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To understand the basic issues in the behaviour of concurrent systems, it is helpful
to have a simple language “with as few operators or combinators as possible, each of
which embodies some distinct and intuitive idea, and which together give completely
general expressive power” (R. Milner [142, p. 264]). The pictograms on the cover
show to what extent we succeeded in defining language constructs with a distinct
and intuitive idea.
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Summary

The complexity of modern industrial systems increases, the amount of money
involved increases, and competition on the market gets stronger. Consequently,
the impact of design errors increases. Modelling industrial systems before they are
built enables engineers to reduce the number of design errors. In addition, products
change faster, new products are developed faster and so must the systems needed to
produce them. Consequently, (new) industrial systems have to be realised within
shorter time frames. Therefore, industry makes high demands on methods used
for modelling industrial systems.

Typical system properties that determine the success or failure of industrial sys-
tems are throughput, cycle time, (absence of) deadlock, and livelock. Modelling
techniques should enable analysis of such properties. The class of system prop-
erties can be divided into two subclasses: performance properties and functional
properties. Throughput and cycle time belong to the first class, deadlock and
livelock belong to the second class.

Simulation is a powerful technique for performance analysis. By simulating models
of industrial systems, it is possible to calculate statistically significant approxima-
tions of, for instance, the throughput and cycle time. To that end, the Systems
Engineering Group of the Eindhoven University of Technology has developed a
specification language. The language is called χ and together with its simulators
it has been used in many case studies.

For functional analysis, however, simulation is less suitable. Simulation can be
used to show that a (model of a) system has deadlock, but it is, in general, not
possible to show that a system is deadlock-free. Furthermore, simulation cannot
be used to detect that a (model of a) system has livelock or not.

Formal methods, on the other hand, do provide opportunities for functional anal-
ysis. Formal methods are mathematical notations and techniques that can be
used to prove correctness of a system by mathematical proof. Usually, a formal
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method consists of a formal specification language and several techniques (some
of which may be automatic) to prove properties about specifications written in
that language. Using formal methods, we are able to prove a system is, or is not,
deadlock-free and livelock-free.

Now, consider the following observation: from a computer science point of view,
models defined in a specification language like χ are just programs and formal
methods have been developed mainly to analyse such programs. Hence, by proving
properties of programs, we prove properties of models, and, provided that those
models are accurate, properties of real life systems.

Following this observation, first we provided a formal syntax and semantics for χ.
A formal syntax explicitly defines the syntactic structure of a language and a
formal semantics gives mathematical meaning to the defined language constructs.
By giving a formal syntax and semantics, we obtain a mathematical framework
that enables calculation.

Formalisation of χ resulted in a language where artificial restrictions have been
abandoned and language constructs have become mathematical operators. Fur-
thermore, a notion of equivalence (bisimulation) has been defined. Using this
notion, we are able to derive general equalities for χ processes and operators. To-
gether with an introduced notion of abstraction, we can also verify whether an
implementation satisfies its specification.

Second, we developed tools. A formal framework as described above enables man-
ual verification of χ models. Unfortunately, manual verification is quite laborious
and it requires a solid background in logic and formal reasoning. In practise, es-
pecially for models of production systems, many systems will soon be too large to
verify by hand. Tool support is then indispensable.

With respect to performance analysis, a simulator was built that works exactly
according to the defined semantics (whereas the existing simulator implements an
intuitive interpretation of the semantics).

With respect to functional analysis, newly developed tools have been combined
with existing tools from the formal methods community in order to enable model
checking. Model checking can be described as exhaustive simulation. Instead of
simulating an certain subset of the behaviours of a model, all behaviours of the
model are simulated. Consequently, if such an exhaustive simulation does not find
violations of a particular property, we can conclude with mathematical certainty
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that the model satisfies the property. We are able to do model checking on a
reasonably large subset of χ models.

Third, case studies have been conducted in order to test the developed mathemat-
ical framework and tools. They ranged from small toy examples to performance
and functional analysis of real life systems. They show that a combination of
simulation and verification improves substantially the analysing power of χ.





Samenvatting

De complexiteit van moderne industriële systemen neemt toe, de hoeveelheid geld
die daarmee gemoeid gaat neemt toe, en de concurrentie op de markt wordt sterker.
Dientengevolge hebben ontwerpfouten grotere consequenties. Het modelleren van
industriële systemen alvorens zij worden gebouwd biedt ingenieurs de mogelijk-
heid het aantal ontwerpfouten te reduceren. Daarbij komt dat producten sneller
veranderen, en dat nieuwe producten sneller worden ontwikkeld. Dit geldt tevens
voor de systemen die deze producten produceren. Zodoende moeten ook (nieuwe)
fabrieken en machines in een korter tijdsbestek kunnen worden gerealiseerd. Dien-
tengevolge stelt de industrie hoge eisen aan de methoden voor het modelleren van
industriële systemen.

Typische systeemeigenschappen die het succes of falen van een industriëel systeem
bepalen zijn doorzet, doorlooptijd, ‘deadlock ’, en ‘livelock ’. Modelleertechnieken
zouden analyse van deze eigenschappen mogelijk moeten maken. De klasse van
systeemeigenschappen kan worden onderverdeeld in twee subklassen: prestatie-
eigenschappen en functionaliteitseigenschappen. Doorzet en doorlooptijd behoren
tot de eerste klasse, ‘deadlock’ en ‘livelock’ behoren tot de tweede klasse.

Simulatie is een krachtige techniek voor het uitvoeren van een prestatie-analyse.
Door modellen van industriële systemen te simuleren, is het mogelijk statistisch
significante benaderingen van bijvoorbeeld doorzet en doorlooptijd te berekenen.
Daartoe heeft de sectie Systems Engineering van de Technische Universiteit Eind-
hoven een specificatietaal ontwikkeld. Deze taal heet χ en samen met haar simu-
latoren is ze al veelvuldig gebruikt in casestudies.

Voor functionaliteitsanalyse daarentegen, is simulatie minder geschikt. Simulatie
kan gebruikt worden om aan te tonen dat een model ‘deadlock’ bevat, maar het
is in het algemeen niet mogelijk om aan te tonen dat een model ‘deadlock’-vrij
is. Tevens kan simulatie niet worden gebruikt om te detecteren of een (model van
een) systeem ‘livelock’ heeft of niet.



xx Samenvatting

Formele methoden, daarentegen, voorzien wel in mogelijkheden voor functiona-
liteitsanalyse. Formele methoden zijn wiskundige notaties en technieken die ge-
bruikt kunnen worden om correctheid van systemen aan te tonen door middel
van wiskundige bewijsvoering. Doorgaans bestaat een formele methode uit een
formele specificatietaal en verschillende technieken (waarvan sommige geautoma-
tiseerd kunnen zijn) om eigenschappen te bewijzen van specificaties opgesteld in
die taal. Gebruikmaking van formele methoden stelt ons in staat te bewijzen dat
een systeem wel of niet ‘deadlock’- en ‘livelock’-vrij is.

Beschouw nu de volgende observatie: bezien vanuit een informatica oogpunt zijn
modellen, gedefinieerd in een specificatietaal als χ, gewoon programma’s, en for-
mele methoden zijn ontwikkeld om dergelijke programma’s te analyseren. Dien-
tengevolge, door eigenschappen van programma’s te bewijzen, bewijzen we ei-
genschappen van modellen, en, vooropgesteld dat deze modellen accuraat zijn,
eigenschappen van ‘real-life’ systemen.

In navolging van deze observatie, hebben we ten eerste χ van een formele syntax
en semantiek voorzien. Een formele syntax definieert expliciet de syntactische
structuur van een taal, en een formele semantiek geeft een wiskundige betekenis
aan de gedefinieerde taalconstructies. Door het geven van een formele syntax
en semantiek wordt een wiskundig raamwerk verkregen waarmee gerekend kan
worden.

De formalisering van χ resulteerde in een taal waaruit kunstmatige restricties
zijn verwijderd en taalconstructies wiskundige operatoren zijn geworden. Tevens
werd een notie van gelijkheid (bisimulatie) gedefinieerd. Hiermee kunnen we al-
gemene gelijkheden afleiden voor χ processen en operatoren. Samen met een
gëıntroduceerde notie van abstractie kunnen we tevens verifiëren of een imple-
mentatie voldoet aan zijn specificatie.

Ten tweede hebben we gereedschappen ontwikkeld. Een formeel raamwerk zo-
als hierboven omschreven maakt handmatige verificatie van χ modellen mogelijk.
Helaas is handmatige verificatie nogal bewerkelijk en vereist het een solide ach-
tergrond in logica en formeel redeneren. In de praktijk, en dan in het bijzonder
voor modellen van productiesystemen, zullen veel systemen al snel te groot zijn
om handmatig te verifiëren. Ondersteuning in de vorm van gereedschappen is dan
onmisbaar.
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Wat betreft prestatie-analyse, werd een simulator gebouwd die exact volgens de
gedefinieerde semantiek werkt (waar de bestaande simulator een intüıtieve inter-
pretatie van de semantiek implementeert).

Wat betreft functionaliteitsanalyse, werden nieuw ontwikkelde gereedschappen ge-
combineerd met bestaande gereedschappen uit de formele methoden gemeenschap
om zodoende ‘model checking’ mogelijk te maken. ‘Model checking’ kan worden
omschreven als uitputtende simulatie. In plaats van het simuleren van een zekere
subset van de gedragingen van een model, worden alle gedragingen van het model
gesimuleerd. Dientengevolge, als een dergelijke uitputtende simulatie geen schen-
dingen van een bepaalde eigenschap vindt, kunnen we met wiskundige zekerheid
concluderen dat het model voldoet aan de eigenschap. Het is mogelijk een redelijk
grote subset van χ modellen te ‘model checken’.

Ten derde zijn casestudies uitgevoerd om het ontwikkelde wiskundige raamwerk
en de ontwikkelde gereedschappen te testen. Deze casestudies variëren van kleine
voorbeeldjes tot prestatie- en functionaliteitsanalyses van ‘real-life’ systemen. Zij
laten zien dat een combinatie van simulatie en verificatie de analysekracht van χ

substantieel verbetert.





Introduction 1

Industrial systems produce and/or process products. Examples of such systems
are factories, machines, and warehousing systems. Designing modern industrial
systems is an increasingly complicated task. Several causes can be given for this
increase in complexity. For instance, higher demands are made on production
processes due to increasing product diversity and/or product innovation. Also,
competition on the market gets stronger due to globalization. Besides increasing
the complexity of industrial systems, these causes also require (new) industrial
systems to be realised within shorter time frames.

Therefore, industry makes high demands on methods and techniques used for
modelling industrial systems. The goal of these methods and techniques is to
reduce the number of design errors by showing the design has desirable system
properties. Typical system properties that determine the success or failure of
industrial systems are throughput (the number of products per hour), cycle time
(the time a product spends in a system), deadlock (the inability to proceed at all),
and livelock (the inability to proceed sensibly).

1.1 Modelling industrial systems

By Systems Engineering refer to the research field that investigates and develops
methods, techniques, and tools to design advanced industrial systems. Due to
the high demands on these methods and techniques, as mentioned above, a shift
from qualitative approaches to quantitative approaches can be observed. This
shift is particularly visible in the way industrial systems are modelled. Three
kinds of models can be distinguished [118]: physical (for example scale models),
graphical (for example engineering drawings), and symbolic (for example formal
specifications). The shift from qualitative approaches to quantitative approaches
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is confirmed by an increase of symbolic modelling techniques, because they are
well suited for quantitative analysis.

Often, symbolic models are written in a specification language. Clearly, it is
important to choose a suitable specification language. Whether a language is
suitable depends on the application at hand. Hence, languages come in different
flavours.

Specification languages can be subdivided into three categories: continuous lan-
guages, discrete event languages, and combined, also called hybrid, languages.
Continuous languages are used for modelling continuous (physical) systems and
processes. Usually, continuous behaviour is defined by differential equations. An
example of a continuous language is ACSL (Advanced Continuous Simulation
Language) [145]. Discrete event languages are used to describe discrete event
behaviour of (physical) systems and processes. Examples of such languages are
SIMAN (Simulation Analysis) [160], the DEVS (Discrete Event System) formal-
ism [196, 195], and µDemos [34, 35] (a sugared version of Demos (Discrete Event
Modelling On Simula) [33]). Finally, languages exist that combine continuous
and discrete event features into one formalism. Examples of such languages are
COSMOS [117, 116], Dymola (Dynamic Modelling Laboratory) [67, 52], gPROMS
(general Process Modelling System) [21], Modelica [135], Omola (Object-oriented
Modelling Language) [6], Personal Prosim [186], and χ [26, 175, 8].

The main purpose of the languages mentioned above, and of languages for in-
dustrial systems modelling in general, is to understand the dynamic behaviour of
systems by means of modelling and simulation. Simulation is a powerful tool when
it comes to analysing system properties. We distinguish performance analysis and
functional analysis. Typically, performance analysis concerns models of complete
production facilities, and usually focuses on properties like throughput and cycle
time. Functional analysis typically concerns models of single machines and their
control systems. It usually focuses on specification-implementation checks and
deadlock and livelock detection. Traditionally, performance analysis and func-
tional analysis were research topics studied by different communities. However,
nowadays people acknowledge that these two forms of analysis should be studied
together [46].

Although simulation turned out to be a successful approach for performance anal-
ysis, with respect to functional analysis the approach has some disadvantages.
Firstly, if the language is nondeterministic, simulation does not provide informa-
tion about all possible behaviours of a system. That is, simulation can show the
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presence of errors, but cannot show the absence of errors. As a consequence, the
absence of deadlock cannot be guaranteed. Secondly, simulation requires assign-
ment of concrete values to system parameters such as production rates, buffer
sizes, operating times of machines, and the amount of work in process. As a con-
sequence, simulations have to be repeated when there is a change in the system
parameters.

In the field of Formal Methods, specification and analysis of functional properties
of programs is often done using mathematical techniques called formal methods.
These techniques, as opposed to simulation techniques, enable analysis of all pos-
sible behaviours of the system. Since our objective is to improve specification and
analysis techniques for industrial systems, it is interesting to consider the following
observation. Models of industrial systems defined in a simulation language are just
programs. Hence, we can use formal techniques to specify and analyse functional
properties of models of industrial systems. Provided those models are accurate,
functional properties of real-life industrial systems can be analysed. This leads to
the following research topic.

Research topic 1 Is it possible to improve specification and analysis techniques for
industrial systems by means of formal methods?

1.2 Formal methods

Formal methods are mathematical notations and techniques designed to establish
correctness of a system by mathematical proof. Application of formal methods
eliminates much ambiguity and enables designers to have a consistent and objective
understanding of a system. On the other hand, application of formal methods is
laborious and requires thorough knowledge of mathematics. Therefore, formal
methods are not suitable for all types of application.

A particular class of systems for which formal methods are beneficial is called
industrial critical systems [81, 80, 180] (sometimes called mission critical). Exam-
ples of industrial critical systems are medical systems, traffic regulation systems,
electronic payment systems, and wafer steppers. For these systems, failures can
have serious consequences. By applying formal methods, the number of failures
due to design errors can be reduced.

A formal method usually consists of a formal specification language, a mathemat-
ical framework, and tool support. A formal specification language has a formal
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syntax and semantics. A formal syntax explicitly defines the syntactic structure
of a language and a formal semantics gives mathematical meaning to all language
constructs. The mathematical framework enables calculation similar to calcu-
lation in ordinary arithmetic. In theory, such a framework suffices to perform
verification. That is, one can now perform manual verification. Unfortunately,
manual verification is quite laborious and it requires a solid background in logic
and formal reasoning. In practice, especially for models of production systems,
the system under consideration will soon be too large to be verified by hand. Tool
support is then indispensable. Tool support ranges from interactive administrative
tools, which check proof steps and keep track of proof obligations, to completely
automated tools, which establish proofs themselves. The latter provide facilities
for automatic verification.

Research in Formal Methods resulted in methods like ACP (Algebra of Commu-
nicating Processes) [19, 18, 71], Algebraic Theory of Processes [101], CCS (Cal-
culus of Communicating Systems) [143, 141], CSP (Communicating Sequential
Processes) [106, 47, 105], automata theory [131], and Petri Nets [166, 162]. In
addition, examples of methods based on ACP are LOTOS (Language of Tem-
poral Ordering Specification) [190, 66], µCRL (micro Common Representation
Language) [90, 93, 92], and (the formal semantics of) MSC (Message Sequence
Charts) [111, 167]. An example based on CCS is the Edinburgh CWB (Concur-
rency Work Bench) [147]. An example based on CSP is Spin [109, 108] with
input language Promela (Process Meta Language) [31, 193, 154]. Examples
based on automata theory are Kronos [194, 62], HyTech (the Hybrid Technol-
ogy tool) [103, 5], and UPPAAL (from Uppsala, Sweden and Aalborg, Den-
mark) [126]. An example based on Petri Nets is ExSpect (Executable Specification
Tool) [100]. Finally, there are many methods based on general formal logics. Ex-
amples are Esterel [30, 29], SDL (Specification and Description Language) [146],
VDM (Vienna Development Method) [113], Z [60], PVS (Prototype Verification
System) [181, 158, 185], STeP (Stanford Temporal Prover) [134, 133], NuSMV [53],
a re-implementation and extension of SMV (Symbolic Model Verifier), and HOL
(Higher Order Logic) [86].

As explained above, two strands in verification can be distinguished: manual verifi-
cation and automatic verification. The latter is based on logics for which decision
procedures exist. For these procedures to exist, one has to compromise on the
expressive power of the logics. Therefore, the logics of automatic verification tech-
niques usually have less expressive power than the logics of manual verification
techniques.
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Usually, manual verification techniques are, from a theoretical point of view, more
powerful than automatic verification techniques. This does not mean, however,
that manual verification techniques are more suited to analyse real-life industrial
systems. The problem with manual verification is that, due to its formal nature,
it requires the user to pay attention to a lot of details, which entails a substantial
administrative problem. Furthermore, one needs a solid background in logic and
formal reasoning in order to establish correct formal proofs. Therefore, applying
manual techniques in large projects is a complicated task that needs a team of
highly educated engineers.

Automatic verification tries to tackle this problem by using less expressive logics
for which decision procedures can be implemented. The most widely used log-
ics are temporal logics [164]. In temporal logics one can describe properties of
the behaviour of a system over time. Usually, decidability results are established
for such temporal logics, which means that effective algorithms (algorithms that
always produce an answer in finite time) can be developed to check if a certain
property, expressed as a temporal logic formula, holds in a particular state, in
some states, or in all states. The idea is to have decision procedures deal with the
details of the verification automatically, while still maintaining a logic with rea-
sonable expressive power to describe properties of the model. Ideally, automatic
verification should be a ‘push-button’ technique for which no special background
in formal logic and mathematics is required. The problem remains, however, that
informal descriptions of properties have to be translated into formal descriptions.
This requires understanding of the mathematical framework of the automatic ver-
ification technique and the skill to validate whether a temporal logic formula is a
correct translation of the informal property to be checked.

Of course, the distinction between manual and automatic verification is not as
clear cut as depicted here. Moreover, attempts to integrate manual techniques
with automatic techniques [165], have resulted in interesting combinations. For
instance, there are manual verification techniques with a lot of tool support to
systematically deal with most of the details of a verification task.

An automatic verification technique that found its way into many industrial ap-
plications is model checking [55]. Model checking can be described as exhaustive
simulation. That is, instead of simulating an arbitrary subset of the behaviours
of a model, all behaviours of the model are simulated. Consequently, if such an
exhaustive simulation does not find violations of a particular property, we can
conclude, with mathematical certainty, that the model satisfies the property. Ef-
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fectively, an exhaustive simulation is an exploration of the complete state space of
a model. Since the state space of a parallel system grows exponentially in the num-
ber of parallel processes, such an exploration is only feasible for relatively small
models. This is called the state space explosion problem and it renders automatic
verification of large real-life industrial systems infeasible.

Although the state space explosion problem seems a fundamental problem of model
checking, several techniques, like partial order reduction, symbolic model checking,
and symmetry reduction [44, 23, 50, 161, 83, 82, 48], have been developed to tackle
the state space explosion problem. Using these techniques, it is possible to analyse
real-life systems of considerable size.

The previous section explained that system properties can be divided into perfor-
mance properties and functional properties. Simulation is a powerful technique
to analyse performance properties, but it is much less powerful with respect to
functional properties. Above, we explained that formal methods are useful for
functional analysis. Integration of simulation techniques with formal methods
techniques will enable us to analyse both performance properties and functional
properties. This leads to the following research topic.

Research topic 2 Is it possible to integrate formal methods with existing simulation
techniques?

1.3 Formal specification and analysis of industrial systems

As described above, both Systems Engineering and Formal Methods make use
of specification languages. For the sake of discussion, we will call the languages
developed and used in the first field engineering languages and languages developed
and used by the second field formal languages. We can conceive of the following
alternatives to integrate simulation techniques with formal methods:

1. translate an engineering language into a formal language,

2. use a formal language to analyse industrial systems, or

3. formalise an engineering language.

The first alternative has the advantage that after the translation, all theory and
tools of the concerning formal language are readily available. This makes it an
alternative with which results can be achieved rapidly. Another advantage is
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that for many engineering languages, formal languages exist with more or less
the same constructs. Therefore, the translation is usually not very complicated.
In [119, 120], a χ specification of an industrial system is translated into µCRL
and verified using the Focus Points and Convergent Process Operators proof tech-
nique [95, 94]. In [188], µDemos is translated into CCS, thereby enabling formal
verification with the Edinburgh CWB. In [40], we defined a translation scheme
from χ into Promela. We applied this translation scheme to verify a χ specifi-
cation of a production system with the Spin model checker. However, there are
several disadvantages to this alternative. First of all, the language to specify a sys-
tem is different from the language to analyse that system. Therefore, the systems
engineer has to master both languages and he should be able to switch between
these languages repeatedly, since designing a system is an iterative process. An-
other problem is that the translation of the engineering language into the formal
language is generally not complete. That is, only a subset of the engineering lan-
guage can be translated. The reason is that some constructs of the engineering
language do not have equivalent constructs in the formal language. Such constructs
have to be encoded and that complicates the translation substantially.

The second alternative also has the advantage of making the theory and tools
of the concerning formal language readily available for specification and analysis
of industrial systems. Another advantage of this alternative is that the system
engineer specifies and analyses his systems in the same language, as opposed to
the first alternative. In some engineering areas, like electronic circuit design [49,
65, 144] and protocol design [171, 170, 128, 112, 54, 108], this approach has resulted
in numerous successes. However, there is a disadvantage to this alternative; the
systems engineer has to stop using his ‘familiar’ engineering language and to start
using a ‘strange’ formal language. The success of this alternative largely depends
on the willingness of the systems engineer to switch.

The third alternative tries to circumvent the disadvantage of the second alterna-
tive by focusing from the start on the application domain: the field of systems
engineering. By formalising an existing engineering language, techniques from the
field of Formal Methods become available to systems engineers using their own no-
tations and techniques. The advantages are that new (formal) techniques can be
merged with existing (simulation) techniques. The disadvantage is that more work
needs to be done before formal techniques can be used. First of all, a particular
systems engineering language needs to be formalised. After that, theory should be
developed for the new formal language. Finally, tools should be developed, based
on this theory, that support formal analysis of systems described in this formal
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language. However, this disadvantage is probably not as big as it seems. Firstly,
the formalisation is a one time job. Secondly, techniques to describe existing
formal languages (for instance, algebraic specification techniques and operational
semantics techniques) are likely to be useful to formalise engineering languages as
well. Thirdly, if such particular techniques can be used, they provide indications
to build a mathematical framework for the new formal language. Namely, this
framework should address the same issues as the frameworks of the existing for-
mal languages that were described with these techniques in the first place. Finally,
if the mathematical framework of the new formal language is similar to that of
existing formal languages, support tools do not have to be designed from scratch.
Instead, their design and implementation can be based on the same (proven) prin-
ciples as the designs and implementations of existing tools. Furthermore, these
tools can be integrated with language independent tools. Examples of such tools
are fcTools using the fc2 format [168] for labelled transition systems, the CADP
tools (Cæsar Aldébaran Development Package) [75] using the BCG (Binary Coded
Graphs) format [197] for labelled transition systems, the µCRL tools [91] using
the svc format (named after the Systems Validation Centre Project) for labelled
transition systems [125], and the Graphviz tools (graph visualisation) [74] using
the dot format [124] to represent graphs.

Considering the advantages and the disadvantages of the three alternatives, we
think that in the long run, the third alternative is the most promising to bridge
the gap between Systems Engineering and Formal Methods. Therefore, we decided
to formalise an engineering language, to develop a mathematical framework for this
language, and to implement tools to support formal analysis with this language.

As mentioned in Section 1.1, there are many engineering languages to specify and
analyse industrial systems. In order to give the work presented in this thesis more
practical relevance, it is necessary to select a good representative. Looking at the
languages actually used by engineers, we see that they have more or less the same
expressive power. This is not surprising since they have the same application do-
main. In Section 1.1, we subdivided engineering languages into three categories:
continuous languages, discrete event languages, and hybrid languages. A good
representative is likely to be found in the category of hybrid languages because
they feature most aspects of engineering languages [26]. We mentioned the lan-
guages COSMOS, Dymola, gPROMS, Modelica, Omola, Personal Prosim, and χ.
Of these languages, we chose the χ language for the following reasons. First of
all, χ is a language that resulted from years of experience with other simulation
languages and libraries [157, 176, 177, 173, 174, 172]. The developers of χ felt
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that neither of these languages and libraries provided the right notation and tools
needed to model industrial systems efficiently. Therefore, in the early nineties,
they decided to develop their own modeling language. This resulted in the first
version of χ [8, 150]. A recent positioning of χ with respect to other engineering
languages is given in [26]. Second, from its earliest development on, developers
of χ have recognized the importance of mathematical reasoning; something which
is uncommon for many engineering languages. Third, χ is inspired by theoretical
languages and notations, like CSP and the guarded command language [63], and χ

has symbols whereas other languages usually have keywords. Finally, χ has been
applied successfully in numerous case studies, some of which are listed below. For
a global overview see http://se.wtb.tue.nl/posters/.

• Discrete (re-entrant) flow lines : design of a multi-process multi-product
wafer fab [51, 97, 179] (Philips), balancing of a car assembly line [88] (Vol-
vo/Mitsubishi)

• Hybrid (jumbled) flow [25]: design of a fruit juice blending and packaging
plant [69] (Riedel)

• Control architectures: agent-based control of systems [151, 153], flexible
manufacturing systems [152]

• Machinery: scheduling algorithms for medical equipment [149] (TNO)

The basis of χ is called discrete χ. This is a discrete event simulation language
with probabilistic constructs. In [39], we formalised a small subset of discrete χ

and in [2], a simulator for this language is discussed. Extensions of discrete χ in
different directions exist. For example, in [68], a simulator for hybrid χ is discussed.
This is a hybrid simulation language in which both discrete event processes and
continuous processes can be specified and analysed. In addition, in [107], discrete χ

and its tool support is extended to enable real-time control.

Summarizing this section, we explained three alternatives to integrate simulation
techniques with formal methods. We selected the third alternative: formalise an
engineering language. In particular, we chose the engineering language χ. The goal
of this formalisation is not just to provide a formal semantics of the language, but to
develop a mathematical framework that enables calculation with χ models and to
develop tools that support this calculation. In addition, the resulting framework
should be powerful enough to analyse real-life systems. This essentially means
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turning χ into a practical formal method. This leads to the following research
topic.

Research topic 3 Is it possible to convert χ into a formal method?

1.4 Approach

In order to convert χ into a practical formal method, we need to define a formal
semantics of χ, develop a mathematical framework, develop tools, and perform
case studies.

The formalisation of χ resulted in a new version of χ together with a corresponding
mathematical framework (see Chapters 2, 3 and 4). This new version, we call χσ.
The subscript σ refers to the Greek word σηµασιoλoγία which in Latin characters
is spelled sèmasiologia and translates to the word ‘semantics’. The language χσ

resembles χ very closely (see Chapter 5) and we define a translation scheme to
translate a χ specification into a χσ specification (see Chapter 6). Eventually, χσ

should replace χ.

The tools we developed enable simulation and model checking of χσ specifica-
tions (see Chapter 7). They are integrated with existing tools to manipulate and
visualize state spaces.

