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The exhaustive knowledge of optimal power flow (OPF) methods is critical for proper system operation and planning, since OPF
methods are utilized for finding the optimal state of any system under system constraint conditions, such as loss minimization,
reactive power limits, thermal limits of transmission lines, and reactive power optimization. Incorporating renewable energy
sources optimized the power flow of systemunder different constraints.This work presents a comprehensive study of optimal power
flows methods with conventional and renewable energy constraints. Additionally, this work presents a progress of optimal power
flow solution from its beginning to its present form. Authors classify the optimal power flow methods under different constraints
condition of conventional and renewable energy sources. The current and future applications of optimal power flow programs
in smart system planning, operations, sensitivity calculation, and control are presented. This study will help the engineers and
researchers to optimize power flow with conventional and renewable energy sources.

1. Introduction

The OPF in power system is an optimization problem under
various constraints. It is practically significant and well-
explored subfield of constrained optimization.The important
feature of OPF is the presence of the load flow equations
in the set of equality constraints. Carpentier [1] introduced
the OPF problem in 1979. Carpentier introduced OPF as
an extension to the problem of optimal economic dispatch
(ED) of generation in traditional power systems. Carpentier’s
key contribution was the inclusion of the electric power
flow equations in the ED formulation. OPF techniques are
traditional and metaheuristic based. Figure 1 shows the
classification of traditional and metaheuristic techniques.

Further, due to large integration of renewable energy
sources in conventional power system, incorporation of
uncertainties in OPF calculation is essential.

OPF largely depends on static optimization method for
minimizing a scalar optimization function. Dommel and

Tinney [2] introduced OPF in 1968, for minimization pur-
pose, in which the first-order gradient algorithm is subject
to equality and inequality constraints. Momoh et al. [3]
utilized OPF to resolve the problems of deregulated electrical
industry. Further, authors have used OPF to solve problems
of vertical electricity market.

In this paper, authors present a comprehensive study
of optimal power flow methods. Section 2 presents the
review of OPF methods with conventional energy sources.
In Section 3, authors reviewed OPF methods with renewable
energy sources. Section 4 presents a comparative analysis
between different OPF methods followed by the conclusion.

2. OPF for Power System with Conventional
Energy Sources

There are various methods to solve the problem of optimal
power flow with conventional energy sources. Some of them
are as follows.
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Figure 1: Classification of OPF methods.

2.1. Mathematical Methods. Classical mathematical methods
(gradient, Newton’s, linear, and integer programming, etc.)
allow the finding of optimal solutions of real-world problems.

2.1.1. Gradient Method. In Jan 2004, Sun et al. [4] proposed
a penalty-based scheme for OPF with transient stability, in
which adjoint equation technique calculates the gradient of
the penalty term related to the stability constraints. This
adjoint equation approach greatly reduces the computational
cost.

2.1.2. Newton Method. In 1984, David et al. [5] presented a
method to solve classical OPF problem with a nonseparable
objective function. The classical OPF is a problem with con-
trollable variables, which is regulated to optimize an objective
function, by satisfying physical and operating limits. In 2007,
Pizano-Martinez et al. [6] presented a Newton’s algorithm
basedmodel of a voltage source converter-high voltage direct
current (VSC-HVDC) system, which is fit for OPF solutions.
The VSC-HVDC’s capability to deliver the independent
control of converter’s AC voltage magnitudes and phase
angles is well represented by the model, which permits active
and reactive power control separately for system regulation.
In 2012, Zhao et al. [7] proposed a variant of primal-
dual interior point method (PDIPM) algorithm based on
the continuous Newton’s method to improve the robustness
of PDIPM. Newton’s algorithm in PDIPM is exchanged
with continuous Newton’s method. The developed method
indicates good stability and exceptional ability to converge. In
2000, Ambriz-Perez et al. [8] presented advanced load flow
models for the static VAR compensator (SVC). The models
are merged into current load flow (LF) and OPF Newton’s
algorithm. A complete SVC susceptance and firing angle
models are suitable for conventional and optimal power flow
analysis. In 2009, Milano [9] presented a continuous version
of Newton’s method for solving the power flow problem. It
has two main contributions: the first, a general framework
for applying efficient numerical integration techniques to
solve ill conditioned or badly initialized power flow cases and
the second, a formal classification of the existing numerical
schemes for solving the power flow problem.

