1,662 research outputs found

    Temporal changes in programme outcomes among adult patients initiating antiretroviral therapy across South Africa, 2002-2007.

    Get PDF
    OBJECTIVE: Little is known about the temporal impact of the rapid scale-up of large antiretroviral therapy (ART) services on programme outcomes. We describe patient outcomes [mortality, loss-to-follow-up (LTFU) and retention] over time in a network of South African ART cohorts. DESIGN: Cohort analysis utilizing routinely collected patient data. METHODS: Analysis included adults initiating ART in eight public sector programmes across South Africa, 2002-2007. Follow-up was censored at the end of 2008. Kaplan-Meier methods were used to estimate time to outcomes, and proportional hazards models to examine independent predictors of outcomes. RESULTS: Enrolment (n = 44 177, mean age 35 years; 68% women) increased 12-fold over 5 years, with 63% of patients enrolled in the past 2 years. Twelve-month mortality decreased from 9% to 6% over 5 years. Twelve-month LTFU increased annually from 1% (2002/2003) to 13% (2006). Cumulative LTFU increased with follow-up from 14% at 12 months to 29% at 36 months. With each additional year on ART, failure to retain participants was increasingly attributable to LTFU compared with recorded mortality. At 12 and 36 months, respectively, 80 and 64% of patients were retained. CONCLUSION: Numbers on ART have increased rapidly in South Africa, but the programme has experienced deteriorating patient retention over time, particularly due to apparent LTFU. This may represent true loss to care, but may also reflect administrative error and lack of capacity to monitor movements in and out of care. New strategies are needed for South Africa and other low-income and middle-income countries to improve monitoring of outcomes and maximize retention in care with increasing programme size

    Combinatorial generation via permutation languages. VI. Binary trees

    Full text link
    In this paper we propose a notion of pattern avoidance in binary trees that generalizes the avoidance of contiguous tree patterns studied by Rowland and non-contiguous tree patterns studied by Dairyko, Pudwell, Tyner, and Wynn. Specifically, we propose algorithms for generating different classes of binary trees that are characterized by avoiding one or more of these generalized patterns. This is achieved by applying the recent Hartung-Hoang-M\"utze-Williams generation framework, by encoding binary trees via permutations. In particular, we establish a one-to-one correspondence between tree patterns and certain mesh permutation patterns. We also conduct a systematic investigation of all tree patterns on at most 5 vertices, and we establish bijections between pattern-avoiding binary trees and other combinatorial objects, in particular pattern-avoiding lattice paths and set partitions

    Quantitative Threshold Determination of Auditory Brainstem Responses in Mouse Models

    Get PDF
    The auditory brainstem response (ABR) is a scalp recording of potentials produced by sound stimulation, and is commonly used as an indicator of auditory function. However, the ABR threshold, which is the lowest audible sound pressure, cannot be objectively determined since it is determined visually using a measurer, and this has been a problem for several decades. Although various algorithms have been developed to objectively determine ABR thresholds, they remain lacking in terms of accuracy, efficiency, and convenience. Accordingly, we proposed an improved algorithm based on the mutual covariance at adjacent sound pressure levels. An ideal ABR waveform with clearly defined waves I–V was created; moreover, using this waveform as a standard template, the experimentally obtained ABR waveform was inspected for disturbances based on mutual covariance. The ABR testing was repeated if the value was below the established cross-covariance reference value. Our proposed method allowed more efficient objective determination of ABR thresholds and a smaller burden on experimental animals.Tanaka K., Ohara S., Matsuzaka T., et al. Quantitative Threshold Determination of Auditory Brainstem Responses in Mouse Models. International Journal of Molecular Sciences 24, 11393 (2023); https://doi.org/10.3390/ijms241411393

    On the Study of Fitness Landscapes and the Max-Cut Problem

    Get PDF
    The goal of this thesis is to study the complexity of NP-Hard problems, using the Max-Cut and the Max-k-Cut problems, and the study of fitness landscapes. The Max-Cut and Max-k-Cut problems are well studied NP-hard problems specially since the approximation algorithm of Goemans and Williamson (1995) which introduced the use of SDP to solve relaxed problems. In order to prove the existence of a performance guarantee, the rounding step from the SDP solution to a Max-Cut solution is simple and randomized. For the Max-k-Cut problem, there exist several approximation algorithms but many of them have been proved to be equivalent. Similarly as in Max-Cut, these approximation algorithms use a simple randomized rounding to be able to get a performance guarantee. Ignoring for now the performance guarantee, one could ask if there is a rounding process that takes into account the structure of the relaxed solution since it is the result of an optimization problem. In this thesis we answered this question positively by using clustering as a rounding method. In order to compare the performance of both algorithms, a series of experiments were performed using the so-called G-set benchmark for the Max-Cut problem and using the Random Graph Benchmark of Goemans1995 for the Max-k-Cut problem. With this new rounding, larger cut values are found both for the Max-Cut and the Max-k-Cut problems, and always above the value of the performance guarantee of the approximation algorithm. This suggests that taking into account the structure of the problem to design algorithms can lead to better results, possibly at the cost of a worse performance guarantee. An example for the vertex k-center problem can be seen in Garcia-Diaz et al. (2017), where a 3-approximation algorithm performs better than a 2-approximation algorithm despite having a worse performance guarantee. Landscapes over discrete configurations spaces are an important model in evolutionary and structural biology, as well as many other areas of science, from the physics of disordered systems to operations research. A landscape is a function defined on a very large discrete set V that carries an additional metric or at least topological structure into the real numbers R. We will consider landscapes defined on the vertex set of undirected graphs. Thus let G=G(V,E) be an undirected graph and f an arbitrary real-valued function taking values from V . We will refer to the triple (V,E,f) as a landscape over G. We say two configurations x,y in V are neutral if f(x)=f(y). We colloquially refer to a landscape as 'neutral'' if a substantial fraction of adjacent pairs of configurations are neutral. A flat landscape is one where f is constant. The opposite of flatness is ruggedness and it is defined as the number of local optima or by means of pair correlation functions. These two key features of a landscape, ruggedness and neutrality, appear to be two sides of the same coin. Ruggedness can be measured either by correlation properties, which are sensitive to monotonic transformation of the landscape, and by combinatorial properties such as the lengths of downhill paths and the number of local optima, which are invariant under monotonic transformations. The connection between the two views has remained largely unexplored and poorly understood. For this thesis, a survey on fitness landscapes is presented, together with the first steps in the direction to find this connection together with a relation between the covariance matrix of a random landscape model and its ruggedness

    M 151.B01: Pre-Calculus

    Get PDF

    Euthanasia in the Hadamar Sanatorium and International Law

    Get PDF
    • …
    corecore