We analysed real-life industrial systems with the formal method χσ (see Chap-
ter 8). These case studies show that industrial systems can be specified in χσ.
Furthermore, they show that χσ enables performance analysis, similar to χ, as
well as functional analysis.

As mentioned in the previous section, extensions of χ exist for hybrid and real-
time systems. Currently, these extensions are the subject of active research and
they are likely to undergo substantial changes. Therefore, this thesis focuses on
discrete χ. The most up-to-date reference of the discrete χ version formalised in
this thesis is the on-line document [121]. In Chapter 3, a brief description of this
version of χ is given. In the remainder of this thesis, we use the name χ to denote
discrete χ, unless explicitly stated otherwise.

We restrict the formalisation of χ by disregarding the probabilistic language con-
structs. Incorporating such constructs in a (formal) language is a research project
of its own. Future research should address this topic.
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1.5 Overview

Chapter 2 describes the formal semantics of the data types of χ and χσ. In
Chapter 3, we introduce the specification language χ, and Chapter 4 defines the
specification language χσ. The relation between χ and χσ is described in Chap-
ter 5. In order to translate a χ specification into a χσ specification, we define a
translation scheme in Chapter 6. In Chapter 7, we describe the tools we developed
for χσ, and in Chapter 8, several examples and case studies are discussed. Finally,
in Chapter 9, we draw conclusions and discuss opportunities for further research.
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This chapter discusses the data types of χ and χσ. We introduce operators and
functions on these data types that are used frequently in models of industrial sys-
tems (see Chapter 8). Most of the data types are defined by means of Algebraic
Specification (AS) [9, 27, 136, 156]. In particular, we use Membership Equational
Logic (MEL) [138, 43]. The syntax and semantics of MEL as we used it, is de-
scribed in Appendix C. The decision to use MEL is based on the fact that it is
among the most powerful AS formalisms and allows natural specification. We do
remark, though, that other AS formalisms with the concept of subsorts, such as
for example, order sorted algebra [84, 85], would probably be equally useful.

Some χ data types are not defined in MEL. They are introduced at the end of this
chapter. The semantics of χσ as presented in Chapter 4, however, only uses data
types defined by means of AS.

This chapter is organised as follows. Section 2.1 gives a brief introduction to MEL,
and the concepts of MEL are illustrated by an example. The basic data types of χσ

are defined by MEL specifications of booleans (Section 2.2), natural numbers (Sec-
tion 2.3), integer numbers (Section 2.4), rational numbers (Section 2.5), and by a
specification scheme of channels (Section 2.6). Section 2.7 introduces MEL theo-
ries. The element theory given in this section, defines requirements on elements
of generic data types. The relation between specifications and theories is defined
by MEL views. A view defines a mapping between a theory and a specification
or another theory. In Section 2.8, we define views from the element theory to
the basic data types. The generic data types of χσ are sets (Section 2.9), lists
(Section 2.10), and tuples (Section 2.11). Generic data types can be instantiated
with other (basic or generic) data types using views. In Section 2.12, we define
views from the element theory to the generic data types. The χ data types that
are not formalised are discussed in Section 2.13. This chapter is concluded by a
discussion in Section 2.14.
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2.1 Introduction to MEL

Consider the following specification of the booleans. Note that this is an example;
the χσ booleans are defined in Section 2.2.

spec bool-example

sort bool.
constructors

true :→ bool,
false :→ bool.

operator
⇒ : bool bool→ bool.

var b : bool.
equations
[BX1] b⇒ true = true,
[BX2] false ⇒ b = true,
[BX3] true ⇒ false = false.
end

The specification starts with the keyword spec and ends with the keyword end.
Keywords are printed in bold type. This specification is called bool-example.
The specification is divided in sections, each starting with a keyword. In the sort
section, a sort name, bool, is defined. Sort names correspond to types in pro-
gramming languages. In the constructors section, two constructor operators are
defined: true and false . Note that section keywords can appear in singular and
plural form. The operator section defines the boolean implication operator ‘⇒’
with type bool bool → bool. The underscores in the specification indicate the
argument positions relative to the operator. The type defines the sorts of the ar-
guments and the sort of the result. That is, ‘⇒’ is an infix operator that takes two
terms (see Appendix C, Definition C.6) of sort bool as arguments and the result is
also a term of sort bool. There is no semantical difference between constructors and
other operators in MEL, see Definition C.3, page 280, and Section C.1, page 279.
Below, we will explain why we call certain operators constructors. For now, it
suffices to know that the specifications are written in such a way that all terms
containing normal operators should be reducible to terms containing constructors
only. For the boolean example this means every closed boolean term should be
reducible to true or false . A closed (boolean) term is a term without variables.
Reducing a term means rewriting it according to the derivation rules of MEL,
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see Definition C.11 on page 283. Equations are defined in the equations section.
Each equation has a label, for example, the first equation in bool-example has
label [BX1]. Following the label is an equality between two terms, for example,
b ⇒ true = true states that b ⇒ true is equal to true. The terms are built up
from constructors, operators, and variables. The variables are defined in the var
section. In the example, there is one variable, b, of sort bool.

In a signature all constants and operator symbols (including their argument and
result types) are defined, see Definition C.4 on page 280. The signature of a MEL
specification is defined by its sort, constructor, and operator sections. For ex-
ample, the signature of bool-example consists of the sort bool, the constructors
true and false and the operator ‘⇒’ (including their argument and result types).

The MEL specifications we present in this chapter have been validated by extensive
testing. That is, we used an AS tool, called Maude [57, 56, 138, 58], to implement
and test the MEL specifications. The fact that MEL is supported, is the main rea-
son we chose Maude instead of similar systems, like, Elan [37], ASF+SDF [45], and
CAFE [73]. Maude reduces terms by rewriting them according to the equations of
a specification. Furthermore, Maude applies equations from left to right only; it
interprets equations as rewrite rules. Thus, a specification induces a Term Rewrite
System (TRS) [122]. If, at a certain point in a computation, no rewrite rule can
be applied, the computation has terminated and the concerning term is, by defi-
nition, a normal form. A computation can be terminating or nonterminating. If
every computation in a TRS is terminating, the TRS is terminating. Vice versa,
if there exist nonterminating computations, the TRS is nonterminating. Notice
that if Maude applied equations from right to left, too, every computation would
be nonterminating.

Interpreting equations as rewrite rules does not guarantee a terminating TRS.
Since Maude produces results only for terminating computations, we have to show
that nonterminating computations cannot occur. In order to guarantee a specifica-
tion induces a terminating TRS, we distinguish between constructors and (normal)
operators. By calling certain operators constructors and by defining the remaining
operators in terms of these constructors, it is clear that every computation will
result in a term consisting of constructors only. Such terms are called construc-
tor terms. Consequently, if there exist nonterminating computations, there exist
nonterminating computations on constructor terms only. So, to prove the TRSs
induced by the MEL specifications are terminating, there are two proof obliga-
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tions. Firstly, operators have to be defined in terms of constructors. Secondly,
computations on constructor terms have to be terminating.

In addition to terminating computations, a desirable property of TRSs is conflu-
ence. A TRS is confluent if whenever two (different) computations start from the
same term, it is always possible to continue the computations such that they end
up with the same term. This means choices between applicable rewrite rules are
irrelevant. This property is sometimes called the Church-Rosser property. If a
terminating TRS is not confluent, there is at least one term from which computa-
tions start leading to different normal forms. On the other hand, if a terminating
TRS is confluent, every term has a unique normal form. Many AS tools, like
Maude, are built on the assumption that the TRSs are confluent and terminating.
This assumption enables an effective decision procedure to determine whether two
terms are equal. Namely, reduce both terms to normal form and compare them.

We do not give a formal proof that shows the TRSs induced by the MEL specifi-
cations in this chapter are terminating and confluent. The benefit of such a proof
would be that the TRSs can be used to perform computations on the data types.
However, our goal is to specify the data types and not to provide implementa-
tions. Therefore, we confined ourselves to checking the termination obligations
mentioned above and by testing the MEL specifications in Maude.

The semantics, or interpretation, of a specification is an algebra, see Definition C.12
on page 284. The interpretation of a sort name is a set and the interpretation of an
operator is a function. In an algebra, terms and equations have an interpretation,
see Definition C.14 on page 285. If (the interpretation of) all equations hold(s)
in a particular algebra, the algebra is called a model of the specification, see
Definition C.15 on page 285. For example, an algebra for bool-example is A =
({S}, {S}, {⊥ :→ S,> :→ S, imp : S × S → S}), where S = {0, 1}, ⊥() = 0,
>() = 1, and imp is defined by

imp(x, y) =

{
0 if x = 1 and y = 0
1 otherwise.

The algebra has a set S containing 0 and 1, and three functions: ⊥, >, and imp.
Note that ⊥ and > are nullary functions; application of these functions is de-
noted by ⊥() and >(), respectively. In order to see that A is an algebra for
bool-example, we define the following mapping (interpretation) of syntactic en-
tities to semantical entities:

bool 7→ S, true 7→ >, false 7→ ⊥, ⇒ 7→ imp.
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It is clear that under this mapping, the equations of the specification hold. There-
fore, A is a model for bool-example.

Note that A is not the only algebra for bool-example. For example, if we take
S′ = {2, 3} and replace 0 by 3 and 1 by 2 in the definition of ⊥, >, and imp,
we get an algebra A′ and A 6= A′. Of course, the difference between A and A′ is
cosmetic, since the structure of A is similar to that of A′. Formally, A and A′ are
isomorphic (see the discussion below Definition C.16 on page 286).

However, there are algebras for bool-example that are not isomorphic to A. For
example, we could take S′′ = {0, 1, 2} and define an algebra A′′ with the same
definitions for ⊥, >, and imp as for A. Note that the equations hold in A′′.
Algebra A′′ is not isomorphic to A, since the set S′′ has three elements whereas
S has only two elements. Therefore, there can be no homomorphism between A

and A′′ that is both surjective and injective. Element 2 of S′′ is superfluous; it is
not used as a function result. In a similar way, we could devise algebras for the
boolean specification by adding superfluous functions to A. Such algebras are said
to have junk ; they have elements or functions for which no syntactic term exists
in the specification.

Maybe more interesting is the algebra A′′′ = ({S′′′}, {S′′′}, {⊥ :→ S,> :→ S, imp :
S × S → S}), where S′′′ = {0}. Note that in this case imp has to be defined by
imp(x, y) = 0, since there is only one element in S′′′. Similarly, both ⊥() and >()
should yield 0. Using these definitions of ⊥, >, and imp, the same mapping we
used for A can be used for A′′′. Note that the equations of bool-example hold
in A′′′ and therefore it is an algebra for the specification. In the interpretation A′′′

of bool-example, the constructors true and false are mapped onto the same
semantical object 0. Therefore, in A′′′, the meaning of true is equal to the meaning
of false . However, the specification does not tell us that true = false, since there
is no way to derive this equality by applying the equations of bool-example.
Algebras such as A′′′ are said to have confusion; they identify elements that cannot
be identified by the specification.

Usually, we are only interested in algebras without junk and confusion. Therefore,
we restrict the class of possible algebras for a specification to those that do not have
superfluous elements or functions and that do not identify elements that cannot
be identified in the specification. Algebras without junk and confusion are called
initial algebras. Furthermore, there is only one initial algebra (up to isomorphism)
for each specification. By definition, MEL specifications have an initial (algebra)
semantics.
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2.2 Booleans

The MEL specification bool defines the booleans and the boolean operators. The
sort section defines one sort name called bool. The operators section defines the
boolean operators. First, the two boolean constants true and false are defined. In
addition, the conventional boolean operators ‘¬’ (negation), ‘∧’ (conjunction), ‘∨’
(disjunction), and ‘⇒’ (implication) are defined. The constants are the only con-
structors of the booleans; closed terms with a boolean operator can be rewritten
either to true or to false. Associativity and commutativity of the conjunction and
disjunction operator are expressed by the attributes ‘assoc’ and ‘comm’, respec-
tively.

Commutativity and associativity could be formulated by equations, but that would
make the term rewrite system non-terminating. Therefore, MEL constructors and
operators can have special attributes like ‘comm’ and ‘assoc’. In Appendix C,
the formal status of operator attributes is explained. For now, it suffices to say
that an equational specification in MEL has two sets of equations. One set is
defined implicitly by operator attributes and the other set is defined explicitly by
equations. We sometimes call the first set ‘attribute equations’.

The var section declares three boolean variables, b, b0, and b1. The variables
are used to define equations. The equations section defines equations between
boolean terms. It is evident that these equations ensure that any closed boolean
term containing an operator (‘¬’, ‘∧’, ‘∨’, or ‘⇒’), can be rewritten to one of the
forms true or false . Therefore, bool defines a terminating rewrite system.

spec bool

sort bool.
constructors

true :→ bool,
false :→ bool.

operators
¬ : bool→ bool,
∧ : bool bool→ bool [ comm, assoc ],
∨ : bool bool→ bool [ comm, assoc ],
⇒ : bool bool→ bool.

var b, b0, b1 : bool.
equations
[B1] ¬true = false ,
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[B2] ¬false = true,
[B3] true ∧ b = b,
[B4] false ∧ b = false,
[B5] b0 ∨ b1 = ¬(¬b0 ∧ ¬b1),
[B6] b0 ⇒ b1 = ¬b0 ∨ b1.
end

The specification of the booleans is quite simple. Therefore, it is suitable to
demonstrate how the equations are used to formally prove the equivalence of two
(boolean) terms. For example, consider the terms (true ⇒ false) ⇒ true and
(true ⇒ false) ∨ (false ⇒ true). By applying the equations, both terms can be
rewritten to true. Therefore, the terms are equal, which is denoted by bool `
(true ⇒ false) ⇒ true = (true ⇒ false) ∨ (false ⇒ true). The formal derivations
are:

(true ⇒ false)⇒ true
[B6]
= ¬(¬true ∨ false) ∨ true

[B1]
= ¬(false ∨ false) ∨ true

[B5]
= ¬(¬(¬false ∧ ¬false)) ∨ true

[B2]
= ¬(¬(true ∧ true)) ∨ true

[B3]
= ¬(¬true) ∨ true

[B1]
= ¬false ∨ true

[B2]
= true ∨ true

[B5]
= ¬(¬true ∧ ¬true)

[B1]
= ¬(false ∧ false)

[B4]
= ¬false

[B2]
= true,

(true ⇒ false) ∨ (false ⇒ true)
[B6]
= (¬true ∨ false) ∨ (¬false ∨ true)

[B1]
= (false ∨ false) ∨ (true ∨ true)

[B5]
= ¬(¬false ∧ ¬false) ∨ ¬(¬true ∧ ¬true)

[B2]
= ¬(true ∧ true) ∨ ¬(¬true ∧ ¬true)

[B1]
= ¬(true ∧ true) ∨ ¬(false ∧ false)

[B3]
= ¬true ∨ ¬(false ∧ false)
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[B4]
= ¬true ∨ ¬false

[B1]
= false ∨ ¬false

[B2]
= false ∨ true

[B5]
= ¬(¬false ∧ ¬true)

[B2]
= ¬(true ∧ ¬true)

[B1]
= ¬(true ∧ false)

[B3]
= ¬false

[B2]
= true.

The generalised property, (b⇒ b′)⇒ b = (b⇒ b′) ∨ (b′ ⇒ b), for b and b′ arbitrary
(possibly open) boolean terms, cannot be proven using the equations given above.

2.3 Natural numbers

The number specifications are set up hierarchically starting with the natural num-
bers (this section) and extending these via integer numbers (Section 2.4) to the
rational numbers (Section 2.5). For each level of the number hierarchy, a MEL
specification is given which defines both constructors and additional operations on
numbers. Notice that the hierarchy is not extended to the real numbers, because
a MEL specification of the real numbers does not exist (see also 5.4).

Specification nat below defines the sorts posnat (positive natural numbers) and
nat (natural numbers). The positive natural numbers are a subsort of the natural
numbers. This is defined by the subsort relation posnat < nat.

The constructors of the natural numbers are 0 and s. Every natural number is
represented by a term of the form s s . . . s 0 where the number of s’s is zero or
more. Of course, in practice we will use the standard decimal notation for natural
numbers.

In the include section, other MEL specifications can be included in the current
specification. As can be seen, nat includes specification bool of Section 2.2.
Consequently, we are allowed to use the sorts, constructors, and operators of the
booleans in the specification of the natural numbers, as if they were defined here.
The formal status of included specifications is discussed in Section C.3.

First, the predecessor operator p and the standard relational operators are defined.
Note the use of subsorts in equations. For example, in Equation [N2] (0 < pn =



2.3 Natural numbers 21

true), pn is a variable of sort posnat. That is, pn is a positive natural. In order
to apply Equation [N2] on a term n0 < n1, for some natural number terms n0

and n1, the normal form of n0 should be equal to the normal form of 0 and
n1 : posnat should hold. The advantage of using variables of specific (sub)sorts
is that less conditions are required in the equations. For example, Equation [N2]
reads 0 < pn = true. If we did not have variables of subsorts, like pn : posnat, a
condition should be added to the equation, as in 0 < n = true ⇐ n : posnat.

Note that in some equations, for example, Equation [N5], we use an equality op-
erator on natural numbers that is not defined explicitly in the operators section.
In fact, we use the equality relation of MEL as if it were a normal binary opera-
tion. The soundness of this way of dealing with the equality relation of MEL is
explained in [43]. Therefore, we can use an equality operator as if it were defined
in MEL. Once we have such an equality operator, it is straightforward to define
the corresponding inequality operator ‘6=’.

Equations [N10] and [N11] define the difference operator on natural numbers. It
computes the difference between two natural numbers and is a sort of replacement
for the subtraction operator. We chose not to define a subtraction, n0 − n1, on
natural numbers, since it requires some awkward definitions for the case where the
second argument is greater than the first argument.

Some equations are conditional, for example, Equation [N14]. Only if the condition
is true, does the left-hand side of a conditional equation hold. So, according to
Equation [N14], if n < m is true (to be determined by applying other equations),
then n div pn = 0 is true.

Equations [N17] and [N18] implement Eulers well known algorithm to compute the
gcd (greatest common divisor) of two positive natural numbers. The gcd operation
is needed to define unique normal forms of rational numbers in Section 2.5.

Finally, exponentiation is defined by Equations [N19] and [N20]. The first equa-
tion says, in conventional notation, n0 = 1. The second equation says, in con-
ventional notation, n1+n1

0 = n0 × nn1
0 . Using these equations, every term of the

form exp(n0, n1), where n0 and n1 are closed terms, can be rewritten to a (finite)
term of the form n0 × (n0 × . . . n0) (with n1 occurrences of n0).

spec nat

include bool.
sorts posnat, nat.
subsort posnat < nat.
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constructors
0 :→ nat,
s : nat→ posnat.

operators
p : posnat → nat,
< : nat nat→ bool,
≤ : nat nat→ bool,
> : nat nat→ bool,
≥ : nat nat→ bool,
+ : nat nat→ nat [ comm, assoc ],

d : nat nat→ nat [ comm ],
× : nat nat→ nat [ comm, assoc ],
div : nat posnat→ nat,
mod : nat posnat→ nat,

gcd : posnat posnat→ posnat [ comm ],
exp : nat nat→ nat.

var
n, n0, n1 : nat,
pn , pn0, pn1 : posnat.

equations
[N1] p s n = n,
[N2] 0 < pn = true,
[N3] n < 0 = false ,
[N4] s n0 < s n1 = n0 < n1,
[N5] n0 ≤ n1 = n0 < n1 ∨ n0 = n1,
[N6] n0 > n1 = n1 < n0,
[N7] n0 ≥ n1 = n1 ≤ n0,
[N8] 0 + n = n,
[N9] (s n0) + n1 = s (n0 + n1),
[N10] d(0, n) = n,
[N11] d(s n0, s n1) = d(n0, n1),
[N12] 0× n = 0,
[N13] (s n0)× n1 = n1 + (n0 × n1),
[N14] n div pn = 0 ⇐ n < pn ,
[N15] n div pn = s(d(n, pn) div pn) ⇐ pn ≤ n,
[N16] n mod pn = d(n, (n div pn)× pn),
[N17] gcd(pn0, pn1) = pn0 ⇐ pn0 = pn1,
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[N18] gcd(pn0, pn1) = gcd(d(pn0, pn1), pn1) ⇐ pn1 < pn0,
[N19] exp(n, 0) = s 0,
[N20] exp(n0, s n1) = n0 × exp(n0, n1).
end

2.4 Integer numbers

The integer numbers are an extension of the natural numbers. In the specification
int below, this is reflected by the fact that the sort nat is a subsort of the sort int.
Consequently, the nonnegative integer numbers, that is, the natural numbers, are
defined already (Section 2.3) and here we only have to add the negative integer
numbers.

Specification int defines two sorts: int (integer numbers) and nzint (non-zero
integer numbers). The sort nzint of non-zero integer numbers is introduced in
order to define division operators.

We chose to construct negative integer numbers by placing a minus sign ‘−’ before
positive natural numbers. So, the constructors of the integer numbers are the
constructors of the natural numbers and the new constructor ‘−’ of type posnat→
nzint, which is defined below. Note that −0 is not a normal form. This does not
mean that −0 is not a valid term, since the unary operator ‘−’ is also a normal
operator on integer numbers. It only means that −0 should be rewritable to a
normal form. Fortunately, using equation [I1] the term −0 can be rewritten to the
normal form 0 of sort nat.

As mentioned above, the sort nzint is defined in order to define the division oper-
ators div , and mod on integer numbers. These operators are not defined if
the second argument is 0. Here, the advantage of an AS formalism with subsorts,
like MEL, becomes clear; these formalisms support partial functions.

Extending natural number operations to integer number operations merely means
taking care of the sign of integer expressions. In addition to the extended opera-
tions, two new operations are defined: − (subtraction) and abs (absolute value).
Note that by defining these operators on integer numbers, they can be applied on
natural numbers, too.

spec int

include nat, bool.
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sorts nzint, int.
subsorts

posnat < nzint < int,
nat < int.

constructor
− : posnat→ nzint.

operators
− : int→ int,
s : int→ int,
p : int→ int,
abs : int→ nat,
< : int int→ bool,
+ : int int→ int [ comm, assoc ],
− : int int→ int,

d : int int→ nat [ comm ],
× : int int→ int [ comm, assoc ],
div : int nzint→ int,
mod : int nzint→ int,

gcd : nzint nzint→ posnat [ comm ],
exp : int nat→ int.

var
i, i0, i1 : int,
nzi : nzint,
n, n0, n1 : nat,
pn , pn0, pn1 : posnat.

equations
[I1] −0 = 0,
[I2] −− i = i,
[I3] p 0 = −s 0,
[I4] p(−pn) = −(s pn),
[I5] s(−pn) = −(p pn),
[I6] abs(n) = n,
[I7] abs(−pn) = pn ,
[I8] −pn < n = true,
[I9] n < −pn = false,
[I10] −pn0 < −pn1 = pn1 < pn0,
[I11] −pn + n = d(pn , n) ⇐ pn ≤ n,
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[I12] −pn + n = −d(pn, n) ⇐ n < pn ,
[I13] −pn0 +−pn1 = −(pn0 + pn1),
[I14] i0 − i1 = i0 +−i1,
[I15] d(−pn, n) = pn + n,
[I16] d(−pn0,−pn1) = d(pn0, pn1),
[I17] −pn × n = −(pn × n),
[I18] −pn0 ×−pn1 = pn0 × pn1,
[I19] −pn0 div pn1 = −(pn0 div pn1),
[I20] n div −pn = −(n div pn),
[I21] −pn0 div −pn1 = pn0 div pn1,
[I22] i mod nzi = i− ((i div nzi)× nzi),
[I23] gcd(−pn0, pn1) = gcd(pn0, pn1),
[I24] gcd(−pn0,−pn1) = gcd(pn0, pn1),
[I25] exp(i, 0) = s 0,
[I26] exp(i, s n) = i× exp(i, n).
end

2.5 Rational numbers

In the same way as integer numbers are an extension of the natural numbers,
rational numbers are an extension of the integer numbers. In specification rat

below, two sort names are defined: nzrat (non-zero rational numbers) and rat
(rational numbers). The sort nzrat of non-zero rational numbers is introduced in
order to define division operators on rational numbers.

There is one constructor operator for rational numbers, which is denoted by i
pn ,

where i : int and pn : posnat. In the operator definition : nzint posnat →
nzrat, it is unclear which argument position corresponds to the sort nzint and
which corresponds to the sort posnat. We adopt the convention that the order of
positions is determined in a left-right to top-bottom fashion, which means the top
most position corresponds to the sort nzint and the bottom most position to the
sort posnat. So, the sign of a rational number is stored in the numerator. This does
not yield unique normal forms, since, for example, 1

2 is equal to 4
8 and 4

2 is equal
to 2. Therefore, two equations, Equations [R2] and [R3], are added that allow
simplification of rational numbers to unique normal forms. A rational number i

pn

is in normal form if i 6= pn and 1 6= pn and gcd(i, pn) = 1. If the gcd is greater
than 1, the normal form is computed by factoring out gcd(i, pn).
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Some, operations on integer numbers are extended to rational numbers. In addi-
tion, a division operator ‘/’ on rational numbers and two conversion operations,
round and floor , from the rational numbers to the integer numbers are given. The
operation round(r) computes the maximum of the integer numbers closest to the
rational number r. Note that for any rational number, there are at most two clos-
est integer numbers. For example, integer numbers 0 and 1 are equally close to 1

2 .
Since 1 > 0, the normal form of the term round(1

2 ) is 1. The operation floor (r)
computes the greatest integer less than or equal to the rational number r. For
example, the normal form of floor(1

2 ) is 0.

spec rat

include int, bool.
sorts nzrat, rat.
subsorts

nzint < nzrat < rat,
int < rat.

constructor
: nzint posnat→ nzrat.

operators
: int nzint→ rat,

− : rat→ rat,
+ : rat rat→ rat [ comm, assoc ],
− : rat rat→ rat,
× : rat rat→ rat [ comm, assoc ],
/ : rat nzrat→ rat,

abs : rat rat→ rat,
round : rat→ int,
floor : rat→ int.

var
i, i0, i1 : int,
nzi ,nzi0,nzi1 : nzint,
n : nat,
pn , pn0, pn1 : posnat,
r : rat.

equations
[R1]

0
pn = 0,

[R2]
nzi
s 0 = nzi ,

[R3]
nzi
pn = nzi div gcd(nzi,pn)

pn div gcd(nzi ,pn) ⇐ s 0 < gcd(nzi , pn),
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[R4]
nzi
−pn = −nzi

pn ,
[R5] −nzi

pn = −nzi
pn ,

[R6] i0 + i1
nzi = (i0×nzi)+i1

nzi ,
[R7]

i0
nzi0

+ i1
nzi1

= (i0×nzi1)+(i1×nzi0)
nzi0×nzi1

,
[R8] i0 − i1

nzi = (i0×nzi)−i1
nzi ,

[R9]
i0

nzi − i1 = i0−(nzi×i1)
nzi ,

[R10]
i0

nzi0
− i1

nzi1
= (i0×nzi1)−(i1×nzi0)

nzi0×nzi1
,

[R11] i0 × i1
nzi = i0×i1

nzi ,
[R12]

i0
nzi0
× i1

nzi1
= i0×i1

nzi0×nzi1
,

[R13] i/nzi = i
nzi ,

[R14]
nzi0
pn /nzi1 = nzi0

pn×nzi1
,

[R15] r/nzi0
nzi1

= r × nzi1
nzi0

,
[R16] abs(pn0

pn1
) = pn0

pn1
,

[R17] abs(−pn0
pn1

) = pn0
pn1

,

[R18] floor(i) = i,
[R19] floor( i

pn ) = i div pn ⇐ 0 < i,
[R20] floor( i

pn ) = (i div pn)− s 0 ⇐ i < 0,
[R21] round(i) = floor(i + s 0

s s 0 ).
end

2.6 Channels

The channel data type defines communication channels. We use the convention to
denote concrete channels by identifiers prefixed by the ‘∼’ symbol. For instance,
∼in and ∼out are typical examples of concrete channels. Since the exact num-
ber of channels is application dependent, it is impossible to give a general MEL
specification of channels. Therefore, we confine ourselves to a specification scheme
channel. This scheme is parameterised by a set I of identifiers i , i ′, . . . .

spec channel

sort chan.
constructors

i : → chan,
i′ : → chan,
...

end
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2.7 Elements

In this section we define a theory of elements. Theories are used to define general
properties of data types, like existence of a particular sort. Such properties can be
used to define data types that depend on these properties. To put it differently, a
formal specification of properties by means of MEL theories enables us to define
generic data types, like sets and lists (see Sections 2.9 and 2.10). The formal status
of MEL theories is explained in Section C.3.