2.1.3. Linear, Nonlinear, and Semidefinite Programming. In
1998, Wei et al. [10] presented a new interior point non-
linear programming algorithm for OPF, which is based on

the uneasy Kurush-Kuhn-Tucker (KKT) conditions of the
original problem but not on a logarithmic barrier function
method. Through the concept of centeringdirection, the
interior point method is stretched to classical power flow (C-
PF) and approximate OPF (A-OPF) problems. In 2008, Bai et
al. [11] presented a new solution using the semidefinite pro-
gramming (SDP) technique to solve the OPF. The developed
method includes reformulating the OPF problems into SDP
model and developing an algorithm of interior point method
(IPM) for SDP. Based on SDP, the OPF problem is solved by
primal-dual interior point algorithms, which possess super
linear convergence. In 1994, Granville [12] presented an
application of an interior point method based on the primal-
dual algorithm to optimal reactive power dispatch (ORPD),
which is a large-scale nonconvex nonlinear programming
problem with nonlinear constraints. In 2005, Zhang et al.
[13] presented a nonlinear interior point optimal power flow
(OPF) method based on a current mismatch formulation in
rectangular coordinates.

2.1.4. UncategorisedMathematical Techniques. In 2015, Abde-
louadoud et al. [14] presented a second-order cone (SOC)
relaxation algorithm to solve OPF based on a branch flow
model of a radial and balanced distribution system. In 2016,
Baran and Fernandes [15] presented a three-phase OPF,
which includes the mutual impedances in order to minimize
the losses of system. In 2016,Garces [16] presented a quadratic
approximation for OPF in power distributions systems. The
proposed method is based on a linearized load flow, which
is effective for power distribution systems as well as three-
phase unbalanced operation. In 2015, Emily Manoranjitham
and Shunmugalatha [17] presented a process to solve OPF in
the power system, which utilized UPFC.This UPFC recovers
power transfer capability and transient stability as well as
diminishing the transmission loss and fuel cost of generation.
In 2016, Xu et al. [18] presented the preventive–corrective
security-constrained optimal power flow (PCSCOPF) to
accomplish the best coordination between the preventive
control (PC) and corrective control (CC) by considering the
probabilistic nature of the contingencies and cost of CC as
well as other binding constraints. In 2015, Zhang et al. [19]
presented the optimalmodel of carbon energy combined flow
(OCECF) which is solved by a new estimated multiobjec-
tive solution (AIMS) 𝑄(𝜆) learning. The carbon emissions,
fuel cost, active power loss, voltage deviation, and carbon
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emission loss are selected as the optimization objectives. In
2015, Zhao et al. [20] proposed a voltage stability constrained
dynamic optimal reactive power flow (VSC-DORPF) model.
It decreases daily network losses, improves voltage quality,
and enhances voltage stability of power system. In 2016,
Wang et al. [21] presented a mathematical technique to solve
the corrective risk-based security-constrained optimal power
flow (CRB-SCOPF) model, which considers the system’s cor-
rective capabilities after contingency occurred.The proposed
method applies Lagrangian relaxation to the system risk
constraints and then applies benders decomposition to the
remaining Lagrangian subproblem.

2.2. Metaheuristic Algorithms. Metaheuristic techniques are
powerful and flexible search methodologies that have suc-
cessfully tackled practically difficult problems. Heuristic and
metaheuristic algorithms seek to produce good quality solu-
tions in reasonable computation times that are good enough
for practical purposes.

2.2.1. Genetic Algorithm. In 2002, Bakirtzis et al. [22] pre-
sented the OPF, which is a nonlinear, nonconvex, large-scale,
static optimization problem based on an enhanced genetic
algorithm (EGA). For the solution of OPF, both continuous
and discrete control variables are used. In 1995, Lee et al. [23]
presented an enhanced simple genetic algorithm, used for
reactive power system planning. Further, a new population
selection and generation method is proposed, which uses
Bender’s cut method. In 1998, Lee [24] presented a compara-
tive study for three evolutionary algorithms (EAs) to solve the
optimal reactive power planning (ORPP) problem.TheORPP
problem is decomposed into 𝑃 and 𝑄 optimization modules,
and the evolutionary algorithms optimize each module in
an iterative manner to obtain the global solution. In 2006,
Todorovski and Rajicic [25] presented a newmethod to solve
the OPF problem by using genetic algorithm. It depends
on the application of new initialization procedure, which
utilizes voltage angles at generator-buses as control variables
to achieve voltages at load-buses with less computation.

