16 research outputs found

    Characterising Probabilistic Processes Logically

    Full text link
    In this paper we work on (bi)simulation semantics of processes that exhibit both nondeterministic and probabilistic behaviour. We propose a probabilistic extension of the modal mu-calculus and show how to derive characteristic formulae for various simulation-like preorders over finite-state processes without divergence. In addition, we show that even without the fixpoint operators this probabilistic mu-calculus can be used to characterise these behavioural relations in the sense that two states are equivalent if and only if they satisfy the same set of formulae.Comment: 18 page

    Analysing RoboChart with probabilities

    Get PDF
    Robotic systems have applications in many real-life scenarios, ranging from household cleaning to critical operations. RoboChart is a graphical language for describing robotic controllers designed specifically for autonomous and mobile robots, providing architectural constructs to identify the requirements for a robotic platform. It also provides a formal semantics in CSP. RoboChart has a probabilistic operator (P) but no associated probabilistic CSP semantics. When (P) is used, currently a non-deterministic choice (Π) is used as semantics; this is a conservative semantics but it does not allow the analysis of stochastic properties. In this paper we define the semantics of the operator in terms of the probabilistic CSP operator ⊞. We also show how this augmented CSP semantics for RoboChart can be translated into the PRISM probabilistic language to be able to check stochastic properties

    Probabilistic Analysis of Binary Sessions

    Get PDF
    We study a probabilistic variant of binary session types that relate to a class of Finite-State Markov Chains. The probability annotations in session types enable the reasoning on the probability that a session terminates successfully, for some user-definable notion of successful termination. We develop a type system for a simple session calculus featuring probabilistic choices and show that the success probability of well-typed processes agrees with that of the sessions they use. To this aim, the type system needs to track the propagation of probabilistic choices across different sessions

    Process algebra for performance evaluation

    Get PDF
    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server architectures, networks – can accurately be described using such stochastic specification formalisms. The main emphasis of this paper is the treatment of operational semantics, notions of equivalence, and (sound and complete) axiomatisations of these equivalences for different types of Markovian process algebras, where delays are governed by exponential distributions. Starting from a simple actionless algebra for describing time-homogeneous continuous-time Markov chains, we consider the integration of actions and random delays both as a single entity (like in known Markovian process algebras like TIPP, PEPA and EMPA) and as separate entities (like in the timed process algebras timed CSP and TCCS). In total we consider four related calculi and investigate their relationship to existing Markovian process algebras. We also briefly indicate how one can profit from the separation of time and actions when incorporating more general, non-Markovian distributions

    Probabilistic Analysis of Binary Sessions

    Get PDF

    General distributions in process algebra

    Get PDF

    A uniform framework for modelling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences

    Get PDF
    Labeled transition systems are typically used as behavioral models of concurrent processes, and the labeled transitions define the a one-step state-to-state reachability relation. This model can be made generalized by modifying the transition relation to associate a state reachability distribution, rather than a single target state, with any pair of source state and transition label. The state reachability distribution becomes a function mapping each possible target state to a value that expresses the degree of one-step reachability of that state. Values are taken from a preordered set equipped with a minimum that denotes unreachability. By selecting suitable preordered sets, the resulting model, called ULTraS from Uniform Labeled Transition System, can be specialized to capture well-known models of fully nondeterministic processes (LTS), fully probabilistic processes (ADTMC), fully stochastic processes (ACTMC), and of nondeterministic and probabilistic (MDP) or nondeterministic and stochastic (CTMDP) processes. This uniform treatment of different behavioral models extends to behavioral equivalences. These can be defined on ULTraS by relying on appropriate measure functions that expresses the degree of reachability of a set of states when performing single-step or multi-step computations. It is shown that the specializations of bisimulation, trace, and testing equivalences for the different classes of ULTraS coincide with the behavioral equivalences defined in the literature over traditional models

    Coalgebraic analysis of probabilistic systems

    Get PDF

    Formal specification and analysis of industrial systems

    Get PDF
    corecore