The difference between MEL specifications and MEL theories is their semantics.
As mentioned in Section 2.1, MEL specifications have an initial algebra semantics.
Using the same semantics for MEL theories is too restrictive. In fact, we want
any possible algebra that has at least one set to be a valid interpretation of el-

ement. Therefore, the semantics of MEL theories are allowed to have junk and
confusion. The only requirements are that there is a set for every sort name and
there are functions for every constructor and operator, such that the equations
of the theory hold. Since the theory element does not have equations, they are
vacuously satisfied by all algebras having at least one set. So, any set, including
the empty set, may serve as the interpretation of the sort elt. For instance, we
could interpret sort elt as the set of booleans (the carrier set of the initial algebra
of specification boolean). In this way, we can use the booleans as the element

parameter of the generic list data type (Section 2.10).

theory element

sort elt.
end

Interpreting elements one way or another, means specifying a fixed interpretation
of the sort elt. In MEL, this is formally done by so-called views from theories to
specifications (or other theories). In the next section, we present some of these
views from the theory element to the specifications of the booleans, natural
numbers, integer numbers, and rational numbers.

2.8 Element views of basic data types

As mentioned above, instantiation of parameterised specifications or parameterised
theories is done by views. A view is a mapping from a theory onto a specification
or another theory. It is a generalisation of instantiating actual parameters for
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formal parameters; the sorts, constructors, and operators of the specification are
the actual parameters and the sorts, constructors, and operators of the theory
are the formal parameters. We define four views from the theory element to
the specifications bool, nat, int, and rat, respectively. Since there is only one
sort defined in specification bool (Section 2.2), the view bool has to map the
sort elt onto the sort bool. For the view nat from element to nat, there are
more choices, since there are two sorts (posnat and nat). Of course, we chose for
nat, since that is the sort of all natural numbers. For the views from element to
int and rat, we chose for the sorts int and rat, respectively.

view bool

from element to bool

sort elt to bool.
end

view nat

from element to nat

sort elt to nat.
end

view int

from element to int

sort elt to int.
end

view rat

from element to rat

sort elt to rat.
end

2.9 Sets

In this section, we give a specification of finite sets of elements. The set data type
given in set[x :: element] below is generic; it is parameterised by a theory de-
scribing the elements of the set. Every specification for which there is an element

view (Section 2.7), can be used to instantiate the set[x :: element] specifica-
tion. For example, the view bool (Section 2.8) maps the actual sort bool of bool
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(Section 2.2) onto the formal sort elt of element. So, we can build boolean sets
by parameterising set[x :: element] by the view bool, as in set[bool].

In the specification set[x :: element], three sort names are defined: elem (comma
separated sequences of elements), neset (non-empty sets) and set (sets). The sort
names are implicitly qualified with the parameter x. That is, the fully qualified
names of the sort names are elem[X ], neset[X ], and set[X ], respectively. After
instantiation with bool, this becomes neset[bool], which is the sort of non-empty
sets of booleans. The explicit qualification of elt.x indicates that the sort elt is
defined in the theory element.

There are two set constructors: ‘ø’ and ‘{. . . }’. The first one denotes the empty
set and the second one constructs a (non-empty) set from a sequence of elements.
There is one constructor defined to build sequences of elements: ‘,’. This construc-
tor is an associative and commutative operator.

Equations [S1] and [S2] eliminate multiple occurrences of the same element in a
sequence of elements. These equations are based on the commutativity and asso-
ciativity of the operator ‘,’. Using commutativity and associativity, occurrences
of the same elements can be put next to each other after which the equations
mentioned can be used to eliminate one of the occurrences.

We define the conventional set operators ‘∈’ (membership test), ‘∩’ (set intersec-
tion), ‘∪’ (set union), ‘\’ (set difference), ‘⊂’ (strict subset), and ‘⊆’ (subset). In
addition, we define a function size that computes the number of elements in a set.

spec set[x :: element]

include bool, nat.
sorts elem, neset, set.
subsorts

elt.x < elem,
neset < set.

constructors
, : elem elem→ elem [ comm, assoc ],

ø :→ set,
{ } : elem→ neset.

operators
∈ : elt.x set→ bool,
∪ : set set→ set [ comm, assoc ],
∩ : set set→ set [ comm, assoc ],
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\ : set set→ set,
⊂ : set set→ bool,
⊆ : set set→ bool,

size : set→ nat.
var

e, e0, e1 : elt.x,
se, se0, se1 : elem,
s, s0, s1 : set,
ns : neset.

equations
[S1] e, e = e,
[S2] e, e, se = e, se,
[S3] e ∈ ø = false ,
[S4] e0 ∈ {e1} = (e0 = e1),
[S5] e0 ∈ {e1, se} = (e0 = e1) ∨ e0 ∈ {se},
[S6] ø ∪ s = s,
[S7] {se0} ∪ {se1} = {se0, se1},
[S8] ø ∩ s = ø,
[S9] {e} ∩ ns = {e} ⇐ e ∈ ns,
[S10] {e} ∩ ns = ø ⇐ ¬(e ∈ ns),
[S11] {e, se} ∩ ns = {e} ∪ ({se} ∩ ns) ⇐ e ∈ ns,
[S12] {e, se} ∩ ns = {se} ∩ ns ⇐ ¬(e ∈ ns),
[S13] ø \ s = ø,
[S14] s \ ø = s,
[S15] {e} \ ns = ø ⇐ e ∈ ns,
[S16] {e} \ ns = {e} ⇐ ¬(e ∈ ns),
[S17] {e, se} \ ns = {se} \ ns ⇐ e ∈ ns,
[S18] {e, se} \ ns = {e} ∪ ({se} \ ns) ⇐ ¬(e ∈ ns),
[S19] s0 ⊆ s1 = (s0 \ s1 = ø),
[S20] s0 ⊂ s1 = s0 ⊆ s1 ∧ s0 6= s1,
[S21] size(ø) = 0,
[S22] size({e}) = s 0,
[S23] size({e, se}) = s (size({se} \ {e})).
end
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2.10 Lists

This section defines the list data type. As set[x :: element], specification list[

x :: element] is parameterised by the element theory (Section 2.7). Therefore,
to build boolean lists, the specification list[x :: element] should be instantiated
with the view bool of Section 2.8, as in list[bool].

Lists are comma separated sequences of elements enclosed in brackets. The order
of the elements and the number of occurrences of an element is relevant. For
instance, using decimal notation for integer numbers, the list [0, 1, 2, 3] is different
from the list [0, 1, 3, 2] and [0] is different from [0, 0]. List concatenation is written
with the operator ‘++’, as in [0, 1] ++ [2, 3]. Membership test is denoted by the ∈
operator, as in 3 ∈ [0, 1, 2, 3].

Specification list[x :: element] defines three sorts: elem (comma separated
sequences of elements), nelist (non-empty lists), and list (lists). As with the sorts of
specification set[x :: element] (see Section 2.9) the sorts of list[x :: element]

are implicitly qualified with the parameter x. That is, the fully qualified names of
the sorts are elem[X ], nelist[X ], and list[X ], respectively.

List subtraction is defined by Equations [L7]–[L12]. For each i-th occurence (i =
0, 1, 2, . . . ) of an element e in the second argument, if the i-th occurrence of e

exists in the first argument, it is removed from this argument. For instance,
[2, 1, 1, 4, 1] - - [4, 1, 2, 1] = [1].

The list operations hd and tl compute the head and the tail of a list, respectively.
The head of a (nonempty) list is its first element. The tail of a (nonempty) list
is the list except its first element. Both the head and the tail operation have
a reversed variant, called hr (head right) and tr (tail right), respectively. They
compute the head and the tail starting from the end (the right side) of the list. So,
hr (l) computes the last element in the list l and tr(l) computes the list l except
for its last element.

The take and drop functions [32] compute a list consisting of a given number of
elements of a given list. The expression take(l, n) computes the list consisting of
the first n elements of list l and drop(l, n) function computes the list consisting of
the elements following the first n elements of l.

spec list[x :: element]

include bool, nat.
sorts elem, nelist, list.
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subsorts
elt.x < elem,
nelist < list.

constructors
, : elem elem→ elem [ assoc ],

[ ] :→ list,
[ ] : elem→ nelist.

operators
++ : list list→ list [ assoc ],
∈ : elt.x list→ bool,
- - : list list→ list,

hd( ) : nelist→ elt.x,
hr ( ) : nelist→ elt.x,
tl( ) : nelist→ list,
tr( ) : nelist→ list,
len( ) : list→ nat,
take( , ) : list nat→ list,
drop( , ) : list nat→ list.

var
e, e0, e1 : elt.x,
l, l0, l1 : list,
le, le0, le1 : elem,
nl : nelist,
n : nat.

equations
[L1] l ++ [ ] = l,
[L2] [ ] ++ l = l,
[L3] [le0] ++ [le1] = [le0, le1],
[L4] e ∈ [ ] = false ,
[L5] e0 ∈ [e1] = (e0 = e1),
[L6] e0 ∈ [e1, le] = (e0 = e1) ∨ e0 ∈ [le],
[L7] [ ] - - l = [ ],
[L8] l - - [ ] = l,
[L9] [e] - - l = [ ] ⇐ e ∈ l,
[L10] [e] - - l = [e] ⇐ ¬(e ∈ l),
[L11] [e, le] - - l = [le] - - (l - - [e]) ⇐ e ∈ l,
[L12] [e, le] - - l = [e] ++ ([le] - - l) ⇐ ¬(e ∈ l),
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[L13] len([ ]) = 0,
[L14] len([e]) = s 0,
[L15] len([e, le]) = s (len([le])),
[L16] hd([e]) = e,
[L17] hd([e, le]) = e,
[L18] hr([e]) = e,
[L19] hr([le, e]) = e,
[L20] tl([e]) = [ ],
[L21] tl([e, le]) = [le],
[L22] tr([e]) = [ ],
[L23] tr([le, e]) = [le],
[L24] take(l, 0) = [ ],
[L25] take([ ], n) = [ ],
[L26] take([e], n) = [e] ⇐ n > 0,
[L27] take([e, le], n) = [e] ++ take([le], p n) ⇐ n > 0,
[L28] drop(l, 0) = l,
[L29] drop([ ], n) = [ ],
[L30] drop([e], n) = [ ] ⇐ n > 0,
[L31] drop([e, le], n) = drop([le], p n) ⇐ n > 0.
end

2.11 Tuples

In this section we define the tuple data type. In fact, the specification is not
a pure MEL specification, but rather a specification scheme to generate MEL
specifications. We are aware of the fact that specification schemes are not defined
formally, but we think it can be understood unambiguously. Once the reflection
mechanism of MEL is explained, a formal treatment of specification schemes in
MEL is possible. For a treatment of reflection in MEL, or actually, reflection in the
more general logic called rewriting logic, we refer to [58]. A formal treatment of
specification schemes in MEL is outside the scope of this thesis. In the tuple[x0,

..., xn−1 :: element] specification scheme, we use indices from a set I, where I is
a set of n successive natural numbers starting from zero. Note that if I is the empty
set, there are no xi parameters for i ∈ I. For each set I, the scheme generates a
pure MEL specification of n-tuples, that is, it generates a MEL specification with n

parameters, each of which is described by the theory element (see Section 2.7).
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The specification scheme tuple[x0, ..., xn−1 :: element] defines one sort: tuple
(n-tuples). As with the sorts of set[x :: element] (see Section 2.9) and the
sorts of list[x :: element] (see Section 2.10) the sort name tuple is implicitly
qualified. The fully qualified sort name is tuple[x0, ..., xn−1].

There is one constructor operators for n-tuples, denoted by ‘〈. . .〉’. In addition,
there are n postfix operators, denoted by ‘.i’ (0 ≤ i < n), to access the elements
in an n-tuple. The operator ‘.i’ returns the ith element of a tuple.

spec tuple[x0, ..., xn−1 :: element]

sort tuple.
constructor
〈 , . . . , 〉 : elt.x0 . . . elt.xn−1 → tuple.

operators
.0 : tuple→ elt.x0.

...
.(n− 1) : tuple→ elt.xn−1.

var
e0 : elt.x0,
...
en−1 : elt.xn−1.

equation
[T1] 〈e0, . . . , en−1〉.0 = e0,
...
[Tn] 〈e0, . . . , en−1〉.(n− 1) = en−1.
end

To illustrate how the scheme is used, we present the specification of tuple[x0, x1

:: element] of two-tuples. This specification is the result of taking the index set
I = {0, 1}.

spec tuple[x0, x1 :: element]

sort tuple.
constructor
〈 , 〉 : elt.x0 elt.x1 → tuple.

operators
.0 : tuple→ elt.x0,
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.1 : tuple→ elt.x1.
var e0 : elt.x0,

e1 : elt.x1.

equation
[T1] 〈e0, e1〉.0 = e0,
[T2] 〈e0, e1〉.1 = e1.
end

The specification tuple[x0, x1] can be instantiated by specifications and theories
for which there is an element view. For example, a specification of two tuples
containing a boolean and an integer is defined by tuple[bool, int], where bool

and int are names of element views for the booleans and integer numbers, re-
spectively (see Section 2.8).

The specification of empty tuples, see tuple[] below, is the degenerated instantia-
tion resulting from I = ø. The qualified sort name tuple.tuple[] contains exactly
one element, the empty tuple, which is denoted by ‘〈〉’. Since the empty tuple
does not contain elements, there are no indexing operators. The empty tuple
specification is useful, since it is the formal interpretation of χ’s void type (see
Section 6.1).

spec tuple[]

sort tuple.
constructor
〈〉 : → tuple.

end

2.12 Element views of generic data types

In this section we define three more views. The new views are themselves pa-
rameterised by theories. Therefore, using a new view to instantiate, for example,
specification set[x :: element], results in a parameterised specification which
can be instantiated as usual.

The views we define here are views from element to set[x :: element], from
element to list[x :: element], and from element to tuple[x0, x1 :: ele-

ment]. Therefore, we now can define a (parameterised) specification of sets of
lists of something.
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All three views are parameterised by the element theory. To build sets of lists
of booleans, the module set[x :: element] should be instantiated with the view
list[x :: element], which in turn should be instantiated with the view bool, as
in set[list[bool]].

Our explanation for the specification scheme of tuples (see Section 2.11) also ap-
plies to the view scheme of tuples given below. That is, we do not give n MEL
views of n-tuples for all n, but we describe a view scheme by which we can generate
such views.

view set[x :: element]

from element to set[x]
sort elt to set.
end

view list[x :: element]

from element to list[x]
sort elt to list.
end

view tuple[x0, ..., x(n− 1) :: element]

from element to tuple[x0, . . . ,x(n− 1)]
sort elt to tuple.
end

2.13 Additional data types

As mentioned in the introduction of this chapter, χ has data types that are not or
cannot be defined by means of AS. These types are discussed below.

Type void is χ’s so-called empty type. It contains no elements. The void type is
used to construct synchronisation ports and χ-channels (see Section 3.3).

Type void can be defined by means of a MEL specification, but we choose not to.
In χσ, we use type tuple[ ] and its only element ‘〈〉’ to model synchronisation (see
Sections 2.11 and 6.3).

Type real represents the real numbers.

Type string represents arbitrary sequences of characters enclosed by double quotes.
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Type file can be used to import or export data from or to a file.

Distributions are defined on the types bool, nat, int, and real by using the type
constructor ‘dist[t]’. For instance, a real-valued distribution is of type dist[real].

2.14 Discussion

The main contribution of this chapter is a formal treatment of χ data types. The
formalised data types of χ are, per definition, the data types of χσ. Treating data
types in a formal way is a necessary step towards a formalisation of χ.

For the formalisation of data types, we used AS, and in particular MEL. The
MEL specifications have been validated using Maude. We conclude that the MEL-
Maude combination provides powerful techniques and support to define data types.
However, for some data types it is less effective. For instance, for the definition
of tuples we had to resort to specification schemes, and real numbers cannot be
specified in MEL at all.
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This chapter introduces the specification language χ. It serves as a starting point
for the formalisation described in the next section. Furthermore, it is also needed
to understand the discussions concerning χ and χσ in Chapters 5 and 6.

The specification language χ is inspired by CSP and the guarded command lan-
guage. Similar to CSP, the behaviour of system components is described by pro-
cesses that communicate via channels. Communication in χ is synchronous, unidi-
rectional, and timeless. In case two processes synchronise via a channel no informa-
tion is communicated and communication is undirected. In addition, statements
can be preceded by guards like in guarded command languages. Processes can be
grouped into systems by means of parallel composition. Such a system can act
as a process; it can be combined with other processes and systems to form a new
system.

The data types of χ are defined by the equational specifications of the previous
chapter. The closed terms of these data types are called constant expressions or
values. The set of these constant expressions is called Value. Typical elements
of Value are denoted by c, c′, . . . .

We assume there is a set of typed programming variables called Var . Programming
variables are typically denoted by x , x ′, . . . . The type of a programming variable
is a sort defined in the MEL specifications of the previous chapter. Furthermore,
programming variables of a sort s can occur whenever a term of sort s can occur.
This results in a new set of terms called Expr . Elements of this set are expressions
and typically denoted by e, e ′, . . . . Notice that Expr contains new normal forms
since we do not define additional equations. As a consequence, by adding pro-
gramming variables, the data types change. However, we are only interested in χ

specifications where all programming variables have a value. That is, before terms
are evaluated, programming variables are substituted by their values. Therefore,
we can ignore the new normal forms in calculations on data types.
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Simulation time is modelled by the global read-only programming variable τ of
type real. Via τ we can refer to the current simulation time in expressions. An
increase of the value of τ is interpreted as passage of time. That is, if a pro-
cess delays, the programming variable τ is increased by the number of time units
delayed.

We use a standard format for describing the syntax of χ called the Backus Naur
Form (BNF) [10]. A syntax definition in BNF consists of definitions of the form
identifier ::= definition , where identifier is a term that describes a particular part
of the syntax, ‘::=’ should be interpreted as ‘consists of’, and definition is a list of
what this part of the syntax may contain. This list may contain other identifiers,
or literal strings. Within such a definition, ‘|’ can be used to separate alternatives.

This chapter is organised as follows. First, we define type aliases and constants
(Sections 3.1 and 3.2). Then, we define processes, systems, and functions (Sections
3.3, 3.4, and 3.5). Next, we discuss how χ experiments are defined (Section 3.6).
This chapter is concluded by a discussion (Section 3.7).

3.1 Type aliases

A type alias is a user-defined name for a type. Type aliasing can make specifica-
tions more readable. For example, if products are represented by natural numbers,
we can define a type alias ‘prod’ for type nat. This gives us the opportunity to
declare programming variables of ‘type’ prod and perform operations on these
programming variables as if they were of type nat (addition, multiplication, etc.).
This can be achieved by writing

type prod = nat.

In general, a χ type alias definition T has syntax

T ::= type T ′,

T ′ ::= id = DT (type alias)
| T ′, T ′ (type alias list),

with id a fresh user-defined identifier and DT data type as defined in Chapter 2
or a type alias (the text between parentheses are comments). Remark that user-
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defined identifiers should be different from χ identifiers (keywords, operator names,
and function names).

3.2 Constants

Constants are defined in the same way as type aliases are defined. Using the
keyword const we define the constant, its type, and its value. Consider for example
the definition of the constants pi and batchsize:

const pi : real = 3.1415, batchsize : nat = 4.

In general, a χ constant definition C has the following syntax, with id a fresh
user-defined identifier and c a value:

C ::= const C ′,

C ′ ::= id : DT = c (constant definition)
| C′, C′ (constant definition list).

3.3 Processes

As mentioned in the preamble of this chapter, χ processes can communicate via
channels. Channels are connected to processes via ports. We have send, receive,
and synchronisation ports. Send and receive ports can be constructed by preceding
a type by an exclamation mark and a question mark, respectively. A synchroni-
sation port can be constructed by preceding type void by a tilde.

Before we define the syntax of χ processes, we first discuss a small example. Con-
sider a machine M that processes products. It requires 5 time units to process a
product. After a product has been processed, it is transported to the next work-
station. We define a process M with two ports. Products are received and sent
via these ports. We represent products by natural numbers and define type alias
prod. The specification then reads

type prod = nat

proc M(a : ? prod, b : ! prod) = |[ x : prod | ∗[true −→ a ? x ; ∆5 ; b ! x ] ]|.
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A process description is declared by the keyword proc followed by its name, in this
case M , possibly extended with a parameter declaration. As can be seen, M has
two ports (parameters a and b, respectively), one for receiving and one for sending
data of type prod.

The body of the process description is surrounded by a pair of double brackets. A
process body is divided into two parts, the declaration part and the action part.
The two are separated by the separator ‘|’.

In the first part of the process body programming variables are declared. This
means that we introduce programming variables and also specify their type. Pro-
cess M has one programming variable, named x, of type prod.

The first statement of M is a repetitive guarded command statement of the
form ∗[e −→ S ]. The meaning of this statement is that as long as boolean ex-
pression e evaluates to true, the sequence of statements S is executed. In this
example the value of the boolean guard is always true, so the statements following
the ‘−→’ will be executed forever. The first statement after the arrow is receive
statement a ? x. It denotes that M wants to receive a product via port a. The
product is ‘stored’ in programming variable x. Then we specify that processing
a product takes 5 time units by statement ∆5. Finally, we send the processed
product away via statement b ! x. It is possible that process M has to wait for
communication via port a or b because the environment is not able to commu-
nicate immediately. It can even be the case that the environment never offers
communication via a or b. In that case process M deadlocks.

Next, we present the syntax rules for χ processes. In general, a χ process definition
P has syntax

P ::= proc id(D0) = |[ Sp ]|
| proc id(D0) = |[ D1 | Sp ]|,

with id an identifier, D0 and D1 declarations, and Sp a process statement. Decla-
rations D0 and D1 have the following syntax, with x a programming variable:

D0 ::= (empty formal parameter list)
| D′

0,
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D′
0 ::= x : DT (formal parameter declaration)
| x : ! DT (formal send port parameter declaration)
| x : ? DT (formal receive port parameter declaration)
| x : ∼void (formal synchronisation port parameter declaration)
| D′

0, D′
0 (formal parameter declaration list),

D1 ::= x : DT (programming variable declaration)
| D1, D1 (programming variable declaration list).

Process statement Sp has the following syntax, with d a distribution, e an ex-
pression, eb a boolean expression, enum a numerical expression, i an iterator, l a
lower bound for iterator i, p a port, u an upper bound for iterator i, and x a
programming variable:

Sp ::= skip (skip statement)
| terminate (terminate statement)
| setseed(d, enum) (set seed statement)
| x := e (assignment statement, x 6≡ τ since τ is read only)
| E (event statement)
| Sp ; Sp (sequential composition)
| [GC ] (guarded command statement)
| ∗[GC ] (repetitive guarded command statement)
| [SW ] (selective waiting statement)
| ∗[SW ] (repetitive selective waiting statement)
| !e (print statement)
| ?x (input statement),

E ::= ∆ enum (delay statement)
| p ! e (send statement)
| p! (synchronisation send statement)
| p ? x (receive statement)
| p? (synchronisation receive statement)
| p∼ (synchronisation statement),

GC ::= R : eb −→ Sp (iterative alternative composition)
| GC [] GC (alternative composition),

SW ::= R : eb ; E −→ Sp (iterative alternative composition)
| SW [] SW (alternative composition),
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R ::= i : nat← l..u (range including l, excluding u)
| R, R (range list).

The following abbreviations are allowed in process definitions.

• In a declaration, x : DT , y : DT can be written as x, y : DT .

• In a guarded command, R : eb −→ Sp can be written as eb −→ Sp if the
range(s) in R contain(s) one element.

• In a selective waiting, R : eb ; E −→ Sp can be written as eb ; E −→ Sp if
the range(s) in R contain(s) one element.

Below, we explain the elements of process statement Sp .

• The skip statement in χ is in fact the empty statement; it does nothing.

• The terminate statement is for simulation purposes. Its execution aborts the
simulation.

• The setseed statement takes two arguments, a distribution and an expression
of type nat. The second argument determines the actual sample results of
the distribution given in the first argument.

When a distribution d is initialised, a seed is created which determines the
results of every sample of d to come. Consecutive samples are still random
but the actual result of the samples is determined by that particular seed.
Every time the program is executed the distribution is initialised and a new
seed is created. This new seed differs from the previous one and so do the
samples taken from the distribution.

The setseed statement can be used to set a particular seed. This generated
seed is then the same for every new execution of the program. In that way,
the same sample results can be obtained in consecutive program executions.
This is especially useful for debugging purposes.

For example, suppose that we want to model a machine M that processes a
lot with a processing time that is Gamma distributed. The Gamma distri-
bution has parameters p and q where the distribution mean m equals p× q

and its variance v equals p× q2. For debugging purposes, we want to set the
seed ourselves. This can be done as follows where σ d draws a sample from
distribution d:
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proc M(a : ? lot, b : ! lot, m, v : real) =
|[ d : dist[real], x : lot, p, q : real
| p := m2

v ; q := v
m

; d := gamma(p, q) ; setseed(d, 37)
; ∗[true −→ a ? x ; ∆(σ d) ; b ! x ]
]|.

• The assignment statement assigns a value to a programming variable. In
assignment statement x := e, programming variable x is assigned the value
that evaluation of expression e yields. The types of x and e should be
compatible. Again, note that x 6≡ τ because τ is a read only programming
variable.

It is also allowed to do what is called multiple assignments in one statement.
For example, consider the process definition

proc P (〈x, y〉 : tuple[nat, nat]) = |[ 〈x, y〉 := 〈y, x〉 ]|.
This simple process swaps the values of the parameters x and y in one state-
ment.

• A delay statement ∆e enables a process to delay. If e > 0, then for 0 < d ≤ e

this process can delay d time units. If e = 0, this statement ends, and
if e < 0, this statement deadlocks. Furthermore, it can be used as a time
out when placed in a selective waiting statement (more information on time
outs follows in the explanation of the repetitive selective waiting statement).

• A send statement p ! e can be used to send the value of expression e over the
channel connected to port p if at the same time another process is able to
receive that value from the same channel. In case we only synchronise and
do not exchange information, we write p!.

• A receive statement p ? x can be used to receive a value from the channel
connected to port p and assign it to programming variable x if at the same
time another process is able to send that value over the same channel. In
case we only synchronise and do not exchange information, we write p?.

• A synchronisation statement p∼ can be used to synchronise via a channel
connected to port p if at the same time another process is able to synchronise
via the same channel.

• In order to denote that process statement S′
p is to be executed after process

statement Sp, we write Sp ; S′
p.
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• A guarded command statement can be used to select different statements, de-
pending on the value of the guards. Upon execution of a guarded command,
all guards are evaluated. If none of the guards evaluate to true, then execu-
tion of the guarded command statement fails; it deadlocks. In case more than
one guard evaluates to true, one alternative is chosen non-deterministically
and the corresponding statement is executed.

• A repetitive guarded command statement can be used if we want a guarded
command to be executed repeatedly as long as one or more guards evaluate
to true. The repetition ends if all guards yield false, then the statement
following the repetitive guarded command is executed.

• A selective waiting statement is somewhat like a guarded command state-
ment except that an event statement ES follows the guard. For all the
guards that evaluate to true, the construct waits until at least one of the
event statements is enabled, that is, a time out has elapsed or a communi-
cation or synchronisation can take place. From these enabled alternatives
one alternative is chosen non-deterministically, the event is executed, and
execution continues with the statements following the ‘−→’. If none of the
guards evaluate to true, the construct deadlocks.

• A repetitive selective waiting statement can be used if we want a selective
waiting to be executed repeatedly as long as one of the guards evaluates to
true. The repetition ends if all guards yield false . In that case, the statement
following the repetitive selective waiting is executed.