2.2.2. Particle Swarm Optimization. In 2002, Abido [26] pre-
sented particle swarm optimization (PSO) algorithm based
an efficient and reliable approach to solve the OPF problem.
The proposed approach employs the global and local inves-
tigation capabilities of PSO to examine the optimal setting
of control variables. Different objective functions have been
considered to minimize the fuel cost, improve the voltage
profile, and enhance voltage stability. In 2006, Vlachogiannis
and Lee [27] presented three types of PSO algorithms:
the enhanced general passive congregation (GPAC), local
passive congregation (LPAC) with limitation factor approach
based on the passive congregation operator, and the CA
based on the coordinated aggregation operator.The proposed
PSO algorithms and the conservative interior point OPF
based algorithm competed in the optimization problems
of reactive power and voltage control. In 2005, Esmin et
al. [28] presented an approach to optimize the power loss
by using PSO algorithm and improved the PSO to the

hybrid PSO (HPSO) algorithm. The proposed approach
employs local and global capabilities to search the solution
of optimal loss reduction by installing the shunt reactive
power compensator. In 2008, Zhang and Liu [29] presented
a formulation of multiobjective reactive power and voltage
control problem.Themultiobjective problem has been solved
by means of fuzzy optimization strategy and fuzzy adaptive
particle swarm optimization (FAPSO). The factors are active
power loss, voltage deviation, and the voltage stability index
of the system. In 2009, Al-Rashidi and El-Hawary [30] pre-
sented a complete formulation of dissimilar particle swarm
optimization (PSO), which is applied to solve optimization
problems in power systems. In 2016, Su et al. [31] presented
an optimization based sequential strategy and multiobjective
optimization based real-time strategy for the optimal place-
ment and control of delta-connected switched capacitors.
Considering load variations, a complete optimization for
capacitor placement is formulated to increase the net annual
returns from network loss reduction and capacity release.
Further, a sequential strategy based on loss sensitivity analysis
is presented for efficient capacitor placement on large-scale
unbalanced distribution networks. In 2008, Valle et al. [32]
presented a comprehensive overview of the basic concepts
of PSO and its variants. In addition, a comprehensive study
on different power system problems, which is solved by PSO,
is presented. In 2016, Singh et al. [33] employed an aging
leader and challengers PSO (ALC-PSO) to solve different
types of OPF problem of power system with several types of
complexities and capacities.

2.2.3. Uncategorised Metaheuristic and Search Algorithms. In
2011, Niknam et al. [34] presented a multiobjective improved
shuffle frog-leaping algorithm (SLFA) to solve the OPF emis-
sion problem in power systems considering both economic
and environmental issues. The proposed technique produces
optimal values, taking into account different objectives,
including the best cost and the best emission. In 2014,
Ghasemi et al. [35] presented chaotic invasive weed opti-
mization (CIWO) algorithms based on chaos and examine its
performance for optimal settings of OPF and its control vari-
ables. In 2016, Abaci and Yamacli [36] presented a differential
search based optimization method to solve various types
of problems including complex, single, and multiobjective
functions within the constraints concerning optimal power
flow (OPF). In 2016, Acharjee [37] presented the self-adaptive
differential evolutionary (SADE) algorithm for increasing
and controlling the power flow using unified power flow
controller (UPFC) under practical security constraints (SCs).
In 2016, Ardeshiri Lajimi and Amraee [38] presented an
artificial neural network (ANN) based transient stability
constrained optimal power flow (TSCOPF) formulation by
using imperialist competitive algorithm (ICA). In order to
increase the rotor angle transient stability of power system
against large disturbances, critical clearing time is used as
the transient stability index. In 2016, Ayan and Kiliç [39]
presented the solution of OPF problem for biterminal high-
voltage direct current (HVDC) power systems by using back-
tracking search algorithm (BSA). To show the applicability
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and efficiency of BSA, three different test systems are utilized.
In 2016, Daryani et al. [40] presented an adaptive group
search optimization (AGSO) algorithm for solving optimal
power flow (OPF) problem. In 2015, Mahdad and Srairi
[41] presented a new approach of power system planning
which is based on hybrid firefly algorithm (FFA) and pattern
search (PS) algorithm and supported with brainstorming
rules to minimize total fuel cost, power losses, and voltage
deviation. In 2015, Mukherjee [42] presented chaotic krill
herd algorithm (CKHA) to solve the OPF problem of power
system with different objective functions and to increase
the performance of basic KHA method. In 2016, Mukherjee
and Mukherjee [43] presented a novel opposition based
Krill herd algorithm (OKHA), a metaheuristic algorithm, to
resolve the OPF problem of power system incorporated with
flexible AC transmission systems (FACTS) devices. In 2016,
Pandiarajan and Babulal [44] presented a fuzzy logic based
harmony search algorithm (FHSA) to solve optimal power
flow problem of security enhancement in power system.
The minimization of fuel cost and severity index objectives
are considered. The fuel cost is minimized by changing
generator active power, generator bus voltage magnitude,
transformer taps, and VAR of shunts. In 2016, Prasad and
Mukherjee [45] presented a symbiotic organisms search
(SOS) metaheuristic algorithm to solve the OPF problem of
power system equippedwith FACTSdevices. In 2015, Ramesh
Kumar and Premalatha [46] presented an adaptive real
coded biogeography-based optimization (ARCBBO)method
to solve different objective functions of OPF problems with
several physical and operating constraints. The different
objectives are fuel cost minimization, active power loss
minimization, emission minimization, voltage profile, and
voltage stability enhancement. In 2015, Venkateswara Rao
and Nagesh Kumar [47] utilized BAT algorithm to minimize
real power losses in a power system. Further optimal power
flow problem is solved with unified power flow controller.
In 2015, Yuan et al. [48] presented an upgraded artificial
bee colony algorithm with quantum theory and chaotic local
search operator (QCABC) to solve the OPF problem.

