aids in the rough appearance of the features. The proposed method

synthesizes mountain ranges that reflect the exemplar in Figure 4.10a.

4.2.3 River Terrace

River terraces are formed via renewed downcutting of a valley. Downcutting creates a new, narrower

floodplain at a lower elevation than the original one. The surface of the older floodplain becomes

a terrace on either side of the new floodplain [53]. An example is shown in Figure 4.11a. Existing

procedural terrain synthesis methods struggle at replicating this effect because of a terrace’s unique

shape. Fortunately, the proposed method makes this an easy process. Three non-black feature

regions were manually placed, and the corresponding strokes are shown in Figure 4.11b. Figure A.8d

shows that a single profile was used to produce downcutting. The steep profile creates the steep

transition between terraces. Feature identification is visualized in Figure 4.11b, but generator node

costs could not be calculated using fBm. The location of each terrace was calculated as a function

of cost from the dendritic path in Figure A.8a (the dendritic path has a cost of zero). More

specifically, the costs from this path are quantized; the initial, larger set of costs is mapped to a

smaller set of costs. The region of each cost in the smaller set is determined as a percentage range

of the maximum cost from the dendritic path. These ranges are (87.5%, 100.0%], (50.0%, 87.5%],

and (12.5%, 50.0%]; each region is assigned a cost of 0.0, 40.0, and 80.0, respectively. The final

render in Figure 4.11c and height field in Figure A.8g result from the previously stated inputs,

parameters, and processes, along with µw = 1.0, r = 0.5, and s = 1.1. A smaller scaling value s

allows the newest floodplain to appear close to sea level, and a bias value of b = 8 was used to bias

towards local maxima and emphasize the transition between terraces. The synthesis completed in

8 seconds.

River terraces are composed of multiple flat regions at varying altitude, as seen in Figure 4.11a.

The key attribute is to be able to synthesize flat regions at different altitudes, and Figure 4.11c

shows that the proposed method can synthesize such regions. The included steep profile produces

the steep transitions between the flat regions, and the randomness in edge weights results in rough

transition zones. The proposed method synthesizes river terraces that reflect the exemplar in

Figure 4.11a.

4.2.4 Fault

Faults result from bodies of rock sliding past one another. Physically-based methods have yet

to simulate this process. Furthermore, procedural methods such as fBm and the RMF terrain

model have difficulty forming the required long ridge lines. However, the proposed method can

synthesize them. The San Andreas Fault is shown in Figure 4.12a [86]. Six features (one fault

feature plus five surrounding features) were semi-automatically placed to create the desired effect,

53

(a)

(b) (c)

Figure 4.11: (a) Reference photo [63], (b) generator node locations F , and (c)
final render for the river terrace result.

54

and their corresponding strokes are shown in Figure 4.12b. Constraints on their placement were

manually provided, but their initial dendritic shape was automatically generated; these constraints

are discussed in the following paragraph. Figures A.9(c–d) show that two profiles were used: one

for the fault, and one for the surrounding features. Two profiles were used to help differentiate

the formation process: faulting results in sharp breaks in the Earth’s crust, not in the surrounding

hills. Feature identification is visualized in Figure A.9f.

Not all costs were calculated using fBm though. Generator costs were assigned in two phases:

1) fault costs and 2) surrounding generator costs. Fault costs were assigned in two passes. The

first pass creates the lip of the fault. The lip is created by selecting the nodes who have a path

length of 8 from the feature in Figure A.9b; Dijkstra’s algorithm assigns a path length greater

than zero to each non-generator node. All nodes on the path in Figure A.9b have an initial cost of

zero. Seventy-five ridges that emanate from these nodes are formed. These nodes must be within

80 units of a lip node and their cost is taken as 35% of the existing node cost. The surrounding

features, which consist of 5 peaks and 6 ridges, have their initial cost calculated via fBm and are

not permitted to appear within 75 units of a fault feature. The final render in Figure 4.12c and

height field in Figure A.9i result from the previously mentioned inputs, parameters, and processes,

along with µw = 1.5, r = 1.0, s = 1.01, and b = 3. A smaller scaling value s allows the fault to

appear close to sea level, and the synthesis completed in 10 seconds.

The faulting process creates very distinct features, as seen in Figure 4.12a. The prominent

features are a dip (resulting in multiple local minima) near the fault itself, with many smaller ridges

emanating from the fault. Furthermore, the faulting process results in a rougher terrain closer to

the fault. Figure 4.12c shows a synthesized fault using the proposed method which accurately

captures the aforementioned characteristics: a dip is seen along the fault line, many ridges emanate

from the fault, and terrain roughness increases as distance to a ridge decreases. The proposed

method synthesizes faults that reflect the exemplar in Figure 4.12a.

4.2.5 Crater, Cinder Cone Volcano, and Lunar Landscapes

Craters are formed via non-erosional processes, and it has yet to be shown that physically-based

terrain synthesis methods can create such terrain features. Furthermore, their unique shape makes

them difficult to capture using existing procedural terrain synthesis methods. Fortunately, the

proposed method can synthesize such features.

An example crater is given in Figure 4.13a [6]. To create the render in Figure 4.13c, 100 features

were both procedurally and manually placed (see Figure 4.13b). Figures A.10(c–f) show that four

profiles were used to create the resulting heterogeneous terrain. The profiles range from steep to

gentle, smooth slopes. The profile shown in Figure A.10e is always used when Dijkstra’s algorithm

searches the interior of the crater, to guarantee the crater’s shape. Also, blending ignores the costs

55

(a)

(b) (c)

Figure 4.12: (a) Reference photo [86], (b) generator node locations F , and (c)
final render for the fault result.

56

of non-crater features inside the crater to guarantee the shape. Additionally, feature identification

is visualized in Figure A.10g, and cost assignment depends on feature type.

In this result, two fBm height fields are used to define the initial costs of features: one for the

background mountain range and midground foothills (fBmM), and one for the remaining features

(fBmF). The fBmM height field is sampled over a 12× 12 grid and the resulting values are scaled

by 10.0; this increases high-frequency detail. The resulting fBmF values are scaled by 10.0 as well.

In either case, cost assignment depends on feature type. The midground foothills (24 features) in

Figure A.10a are assigned an initial cost of fBmM scaled between [50%, 80%] of the maximum fBmM

value max{fBmM}. Scaling within this percentage range consists of normalizing fBmM so that its

values are within [0, 1]. Then, each normalized value vn is scaled within the percentage range [p1, p2]

at its location, resulting in the scaled value vs. This scaling process is given in Equation 4.1.

vs = p1 ·max{fBmM}+ (p2 ·max{fBmM} − p1 ·max{fBmM}) · vn (4.1)

The mountain range generator nodes (40 features) are assigned an initial cost of fBmM scaled

between [0%, 25%] of max{fBmM}. The foreground hills (35 features) are assigned an initial cost

of fBmF scaled between [80%, 100%] of the maximum fBmF value.

The crater generator nodes’s costs require a more complicated process. An approximate cost

field is calculated as per step 6 of Algorithm 3 and the average of the node costs in Figure A.10b

minus 25.0 is calculated and stored as µc. Then, the final cost of these nodes is calculated as fBmF

scaled within the the range [−0.2 · µc, 0.2 · µc]. These costs are visualized in Figure A.10i.

Scaling fBm within the given ranges facilitates the placement of features at varying altitudes

whose topography is a function of a fractal process. The final render in Figure 4.13c and height

field in Figure A.10k result from the aforementioned inputs, parameters, and processes, along with

µw = 1.5, r = 1.0, s = 1.1, and b = 4. A smaller scaling value s ensured that the larger costing

generator nodes were close to sea level, and the synthesis completed in 36 seconds.

Craters create a discontinuity at the Earth’s surface. The crater impact results in a round,

smooth basin and steep, rough walls. Furthermore, a ridge typically forms at the boundary of the

impression/impact. These features are seen in Figure 4.13a. The synthesized crater in Figure 4.13c

accurately captures these features. The rounded basin is accomplished with the use of a profile

that terminates with a slope close to zero, edge weight randomness provides the rougher crater

walls, and the application of Dijkstra’s algorithm helps to ensure that the crater boundary forms

a small ridge. The summation of edge weights in Dijkstra’s algorithm makes the crater boundary

locations local height maxima. The proposed method synthesizes craters that reflect the exemplar

in Figure 4.13a.

57

(a)

(b) (c)

Figure 4.13: (a) Reference photo [6], (b) generator node locations F , and (c) final
render for the crater landscape result.

58

Cinder cone volcanoes are another non-erosional feature that have yet to be synthesized via

physically-based terrain synthesis methods. Specifically, it has yet to be shown that such methods

provide controls that govern the formation of the crater at the volcano’s pinnacle. Similarly, the

unique shape of cinder cone volcanoes makes them difficult to capture using existing procedural

terrain synthesis methods.

An example cinder cone volcano is given in Figure 4.14a [35]. The volcano’s crater was manually

placed and the three surrounding features were procedurally placed, as shown in Figure 4.14b.

Figures A.11(c–e) show that three profiles were used to create the resulting heterogeneous terrain.

The profiles in Figure A.11(c,e) define the exterior and interior of the cinder cone, respectively.

The shallow slope near the center of Figure A.11e’s profile creates the rounded basin of the cinder

cone volcano. The profile in Figure A.11d defines the shape of the features surrounding the cinder

cone volcano. Finally, feature identification is visualized in Figure A.10f.

The costs of generator nodes are defined using fBm, and cost assignment depends on feature

type. The cost of the cinder cone volcano generator nodes is calculated as a normalized 1D Gaussian

function (situated along the x-axis) with the standard deviation σ a function of the maximum width

Wmax of the stroke in Figure A.11b. This calculation is given in Equation 4.2.

σ = (2.0 ·Wmax)/6.0 (4.2)

The origin is defined as the minimum x-value of a generator node in Figure A.11b. The Gaussian

value is then scaled by 40.0 and fBm scaled within [−10.0, 10.0] is added to this product. The

surrounding features are assigned an initial cost of fBm scaled within a range that is a function of

the maximum cost max{c} of a cinder cone generator node. This cost range is [1.50 ·max{c}, 2.0 ·

max{c}]. Furthermore, these features cannot reside within 128 units of a cinder cone feature. The

initial costs of the surrounding feature ridges are defined as 50% of the existing node costs; all

generator node costs are visualized in Figure A.11h.

The scaling of fBm facilitates user control over the altitude of features in the final terrain. The

final render in Figure 4.14c and height field in Figure A.11j result from the aforementioned inputs,

parameters, and processes, along with µw = 1.0, r = 0.5, s = 2.0, and b = 3. A larger scaling value

s ensured that the features were well above sea level, and the synthesis completed in 7 seconds.

The exemplar cinder cone volcano in Figure 4.14a shows a basin at the peak of the volcano. This

basin results from past and/or current volcanic activity and the exterior of a cinder cone volcano

is characterized by a near constant slope. A cinder cone volcano synthesized using the proposed

method is given in Figure 4.14c. This terrain accurately captures the previously mentioned features:

a basin resides near the peak of the cinder cone volcano and the slope of the volcano’s exterior is

close to constant. Two profiles provide the desired terrain styles. The proposed method synthesizes

craters that reflect the exemplar in Figure 4.14a.

59

(a)

(b) (c)

Figure 4.14: (a) Reference photo [35], (b) generator node locations F , and (c)
final render for the cinder cone result.

60

The last result in this subsection is a lunar landscape. Lunar landscapes typically depict nu-

merous craters in close proximity to one another, as shown in Figure 4.15a [59]. For similar reasons

to the crater landscape in Subsection 4.2.5, lunar landscapes are difficult to synthesize using exist-

ing methodologies. Thirty-eight features were both procedurally and manually placed, and their

corresponding strokes are shown in Figure 4.15b. Figures A.12(b–e) show the profiles for the crater

exterior, procedurally located hills, manually located hills, and crater interior, respectively. The

profile in Figure A.12b is used to create the crater lip, the profiles in Figures A.12(c–d) are used to

create the rounded hills, and the profile in Figure A.12e is used to create the bowl-shaped interior of

the craters. Furthermore, Dijkstra’s algorithm uses only the profile in Figure A.12e when searching

the graph in crater regions, and costs from non-crater features do not contribute to blending in the

crater’s interior. This ensures that the craters will have a rounded profile in their interior. Feature

identification is visualized in Figure A.12f.

Crater generator nodes have their cost defined by fBm scaled within a specific cost range, but

this cost range depends on crater size. Large craters have a radius in the interval of [10.7, 85.3]

units, and generator node costs for these craters are calculated by scaling fBm within a cost range

of [0.0, 12.5] units. Small craters have a radius in the interval of [8.5, 14.2] units, and generator

node costs for these craters are calculated by scaling fBm within a cost range of [12.5, 18.75] units;

the hills’s generator costs are calculated using the same cost range as the small craters. The costs

of all generator nodes are visualized in Figure A.12h. Regardless of crater radius, the actual radius

is calculated as a uniform random value within the provided interval. These inputs create the final

render in Figure A.12i. The final render in Figure 4.15c and height field in Figure A.12j result from

the previously stated inputs, parameters, and processes, along with µw = 1.5, r = 1.0, s = 1.01,

and b = 4. A smaller scaling value s ensured that the craters with small radii were near sea level,

and the synthesis completed in 18 seconds.

Lunar landscapes are not subject to the erosional processes that exist on Earth. Instead, they

are characterized by craters of varying shape, area, and depth. The impact that creates the crater

typically results in a smooth basin, and a ridge at the crater boundary. However, this ridge is less

noticeable in small craters because the impact is relatively small for such craters. Furthermore,

regions that do not contain craters are typically characterized by subtle rolling hills. A reference

lunar landscape is given in Figure 4.15a and a lunar landscape synthesized using the proposed

method is given in Figure 4.15c. The synthesized terrain contains multiple craters, some of which

are nested, that vary in their shape, area, and depth. The crater basins are relatively smooth, and

the smaller crater ridges are less prominent. Finally, non-crater regions are populated with subtle

rolling hills. Adding more variety to crater shape can be accomplished by manually drawing the

desired shapes or by adding a noise function to the circle equation presently used for crater shape.

The proposed method synthesizes lunar landscapes that reflect the exemplar in Figure 4.15a.

61

(a)

(b) (c)

Figure 4.15: (a) Reference photo [59], (b) generator node locations F , and (c)
final render for the lunar landscape result.

62

4.2.6 Musgrave Landscape

Musgrave’s noise synthesis was able to produce the terrain in Figure 4.16a [29]. A similar terrain

was pursued using the proposed synthesis method. Numerous features (402) were both procedurally

and manually placed, and their corresponding strokes are shown in Figure 4.16b. Figures A.13(c–e)

show that three profiles were used to create the resulting heterogeneous terrain. The profiles range

from steep to rounded, smooth slopes. Feature identification is visualized in Figure A.13f, and cost

assignment depends on feature type.

In this result, fBm (Octaves=6) is sampled over a 3× 3 grid and the resulting values are scaled

by 60.0. Furthermore, all ridge generator node costs are calculated as 37.5% of the existing node

cost. Each generator node (46 features) in Figure A.13b is assigned a cost of fBm scaled between

[60%, 85%] of the maximum fBm valuemax{fBm}. The generator nodes (6 features) in Figure A.13a

are assigned a cost of fBm scaled between [40%, 60%] of max{fBm}. The lower altitude feature

generators (150 features) are assigned a cost of fBm inverted and scaled between [60%, 85%] of

max{fBm}, while the low altitude hill generators (200 features) are assigned a cost of fBm scaled

between [85%, 100%] of max{fBm}. These strokes and costs are visualized in Figure A.13(g–h).

Scaling fBm within the given intervals facilitates the placement of features at varying altitudes. The

final render in Figure 4.16c and height field in Figure A.13j result from the aforementioned inputs,

parameters, and processes, along with µw = 1.5, r = 1.0, s = 1.01, and b = 4. A smaller scaling

value s ensured that the larger costing generator nodes were close to sea level, and the synthesis

completed in 27 seconds. Lastly, all heights were scaled by 45% to more closely approximate the

reference render; scaling was performed in Terragen.

As previously mentioned in Subsection 4.2.2, mountain ranges contain many tall, rough peaks

and ridges that are heterogeneous. They are usually grouped into distinct regions and stretch over

large areas of land. An example mountain range with these features is given in Figure 4.16a. Sim-

ilar to the previous mountain range result, Musgrave’s synthetic terrain contains peaks and ridges

at varying altitude. Furthermore, the shape of these features vary, creating a realistic terrain. Fig-

ure 4.16c shows a mountain range synthesized using the proposed methodology. Feature location

in our terrain is similar to that in Musgrave’s terrain. Our method is able to synthesize terrain

features that vary in shape and altitude, and the usage of three varying profiles aids in a heteroge-

neous result. Additionally, edge weight randomness aids in the rough appearance of the features.

The proposed method synthesizes mountain ranges that reflect the exemplar in Figure 4.16a.