For example, suppose we want to model a conveyor belt. This conveyor
receives lots on one side of the belt and delivers these lots at a workstation
on the other side of the belt. Transportation takes t time units. Now,
consider the process definition

proc C(a : ? lot, b : ! lot, t : real) =
|[ xs : list[tuple[lot, real]], x : lot
| xs := [ ]
; ∗[ true ; a ? x −→ xs := xs ++ [〈x, τ + t〉]

[] len(xs) > 0 ; ∆hd(xs).1 − τ−→ b ! hd(xs).0 ; xs := tl(xs)
]

]|.
If a lot x is received at the conveyor by statement a?x, it is stored in a tuple
together with the moment in time lot x reaches the end of the conveyor.
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This moment in time equals the current time τ plus the conveying time t:
τ + t. Now, we can consider our lots labelled with the moment in time that
they have to leave the conveyor. All these labelled lots are stored in a list.
If the conveyor contains lots, that is, if the length of list xs is greater than
zero (len(xs) > 0), then the lot in the head of list xs is the first one to leave
the conveyor. This is the case if the second element of that lot is equal to
the value of the current simulated time, as in 〈x, t〉.1 = τ . In that case,
hd(xs).1− τ = 0, and product hd(xs).0 can be sent via b.

As can be seen in the process description, we have a rather strange selective
waiting statement. We don’t have a send or receive statement following the
guard len(xs) > 0, but the delay statement ∆hd(xs).1 − τ instead. This is
what is called a time-out statement. In case of the selective waiting statement
in C, a time-out occurs as soon as the expression hd(xs).1 − τ equals 0.
At that moment the statements following the ‘−→’ of the time-out can be
executed. This means that the lot which was ready to leave the system can
be sent away.

• The print statement !e writes an expression e to standard output. The
expression to be printed can be a comma separated list that can contain
strings, programming variables, and functions like tab() (to next tab stop)
and nl() (to next line).

• The input statement ?x reads input from standard input and stores it in
programming variable x.

3.4 Systems

As mentioned in the preamble of this chapter, processes can be grouped into a
system. Before we define the syntax of χ systems, we first discuss a small example.

Consider the processes G, M , and E as defined below. Process G and E represent
the environment of machine M (generator and exit, respectively). We use these
processes to define system GME . Within system GME the three processes are
connected by the channels ∼gm and ∼me. System GME is depicted in Figure 3.1.

For the definitions of G, M , and E we have

type prod = nat
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G M E
∼gm ∼me

Figure 3.1 System GME .

proc G(a : ! prod) =
|[ n : prod | n := 0 ; ∗[true −→ a ! n ; n := n + 1] ]|

proc M(a : ? prod, b : ! prod, t : real) =
|[ x : prod | ∗[true −→ a ? x ; ∆t ; b ! x ] ]|

proc E(a : ? prod) =
|[ x : prod | ∗[true −→ a ? x ] ]|.

System GME can now be defined as

syst GME (t : real) =
|[∼gm,∼me : − prod | G(∼gm) ‖M(∼gm ,∼me, t) ‖ E(∼me) ]|.

A system description is declared by the keyword syst followed by its name, in
this case GME , possibly extended with a parameter declaration. In this case the
processing time t of machine M is a parameter of GME . The fact that it has no
incoming or outgoing channels makes it a closed system.

The body of a system description, like process descriptions, is surrounded by a
pair of double brackets. In the declaration part, channels are declared. They are
declared in a way similar to declarations of programming variables in processes.
A channel is constructed by placing the minus symbol in front of the type that
is sent via this channel. Just like in process descriptions, the declaration part
is separated from the action part by the separator ‘|’. In the action part, we
instantiate processes and systems with the appropriate channels and parameters.
The different processes are put in parallel by means of the operator ‘‖’. This
operator denotes that process statements are executed concurrently.

In general, a χ system definition S has syntax

S ::= syst id(D0) = |[ Ss ]|
| syst id(D0) = |[ D2 | Ss ]|,
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with id an identifier, D0 and D2 declarations, and Ss a system statement. Dec-
laration D0 has already been defined for processes in Section 3.3. Declaration D2

has the following syntax, with c a channel:

D2 ::= c : −DT (channel declaration)
| D2, D2 (channel declaration list).

System statement Ss has the following syntax, with e an expression, I a process
or system instantiation, and R a range as defined for processes in Section 3.3:

Ss ::= R : I (iterative parallel instantiation)
| Ss ‖ Ss (parallel instantiation),

I ::= id(L) (instantiation),

L ::= (empty actual parameter list)
| L′,

L′ ::= e (actual parameter)
| L′, L′ (actual parameter list).

The following abbreviations are allowed in system definitions.

• In a channel declaration, c : −DT , d : −DT can be abbreviated to c, d : −DT .

• In a iterative parallel instantiation, R : I can be abbreviated to I if the
range(s) in R contain(s) one element.

The parallel composition operator is explained below.

• The parallel composition operator executes two processes and/or systems
concurrently. Execution of the statements contained by parallel processes is
timeless (with respect to the simulated time) except for the delay statement.
A delay statement can only be executed if other processes in parallel with
the process containing the delay statement can also delay. This is the case
if the other processes are at that moment able to execute a delay statement
or a send or receive statement.
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3.5 Functions

Real-life models usually consist of many processes and systems and often perform
a lot of complex data manipulation in the form of complicated algorithms. It
would be convenient if we could refer to these algorithms by a name augmented
with the required arguments. This shortens a specification and also improves its
readability.

In order to neatly describe such algorithms and in order to separate them from the
process specification itself, functions can be defined. Before we define the syntax
for χ functions, we first discuss a small example.

Consider the function reverse which reverses lists of natural numbers. So, for
example reverse([1, 2, 3]) = [3, 2, 1]. The definition of function reverse reads

func reverse(xs : list[nat])→ list[nat] =
|[ ys : list[nat]
| ys := [ ]
; ∗[len(xs) > 0 −→ ys := [hd(xs)] ++ ys ; xs := tl(xs) ]
; ↑ys
]|.

In the same way as we specify a process or system, we can specify a function by
the keyword func followed by its name, its arguments, and its return type. In
this case, the function’s argument xs is of type list[nat] and its return type (the
type after the ‘→’) is also of type list[nat]. Also, like in process descriptions,
we can declare local programming variables (in this example the programming
variable ys), and use them in the function body. The calculated result is returned
by return statement ↑e with e an expression. A user-defined function call is similar
to function calls for predefined functions such as hd and tl . That is, a function is
called by its name and its arguments enclosed in parentheses. A function call is an
expression and may occur wherever ordinary expressions may occur provided that
type correctness is preserved. Furthermore, note that we can use xs in the same
way as ys . Changes made to xs have no influence outside the function because χ

uses a call by value parameter mechanism.

Although recursion is not allowed in χ processes and systems, it is allowed in χ

functions. The definition of function reverse that uses recursion reads
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func reverse(xs : list[nat])→ list[nat] =
|[ [ len(xs) = 0 −→ ↑[ ]
[] len(xs) > 0 −→ ↑reverse(tl(xs)) ++ [hd(xs)]
]

]|.

In general, a χ function definition F has syntax

F ::= func id(D3)→ DT = |[ Sf ]|
| func id(D3)→ DT = |[ D1 | Sf ]|,

with id an identifier, D1 and D3 declarations, and Sf a function statement. Dec-
laration D1 has already been defined for processes in Section 3.3. Declaration D3

has the following syntax:

D3 ::= (empty formal parameter list)
| D1.

Function statement Sf has the following syntax, with e an expression, eb a boolean
expression, x a programming variable, and R a range expression as defined for
processes in Section 3.3:

Sf ::= ↑e (return statement)
| skip (skip statement)
| x := e (assignment statement, x 6≡ τ)
| Sf ; Sf (sequential composition)
| [GC ′ ] (guarded command statement)
| ∗[GC ′ ] (repetitive guarded command statement),

GC ′ ::= R : eb −→ Sf (iterative alternative composition)
| GC ′ [] GC ′ (alternative composition).

The following abbreviations are allowed in function definitions.

• In a declaration, x : DT , y : DT can be abbreviated to x, y : DT .

• In a guarded command, R : eb −→ Sf can be abbreviated to eb −→ Sf if
the range(s) in R contain(s) one element.



52 The specification language χ 3

The elements of function statement Sf that also appear as elements of process
statement Sp act similarly in a Sf context. The only statement new here is the
return statement which is explained below.

• The return statement returns the value of expression e to the statement that
performed the actual function call.

In χ, a function is to be used in a strict mathematical sense: every call of the same
function with the same parameter values should result in the same outcome. This
restriction is not enforced by the χ function syntax, but should be respected by
the user. For instance, the following ‘function’ is not a valid χ function:

func illegal()→ nat = |[ [true −→ ↑0 [] true −→ ↑1] ]|.

3.6 Experiments

An experiment is a concrete instantiation of a process or system description. As
an example, we return to system GME of Section 3.4. Suppose we want to do
an experiment on system GME using the χ simulator. In that case, we have to
instantiate system GME in the experiment environment. We define an experiment
on GME for the case that process M has a processing time of 3.5 time units:

xper = |[ GME (3.5) ]|.

In general, a χ experiment definition E has the following syntax, with I an instan-
tiation as defined in Section 3.4:

E ::= xper = |[ I ]| (experiment definition).

3.7 Discussion

This chapter introduced the specification language χ. It presented the syntax
of χ and described its semantics. This chapter serves as a starting point for the
formalisation described in the next chapter. It is also needed to understand the
discussions concerning χ and χσ in Chapters 5 and 6.
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In this chapter, we define the formal syntax and semantics of χσ. The formal def-
initions are illustrated by examples in Chapter 8. We follow the standard process
algebraic approach where the semantics of processes is expressed in terms of pro-
cess graphs. A process graph is a special Labelled Transition System (LTS). These
process graphs are defined in a Structural Operational Semantics style (SOS), also
called Structured Operational Semantics style [1, 163].

This chapter is organised as follows. We introduce preliminary notions on states
and stacks in Section 4.1. Next, Section 4.2 defines the semantical model of χσ.
In Section 4.3, we discuss timing aspects and explain our decisions regarding χσ’s
time model. Strong bisimulation on χσ processes is defined in Section 4.4. The
Sections 4.5 through 4.14 define χσ processes and operators by means of deduction
rules. Section 4.15 defines a stratification which shows that these deduction rules
are meaningful. In addition, Section 4.16 shows that strong bisimulation is a
congruence for all χσ process operators. Section 4.17 discusses properties of χσ

processes, and Section 4.18 describes how process definitions are specified. This
chapter is concluded by a discussion in Section 4.19.

4.1 States and stacks

This section summarises the definitions on states and stacks that appear in Ap-
pendix A. Furthermore, Appendix A contains a number of lemmas on states and
stacks. Some of these lemmas are used in proofs presented in this chapter.

We assume there is a countably infinite number of distinct identifiers, which are
typically denoted by i , i ′, . . . . Identifiers can be used to denote programming
variables or channels. Recall that programming variables are typically denoted
by x , x ′, . . . (see Chapter 3). Channels are typically denoted by m, m ′, . . . .
Programming variable identifiers and channel identifiers are associated with values
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(also called constant expressions, see Chapter 3). Recall that values are typically
denoted by c, c′, . . . . The association of an identifier and a value is called a
valuation and is denoted by i 7→ c as defined in Definition A.1. Valuations are
typically denoted by v , v ′, . . . . The notation i 7→ ⊥ denotes that there is a value c

such that i 7→ c. This notation allows the value of an identifier to be unspecified.

States are lists of valuations as defined in Definition A.2 and are typically denoted
by s , s ′, . . . . Furthermore, it is required that the identifiers occurring in the
valuations be mutually distinct. That is, each identifier occurs at most once in
a state. The empty state is denoted by λs. A nonempty state is constructed
from a valuation v and a state s and is denoted by v : s. The set of all states is
called State.

The function dom is defined in Definition A.3 and returns the domain of a state,
that is, it returns the set of identifiers in the state. An identifier is defined in a
state if and only if it is in the domain of the state. If it is not in the domain, it is
undefined in that state.

The value associated with an identifier in a state can be changed by the substitution
operator. Substitution on states is defined in Definition A.4 as

λs[c/i] = λs,

(i 7→ c : s)[c′/i] = i 7→ c′ : s,

(i 7→ c : s)[c′/i′] = i 7→ c : s[c′/i′] if i 6= i′.

Note that an update can never add new valuations (and consequently new identi-
fiers) to states. If the identifier to be updated does not occur in a valuation in a
state, then substitution is the identity operation.

Recall that in Chapter 3, we defined the set Expr of expressions. Expressions
are typically denoted by e, e ′, . . . . The set Expr contains terms according to the
MEL specifications defined in Chapter 2. Furthermore, these terms may contain
programming variables, as mentioned in Chapter 3.

If e is an expression and s is a state, then the evaluation of e in s is written
as s(e). By evaluating an expression, a value may result. However, since e can
contain programming variables that are undefined in a state s, it is possible that
evaluation s(e) is not a value, but remains an expression.

To evaluate expressions, identifiers have to be looked up in states. Looking up
identifiers in states is defined in Definition A.5 as
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λs(i) = i,

(i 7→ c : s)(i) = c,

(i 7→ c : s)(i′) = s(i′) if i 6= i′.

Two states are equivalent if for every identifier i evaluation of i in those two states
has the same result. Equivalence on states is defined in Definition A.6 as

s = s′ if ∀i : s(i) = s′(i).

The set function updates the value of an identifier in a state, or, if the identifier
does not occur in the state, adds the identifier and the value to a state. It is
defined in Definition A.7 as

set(s, λs) = s,

set(s, i 7→ c : s′) = set(s[c/i], s′) if i ∈ dom(s),
set(s, i 7→ c : s′) = set(i 7→ c : s, s′) if i 6∈ dom(s).

States can be stacked in so-called state stacks as defined in Definition A.8. These
state stacks are typically denoted by σ, σ′, . . . . The empty state stack is denoted
by λσ. A nonempty state stack is constructed by a state s and a state stack σ and
is denoted by s :: σ. The set of all state stacks is called Stack . In the remainder of
this document, we mostly refer to state stacks by simply using the word stack. In
a stack, the same identifier can occur more than once, but only in different states
of the stack.

The function dom on stacks as defined in Definition A.9, returns the domain of
a stack. That is, it returns the set of identifiers in the (states of the) stack. A
identifier defined in a stack if and only if it is in the domain of the stack. If it is
not in the domain, it is undefined in that stack.

Substitution is generalized on stacks in Definition A.10 as

λσ[c/i] = λσ,

(s :: σ)[c/i] = s[c/i] :: σ if i ∈ dom(s),
(s :: σ)[c/i] = s :: σ[c/i] if i 6∈ dom(s).

Similarly, evaluation of expressions is generalized to stacks. For instance, if e is
an expression and σ a stack, then σ(e) is the evaluation of e in σ. Consequently,
looking up identifiers is also generalized on stacks, as defined in Definition A.11 as
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λσ(i) = i,

(s :: σ)(i) = s(i) if i ∈ dom(s),
(s :: σ)(i) = σ(i) if i 6∈ dom(s).

Equivalence on stacks is defined in Definition A.12 as

λσ = λσ,

s :: σ = s′ :: σ′ if s = s′ ∧ σ = σ′.

In addition, observational equivalence on stacks is defined in Definition A.13 as

σ $ σ′ if ∀i : σ(i) = σ′(i).

4.2 A semantical model for χσ

In this section, we define a semantical model for χσ. As mentioned above, we
use process graphs to express the semantics of χσ processes. A process graph is a
special form of an LTS.

Definition 4.1 (LTS) An LTS is a triple (S, RS×S , RS), with S a set of states, RS×S

a set of binary relations on states, and RS a set of unary relations on states.

Suppose we have an LTS (S, RS×S , RS) and s, s′ ∈ S, r ∈ RS×S , and r′ ∈ RS . If
there is a pair (s, s′) ∈ r or s ∈ r′, then we say there is a transition from s to s′ or
a transition for s, respectively. In this thesis, we are interested only in LTSs where
each state is a closed χσ process term. The signature of χσ processes is presented
in Sections 4.5 through 4.14. The set of all χσ process terms is called P and the
set of all closed χσ process terms is called C(P ). Often, we write ‘process’, where
formally we should write ‘process term’.

The semantics of χσ processes defines their action behaviour, delay behaviour, and
termination behaviour. Action behaviour and delay behaviour define how processes
evolve into other processes by performing actions or delays. Action behaviour and
delay behaviour depends on the context and can change the context. For instance,
the action behaviour of a process that should update a programming variable x

using the value of a programming variable y, depends on the value of y and changes
the value of x. We use stacks to represent these contexts. Termination behaviour
defines whether processes have finished properly. Similarly to action behaviour
and delay behaviour, termination behaviour of processes depends on the context.
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The set of all actions is called Action and contains the internal action τ (not to be
confused with the current time expression τ of χ), the assignment action aa(x, c),
the send action sa(m, c), the receive action ra(m, x), and the communication ac-
tion ca(m, x, c):

Action = {τ, aa(x, c), sa(m, c), ra(m, x), ca(m, x, c)},

where x ∈ Id , c ∈ Value, and m ∈ Channel . The sets Id , Value, and Channel
represent the set of identifiers, the set of values, and the set of channels, respec-
tively. The set of all delays is the set R>0 of positive real numbers. So, if a process
delays, the duration of this delay is defined by a positive real number d ∈ R>0.

In order to put the action behaviour, delay behaviour, and termination behaviour
of processes in the framework of LTSs, we will now define binary relations for action
behaviour and delay behaviour and unary relations for termination behaviour.
The binary relations are given by triples (σ, `, σ′) where σ, σ′ ∈ Stack and ` ∈
Action ∪ R>0. The unary relations are given by stacks σ with σ ∈ Stack . This
results in the following definition of χσ-LTSs.

Definition 4.2 (χσ-LTS) A χσ-LTS, is an LTS (S, RS×S , RS), such that

• S ⊆ C(P ),

• all r ∈ RS×S are binary relations on closed χσ processes given by triples

– (σ, a, σ′) ∈ Stack ×Action × Stack or
– (σ, d, σ′) ∈ Stack ×R>0 × Stack, and

• all r ∈ RS are unary relations on closed χσ processes given by stacks σ ∈
Stack.

For instance, let triple (S, RS×S , RS) be a χσ-LTS. If r ∈ RS×S and r is given by
(σ, a, σ′), then for all (p, p′) ∈ r we say there is an action transition from p to p′,
which is denoted by 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉. Similarly, if r is given by (σ, d, σ′), we
say there is a delay transition for all (p, p′) ∈ r. Delay transitions are denoted by
〈 p, σ 〉 p d−→〈 p′, σ′ 〉. Finally, if r ∈ RS and r is given by σ, then for all p ∈ r we say
there is a termination for p, which is denoted by 〈 p, σ 〉↓.

As mentioned above, we use process graphs as the semantical model of χσ pro-
cesses. Process graphs are LTSs with one distinguished state, called the initial
state, and all other states reachable from that state. If a process graph is repre-
sented graphically, the states are nodes, action transitions and delay transitions
are edges, and terminations are node labels. We use the following conventions.
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• Action transitions are solid edges labelled by an action.

• Delay transitions are dashed edges labelled by a positive real number.

• Terminations are represented by grey states.

• The initial state has a double circle.

• States without (outgoing) transitions and terminations are black.

Despite the fact that the last two items are not defined as unary relations, we
do have a convention for these properties. The initial state indicates the starting
point of the process graph and is easily recognisable by the double circle. States
without transitions (that is, nodes without outgoing edges) and terminations are
deadlock states and usually indicate design errors. We illustrate our convention
by a process that can perform an action a and terminate, or delay for 2 time units
and deadlock. The process graph of this process is depicted in Figure 4.1. The
numbers in the states are for referring purposes. As can be seen, node 2 is the
root node, node 1 is a termination node, and node 0 is a deadlock node.

2

0

2

1

a

Figure 4.1 Example process graph.

As mentioned, we use SOS theory to define the operational semantics of χσ. That
is, we define a set of deduction rules that describes how χσ processes can evolve
into other χσ processes. A deduction rule consists of hypotheses and a conclusion.
Hypotheses and conclusions are formulas.

We assume there is a predicate true on boolean expressions. true(eb) holds
if and only if the equality eb = true can be proven according to the data type
specifications of Chapter 2.
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Definition 4.3 (Formulas) A formula has one of the following forms, where eb ∈
bool, p, p′ ∈ P , σ, σ′ ∈ Stack, a ∈ Action, and d ∈ R>0:

1. true(eb),

2. 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉,

3. 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉,

4. 〈 p, σ 〉↓,

5. ¬∃p′ ∈ C(P ), σ′, a : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉,

6. ¬∃p′ ∈ C(P ), σ′, d : 〈 p, σ 〉 d−→ 〈 p′, σ′ 〉,

7. ¬〈 p, σ 〉↓ .

For obvious reasons, forms 1–4 are called positive formulas and forms 5–7 are called
negative formulas. Note that if p, p′ ∈ C(P ), the forms 2–4 are action transitions,
delay transitions, and terminations, respectively.

By convention, a formula true(eb) can be abbreviated to eb. Also, formulas of
forms 5–7 can be abbreviated to 〈 p, σ 〉 6−→, 〈 p, σ 〉 6p−→, and 〈 p, σ 〉6 ↓, respectively.

Definition 4.4 (Deduction rule) A deduction rule consists of a set of formulas H

and a formula c. H is the set of hypotheses and c is the conclusion. Further-
more, c is of the form 2, 3, or 4 of Definition 4.3. A deduction rule is denoted
by H

c .

We use the following convention: two rules H
c and H

c′ can be written as H
c,c′ .

Validity of the hypotheses of a deduction rule, under a certain substitution θ,
implies validity of the conclusion of this rule under θ. In this way proofs (of action
transitions, delay transitions, and terminations) can be established. In order to
establish a proof for a negative formula, it should be manifestly impossible to derive
the positive counterpart of the formula. That is, to prove ¬∃p′, σ′, a : 〈 p, σ 〉 a−→
〈 p′, σ′ 〉, one has to show that it is impossible to prove 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, for
all p′ ∈ C(P ) and all σ, σ′ ∈ Stack , and a ∈ Action .

The deduction rules defined in this chapter constitute a transition system speci-
fication (TSS) as described in [1, 71]. The transitions that can be proven from
a TSS (in the general setting of [71] transitions are elements of both binary and
unary relations) define an LTS. In our case, the χσ-LTS contains action transi-
tions, delay transitions, and terminations that can be proven from the deduction
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rules. In general, TSSs with negative hypotheses might not be meaningful. That
is, it might be unclear whether the TSS defines an LTS and if it does, it might
be unclear whether it defines a unique LTS. Because the SOS of χσ has negative
hypotheses (hypotheses of the forms 5–7 of Definition 4.3), we have to show that
the set of deduction rules that define the TSS of χσ is meaningful. This is done
in Section 4.15 using SOS theory.

4.3 A time model for χσ

This section discusses some timing aspects that need to taken into consideration.
For example, we have to decide whether to implement a discrete or a continuous
time model. Also, we have to decide in which way passage of time interacts with
the ability to perform actions and the ability to terminate.

Firstly, we mention discrete and continuous time. A discrete time implementation
describes time by viewing the time domain as an enumeration of time slices, where
every slice covers the same amount of time, expressed in an arbitrary time unit.
In a continuous time implementation all timing is measured on a continuous time
scale. Since χ has continuous time, χσ has continuous time, too.

Two other timing aspects are time factorisation and maximal progress. Time
factorisation preserves choices between alternatives that can delay for the same
amount of time. That is, progress of time does not make a choice in that case. For
instance, consider a machine that processes different types of products. For each
product type, there is a different operation mode. Suppose this machine is idle
and waits for input. Then the choice for a specific operation mode is determined
not before or while the machine waits, but as soon as a product is received (after
some delay).

Sometimes, an additional condition applies to passage of time. Namely, that pas-
sage of time is allowed only if no other activity is possible. This is called strong
time factorisation, or maximal progress [13]. The weaker variant is then called
weak time factorisation. Timed extensions of the process algebra ACP have weak
time factorisation built in [16]. The Algebra of Timed Processes has strong time
factorisation built in [155]. From here on, we use the terms time factorisation and
maximal progress where with time factorisation we mean weak time factorisation.

For example, consider a process that can perform an action a, or delay for 3 time
units and perform action b, or delay for 3 time units and perform action c. The
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process graph for the case that time factorisation is not implemented is depicted
in Figure 4.2(a). Here, we can see that progress of time does make a choice. The
process graph for the case that time factorisation is implemented is depicted in
Figure 4.2(b). As can be seen, progress of time does not make a choice here, where
it did in the case without time factorisation. The choice to perform action b or c

is preserved until after the delay. The process graph for the case that maximal
progress is implemented is depicted in Figure 4.2(c). It is obvious that here the
opportunity to delay is lost since we only allow this if no other activity is possible.
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(a) No time factorisation.
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(b) Time factorisation.
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(c) Maximal progress.

Figure 4.2 Time factorisation and maximal progress.

Note that the common interpretation of time factorisation does not prohibit a
choice to be made between two alternatives that do not necessarily delay for the
same amount of time. So, it does not prohibit the execution of a large delay
thereby losing alternatives that cannot perform that large delay. Consider for
example a process that can delay for 3 time units and perform action a, or delay
for 5 time units and perform action b. The process graph for the case that time
factorisation is not implemented is depicted in Figure 4.3(a) and the case that
time factorisation is implemented is depicted in Figure 4.3(b). As can be seen,
time factorisation does not prohibit the delay of 5 time units to be executed at
once. Another possible interpretation is the one depicted in Figure 4.3(c). In that
case time factorisation establishes that progress of time never determines a choice.
Here, it implies that the opportunity to perform action a after 3 time units should
not go unnoticed if time progresses.
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Figure 4.3 Different interpretations of time factorisation.

The specification language χ has both statements with time factorisation (selective
waiting statements) and statements without (guarded command statements). We
refrained from including both in χσ and decided to include time factorisation.
Furthermore, if time factorisation is undesired, it can be suppressed. For example,
see the translation of guarded command statements in Chapter 6.

We decided to implement time factorisation so that progress of time can never
determine a choice (the interpretation as depicted in Figure 4.3(c)). So, if two
or more alternatives can delay, then they will delay together. As a consequence,
opportunities for action performance or termination cannot be ignored. Further-
more, since we want a process to be able to wait until communication with another
process is possible, but do not want two processes to continue waiting if they can
communicate, we also need maximal progress. We decided not to incorporate
maximal progress in all the rules defining χσ because we implemented χσ’s com-
munication mechanism using delayable send and receive processes. Therefore, we
define an operator that introduces maximal progress.

In addition, we mention time determinism. In [76, 115] time determinism is defined
as follows. If a process p can evolve into a process q by delaying and p can also
evolve into q′ by the same amount of delay, then q and q′ are equal. So, a delay step
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always leads to a unique result. In [191] this is called time determinacy. Another,
different, definition can be found in [70]. There time determinism expresses that
choices can be decided by passage of time as illustrated in Figure 4.2(a). In this
thesis we adhere to the first interpretation. The semantics of χσ incorporates time
determinism as we show in Lemma 4.48.

Finally, we mention time additivity. In [115], time additivity is defined as follows.
If a process p can evolve into a process q by delaying t time units and process q

can evolve into process r by delaying t′ time units, then p can evolve into r by
delaying t + t′ time units.

For example, consider a process that can delay for 3 time units and can then choose
to perform an action a or delay for 2 more time units. Figure 4.4(a) shows the
process graph of this process in case time additivity is not implemented. In case
we do have time additivity, that process can also delay for 5 time units from the
start and ignore the opportunity to perform action a after 3 time units. This is
depicted in Figure 4.4(b).
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Figure 4.4 Time additivity.

Because of our opinion that opportunities for action performance or termination
should not go unnoticed if time progresses, we choose not to implement time
additivity. As a consequence, we also do not have time additivity in a case where
it seems reasonable. Namely, consider the process that first delays for 3 time units
followed by a delay for 2 time units. It seems reasonable to allow this process
to delay also for 5 time units at once. On the other hand, one can argue if that
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was intended in the first place, the process description should be that this process
delays for 5 time units.

4.4 Equivalences on χσ processes

In order to define properties of and theorems about χσ processes, we need a no-
tion of equivalence on these processes. It is the standard strong bisimulation
concept [79, 142, 20, 159] we use for this. A bisimulation is a relation on processes
expressed in terms of defined relations on these processes.