3. OPF for Power System with Renewable
Energy Sources

3.1. Distributed Generation (DG). In 2011, Amanifar and
Hamedani Golshan [49] presented the PSO algorithm to find
the optimal locations and sizes of DGs, with an objective
to minimize the total cost of the system, real power loss,
and the number of DGs to be installed. In 2005, Harriso
and Wallace [107] presented government led targets and
incentives for increasing the capacity of distributed gener-
ation connecting to distribution networks. In 2012, Pazheri
et al. [50] presented economic/environmental dispatching
(EED) problem formulation for a hybrid system, which
includes thermal generating units, solar, wind, and renewable
storage. Analysis is carried out using MATLAB simulation
for a high irradiation solar region. In 2014, Nick et al. [51]
presented the optimal allocation of dispersed storage systems
(DSSs) in active distribution networks (ADNs) by describing

a multiobjective optimization problem to find the optimal
trade-off between technical and economic goals. In 2010,
Atwa et al. [52] proposed a probabilistic planning technique
for optimally allocating different types of DG (i.e., wind
DG, solar DG, and biomass DG) in the distribution system
to minimize annual energy losses. In 2013, Georgilakis and
Hatziargyriou [108] presented a comprehensive description
of different models and optimization methods to solve the
optimal DG placement (ODGPP) problem, for examining as
well as categorising current and future research approaches in
this field. In 2014, Gill et al. [53] presented a broad dynamic
optimal power flow (DOPF) framework for the active net-
work management (ANM) schemes. ANM technologies are
focused on intertemporal effects. The DOPF is modelled for
renewable energy curtailment, energy storage, and flexible
demand. In 2015, Jabr et al. [54] presented a sparse formula-
tion for the affinely adjustable robust counterpart (AARC) of
the multiperiod OPF problem with RES and storage. In 2012,
Moradi and Abedini [55] presented a combined method to
solve location and capacity problems for DG. This method
utilized GA and PSO to determine the location and capacity
of DG, respectively. In 2011, Sortomme and El-Sharkawi [109]
presented the potential profits and effects of unidirectional
vehicle to gird (V2G). In 2007, Yang et al. [56] presented
the hybrid solar wind system optimization sizing model
(HSWSO) to optimize the capacity sizes of hybrid solar wind
power generation systems employing a battery bank. In 2011,
Atwa and El-Saadany [57] presented a probabilistic planning
technique for optimally fulfilling wind-based distributed
generation (DG) in distribution systems to minimize annual
energy loss. In 2007, Ashok [110] discussed various system
apparatus for hybrid energy system to improve a universal
model and found an optimal combination of energy compo-
nents for supplying rural community. In 2016, Bouhouras et
al. [111] presented the optimization concerning the placement
and sizing of DG units in distribution networks (DNs) for
loss minimization. In 2015, Azizipanah-Abarghooee et al.
[112] presented a probabilistic OPF problem for the system
consisting of the thermal units (TUs), wind power plants
(WPPs), photovoltaic cell (PV), and combined heat and
power (CHP). In 2016,Wei et al. [58] proposed an integration
technique of DG based on stochastic optimal power flow
(S-OPF). A low-cost optimal model of DG integration for
Distribution System Operators (DSOs) is modelled. In 2013,
Lin and Chen [59] presented a distributed and parallel OPF
(DPOPF) algorithm. Additionally, a Petri net (PN) based
computational synchronization mechanism is proposed to
solve OPF smart grid transmission system (OPFSG) prob-
lem. In 2015, Summers et al. [60] presented a stochastic-
multiperiod OPF problem, for which a family of convex
rough calculations is used to trade-off cost against security
in different ways. In 2016, Tazvinga et al. [113] presented an
optimal model of a photovoltaic-diesel-battery (PDB) based
hybrid energy management system to reduce both fuel costs
and battery wear costs. It also discovers the optimal power
flow, photovoltaic power availability, battery bank state of
charge, and load power demand. In 2016, Chen et al. [61]
presented a PSO based optimal power management method
to consider uncertain driving conditions for plug-in hybrid
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electric vehicles (HEVs). In 2015, Ma et al. [114] presented
a technoeconomic analysis of the standalone hybrid solar-
wind-pumped storage system for an isolated microgrid.
In 2017, Sichilalu et al. [62] presented an optimal control
(OC) model of a heat pump water heater (HPWH), which
is supplied by a wind generator-photovoltaic-grid system.
The objective function is energy cost minimization, which
considers the time-of-use electricity tariff.