4.3 Image Driven Terrains

Image driven terrain synthesis consists of terrains whose features are placed using edge detec-

tion, and/or whose edge weights are calculated according to an input texture. The results can

63

(a)

(b) (c)

Figure 4.16: (a) Reference photo [29], (b) generator node locations F , and (c)
final render for the Musgrave landscape result.

accommodate differing structures within the same scene, resulting in heterogeneous terrains. Sub-

sections 4.3.1 and 4.3.2 demonstrate the effect of edge detection (ED) for feature placement and

input texture pixel intensity for edge weights (EW), respectively. Subsection 4.3.3 demonstrates

their combined effect and is referred to as ED/EW.

Edge detection on an input texture is used to define feature location in Subsection 4.3.1; edge

weights are controlled by µw and r. The intensity of pixels in an input texture is used to calculate

edge weights in Subsection 4.3.2; generator nodes in F are procedurally created. The results

presented in Subsection 4.3.3 differ only in the input textures used for edge detection and edge

weight calculation; the content of the input textures can vary in contrast, structure, and frequency.

More specifically, all other parameters in Subsection 4.3.3 share the following parameter values:

s = 5.0, b = 3, edge weights are scaled within the range [0.25, 2.75], ridge generator costs are

defined as 35% of the existing node cost, the number of ridges is calculated as a quarter of the

number of connected components, and generator node cost comes directly from fBm. A Sobel

operator is used to detect edges in the input texture. A Sobel operator was used because it is easy

to implement, and is used as a proof of concept – any desired edge detection method can be used

in practice. The threshold tg on the gradient magnitude (for edge detection) is taken to be the

halfway point between the minimum gradmin and maximum gradmax gradient magnitude. This

calculation is given in Equation 4.3.

tg = gradmin + 0.5 · (gradmax − gradmin) (4.3)

64

Furthermore, the input textures used in edge weight calculations eliminates the need for profiles,

µw, and r. Each result is now discussed. An input texture and/or detected edges, as well as

generator node locations and a final render accompany each result.

4.3.1 Edge Detection

In this work, procedurally generated features are formed using the ridge synthesis process described

in Section 4.1. However, features can also be placed via edge detection. A Sobel edge detector is

applied to Figure 4.17a [76] to produce Figure 4.17b. The result is 288 features that resemble a

mountain range. Then, 50 ridges whose generator costs are 30% of the existing node costs are

created. A single profile was used to create a consistent terrain style, as shown in Figures A.14c.

The profile creates a steep slope near the top of features, and gradually reaches a shallow slope

near sea level. Feature identification is visualized in Figure A.14d, and generator node costs were

assigned using fBm and are visualized in Figure A.14e. The final render in Figure 4.17c and height

field in Figure A.14g result from the previously mentioned inputs, parameters, and processes, along

with µw = 1.0, r = 0.75, s = 1.01, and b = 4. The synthesis completed in 1 minute 11 seconds.

4.3.2 Edge Weights

In this work, edge weights are calculated according to Equation 3.3 in Chapter 3. However, edge

weights can also be created via an input texture. Figure 4.18b [4] was converted to grayscale using

the formula in Equation 4.4 to convert RGB color values to intensity values.

gray = 0.3 · red+ 0.59 · green+ 0.11 · blue (4.4)

Then, each gray value is scaled within the range [0.25, 2.5] and the corresponding node in the graph

has this value assigned to its outgoing edges’s weights. A range of [0.25, 2.5] was chosen so that a

variety of edge weights would be encountered in the graph, providing terrain heterogeneity. The

interval [0.25, 2.5] means that between any two adjacent nodes, the minimum height difference will

be 0.25 units and the maximum height difference will be 2.5 units. This range of possible height

differences facilitates edge weight variety and terrain heterogeneity. For example, a particular

least-cost path consisting of edge weights near 0.25 will create a relatively gentle path, whereas a

least-cost path consisting of edge weights near 2.5 will create a relatively steep path. Such paths

co-existing in the same scene facilitates terrain heterogeneity. The usage of an input texture for

edge weights eliminates the need for profiles, µw, and r. Figure 4.18a visualizes the input F .

Generator locations were determined procedurally and costs were calculated using fBm; these costs

are visualized in Figure A.15d. Also, feature identification is visualized in Figure A.15c. The final

render in Figure 4.18c and height field in Figure A.15f result from these inputs, parameters, and

processes, along with s = 2.5 and b = 4. The synthesis completed in 12 seconds.

65

(a) (b)

(c)

Figure 4.17: (a) Input texture [76], (b) detected edges, and (c) final render for
the edge detection result.

66

(a) (b)

(c)

Figure 4.18: (a) Generator node locations F , (b) input texture [4], and (c) final
render for the edge weights result.

67

(a) (b) (c)

(d) (e)

Figure 4.19: (a) Generator node locations F (includes 14 accompanying ridges),
(b) edge detection texture [28], (c) edge weight texture [93], (d) final Terragen
render, and (e) final OpenGL render for the first ED/EW result.

4.3.3 Edge Detection and Edge Weight Results

In the first combined result, generator node locations F are calculated by performing edge detection

on Figure 4.19b [28] and synthesizing 14 accompanying ridges. The resulting set of locations F is

visualized in Figure 4.19a. Edge weights are determined according to Figure 4.19c [93]. Specifically,

the gray value of each pixel in Figure 4.19c is calculated according to Equation 4.4, and is scaled

within the previously mentioned lower and upper edge weight bounds. Feature identification is

visualized in Figure A.16e and the costs of generators are visualized in Figure A.16f. The final

renders in Figure 4.19(d–e) and height field in Figure A.16i result from these inputs, parameters,

and processes. The synthesis completed in 1 minute 3 seconds.

In the second combined result, generator node locations F are calculated by performing edge

detection on Figure 4.20b [25] and synthesizing 57 accompanying ridges. The resulting set of

locations F is visualized in Figure 4.20a. Edge weights are determined according to Figure 4.20c [16].

Specifically, the gray value of each pixel in Figure 4.20c is calculated according to Equation 4.4, and

is scaled within the previously stated lower and upper edge weight bounds. Feature identification

68

(a) (b) (c)

(d) (e)

Figure 4.20: (a) Generator node locations F (includes 57 accompanying ridges),
(b) edge detection texture [25], (c) edge weight texture [16], (d) final Terragen
render, and (e) final OpenGL render for the second ED/EW result.

is visualized in Figure A.17e and the costs of generators are visualized in Figure A.17f. The final

renders in Figure 4.20(d–e) and height field in Figure A.17i result from these inputs, parameters,

and processes. The synthesis completed in 2 minutes 8 seconds.

In the third combined result, generator node locations F are calculated by performing edge

detection on Figure 4.21b [34] and synthesizing 86 accompanying ridges. The resulting set of

locations F is visualized in Figure 4.21a. Edge weights are determined according to Figure 4.21c [16].

Specifically, the gray value of each pixel in Figure 4.21c is calculated according to Equation 4.4, and

is scaled within the aforementioned lower and upper edge weight bounds. Feature identification

is visualized in Figure A.18e and the costs of generators are visualized in Figure A.18f. The final

renders in Figure 4.21(d–e) and height field in Figure A.18i result from these inputs, parameters,

and processes. The synthesis completed in 2 minutes 15 seconds.

In the fourth, and final, combined result, generator node locations F are calculated by perform-

ing edge detection on Figure 4.22b [25] and synthesizing 57 accompanying ridges. The resulting

set of locations F is visualized in Figure 4.22a. Edge weights are determined according to Fig-

ure 4.22c [39]. Specifically, the gray value of each pixel in Figure 4.22c is calculated according

69

(a) (b) (c)

(d) (e)

Figure 4.21: (a) Generator node locations F (includes 86 accompanying ridges),
(b) edge detection texture [34], (c) edge weight texture [16], (d) final Terragen
render, and (e) final OpenGL render for the third ED/EW result.

70

(a) (b) (c)

(d) (e)

Figure 4.22: (a) Generator node locations F (includes 57 accompanying ridges),
(b) edge detection texture [25], (c) edge weight texture [39], (d) final Terragen
render, and (e) final OpenGL render for the fourth ED/EW result.

to Equation 4.4, and is scaled within the previously stated lower and upper edge weight bounds.

Feature identification is visualized in Figure A.19e and the costs of generators are visualized in

Figure A.19f. The final renders in Figure 4.22(d–e) and height field in Figure A.19i result from

these inputs, parameters, and processes. The synthesis completed in 1 minute 15 seconds.

4.3.4 Embedded Imagery

The ability to manually place terrain features makes it possible to synthesize terrains whose domi-

nant features depict recognizable images and/or words. Three results were created to demonstrate

this effect: University of Saskatchewan (U of S) text, the U of S Imaging, Multimedia, and Graphics

(IMG) lab logo, and the lambda (λ) symbol.

The synthesis of these results are governed by common input/parameter values. Specifically,

s = 2.5 and b = 3; µw, r, and profiles are not used because each result uses Figure 4.23 [66] for

the edge weight calculation process. The process is identical to that in Subsection 4.3.2. The

gray value at each pixel is scaled so that it is within a range of [0.25, 2.0]. Furthermore, the costs

of all generator nodes are determined by scaling fBm within a cost range of [0.0, 20.0]. All ridge

71

Figure 4.23: Visualization of the common input image [66] for edge weights in the
embedded imagery terrains. This image is converted to grayscale and used for edge
weight calculations.

generator nodes have a cost equal to 35% of the existing node cost (recall that Dijkstra’s algorithm

is applied for ridge synthesis). However, generator node locations F vary between the results.

Finally, connected component labelling is performed to group and label strokes, which facilitates

the blending of each feature (step 7 of Algorithm 3).

The first result that demonstrates a terrain with embedded imagery is the text “U of S”. Fig-

ure 4.24a visualizes the manually determined generator node locations F which create the “U of

S” text, as well as the procedurally synthesized surrounding strokes; Figure A.20c visualizes the

connected component labelling. Weights were calculated as a function of the grayscale version of

Figure 4.23, and generator node costs are visualized in Figure A.20d. The result of applying Algo-

rithm 3 with the previously stated inputs and parameters produces the renders in Figure 4.24(b–c)

and the height field in Figure A.20g. It took 9 seconds to synthesize the scene.

The second result that demonstrates a terrain with embedded imagery is the IMG logo. Fig-

ure 4.25a visualizes the manually determined generator node locations F which create the IMG logo,

as well as the procedurally synthesized surrounding strokes; Figure A.21c visualizes the connected

component labelling. Weights were calculated as a function of the grayscale version of Figure 4.23,

and generator node costs are visualized in Figure A.21d. The result of applying Algorithm 3 with

aforementioned inputs and parameters produces the renders in Figure 4.25(b–c) and the height

field in Figure A.21g. It took 10 seconds to synthesize the scene.

The third and final result that demonstrates a terrain with embedded imagery is the λ sym-

bol. Figure 4.26a visualizes the manually determined generator node locations F which create

the λ symbol, as well as the procedurally synthesized surrounding strokes; Figure A.22c visual-

izes the connected component labelling. Weights were calculated as a function of the grayscale

version of Figure 4.23, and generator node costs are visualized in Figure A.22d. The result of

applying Algorithm 3 with the previously mentioned inputs and parameters produces the renders

in Figure 4.26(b–c) and the height field in Figure A.22g. It took 9 seconds to synthesize the scene.

72

(a)

(b) (c)

Figure 4.24: (a) Generator node locations, (b) final overhead render, and (c) final
non-overhead render for the “U of S” text result.

73

(a)

(b) (c)

Figure 4.25: (a) Generator node locations, (b) final overhead render, and (c) final
non-overhead render for the IMG logo result.

74

(a)

(b) (c)

Figure 4.26: (a) Generator node locations, (b) final overhead render, and (c) final
non-overhead render for the λ symbol result.

75

Section 4.3 presented six figures (not including Subsection 4.3.4) that use edge detection for gen-

erator node locations F and/or pixel intensity for edge weights. Specifically, Figure 4.17 uses only

edge detection, Figure 4.18 uses only pixel intensity for edge weights, and Figures 4.19 through 4.22

use both. These results, especially those in the latter set, suggest that structured high-frequency,

high-contrast content could be better for edge weights than either unstructured high-frequency

content (the purely random edge weights calculated in Equation 3.3), structured content with only

localized high-frequency content (i.e. containing large smoothly varying regions), or low-contrast

content (i.e. containing a small range of intensity values). The structure in the input texture used

to calculate edge weights can be very apparent in the synthesized terrain, as in Figure 4.19, or it

can be subtle, as in Figures 4.20 through 4.22. In either case, the structure adds additional detail

and features for free; these effects are not explicitly modelled by hand.

Different texture styles can be used as input for edge detection and/or edge weights. Tex-

tures can be categorized as follows [45]: regular, near-regular, irregular, near-stochastic, and

stochastic. Regular textures have extremely high regularity of both texton placement and texton

shape/structure, whereas stochastic textures do not. Near-regular, irregular, and near-stochastic

categorize textures that are between these two extremes. The homogeneity of the resulting terrain

is, among other attributes, a function of the input texture. For example, regular textures result in

homogeneous terrains because they are fairly stationary and isotropic. Such a terrain is given in

Figure 4.19. Our results indicate that texture stationarity and isotropy can create highly specialized

terrains, but such textures should be avoided for general terrain synthesis.

However, textures that are relatively stochastic and high in contrast aid in the synthesis of

heterogeneous terrains because of the increase in texture randomness and the texture’s high dynamic

range. Both of these properties result in highly varied edge weights that span the entire edge weight

range. Examples of these textures are given in Figures 4.20 through 4.22. It is difficult to state

that the usage of input textures with structured high-frequency, high-contrast content is better,

because evaluating aesthetics can be highly subjective. However, the usage of input textures for

edge weights offers a promising alternative to Equation 3.3 that is able to produce realistic terrains.

4.4 Sketch-Based Terrains

In sketch-based terrains, coloured pixels in an input image indicate feature location, and each

colour corresponds to an input profile. This type of input shows that it is easy to customize

realistic terrains.

The first sketch-based terrain contains hills in the foreground, a mountain range in the back-

ground, and a valley running through the center of the scene. Thirty-one features were manually

placed as shown in Figure 4.27a. The background mountains correspond to red pixels and are

76

(a) (b)

Figure 4.27: (a) Generator node locations F and (b) final render for the sketch-
based #1 result. Arrows are not part of the input and are merely visual aids for
single node generators which are otherwise difficult to see.

created using the steep profile in Figure A.23b. The foreground hills correspond to black pixels

and are created using the profile in Figure A.23c. These two profiles provide the desired steepness

and smoothness in the aforementioned features, and create a heterogeneous result. The costs of

the generator nodes are calculated using fBm (Octaves=6) sampled over a 12× 12 grid and the re-

sulting values are scaled by 40.0. Red pixels use fBm scaled within a percentage range of [0%, 35%]

of the maximum fBm cost. Black pixels use a percentage range of [85%, 100%]. The final render in

Figure 4.27b and height field in Figure A.23g result from the previously stated inputs, parameters,

and processes, along with µw = 1.5, r = 0.75, s = 1.25, and b = 3. A smaller scaling value s places

the foreground hills near sea level, and the synthesis completed in 12 seconds.

The second sketch-based terrain contains approximately parallel ridge lines running through

the center of the scene, with accompanying hills and rock formations. The scene contains features

that unintentionally resemble Devils Tower (located in Wyoming, USA). Fifty-eight features were

manually placed as shown in Figure 4.28a. The ridge lines correspond to black pixels and are

created using the profile in Figure A.24b. The tiered rock formations correspond to green pixels

and are created using the profile in Figure A.24c. The hill features correspond to red pixels and are

created using the profile in Figure A.24d, and the symmetric hill features correspond to blue pixels

and are created using the profile in Figure A.24e. The provided profiles help create the desired

terrain styles and a heterogeneous result.

The costs of the generator nodes are calculated using fBm (Octaves=6) sampled over a 12× 12

grid and the resulting values are scaled by 48.0. Black pixels use fBm scaled within a percentage

range of [67.5%, 85%] of the maximum fBm cost. Green pixels are scaled within [0%, 30%], red

pixels are scaled within [92.5%, 97.5%], and blue pixels are scaled within [97.5%, 100%]. The final

77

(a) (b)

Figure 4.28: (a) Generator node locations F and (b) final render for the sketch-
based #2 result. Image (a) contains multiple single node generators, but arrows
are not used to allow for a clearer visualization of F .

render in Figure 4.28b and height field in Figure A.24i result from the aforementioned inputs,

parameters, and processes, along with µw = 1.5, r = 0.75, s = 1.1, and b = 3. A smaller scaling

value s places the hill features near sea level, and the synthesis completed in 9 seconds.

The third sketch-based terrain contains two opposing mountain ranges with a valley running

through the center of the scene. Thirty-eight features were manually placed as shown in Fig-

ure 4.29a. The mountains correspond to black pixels and are created using the profile in Fig-

ure A.25b. The rough, steep features in the valley correspond to red pixels and are created using

the profile in Figure A.25c. The smooth hills in the valley correspond to blue pixels and are created

using the profile in Figure A.25d. The provided profiles help create the desired terrain styles and

a heterogeneous result.

