3,290 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Integrated Optimal Design of a Passive Wind Turbine System: An Experimental Validation

    Get PDF
    This work presents design and experimentation of a full passive wind turbine system without active electronic part(power and control). The efficiency of such device can be obtained only if the system design parameters are mutually adapted through an Integrated Optimal Design (IOD) method. This approach based on multiobjective optimization, aims at concurrently optimizing the wind power extraction and the global system losses for a given wind speed profile while reducing the weight of the wind turbine generator. It allows us to obtain the main characteristics (geometric and energetic features) of the optimal Permanent Magnet Synchronous Generator (PMSG) for the passive wind turbine. Finally, experiments on the PMSG prototype built from this work show a good agreement with theoretical predictions. This validates the design approach and confirms the effectiveness of such passive device

    A bibliographic review of production line design and balancing under uncertainty

    Get PDF
    This bibliography reviews the solution methods developed for the design and balancing problems of production lines such as assembly and disassembly lines. The line design problem aims in determining the number of workstations along with the corresponding assignment of tasks to each workstation, while the line balancing problem seeks an assignment of tasks, to the existing workstations of the line, which ensures that the workloads are as equal as possible among the workstations. These two optimisation problems can be also integrated and treated as a multi-objective optimisation problem. This review considers both deterministic and stochastic formulations for disassembly lines and is limited to assembly line design and balancing under uncertainty. This bibliography covers more than 90 publications since 1976 for assembly and 1999 for disassembly

    Multi-objective reliability based design of complex engineering structures using response surface methods

    Get PDF
    Extensive research contributions have been carried out in the field of Reliability-Based Design Optimisation (RBDO). Traditional RBDO methods deal with a single objective optimisation problem subject to probabilistic constraints. However, realistic problems in engineering practice require a multi-criteria perspective where two or more conflicting objectives need to be optimised. These type of problems are solved with multi-objective optimization methods, known as Multi-Objective Reliability Based Design Optimization (MORBDO) methods. Usually, significant computational efforts are required to solve these types of problems due to the huge number of complex finite element model evaluations. This paper proposes a practical and efficient approach based for talking this challenge. A multiobjective evolutionary algorithms (MOEAs) is combined with response surface method to obtain efficiently, accurate and uniformly distributed Pareto front. The proposed approach has been implemented into the OpenCossan software. Two examples are presented to show the applicability of the approach: an analytical problem where one of the objectives is the system reliability and the classic 25 bars transmission tower

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed

    Two-Stage Multi-Objective Meta-Heuristics for Environmental and Cost-Optimal Energy Refurbishment at District Level

    Get PDF
    Energy efficiency and environmental performance optimization at the district level are following an upward trend mostly triggered by minimizing the Global Warming Potential (GWP) to 20% by 2020 and 40% by 2030 settled by the European Union (EU) compared with 1990 levels. This paper advances over the state of the art by proposing two novel multi-objective algorithms, named Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Harmony Search (MOHS), aimed at achieving cost-effective energy refurbishment scenarios and allowing at district level the decision-making procedure. This challenge is not trivial since the optimisation process must provide feasible solutions for a simultaneous environmental and economic assessment at district scale taking into consideration highly demanding real-based constraints regarding district and buildings’ specific requirements. Consequently, in this paper, a two-stage optimization methodology is proposed in order to reduce the energy demand and fossil fuel consumption with an affordable investment cost at building level and minimize the total payback time while minimizing the GWP at district level. Aimed at demonstrating the effectiveness of the proposed two-stage multi-objective approaches, this work presents simulation results at two real district case studies in Donostia-San Sebastian (Spain) for which up to a 30% of reduction of GWP at district level is obtained for a Payback Time (PT) of 2–3 years.Part of this work has been developed from results obtained during the H2020 “Optimised Energy Efficient Design Platform for Refurbishment at District Level” (OptEEmAL) project, Grant No. 680676

    Methodological review of multicriteria optimization techniques: aplications in water resources

    Get PDF
    Multi-criteria decision analysis (MCDA) is an umbrella approach that has been applied to a wide range of natural resource management situations. This report has two purposes. First, it aims to provide an overview of advancedmulticriteriaapproaches, methods and tools. The review seeks to layout the nature of the models, their inherent strengths and limitations. Analysis of their applicability in supporting real-life decision-making processes is provided with relation to requirements imposed by organizationally decentralized and economically specific spatial and temporal frameworks. Models are categorized based on different classification schemes and are reviewed by describing their general characteristics, approaches, and fundamental properties. A necessity of careful structuring of decision problems is discussed regarding planning, staging and control aspects within broader agricultural context, and in water management in particular. A special emphasis is given to the importance of manipulating decision elements by means ofhierarchingand clustering. The review goes beyond traditionalMCDAtechniques; it describes new modelling approaches. The second purpose is to describe newMCDAparadigms aimed at addressing the inherent complexity of managing water ecosystems, particularly with respect to multiple criteria integrated with biophysical models,multistakeholders, and lack of information. Comments about, and critical analysis of, the limitations of traditional models are made to point out the need for, and propose a call to, a new way of thinking aboutMCDAas they are applied to water and natural resources management planning. These new perspectives do not undermine the value of traditional methods; rather they point to a shift in emphasis from methods for problem solving to methods for problem structuring. Literature review show successfully integrations of watershed management optimization models to efficiently screen a broad range of technical, economic, and policy management options within a watershed system framework and select the optimal combination of management strategies and associated water allocations for designing a sustainable watershed management plan at least cost. Papers show applications in watershed management model that integrates both natural and human elements of a watershed system including the management of ground and surface water sources, water treatment and distribution systems, human demands,wastewatertreatment and collection systems, water reuse facilities,nonpotablewater distribution infrastructure, aquifer storage and recharge facilities, storm water, and land use

    Hybrid Generation Systems Planning Expansion Forecast: A Critical State of the Art Review

    No full text
    International audienceIn recent years the electric power generation has entered into a new development era, which can be described mainly by increasing concerns about climate change, through the energy transition from hydrocarbon to clean energy resources. In order to power system enhance reliability, efficiency and safety, renewable and nonrenewable resources are integrated together to configure so-called hybrid systems. Despite the experience accumulated in the power networks, designing hybrid system is a complex task. It has become more challenging as far as most renewable energy resources are random and weather/climatic conditions-dependant. In this challenging context, this paper proposes a critical state-of-the-art review of hybrid generation systems planning expansion and indexes multi-objective methods as strategies for hybrid energy systems optimal design to satisfy technical and economical constraints
    corecore