3.2. Microgrid. In 2011, Sanseverino et al. [63] presented an
execution monitoring and replanning approach to solve the
optimal generation dispatch problem in a smart grid through
the minimization of carbon emissions and production costs
as well as improve the quality. In 2015, Shi et al. [64]
presented an online energy management strategy (EMS) for
real-time operation of microgrids. In 2013, Dall’Anese et al.
[65] presented the numerical tests. The main role of the
proposed approach is to achieve the globally optimal solution
of the original nonconvex optimal power flow. In 2012,
Battistelli et al. [115] presented an optimization tool for energy
management within small energy systems incorporated with
V2G systems. In 2011, Chen et al. [66] presented a smart
energymanagement system (SEMS) to organize optimally the
power production of DG sources and energy storage system
(ESS), and, additionally, minimize the operational costs of
microgrids. In 2012, Liang et al. [67] presented a wide-area
measurement based dynamic stochastic optimal power flow
(DSOPF) control algorithm using the adaptive critic design
(ACD) technique. In 2013, Levron et al. [68] presented the
optimal energy management system of storage devices in
grid-connected microgrids. Stored energy is controlled to
balance the loads and renewable sources as well as minimize
the total cost of energy at the point-of-common-coupling
(PCC). In 2011, Moghaddam et al. [69] presented a multiob-
jective adaptive modified PSO (AMPSO) optimization algo-
rithm to solve the multioperation management problem in
a typical MG with renewable energy sources (RESs). In 2010,
Morais et al. [70] presented the operational optimization of an
isolated system by a virtual power producer (VPP).Themain
objective is to decide the best VPP management strategy to
minimize the generation costs and optimize storage charging
and discharging time subjected to all operational constraints.
In 2011, Tanaka et al. [116] presented an approach for optimal
operation of a smart grid to minimize the interconnection-
point power flow fluctuation. To accomplish the planned
optimal operation, distributed controllable loads such as
battery and heat pump are used. In 2015, Alavi et al. [71]
proposed an optimal approach for operating aMG in islanded
mode. The uncertainties associated with output of renewable
resources and demands are demonstrated by point estimate
method (PEM) and robust optimization (RO), respectively.
In 2014, Bahmani-Firouzi and Azizipanah-Abarghooee [72]
presented an effective outline forMG operationmanagement
studies with respect to operation, maintenance, and financial
points.The fixed andmaintenance cost of battery energy stor-
age (BES) was considered in the optimization of MG studies.
A robust and effective metaheuristic improved bat algorithm
(IBA) approach is used to develop corrective strategies and
perform least cost dispatches. In 2015, Bracale et al. [117]

presented an optimal control approach for a DC microgrid
(DCMG) that included dispatchable (such as microturbine)
andnondispatchable (such as photovoltaic generator) genera-
tion units, a storage system, and controllable/noncontrollable
loads. This approach is designed to minimize the daily total
energy costs. In 2015, Gholami et al. [73] employed GA with
new settings and operators, which is capable of capacitor
placement in both islanded and grid-connected modes at
different load levels. In 2012, Khorramdel and Raoofat [74]
presented a stochastic programming approach for reactive
power scheduling of a MG under the uncertainty of wind
farms. A multiobjective function with goals of loss mini-
mization, reactive power reserve, and voltage securitymargin
maximization are optimized using a four-stagemultiobjective
nonlinear programming. In 2016, Lv et al. [75] proposed
a multiobjective bilevel optimization algorithm. The upper-
level model defines the optimal dispatch of distribution
network (DN) to accomplish minimum power loss and
voltage profile. The lower-level model considers microgrids
(MGs) operating cost as objective to decide the optimal
operation scheme of distributed generator DGs. In 2015,
Mclarty et al. [118] presented two optimization approaches for
the dispatch of a multichiller cooling plant with cold-water
thermal storage. The optimization objective is to decrease
both cost and emission while considering real operational
constraints of a plant. In 2015, Riva Sanseverino et al. [119]
presented a novel OPF algorithm for islanded MG. The
algorithm yields minimum losses and stable operating point
with relevant droop parameters, which are used for primary
voltage and frequency regulation. In 2015, Sharma et al. [76]
presented a quasi-oppositional swine influenza model based
optimization with quarantine (SIMBO-Q) to reduce the total
operation cost of MG considering optimal size of battery
energy storage.