The costs of the generator nodes are calculated using fBm (Octaves=6) sampled over a 12× 12

grid and the resulting values are scaled by 60.0. Black pixels use fBm scaled within a percent-

age range of [0%, 25%] of the maximum fBm cost. Red pixels are scaled within [65%, 85%], and

blue pixels are scaled within [85%, 100%]. The final render in Figure 4.29b and height field in

Figure A.25h result from the previously mentioned inputs, parameters, and processes, along with

µw = 2.0, r = 1.0, s = 1.01, and b = 3. A smaller scaling value s places the valley features near sea

level, and the synthesis completed in 11 seconds.

The fourth, and final, sketch-based terrain contains foothills of varying altitude and style. Fif-

teen features were manually placed as shown in Figure 4.30a. The foothill running vertically

through the center of the scene, and the larger horizontal foothill in the foreground correspond to

black pixels and are created using the profile in Figure A.26b.

78

(a) (b)

Figure 4.29: (a) Generator node locations F and (b) final render for the sketch-
based #3 result. Arrows are not part of the input and are merely visual aids for
single node generators which are otherwise difficult to see.

The surrounding features are composed of red and blue pixels which are created using the profiles in

Figures A.26c and A.26d, respectively. The provided profiles help create the desired terrain styles

and a heterogeneous result.

The costs of black and red pixels are calculated as their distance to the center of the image

scaled by 85.0. Blue pixel costs are calculated as the minimum of this distance-based cost and a

random value within the cost range of [80.75, 85.0]. The final render in Figure 4.30b and height

field in Figure A.26h result from the aforementioned inputs, parameters, and processes, along with

µw = 1.5, r = 0.75, s = 1.01, and b = 3. A smaller scaling value s places the foothills near sea

level, and the synthesis completed in 7 seconds.

4.5 Methodology Evaluation

The proposed terrain synthesis method is now compared to the RMF terrain model and the work

of Zhou et al. [92] – the current state-of-the-art in procedural and controllable terrain synthesis

methods, respectively. A brief comparison to physically-based methods is presented as well.

Physically-based synthesis methods simulate actual erosional processes. This fact is both their

strength and weakness. The resulting terrains are formed by the same processes that govern

the Earth’s topography, but the resulting terrains are limited by the accuracy of these physical

models. The results are realistic, but their range is limited: terrain features such as craters,

cinder cone volcanoes, and lunar landscapes have yet to be synthesized. Furthermore, control over

terrain placement and style is difficult because the majority of physically-based methods begin by

distributing water on the terrain’s surface [9]. Height field manipulation via water distribution is

79

(a) (b)

Figure 4.30: (a) Generator node locations F and (b) final render for the sketch-
based #4 result. Arrows are not part of the input and are merely visual aids for
single node generators which are otherwise difficult to see.

not easy. As a result, the terrains in Subsection 4.3.4 and Section 4.4 are very difficult to replicate.

Finally, these methods require an initial terrain to erode, requiring the use of another synthesis

method. Physically-based methods produce realistic results, but the possible range of results is

relatively small.

In comparison, the proposed method has shown that it can easily synthesize features such as

craters (Figure 4.13c), cinder cone volcanoes (Figure 4.14c), and lunar landscapes (Figure 4.15c).

Feature placement can be explicitly provided via a hand-drawn input image, and terrain style can

be controlled using hand-drawn profiles. Allowing hand-drawn inputs makes terrain placement and

style an easy and controllable process. Lastly, heavy reliance on an initial terrain is not required.

The RMF terrain model is a well known procedural terrain synthesis method that addresses

the homogeneity of fBm by producing heterogeneous height fields with valleys at varying altitudes.

Figure 4.31 shows a close up comparison of a RMF height field (Figure 4.31a) and a terrain synthe-

sized via the proposed method (Figure 4.31b). This comparison, along with the synthesized terrains

in Sections 4.2 through 4.4, emphasizes the ability of our method to create extended features such

as ridges and specific features such as craters, cinder cone volcanoes, and lunar landscapes. Ridged

multifractals allow a more limited range of features. However, this comparison also shows that

the RMF terrain model has more high-frequency detail than Figure 4.31b. Our method is able to

incorporate such detail, but it comes at an added cost to the user. The RMF model can be used

directly for the costs of generators, but incorporating this detail into hand-drawn profiles is more

difficult. The user can attempt to approximate the detail by hand, or such detail can be added to

the profile in a post-processing step. However, the profile must be monotonically decreasing. In

either case, the addition of this detail is easier in the RMF model.

80

(a) (b)

Figure 4.31: A comparison between a terrain synthesized by the ridged multifrac-
tal process (a) and a terrain synthesized by the proposed method (b).

The RMF terrain model is controlled by difficult to use parameters: H, lacunarity, octaves,

offset, and gain. The parameter H determines the fractal dimension of the roughest areas (the

smaller H is, the rougher the terrain becomes), lacunarity is the gap between successive frequencies,

octaves is the number of frequencies in the RMF model, offset raises the terrain from sea level, and

gain controls the weighting of successive contributions by the previous signal. It is not easy to

determine how these parameters control the resulting terrain, which makes feature placement and

terrain style control a tedious process. Lastly, due to the multiplicative nature of the RMF terrain

model, it is prone to divergence. In comparison, the proposed method provides easy to use, hand-

drawn feature placement and terrain style is controlled using hand-drawn profiles.

Zhou et al. [92] presented an example-based terrain synthesis method to address the issue

of feature placement. In their work, patches from a sample terrain are joined using graph cuts to

generate new terrain. The synthesis is guided by a user-sketched feature location map that specifies

where terrain features occur in the resulting synthetic terrain. Their work addresses a recurring

problem in terrain synthesis: control over feature placement. However, features not present in the

input terrain cannot be synthesized – the final terrain feature set is limited to the terrain features

in the provided input. Lastly, patch-based sampling was designed for stationary signals making

heterogeneous terrains more difficult.

Additionally, a correct patch size is difficult to calculate, and it is a sensitive parameter: a

small patch size may not contain many terrain features, limiting the diversity of the final terrain.

Large patch sizes may include more terrain features, but the final terrain can be homogeneous

(less room for additional patches) and may have difficulty aligning with the provided feature loca-

81

(a) (b)

Figure 4.32: A comparison between a terrain synthesized Zhou et al.’s method
(a) and a terrain synthesized by the proposed method (b).

tion map. Furthermore, the sample terrain requires the use of another terrain synthesis method,

whether it be a Digital Elevation Model (DEM), or the output of an existing physically-based

or procedurally-based terrain synthesis method. Figure 4.32 shows a comparison of Zhou et al.’s

method (Figure 4.32a) and a terrain synthesized via the proposed method (Figure 4.32b). This

comparison demonstrates the difficulty of heterogeneous terrains in their method, resulting from

the exclusion of new features and the use of a single patch from the provided sample terrain.

4.6 Algorithm Performance

Showing that per-stroke cost is consistent demonstrates that Algorithm 3 scales appropriately,

assuming that over large scales, the density of features is constant. Per-stroke cost refers to the

area that Dijkstra’s algorithm searches when synthesizing each feature individually. This section

provides a brief theoretical argument as to why per-stroke cost is consistent when feature density is

fixed. The hypothesis that per-stroke cost is consistent when feature density is fixed results from the

way in which Dijkstra’s algorithm terminates. Dijkstra’s algorithm is terminated if the current node

cost is within a certain threshold from the sea level cost or if the current node height is less than

some percentage of the approximate terrain height at that location. If the density and distribution

of features is similar between a small and large input texture, near-constant effort per feature will

result because of way Dijkstra’s algorithm is terminated. The thresholds that terminate Dijkstra’s

algorithm will be satisfied in similar locations relative to the originating stroke, though boundary

conditions and initial generator cost will result in small differences in the termination frontier for

different terrain sizes; Dijkstra’s algorithm will terminate at the edges of the underlying graph in

smaller terrains, but will explore past these edges in larger terrains. Furthermore, initial generator

82

(a) (b)

(c) (d)

Figure 4.33: (a) Generator node locations for the 512× 512 terrain, (b) generator
node locations for the 1536× 1536 terrain, (c) scatter plot visualizing the 512× 512
terrain per-stroke cost, and (d) scatter plot visualizing the 1536× 1536 terrain per-
stroke cost in the first performance example. Images (c–d) show that there are only
small deviations in the maximum per-stroke cost as the number of terrain features
increases.

cost will impact how quickly that feature’s profile reaches the sea level cost and/or becomes smaller

than some percentage of the approximate terrain height. However, the increase in this constant

(effort per feature) will be much smaller than the increase in terrain size.

To validate our claims, two tests were carried out to determine if the per-stroke cost is consistent

across terrain size. Each test measured the average per-stroke cost on a 512× 512 terrain and on a

1536 × 1536 terrain. Feature placement was provided using edge detection, similar to the process

outlined in Subsection 4.3.1. To ensure that the small and large textures are statistically the same,

the 512× 512 texture was tiled to create the 1536× 1536 texture.

The feature locations for the first test are given in Figure 4.33(a–b). The 512 × 512 terrain

contained 1703 features and took 4 minutes 39 seconds to synthesize. On average, each feature’s

83

(a) (b)

(c) (d)

Figure 4.34: (a) Generator node locations for the 512× 512 terrain, (b) generator
node locations for the 1536× 1536 terrain, (c) scatter plot visualizing the 512× 512
terrain per-stroke cost, and (d) scatter plot visualizing the 1536× 1536 terrain per-
stroke cost in the second performance example. Images (c–d) show that there are
only small deviations in the maximum per-stroke cost as the number of terrain
features increases.

area was 35463.38 pixels. A scatter plot visualizing each feature’s area is given in Figure 4.33c.

The 1536×1536 terrain contained 14758 features, and on average, each feature’s area was 42545.88

pixels. This terrain took 55 minutes 1 second to synthesize. A scatter plot visualizing each feature’s

area is given in Figure 4.33d. The increase in mean per-stroke cost in the larger terrain results from

two factors: 1) features near graph boundaries in the 512× 512 terrain are allowed to expand past

these boundaries after image tiling, and 2) initial generator cost varies across each tile. However, the

increase in mean per-stroke cost is far less than the increase in feature number or terrain size. The

ratio between the two mean per-stroke costs is 0.83 and the two scatter plots in Figure 4.33(c–d)

show that the magnitude of the feature areas is consistent across terrain resolution.

84

Figure 4.35: Plot of terrain synthesis time (s) vs. total number of terrain features
for all resulting synthetic terrains.

The feature locations for the second test are given in Figure 4.34(a–b). The 512 × 512 terrain

contained 1264 features and took 3 minutes 48 seconds to synthesize. On average, each feature’s

area was 38650.05 pixels. A scatter plot visualizing each feature’s area is given in Figure 4.34c.

The 1536×1536 terrain contained 11349 features, and on average, each feature’s area was 46889.64

pixels. This terrain took 47 minutes 55 seconds to synthesize. Like the first test, the increase in

mean per-stroke cost is far less than the increase in feature number or terrain size. A scatter plot

visualizing each feature’s area is given in Figure 4.34d. The ratio between the two mean per-stroke

costs is 0.82. Furthermore, the two scatter plots in Figure 4.34(c–d) show that the magnitude of

the feature areas is consistent across terrain resolution.

Figure 4.35 plots terrain synthesis time vs. total number of terrain features for all resulting

synthetic terrains. The figure shows that in general, synthesis time increases with feature count,

supporting the claim that the algorithm scales appropriately and is dependent on the total number

of terrain features. Though the 1536 × 1536 terrains take 55 minutes 1 second and 47 minutes 55

seconds for the two examples, respectively, a good approximate terrain is available in 6 seconds

and 7 seconds for a 512 × 512 terrain (based on the two presented examples), and in 3 minutes

13 seconds and 3 minutes 44 seconds for a 1536 × 1536 terrain. For rapid turnaround such as

initial sketching and large-scaled feature layout, the approximate terrain will often suffice, and the

expensive blending stage can be left until a fairly late stage in the synthesis process. Furthermore,

a quality/time tradeoff is available because the algorithm can be sped up by picking different

approximate height and sea level cost thresholds, at the expense of introducing seams.

85

However, the two tests show that the proposed algorithm scales properly. In the first test, the

512×512 terrain synthesized in 4 minutes 39 seconds and the 1536×1536 terrain synthesized in 55

minutes 1 second – the larger terrain took 12.61X longer. In the second test, the 512× 512 terrain

synthesized in 3 minutes 48 seconds and the 1536 × 1536 terrain synthesized in 47 minutes 55

seconds – the larger terrain took 11.83X longer. Considering the slight increase in mean per-stroke

cost in the larger terrains and the fact that the larger terrain is 9X larger (than the smaller terrain),

this increase in synthesis time is appropriate. Furthermore, the amount of increase was consistent

between the two tests (12.61 vs. 11.83) and the mean per-stroke cost ratios (between the smaller

and larger terrains) were also consistent (0.83 vs. 0.82), showing that neither of the examples were

specially invented to bias the results.

86

Chapter 5

Pareidolia

5.1 Overview

Pareidolia refers to the phenomenon where a vague or imperfect sensory input is mistakenly inter-

preted as something familiar, such as a human face. Common examples include images of animals

or faces in clouds, or hidden messages in music played in reverse. A well documented [58, 60]

example of the pareidolia effect is the Face on Mars, as depicted in Figure 5.1. When the sunlight

hits the surface of one of the Cydonian mesas on Mars at a specific angle and direction, the terrain

in Figure 5.1a [60] casts a shadow resulting in the human face seen in Figure 5.1b [58].

The terrain synthesis method presented in Chapter 3 provides user control over feature place-

ment. Motivated by the Face on Mars phenomenon, synthesizing terrains whose shadows resemble

an image and/or word is a creative, artistic way to demonstrate user control over feature placement.

Furthermore, this chapter combines feature placement using an input image, and a novel method

for the initialization of generator cost. This combination makes it easy to cast shadows that resem-

ble an image and/or word. The creation of terrain from shadow is similar to Yu and Chang’s [90]

work on surface reconstruction via shadow graphs. The difference here is that shadow graphs use

input images as the sole source of constraints for surface creation – many images are required to

generate enough constraints for a given surface. In this chapter, we only use one input image, but

additional constraints are generated because the final terrain must look realistic. Furthermore, Yu

and Chang place relatively little emphasis on what the reconstructed surface looks like, so long as

it accurately represents the shadow data.

This chapter presents a novel terrain synthesis algorithm for pareidolia effects. The method is

currently a proof of concept – additional terrains that realistically capture more shadow regions

with more varied shape are required to establish this as a robust technique. Early results such

as those in Figure 5.2 indicate that further work is required to make the technique more robust;

too many terrain features are isolated and jagged, producing an unrealistic final terrain. Also, the

non-shadow regions are too flat. An updated method would incorporate additional features with

heights that do not produce shadows (from the given light direction). The target shadow images

are taken from the work of Mould and Grant [54].

87

(a) (b)

Figure 5.1: These two images show the famous Face on Mars phenomenon. When
the sunlight hits the surface of one of the Cydonian mesas on Mars at a specific
angle and direction, the terrain in Image (a) [60] casts a shadow resulting in the
human face seen in Image (b) [58].

Section 5.2 introduces the inputs and parameters to the method and their impact on G, and

Section 5.3 discusses each step of the proposed algorithm. Section 5.4 concludes by showing two

renders produced via the proposed method (Algorithm 4): one terrain embeds the word “TEXT”

in its shadows and the other terrain embeds the image of a smiley face in its shadows.

5.2 Inputs and Parameters

The creation of the pareidolia renders in Section 5.4 requires three inputs and three parameters

which provide control over the synthesized terrain. Each of the inputs and parameters are sum-

marized in Table 5.1. It is shown that embedding images and/or words in shadows for pareidolia

effects is easy to achieve using the provided inputs and parameters.

The three inputs are 1) binary shadow image I, 2) base terrain Tb(n), and 3) secondary feature

generator costs Csec(n). The binary shadow image I indicates the desired shadow regions; dark

pixels indicate shadow. The use of I is discussed in Section 5.3. The base terrain Tb(n) acts as

an initial terrain to which terrain features will be added, and is seen in regions where no features

have been added. The base terrain can be synthesized using any of the existing terrain synthesis

algorithms, but it is recommended that Algorithm 3 in Chapter 3 be used to ensure consistency

between Tb(n) and the added features. Furthermore, the shadow area introduced in Tb(n) should

be reduced to avoid large changes to the desired shadows. However, this shadow area should not

be eliminated, to maintain a realistic result. A flat base terrain would stand in contrast to the

synthesized features and look artificial. Thus, a rough base terrain with many smaller features is

88

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.2: This figure shows the terrains and shadow regions resulting from the
use of multiple target shadow images [54]. The order in each row is: target shadow,
OpenGL render, and shadows cast by the final terrain. These results indicate that
further work is required to make the technique more robust; too many terrain
features are isolated and jagged, producing an unrealistic final terrain. Also, the
non-shadow regions are too flat. An updated method would incorporate additional
features with heights that do not produce shadows (from the given light direction).