Definition 4.5 (Strong Bisimulation) A strong bisimulation on processes is a rela-
tion R ∈ P × P such that for all (p, q) ∈ R the following holds:

1. ∀σ : 〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓,

2. ∀σ, a, p′, σ′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ∧ (p′, q′) ∈ R,

3. ∀σ, a, q′, σ′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ⇒ ∃p′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ∧ (p′, q′) ∈ R,

4. ∀σ, d, p′, σ′ : 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉 ∧ (p′, q′) ∈ R,

5. ∀σ, d, q′, σ′ : 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉 ⇒ ∃p′ : 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ∧ (p′, q′) ∈ R.

Two processes p and q are strongly bisimilar, denoted by p ↔ q, if there exists a
bisimulation relation R such that (p, q) ∈ R.

Notice that the definition of strong bisimulation treats delay transitions exactly
the same as action transitions. That is, strong bisimulation as defined here is an
instantiation of strong bisimulation on general LTSs.

A strong bisimulation relation as defined above is an equivalence relation. That is,
it is reflexive, symmetric, and transitive. The proofs for reflexivity and symmetry
are trivial. Transitivity can be proved as follows: suppose there are processes p,
q and r, such that p ↔ q and q ↔ r, then according to Definition 4.5, there
exist bisimulation relations Rpq and Rqr such that (p, q) ∈ Rpq and (q, r) ∈ Rqr.
Define Rpr = {(x, z) | ∃y : (x, y) ∈ Rpq ∧ (y, z) ∈ Rqr} and show that Rpr is a
strong bisimulation by verifying that it satisfies the conditions of Definition 4.5.

In Section 4.16, we prove that strong bisimulation equivalence is a congruence for
the process operators of χσ.
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In some proofs to come, we use the ‘bisimulation up to’ technique [143, 141] to
prove that two processes are strongly bisimilar. A ‘bisimulation up to ↔’-relation
is defined as follows.

Definition 4.6 (Bisimulation up to ↔) A relation R ∈ P × P on processes is a
‘bisimulation up to ↔’ if for all (p, q) ∈ R the following holds:

1. ∀σ : 〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓,

2. ∀σ, a, p′, σ′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒
∃p′′, q′, q′′ : p′ ↔ p′′ ∧ 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ∧ q′ ↔ q′′ ∧ (p′′, q′′) ∈ R,

3. ∀σ, a, q′, σ′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ⇒
∃q′′, p′, p′′ : q′ ↔ q′′ ∧ 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ∧ p′ ↔ p′′ ∧ (p′′, q′′) ∈ R,

4. ∀σ, d, p′, σ′ : 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ⇒
∃p′′, q′, q′′ : p′ ↔ p′′ ∧ 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉 ∧ q′ ↔ q′′ ∧ (p′′, q′′) ∈ R,

5. ∀σ, d, q′, σ′ : 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉 ⇒
∃q′′, p′, p′′ : q′ ↔ q′′ ∧ 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ∧ p′ ↔ p′′ ∧ (p′′, q′′) ∈ R.

The following lemma shows that in order to prove that two processes are strongly
bisimilar, it suffices to prove that there exists a ‘bisimulation up to ↔’ relation
between the processes.

Lemma 4.7 Let R be a ‘bisimulation up to ↔’ relation and p and q be processes.
If (p, q) ∈ R then p ↔ q.

Proof (Lemma 4.7) We have to prove that if a relation R is a ‘bisimulation up
to ↔’ relation and p and q processes such that (p, q) ∈ R then p ↔ q. Therefore,
we have to show that there exists a strong bisimulation relation R′ between p

and q. We define R′ as

R′ = {(p, q) | ∃p′, q′ : p ↔ p′ ∧ (p′, q′) ∈ R ∧ q′ ↔ q}.

That is, R′ = ↔◦R◦↔. Note that R ⊆ R′ since ↔ is a reflexive relation. We have
to prove that for all (p, q) ∈ R′ the five bisimulation conditions of Definition 4.5
hold.

Condition 1 : We have to prove ∀σ : 〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. Since (p, q) ∈ R′ we know
that there are p′ and q′ such that p ↔ p′, (p′, q′) ∈ R, and q′ ↔ q. So, we can
make the following computation:
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〈 p, σ 〉↓
⇔ {Condition 1 of the strong bisimulation relation}
〈 p′, σ 〉↓

⇔ {Condition 1 of the ‘bisimulation up to ↔’ relation}
〈 q′, σ 〉↓

⇔ {Condition 1 of the strong bisimulation relation}
〈 q, σ 〉↓.

Condition 2 : We have to prove ∀a, pa, σ, σ′ : 〈 p, σ 〉 a−→ 〈 pa, σ′ 〉 ⇒ ∃qa : 〈 q, σ 〉 a−→
〈 qa, σ′ 〉 ∧ (pa, qa) ∈ R′. Figure 4.5 illustrates the proof. Since (p, q) ∈ R′, we
know that there exists p′ and q′ such that p ↔ p′, (p′, q′) ∈ R, and and q′ ↔ q.

So, suppose 〈 p, σ 〉 a−→ 〈 pa, σ′ 〉. Then by the definition of strong bisimulation,
we know that there exists a p′a such that 〈 p′, σ 〉 a−→〈 p′a, σ′ 〉 and pa ↔ p′a. By
the definition of ‘bisimulation up to ↔’ we also know that there exist p′′a, q′a,
and q′′a such that 〈 q′, σ 〉 a−→ 〈 q′a, σ′ 〉, p′a ↔ p′′a , (p′′a, q′′a ) ∈ R, and q′′a ↔ q′a.
Therefore, we can use the definition of strong bisimulation again to derive that
there exists a process qa such that 〈 q, σ 〉 a−→〈 qa, σ′ 〉 and q′a ↔ qa. Furthermore,
using transitivity of ↔, we get pa ↔ p′′a and q′′a ↔ qa. So, we have pa ↔ p′′a,
(p′′a, q′′a ) ∈ R, and q′′a ↔ qa. Therefore, (pa, qa) ∈ R′, which concludes the proof
for condition 2.

Condition 3–5 : The proof is similar to the proof of condition 2.

p ↔ p′ q′ ↔ q

pa ↔ p′a ↔ p′′a q′′a ↔ q′a ↔ qa

a a a a

↔ ↔

R

R

R′

R′

Figure 4.5 Diagram for the proof of Lemma 4.7
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Sometimes, the notion of strong bisimulation is too restrictive. That is, instead of
verifying that two given processes behave exactly alike, it suffices to verify that ex-
cept for some ‘irrelevant’ behaviour, the two processes behave alike. Specification-
implementation checks are typical examples of verifications where all that is needed
is equality up to some irrelevant behaviour (internal behaviour). To enable such
verifications, χσ has the internal action τ , as introduced in [141], and an abstrac-
tion operator (see Section 4.14). The τ action can be used to model activity of
processes that does not need to be specified in detail. For instance, if the input-
output behaviour of a production system is analysed, the activity to transform an
input into an output does not need to be specified in every detail, but it can be
modelled by a τ action. The abstraction operator, renames some particular actions
of p into τ . Thus, the abstraction operator can be used to abstract from particular
actions by turning them into internal actions. The next step is to define an equiv-
alence relation on (timed) processes that takes into account internal activity as
modelled by the τ action. Timed branching bisimulation does just that. Coming
up with a proper definition of timed branching bisimulation (such that it is a con-
gruence) requires a substantial amount of theoretical research [79, 22, 77, 123]. An-
other option is to abstract from delay transitions as is the case in time-abstracting
bisimulations [189]. Recall that our objective is to develop a formal method (con-
sisting of a formal language, a mathematical framework, and tools) and to assess
it by performing case studies. In order to evenly divide our efforts, we only inves-
tigated one equivalence relation (strong bisimulation) in our mathematical frame-
work. We refrained from defining timed branching bisimulation on χσ processes.
Consequently, we cannot perform specification-implementation checks in the math-
ematical framework presented in this chapter. However, in Section 7.4, we present
theoretical results enabling specification-implementation checks to some extent.

4.5 Atomic processes

The atomic processes of χσ are called atomic because they are the χσ process
constructors. More complex processes are constructed using the process operators
we define in the sections to come. So, they are called atomic because they are
not composed from any process operators defined in χσ and cannot be split into
smaller χσ processes. This makes them χσ’s elementary processes.

In Definition 4.8, we define the following atomic processes.
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• The empty process ε, which is empty in the sense that it cannot display any
activity (perform an action or delay), but can only terminate.

• The deadlock process δ, which denotes ‘no behaviour’. That is, if a pro-
cess deadlocks, then neither it is able to continue any form of activity nor
terminate correctly.

• The skip process skip, which performs the internal action τ .

• The delay process ∆e, which is able to delay an arbitrary number of time
units less than or equal to the value of expression e.

• The assignment process x := e, which assigns the value of expression e to
programming variable x.

• The send process m ! e, which sends the value of expression e via channel m.

• The receive process m ? x, which receives a value via channel m and assigns
it to programming variable x.

Definition 4.8 (Atomic processes) The atomic processes of χσ have the following
signature with ExprR the set of real number expressions:

ε : P,

δ : P,

skip : P,

∆ : ExprR → P,

:= : Id × Expr → P,

! : Channel × Expr → P,

? : Channel × Id → P.

The deduction rules for χσ’s atomic processes are listed in Table 4.1.

Rule 1 states that the empty process can terminate. Rule 2 states that a delay pro-
cess can terminate if the argument of the delay process evaluates to zero. Rules 3
through 6 state that skip, x := e, m ! e, and m ? x can perform their corresponding
actions to the empty process. The stack is updated if necessary. If a programming
variable is updated (in case of the assignment and receive process), the value is
assumed to be of the same type. Note that the send process sets the value of a
channel and the receive process gets the value of a channel. Besides their corre-
sponding actions, the processes m ! e and m ? x can also perform a delay d. This
is defined by Rule 7 and 8. Rules 9 describes transition behaviour of the delay
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〈 ε, σ 〉↓
1

σ(e) = 0

〈∆e, σ 〉↓
2
〈 skip, σ 〉 τ−→ 〈 ε, σ 〉

3

σ(e) = c

〈x := e, σ 〉 aa(x,c)−−−−−→ 〈 ε, σ[c/x] 〉
4

σ(e) = c

〈m ! e, σ 〉 sa(m,c)−−−−−→ 〈 ε, σ[c/m] 〉
5

σ(m) = c

〈m ? x, σ 〉 ra(m,x)−−−−−→ 〈 ε, σ[c/x] 〉
6

〈m ! e, σ 〉 p d−→ 〈m ! e, σ 〉
7
〈m ? x, σ 〉 p d−→ 〈m ? x, σ 〉

8

d ≤ σ(e)

〈∆e, σ 〉 p d−→ 〈∆e− d, σ 〉
9

Table 4.1 Deduction rules for χσ’s atomic processes.

process. It states that a delay process can perform a delay bigger than zero, but
smaller than or equal to the value of the argument of the delay process. Since the
deadlock process δ denotes ‘no behaviour’, there are no deduction rules for it.

Using Definition 4.5 on process equivalence and Definition 4.8 above, we can now
prove that the process ∆0 is bisimilar to process ε as stated in Lemma 4.9 below.

Lemma 4.9 ∆0 ↔ ε.

Proof (Lemma 4.9) We have to prove that ∆0 ↔ ε. In this case, we define a
relation R ⊆ P × P such that (∆0, ε) ∈ R and R is a bisimulation.

We define R as

R = {(∆0, ε)}
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and show that pair (∆0, ε) ∈ R satisfies the five bisimulation conditions of Defini-
tion 4.5.

Condition 1 : We have to prove ∀σ : 〈∆0, σ 〉↓ ⇔ 〈 ε, σ 〉↓. According to Rules 1
and 2 both 〈∆0, σ 〉↓ and 〈 ε, σ 〉↓ hold. Therefore, the condition holds.

Condition 2–5 : The proof is trivial since the left-hand side of the implication does
not hold.

4.6 Guard operator

In Definition 4.10, we define the guard operator ‘:→’. A process e :→ p can behave
like p if guard e evaluates to true.

Definition 4.10 (Guard operator) The guard operator has the following signature
with bool the set of boolean expressions according to specification bool from Sec-
tion 2.2:

:→ : bool× P → P.

The deduction rules for the guard operator are listed in Table 4.2.

σ(e) = true, 〈 p, σ 〉↓

〈 e :→ p, σ 〉↓
10

σ(e) = true, 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 e :→ p, σ 〉 a−→ 〈 p′, σ′ 〉
11

σ(e) = true, 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉

〈 e :→ p, σ 〉 p d−→ 〈 p′, σ′ 〉
12

Table 4.2 Deduction rules for the guarded operator.

Rule 10 states that a guarded process can terminate if the guard evaluates to true
and if its process argument p can terminate. Rule 11 states that a guarded process
can perform an action if the guard evaluates to true and if its process argument
can perform that action. In the same way, Rule 12 states that a guarded process
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can perform a delay if the guard evaluates to true and if its process argument can
perform that delay.

Lemma 4.11 Let p be a process, then

true :→ p ↔ p.

Proof (Lemma 4.11) We have to prove that true :→ p ↔ p for all processes p.
In this case, we define a relation R ⊆ P × P such that (true :→ p, p) ∈ R and R

is a bisimulation. We define R as

R = {(p, p)} ∪ {(true :→ p, p)}

and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defi-
nition 4.5. Since the proofs are trivial for the pairs (p, p), we only give the proofs
for the pairs (true :→ p, p).

Condition 1 : We have to prove ∀σ : 〈 true :→ p, σ 〉↓ ⇔ 〈 p, σ 〉↓. We first prove
the right implication. Suppose 〈 true :→ p, σ 〉↓, which means that Rule 10
applies. Therefore, we obtain 〈 p, σ 〉↓. This concludes the right implication of
Condition 1. For the left implication we find the following. Suppose 〈 p, σ 〉↓.
Since the guard equals true, by Rule 10 we obtain 〈 true :→ p, σ 〉↓.

Condition 2 : We have to prove ∀σ, σ′, q, a : 〈 true :→ p, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r :
〈 p, σ 〉 a−→〈 r, σ′ 〉 ∧ (q, r) ∈ R. Suppose 〈 true :→ p, σ 〉 a−→〈 q, σ′ 〉, then Rule 11
applies. Therefore, we immediately obtain 〈 p, σ 〉 a−→ 〈 r, σ′ 〉, where r ≡ q and
consequently (q, r) ∈ R.

Condition 3 : We have to prove ∀σ, σ′, q, a : 〈 p, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 true :→
p, σ 〉 a−→ 〈 r, σ′ 〉 ∧ (r, q) ∈ R. Suppose 〈 p, σ 〉 a−→ 〈 q, σ′ 〉, then, since the guard
equals true, by Rule 11 we obtain 〈 true :→ p, σ 〉 a−→ 〈 r, σ′ 〉, where r ≡ q and
consequently (r, q) ∈ R.

Condition 4 : We have to prove ∀σ, σ′, q, d : 〈 true :→ p, σ 〉 p
d−→ 〈 q, σ′ 〉 ⇒ ∃r :

〈 p, σ 〉 p
d−→ 〈 r, σ′ 〉 ∧ (q, r) ∈ R. Suppose 〈 e :→ p, σ 〉 p

d−→ 〈 q, σ′ 〉, which means
that Rule 12 applies. So, we immediately obtain 〈 p, σ 〉 p d−→〈 r, σ′ 〉, where r ≡ q

and consequently (q, r) ∈ R.

Condition 5 : We have to prove ∀σ, σ′, q, d :〈 p, σ 〉 p d−→〈 q, σ′ 〉 ⇒ ∃r :〈 e :→ p, σ 〉 p d−→
〈 r, σ′ 〉 ∧ (r, q) ∈ R. Suppose 〈 p, σ 〉 p

d−→ 〈 q, σ′ 〉, then, since e = true, by
Rule 12 we immediately obtain 〈 true :→ p, σ 〉 p

d−→ 〈 r, σ′ 〉, where r ≡ q and
consequently (r, q) ∈ R.
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Lemma 4.12 Let p be a process, then

false :→ p ↔ δ.

Proof (Lemma 4.12) We have to prove that false :→ p ↔ δ for all processes p.
In this case, we define a relation R ⊆ P × P such that (false :→ p, δ) ∈ R and R

is a bisimulation. We define R as

R = {(false :→ p, δ)}

and show that pair (false :→ p, δ) ∈ R satisfies the five bisimulation conditions of
Definition 4.5.

Condition 1 : We have to prove ∀σ : 〈 false :→ p, σ 〉↓ ⇔ 〈 δ, σ 〉↓. Since the guard
equals false, no rule applies to 〈 false :→ p, σ 〉, which means we have 〈 false :→
p, σ 〉6 ↓. Also, no rules apply to 〈 δ, σ 〉, which means we have 〈 δ, σ 〉6 ↓.

Condition 2 : We have to prove ∀σ, σ′, q, a : 〈 false :→ p, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r :
〈 δ, σ 〉 a−→ 〈 r, σ′ 〉 ∧ (q, r) ∈ R. Suppose 〈 false :→ p, σ 〉 a−→ 〈 q, σ′ 〉, then
Rule 11 should apply and σ(false) = true and 〈 p, σ 〉 a−→ 〈 r, σ′ 〉 should hold.
However, since the guard equals false, σ(false) cannot be true, which means
we have a contradiction. Therefore, 〈 false :→ p, σ 〉 6−→ and Condition 2 holds
trivially.

Condition 3 : We have to prove ∀σ, σ′, q, a : 〈 δ, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 false :→
p, σ 〉 a−→ 〈 r, σ′ 〉 ∧ (r, q) ∈ R. Since there are no action transitions defined
for δ, the condition holds trivially.

Condition 4 : The proof is similar to the proof of Condition 2.

Condition 5 : The proof is similar to the proof of Condition 3.

4.7 Alternative composition operator

In Definition 4.13, we define the alternative composition operator ‘[]’. With re-
spect to action behaviour, a process p [] q either executes p or q where the choice
is non-deterministic. Delay behaviour is handled more subtly, because of time
factorisation (see Section 4.3).
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Definition 4.13 (Alternative composition operator) The alternative composition
operator has the following signature:

[] : P × P → P.

The deduction rules for the alternative composition operator are listed in Table 4.3.

〈 p, σ 〉↓

〈 p [] q, σ 〉↓, 〈 q [] p, σ 〉↓
13

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 p [] q, σ 〉 a−→ 〈 p′, σ′ 〉, 〈 q [] p, σ 〉 a−→ 〈 p′, σ′ 〉
14

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q, σ 〉 6p−→

〈 p [] q, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q [] p, σ 〉 p d−→ 〈 p′, σ′ 〉
15

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉

〈 p [] q, σ 〉 p d−→ 〈 p′ [] q′, σ′ 〉
16

Table 4.3 Deduction rules for the alternative composition operator.

Rule 13 states that an alternative composition of two processes p and q can termi-
nate if one of the processes p or q can terminate. Rule 14 states that an alternative
composition of two processes can perform an action if one of the two processes can
perform that action. Rule 15 and 16 describe how the alternative composition of
two processes delays. Rule 15 states that if one of the two processes can perform
a delay and the other cannot, then the alternative composition can also perform
that delay but loses the alternative that could not delay. On the other hand, if
both processes can perform a delay, then its alternative composition can perform
that delay too and both alternatives are preserved. This is stated in Rule 16.

Lemma 4.14 Let p be a process, then

p [] δ ↔ p.

Proof (Lemma 4.14) We have to prove that p [] δ ↔ p for all processes P . In
this case, we define a relation R ⊆ P × P such that (p [] δ, p) ∈ R and R is a
bisimulation. We define R as
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R = {(p, p)} ∪ {(p [] δ, p)}

and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defi-
nition 4.5. Since the proof for pairs (p, p) is trivial, we will only consider pairs of
the form (p [] δ, p). So, assume p ≡ x [] δ and q ≡ x for some process x.

Condition 1 : We have to prove ∀σ :〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. The following computation
shows that this holds 〈 p, σ 〉↓ ⇔ 〈x, σ 〉↓ ∨ 〈 δ, σ 〉↓ ⇔ 〈x, σ 〉↓ ⇔ 〈 q, σ 〉↓.

Condition 2 : We have to prove ∀a, pa, σ, σ′ : 〈 p, σ 〉 a−→ 〈 pa, σ′ 〉 ⇒ ∃qa : 〈 q, σ 〉 a−→
〈 qa, σ′ 〉 and (pa, qa) ∈ R. So, assume 〈 p, σ 〉 a−→〈 pa, σ′ 〉, which means Rule 14
applies to p. Since there are no action transitions defined for δ, we must have
〈x, σ 〉 a−→ 〈xa, σ′ 〉 and pa ≡ xa. Therefore, we get 〈 q, σ 〉 a−→ 〈xa, σ′ 〉. So ,
take qa ≡ xa and note that (pa, qa) ∈ R.

Condition 3 : We have to prove ∀a, qa, σ, σ′ : 〈 q, σ 〉 a−→ 〈 qa, σ′ 〉 ⇒ ∃pa : 〈 p, σ 〉 a−→
〈 pa, σ 〉. So, assume 〈 q, σ 〉 a−→ 〈 qa, σ′ 〉. According to Rule 14, we obtain
〈 p, σ 〉 a−→ 〈 qa, σ′ 〉. Finally, note that (pa, qa) ∈ R.

Condition 4 : We have to prove ∀d, pd, σ, σ′ : 〈 p, σ 〉 p d−→ 〈 pd, σ
′ 〉 ⇒ ∃qd : 〈 q, σ 〉 p d−→

〈 qd, σ
′ 〉. So, assume 〈 p, σ 〉 p

d−→ 〈 pd, σ
′ 〉. Since there are no delay transitions

defined for δ, we must have 〈x, σ 〉 p d−→ 〈 xd, σ
′ 〉 and pa ≡ xa. So, we also have

〈 q, σ 〉 p d−→ 〈xd, σ
′ 〉. Therefore, we take qd ≡ xd and note that (pd, qd) ∈ R.

Condition 5 : We have to prove ∀d, qd, σ, σ′ : 〈 q, σ 〉 p d−→ 〈 qd, σ
′ 〉 ⇒ ∃pd : 〈 p, σ 〉 p d−→

〈 pd, σ
′ 〉. So, assume 〈 q, σ 〉 p

d−→ 〈 qd, σ
′ 〉. According to Rule 15, we obtain

〈 p, σ 〉 p d−→ 〈 qd, σ
′ 〉. Finally, note that (pd, qd) ∈ R.

Lemma 4.15 Let p be a process, then

p [] p ↔ p.

Proof (Lemma 4.15) We have to prove that p [] p ↔ p for any process p. The
relevant deduction rules are Rules 13, 14, 15, and 16. Observing these rules, we
notice the following. Whenever we can derive 〈 p[]p, σ 〉↓, we can also derive 〈 p, σ 〉↓
and vice versa. Whenever we can derive 〈 p [] p, σ 〉 a−→ 〈 r, σ′ 〉, we can also derive
〈 p, σ 〉 a−→〈 r, σ′ 〉 and vice versa. Whenever we can derive 〈 p [] p, σ 〉 p d−→〈 r, σ′ 〉, we
can also derive 〈 p, σ 〉 p d−→ 〈 r, σ′ 〉 and vice versa.
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Lemma 4.16 Let p and q be processes, then

p [] q ↔ q [] p.

Proof (Lemma 4.16) We have to prove p [] q ↔ q []p for all processes p and q. The
relevant deduction rules are Rules 13, 14, 15, and 16. Observing these rules, we see
that whenever we can derive 〈 p []q, σ 〉↓, 〈 p []q, σ 〉 a−→〈 r, σ′ 〉, or 〈 p []q, σ 〉 p d−→〈 r, σ′ 〉,
we can also derive 〈 q [] p, σ 〉↓, 〈 q [] p, σ′ 〉 a−→ 〈 r, σ′ 〉, and 〈 q [] p, σ 〉 p

d−→ 〈 r, σ′ 〉,
respectively.

Lemma 4.17 Let p, q, and r be processes, then

(p [] q) [] r ↔ p [] (q [] r).

Proof (Lemma 4.17) We have to prove (p [] q) [] r ↔ p [] (q [] r) for all processes p, q,
and r. In this case, we define a relation R ⊆ P×P such that ((p[]q)[]r, p[](q []r)) ∈ R

and R is a bisimulation. We define R as

R = {(p, p)} ∪ {((p [] q) [] r, p [] (q [] r))}

and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defini-
tion 4.5. Since the proof for pairs of the form (p, p) is trivial, we will only consider
pairs of the form ((p [] q) [] r, p [] (q [] r)). Suppose p ≡ (x [] y) [] z and q ≡ x [] (y [] z)
for some processes x, y, and z.

Condition 1 : We have to prove ∀σ :〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. The following computation
shows that this holds (we use Rule 13 and associativity of ‘∨’):

〈 p, σ 〉↓
⇔ (〈x, σ 〉↓ ∨ 〈 y, σ 〉↓) ∨ 〈 z, σ 〉↓
⇔ 〈x, σ 〉↓ ∨ (〈 y, σ 〉↓ ∨ 〈 z, σ 〉↓)
⇔ 〈 q, σ 〉↓.

Condition 2 : We have to prove ∀a, p′, σ, σ′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 a−→
〈 q′, σ′ 〉 and (p′, q) ∈ R. So, assume 〈 p, σ 〉 a−→〈 p′, σ′ 〉. This means that Rule 14
applies and therefore we have 〈x, σ 〉 a−→〈 p, σ′ 〉, 〈 y, σ 〉 a−→〈 p′, σ′ 〉, or 〈 z, σ 〉 a−→
〈 p′, σ′ 〉. In either case, we can use Rule 14 to obtain 〈 q, σ 〉 a−→ 〈 p′, σ′ 〉. So,
take q′ ≡ p′ and note that (p′, q′) ∈ R.

Condition 3 : The proof is similar to the proof of Condition 2.
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Condition 4 : We have to prove ∀p′, d, σ, σ′ : 〈 p, σ 〉 p
d−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 p

d−→
〈 q′, σ′ 〉 and (p′, q′) ∈ R. So, assume 〈 p, σ 〉 p

d−→ 〈 p′, σ′ 〉. We distinguish the
following cases.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉, 〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉, 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ (x′ []
y′) [] z′. Using Rule 16 we obtain 〈 q, σ 〉 p

d−→ 〈x′ [] (y′ [] z′), σ′ 〉. So, take
q′ ≡ x′ [] (y′ [] z′) and note that (p′, q′) ∈ R.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉, 〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉, 〈 z, σ 〉 6p−→: Note that p′ ≡ x′ [] y′. Using
Rules 15 and 16 we obtain 〈 q, σ 〉 p d−→ 〈x′ [] y′, σ′ 〉. So, take q′ ≡ x′ [] y′ and
note that (p′, q′) ∈ R.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉, 〈 y, σ 〉 6p−→, 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ x′ [] z′. Using
Rules 15 and 16 we obtain 〈 q, σ 〉 p d−→ 〈x′ [] z′, σ′ 〉. So, take q′ ≡ x′ [] z′ and
note that (p′, q′) ∈ R.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉, 〈 y, σ 〉 6p−→, 〈 z, σ 〉 6p−→: Note that p′ ≡ x′. Using Rule 15 we
obtain 〈 q, σ 〉 p d−→ 〈 x′, σ′ 〉. So, take q′ ≡ x′ and note that (p′, q′) ∈ R.

〈x, σ 〉 6p−→, 〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉, 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ y′ [] z′. Using
Rules 15 and 16 we obtain 〈 q, σ 〉 p d−→ 〈 y′ [] z′, σ′ 〉. So, take q′ ≡ y′ [] z′ and
note that (p′, q′) ∈ R.

〈x, σ 〉 6p−→, 〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉, 〈 z, σ 〉 6p−→: Note that p′ ≡ y′. Using Rule 15 we
obtain 〈 q, σ 〉 p d−→ 〈 y′, σ′ 〉. So, take q′ ≡ y′ and note that (p′, q′) ∈ R.

〈x, σ 〉 6p−→, 〈 y, σ 〉 6p−→, 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ z′. Using Rule 15 we
obtain 〈 q, σ 〉 p d−→ 〈 z′, σ′ 〉. So, take q′ ≡ z′ and note that (p′, q′) ∈ R.

Condition 5 : The proof is similar to the proof of Condition 4.

4.8 Sequential composition operator

In Definition 4.18, we define the sequential composition operator ‘;’. With re-
spect to action behaviour, a process p ; q first executes p and once terminated
successfully executes q. As with the alternative composition operator discussed in
the previous section, also here delay behaviour is handled more subtly, because of
time factorisation.