3.2.1.Microgrid with Renewable Energy Sources and/or Battery
Energy Storage System. Presently, batter storage system is a
vital component in microgrid technology. For optimizing the
investment in data centre’s storage capacity, Thompson et al.
[120] presented a method. In [77], Sharma et al. utilized gray
wolf optimization method for finding the optimum capacity
of energy storage. In [121], Krishnamurthy and Kwasinski
discussed microgrid’s power supply resiliency under severe
conditions. Xu et al. [122] presented an engineering expe-
rience with energy storage system. For optimizing storage
capacity in microgrid, Liu et al. [78] proposed an optimal
coordinated planning scheme. In [123], Khodabakhsh and
Sirouspour developed two different methodologies for online
rolling horizon optimal control of storage system. Shen et al.
[79] presented an energymanagement scheme for microgrid,
which contains battery storage, diesel generators, PV, and
wind. For optimalworking of an electric vehicle parking deck,
Guo et al. [80] presented a bilevel structure. For frequency
control of microgrid, Hassanzadehfard et al. [124] employed
battery banks as long-term storages and ultracapacitors as
short-term storages. To calculate the optimal power rating
and capacity of energy storage, Alharbi and Bhattacharya
[125] developed an optimization model.
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3.2.2. Electric Vehicle Technology. The latest development in
the field of electric vehicle technology has a great impact on
microgrid operation. For renewable energy sources and vehi-
cle to grid system integration, Melhem et al. [81] proposed a
residential energy management system. Yu et al. [82] investi-
gated amodel to find the impact of electric vehicle technology
on demand responsemobility. For integrating electric vehicle
in smart gird, Laureri et al. [126] developed an optimization
technique. Paterakis et al. [83] presented an optimization
model for minimizing energy procurement cost of smart
household. Li et al. [84] presented an onlinemethodology for
performing cost aware scheduling. To charge electric vehicle,
Yao et al. [127] presented a real-time charging scheme.

3.3. Solar. In 2012, Lin et al. [85] utilized an active power
limitation strategy to diminish PV power injection during
peak solar irradiation, to avoid voltage violation. In 2015,
Mart́ın [86] presented the process of a concentrated solar
plant, which is based on regenerative Rankine cycle. Addi-
tionally, dry cooling technologies are optimized by using
mathematical programming techniques. In 2014, Bianchi et
al. [128] presented a PV/battery hybrid system, to endorse
the optimal design of hybrid system in terms of PV module
number, PV module tilt, and number and capacity of batter-
ies. In 2015, Burlafinger et al. [87] utilized selective absorbers
for concentrated solar power (CSP) plants to minimize
thermal losses and increase the efficiency. Additionally, solar
thermal absorber’s potential is optimized by using selective
absorption properties and temperature. In 2016, Guo et al.
[88] presented the optimal ratio of turbine pressure drop
to the available total pressure difference and examined it
broadly using theoretical analysis and 3D numerical simu-
lations, for solar chimney power plant (SCPP). In 2015, Ha
and Vakiloroaya [129] addressed the modelling and control
problem of a fully developed hybrid solar-assisted, split-
system air-conditioner to improve the performance of an
existing solar air-conditioning system. In 2013, Lizarraga-
Garcia et al. [130] presented an optimization case study for
the time-variable operation of the concentrated solar power
on demand (CSPonD) solar energy receiver and thermal
energy storage. In the study, the factors considered are time-
variable electricity prices and electricity buy-back from the
grid. In 2017, Mokheimer et al. [131] presented an integrated
solar gas turbine cogeneration plant (ISGCP)which generates
electricity and produces process steam at a constant rate of
81.44 kg/s at 45.88 bar and 394∘C throughout the year. In
addition to this, the generation of electricity is investigated for
different gas turbine generating capacities. In 2014,Nazir et al.
[89] presented the power flow optimization of the PV system
connected to the grid. Optimization has been performed by
calculating the root of the active power equation 𝑃 (ma,
𝛼) and reactive power equation 𝑄 (ma, 𝛼) using Newton
Raphson method. In 2016, Ntsaluba et al. [90] presented a
flow-rate optimization of solar water heating system (SWHS)
with specific focus placed on pump flow-rate optimization.
In 2015, Wang et al. [91] presented an approach to analyse the
optimal capacity and economic feasibility of a hybrid energy
storage system (HESS) supporting the dispatch of a 30MW
photovoltaic (PV) power plant.