89

Table 5.1: Summary of and inputs and parameters to the proposed terrain syn-
thesis algorithm for pareidolia effects. Inputs consist of I, Tb(n), and Csec(n), and
parameters consist of µw, r, and θ.

Input/Parameter Description

I Binary shadow image

Tb(n) Base terrain

Csec(n) Secondary feature generator costs

µw Mean edge weight

r Maximum edge weight deviation

θ Light tilt angle

desirable. The reduction of Tb(n)’s shadow area is with respect to the lighting conditions used for

primary and secondary terrain feature placement (see Section 5.3); if the shadows provided in I are

large, then smaller changes to them are less noticeable. In this work, the shadow area was reduced

by using numerous generator nodes. Densely packed generator nodes prevent the formation of tall,

isolated features that can cast long, undesirable shadows. The base terrains for the “TEXT” and

smiley face renders are presented in Section 5.4. Finally, the costs of secondary feature generators

are provided via Csec(n). Secondary features complement the primary features and increase the

realism of the resulting terrain; the use of Csec(n) is discussed in step 7 of Algorithm 4.

The three parameters are 1) mean edge weight µw, 2) maximum edge weight deviation r, and

3) light tilt angle θ (from the vertical). Specifically, µw is the mean weight of the edges in E and

controls overall terrain steepness. The method requires µw > 0.0 and terrain steepness increases

with µw. The second parameter r is the maximum edge weight deviation in E and controls overall

terrain roughness. The method also requires that 0.0 ≤ r < µw and as r approaches µw, terrain

roughness increases.

The third parameter is the light tilt angle θ – the angle at which the light source points downward

towards the origin. The tilt angle serves two purposes: it partially determines the light direction ~v,

and it limits the maximum height in the resulting synthetic terrains. Figure 5.3a visualizes θ in a

2D scene where a terrain feature of height h casts a shadow m units long at a tilt angle of θ degrees

from the vertical. In the proposed method, m and θ are known and h is calculated according to

Equation 5.1.

h = m/tanθ (5.1)

90

(a) (b)

Figure 5.3: Two 2D scenes that visualize shadow casting. Image (a) shows a
terrain feature of height h casting a shadow m units long at a tilt angle of θ degrees
from the vertical. In the proposed method, m and θ are known and h is calculated
according to Equation 5.1. Image (b) generalizes these principles to an arbitrary
terrain; black lines visualize the shadow line and dark green terrain is in shadow.
Furthermore, peaks can exist within shadows. The shadows cast by such features
are completely contained within another shadow and can thus be ignored.

Figure 5.3b generalizes these principles to an arbitrary terrain; black lines visualize the shadow line

and dark green terrain is in shadow. This figure also shows that local maxima can exist within

shadows. The shadows cast by such local maxima are completely contained within another shadow

and can thus be ignored.

The value of θ controls the maximum height in the resulting synthetic terrains. Specifically, as θ

increases, h decreases (for fixed m). When synthesizing a scene, care should be taken in selecting θ.

It should be provided such that the maximum height in the final height field is appropriate for the

height-field resolution (i.e. if I contains longer shadows, then θ should be larger). Terrains whose

maximum height is far greater than the width/height of the scene produces unrealistic results. The

value for θ also depends on terrain type – a mountainous terrain will have a larger maximum height

and should therefore use a smaller value for θ.

5.3 Algorithm

The synthesis of terrains whose shadows embed words and/or imagery must balance two competing

goals: realism vs. adherence to desired shadows. The shadows should be recognizable, but the

terrain should look realistic. Two synthetic terrains with pareidolia effects are presented that

address these competing goals. The first render involves the word “TEXT” and the second render

involves the image of a smiley face. An overview of the method is given in Algorithm 4.

The algorithm begins by initializing graph G using µw and r (step 1 of Algorithm 4). This

process is identical to that outlined in Section 3.3. Next, step 2 calculates the light direction ~v such

91

Algorithm 4 Terrain synthesis algorithm summary for pareidolia effects

Input: Binary shadow image I, base terrain Tb(n), mean edge weight µw,

secondary feature generator costs Csec(n), maximum edge weight deviation r,

and light tilt angle θ

Output: Height field

1. Initialize graph G, consisting of nodes N and edges E, with mean edge weight µw and

maximum edge weight deviation r

2. Calculate light direction ~v

3. Rotate I according to ~v and store as Ir

4. Determine anti-shadow regions

5. Determine shadow start and end locations

6. Determine primary terrain features using θ

7. Determine secondary terrain features using Csec(n)

8. Initialize generator node locations F as all primary and

secondary terrain feature node locations

9. Apply Dijkstra’s algorithm with frontier consisting of nodes at locations F

10. Convert resulting cost field into the final height field

92

that the maximum shadow length max{m} in I is minimized in the projected light direction. The

formation of ~v is guided by the light tilt angle θ and the above minimization procedure. First, the

y-value of the light source location ~s is determined according to Equation 5.1. The y-value replaces

h, and m is chosen to be large enough so that the orthographic projection model is accurate; all

light rays are assumed to be parallel. Next, ~s iterates through a set of predetermined locations

about the scene at the calculated y-value. The light direction ~v is calculated in Equation 5.2. The

light source ~s points downward towards the origin resulting in −~s.

~v = −~s/‖~s‖ (5.2)

Minimizing max{m} begins by iterating through the set of predetermined light source locations.

At each light source location, I is scanned in the projected light direction and the maximum shadow

length is recorded. In this context, the shadow length is the longest contiguous set of black pixels

in I. The light direction ~v that results in the shortest maximum shadow length is selected as the

final light direction. These steps are taken to help maintain an appropriate valued height field.

According to Equation 5.1, as m increases, h also increases (for fixed θ). Thus, minimizing the

maximum shadow length ensures that the maximum terrain height is also minimized.

Step 3 accounts for the light direction ~v. There are two ways to account for this value: 1) process

I in the projected light direction or 2) rotate I, forming Ir, such that processing it in scan-line

order is identical to processing it in the projected light direction. The benefit of option 2 is that

it prevents aliasing that results from naively using option 1. Thus, option 2 was used in this work.

The shadow image I for the “TEXT” and smiley face renders is given in Figure 5.4(a–b) and their

rotated versions are provided in Figure 5.4(c–d).

Step 4 of Algorithm 4 establishes anti-shadow regions in proximity of the shadow regions. Anti-

shadow regions show where shadows should be absent and serve to contrast the shadow regions.

Step 7 outlines how anti-shadow regions are enforced. Visualizations of anti-shadow regions are

provided in Figure 5.5. Step 5 determines the start and end locations of each shadow segment.

Each segment is found by scanning Ir in scan-line order and marking where a shadow begins (start

nodes) and ends (end nodes); this is why I is rotated to form Ir. These locations help determine

the cost of start nodes; the start nodes define the primary features which cast the shadows given

by Ir. Figure 5.6 shows both the start and end node locations for the “TEXT” and smiley face

renders.

Step 6 creates the terrain features which cast the desired shadows stored in Ir. These features

are known as primary terrain features. The goal of this step is to define the height of the features

that cast the desired shadows.

93

(a) (b)

(c) (d)

Figure 5.4: Images (a,c) show the original (I) and rotated (Ir) shadow images
used in the “TEXT” render, and images (b,d) show the original and rotated shadow
images used in the smiley face render. The original images were rotated so that
processing them in scan-line order is equivalent to processing their non-rotated
version in the projected light direction.

94

(a) (b)

Figure 5.5: These two images visualize the anti-shadow regions corresponding to
Figure 5.4c and Figure 5.4d, respectively.

Though the presented examples differ in how this is accomplished, both methods define the height

of the shadow casting features to be h (as per Equation 5.1) units more than the height of the

terrain where the shadow terminates. This step is further detailed in Subsections 5.3.1 and 5.3.2.

Step 7 creates complementary terrain features called secondary terrain features for a more

natural result. Secondary features include peaks, ridges, and hills. They can be placed manually

or procedurally, and should populate vacant terrain regions. Their inclusion makes the scene more

realistic and natural. These features avoid anti-shadow regions and minimize the amount of change

to shadows cast by primary terrain features. They should avoid anti-shadow regions to keep the anti-

shadow regions free of shadow, which helps define the shadows containing the embedded imagery.

It can be argued that ridges parallel to the to the light direction may create only small shadows.

However, their profiles in the perpendicular direction may cause unwanted shadows and secondly,

controlling the exact location of ridges via Dijkstra’s algorithm is not trivial because of the usage

of random edge weights. Minimizing the change to shadows cast by primary shadows means that

secondary feature heights should not be allowed to exceed the height of the yellow diagonal line in

Figure 5.3a. Exceeding this height will lengthen the shadow – an undesirable result.

The presence of secondary features in anti-shadow regions is minimized by preventing either a

single generator node (for peaks) or the start and end generator nodes (for ridges) from residing

in those regions. Shadow modification is limited by ensuring that the initial costs of secondary

features’s generator nodes lie between a lower bound bb and upper bound bt, calculated on a per

node basis. The base terrain serves as bt, and bb depends on the location of a given node. The

calculation of bb can depend on distance d to the closest shadow segment from the current location

95

(a) (b)

(c) (d)

Figure 5.6: Images (a) and (b) visualize the start node locations for the “TEXT”
and smiley face renders, respectively. Images (c) and (d) visualize the end node
locations for the “TEXT” and smiley face renders, respectively.

96

k, light tilt angle θ, base terrain cost cb, or the minimum cost of a start node cmin. Pseudocode for

the calculation of bb is given in Algorithms 5, 6, and 7.

Algorithm 5 CalculateLowerBoundShadow(k, θ, cb)

p← getShadowEnd(k) {find location where shadow ends}

d← length(k − p)

return cb − d/tanθ

Algorithm 6 CalculateLowerBoundAntishadow(k, cmin)

s← getAntishadowStart(k) {find location where anti-shadow starts}

e← getAntishadowEnd(k) {find location where anti-shadow ends}

tstart ← cost(s) {base terrain cost at location s}

tend ← cost(e) {base terrain cost at location e}

lenr ← length(k − s)/length(e− s)

if a lower bound does not exist at both s and e then

return tstart − (tstart − cmin) · lenr
else if a lower bound exists at both s and e then

bstart ← cost(s) {lower bound cost at location s}

bend ← cost(e) {lower bound cost at location e}

return bstart − (bstart − bend) · lenr
else if no lower bound at s and a lower bound at e then

bend ← cost(e)

return tstart − (tstart − bend) · lenr
else {lower bound at s and no lower bound at e}

bstart ← cost(s)

return bstart − (bstart − cmin) · lenr
end if

We begin by calculating bb in shadow regions (Algorithm 5), and proceed by calculating bb in

the anti-shadow regions (Algorithm 6). The lower bound in unconstrained regions (i.e. not shadow

and not anti-shadow) is calculated last (Algorithm 7). As previously mentioned, the lower bound

in shadow regions prevents the height of secondary features from exceeding the height of the yellow

diagonal line in Figure 5.3a. In anti-shadow regions, the goal is to linearly interpolate between the

cost of the base terrain or lower bound at the start and end locations of the anti-shadow; if both

costs are known at a given location, the lower bound cost is used. This provides a smooth lower

bound transition between known costs. This approach is used in both the “TEXT” and smiley

face renders, except the eyes/mouth in the smiley face render have a lower bound that exceeds

97

Algorithm 7 CalculateLowerBoundUnconstrained(k, θ, cmin)

s← getNearestAntishadowB(k) {find location where anti-shadow starts before k}

e← getNearestAntishadowA(k) {find location where anti-shadow ends after k}

tstart ← cost(s) {base terrain cost at location s}

tend ← cost(e) {base terrain cost at location e}

lenr ← length(k − s)/length(e− s)

if s and e are valid locations then

bstart ← cost(s) {lower bound cost at location s}

bend ← cost(e) {lower bound cost at location e}

return bstart − (bstart − bend) · lenr
else if s is not valid and e is a valid location then

return max(cmin, (length(e− s)/tanθ) · lenr − tend)

else if s is valid and e is not a valid location then

bstart ← cost(s)

return bstart − (bstart − cmin) · lenr
else {both s and e are invalid locations}

return cmin

end if

cb − d/tanθ by a small amount (0.5 units) to bring those regions out of shadow. In this case, d is

defined to be the distance from the current node to the end of the eye/mouth.

Finally, if we are in an unconstrained region, bb approaches cmin according to cb − d/tanθ at

locations preceding an anti-shadow region; this calculation avoids the placement of features whose

shadows will extend into the anti-shadow region. If the current location follows an anti-shadow

region, we linearly interpolate between the lower bound cost at the start of the unconstrained

region and cmin. The manner in which the lower bound is set in unconstrained regions prevents

tall features from residing beside short features – such discontinuities are unnatural. This provides

a smooth transition to the minimum cost cmin. The process is detailed in Algorithm 7.

For consistency with the primary features, bb is taken as the maximum of the calculated lower

bound and cmin. The visualizations of bb for both the “TEXT” and smiley face renders are given

in Figure 5.7. The exact cost of a secondary feature’s generator node is then calculated as Csec(n),

or fBm in this case, scaled between [bb, bt] at that node. Scaling fBm consists of normalizing fBm

into the interval [0, 1] and using the normalized values to index into the interval [bb, bt]. If the

normalized fBm value is zero, then the cost of the generator node is bb; if the normalized fBm value

is one, then the cost of the generator node is bt.

98

(a) (b)

Figure 5.7: Visualization of the lower bound bb in the (a) “TEXT” and (b) smiley
face renders.

Step 8 of Algorithm 4 takes the generator node locations from both the primary and secondary

terrain features and combines them to form the final set of generator node locations F . In Step 9,

Dijkstra’s algorithm is applied with the frontier consisting of the nodes at locations in F . When

Dijkstra’s algorithm is applied for these renders, it is not halted as in Algorithm 3. Dijkstra’s

algorithm is not halted because a single parallel pass with all nodes is used to calculate the resulting

cost field. This single pass is identical to the creation of the approximate terrain in step 5 of

Algorithm 3. However, blending is not performed in Algorithm 4 because it modifies the height

field where least-cost paths from differing generators are nearly identical in cost. The blending

process can change the height difference between shadow start and end points. Changing this

difference can undesirably shorten or lengthen shadows. Furthermore, constant profiles were used

to maintain the generator costs of the primary terrain features (see Section 5.4). These decisions

were made to minimize the number of factors that could change the desired shadows.

Finally, step 10 converts the cost field resulting from Dijkstra’s algorithm and the base terrain

Tb(n) into the final height field. Specifically, each node’s cost c is converted to height hc by

subtracting c from the maximum height max{h} of any generator node in the graph. In our

implementation, each node stores a cost and a height; max{h} has a cost of zero. The conversion

from cost to height is given in Equation 5.3.

hc = max{h} − c (5.3)

However, the maximum of hc and the height at the corresponding location in Tb(n) is taken as the

final height. This process is repeated for every node in the graph, resulting in the final height field.

99

5.3.1 TEXT

The primary terrain features for the “TEXT” render are created in a straightforward manner. The

goal is to assign a cost to each start node in Figure 5.6a so that it casts a shadow that ends at its

corresponding end node in Figure 5.6c. Figure 5.3a visualizes the process: if we can calculate the

distance m between the start and end node for each shadow segment, we can calculate the cost for

each start node. The cost co of a start node is given in Equation 5.4 and is a function of the cost

cb of the base terrain Tb(n) at the end node location, distance m, and light tilt angle θ.

co = cb −m/tanθ (5.4)

Equation 5.4 is applied to every start node. The minimum cost of a start node is stored so that

secondary terrain features have a consistent altitude (step 7 of Algorithm 4). The results of this

process can be seen in Section 5.4.

5.3.2 Smiley Face

The creation of primary terrain features for the smiley face render requires a different methodology

compared to Subsection 5.3.1. This is because the smiley face render contains non-shadow areas

(the eyes and mouth) surrounded by shadowed areas (the head). A differing approach is motivated

by the fact that the application of Subsection 5.3.1’s methodology to the smiley face render results

in unnatural, jagged features, as seen in Figure 5.8a. In the case of the smiley face, the interior

non-shadow areas can be interpreted as breaking up a longer shadow segment beginning at the top

of the head and ending at the bottom of the head. In the previous approach (Subsection 5.3.1),

local height maxima are defined at the start of every shadow segment. Since interior non-shadow

areas result in more shadow segments, there is an increase in the number of local height maxima.

This increase results in the aforementioned unnatural and jagged terrain features. As a result,

an iterative approach was developed to avoid these drawbacks. Figure 5.8a shows the smiley face

render synthesized using the “TEXT” method. The majority of this terrain is dominated by steep,

jagged features which clash with the base terrain. However, using an iterative approach avoids

such features and produces the terrain in Figure 5.8b. This terrain contains shallower features that

closely resemble the base terrain, resulting in a more realistic result.