Definition 4.18 (Sequential composition operator) The sequential composition op-
erator has the following signature:

; : P × P → P.

The deduction rules for the sequential composition operator are listed in Table 4.4.
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〈 p, σ 〉↓, 〈 q, σ 〉↓

〈 p ; q, σ 〉↓
17

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 p ; q, σ 〉 a−→ 〈 p′ ; q, σ′ 〉
18

〈 p, σ 〉↓, 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉

〈 p ; q, σ 〉 a−→ 〈 q′, σ′ 〉
19

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 p, σ 〉6 ↓

〈 p ; q, σ 〉 p d−→ 〈 p′ ; q, σ′ 〉
20

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q, σ 〉 6p−→

〈 p ; q, σ 〉 p d−→ 〈 p′ ; q, σ′ 〉
21

〈 p, σ 〉↓, 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉, 〈 p, σ 〉 6p−→

〈 p ; q, σ 〉 p d−→ 〈 q′, σ′ 〉
22

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 p, σ 〉↓, 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉

〈 p ; q, σ 〉 p d−→ 〈 (p′ ; q) [] q′, σ′ 〉
23

Table 4.4 Deduction rules for the sequential composition operator.

Rule 17 states that if processes p and q can terminate, then also the sequential
composition of p ; q can. Rule 18 states that if process p can perform an action, then
the sequential composition p ; q can also perform the action. Rule 19 states that
if process p terminates and process q can perform an action, then the sequential
composition p ; q can also perform the action. The delay behaviour of the sequential
composition operator is quite intricate. The reason for this is that we want to make
sure that all process operators exhibit time factorisation. As a consequence, we
distinguish three different cases for a sequential composition p ; q. In the first case,
only the delay behaviour of p is relevant, as defined by Rule 20 and 21. Note that
possible delay behaviour of q is irrelevant since either p cannot terminate (Rule 20)
or q cannot delay (Rule 21). In the second case, only the delay behaviour of q is
relevant since p can terminate and cannot delay (Rule 22). Finally, if both p and q

can delay and p can also terminate, then they have to delay together (Rule 23).

Lemma 4.19 Let p be a process, then

p ; ε ↔ p.

Proof (Lemma 4.19) We have to prove that p ; ε ↔ p for all processes p. In
this case, we define a relation R ⊆ P × P such that (p ; ε, p) ∈ R and R is a
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bisimulation. We define R as

R = {(p, p)} ∪ {(p ; ε, p)}

and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defi-
nition 4.5. Since the proofs are trivial for the pairs (p, p), we only give the proofs
for the pairs (p ; ε, p).

Condition 1 : We have to prove ∀σ : 〈 p ; ε, σ 〉↓ ⇔ 〈 p, σ 〉↓. Let us first prove
the right implication of Condition 1. Suppose 〈 p ; ε, σ 〉↓. Then Rule 17
should apply and we obtain 〈 p, σ 〉↓. This concludes the right implication of
Condition 1. For the left implication we find the following. Suppose 〈 p, σ 〉↓.
Rule 1 combined with Rule 17 then gives 〈 p ; ε, σ 〉↓.

Condition 2 : We have to prove ∀σ, σ′, q, a : 〈 p ; ε, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 p, σ 〉 a−→
〈 r, σ′ 〉 ∧ (q, r) ∈ R. Suppose 〈 p ; ε, σ 〉 a−→ 〈 q, σ′ 〉. The relevant Rules are 18
and 19. However, since there are no action transitions defined for ε, the second
rule does not apply. So, Rule 18 applies and we obtain 〈 p ; ε, σ 〉 a−→〈 p′ ; ε, σ′ 〉
and q ≡ p′ ; ε. We also have 〈 p, σ 〉 a−→ 〈 r, σ′ 〉 where r ≡ p′ and (q, r) ∈ R.

Condition 3 : We have to prove ∀σ, σ′, q, a : 〈 p, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 p ; ε, σ 〉 a−→
〈 r, σ′ 〉 ∧ (r, q) ∈ R. Suppose 〈 p, σ 〉 a−→ 〈 q, σ′ 〉, then, by Rule 18 we also have
〈 p ; ε, σ 〉 a−→ 〈 r, σ′ 〉, where r ≡ q ; ε and (r, q) ∈ R.

Condition 4 : We have to prove ∀σ, σ′, q, d : 〈 p ; ε, σ 〉 p d−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 p, σ 〉 p d−→
〈 r, σ′ 〉 ∧ (q, r) ∈ R. Suppose 〈 p ; ε, σ 〉 p

d−→ 〈 q, σ′ 〉. The relevant Rules are
20, 21, 22, and 23. However, since there are no delay transitions defined for ε,
the third and fourth rule do not apply. So, by either Rule 20 or Rule 21, we
obtain 〈 p ; ε, σ 〉 p

d−→ 〈 p′ ; ε, σ′ 〉 and q ≡ p′ ; ε. In both cases, we also have
〈 p, σ 〉 p d−→ 〈 r, σ′ 〉, where r ≡ p′ and (q, r) ∈ R.

Condition 5 : We have to prove ∀σ, σ′, q, d : 〈 p, σ 〉 p d−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 p ; ε, σ 〉 p d−→
〈 r, σ′ 〉 ∧ (r, q) ∈ R. Suppose 〈 p, σ 〉 p d−→〈 q, σ′ 〉, then, by Rule 20 or 21 we have
〈 p ; ε, σ 〉 p d−→ 〈 r, σ′ 〉, where r ≡ q ; ε and (r, q) ∈ R.

Lemma 4.20 Let p be a process, then

ε ; p ↔ p.

Proof (Lemma 4.20) We have to prove that ε ; p ↔ p for all processes p. In this
case, we define a bisimulation relation R ⊆ P × P such that (ε ; p, p) ∈ R and R
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is a bisimulation. We define R as

R = {(p, p)} ∪ {(ε ; p, p)}

and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defi-
nition 4.5. Since the proofs are trivial for the pairs (p, p), we only give the proofs
for the pairs (ε ; p, p).

Condition 1 : We have to prove ∀σ : 〈 ε ; p, σ 〉↓ ⇔ 〈 p, σ 〉↓. Let us first prove the
right implication of Condition 1. Suppose 〈 ε ; p, σ 〉↓. Then Rule 17 should
apply and we obtain 〈 p, σ 〉↓. For the left implication we find the following.
Suppose 〈 p, σ 〉↓. Rule 1 combined with Rule 17 then gives 〈 ε ; p, σ 〉↓.

Condition 2 : We have to prove ∀σ, σ′, q, a : 〈 ε ; p, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 p, σ 〉 a−→
〈 r, σ′ 〉 ∧ (q, r) ∈ R. Suppose 〈 ε ; p, σ 〉 a−→〈 q, σ′ 〉, then, Rule 19 should apply,
since there are no action transitions defined for ε. So, we obtain 〈 p, σ 〉 a−→
〈 q, σ′ 〉. In that case, we also have 〈 p, σ 〉 a−→〈 r, σ′ 〉, where r ≡ q and (q, r) ∈ R.

Condition 3 : We have to prove ∀σ, σ′, q, a : 〈 p, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 ε ; p, σ 〉 a−→
〈 r, σ′ 〉 ∧ (r, q) ∈ R. Suppose 〈 p, σ 〉 a−→〈 q, σ′ 〉, then, by Rule 1 and 19 we also
have 〈 ε ; p, σ 〉 a−→ 〈 r, σ′ 〉, where r ≡ q and (r, q) ∈ R.

Condition 4 : We have to prove ∀σ, σ′, q, d : 〈 ε ; p, σ 〉 p d−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 p, σ 〉 p d−→
〈 r, σ′ 〉 ∧ (q, r) ∈ R. Suppose 〈 ε ; p, σ 〉 p d−→〈 q, σ′ 〉, then Rule 22 should apply,
since there are no delay transitions defined for ε. So, we obtain 〈 p, σ 〉 p

d−→
〈 q, σ′ 〉. In that case, we also have 〈 p, σ 〉 p d−→〈 r, σ′ 〉, where r ≡ q and (q, r) ∈ R.

Condition 5 : We have to prove ∀σ, σ′, q, d : 〈 p, σ 〉 p d−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 ε ; p, σ 〉 p d−→
〈 r, σ′ 〉 ∧ (r, q) ∈ R. Suppose 〈 p, σ 〉 p d−→〈 q, σ′ 〉, then, by Rule 1 and 22 we also
have 〈 ε ; p, σ 〉 p d−→ 〈 r, σ′ 〉, where r ≡ q and (r, q) ∈ R.

Lemma 4.21 Let p be a process, then

δ ; p ↔ δ.

Proof (Lemma 4.21) We have to prove that δ ; p ↔ δ for all processes p. In
this case, we define a relation R ⊆ P × P such that (δ ; p, δ) ∈ R and R is a
bisimulation. We define R as

R = {(p, p)} ∪ {(δ ; p, δ)}
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and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defini-
tion 4.5. Since there are no terminations, action transitions, and delay transitions
defined for δ, and therefore also not for δ ; p, the five conditions hold trivially.

Lemma 4.22 Let p, q, and r be processes, then

(p ; q) ; r ↔ p ; (q ; r).

Proof (Lemma 4.22) We have to prove that (p ; q) ; r ↔ p ; (q ; r) for all
processes p, q, and r. In this case, we define a relation R ⊆ P × P such that
((p ; q) ; r, p ; (q ; r)) ∈ R and R is a ‘bisimulation up to ↔’ (see Definition 4.6).
We define R as the least set satisfying

R = R0 ∪R1 ∪R2,

R0 = {(p, p)},
R1 = {((p ; q) ; r, p ; (q ; r))},
R2 = {(p [] r, q [] r) | (p, q) ∈ R}

and show that all pairs (p, q) ∈ R satisfy the conditions of Definition 4.6. During
the proof it will become clear why R includes R2. Since R is defined recursively,
we will use structural induction on the elements of R. The proof consists of two
parts. For the basis of the proof, we show that the five ‘bisimulation up to ↔’
conditions hold for pairs (p, q) ∈ R0 ∪ R1. For the inductive step, we assume the
five ‘bisimulation up to ↔’ conditions hold for (p, q) ∈ R and show they hold for
pairs (p [] r, q [] r) ∈ R2.

Basis Since the proofs of the pairs of the form (p, q) ∈ R0 are trivial, we will only
consider the pairs (p, q) ∈ R1. So, suppose (p, q) ∈ R1 and p ≡ (x ; y) ; z and
q ≡ x ; (y ; z) for some processes x, y, and z.

Condition 1 : We have to prove ∀σ : 〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. Using Rule 17 multiple
times, for the left-hand side we obtain (〈 x, σ 〉↓ ∧ 〈 y, σ 〉↓) ∧ 〈 z, σ 〉↓ and for
the right-hand side we obtain 〈x, σ 〉↓ ∧ (〈 y, σ 〉↓ ∧ 〈 z, σ 〉↓). Since the operator
‘∧’ is associative, we are done.

Condition 2 : We have to prove that ∀a, pa, σ, σ′ : 〈 p, σ 〉 a−→〈 pa, σ′ 〉 ⇒ ∃p′a, qa, q′a :
〈 q, σ 〉 a−→〈 qa, σ′ 〉, pa ↔ p′a, (p′a, q′a) ∈ R, and q′a ↔ qa. So, suppose 〈 p, σ 〉 a−→
〈 pa, σ′ 〉. We distinguish three cases.
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〈x, σ 〉 a−→ 〈xa, σ′ 〉: Note that we have pa ≡ (xa ; y) ; z. Using Rule 18, we also
find 〈 q, σ 〉 a−→〈xa ; (y ; z), σ′ 〉. Therefore, we take p′a ≡ pa, qa ≡ xa ; (y ; z),
and q′a ≡ qa. Note that (p′a, q′a) ∈ R.

〈x, σ 〉↓ ∧ 〈 y, σ 〉 a−→ 〈 ya, σ 〉: Note that pa ≡ ya ; z. Using Rules 19 and 18,
we obtain 〈 q, σ 〉 a−→ 〈 ya ; z, σ′ 〉. Therefore, we take p′a ≡ pa, qa ≡ ya ; z,
and q′a ≡ qa. Note that (p′a, q′a) ∈ R.

〈x, σ 〉↓ ∧ 〈 y, σ 〉↓ ∧ 〈 z, σ 〉 a−→ 〈 za, σ
′ 〉: Note that pa ≡ za. Using Rule 19 two

times, we obtain 〈 q, σ 〉 a−→ 〈 za, σ′ 〉. Therefore, we take p′a ≡ pa, qa ≡ za,
and q′a ≡ qa. Note that (p′a, q′a) ∈ R.

Condition 3 : The proof is similar to the proof of Condition 2.

Condition 4 : We have to prove that ∀d, pd, σ, σ′ : 〈 p, σ 〉 p d−→〈 pd, σ
′ 〉 ⇒ ∃p′d, qd, q

′
d :

〈 q, σ 〉 p d−→ 〈 qd, σ
′ 〉, pd ↔ p′d, (p′d, q

′
d) ∈ R, and q′d ↔ qd. So, assume 〈 p, σ 〉 p d−→

〈 pd, σ
′ 〉. We distinguish three cases.

〈x, σ 〉 p d−→ 〈xd, σ
′ 〉 ∧ 〈x, σ 〉6 ↓: Note that pd ≡ (xd ; y) ; z. According to

Rule 20, we also have 〈 q, σ 〉 p
d−→ 〈xd ; (y ; z), σ′ 〉. So, we take p′d ≡ pd,

qd ≡ xd ; (y ; z), and q′d ≡ qd. Note that (p′d, q
′
d) ∈ R.

〈x, σ 〉 p d−→ 〈xd, σ
′ 〉 ∧ 〈x, σ 〉↓: We distinguish three cases.

〈 y, σ 〉 p d−→ 〈 yd, σ
′ 〉 ∧ (〈 y, σ 〉6 ↓ ∨ 〈 z, σ 〉 6p−→): Note that pd ≡ (xd ; y) ; z []

yd ; z. According to Rules 20, 21, and 23, we obtain 〈 q, σ 〉 p
d−→ 〈xd ;

(y ; z) []yd ; z, σ′ 〉. Therefore, we take p′d ≡ pd, qd ≡ xd ; (y ; z) []yd ; z,
and q′d ≡ qd. Note that (p′d, q

′
d) ∈ R.

〈 y, σ 〉 p d−→ 〈 yd, σ
′ 〉 ∧ 〈 y, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 zd, σ

′ 〉: Note that pd ≡ (xd ; y []
yd) ; z [] zd. According to Rule 23 we obtain 〈 q, σ 〉 p

d−→ 〈xd ; (y ; z) []
(yd ; z [] zd), σ′ 〉. So, take qd ≡ xd ; (y ; z) [] (yd ; z [] zd). Using Lemmas
4.17 and 4.23, we can make the following computation:

pd

≡ (xd ; y [] yd) ; z [] zd

↔ ((xd ; y) ; z [] yd ; z) [] zd

↔ (xd ; y) ; z [] (yd ; z [] zd).

So, we define p′d ≡ (xd ; y) ; z[](yd ; z[]zd) and take q′d ≡ qd. It is clear that
(p′d, q

′
d) ∈ R. Note that here we actually see that R is a ‘bisimulation

up to ↔’ relation; it is not a bisimulation, since (pd, qd) 6∈ R.
〈 y, σ 〉 6p−→ ∧ 〈 y, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 zd, σ

′ 〉: Note that pd ≡ (xd ; y) ; z [] zd.
According to Rules 22 and 23 we obtain 〈 q, σ 〉 p d−→〈xd ; (y ; z) [] zd, σ

′ 〉.
So, we take p′d ≡ pd, qd ≡ xd ; (y ; z) [] zd, and q′d ≡ qd. It is clear that
(p′d, q

′
d) ∈ R.
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〈x, σ 〉 6p−→ ∧ 〈 x, σ 〉↓: We distinguish three cases.

〈 y, σ 〉 p d−→ 〈 yd, σ
′ 〉 ∧ (〈 y, σ 〉6 ↓ ∨ 〈 z, σ 〉 6p−→): Note that pd ≡ yd ; z. Accord-

ing to Rules 20, 21, and 22 we obtain 〈 q, σ 〉 p d−→〈 yd ; z, σ′ 〉. So, we take
p′d ≡ pd, qd ≡ yd ; z, and q′d ≡ qd. Note that (p′d, q

′
d) ∈ R.

〈 y, σ 〉 p d−→ 〈 yd, σ
′ 〉 ∧ 〈 y, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 zd, σ

′ 〉: Note that pd ≡ yd ; z []
zd. According to Rules 22 and 23 we obtain 〈 q, σ 〉 p d−→ 〈 yd ; z [] zd, σ

′ 〉.
So, we take p′d ≡ pd, qd ≡ yd ; z []zd, and q′d ≡ qd. Note that (p′d, q

′
d) ∈ R.

〈 y, σ 〉 6p−→ ∧ 〈 y, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 zd, σ
′ 〉: Note that pd ≡ zd. According to

Rule 22 we obtain 〈 q, σ 〉 p d−→〈 zd, σ
′ 〉. So, we take p′d ≡ pd, qd ≡ zd, and

q′d ≡ qd. Note that (p′d, q
′
d) ∈ R.

Condition 5 : The proof is similar to the proof of Condition 4.

This concludes the proof of pairs (p, q) ∈ R1.

Inductive step We prove the five ‘bisimulation up to ↔’ conditions for all (p, q) ∈
R2. So, suppose p ≡ x [] z and q ≡ y [] z and (x, y) ∈ R for some processes x, y,
and z. Furthermore, the induction hypothesis says that the five ‘bisimulation up
to ↔’ conditions hold for (x, y).

Condition 1 : We have to prove ∀σ : 〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. Using the induction hy-
pothesis and Rule 13, this can be proven as follows:

〈 p, σ 〉↓
≡ 〈x [] z, σ 〉↓
⇔ 〈x, σ 〉↓ ∨ 〈 z, σ 〉↓
⇔ 〈 y, σ 〉↓ ∨ 〈 z, σ 〉↓
⇔ 〈 y [] z, σ 〉↓
≡ 〈 q, σ 〉↓.

Condition 2 : We have to prove ∀a, pa, σ, σ′ : 〈 p, σ 〉 a−→ 〈 pa, σ′ 〉 ⇒ ∃p′a, qa, q′a :
〈 q, σ 〉 a−→ 〈 qa, σ′ 〉, pa ↔ p′a, (p′a, q′a) ∈ R, and q′a ↔ qa. Suppose 〈 p, σ 〉 a−→
〈 pa, σ′ 〉. Then Rule 14 applies and we distinguish two cases.

〈x, σ 〉 a−→ 〈xa, σ′ 〉: Note that pa ≡ xa. Using Condition 2 of the induction
hypothesis on x we obtain ∃ya : 〈 y, σ 〉 a−→ 〈 ya, σ′ 〉. According to Rule 14,
we obtain 〈 q, σ 〉 a−→ 〈 ya, σ′ 〉. So, we take p′a ≡ pa, qa ≡ ya, and q′a ≡ qa.
Note that (p′a, q′a) ∈ R.
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〈 z, σ 〉 a−→ 〈 za, σ′ 〉: Note that pa ≡ za. According to Rule 14, we obtain
〈 q, σ 〉 a−→ 〈 za, σ′ 〉. So, we take p′a ≡ pa, qa ≡ za, and q′a ≡ qa. Note
that (p′a, q′a) ∈ R.

Condition 3 : The proof is similar to the proof of Condition 2.

Condition 4 : We have to prove ∀d, pd, σ, σ′ : 〈 p, σ 〉 p
d−→ 〈 pd, σ

′ 〉 ⇒ ∃p′d, qd, q
′
d :

〈 q, σ 〉 p
d−→ 〈 qd, σ

′ 〉, pd ↔ p′d, (p′d, q
′
d) ∈ R, and q′d ↔ qd. Suppose 〈 p, σ 〉 p

d−→
〈 pd, σ

′ 〉. We distinguish three cases.

〈x, σ 〉 p d−→ 〈xd, σ
′ 〉 ∧ 〈 z, σ 〉 6p−→: In this case, Rule 15 applies to 〈 p, σ 〉. Note

that pd ≡ xd. Using Condition 4 of the induction hypothesis on x, we obtain
∃yd : 〈 y, σ 〉 p d−→〈 yd, σ

′ 〉. According to Rule 15, we have 〈 q, σ 〉 p d−→ 〈 yd, σ
′ 〉.

So, we take p′d ≡ pd, qd ≡ yd, and q′d ≡ qd. Note that (p′d, q
′
d) ∈ R.

〈 z, σ 〉 p d−→ 〈 zd, σ
′ 〉 ∧ 〈x, σ 〉 6p−→: In this case, Rule 15 applies to 〈 p, σ 〉. Note

that pd ≡ zd. Rule 15, we have 〈 q, σ 〉 p
d−→ 〈 zd, σ

′ 〉. So, we take p′d ≡ pd,
qd ≡ zd, and q′d ≡ qd. Note that (p′d, q

′
d) ∈ R.

〈x, σ 〉 p d−→ 〈xd, σ
′ 〉 ∧ 〈 z, σ 〉 p d−→ 〈 zd, σ

′ 〉: Note that pd ≡ xd [] zd. Using Condi-
tion 4 of the induction hypothesis on x, we obtain ∃yd : 〈 y, σ 〉 p d−→ 〈 yd, σ

′ 〉.
According to Rule 16 we obtain 〈 q, σ 〉 p d−→〈 yd []zd, σ

′ 〉. So, we take p′d ≡ pd,
qd ≡ yd [] zd, and q′d ≡ qd. Note that (p′d, q

′
d) ∈ R.

Condition 5 : The proof is similar to the proof of Condition 4.

Lemma 4.23 Let p, q, and r be processes, then

(p [] q) ; r ↔ p ; r [] q ; r.

Proof (Lemma 4.23) We have to prove (p[]q) ; r ↔ p ; r []q ; r for all processes p, q,
and r. In this case, we define a relation R ⊆ P×P such that ((p[]q) ; r, p ; r[]q ; r) ∈
R and R is a ‘bisimulation up to ↔’ (see Definition 4.6). We define R as the least
set satisfying

R = R0 ∪R1 ∪R2,

R0 = {(p, p)},
R1 = {((p [] q) ; r, p ; r [] q ; r)},
R2 = {(p [] r, q [] r) | (p, q) ∈ R}

and show that all pairs (p, q) ∈ R satisfy the five conditions of Definition 4.6 During
the proof it will become clear why R includes R2. Since R is defined recursively,
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we will use structural induction on the elements of R. The proof consists of two
parts.

For the basis, we prove that the five ‘bisimulation up to ↔’ conditions hold for
pairs (p, q) ∈ R0 ∪R1. For the inductive step, we assume the five ‘bisimulation up
to ↔’ conditions hold for (p, q) ∈ R and show they hold for pairs (p [] r, q [] r) ∈ R2.

Basis Since the proof of the pairs (p, q) ∈ R0 is trivial, we will only consider the
pairs (p, q) ∈ R1. So, suppose (p, q) ∈ R1. Therefore, there are processes x, y,
and z such that p ≡ (x [] y) ; z and q ≡ x ; z [] y ; z.

Condition 1 : We have to prove ∀σ :〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. The following computation
shows that this holds (we use Rules 13 and 17):

〈 p, σ 〉↓
⇔ 〈x [] y, σ 〉↓ ∧ 〈 z, σ 〉↓
⇔ (〈x, σ 〉↓ ∨ 〈 y, σ 〉↓) ∧ 〈 z, σ 〉↓
⇔ (〈x, σ 〉↓ ∧ 〈 z, σ 〉↓) ∨ (〈 y, σ 〉↓ ∧ 〈 z, σ 〉↓)
⇔ 〈x ; z, σ 〉↓ ∨ 〈 y ; z, σ 〉↓
⇔ 〈 q, σ 〉↓.

Condition 2 : We have to prove ∀p′, a, σ, σ′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ ∃p′′, q′, q′′ :
〈 q, σ 〉 a−→ 〈 q′, σ′ 〉, p′ ↔ p′′, (p′′, q′′) ∈ R, and q′′ ↔ q′. So, assume 〈 p, σ 〉 a−→
〈 p′, σ′ 〉. We distinguish the following cases.

〈x, σ 〉 a−→ 〈x′, σ′ 〉: Note that p′ ≡ x′ ; z. According to Rule 14 we have
〈 q, σ 〉 a−→ 〈x′ ; z, σ′ 〉. So, we take p′′ ≡ p′, q′ ≡ x′ ; z, and q′′ ≡ q′. Note
that (p′′, q′′) ∈ R.

〈 y, σ 〉 a−→ 〈 y′, σ′ 〉: Note that p′ ≡ y′ ; z. According to Rule 14 we have
〈 q, σ 〉 a−→ 〈 y′ ; z, σ′ 〉. So, we take p′′ ≡ p′, q′ ≡ y′ ; z, and q′′ ≡ q′.
Note that (p′′, q′′) ∈ R.

〈x [] y, σ 〉↓ ∧ 〈 z, σ 〉 a−→ 〈 z′, σ′ 〉: Note that p′ ≡ z′. Based on Rule 13 we have
〈x, σ 〉↓ or 〈 y, σ 〉↓. According to Rules 19 and 14 we have 〈 q, σ 〉 a−→〈 z′, σ′ 〉.
So, take p′′ ≡ p′, q′ ≡ z′, and q′′ ≡ q′. Note that (p′′, q′′) ∈ R.

Condition 3 : We have to prove ∀q′, a, σ, σ′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ⇒ ∃p′, p′′, q′′ :
〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, p′ ↔ p′′, (p′′, q′′) ∈ R, and q′′ ↔ q′. So, assume 〈 q, σ 〉 a−→
〈 q′, σ′ 〉. Based on Rule 14 we can distinguish two cases.

〈x ; z, σ 〉 a−→ 〈 q′, σ′ 〉: Based on Rules 18 and 19 we can distinguish two cases.



4.8 Sequential composition operator 85

〈x, σ 〉 a−→ 〈x′, σ′ 〉: Note that q′ ≡ x′ ; z. According to Rules 14 and 18
we have 〈 p, σ 〉 a−→ 〈 q′, σ′ 〉. So, take p′ ≡ q′, p′′ ≡ p′, and q′′ ≡ q′. Note
that (p′′, q′′) ∈ R.

〈x, σ 〉↓ ∧ 〈 z, σ 〉 a−→ 〈 z′, σ′ 〉: Note that q′ ≡ z′. According to Rules 13
and 19 we have 〈 p, σ 〉 a−→ 〈 z′, σ′ 〉. So, take p′ ≡ z′, p′′ ≡ p′, and
q′′ ≡ q′. Note that (p′′, q′′) ∈ R.

〈 y ; z, σ 〉 a−→ 〈 q′, σ′ 〉: The proof is similar to the proof of the previous case.

Condition 4 : We have to prove ∀p′, d, σ, σ′ : 〈 p, σ 〉 p
d−→ 〈 p′, σ′ 〉 ⇒ ∃p′′, q′, q′′ :

〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉, p′ ↔ p′′, (p′′, q′′) ∈ R, and q′′ ↔ q′. So, assume 〈 p, σ 〉 p d−→
〈 p′, σ′ 〉. We distinguish two cases.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉: We distinguish two cases.

〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉: We distinguish the following cases.

(〈x, σ 〉↓ ∨ 〈 y, σ 〉↓) ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ (x′ []y′) ; z []z′.
According to Rules 23 and 15 we have 〈 q, σ 〉 p d−→ 〈 (x′ ; z [] z′) [] (y′ ;
z [] z′), σ′ 〉. So, take q′ ≡ (x′ ; z [] z′) [] (y′ ; z [] z′). According to
Lemmas 4.15, 4.16, and 4.17 we can make the following computation:
q′ ≡ (x′ ; z [] z′) [] (y′ ; z [] z′) ↔ (x′ ; z [] y′ ; z) [] z′ So, we define
q′′ ≡ (x′ ; z [] y′ ; z) [] z′ and take p′′ ≡ p′. Given the definition of R1

and R2, it is clear that (p′′, q′′) ∈ R.
(〈x, σ 〉6 ↓ ∧ 〈 y, σ 〉6 ↓) ∨ 〈 z, σ 〉 6p−→: Note that p′ ≡ (x′ [] y′) ; z. According

to Rules 20, 21, and 16 we have 〈 q, σ 〉 p d−→〈x′ ; z [] y′ ; z, σ′ 〉. So, we
take p′′ ≡ p′, q′ ≡ x′ ; z [] y′ ; z, and q′′ ≡ q′. Note that (p′′, q′′) ∈ R.