3.4. Wind. In 2014, Rabiee et al. [92] presented a com-
plete OPF formulation for a power system with uncertain
wind power injection through line-commutated converter
high-voltage DC (LCC-HVDC) links, voltage source con-
verter (VSC-HVDC), and doubly fed induction generators’
(DFIGs). The objective is to maximize the toughness of total
costs against the intermittent wind power generation using
info-gap decision theory (IGDT). In 2016, Ke et al. [93]
presented a new probabilistic optimal power flow (POPF)
model with chance constraints that reflects the uncertain-
ties of wind power generation (WPG) and loads. In 2014,
Bienstock et al. [94] presented a technique that depends on
chance constraints to limit the probability that any line (or
generator) is overloaded, together with an optimal online
control that accounts for controllable generator response to
renewable fluctuation. In 2011, Brekken et al. [132] presented
the sizing and control procedures for a zinc–bromine flow
battery-based energy storage system. The results show that
through an effective control and coordination of energy
storage systems, the expectedness of wind plant outputs
is increased and the cost of combination associated with
reserve necessities is decreased. In 2013, Ghofrani et al.
[95] presented an optimal placement of energy storage in
a deregulated power system to minimize the hourly social
cost. By the means of historical data and curve fitting, both
wind and load are modelled stochastically. A GA-enhanced
market-based probabilistic optimal power flow (POPF) with
energy storage integration and wind generation maximizes
wind power utilization over the scheduling period. In 2009,
Jabr and Pal [96] presented a stochastic model of wind
generation in an OPF dispatching program. The model
faces the coordination of wind and thermal power while
accounting for the expected penalty cost for not using all
available wind power and the expected cost of utilizing power
reserves because ofwind power shortage. In 2016, Sedghi et al.
[133] presented the planning technique for defining optimal
location, capacity, and power rating of the batteries while
minimizing the cost function under the technical constraints.
The objective function involves the monetary factors, such
as investment, operation, and reliability costs, as well as
the technical penalty factor. In 2014, Sebastián et al. [97]
presented a probabilistic AC optimal power flow (POPF)
that takes into account load variation, wind’s stochastic
behaviour, and variable line’s thermal rating which is usually
used as a deterministic value in several studies. In 2015,
Aien et al. [98] reviewed the probabilistic techniques used
for probabilistic optimal power flow (POPF) and proposed
a method by using the unscented transformation (UT)
technique. In 2013, Arabali et al. [134] presented a technical
outline to evaluate the energy storage application, optimal
placement, and economic advantage, for the social cost and
transmission congestion. In 2014, Chang et al. [99] pre-
sented an evolutionary particle swarm optimization (EPSO)
approach for solving the OPF problem of a wind-thermal
power system. In 2015, Jadhav and Roy [135] presented an
optimization system to calculate the optimal operation of
system containing electric vehicles and offshore wind farm
connected to the grid through HVDC link. In 2015, Li et al.
[100] presented the probabilistic optimal power flow for wind
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Table 1: Comparative analysis of different OPF techniques.

OPF problem
classification

Constraints

AssumptionsVoltage and
angle

Transmission
line power

limit

Reactive
power limits Losses Generation

costs Contingency

AC Yes Yes Yes Yes No No Slack bus selection

DC No Yes No Not definite Yes No Voltage magnitudes are
fixed

Decoupled Yes Yes Yes Yes Yes No
Interaction between
active and reactive

power is not considered
Security-constrained
economic dispatch Yes Yes No Yes Yes Yes Bus voltages are fixed

Economic dispatch No No No Conditional Yes No No transmission
constraints

Security-constrained Yes Yes Yes Yes Yes Yes Assumptions regarding
postfault flows are there

Optimal reactive
power dispatch Yes Yes Yes Yes Yes No Convexity assumption of

generators’ cost function

Metaheuristic based
OPF Yes Yes Yes Yes Yes No

Inherent inadequacy that
needs further attention
in the future including
the lack of transparency,
knowledge extraction,
and model uncertainty

Table 2: Comparative analysis of traditional and metaheuristic based OPF methods.

S.
number Properties Traditional technique Metaheuristic techniques

(1) Model formulation Model is used to simulate a system when the
system is not extremely complicated.

Metaheuristic techniques try to imitate, in a very
simplistic way, the human cognition capability.

(2) Prerequisites Use the principles (e.g., physical laws) to derive
the relationships of the system.