The aforementioned iterative approach involves the use of a homotopic tree [80]. Each depth/level

in the tree stores region IDs. Regions in Ir are stored at different depths in the tree. The depth

that a given region appears at is a function of its surroundings. The parent of a given level (with

the exception of the root level) consists of the regions that surround the current level’s regions.

If a given level contains multiple regions, each region has a different ID for easy identification.

Such an arrangement is shown in Figure 5.9. This organizational hierarchy facilitates the iterative

processing required to render the smiley face.

100

(a) (b)

Figure 5.8: (a) OpenGL render of the smiley face terrain synthesized via the
methodology for “TEXT” and (b) OpenGL render of the smiley face terrain syn-
thesized via an iterative approach.

The iterative algorithm begins by assigning costs to the start nodes associated with Figure 5.9c.

The goal is to synthesize terrain features whose shadows cast a shape identical to that in Figure 5.9c.

The cost of these nodes are calculated in the exact same manner as the generators of primary terrain

features for the “TEXT” render (Equation 5.4). At this point, we have a single ridge that casts

a circular shaped shadow corresponding to the smiley face’s head. In order to synthesize the non-

shadowed areas corresponding to the eyes and mouth (Figure 5.9d), a different approach is taken.

Random locations in the eye and mouth regions have their cost set so that they are just above the

head’s shadow line. An example shadow line is the gold, diagonal line in Figure 5.3a. As each level

in the tree is processed, the hierarchical organization makes it easy to locate the features from the

previous level. This is necessary, for example, for determining the cost of the shadow line. The

iterative approach produces the smiley face renders seen in Section 5.4 and avoids the synthesis

of unnatural, jagged features that result from applying the process outlined in Subsection 5.3.1.

However, this iterative approach also introduces other unnatural features, which are discussed in

Section 5.4.

5.4 Results

Results of Algorithm 4 are now presented. Again, the synthesis of terrains whose shadows embed

words and/or imagery must balance two competing goals: realism vs. adherence to desired shadows.

The shadows should be recognizable, but the terrain should look realistic. The results show that

the proposed method was able to balance these competing goals, though the smiley face render

101

(a) (b)

(c) (d)

Figure 5.9: Visualization of the homotopic tree for the smiley face render. Im-
age (a) shows an annotated shadow image. The regions are background r0, head
r1, right eye r2, left eye r3, and mouth r4. Image (b) shows the corresponding
homotopic tree. Image (c) shows the smiley face’s head and image (d) shows the
face (the eyes and mouth). Each region has a different label (grayscale value) that
facilitates region identification. The labels in each image are not part of the input
and are merely visual aids for image regions.

102

(a) (b)

Figure 5.10: Terrain whose shadows spell the word “TEXT” for a pareidolia effect.
Image (a) gives an overhead perspective to emphasize “TEXT” and image (b) shows
the same scene with different camera and light placement, making the embedded
word difficult to see.

leaves room for improvement. Figure 5.10 shows the “TEXT” render and Figure 5.11 shows the

smiley face render.

The base terrains for each render are given in Figure 5.12. The “TEXT” base terrain was

generated using 1311 randomly (uniformly distributed over the height field or cost range) generated

peaks with a randomly assigned cost in [0.0, 20.0] and 200 randomly generated ridges with a cost

equal to 25% of the original cost. Recall that ridges are formed by running Dijkstra’s algorithm

from the peak generator nodes and then selecting a random node and tracing back on the least-cost

path to the originating node. Original cost refers to the cost assigned by this pass of Dijkstra’s

algorithm. The underlying graph for this base terrain had µw = 2.0, r = 1.5, though the edges

were scaled by 50% of their original weight to create a smoother base terrain. The smiley face

base terrain was generated using 31457 randomly generated peaks with a randomly assigned cost

in [0.0, 20.0] and 4800 randomly generated ridges with a cost equal to 25% of the original cost. The

underlying graph for this base terrain had µw = 2.0, r = 1.5, though the edges were also scaled

by 50% of their original weight to create a smoother base terrain. The smiley face base terrain is

smoother than the “TEXT” base terrain because the topographies of the primary and secondary

features in these renders are different. The “TEXT” terrain contains steeper and rougher features,

whereas the smiley face render is smoother in appearance.

The final renders (Figures 5.10 and 5.11) used different parameters than the base terrains. The

number and location of start and end nodes for each render is visualized in Figure 5.6. The “TEXT”

render had θ = 45.0, µw = 2.0, and r = 1.5.

103

(a) (b)

Figure 5.11: Terrain whose shadows create a smiley face for a pareidolia effect.
Image (a) gives an overhead perspective to emphasize the smiley face and image
(b) shows the same scene with different camera and light placement, making the
embedded image more difficult to see.

(a) (b)

Figure 5.12: Base terrains for the “TEXT” and smiley face renders. Image (a)
shows the base terrain for “TEXT” and image (b) shows the smiley face’s base
terrain.

104

Figure 5.13: Smiley face render that incorporates steeper terrain features, as
well as complementary terrain features that appear in the surrounding area. This
terrain was synthesized using the proposed iterative method, and the steeper terrain
features were accomplished using µw = 2.0 and r = 1.5.

The light location was ~s = (−295.64, 320.0, 122.46) which resulted in ~v = (0.65,−0.71,−0.27). Its

secondary features consisted of 10 peaks and 75 ridges, and fBm (H=3.0, Lacunarity=2.0, and

Octaves=2) normalized within [0.0, 1.0] was used to determine the exact cost in [bb, bt] at each

node.

The smiley face render had θ = 75.0, µw = 1.0, and r = 0.75. The light location was ~s =

(0.0, 320.0,−320.00) which resulted in ~v = (0.0,−0.71, 0.71). Its secondary features consisted of 10

peaks and 75 ridges. Also, 16384 nodes were added in the eyes and mouth to make these regions

non-shadowed. Finally, fBm (H=3.0, Lacunarity=2.0, and Octaves=2) normalized within [0.0, 1.0]

was used to determine the exact cost in [bb, bt] at each node. Unfortunately, the smiley face terrain

in Figure 5.11 contains some unnatural ridges and is overly smooth. Recall that the smiley face

method randomly places generator nodes in the eyes and mouth regions in order to bring these

locations out of shadow. This is effective for establishing the interior non-shadow regions but causes

the eye and mouth regions to be relatively smooth and flat. For consistency, the rest of the terrain

is synthesized in a similar fashion. Though terrain heterogeneity is desirable, too much diversity

can look unnatural (see Figure 5.13).

Per-node profiles were required in order to maintain the costs of primary terrain generators after

the application of Dijkstra’s algorithm. If the difference in cost between adjacent nodes exceeds the

edge weight between them, Dijkstra’s algorithm will redefine the larger cost. Therefore, a constant

profile was used for each generator node to avoid this scenario. A constant profile means that

the profile’s slope is constant. Specifically, a scalar value storing the maximum steepness between

the current generator node and a node from the same feature with a larger cost was used as the

105

constant profile. All edges on a given path J have their weight multiplied by this scalar value – all

edge weights are multiplied by the scalar value associated with the generator node that J originates

at. This step ensures that the calculated costs are maintained after running Dijkstra’s algorithm.

Both renders were synthesized on a height field with a resolution of 256 × 256. Algorithm 4

was implemented in C++, and was executed in Mandriva Linux 2008.1 running on a Pentium 4

2.80GHz processor with 1GB RAM. The “TEXT” render took 10 seconds to synthesize, and the

smiley face render took 12 seconds to synthesize.

Algorithm 4 produces realistic terrains that embed words and/or imagery in their shadows.

The method is easy to use and can handle varying types of input shadow images. The inclusion

of µw and r facilitate terrain diversity and the limited restrictions on secondary terrain features

allow for the synthesis of realistic terrains. However, it is still a proof of concept. Simple shadows,

that do not contain interior non-shadowed areas, are handled according to the process outlined in

Subsection 5.3.1. More complex shadows, that contain interior non-shadowed areas, are handled

according to the process outlined in Subsection 5.3.2. Unfortunately, this iterative approach in-

troduces a tradeoff: it can avoid the rough, jagged features seen in Figure 5.13, but introduces

artificial looking plateaus in non-shadow regions such as the eyes and mouth (see Figure 5.8b).

106

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Terrain synthesis involves the creation of a model that approximates a terrain resulting from ero-

sional and geological processes. It is an important problem because synthetic terrains are widely

used in film and video games. Because terrains found in nature result from complex erosional and

geological processes, synthesizing terrains is a difficult task. Existing terrain synthesis methods are

either difficult to control, produce homogeneous results, are time consuming, or require an existing

height field that will serve as an exemplar for the resulting terrain.

This thesis presents a procedural algorithm based on path planning for terrain synthesis. Ter-

rains are synthesized by calculating the least-cost path cost for every non-generator node from

multiple generator nodes. The proposed algorithm provides control over feature placement, terrain

profile, mean edge weight, maximum edge weight deviation, and input stroke costs. Terrain profiles

allow the user to easily control the terrain style. The mean edge weight controls the steepness

of the terrain and the maximum edge weight deviation controls terrain roughness. Using existing

terrain synthesis methodologies for the calculation of input stroke costs provides an easy way to

incorporate realistic height fields – the input stroke costs define the initial topographies of the

features they define. The level of control provided in this work creates different terrain styles

that realistically model the various topographies found in nature. This control also facilitates the

synthesis of terrains whose features embed imagery in their shadows or dominant features. The

main contributions of this thesis are the introduction of path planning for terrain synthesis, control

over feature placement and terrain style, the inclusion of imagery and text in terrain features and

shadows, and the ability to synthesize a great range of different terrain structures.

Chapter 3 details the proposed algorithm. Specifically, Algorithm 3 begins by initializing a

graph. The edge weights in this graph are calculated according to a user provided mean edge

weight and maximum edge weight deviation. With the graph initialized, a set of generator nodes

is identified and the maximum permitted cost in the graph is established. Next, a scaling function

is created for each input profile; a scaling function replaces the slopes and heights computed from

edge weights with user-sketched slopes and heights. With the generators and scaling functions

107

defined, an approximate cost field is created. This cost field is used in the last step of Algorithm 3;

the last step terminates the search of Dijkstra’s algorithm when the individual terrain features are

synthesized and blended together. As previously mentioned, terrains are synthesized by calculating

the least-cost path cost for every non-generator node from multiple generator nodes; a stroke is a

contiguous set of generator nodes that collectively define the height and location of a single terrain

feature. The algorithm proposed in Chapter 3 creates a realistic height field subject to the input

constraints on terrain feature location and style.

The 26 resulting terrains presented in Chapter 4 show that it is easy produce a diverse set of

realistic and artificial terrains with our method. An artificial terrain’s dominant features depict

recognizable images and/or words. The method is particularly adept at producing mountain ranges,

hills, craters, cinder cone volcanoes, and faults. However, bodies of water, canyons, tower karsts,

and river terraces are not as easy to synthesize. These findings are qualitatively supported by

comparing each result to a reference photo. The reference photo is included as an exemplar of

the feature, and the comparison is meant to show that our synthesized results are also sensible

exemplars of the desired terrains. The chapter also shows that using input textures for terrain

feature placement and/or edge weights can produce realistic terrains. Our findings suggest that

structured high-frequency, high-contrast input textures are desirable.

In addition to comparing our results to reference photos, we also evaluate our method by com-

paring it to existing methods. The evaluation shows that terrain feature placement with our method

makes it easier than, or as easy as, that of existing methods. Our algorithm does not produce ho-

mogeneous terrains like that of fBm because it incorporates random graph edge weights, permits

the inclusion of multiple topography profiles, and allows precise control over placement of terrain

features and their heights. These properties all allow the artist to create highly heterogeneous ter-

rains. Extended features, which are problematic for the RMF terrain model, are easy to synthesize

in our method as well. Additionally, designing terrains in the proposed system is efficient; this sys-

tem does not heavily rely on an existing height field that serves as the foundation for new terrain,

and the complex simulation programming involved in physically-based models is not required.

Chapter 4 ends with a quantitative measurement of our algorithm’s performance. It is shown

that per-stroke cost, where cost refers to the area that Dijkstra’s algorithm searches, is approx-

imately constant, assuming the density of features is constant at larger height field resolutions.

Furthermore, at a resolution of 512 × 512, the terrains presented in Chapter 4 took 28.08 seconds

on average to render, though the minimum and maximum render times were 7 seconds and 135

seconds, respectively. Figure 6.1 shows a histogram of the terrain synthesis times for these results.

Chapter 5 introduces terrains that create a pareidolia effect, but the method is currently a

proof of concept. These are terrains whose dominant features embed imagery in their shadows.

Embedding imagery in the shadows of terrains means that the usage of fBm, or any existing

108

Figure 6.1: Histogram of the terrain synthesis times for all presented results.

methodology, for the cost of generator nodes is no longer applicable because a great deal of control

over the heights of certain generator nodes is required. A shadow with a length of m units requires

the shadow casting feature to be m/tanθ units taller than the end of the shadow, where θ is the

light tilt angle from the vertical. However, complementary features known as secondary features

are not synthesized according to this process because they do not cast recognizable shadows. The

method then ends with the synthesis of the final height field, which is created in a manner similar

to that of the approximate terrain in Algorithm 3.

Two results are shown in Chapter 5. One terrain contains the words “TEXT” in its shadows,

and the other contains the image of a smiley face. The “TEXT” render is able to produce a realistic

result while accurately embedding the word in its shadows. Unfortunately, the smiley face render

contains some unnatural ridges and is overly smooth. It is smooth because the proposed iterative

method was developed to avoid the jagged, rough topography that is characteristic of the “TEXT”

terrain. Recall that the smiley face method randomly places generator nodes in the eyes and mouth

regions in order to bring these locations out of shadow. This is effective for establishing the interior

non-shadow regions but causes the eye and mouth regions to be relatively smooth and flat. For

consistency, the rest of the terrain is synthesized in a similar fashion. Though terrain heterogeneity

is desirable, too much diversity can look unnatural. The iterative smiley face approach introduces a

tradeoff; it can avoid the rough, jagged features seen in the “TEXT” result, but introduces artificial

looking plateaus in non-shadow regions.

109

6.2 Future Work

One possibility for future work would be to incorporate bodies of water. Currently, bodies of water

can be added to any of the aforementioned results by simply selecting a water level height and

rendering water at that height. However, this is a post-process, meaning bodies of water are not

explicitly modelled. A possible solution for bodies of water is similar to the process for synthesizing

craters. The user could manually draw a coastline, and when Dijkstra’s algorithm searches this

region, a profile corresponding to the body of water would be used, regardless of a node’s profile

ID. Furthermore, Dijkstra’s algorithm would not terminate near sea level in order to synthesize

features below sea level.

Profile resolution is another avenue to explore in future work. When the profile is read, it is

scaled within a cost of zero and the sea level cost. Unfortunately, many costs are undefined in the

scaled profile if its y-axis resolution is significantly lower than the sea level cost. This situation

makes it difficult to determine the slope at the undefined costs. To remedy the situation, the slope

is calculated by linearly interpolating between the neighbouring profile locations with a defined

slope. The combination of missing data and linear interpolation introduces artifacts into the scaled

profile (which calculates the scaling term ws(c)). These artifacts can be desirable because they can

produce topographical features such as rock strata. This means that the user does not have to

explicitly model such features by hand.

The blending function used in this work could also be investigated. The results shown in

Chapter 4 use a constant blending bias value b over the entire height field. To quickly summarize,

as b increases, the final terrain height approaches the maximum height at each location in the

height field. When b = 0, the average height at each height field location is taken. However, b

does not have to be constant. Spatially varying b could produce smoother, more blended terrains

in some regions, and rougher, less blended terrains in others. The overall goal of spatially varying b

would be to increase the heterogeneity of the synthesized terrains. Another aspect of the blending

function that could be investigated is determining which features contribute to the final blend.

When synthesizing the crater and lunar landscape results in Subsection 4.2.5, height values from

non-crater features do not contribute to the final height values in the crater interiors. The selective

inclusion of heights produces the impact effect seen in craters. However, it could also be used to

isolate local minima, such as bodies of water. Further analysis of the application of this effect could

allow for the explicit modelling of valleys and bowl-shaped depressions.

Three final areas to explore could be alternative edge weight calculation methods, further re-

finement of the resulting synthetic terrain, and moving the pareidolia terrains in Chapter 5 from

a proof of concept framework to a more robust and realistic framework. Section 4.3 explored the

usage of textures for edge weights. Our early findings indicate that relatively stochastic and high in

110

contrast textures produce realistic terrains, but exploring other texture properties could result in

additional realistic or artificial terrains. Here, artificial refers to martian and/or fictional topogra-

phies. It would also be interesting to see how easy it is to incorporate more features into the final

synthetic terrain. Questions such as “Will the blending function realistically merge new features?”,

and ”Is there utility in post-processing the terrain?” would be addressed. This sort of iterative

refinement could be beneficial in the stages of terrain prototyping because the addition of a single

feature requires a relatively small overhead, and it would allow for continuous visual feedback. In

Chapter 5, we mentioned that pareidolia terrains are currently a proof of concept. To establish

our method as a robust technique, it needs to realistically capture more shadow regions with more

varied shape. Furthermore, the non-shadow regions are too flat. Future work would like to address

these issues to not only increase the realism of the resulting synthetic terrains, but to capture a

wider variety of shadow regions. Such additions to the method could be used to create realistic

terrains that subtly incorporate hidden images for applications such as advertising.