〈 y, σ 〉 6p−→: We distinguish the following cases.

(〈x, σ 〉↓ ∨ 〈 y, σ 〉↓) ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ x′ ; z [] z′. Ac-
cording to Rules 22, 23, and 16 we have 〈 q, σ 〉 p d−→〈x′ ; z []z′, σ′ 〉. So,
we take p′′ ≡ p′, q′ ≡ x′ ; z [] z′, and q′′ ≡ q′. Note that (p′′, q′′) ∈ R.

(〈x, σ 〉6 ↓ ∧ 〈 y, σ 〉6 ↓) ∨ 〈 z, σ 〉 6p−→: Note that p′ ≡ x′ ; z. According to
Rules 20, 21, and 15 we have 〈 q, σ 〉 p

d−→ 〈x′ ; z, σ′ 〉. So, we take
p′′ ≡ p′, q′ ≡ x′ ; z, and q′′ ≡ q′. Note that (p′′, q′′) ∈ R.

〈x, σ 〉 6p−→: We distinguish two cases.

〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉: We distinguish the following cases.

(〈x, σ 〉↓ ∨ 〈 y, σ 〉↓) ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ y′ ; z [] z′. Ac-
cording to Rules 22, 23, and 16 we have 〈 q, σ 〉 p d−→〈 y′ ; z []z′, σ 〉. So,
we take p′′ ≡ p′, q′ ≡ y′ ; z [] z′, and q′′ ≡ q′. Note that (p′′, q′′) ∈ R.
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(〈x, σ 〉6 ↓ ∧ 〈 y, σ 〉6 ↓) ∨ 〈 z, σ 〉 6p−→: Note that p′ ≡ y′ ; z. According to
Rules 20, 21, and 15 we have 〈 q, σ 〉 p

d−→ 〈 y′ ; z, σ′ 〉. So, we take
p′′ ≡ p′, q′ ≡ y′ ; z, and q′′ ≡ q′. Note that (p′′, q′′) ∈ R.

〈 y, σ 〉 6p−→: Note that we must have (〈 x, σ 〉↓ ∨ 〈 y, σ 〉↓) ∧ 〈 z, σ 〉 p d−→〈 z′, σ′ 〉,
otherwise 〈 p, σ 〉 p d−→〈 p′, σ 〉 is not possible. So, we have p′ ≡ z′. Accord-
ing to Rules 22 and 16 we also have 〈 q, σ 〉 p d−→ 〈 z′ [] z′, σ′ 〉. So, we take
p′′ ≡ p′ and q′ ≡ z′ [] z′. Using Lemma 4.15, we can make the following
computation: q′ ≡ z′ [] z′ ↔ z′. So, we define q′′ ≡ z′ and note that
(p′′, q′′) ∈ R.

Condition 5 : We have to prove ∀q′, d, σ, σ′ : 〈 q, σ 〉 p
d−→ 〈 q′, σ′ 〉 ⇒ ∃p′, p′′, q′′ :

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, p′ ↔ p′′, (p′′, q′′) ∈ R, and q′′ ↔ q′. So, assume 〈 q, σ 〉 p d−→
〈 q′, σ′ 〉. Since q ≡ x ; z [] y ; z the relevant Rules are 15 and 16. Therefore,
we distinguish the following cases.

〈x ; z, σ 〉 p d−→ 〈 q′0, σ′ 〉 ∧ 〈 y ; z 〉 6p−→: Note that q′ ≡ q′0. The relevant Rules
are 20, 21, 22, and 23. Therefore, we distinguish the following cases.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉 ∧ (〈x, σ 〉6 ↓ ∨ 〈 z, σ 〉 6p−→): Note that q′ ≡ x′ ; z. Accord-
ing to Rules 20, 21, and 15 we have 〈 p, σ 〉 p d−→ 〈x′ ; z, σ′ 〉. So, we take
p′ ≡ x′ ; z, p′′ ≡ p′, and q′′ ≡ q′. Finally, note that (p′′, q′′) ∈ R.

〈x, σ 〉 6p−→ ∧ 〈x, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that q′ ≡ z′. According to
Rules 13 and 22 we have 〈 p, σ 〉 p d−→〈 z′, σ′ 〉. So, we take p′ ≡ z′, p′′ ≡ p′,
and q′′ ≡ q′. Finally, note that (p′′, q′′) ∈ R.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉 ∧ 〈x, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Since we know that 〈 y ;
z, σ 〉 6p−→ we can conclude that 〈 y, σ 〉 6p−→. Therefore, we have q′ ≡ x′ ; z[]z′.
According to Rules 13 and 23 we get 〈 p, σ 〉 p d−→ 〈x′ ; z [] z′, σ′ 〉. So, we
take p′ ≡ x′ ; z []z′, p′′ ≡ p′, and q′′ ≡ q′. Finally, note that (p′′, q′′) ∈ R.

〈x ; z, σ 〉 6p−→ ∧ 〈 y ; z 〉 p d−→ 〈 q′1, σ′ 〉: Note that q′ ≡ q′1. The proof is similar to
the proof of the previous case.

〈x ; z, σ 〉 p d−→ 〈 q′0, σ′ 〉 ∧ 〈 y ; z 〉 p d−→ 〈 q′1, σ′ 〉: Note that q′ ≡ q′0 [] q′1. We dis-
tinguish the following cases.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉:
〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉:
〈x, σ 〉↓ ∧ 〈 y, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that q′ ≡ (x′ ; z [] z′) []

(y′ ; z [] z′). According to Rules 13, 16, and 23 we have 〈 p, σ 〉 p d−→
〈 (x′ []y′) ; z []z′, σ′ 〉. So, we take p′ ≡ (x′ []y′) ; z []z′. Now we can
make the same computation as in the corresponding case of the
proof of Condition 4: q′ ≡ (x′ ; z[]z′)[](y′ ; z[]z′) ↔ (x′ ; z[]y′ ; z)[]z′.
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So, we define q′′ ≡ (x′ ; z [] y′ ; z) [] z′ and take p′′ ≡ p′. Given
the definition of R1 and R2, it is clear that (p′′, q′′) ∈ R.

〈x, σ 〉↓ ∧ 〈 y, σ 〉6 ↓ ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that q′ ≡ (x′ ; z [] z′) []
y′ ; z. According to Rules 13, 16, and 23 we have 〈 p, σ 〉 p d−→〈 (x′ []
y′) ; z []z′, σ′ 〉. So, take p′ ≡ (x′ []y′) ; z []z′ and p′′ ≡ p′. Further,
consider the following computation: q′ ≡ (x′ ; z [] z′) [] y′ ; z ↔
x′ ; z [] (z′ [] y′ ; z) ↔ x′ ; z [] (y′ ; z [] z′) ↔ (x′ ; z [] y′ ; z) [] z′.
So, we take q′′ ≡ (x′ ; z [] y′ ; z) [] z′ and note that (p′′, q′′) ∈ R.

〈x, σ 〉6 ↓ ∧ 〈 y, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that q′ ≡ x′ ; z [] (y′ ;
z [] z′). The proof continues in the same way as in the previous
case.

(〈 x, σ 〉6 ↓ ∧ 〈 y, σ 〉6 ↓) ∨ 〈 z, σ 〉 6p−→: Note that q′ ≡ x′ ; z [] y′ ; z. Ac-
cording to Rules 16, 20, and 21 we have 〈 p, σ 〉p d−→〈 (x′ []y′) ; z, σ′ 〉.
So, we take p′ ≡ (x′ [] y′) ; z, p′′ ≡ p′, and q′′ ≡ q′. Finally, note
that (p′′, q′′) ∈ R.

〈 y, σ 〉 6p−→: We distinguish the following cases.

〈x, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that q′ ≡ x′ ; z [] z′. According
to Rules 15 and 23 we have 〈 p, σ 〉 p

d−→ 〈x′ ; z [] z′, σ′ 〉. So, we
take p′ ≡ x′ ; z [] z′, p′′ ≡ p′, and q′′ ≡ q′. Finally, note that
(p′′, q′′) ∈ R.

〈x, σ 〉6 ↓ ∨ 〈 z, σ 〉 6p−→: Note that q′ ≡ x′ ; z. According to Rules 15,
20, and 21 we have 〈 p, σ 〉 p d−→〈x′ ; z, σ′ 〉. So, we take p′ ≡ x′ ; z,
p′′ ≡ p′, and q′′ ≡ q′. Finally, note that (p′′, q′′) ∈ R.

〈x, σ 〉 6p−→: We distinguish the following cases.
〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉: We distinguish the following cases.

〈x, σ 〉↓ ∧ 〈 y, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that q′ ≡ z′[](y′ ; z []z′).
According to Rules 13, 16, 22, and 23 we have 〈 p, σ 〉 p d−→〈 y′ ; z []
z′, σ′ 〉. So, take p′ ≡ y′ ; z []z′ and p′′ ≡ p′. Further, consider the
following computation: q′ ≡ z′ [] (y′ ; z [] z′) ↔ ([]y′ ; z [] z′) [] z′ ↔
y′ ; z [] (z′ [] z′) ↔ y′ ; z [] z′. So, take q′′ ≡ y′ ; z [] z′ and note
that (p′′, q′′) ∈ R.

〈x, σ 〉↓ ∧ 〈 y, σ 〉6 ↓ ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that we have q′ ≡ z′ []
y′ ; z. Now the proof continues in the same way as in the previous
case.

〈x, σ 〉6 ↓ ∧ 〈 y, σ 〉↓ ∧ 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that q′ ≡ y′ ; z [] z′.
Now the proof continues in the same way as in the previous case.
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(〈 x, σ 〉6 ↓ ∧ 〈 y, σ 〉6 ↓) ∨ 〈 z, σ 〉 6p−→: Note that q′ ≡ y′ ; z. According
to Rules 20, 21, and 15 we have 〈 p, σ 〉 p

d−→ 〈 y′ ; z, σ′ 〉. So, take
p′ ≡ y′ ; z, p′′ ≡ p′, and q′′ ≡ q′. Finally, note that (p′′, q′′) ∈ R.

〈 y, σ 〉 6p−→: Note that we must have (〈x, σ 〉↓ ∨ 〈 y, σ 〉↓) ∧ 〈 z, σ 〉 p
d−→

〈 z′, σ′ 〉, since otherwise 〈 q, σ 〉 p d−→〈 q′, σ′ 〉 cannot hold. So, we have
q′ ≡ z′ (if either 〈x, σ 〉↓ or 〈 y, σ 〉↓) or q′ ≡ z′ [] z′ (if both 〈x, σ 〉↓
and 〈 y, σ 〉↓).
q′ ≡ z′: According to Rules 13 and 22 we have 〈 p, σ 〉 p

d−→ 〈 z′, σ′ 〉.
So, we take p′ ≡ z′, p′′ ≡ p′, and q′′ ≡ q′. Finally, note that
(p′′, q′′) ∈ R.

q′ ≡ z′ [] z′: According to Rules 13 and 22 we have 〈 p, σ 〉 p d−→〈 z′, σ′ 〉.
So, we take p′ ≡ z′ and p′′ ≡ p′. Further, using Lemma 4.15 we
can make the following computation: q′ ≡ z′ [] z′ ↔ z′. So, we
take q′′ ≡ z′ and note that (p′′, q′′) ∈ R.

Inductive step Suppose (p, q) ∈ R2. According to definition of R2, there are pro-
cesses x, y, and z such that p ≡ x []z and q ≡ y []z and (x, y) ∈ R. Furthermore, the
induction hypothesis says the five bisimulation conditions hold for the pair (x, y).

Condition 1 : We have to prove ∀σ : 〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. Using the induction hy-
pothesis and Rule 13 we can make the following computation:

〈 p, σ 〉↓
⇔ 〈x, σ 〉↓ ∨ 〈 z, σ 〉↓
⇔ 〈 y, σ 〉↓ ∨ 〈 z, σ 〉↓
⇔ 〈 q, σ 〉↓.

Condition 2 : We have to prove ∀a, pa, σ, σ′ : 〈 p, σ 〉 a−→ 〈 pa, σ′ 〉 ⇒ ∃qa : 〈 q, σ 〉 a−→
〈 qa, σ′ 〉 and (pa, qa) ∈ R. Consider the following computation:

〈 p, σ 〉 a−→ 〈 pa, σ′ 〉
⇔ (〈 x, σ 〉 a−→ 〈 pa, σ′ 〉) ∨ (〈 z, σ 〉 a−→ 〈 pa, σ′ 〉)
⇔ (〈 y, σ 〉 a−→ 〈 pa, σ′ 〉) ∨ (〈 z, σ 〉 a−→ 〈 pa, σ′ 〉)
⇔ 〈 q, σ 〉 a−→ 〈 pa, σ′ 〉.

So, take qa ≡ pa and note that (pa, qa) ∈ R.

Condition 3 : The proof is similar to the proof of Condition 2.
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Condition 4 : We have to prove ∀d, pd, σ, σ′ : 〈 p, σ 〉 p d−→ 〈 pd, σ
′ 〉 ⇒ ∃qd : 〈 q, σ 〉 p d−→

〈 qd, σ
′ 〉. So, assume 〈 p, σ 〉 p d−→ 〈 pd, σ

′ 〉. We distinguish three cases.

〈x, σ 〉 p d−→ 〈xd, σ
′ 〉 ∧ 〈 z, σ 〉 p d−→ 〈 zd, σ

′ 〉: Note that pd ≡ xd [] zd. Using Condi-
tion 4 on x, we obtain 〈 y, σ 〉 p d−→〈 yd, σ

′ 〉 for some yd such that (xd, yd) ∈ R.
According to Rule 16 we therefore have 〈 q, σ 〉p d−→〈 qd, σ

′ 〉 where qd ≡ yd []zd.
Note that (pd, qd) ∈ R.

〈x, σ 〉 p d−→ 〈xd, σ
′ 〉 ∧ 〈 z, σ 〉 6p−→: Note that pd ≡ xd. Using Condition 4 on x,

we obtain 〈 y, σ 〉 p d−→〈 yd, σ
′ 〉 for some yd such that (xd, yd) ∈ R. According

to Rule 15 we therefore have 〈 q, σ 〉 p
d−→ 〈 yd, σ

′ 〉. So, take qd ≡ yd. Note
that (pd, qd) ∈ R.

〈x, σ 〉 6p−→ ∧ 〈 z, σ 〉 p d−→ 〈 zd, σ
′ 〉: Note that pd ≡ zd. According to Rule 15 we

have 〈 q, σ 〉 p d−→ 〈 zd, σ
′ 〉. So, take qd ≡ zd and note that (pd, qd) ∈ R.

Condition 5 : The proof is similar to the proof of Condition 4.

4.9 Repetition operator

In Definition 4.24, we define the repetition operator ‘∗’. A process p∗ executes p

zero or more times. This operator is often referred to as the (unary) Kleene star.

Definition 4.24 (Repetition operator) The repetition operator has the following
signature:

∗ : P → P.

The deduction rules for the repetition operator are listed in Table 4.5.

〈 p∗, σ 〉↓
24

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 p∗, σ 〉 a−→ 〈 p′ ; p∗, σ′ 〉
25

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉

〈 p∗, σ 〉 p d−→ 〈 p′ ; p∗, σ′ 〉
26

Table 4.5 Deduction rules for the repetition operator.

Rule 24 states that a process p∗ can always terminate. Rule 25 states that if
a process p can perform an action, then the repetition p∗ can also perform the
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action. Finally, Rule 26 states that if a process p can perform a delay, then the
repetition p∗ can also perform that delay.

Lemma 4.25 δ∗ ↔ ε.

Proof (Lemma 4.25) We have to prove that δ∗ ↔ ε. In this case, we define a
relation R ⊆ P × P such that (δ∗, ε) ∈ R and R is a bisimulation.

We define R as

R = {(δ∗, ε)}

and show that pair (δ∗, ε) ∈ R satisfies the five bisimulation conditions of Defini-
tion 4.5.

Condition 1 : We have to prove ∀σ : 〈 δ∗, σ 〉↓ ⇔ 〈 ε, σ 〉↓. According to Rules 1
and 24 both 〈 δ∗, σ 〉↓ and 〈 ε, σ 〉↓ hold. Therefore, the condition holds.

Condition 2–5 : The proof is trivial since the left-hand side of the implication does
not hold.

Lemma 4.26 Let p be a process, then

p∗ ↔ p ; p∗ [] ε.

Proof (Lemma 4.26) We have to prove p∗ ↔ p ; p∗ [] ε for all processes p. In
this case, we define a relation R ⊆ P × P such that (p∗, p ; p∗ [] ε) ∈ R and R is a
‘bisimulation up to ↔ relation (see Definition 4.6). We define R as

R = {(p, p)} ∪ {(p∗, p ; p∗ [] ε)}.

Now we will show that each pair (p, q) ∈ R satisfies the five ‘bisimulation up
to ↔’ conditions of Definition 4.6.Since the proofs for the pairs of the form (p, p)
are trivial, we will only consider the pairs of the form (p∗, p ; p∗ [] ε). So, assume
p ≡ x∗ and q ≡ x ; x∗ [] ε, for some process x.

Condition 1 : We have to prove ∀σ : 〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. This is easily proved using
Rules 1, 17, 24, and 13: 〈 p, σ 〉↓ ⇔ 〈 x∗, σ 〉 ⇔ true ⇔ 〈 ε, σ 〉↓ ⇔ 〈x ; x∗ []
ε, σ 〉↓ ⇔ 〈 q, σ 〉↓.
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Condition 2 : We have to prove ∀σ, a, p′, σ′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ ∃p′′, q′, q′′ :
〈 q, σ 〉 a−→ 〈 q′, σ′ 〉, p′ ↔ p′′, (p′′, q′′) ∈ R, and q′′ ↔ q′. So, assume 〈 p, σ 〉 a−→
〈 p′, σ′ 〉. Since Rule 25 is the only rule that applies, we can derive 〈x, σ 〉 a−→
〈x′, σ′ 〉 and p′ ≡ x′ ; x∗. According to Rules 18 and 14, we also have
〈x ; x∗ [] ε, σ 〉 a−→ 〈x′ ; x∗, σ′ 〉. So, take p′′ ≡ p′, q′ ≡ p′, and q′′ ≡ q′.
Finally, note that p′ ↔ p′′, (p′′, q′′) ∈ R, and q′′ ↔ q′.

Condition 3 : We have to prove ∀σ, a, q′, σ′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ⇒ ∃p′, p′′, q′′ :
〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, p′ ↔ p′′, (p′′, q′′) ∈ R, and q′′ ↔ q′. So, assume 〈 q, σ 〉 a−→
〈 q′, σ′ 〉. Both Rule 18 and Rule 19 apply. However, in both cases we get
〈x ; x∗ [] ε, σ 〉 a−→ 〈x′ ; x∗, σ′ 〉 and q′ ≡ x′ ; x∗. That is, if we derive
〈x ; x∗ [] ε, σ 〉 a−→ 〈x′ ; x∗, σ′ 〉 according to Rule 18 we can also derive (for
the same x′) 〈x ; x∗ [] ε, σ 〉 a−→ 〈x′ ; x∗, σ′ 〉 Rule 19, and vice versa. Fur-
thermore, we have 〈x, σ 〉 a−→ 〈x′, σ′ 〉. Therefore, using Rule 25, we find
〈x∗, σ 〉 a−→ 〈x′ ; x∗, σ 〉. So, take p′ ≡ q′, p′′ ≡ p′, and q′′ ≡ q′. Finally,
note that p′ ↔ p′′, (p′′, q′′) ∈ R, and q′′ ↔ q′.

Condition 4 : We have to prove ∀σ, d, p′, σ′ : 〈 p, σ 〉 p
d−→ 〈 p′, σ′ 〉 ⇒ ∃p′′, q′, q′′ :

〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉, p′ ↔ p′′, (p′′, q′′) ∈ R, and q′′ ↔ q′. So, assume 〈 p, σ 〉 p d−→
〈 p′, σ′ 〉. Since Rule 26 is the only rule that applies, we have 〈 x∗, σ 〉 p d−→ 〈x′ ;
x∗, σ′ 〉 for some x′ such that p′ ≡ x′ ; x∗ and 〈x, σ 〉 p

d−→ 〈x′, σ′ 〉. Depending
on the termination behaviour of x, we distinguish two cases.

〈x, σ 〉↓: Using Rules 23, 15 and 26, we find 〈x ; x∗ []ε, σ 〉p d−→〈x′ ; x∗ []x′ ; x∗, σ′ 〉.
According to Lemma 4.15, we have x′ ; x∗ []x′ ; x ↔ x′ ; x∗. So, take p′′ ≡ p,
q′ ≡ x′ ; x∗ [] x′ ; x, and q′′ ≡ p′. Finally, note that p′ ↔ p′′, (p′′, q′′) ∈ R,
and q′′ ↔ q′.

〈x, σ 〉6 ↓: Using Rules 20 and 15 we find 〈x ; x∗ [] ε, σ 〉 p
d−→ 〈x′ ; x∗, σ 〉. So,

take p′′ ≡ p′, q′ ≡ p′, and q′′ ≡ p′. Finally, note that p′ ↔ p′′, (p′′, q′′) ∈ R,
and q′′ ↔ q′.

Condition 5 : We have to prove ∀σ, d, q′, σ′ : 〈 q, σ 〉 p
d−→ 〈 q′, σ′ 〉 ⇒ ∃p′, p′′, q′′ :

〈 p, σ 〉 p
d−→ 〈 p′, σ′ 〉, p′ ↔ p′′, (p′′, q′′) ∈ R, and q′′ ↔ q′. Assume 〈 q, σ 〉 p

d−→
〈 q′, σ′ 〉. Depending on the delay behaviour of x we distinguish two cases.

〈x, σ 〉↓: Now, Rules 23 and 15 apply and, consequently, we have 〈x ; x∗ []
ε, σ 〉 p d−→〈x′ ; x∗ []x′ ; x∗, σ 〉 for some process x such that q′ ≡ x′ ; x∗ []x′ ; x∗

and 〈x, σ 〉 d−→〈x′, σ′ 〉. According to Lemma 4.15, we have x′ ; x∗ []x′ ; x ↔
x′ ; x∗. Furthermore, using Rule 26, we obtain 〈x∗, σ 〉 p

d−→ 〈x′ ; x∗, σ′ 〉.
So, take p′ ≡ x′ ; x∗, p′′ ≡ p′, and q′′ ≡ p′. Finally, note that p′ ↔ p′′,
(p′′, q′′) ∈ R, and q′′ ↔ q′.



92 The specification language χσ 4

〈x, σ 〉6 ↓: Now, Rules 20 and 15 apply and, consequently, we have 〈x ; x∗ []
ε, σ 〉 p d−→〈 x′ ; x∗, σ 〉 for some process x such that q′ ≡ x′ ; x∗ and 〈x, σ 〉 d−→
〈x′, σ′ 〉. According to Rule 26 we obtain 〈x∗, σ 〉 p d−→〈x′ ; x∗, σ′ 〉. So, take
p′ ≡ q′, p′′ ≡ q′, and q′′ ≡ q′. Finally, note that p′ ↔ p′′, (p′′, q′′) ∈ R, and
q′′ ↔ q′.

4.10 Parallel composition operator

In Definition 4.27, we define the parallel composition operator ‘‖’. A process p ‖ q

executes p and q concurrently in an interleaved fashion. That is, the actions of p

and q are executed in arbitrary order.

Definition 4.27 (Parallel composition operator) The parallel composition operator
has the following signature:

‖ : P × P → P.

The deduction rules for the parallel composition operator are listed in Table 4.6.

〈 p, σ 〉↓, 〈 q, σ 〉↓

〈 p ‖ q, σ 〉↓
27

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 p ‖ q, σ 〉 a−→ 〈 p′ ‖ q, σ′ 〉, 〈 q ‖ p, σ 〉 a−→ 〈 q ‖ p′, σ′ 〉
28

〈 p, σ 〉 sa(m,c)−−−−−→ 〈 p′, σ′ 〉, 〈 q, σ′ 〉 ra(m,x)−−−−−→ 〈 q′, σ′′ 〉

〈 p ‖ q, σ 〉 ca(m,x,c)−−−−−−−→ 〈 p′ ‖ q′, σ′′ 〉, 〈 q ‖ p, σ 〉 ca(m,x,c)−−−−−−−→ 〈 q′ ‖ p′, σ′′ 〉
29

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q, σ 〉↓, 〈 q, σ 〉 6p−→

〈 p ‖ q, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q ‖ p, σ 〉 p d−→ 〈 p′, σ′ 〉
30

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉

〈 p ‖ q, σ 〉 p d−→ 〈 p′ ‖ q′, σ′ 〉
31

Table 4.6 Deduction rules for the parallel composition operator.
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If both process p and q can terminate, then the parallel composition p ‖ q can also
terminate, as defined by Rule 27. If process p can perform an action, then both
the parallel compositions p ‖ q and q ‖ p can perform the action as well, as defined
by Rule 28. This expresses interleaving. Furthermore, if processes p and q can
perform matching send and receive actions, then the parallel compositions p ‖ q

and q ‖ p can perform a communication action, as defined by Rule 29. Notice that
there is an order dependency. The stack is first updated by the send action which
changes the value of a channel. Next, the stack is updated by the receive action.
The delay behaviour of the parallel composition is defined by the Rules 30 and 31.
If only one argument of a parallel composition p ‖ q can delay, say p, then the
parallel composition can delay only if the other argument, q, can terminate. This
is defined by Rule 30. Note that in this case, argument q is lost. If both arguments
can delay, then they delay together, as defined by Rule 31.

Lemma 4.28 Let p be a process, then

ε ‖ p ↔ p.

Proof (Lemma 4.28) We have to prove that ε ‖ p ↔ p for all processes p. In this
case, we define a bisimulation relation R ⊆ P × P such that (ε ‖ p, p) ∈ R and R

is a bisimulation. We define R as

R = {(p, p)} ∪ {(ε ‖ p, p)}

and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defi-
nition 4.5. Since the proofs are trivial for the pairs (p, p), we only give the proofs
for the pairs (ε ‖ p, p).

Condition 1 : We have to prove ∀σ : 〈 ε ‖ p, σ 〉↓ ⇔ 〈 p, σ 〉↓. Let us first prove the
right implication of Condition 1. Suppose 〈 ε ‖ p, σ 〉↓. Then Rule 27 should
apply and we obtain 〈 p, σ 〉↓. For the left implication we find the following.
Suppose 〈 p, σ 〉↓. Rule 1 combined with Rule 27 then gives 〈 ε ‖ p, σ 〉↓.

Condition 2 : We have to prove ∀σ, σ′, q, a : 〈 ε ‖ p, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 p, σ 〉 a−→
〈 r, σ′ 〉 ∧ (q, r) ∈ R. Suppose 〈 ε ‖ p, σ 〉 a−→ 〈 q, σ′ 〉, then also 〈 p, σ 〉 a−→ 〈 q, σ′ 〉
since there are no action transitions defined for ε. In that case, we also have
〈 p, σ 〉 a−→ 〈 r, σ′ 〉, where r ≡ q and (q, r) ∈ R.

Condition 3 : We have to prove ∀σ, σ′, q, a : 〈 p, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 ε ‖ p, σ 〉 a−→
〈 r, σ′ 〉 ∧ (r, q) ∈ R. Suppose 〈 p, σ 〉 a−→ 〈 q, σ′ 〉, then, by Rule 28 we also have
〈 ε ‖ p, σ 〉 a−→ 〈 r, σ′ 〉, where r ≡ q and (r, q) ∈ R.
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Condition 4 : We have to prove ∀σ, σ′, q, d : 〈 ε ‖ p, σ 〉 p d−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 p, σ 〉 p d−→
〈 r, σ′ 〉 ∧ (q, r) ∈ R. Suppose 〈 ε ‖ p, σ 〉 p d−→ 〈 q, σ′ 〉, then also 〈 p, σ 〉 p d−→ 〈 q, σ′ 〉
since there are no delay transitions defined for ε. In that case, we also have
〈 p, σ 〉 p d−→ 〈 r, σ′ 〉, where r ≡ q and (q, r) ∈ R.