Dependent on data to determine the structure
and parameters.

(3) Nonlinearity
integration

Possible if prior knowledge of the nature of the
nonlinearity exists.

The prior information of the nature of the
nonlinearity is not required.

(4) Hypothesis Simplifying the problem or incorporating
assumptions to make model more understandable.

No need to simplify the model and/or add
assumptions.

(5) Precision & accuracy Provide highest level of accuracy. Provide greater precision and accuracy due to less
chances of error.

(6) Efficiency Needs more time to solve the complex problem. Utilized to carry out repetitive and
time-consuming tasks, efficiently.

(7) Renewable energy
integration Requires complex mathematical modelling. With metaheuristic model renewable energy,

source incorporation is easy.

turbine-integrated power system with wind uncertainty and
correlated loads. In 2014, Lin and Lin [101] presented a risk-
limiting optimal power flow (RLOPF) problem for systems
with high penetration of wind power, to address the problem
of possibly violating the security constraints in power systems
due to the instability of wind power generations. In 2014, Luo
et al. [136] presented an energy storage sizing method for
reliability requirement. Additionally, a bilevel control strategy
for the isolated grids is proposed. In 2016, Mohammadi et al.
[102] designed a state feedback controller (SFC) for damping
oscillations and tracking the set point input as well as dis-
carding the disturbances correctly for a variable wind system.

The suggested method reflects damping and performance
together by including a performance index into linear
quadratic (LQ) criterion. In 2016, Mohseni-Bonab et al.
[103] presented the stochastic multiobjective optimal reactive
power dispatch (SMO-ORPD) problem for wind integrated
power system, taking into account the uncertainties of
system load and wind power generations. In 2014, Panda
and Tripathy [104] presented an OPF solution for modified
power system in which three conventional generators are
replaced by wind-energy conversion systems (WECS). To
justify the limitation of reactive power generation capability
of WECS, genetic algorithm (GA) and a modified bacteria
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foraging algorithm are employed independently, for deter-
mining the optimal schedule. In 2015, Panda and Tripathy
[105] presented a modified bacteria foraging algorithm,
which is capable of handling multiobjective optimization
problems. In 2015, Roald et al. [137] presented a technique of
modelling risk in power system operation, accounting for the
system availability of redispatch. The resulting risk measure
formulates risk-based constraints for the postcontingency
line flows. In 2015, Roy and Jadhav [106] presented an OPF
study in view of probabilistic nature of wind power. The
wind power intermittency is modelled by the parameters
of Weibull probability function. The optimization problems
are solved by artificial bee colony optimization algorithm
(GABC).

4. Comparative Analysis of OPF Methods

This section presents a comparative analysis of different OPF
methods, which are reviewed in the previous sections. Table 1
presents a comparative analysis of different OPF techniques.

Table 2 presents a comparison between traditional and
metaheuristic technique based OPF methods used for the
optimization of renewable energy sources.

A detailed summarization of the OPFmethods for power
system with conventional energy sources is presented in
Table 3.

Table 4 presents a summarization of OPF methods for
power system with renewable energy sources.

5. Conclusions

Optimal power flow is an optimizing tool for power system
operation analysis, scheduling, and energy management. Use
of the optimal power flow is becoming more important
because of its capabilities to deal with various situations.This
problem involves the optimization of an objective function
that takes various forms while satisfying a set of operational
and physical constraints. Hence, in this work authors present
a comprehensive review of solution techniques and methods
used for optimization of power flows. Further, techniques
used for optimization of systems incorporating renewable
energy sources such as microgrid, storage system, electrical
vehicle, wind, and solar are also reviewed in this work.
Different metaheuristic techniques used for OPF are further
discussed. Different OPF problems are discussed with respect
to the constraints applied and assumptions made. The tradi-
tional andmetaheuristic basedOPF techniques are compared
with respect to different properties of OPF techniques.
Different mathematical and metaheuristic algorithms used
for OPF power system with conventional and renewable
energy sources are discussed. A summarization of different
techniques used for OPF with traditional and renewable
energy sources is presented based on their adopted approach,
techniques, and applications.

There are still many constraints and there is nonlinear-
ity, which should be incorporated in future OPF problem.
Problems related to mathematical validation, deregulated
market constraints, contingencies incorporation, and renew-
able sources integration are latest challenges for future OPF

problems.This study will assist researchers in comparing and
selecting an appropriate OPF technique, to find the optimal
state of any system under system constraint. This work may
also be supportive for the commercial utilization of OPF.
Additionally, other better techniques may also be considered
for further study. The futuristic enrichment of the current
study may be to develop a OPF technique, which can provide
better results.
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