111

References

[1] Luke Addison. Bicaz canyon 1. Yahoo Flickr, June 2008. http://www.flickr.com/photos/
1uk3/2581389806/; Access Date: February 17, 2009.

[2] M. Akeo, H. Hashimoto, T. Kobayashi, and T. Shibusawa. Computer graphics system for
reproducing three-dimensional shape from idea sketch. Comput. Graph. Forum, 13(3):477–
488, 1994.

[3] Nancy M. Amato, O. B Bayazit, Lucia K. Dale, Christopher Jones, and Daniel Vallejo. Choos-
ing good distance metrics and local planners for probabilistic roadmap methods. Technical
report, Texas A & M University, 1998.

[4] Francisco Antunes. Leaves. Yahoo Flickr, December 2007. http://www.flickr.com/photos/
franciscoantunes/2110518922/; Access Date: February 17, 2009.

[5] Kenichi Arakawa and Eric Krotkov. Fractal modeling of natural terrain: Analysis and surface
reconstruction with range data. Graph. Models Image Process., 58(5):413–436, 1996.

[6] Walter G. Arce. Barringer meteor crater. Yahoo Flickr, April 2007. http://www.flickr.
com/photos/walterarce/467202606/; Access Date: 2008; No Longer Available.

[7] Thomas Baudel. A mark-based interaction paradigm for free-hand drawing. In UIST ’94:
Proceedings of the 7th annual ACM symposium on User interface software and technology,
pages 185–192, 1994.

[8] Bedrich Benes and Rafael Forsbach. Layered data representation for visual simulation of
terrain erosion. In SCCG ’01: Proceedings of the 17th Spring conference on Computer graphics,
page 80, 2001.

[9] Bedrich Benes and Rafael Forsbach. Visual simulation of hydraulic erosion. In WSCG, pages
79–94, 2002.

[10] Bedrich Benes, Vaclav Tesinsky, Jan Hornys, and Sanjiv K. Bhatia. Hydraulic erosion. Com-
puter Animation and Virtual Worlds, 17(2):99–108, 2006.

[11] John Brosz, Faramarz F. Samavati, and Mario Costa Sousa. Terrain synthesis by-example.
Advances in Computer Graphics and Computer Vision: International Conferences VISAPP
and GRAPP 2006, 4(2):58–77, 2007.

[12] Richard W. Bukowski and Carlo H. Séquin. Object associations: A simple and practical
approach to virtual 3D manipulation. In SI3D ’95: Proceedings of the 1995 symposium on
Interactive 3D graphics, pages 131–214, 1995.

[13] Danny Z. Chen. Developing algorithms and software for geometric path planning problems.
ACM Comput. Surv., page 18, 1996.

[14] N. Chiba, K. Muraoka, and K. Fujita. An erosion model based on velocity fields for the
visual simulation of mountain scenery. The Journal of Visualization and Computer Animation,
9(4):185–194, 1998.

112

[15] Howie Choset. Coverage for robotics - a survey of recent results. Annals of Mathematics and
Artificial Intelligence, 31(1-4):113–126, 2001.

[16] Denis Collette. These birches are making water in my wild river. . . !!! :))). Yahoo Flickr,
April 2008. http://www.flickr.com/photos/deniscollette/2449484303/; Access Date:
February 17, 2009.

[17] Storm Crypt. Southern California mountain range. Yahoo Flickr, July 2008. http://www.
flickr.com/photos/storm-crypt/2715992898/; Access Date: February 17, 2009.

[18] Carsten Dachsbacher. Interactive Terrain Rendering - Towards Realism with Procedural Models
and Graphics Hardware. PhD thesis, University of Erlangen-Nuremberg, 2006.

[19] Carsten Dachsbacher, Martin Meyer, and Marc Stamminger. Heightfield synthesis by non-
parametric sampling. In Vision, Modeling and Visualization, pages 297–302, 2005.

[20] Ian Lane Davis. Warp speed: Path planning for star trek: Armada. In AAAI Spring Symposium
Technical Report (2000 AAAI Spring Symposium), pages 18—21, 2000.

[21] J. Davis. Mosaics of scenes with moving objects. In CVPR ’98: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages 354–360,
1998.

[22] R. Neumann de Carvalho, H.A. Vidal, P. Vieira, and M.I. Ribeiro. Complete coverage path
planning and guidance for cleaning robots. In Industrial Electronics, 1997. ISIE ’97., Proceed-
ings of the IEEE International Symposium, volume 2, pages 677–682, 1997.

[23] Michael F. Deering. Holosketch: A virtual reality sketching/animation tool. ACM Trans.
Comput.-Hum. Interact., 2(3):220–238, 1995.

[24] Michael F. Deering. The holosketch VR sketching system. Commun. ACM, 39(5):54–61, 1996.

[25] Lucy Dell. Rainbow beads. Yahoo Flickr, September 2006. http://www.flickr.com/photos/
98662646@N00/236184995/; Access Date: February 17, 2009.

[26] Patrick Dirden. Rolling hills. Yahoo Flickr, October 2006. http://www.flickr.com/photos/
sp8254/282061496/; Access Date: February 17, 2009.

[27] Steven C. Dollins. Modeling for the Plausible Emulation of Large Worlds. PhD thesis, Brown
University, 2002.

[28] Dominic. Hay bales. Yahoo Flickr, September 2008. http://www.flickr.com/photos/
dominart/2895914399/; Access Date: February 17, 2009.

[29] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley. Tex-
turing and Modeling: A Procedural Approach. Morgan Kaufmann, third edition, 2002.

[30] Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-parametric sampling. In
ICCV ’99: Proceedings of the International Conference on Computer Vision-Volume 2, page
1033, 1999.

[31] Lynn Eggli, Ching-Yao Hsu, Beat D Bruderlin, and Gershon Elber. Inferring 3D models from
freehand sketches and constraints. Computer-Aided Design, 29(2):101–112, 1997.

[32] Michael Foley. Himalayan hills, Nepal. Yahoo Flickr, January 2007. http://www.flickr.
com/photos/michaelfoleyphotography/340954037/; Access Date: February 17, 2009.

[33] Alain Fournier, Don Fussell, and Loren Carpenter. Computer rendering of stochastic models.
Commun. ACM, 25(6):371–384, 1982.

113

[34] Chris Fry. River rocks at the Japanese garden. Yahoo Flickr, November 2006. http://www.
flickr.com/photos/chrisjfry/309586187/; Access Date: February 17, 2009.

[35] David Galvan. volcanoes.jpg. Yahoo Flickr, October 2005. http://www.flickr.com/photos/
dgalvan/57921165/; Access Date: February 17, 2009.

[36] L. Gewali, A. Meng, J. S. Mitchell, and S. Ntafos. Path planning in 0/1/∞ weighted regions
with applications. In SCG ’88: Proceedings of the fourth annual symposium on Computational
geometry, pages 266–278, 1988.

[37] Michael Gleicher. Integrating constraints and direct manipulation. In SI3D ’92: Proceedings
of the 1992 symposium on Interactive 3D graphics, pages 171–174, 1992.

[38] Jon Higgins. Sunrise, Banner Peak from 1000 Island Lake, Ansel Adams wilderness, Sierra
Nevada. Yahoo Flickr, February 2007. http://www.flickr.com/photos/jon_higgins/
388014714/; Access Date: February 17, 2009.

[39] Jason Hunter. Mammatus clouds. Yahoo Flickr, May 2007. http://www.flickr.com/photos/
coreburn/487357814/; Access Date: February 17, 2009.

[40] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketching interface for 3D
freeform design. In SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 409–416, 1999.

[41] Marcelo Kallmann. Path planning in triangulations. In Proceedings of the Workshop on
Reasoning, Representation, and Learning in Computer Games, International Joint Conference
on Artificial Intelligence (IJCAI), pages 49–54, 2005.

[42] Alex D. Kelley, Michael C. Malin, and Gregory M. Nielson. Terrain simulation using a model
of stream erosion. In SIGGRAPH ’88: Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, pages 263–268, 1988.

[43] James J. Kuffner. Effective sampling and distance metrics for 3D rigid body path planning.
In Robotics and Automation, Proceedings. ICRA ’04. 2004 IEEE International Conference,
volume 4, pages 3993–3998, 2004.

[44] Jason Lawrence and Thomas Funkhouser. A painting interface for interactive surface defor-
mations. Graph. Models, 66(6):418–438, 2004.

[45] Seungkyu Lee. PSU near-regular texture database. Pennsylvania State University. http:
//vivid.cse.psu.edu/texturedb/gallery/; Access Date: February 17, 2009.

[46] J. P. Lewis. Generalized stochastic subdivision. ACM Trans. Graph., 6(3):167–190, 1987.

[47] Barbara London, John Upton, Ken Kobre, and Betsy Brill. Photography. Prentice Hall, seventh
edition, 2002.

[48] Jeremy Long and David Mould. Dendritic stylization. The Visual Computer, 2008.

[49] Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, 1982.

[50] Benoit B. Mandelbrot. Fractal Landscapes Without Creases and With Rivers, in The Science
of Fractal Images, chapter Appendix A, pages 243–260. Springer-Verlag, 1988.

[51] Benoit B. Mandelbrot and John W. Van Ness. Fractional Brownian motions, fractional noises
and applications. SIAM Review, 10(4):422–437, 1968.

[52] Lee Markosian, Michael A. Kowalski, Daniel Goldstein, Samuel J. Trychin, John F. Hughes,
and Lubomir D. Bourdev. Real-time nonphotorealistic rendering. In SIGGRAPH ’97: Pro-
ceedings of the 24th annual conference on Computer graphics and interactive techniques, pages
415–420, 1997.

114

[53] Stephen Marshak and Donald R. Prothero. Earth: Portrait of a Planet. W. W. Norton &
Company, 2001.

[54] David Mould and Kevin Grant. Stylized black and white images from photographs. In NPAR
’08: Proceedings of the 6th international symposium on Non-photorealistic animation and ren-
dering, pages 49–58, 2008.

[55] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis and rendering of eroded fractal
terrains. In SIGGRAPH ’89: Proceedings of the 16th annual conference on Computer graphics
and interactive techniques, pages 41–50, 1989.

[56] F. Kenton Musgrave. Methods for Realistic Landscape Imaging. PhD thesis, Yale University,
1993.

[57] Kenji Nagashima. Computer generation of eroded valley and mountain terrains. The Visual
Computer, 13(9–10):456–464, 1997.

[58] NASA. A face on Mars. NASA Images, July 1976. http://nasaimages.org/luna/servlet/
detail/NVA2~4~4~7500~108026:A-Face-On-Mars; Access Date: February 17, 2009.

[59] NASA. Ancient martian highlands. NASA Images, 1977. http://nasaimages.org/
luna/servlet/detail/nasaNAS~20~20~120972~227675:Ancient-Martian-Highlands; Ac-
cess Date: February 17, 2009.

[60] NASA. Highest-resolution view of “face on Mars”. NASA Images, April
2001. http://nasaimages.org/luna/servlet/detail/NVA2~13~13~23084~123625:
Highest-Resolution-View-of--Face-on; Access Date: February 17, 2009.

[61] B. Neidhold, M. Wacker, and O. Deussen. Interactive physically based fluid and erosion
simulation. In Eurographics Workshop on Natural Phenomena, pages 25–32, 2005.

[62] Christoph Niederberger, Dejan Radovic, and Markus Gross. Generic path planning for real-
time applications. In CGI ’04: Proceedings of the Computer Graphics International, pages
299–306, 2004.

[63] Lerma Olayres. 70610024. Yahoo Flickr, May 2005. http://www.flickr.com/photos/lolay/
14607205/; Access Date: February 17, 2009.

[64] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, second edition,
1998.

[65] Dinesh K. Pai and L. M. Reissell. Multiresolution rough terrain motion plan-
ning. Technical Report TR-94-33, University of British Columbia, 1994. cite-
seer.ist.psu.edu/pai94multiresolution.html.

[66] Richard Parmiter. Confetti. Yahoo Flickr, November 2008. http://www.flickr.com/photos/
parmiter/2990899203/; Access Date: February 17, 2009.

[67] Heinz-Otto Peitgen and Dietmar Saupe, editors. The Science of Fractal Images. Springer-
Verlag New York, Inc., 1988.

[68] Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19:287–296, 1985.

[69] David Porter. Canyon de Chelly - Spider Rock. Yahoo Flickr, July 2007. http://www.flickr.
com/photos/davidaporter/847833343/; Access Date: February 17, 2009.

[70] Przemyslaw Prusinkiewicz and Mark Hammel. A fractal model of mountains with rivers. In
Proceeding of Graphics Interface ’93, pages 174–180, 1993.

[71] David Pugh. Designing solid objects using interactive sketch interpretation. In SI3D ’92:
Proceedings of the 1992 symposium on Interactive 3D graphics, pages 117–126, 1992.

115

[72] Jon Ragnarsson. Hola Valley, Norway. Yahoo Flickr, August 2007. http://www.flickr.com/
photos/jonragnarsson/1206975922/; Access Date: February 17, 2009.

[73] William Rowlands. Valley of redemption. Yahoo Flickr, February 2007. http://www.flickr.
com/photos/wrowlands/402244682/; Access Date: February 17, 2009.

[74] V B Sapozhnikov and V I Nikora. Simple computer model of a fractal river network with
fractal individual watercourses. Journal of Physics A: Mathematical and General, 26(15):623–
627, 1993.

[75] Jens Schneider, Tobias Boldte, and Ruediger Westermann. Real-time editing, synthesis, and
rendering of infinite landscapes on GPUs. In Vision, Modeling and Visualization 2006, pages
145–152, 2006.

[76] D. Sharon. Free rippled water texture for layers. Yahoo Flickr, November 2008. http:
//www.flickr.com/photos/pinksherbet/3002844223/; Access Date: February 17, 2009.

[77] Karan Singh and Eugene Fiume. Wires: A geometric deformation technique. In SIGGRAPH
’98: Proceedings of the 25th annual conference on Computer graphics and interactive tech-
niques, pages 405–414, 1998.

[78] Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins, D. Brookshire Conner, and Andries
van Dam. Using deformations to explore 3D widget design. SIGGRAPH Comput. Graph.,
26(2):351–352, 1992.

[79] Planetside Software. Terragen. Planetside Software, September 2005. http://www.
planetside.co.uk/terragen/; Access Date: February 17, 2009.

[80] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis, and Machine
Vision. Thomson Engineering, third edition, 2007.

[81] Paul S. Strauss and Rikk Carey. An object-oriented 3D graphics toolkit. SIGGRAPH Comput.
Graph., 26(2):341–349, 1992.

[82] R. Szeliski and D. Terzopoulos. From splines to fractals. SIGGRAPH Comput. Graph., 23:51–
60, 1989.

[83] Tym. Li River cruise. Yahoo Flickr, October 2006. http://www.flickr.com/photos/tym/
277135885/; Access Date: February 17, 2009.

[84] Richard F. Voss. Random Fractal Forgeries, pages 805–835. Springer-Verlag, 1985.

[85] Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer. Mathematical Statistics with
Applications. Duxbury Press, sixth edition, 2001.

[86] Robert E. Wallace. The San Andreas fault. USGS. http://pubs.usgs.gov/gip/earthq3/;
Access Date: February 17, 2009.

[87] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley, USA, third edition, 1992.

[88] Steven Worley. A cellular texture basis function. In SIGGRAPH ’96: Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques, pages 291–294, 1996.

[89] Ling Xu and David Mould. Modeling dendritic shapes using path planning. In GRAPP
2007, Proceedings of the Second International Conference on Computer Graphics Theory and
Applications, number 2, pages 829–838, 2007.

[90] Yizhou Yu and J. T. Chang. Shadow graphs and surface reconstruction. In ECCV ’02:
Proceedings of the 7th European Conference on Computer Vision-Part II, pages 31–45, 2002.

116

[91] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. SKETCH: An interface for
sketching 3D scenes. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 163–170, 1996.

[92] Howard Zhou, Jie Sun, Greg Turk, and James M. Rehg. Terrain synthesis from digital ele-
vation models. IEEE Transactions on Visualization and Computer Graphics, 13(4):834–848,
July/August 2007.

[93] Roberto Zingales. Gravel 1280x1024. Yahoo Flickr, January 2007. http://www.flickr.com/
photos/filicudi/364756371/; Access Date: February 17, 2009.

117

Appendix A

Complete Results

A.1 Overview

This chapter presents complete results for each of the terrains synthesized in Chapter 4. Each
terrain’s inputs, parameters, outputs, and running times are provided; the symbol ft refers to the
total feature count. This information is summarized in Table A.1. Unless otherwise noted, fBm
is calculated using H = 3.0, Lacunarity=2.0, and Octaves=2. The calculation takes place over a
4×4 grid scaled to the height-field resolution – the step size along each axis is 0.0078 = 4.0/512 for
a 512× 512 height field. Furthermore, the resulting fBm values are scaled by 30.0. Finally, arrows
are used in some figures to aid in the visualization of certain strokes, and false colouring is used in
profile ID and select cost images to emphasize the assignment of profiles and costs to strokes.

A.2 Realistic Terrains

A.2.1 V-Shaped Valley

The v-shaped valley was synthesized in 7 seconds using µw = 2.0, r = 1.5, s = 2.0, b = 15, and
ft = 2. Generator node locations F are provided in Figure A.1a and the included profiles are given
in Figures A.1(b–c); the profile in Figure A.1c is used when Dijkstra’s algorithm explores non-valley
regions. Generator costs were assigned using fBm, which is visualized in Figure A.1e. These inputs
and parameters create the final render in Figure A.1f.

A.2.2 U-Shaped Valley

The u-shaped valley was synthesized in 8 seconds using µw = 2.0, r = 1.5, s = 2.0, b = 3, and
ft = 2. Generator node locations F are provided in Figure A.2a and the included profiles are given
in Figures A.2(b–c); the profile in Figure A.2c is used when Dijkstra’s algorithm explores non-valley
regions. Generator costs were assigned using fBm, which is visualized in Figure A.2e. These inputs
and parameters create the final render in Figure A.2f.

A.2.3 Canyon

The canyon was synthesized in 7 seconds using µw = 2.0, r = 1.5, s = 2.0, b = 4, and ft =
7. Generator node locations F are provided in Figure A.3a and the included profile is given in
Figure A.3b. Generator costs were assigned using fBm, which is visualized in Figure A.3d. These
inputs and parameters create the final render in Figure A.3e.

A.2.4 Layers

The layers result was synthesized in 13 seconds using µw = 2.25, r = 1.25, s = 1.75, b = 4, and
ft = 7. Generator node locations F are provided in Figure A.4a and the included profile is given
in Figure A.4b. Generator costs were assigned using fBm (H = 1.0 and Octaves=8) evaluated over
a 6 × 6 grid. These costs are visualized in Figure A.4d. These inputs and parameters create the
final render in Figure A.4e.

A.2.5 Tower Karst Landscape

The tower karst landscape was synthesized in 7 seconds using µw = 0.5, r = 0.35, s = 4.0, b = 3,
and ft = 8. Generator node locations F are provided in Figure A.5a and the included profiles are

118

Table A.1: Summary of each result’s input and parameter values used in the pro-
posed terrain synthesis algorithm: mean edge weight µw, maximum edge weight
deviation r, generator node locations F (provided as figure numbers), sea level scal-
ing value s, profiles P (provided as figure numbers), number of profiles np, blending
bias b, total feature count ft, and synthesis time t (in seconds). For conciseness,
SBM replaces sketch-based modelling, and ED/EW replaces edge detection and
edge weights.

Result µw r F s P np b ft t
V-shaped valley 2.0 1.5 A.1a 2.0 A.1(b–c) 2 15 2 7 s
U-shaped valley 2.0 1.5 A.2a 2.0 A.2(b–c) 2 3 2 8 s
Canyon 2.0 1.5 A.3a 2.0 A.3b 1 4 7 7 s
Layers 2.25 1.25 A.4a 1.75 A.4b 1 4 7 13 s
Tower Karst landscape 0.5 0.35 A.5a 4.0 A.5(b–d) 3 3 8 7 s
Hills 0.75 0.375 A.6a 2.5 A.6(b–d) 3 3 6 7 s
Mountain range 1.0 0.75 A.7a 1.01 A.7(c–f) 4 4 100 24 s
River terrace 1.0 0.5 A.8c 1.1 A.8b 1 8 3 8 s
Fault 1.5 1.0 A.9a 1.01 A.9(c–d) 2 3 6 10 s
Crater landscape 1.5 1.0 A.10(a–b) 1.01 A.10(c–f) 4 4 100 36 s
Cinder cone 1.0 0.5 A.11(a–b) 2.0 A.11(c–e) 3 3 4 7 s
Lunar landscape 1.5 1.0 A.12a 1.01 A.12(b–e) 4 4 38 18 s
Musgrave landscape 1.5 1.0 A.13(a–b) 1.01 A.13(c–e) 3 4 402 27 s
Edge detection 1.0 0.75 A.14a 1.01 A.14c 1 4 288 71 s
Edge weights N/A N/A A.15a 2.5 N/A 0 4 7 12 s
ED/EW #1 N/A N/A A.16a 5.0 N/A 0 3 54 63 s
ED/EW #2 N/A N/A A.17a 5.0 N/A 0 3 229 128 s
ED/EW #3 N/A N/A A.18a 5.0 N/A 0 3 344 135 s
ED/EW #4 N/A N/A A.19a 5.0 N/A 0 3 229 75 s
“U of S” text N/A N/A A.20a 2.5 N/A 0 3 22 9 s
IMG logo N/A N/A A.21a 2.5 N/A 0 3 16 10 s
λ symbol N/A N/A A.22a 2.5 N/A 0 3 3 9 s
SBM #1 1.5 0.75 A.23a 1.25 A.23(b–c) 2 3 31 12 s
SBM #2 1.5 0.75 A.24a 1.1 A.24(b–e) 4 3 58 9 s
SBM #3 2.0 1.0 A.25a 1.01 A.25(b–d) 3 3 38 11 s
SBM #4 1.5 0.75 A.26a 1.01 A.26(b–d) 3 3 15 7 s

119

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure A.1: Input and output for the v-shaped valley result: (a) generator node
locations F , (b–c) profiles P , (d) feature ID, (e) generator node costs, (f) final
render, (g) final OpenGL render, and (h) final height field. False colouring has been
used in images (d–e) to increase label and cost visibility. The colourbar associated
with each image maps pixel colour to a pixel intensity in the interval [0,255]; lower
pixel intensity corresponds to smaller cost.

120

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure A.2: Input and output for the u-shaped valley result: (a) generator node
locations F , (b–c) profiles P , (d) feature ID, (e) generator node costs, (f) final
render, (g) final OpenGL render, and (h) final height field. False colouring has been
used in images (d–e) to increase label and cost visibility. The colourbar associated
with each image maps pixel colour to a pixel intensity in the interval [0,255]; lower
pixel intensity corresponds to smaller cost.

121

(a) (b) (c)

(d) (e) (f)

Figure A.3: Input and output for the canyon result: (a) generator node locations
F , (b) profiles P , (c) feature ID, (d) generator node costs, (e) final render, and (f)
final height field.

122

(a) (b) (c)

(d) (e) (f)

Figure A.4: Input and output for the layers result: (a) generator node locations
F , (b) profiles P , (c) feature ID, (d) generator node costs, (e) final render, and (f)
final height field.

given in Figures A.5(b–d); profile ID was calculated as feature ID number modulo three. Generator
costs were assigned using fBm, which is visualized in Figure A.5g. These inputs and parameters
create the final render in Figure A.5h.

A.2.6 Hills

The hills result was synthesized in 7 seconds using µw = 0.75, r = 0.375, s = 2.5, b = 3, and ft = 6.
Generator node locations F are provided in Figure A.6a. The locations of the hills were manually
placed and their initial costs were calculated using fBm evaluated over a 3 × 3 grid. Specifically,
the generator node costs at the locations visualized in Figure A.6a are calculated by scaling fBm
within a cost range of [0.0, 20.0]. The costs of all generator nodes are visualized in Figure A.6g,
and profile ID is calculated as feature ID number modulo three, in order to add diversity to the
hills. Red pixels in Figure A.6f correspond to Figure A.6b, green pixels correspond to Figure A.6c,
and blue pixels correspond to Figure A.6d. These inputs and parameters create the final render in
Figure A.6h.

A.2.7 Mountain Range

The mountain range result was synthesized in 24 seconds using µw = 1.0, r = 0.75, s = 1.01,
b = 4, and ft = 100. Generator node locations F are provided in Figure A.7a. The locations
of the mountain peaks are randomly generated such that they do not reside in a black region
of Figure A.7b. The initial costs of these peaks are calculated using fBm directly. Ridge node
generator costs are defined as 50% of the original node cost. The costs of all generator nodes are
visualized in Figure A.7h, and profile ID is calculated as feature ID number modulo three, in order
to add diversity to the mountain ranges.

123

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.5: Input and output for the tower karst landscape result: (a) generator
node locations F , (b–d) profiles P , (e) feature ID, (f) profile ID, (g) generator node
costs, (h) final render, and (i) final height field. Arrows in (a,f) are not part of
the input and are merely visual aids for single node generators which are otherwise
difficult to see.

124

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.6: Input and output for the hills result: (a) generator node locations F ,
(b–d) profiles P , (e) feature ID, (f) profile ID, (g) generator node costs, (h) final
render, and (i) final height field. Image (f) uses false colouring to visualize profile
assignment.

125

Green pixels in Figure A.7g correspond to Figure A.7c, blue pixels correspond to Figure A.7d, and
purple pixels correspond to Figure A.7e. These inputs and parameters create the final render in
Figure A.7i.

A.2.8 River Terrace

The river terrace was synthesized in 8 seconds using µw = 1.0, r = 0.5, s = 1.1, b = 8, and
ft = 3. Generator node locations F are provided in the non-black regions in Figure A.8c and the
included profile is given in Figure A.8b. Generator costs were assigned as a function of cost from
the dendritic path in Figure A.8a; this path has a cost of zero. More specifically, the costs from this
path are quantized; the initial, larger set of costs is mapped to a smaller set of costs. The region of
each cost in the smaller set is determined from a percentage range of the maximum cost from the
dendritic path. These ranges are (87.5%, 100.0%], (50.0%, 87.5%], and (12.5%, 50.0%]; each region
is assigned a cost of 0.0, 40.0, and 80.0, respectively. These inputs and parameters create the final
render in Figure A.8f.

A.2.9 Fault

The fault was synthesized in 10 seconds using µw = 1.5, r = 1.0, s = 1.01, b = 3, and ft = 6.
Generator node locations F are provided in Figure A.9a and the included profiles are given in
Figures A.9(c–d). Red pixels in Figure A.9e correspond to Figure A.9d and blue pixels correspond
to Figure A.9c. Generator costs were assigned in two phases: 1) fault costs and 2) surrounding
generator costs. Fault costs were assigned in two passes. The first pass creates the lip of the fault.
The lip is created by selecting the nodes who have a path length of 8 from the path in Figure A.9b;
Dijkstra’s algorithm assigns a path length greater than zero to each non-generator node. All nodes
on the path in Figure A.9b have an initial cost of zero. Seventy-five ridges that emanate from these
nodes are formed. These nodes must be within 80 units of a lip node and their cost is taken as
35% of the existing node cost. The surrounding features, which consist of 5 peaks and 6 ridges,
have their initial cost calculated via fBm and are not permitted to appear within 75 units of a fault
feature. These inputs and parameters create the final render in Figure A.9h.

A.2.10 Crater Landscape

The crater landscape was synthesized in 36 seconds using µw = 1.5, r = 1.0, s = 1.1, b = 4, and
ft = 100. Generator node locations F are provided in Figures A.10(a–b). Figure A.10a defines
the location of the surrounding procedural mountain peaks and hills and Figure A.10b manually
defines the location of the crater. The included profiles are given in Figures A.10(c–f) and their
usage it shown in Figure A.10h. Red pixels in Figure A.10h correspond to Figure A.10f, green
pixels correspond to Figure A.10c, and purple pixels correspond to Figure A.10d. It is important
to note that the profile shown in Figure A.10e is always used when Dijkstra’s algorithm searches
the interior of the crater, and blending ignores the costs of non-crater features inside the crater.
This ensures that the rounded basin is produced.

In this result, two fBm height fields are used to define the initial costs of features: one for the
background mountain range and midground foothills (fBmM), and one for the remaining features
(fBmF). The fBmM height field is sampled over a 12× 12 grid and the resulting values are scaled
by 10.0; this increases high-frequency detail. The resulting fBmF values are scaled by 10.0 as well.
In either case, cost assignment depends on feature type. The midground foothills (24 features)
in Figure A.10a are assigned an initial cost of fBmM scaled between [50%, 80%] of the maximum
fBmM value max{fBmM}. The mountain range generator nodes (40 features) are assigned an
initial cost of fBmM scaled between [0%, 25%] of max{fBmM}. The foreground hills (35 features)
are assigned an initial cost of fBmF scaled between [80%, 100%] of the maximum fBmF value. The
crater generator nodes’s costs require a more complicated process. An approximate cost field is
calculated as per step 6 of Algorithm 3 and the average of the node costs in Figure A.10b minus
25.0 is calculated and stored as µc. Then, the final cost of these nodes is calculated as fBmF

126

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure A.7: Input and output for the mountain range result: (a) generator node
locations F , (b) valley regions, (c–e) profiles P , (f) feature ID, (g) profile ID, (h)
generator node costs, (i) final render, and (j) final height field. Image (g) uses false
colouring to visualize profile assignment.

127

(a) (b) (c)

(d) (e) (f)

(g)

Figure A.8: Input and output for the river terrace result: (a) initial generator
node locations F , (b) profiles P , (c) feature ID, (d) profile ID, (e) generator node
costs, (f) final render, and (g) final height field.

128

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.9: Input and output for the fault result: (a) generator node locations F ,
(b) initial path, (c–d) profiles P , (e) profile ID, (f) feature ID, (g) generator node
costs, (h) final render, and (i) final height field. Image (e) uses false colouring to
visualize profile assignment.

129

scaled within the the range [−0.2 · µc, 0.2 · µc]. The costs of all generator nodes are visualized in
Figure A.10i. These inputs and parameters create the final render in Figure A.10j.

A.2.11 Cinder Cone Volcano

The cinder cone volcano was synthesized in 7 seconds using µw = 1.0, r = 0.5, s = 2.0, b = 3, and
ft = 4. Generator node locations F are provided in Figures A.11(a–b). Figure A.11a visualizes
every stroke used and Figure A.11b manually defines the location of the cinder cone volcano. The
included profiles are given in Figures A.11(c–e) and their usage it shown in Figure A.11g. Green
pixels in Figure A.11g correspond to Figure A.11c and blue pixels correspond to Figure A.11d;
the profile in Figure A.11e is used whenever Dijkstra’s algorithm searches the crater region. The
costs of generator nodes are defined using fBm, and cost assignment depends on feature type. The
cost of the cinder cone volcano generator nodes is calculated as a normalized 1D Gaussian function
(situated along the x-axis) with the standard deviation σ a function of the maximum width Wmax

of the stroke in Figure A.11b. This calculation is given in Equation A.1.

σ = (2.0 ·Wmax)/6.0 (A.1)

The origin is defined as the minimum x-value of a generator node in Figure A.11b. The Gaussian
value is then scaled by 40.0 and fBm scaled within [−10.0, 10.0] is added to this product. The
surrounding features are assigned an initial cost of fBm scaled within a range that is a function of
the maximum cost max{c} of a cinder cone generator node. This cost range is [1.50 ·max{c}, 2.0 ·
max{c}]. Furthermore, these features cannot reside within 128 units of a cinder cone feature. The
initial costs of the surrounding feature ridges are defined as 50% of the existing node costs. The
costs of all generator nodes are visualized in Figure A.11h. These inputs and parameters create the
final render in Figure A.11i.

A.2.12 Lunar Landscape

The crater landscape was synthesized in 18 seconds using µw = 1.5, r = 1.0, s = 1.01, b = 4,
and ft = 38. Generator node locations F are provided in Figure A.12a. Thirty-eight features
were both procedurally and manually placed, as shown in Figure A.12a. Figures A.12(b–e) show
the profiles for the crater exterior, procedurally located hills, manually located hills, and crater
interior, respectively. The profile in Figure A.12b is used to create the crater lip, the profiles in
Figures A.12(c–d) are used to create the rounded hills, and the profile in Figure A.12e is used to
create the bowl-shaped interior of the craters. These associations are visualized in Figure A.12g:
blue pixels correspond to Figure A.12b, dark green pixels correspond to Figure A.12c, and light
green pixels correspond to Figure A.12d. Furthermore, Dijkstra’s algorithm uses only the profile
in Figure A.12e when searching the graph in crater regions, and costs from non-crater features do
not contribute to the final blend in the crater’s interior. This ensures that the craters will have a
rounded profile in their interior. Feature identification is visualized in Figure A.12f.

Crater generator nodes have their cost defined by fBm scaled within a specific cost range, but
this cost range depends on crater size. Large craters have a radius in the interval of [10.7, 85.3]
units, and generator node costs for these craters are calculated by scaling fBm within a cost range
of [0.0, 12.5] units. Small craters have a radius in the interval of [8.5, 14.2] units, and generator
node costs for these craters are calculated by scaling fBm within a cost range of [12.5, 18.75] units;
the hills’s generator costs are calculated using the same cost range as the small craters. The costs
of all generator nodes are visualized in Figure A.12h. Regardless of crater radius, the actual radius
is calculated as a uniform random value within the provided interval. These inputs and parameters
create the final render in Figure A.12i.

A.2.13 Musgrave Landscape

The Musgrave landscape was synthesized in 27 seconds using µw = 1.5, r = 1.0, s = 1.01, b = 4,
and ft = 402. Generator node locations F are provided in Figures A.13(a–b). Figure A.13a defines

130

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure A.10: Input and output for the crater landscape result: (a–b) generator
node locations F , (c–f) profiles P , (g) feature ID, (h) profile ID, (i) generator node
costs, (j) final render, and (k) final height field. Image (h) uses false colouring to
visualize profile assignment.

131

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure A.11: Input and output for the cinder cone result: (a–b) generator node
locations F , (c–e) profiles P , (f) feature ID, (g) profile ID, (h) generator node costs,
(i) final render, and (j) final height field. Arrows in (a) are not part of the input
and are merely visual aids for single node generators which are otherwise difficult
to see. Image (g) uses false colouring to visualize profile assignment.

132

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure A.12: Input and output for the lunar landscape result: (a) generator node
locations F , (b–e) profiles P , (f) feature ID, (g) profile ID, (h) generator node costs,
(i) final render, and (j) final height field. Arrows in (a) are not part of the input
and are merely visual aids for single node generators which are otherwise difficult
to see. Image (g) uses false colouring to visualize profile assignment.

133

the mountain peaks and Figure A.13b defines the lower elevation ridges that connect the peaks.
Furthermore, complementary features such as peaks and ridges are procedurally located, as shown
in Figure A.13f. Initial ridge node costs are calculated as 37.5% of the existing node cost. The
included profiles are given in Figures A.13(c–e) and their usage is shown in Figure A.13g. Red
pixels in Figure A.13g correspond to Figure A.13c, green pixels correspond to Figure A.13d, and
blue pixels correspond to Figure A.13e. In this result, fBm (Octaves=6) is sampled over a 3×3 grid
and the resulting values are scaled by 60.0. However, cost assignment depends on feature type. Each
generator node (46 features) in Figure A.13b is assigned a cost of fBm scaled between [60%, 85%] of
the maximum fBm value max{fBm}. The generator nodes (6 features) in Figure A.13a are assigned
a cost of fBm scaled between [40%, 60%] of max{fBm}. The lower altitude feature generators (150
features) are assigned a cost of fBm inverted and scaled between [60%, 85%] of max{fBm}; the
low altitude hill generators (200 features) are assigned a cost of fBm scaled between [85%, 100%] of
max{fBm}. The costs of all generator nodes are visualized in Figure A.13h and the above inputs
and parameters create the final render in Figure A.13i. Lastly, all heights were scaled by 45% to
more closely approximate the reference render; scaling was performed in Terragen.

A.3 Image Driven Terrains

A.3.1 Edge Detection

The edge detection result was synthesized in 71 seconds using µw = 1.0, r = 0.75, s = 1.01, b = 4,
and ft = 288. Generator node locations F are provided in Figure A.14a and the 50 accompanying
ridges are visualized in Figure A.14e. Ridge generator node costs were calculated using 30% of the
existing node cost. Terrain style was provided via the included profile seen in Figure A.14c. Edge
detection was performed on Figure A.14b [76] using a 3×3 Sobel edge detector. The threshold tg on
the gradient magnitude (for edge detection) is taken to be the halfway point between the minimum
gradmin and maximum gradmax gradient magnitude. This calculation is given in Equation A.2.

tg = gradmin + 0.5 · (gradmax − gradmin) (A.2)

Generator costs were assigned using fBm, which is visualized in Figure A.14e. These inputs and
parameters create the final render in Figure A.14f.

A.3.2 Edge Weights

The edge weights result was synthesized in 12 seconds using s = 2.5, b = 4, and ft = 7. Edge
weights are calculated using Figure A.15b [4], eliminating the need for µw and r. Generator node
locations F are provided in Figure A.15a. This figure also includes 20 ridges, whose generator
node costs were calculated using 50% of the existing node cost. Terrain style was provided via
Figure A.15b; profiles were not used. Specifically, edge weights are assigned the normalized gray
value at each pixel in Figure A.15b scaled within [0.25, 2.5]. Figure A.15b is converted to grayscale
using Equation A.3.

gray = 0.3 · red+ 0.59 · green+ 0.11 · blue (A.3)

This results in all edges of a given node having the same weight. Generator node costs were
assigned using fBm, which are visualized in Figure A.15d. These inputs and parameters create the
final render in Figure A.15e.

A.3.3 Edge Detection and Edge Weights #1

In this result, generator node locations F are calculated by applying a 3 × 3 Sobel edge detector
to Figure A.16b [28] and synthesizing 14 accompanying ridges. The threshold tg on the gradient
magnitude is calculated as per Equation A.2, and these edges are visualized in Figure A.16d. The
resulting set of locations F is visualized in Figure A.16a. Edge weights are determined according to
Figure A.16c [93]. Specifically, the gray value of each pixel in Figure A.16c is calculated according

134

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure A.13: Input and output for the Musgrave landscape result: (a–b) manually
placed generator node locations F , (c–e) profiles P , (f) feature ID, (g) profile ID,
(h) generator node costs, (i) final render, and (j) final height field. Arrows in (a) are
not part of the input and are merely visual aids for single node generators which
are otherwise difficult to see. Image (g) uses false colouring to visualize profile
assignment and contains both manually and procedurally created strokes.

135

(a) (b) (c)

(d) (e) (f)

(g)

Figure A.14: Input and output for the edge detection result: (a) generator node
locations F , (b) input texture [76], (c) profiles P , (d) feature ID, (e) generator node
costs, (f) final render, and (g) final height field.

136

(a) (b) (c)

(d) (e) (f)

Figure A.15: Input and output for the edge weights result: (a) generator node
locations F , (b) input texture [4], (c) feature ID, (d) generator node costs, (e) final
render, and (f) final height field.

to Equation A.3, and is scaled within a range of [0.25, 2.75]. Feature identification is visualized
in Figure A.16e and the costs of generators are visualized in Figure A.16f. The final render in
Figure A.16g and height field in Figure A.16i result from these inputs, parameters, and processes.
The synthesis completed in 1 minute 3 seconds.

A.3.4 Edge Detection and Edge Weights #2

In this result, generator node locations F are calculated by applying a 3 × 3 Sobel edge detector
to Figure A.17b [25] and synthesizing 57 accompanying ridges. The threshold tg on the gradient
magnitude is calculated as per Equation A.2, and these edges are visualized in Figure A.17d. The
resulting set of locations F is visualized in Figure A.17a. Edge weights are determined according to
Figure A.17c [16]. Specifically, the gray value of each pixel in Figure A.17c is calculated according
to Equation A.3, and is scaled within a range of [0.25, 2.75]. Feature identification is visualized
in Figure A.17e and the costs of generators are visualized in Figure A.17f. The final render in
Figure A.17g and height field in Figure A.17i result from these inputs, parameters, and processes.
The synthesis completed in 2 minutes 8 seconds.

A.3.5 Edge Detection and Edge Weights #3

In this result, generator node locations F are calculated by applying a 3 × 3 Sobel edge detector
to Figure A.18b [34] and synthesizing 86 accompanying ridges. The threshold tg on the gradient
magnitude is calculated as per Equation A.2, and these edges are visualized in Figure A.18d. The
resulting set of locations F is visualized in Figure A.18a. Edge weights are determined according to
Figure A.18c [16]. Specifically, the gray value of each pixel in Figure A.18c is calculated according
to Equation A.3, and is scaled within a range of [0.25, 2.75]. Feature identification is visualized
in Figure A.18e and the costs of generators are visualized in Figure A.18f. The final render in

137

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.16: Input and output for first ED/EW result: (a) generator node loca-
tions F , (b) edge detection texture [28], (c) edge weight texture [93], (d) detected
edges, (e) feature ID, (f) generator node costs, (g) final Terragen render, (h) final
OpenGL render, and (i) final height field.

138

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.17: Input and output for second ED/EW result: (a) generator node
locations F , (b) edge detection texture [25], (c) edge weight texture [16], (d) detected
edges, (e) feature ID, (f) generator node costs, (g) final Terragen render, (h) final
OpenGL render, and (i) final height field.

139

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.18: Input and output for third ED/EW result: (a) generator node
locations F , (b) edge detection texture [34], (c) edge weight texture [16], (d) detected
edges, (e) feature ID, (f) generator node costs, (g) final Terragen render, (h) final
OpenGL render, and (i) final height field.

Figure A.18g and height field in Figure A.18i result from these inputs, parameters, and processes.
The synthesis completed in 2 minutes 15 seconds.

A.3.6 Edge Detection and Edge Weights #4

In this result, generator node locations F are calculated by applying a 3 × 3 Sobel edge detector
to Figure A.19b [25] and synthesizing 57 accompanying ridges. The threshold tg on the gradient
magnitude is calculated as per Equation A.2, and these edges are visualized in Figure A.19d. The
resulting set of locations F is visualized in Figure A.19a. Edge weights are determined according to
Figure A.19c [39]. Specifically, the gray value of each pixel in Figure A.19c is calculated according
to Equation A.3, and is scaled within a range of [0.25, 2.75]. Feature identification is visualized
in Figure A.19e and the costs of generators are visualized in Figure A.19f. The final render in
Figure A.19g and height field in Figure A.19i result from these inputs, parameters, and processes.
The synthesis completed in 1 minute 15 seconds.

140

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.19: Input and output for fourth ED/EW result: (a) generator node
locations F , (b) edge detection texture [25], (c) edge weight texture [39], (d) detected
edges, (e) feature ID, (f) generator node costs, (g) final Terragen render, (h) final
OpenGL render, and (i) final height field.

141

(a) (b) (c)

(d) (e) (f)

(g)

Figure A.20: Input and output for the “U of S” text result: (a) generator node
locations F , (b) input texture for edge weights [66], (c) feature ID, (d) generator
node costs, (e–f) final renders, and (g) final height field.

A.3.7 “U of S” Text

The “U of S” text result was synthesized in 9 seconds using s = 2.5, b = 3, and ft = 22. The
parameters µw and r are not used because an input texture provides the edge weights. Generator
node locations F are provided in Figure A.20a and the image that provides the edge weights is given
in Figure A.20b [66]. Specifically, the gray value at each pixel is scaled so that it is within a range
of [0.25, 2.0]. Furthermore, the costs of all generator nodes are determined by scaling fBm within
a cost range of [0.0, 20.0]. All ridge generator nodes have a cost equal to 35% of the existing node
cost (recall that Dijkstra’s algorithm is applied for ridge synthesis). These inputs and parameters
create the final renders in Figures A.20(e–f).

A.3.8 IMG Logo

The IMG logo result was synthesized in 10 seconds using s = 2.5, b = 3, and ft = 16. The
parameters µw and r are not used because an input texture provides the edge weights. Generator
node locations F are provided in Figure A.21a and the image that provides the edge weights is given
in Figure A.21b [66]. Specifically, the gray value at each pixel is scaled so that it is within a range

142

(a) (b) (c)

(d) (e) (f)

(g)

Figure A.21: Input and output for the IMG logo result: (a) generator node
locations F , (b) input texture for edge weights [66], (c) feature ID, (d) generator
node costs, (e–f) final renders, and (g) final height field.

of [0.25, 2.0]. Furthermore, the costs of all generator nodes are determined by scaling fBm within
a cost range of [0.0, 20.0]. All ridge generator nodes have a cost equal to 35% of the existing node
cost (recall that Dijkstra’s algorithm is applied for ridge synthesis). These inputs and parameters
create the final renders in Figures A.21(e–f).

A.3.9 λ Symbol

The λ symbol result was synthesized in 9 seconds using s = 2.5, b = 3, and ft = 3. The param-
eters µw and r are not used because an input texture provides the edge weights. Generator node
locations F are provided in Figure A.22a and the image that provides the edge weights is given in
Figure A.22b [66]. Specifically, the gray value at each pixel is scaled so that it is within a range
of [0.25, 2.0]. Furthermore, the costs of all generator nodes are determined by scaling fBm within
a cost range of [0.0, 20.0]. All ridge generator nodes have a cost equal to 35% of the existing node
cost (recall that Dijkstra’s algorithm is applied for ridge synthesis). These inputs and parameters
create the final renders in Figures A.22(e–f).

143

(a) (b) (c)

(d) (e) (f)

(g)

Figure A.22: Input and output for the λ symbol result: (a) generator node loca-
tions F , (b) input texture for edge weights [66], (c) feature ID, (d) generator node
costs, (e–f) final renders, and (g) final height field.

144

A.4 Sketch-Based Terrains

A.4.1 Sketch-Based Terrain #1

The sketch-based #1 result was synthesized in 12 seconds using µw = 1.5, r = 0.75, s = 1.25, b = 3,
and ft = 31. Generator node locations F are provided in Figure A.23a and were placed manually.
Red pixels use the profile in Figure A.23b and black pixels correspond to Figure A.23c. The costs
of the generators associated with these pixels are calculated using fBm (Octaves=6) sampled over a
12× 12 grid; the resulting values are scaled by 40.0. Red pixels use fBm scaled within a percentage
range of [0%, 35%] of the maximum fBm cost. Black pixels use a percentage range of [85%, 100%].
The costs of all generator nodes are visualized in Figure A.23e. These inputs and parameters create
the final render in Figure A.23f.

A.4.2 Sketch-Based Terrain #2

The sketch-based #2 result was synthesized in 9 seconds using µw = 1.5, r = 0.75, s = 1.1,
b = 3, and ft = 58. Generator node locations F are provided in Figure A.24a and were placed
manually. Black pixels use the profile in Figure A.24b, green pixels use Figure A.24c, red pixels
use Figure A.24d, and blue pixels use Figure A.24e. The costs of the generators associated with
these pixels are calculated using fBm (Octaves=6) sampled over a 12 × 12 grid; the resulting
values are scaled by 48.0. Black pixels use fBm scaled within a percentage range of [67.5%, 85%]
of the maximum fBm cost. Green pixels are scaled within [0%, 30%], red pixels are scaled within
[92.5%, 97.5%], and blue pixels are scaled within [97.5%, 100%]. The costs of all generator nodes are
visualized in Figure A.24g. These inputs and parameters create the final render in Figure A.24h.

A.4.3 Sketch-Based Terrain #3

The sketch-based #3 result was synthesized in 11 seconds using µw = 2.0, r = 1.0, s = 1.01,
b = 3, and ft = 38. Generator node locations F are provided in Figure A.25a and were placed
manually. Black pixels use the profile in Figure A.25b, red pixels use Figure A.25c, and blue pixels
use Figure A.25d. The costs of the generators associated with these pixels are calculated using fBm
(Octaves=6) sampled over a 12× 12 grid; the resulting values are scaled by 60.0. Black pixels use
fBm scaled within a percentage range of [0%, 25%] of the maximum fBm cost. Red pixels are scaled
within [65%, 85%], and blue pixels are scaled within [85%, 100%]. The costs of all generator nodes
are visualized in Figure A.25f. These inputs and parameters create the final render in Figure A.25g.

A.4.4 Sketch-Based Terrain #4

The sketch-based #4 result was synthesized in 7 seconds using µw = 1.5, r = 0.75, s = 1.01,
b = 3, and ft = 15. Generator node locations F are provided in Figure A.26a and were placed
manually. Black pixels use the profile in Figure A.26b, red pixels use Figure A.26c, and blue pixels
use Figure A.26d. The costs of black and red pixels are calculated as the distance to the center of
the image scaled by 85.0. Blue pixel costs are calculated as the minimum of this distance based
cost and a random value within the cost range of [80.75, 85.0]. The costs of all generator nodes are
visualized in Figure A.26f. These inputs and parameters create the final render in Figure A.26g.

145

(a) (b) (c)

(d) (e) (f)

(g)

Figure A.23: Input and output for the sketch-based #1 result: (a) generator
node locations F , (b–c) profiles P , (d) feature ID, (e) generator node costs, (f) final
render, and (g) final height field. Arrows in (a) are not part of the input and are
merely visual aids for single node generators which are otherwise difficult to see.

146

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.24: Input and output for the sketch-based #2 result: (a) generator
node locations F , (b–e) profiles P , (f) feature ID, (g) generator node costs, (h) final
render, and (i) final height field. Image (a) contains multiple single node generators,
but arrows are not used to allow for a clearer visualization of F .

147

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure A.25: Input and output for the sketch-based #3 result: (a) generator
node locations F , (b–d) profiles P , (e) feature ID, (f) generator node costs, (g) final
render, and (h) final height field. Arrows in (a) are not part of the input and are
merely visual aids for single node generators which are otherwise difficult to see.

148

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure A.26: Input and output for the sketch-based #4 result: (a) generator
node locations F , (b–d) profiles P , (e) feature ID, (f) generator node costs, (g) final
render, and (h) final height field. Arrows in (a) are not part of the input and are
merely visual aids for single node generators which are otherwise difficult to see.

149