Condition 5 : We have to prove ∀σ, σ′, q, d : 〈 p, σ 〉 p d−→ 〈 q, σ′ 〉 ⇒ ∃r : 〈 ε ‖ p, σ 〉 p d−→
〈 r, σ′ 〉 ∧ (r, q) ∈ R. Suppose 〈 p, σ 〉 p d−→ 〈 q, σ′ 〉, then, by Rule 30 we also have
〈 ε ‖ p, σ 〉 p d−→ 〈 r, σ′ 〉, where r ≡ q and (r, q) ∈ R.

Lemma 4.29 Let p and q be processes, then

p ‖ q ↔ q ‖ p.

Proof (Lemma 4.29) We have to prove p ‖ q ↔ q ‖ p for all processes p and q.
The relevant deduction rules are Rules 27, 28, 29, 30, and 31. Observing these
rules, we see that whenever we can derive 〈 p ‖ q, σ 〉↓, 〈 p ‖ q, σ 〉 a−→ 〈 r, σ′ 〉, or
〈 p ‖ q, σ 〉 p

d−→ 〈 r, σ′ 〉, we can also derive 〈 q ‖ p, σ 〉↓, 〈 q ‖ p, σ′ 〉 a−→ 〈 r, σ′ 〉, and
〈 q ‖ p, σ 〉 p d−→ 〈 r, σ′ 〉, respectively.

Lemma 4.30 Let p, q, and r be processes, then

(p ‖ q) ‖ r ↔ p ‖ (q ‖ r).

Proof (Lemma 4.30) We have to prove (p‖q)‖r ↔ p‖(q‖r) for all processes p, q,
and r. In this case, we define a relation R ⊆ P×P such that ((p‖q)‖r, p‖(q‖r)) ∈ R

and R is a bisimulation. We define R as

R = {(p, p)} ∪ {((p ‖ q) ‖ r, p ‖ (q ‖ r))}

and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defini-
tion 4.5. Since the proof for pairs of the form (p, p) is trivial, we will only consider
pairs of the form ((p ‖ q) ‖ r, p ‖ (q ‖ r)). Suppose p ≡ (x ‖ y) ‖ z and q ≡ x ‖ (y ‖ z)
for some processes x, y, and z.

Condition 1 : We have to prove ∀σ :〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. The following computation
shows that this holds (we use Rule 27 and associativity of ‘∧’):

〈 p, σ 〉↓
⇔ (〈x, σ 〉↓ ∧ 〈 y, σ 〉↓) ∧ 〈 z, σ 〉↓
⇔ 〈x, σ 〉↓ ∧ (〈 y, σ 〉↓ ∧ 〈 z, σ 〉↓)
⇔ 〈 q, σ 〉↓.
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Condition 2 : We have to prove ∀a, p′, σ, σ′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 a−→
〈 q′, σ′ 〉 and (p′, q) ∈ R. So, assume 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉. This means that Rule
28 or 29 applies. So, we distinguish two cases.

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉According to Rule 28: Recall that p ≡ (x ‖ y) ‖ z. Therefore
we have 〈 x, σ 〉 a−→ 〈x′, σ′ 〉, 〈 y, σ 〉 a−→ 〈 y′, σ′ 〉, or 〈 z, σ 〉 a−→ 〈 z′, σ′ 〉. Fur-
thermore, we have p′ ≡ (x′ ‖ y) ‖ z, p′ ≡ (x ‖ y′) ‖ z, or p′ ≡ (x ‖ y) ‖ z′,
respectively. Also, we can use Rule 28 to obtain 〈 q, σ 〉 a−→〈x′ ‖ (y [] z), σ′ 〉,
〈 q, σ 〉 a−→〈x‖(y′ []z), σ′ 〉, or 〈 q, σ 〉 a−→〈x‖(y []z′), σ′ 〉, respectively. Finally,
note that in all cases we have (p′, q′) ∈ R.

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉According to Rule 29: Note that a ≡ ca(m, x, c) for some
channel m, programming variable x, and value c. Recall that p ≡ (x‖y)‖z.
Since any process can send to any other process, there are six possibili-
ties. The proofs for these six cases are similar, and therefore, we will only
consider the case that x sends to z. So, according to Rule 29 there is

a σ′′ such that 〈x, σ 〉 sa(m,c)−−−−−→ 〈x′, σ′′ 〉 and 〈 z, σ′′ 〉 ra(m,x)−−−−−→ 〈 z′, σ′ 〉 and,
therefore, p′ ≡ (x′ ‖ y) ‖ z′. By the same rule, we can also derive that

〈 q, σ 〉 ca(m,x,c)−−−−−−−→ 〈x′ ‖ (y ‖ z′), σ′ 〉. So, we take q′ ≡ x′ ‖ (y ‖ z′) and note
that (p′, q′) ∈ R.

Condition 3 : The proof is similar to proof of Condition 2.

Condition 4 : We have to prove ∀p′, d, σ, σ′ : 〈 p, σ 〉 p
d−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 p

d−→
〈 q′, σ′ 〉 and (p′, q′) ∈ R. So, assume 〈 p, σ 〉 p

d−→ 〈 p′, σ′ 〉. We distinguish the
following cases.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉, 〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉, 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ (x′‖
y′) ‖ z′. Using Rule 31 we obtain 〈 q, σ 〉 p

d−→ 〈x′ ‖ (y′ ‖ z′), σ′ 〉. So, take
q′ ≡ x′ ‖ (y′ ‖ z′) and note that (p′, q′) ∈ R.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉, 〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉, 〈 z, σ 〉 6p−→, 〈 z, σ 〉↓: Note that p′ ≡ x′ ‖
y′. Using Rules 30 and 31 we obtain 〈 q, σ 〉 p

d−→ 〈x′ ‖ y′, σ′ 〉. So, take
q′ ≡ x′ ‖ y′ and note that (p′, q′) ∈ R.

〈x, σ 〉 p d−→ 〈x′σ′ 〉, 〈 y, σ 〉 6p−→, 〈 y, σ 〉↓, 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ x′‖z′.
Using Rules 30 and 31 we obtain 〈 q, σ 〉 p d−→〈x′ ‖z′, σ′ 〉. So, take q′ ≡ x′ ‖z′
and note that (p′, q′) ∈ R.

〈x, σ 〉 p d−→ 〈x′, σ′ 〉, 〈 y, σ 〉 6p−→, 〈 y, σ 〉↓, 〈 z, σ 〉 6p−→, 〈 z, σ 〉↓: Note that p′ ≡ x′.
Using Rule 30 we obtain 〈 q, σ 〉 p d−→ 〈x′, σ′ 〉. So, take q′ ≡ x′ and note that
(p′, q′) ∈ R.
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〈x, σ 〉 6p−→, 〈x, σ 〉↓, 〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉, 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ y′ ‖
z′. Using Rules 30 and 31 we obtain 〈 q, σ 〉 p

d−→ 〈 y′ ‖ z′, σ′ 〉. So, take
q′ ≡ y′ ‖ z′ and note that (p′, q′) ∈ R.

〈x, σ 〉 6p−→, 〈x, σ 〉↓, 〈 y, σ 〉 p d−→ 〈 y′, σ′ 〉, 〈 z, σ 〉 6p−→, 〈 z, σ 〉↓: Note that p′ ≡ y′.
Using Rule 30 we obtain 〈 q, σ 〉 p

d−→ 〈 y′, σ′ 〉. So, take q′ ≡ y′ and note
that (p′, q′) ∈ R.

〈x, σ 〉 6p−→, 〈x, σ 〉↓, 〈 y, σ 〉 6p−→, 〈 y, σ 〉↓, 〈 z, σ 〉 p d−→ 〈 z′, σ′ 〉: Note that p′ ≡ z′.
Using Rule 30 we obtain 〈 q, σ 〉 p

d−→ 〈 z′, σ′ 〉. So, take q′ ≡ z′ and note
that (p′, q′) ∈ R.

Condition 5 : The proof is similar to the proof of Condition 4.

4.11 State operator

In Definition 4.31, we define the state operator ‘|[ | ]|’. A process |[ s | p ]|, where s

is a state (see Section 4.1) and p a process, behaves like p in the (local) state s.
This state s can be used to define (local) programming variables or channels.

Definition 4.31 (State operator) The state operator has the following signature:

|[ | ]| : State × P → P.

The deduction rules for the state operator are listed in Table 4.7.

〈 p, s :: σ 〉↓

〈 |[ s | p ]|, σ 〉↓
32

〈 p, s :: σ 〉 a−→ 〈 p′, s′ :: σ′ 〉

〈 |[ s | p ]|, σ 〉 a−→ 〈 |[ s′ | p′ ]|, σ′ 〉
33

〈 p, s :: σ 〉 p d−→ 〈 p′, s′ :: σ′ 〉

〈 |[ s | p ]|, σ 〉 p d−→ 〈 |[ s′ | p′ ]|, σ′ 〉
34

Table 4.7 Deduction rules for the state operator.

The semantics of a state operator process |[ s | p ]| under a stack σ is similar to
the semantics of its process argument p under the stack s :: σ. So, in order to
determine if |[ s | p ]| can terminate under a stack σ, we have to determine if p
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terminates under stack s :: σ. This is defined by Rule 32. The same ‘push s on
σ’ approach determines the action and delay behaviour of the state operator, as
defined by Rules 33 and 34, respectively.

The state operator as defined here, is similar to the state operator of the process
algebra ACP [11, 12]. The ACP state operator is written as λs(p), where s is an
element of some domain S of states (not necessarily the same as the set State of
χσ states) and p an ACP process. The process algebra ACP is parameterised by a
set of (atomic) actions called A. The operational semantics of λs(p) is defined by

p
a−→ p′

λs(p)
action(a,s)−−−−−−−−→ λeffect(a,s)(p′)

,

where a ∈ A, the function action : A×S → A returns an action, and the function
effect : A × S → S returns a state. The similarity between both state operators
is illustrated by taking S = State, A = Stack × (Action ∪ R>0) × Stack , and by
giving the partial definitions

action((s :: σ, a, s′ :: σ′), s) = (σ, a, σ′),

action((s :: σ, d, s′ :: σ′), s) = (σ, d, σ′),

effect((s :: σ, a, s′ :: σ′), s) = s′,

effect((s :: σ, d, s′ :: σ′), s) = s′,

where s, s′ ∈ State; σ, σ′ ∈ Stack ; a ∈ Action; and d ∈ R>0. In order to see the χσ

state operator as an instantiation of the ACP state operator, some technicalities
have to be addressed. For example, the ACP state operator is usually not consid-
ered in a setting with a termination predicate depending on the state, and action
and effect should be defined as total functions.

Lemma 4.32 Let p be a process, then

|[ λs | p ]| ↔ p.

Proof (Lemma 4.32) We have to prove that |[ λs | p ]| ↔ p for all processes p. In
this case, we define a relation R ⊆ P × P such that (|[ λs | p ]|, p) ∈ R and R is a
bisimulation. We define R as

R = {(p, p)} ∪ {(|[ λs | p ]|, p)}
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and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defi-
nition 4.5. Since the proofs are trivial for the pairs (p, p), we only give the proofs
for the pairs (|[ λs | p ]|, p).

Condition 1 : We have to prove ∀σ : 〈 |[ λs | p ]|, σ 〉↓ ⇔ 〈 p, σ 〉↓. Using Rule 32 this
means we have to prove ∀σ : 〈 p, λs :: σ 〉↓ ⇔ 〈 p, σ 〉↓. Using Definition A.11 we
derive that (λs :: σ)(i) = σ(i) for any identifier i. According to Lemma 4.52,
we can derive 〈 p, λs :: σ 〉↓ ⇔ 〈 p, σ 〉↓.

Condition 2 : We have to prove ∀σ, σ′, q, a:〈 |[ λs | p ]|, σ 〉 a−→〈 q, σ′ 〉 ⇒ ∃r:〈 p, σ 〉 a−→
〈 r, σ′ 〉 ∧ (q, r) ∈ R. So, assume 〈 |[ λs | p ]|, σ 〉 a−→ 〈 q, σ′ 〉. Using Rule 33 we
obtain ∃s′, σ′ : 〈 p, λs :: σ 〉 a−→〈 q, s′ :: σ′ 〉. Using Definition A.11 we derive that
(λs :: σ)(i) = σ(i) for any identifier i, in other words, λs :: σ $ σ. According
to Lemma 4.52, we can derive ∃σq : 〈 p, σ 〉 a−→ 〈 q, σq 〉. Remains to prove that
σ′ = σq. According to Lemma 4.50, we have (λs :: σ) = (s′ :: σ′) and σq = σ,
(λs :: σ)[c/i] = (s′ :: σ′) and σq = σ[c/i], or (λs :: σ)[c/i][c′/i′] = (s′ :: σ′) and
σq = σ[c/i][c′/i′]. Definitions A.10 and A.12 give us σ = σ′, σ[c/i] = σ′, or
σ[c/i][c′/i′] = σ′. Therefore, in all three cases we have σq = σ′. So, we take
r ≡ q and note (q, r) ∈ R.

Condition 3 : We have to prove ∀σ, σ′, q, a:〈 p, σ 〉 a−→〈 q, σ′ 〉 ⇒ ∃r:〈 |[ λs | p ]|, σ 〉 a−→
〈 r, σ′ 〉 ∧ (q, r) ∈ R. So, suppose 〈 p, σ 〉 a−→ 〈 q, σ′ 〉. Using Definition A.11 we
derive that (λs :: σ)(i) = σ(i) for any identifier i, so λs :: σ $ σ. According to
Lemma 4.52 we know that ∃σq :〈 p, λs::σ 〉 a−→〈 q, σq 〉. Furthermore, Lemma 4.50
can be used to derive σ′ = σ ∧ σq = λs :: σ or (∃c, i : σ′ = σ[c/i] ∧ σq =
(λs ::σ)[c/i]), or (∃c, c′, i, i′ :σ′ = σ[c/i][c′/i′] ∧ σq = (λs ::σ)[c/i]σ[c′/i′]). Using
Definition A.10, we find σ′ = σ ∧ σq = λs :: σ or (∃c, i : σ′ = σ[c/i] ∧ σq =
λs ::σ[c/i]), or (∃c, c′, i, i′ :σ′ = σ[c/i][c′/i′] ∧ σq = λs ::σ[c/i]σ[c′/i′]). So, in all
three cases we find σq = λs ::σ′ and therefore we have 〈 p, λs ::σ 〉 a−→〈 q, λs ::σ′ 〉.
According to Rule 33 we obtain 〈 |[ λs | p ]|, σ 〉 a−→ 〈 |[ λs | q ]|, σ′ 〉. So, take
r ≡ |[ λs | q ]| and note that (r, q) ∈ R.

Condition 4 : The proof is similar to the proof of Condition 2.

Condition 5 : The proof is similar to the proof of Condition 3.

Lemma 4.33 Let s0 and s1 be states and let p be a process, then

|[ s0 | |[ s1 | p ]| ]| ↔ |[ set(s0, s1) | p ]|.
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Proof (Lemma 4.33) We have to prove that |[ s | |[ s′ | p ]| ]| ↔ |[ set(s, s′) | p ]| for
all processes p and states s and s′. In this case, we define a relation R ⊆ P × P

such that (|[ s | |[ s′ | p ]| ]|, |[ set(s, s′) | p ]|) ∈ R and R is a bisimulation. We define
R as

R = {(p, p)} ∪ {(|[ s | |[ s′ | p ]| ]|, |[ set(s, s′) | p ]|)}

and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defi-
nition 4.5. Since the proofs are trivial for the pairs (p, p), we only give the proofs
for the pairs (|[ s | |[ s′ | p ]| ]|, |[ set(s, s′) | p ]|).

Condition 1 : We have to prove ∀σ : 〈 |[ s | |[ s′ | p ]| ]|, σ 〉↓ ⇔ 〈 |[ set(s, s′) | p ]|, σ 〉↓.
Using Rule 32 twice we obtain ∀σ : 〈 p, s′ :: s :: σ 〉↓ ⇔ 〈 p, set(s, s′) :: σ 〉↓. If we
can prove that s′ :: s :: σ $ set(s, s′) :: σ, then we can use Lemma 4.52 to get
∀σ : 〈 p, s′ :: s :: σ 〉↓ ⇔ 〈 p, set(s, s′) :: σ 〉↓.

So, we have to prove s′ ::s ::σ $ set(s, s′) ::σ. According to Definition A.13 this
means we have to prove ∀i :(s′ ::s ::σ)(i) = (set(s, s′)::σ)(i). We can distinguish
three cases: i ∈ dom(s′), i 6∈ dom(s′) ∧ i ∈ dom(s), and i 6∈ dom(s′) ∧ i 6∈
dom(s).

i ∈ dom(s′): Using Lemma A.21 we find that also i ∈ dom(set(s, s′)). Consider
the following computation:

(s′ :: s :: σ)(i) = (set(s, s′) :: σ)(i)
⇔ {Definition A.11}

s′(i) = set(s, s′)(i)
⇔ {Lemma A.23}

s′(i) = s′(i).

So, for i ∈ dom(s′) we have (s′ :: s :: σ)(i) = (set(s, s′) :: σ)(i).
i 6∈ dom(s′) ∧ i ∈ dom(s): Using Lemma A.21 we obtain i ∈ dom(set(s, s′)).

Consider the following computation:

(s′ :: s :: σ)(i) = (set(s, s′) :: σ)(i)
⇔ {Definition A.11}

(s :: σ)(i) = set(s, s′)(i)
⇔ {Definition A.11 and Lemma A.23}

s(i) = s(i).

So, for i 6∈ dom(s′) ∧ i ∈ dom(s) we have (s′ :: s :: σ)(i) = (set(s, s′) :: σ)(i).
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i 6∈ dom(s′) ∧ i 6∈ dom(s): Using Lemma A.21 we obtain i 6∈ dom(set(s, s′)).
Consider the following computation:

(s′ :: s :: σ)(i) = (set(s, s′) :: σ)(i)
⇔ {Definition A.11}

(s :: σ)(i) = σ(i)
⇔ {Definition A.11}

σ(i) = σ(i).

So, we have derived (s′ :: s :: σ)(i) = (set(s, s′) :: σ)(i).

As mentioned above, we can now see that Condition 1 holds.

Condition 2 : We have to prove ∀σ, σ′, q, a : 〈 |[ s | |[ s′ | p ]| ]|, σ 〉 a−→ 〈 q, σ′ 〉 ⇒ ∃r :
〈 |[ set(s, s′) | p ]|, σ 〉 a−→ 〈 r, σ′ 〉 ∧ (q, r) ∈ R. So, assume 〈 |[ s | |[ s′ | p ]| ]|, σ 〉 a−→
〈 q, σ′ 〉 holds. Using Rule 33 twice we obtain 〈 p, s′ :: s :: σ 〉 a−→ 〈 pa, σ′

q 〉. Fur-
thermore, the same rule also gives us ∃sa, s′a : q ≡ |[ sa | |[ s′a | pa ]| ]| ∧ σ′

q ≡
s′a :: sa :: σ′. Using the same argument as in the proof of Condition 1, we can
prove s′ :: s :: σ $ set(s, s′) :: σ. Therefore, we can use Lemma 4.52 to derive
〈 p, set(s, s′)::σ 〉 a−→〈 pa, σ0 〉 for some σ0. Assume we have σ0 = set(sa, s′a)::σ′,
that is, we have 〈 p, set(s, s′) :: σ 〉 a−→ 〈 pa, set(sa, s′a) :: σ′ 〉. According to
Rule 33 we obtain 〈 |[ set(s, s′) | p ]|, σ 〉 a−→ 〈 |[ set(sa, s′a) | pa ]|, σ′ 〉. So, take
r ≡ |[ set(sa, s′a) | pa ]| and note that (q, r) ∈ R.

Remains to prove σ0 = set(sa, s′a) :: σ′. Recall that we derived the transitions
〈 p, s′::s::σ 〉 a−→〈 pa, σ′

q 〉 where σ′
q ≡ s′a::sa::σ′ and 〈 p, set(s, s′)::σ 〉 a−→〈 pa, σ0 〉.

Therefore, based on Lemma 4.50 we distinguish the following cases.

σ′
q = s′ :: s :: σ ∧ σ0 = set(s, s′) :: σ: Now we obtain s′ ::s ::σ = σ′

q ≡ s′a ::sa ::σ′.
Therefore, using Definition A.12, we have s′ = s′a, s = sa, and σ = σ′.
Consequently, we have σ0 = set(s, s′) ::σ = set(sa, s′a) ::σ′, which completes
the proof of this case.

∃c, i : σ′
q = (s′ :: s :: σ)[c/i] ∧ σ0 = (set(s, s′) :: σ)[c/i]: We can distinguish the

following cases: i ∈ dom(s′), i 6∈ dom(s′) ∧ i ∈ dom(s), and i 6∈ (dom(s′) ∪
dom(s)) ∧ i ∈ dom(σ). In the first case we find, using Definition A.10,
σ′

q = s′[c/i]::s::σ. Therefore, s′a = s′[c/i], s = sa, and σ = σ′. Furthermore,
we can use Definition A.10 and Lemma A.22 to rewrite (set(s, s′) :: σ)[c/i]
to set(s, s′[c/i]) :: σ. So, σ0 = (set(s, s′) :: σ)[c/i] = set(sa, s′a) :: σ′.
In the second case, i 6∈ dom(s′) ∧ i ∈ dom(s), we find σ′

q = s′ :: (s[c/i]) :: σ.
Therefore, s′a = s′, sa = s[c/i], and σ = σ′. Furthermore, we can use Defini-
tion A.10 and Lemma A.22 to rewrite (set(s, s′)::σ)[c/i] to set(s[c/i], s′)::σ.
So, σ0 = (set(s, s′) :: σ)[c/i] = set(sa, s′a) :: σ′.
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In the third case, i 6∈ (dom(s′) ∪ dom(s)) ∧ i ∈ dom(σ), we find σ′
q =

s′ :: s :: (σ[c/i]). Therefore, s′a = s′, sa = s, and σ′ = σ[c/i]. Furthermore,
we can use Definition A.10 and Lemma A.21 to rewrite (set(s, s′) :: σ)[c/i]
to set(s, s′) :: (σ[c/i]). So, σ0 = (set(s, s′) :: σ)[c/i] = set(sa, s′a) :: σ′.

∃c, c′, i, i′ : σ′
q = (s′ :: s :: σ)[c/i][c′/i′] ∧ σ0 = (set(s, s′) :: σ)[c/i][c′/i′]: Luckily,

the proof is similar to the previous case.

This concludes the proof for Condition 2.

Condition 3 : We have to prove ∀σ, σ′, q, a : 〈 |[ set(s, s′) | p ]|, σ 〉 a−→ 〈 q, σ′ 〉 ⇒
∃r : 〈 |[ s | |[ s′ | p ]| ]|, σ 〉 a−→ 〈 r, σ′ 〉 ∧ (r, q) ∈ R. So, assume 〈 |[ set(s, s′) |
p ]|, σ 〉 a−→ 〈 q, σ′ 〉 holds. Since Rule 33 is the only rule that applies, we can
derive ∃σ0 : 〈 p, set(s, s′) :: σ 〉 a−→ 〈 pa, σ0 〉. Using the same argument as in the
proof of Condition 1, we can prove s′ :: s :: σ $ set(s, s′) :: σ. Therefore, we
can use Lemma 4.52 to derive ∃σ′

q : 〈 p, s′ :: s :: σ 〉 a−→ 〈 pa, σ′
q 〉. Furthermore,

by making the same case distinction, based on Lemma 4.50, as in the proof of
Condition 2, the proof is completed.

Condition 4 : The proof is similar to the proof of Condition 2, except that the case
distinction based on Lemma 4.50 reduces to one case only.

Condition 5 : The proof is similar to the proof of Condition 3, except that the case
distinction based on Lemma 4.50 reduces to one case only.

During the lifetime of a state operator process, the domain of its state cannot
change. This is formalized by Lemma 4.34. Another property of the state operator
is that it respects intuitive scoping rules for identifiers. That is, if the semantics
of a process |[ s | p ]| is computed in a stack σ, then if an identifier i ∈ s also occurs
in σ, its value in σ is irrelevant. Lemma 4.35 formalizes the scoping behaviour of
the state operator.

Lemma 4.34 Let s and s′ be states, p and p′ be processes, σ and σ′ be stacks, a

be an action, and d be a positive real number. Then

〈 |[ s | p ]|, σ 〉 a−→ 〈 |[ s′ | p′ ]|, σ′ 〉 ⇒ dom(s) = dom(s′),

〈 |[ s | p ]|, σ 〉 p d−→ 〈 |[ s′ | p′ ]|, σ′ 〉 ⇒ dom(s) = dom(s′).

Proof (Lemma 4.34) The proof of this lemma is quite simple once we have
proven Lemma 4.51 of Section 4.17. First, we have to prove 〈 |[ s | p ]|, σ 〉 a−→〈 |[ s′ |
p′ ]|, σ′ 〉 ⇒ dom(s) = dom(s′). So, suppose 〈 |[ s | p ]|, σ 〉 a−→ 〈 |[ s′ | p′ ]|, σ′ 〉. Since
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Rule 33 is the only rule that applies, we know that 〈 p, s ::σ 〉 a−→〈 p′, s′ ::σ′ 〉. Using
this transition and Lemma 4.49, we know that s′ :: σ′ = s :: σ, s′ :: σ′ = (s :: σ)[c/i],
or s′ :: σ′ = (s :: σ)[c/i][c′/i′]. Using Definitions A.10 and A.12 and Lemma A.16,
we have dom(s′) = dom(s).

The proof for the case 〈 |[ s | p ]|, σ 〉 p
d−→ 〈 |[ s′ | p′ ]|, σ′ 〉 ⇒ dom(s) = dom(s′) is

similar.

Lemma 4.35 Let p and p′ be a processes, s and s′ be states, σ and σ′ be stacks, i

be an identifier, c be a value, a be an action, and d be a positive real value. Then
for i ∈ dom(s) we have

〈 |[ s | p ]|, σ 〉↓ ⇔ 〈 |[ s | p ]|, σ[c/i] 〉↓,
〈 |[ s | p ]|, σ 〉 a−→ 〈 |[ s′ | p′ ]|, σ′ 〉 ⇔ 〈 |[ s | p ]|, σ[c/i] 〉 a−→ 〈 |[ s′ | p′ ]|, σ′[c/i] 〉,
〈 |[ s | p ]|, σ 〉 p d−→ 〈 |[ s′ | p′ ]|, σ′ 〉 ⇔ 〈 |[ s | p ]|, σ[c/i] 〉 p d−→ 〈 |[ s′ | p′ ]|, σ′[c/i] 〉.

Proof (Lemma 4.35) The important observations to prove this lemma, are that the
semantics of 〈 |[ s | p ]|, σ 〉 is defined in terms of the semantics of 〈 p, s::σ 〉 (see Rules
32, 33, and 34), and that the hypotheses of each deduction rule cannot depend on
the values of invisible identifiers of the stack σ in s :: σ. So, suppose i ∈ dom(σ)
(if not, the proof is trivial). Since we also know that i ∈ s, the identifier i of
σ is invisible in the stack s :: σ (see Definition A.11). Therefore, its value in σ

cannot influence the set of deduction rules that apply to 〈 p, s :: σ 〉 and, similarly,
it cannot influence the set of deduction rules that apply to 〈 p, s :: σ[c/i] 〉. So, the
proof for the termination clause of the lemma is finished. To finish the proof for
the action transition and the delay transition of the lemma, we use Lemma 4.50 to
derive that the resulting stack σ′ equals σ, σ[c0/i0], or σ[c0/i0][c′0/i′0]. Therefore,
a transition can only change the values of visible identifiers of a stack. Since i is
invisible in σ of s :: σ, as well as in σ[c/i] of s :: σ[c/i], its value can neither be
changed in σ′ of s′ :: σ′ nor in σ′[c/i] of s′ :: σ′[c/i].

4.12 Encapsulation operator

In Definition 4.36, we define the encapsulation operator ‘∂’. A process ∂A(p)
encapsulates all actions that p can perform and occur in the set A by disabling
them.
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Definition 4.36 (Encapsulation operator) The encapsulation operator has the fol-
lowing signature:

∂ : P(Action)× P → P.

The deduction rules for the encapsulation operator are listed in Table 4.8.

〈 p, σ 〉↓

〈 ∂A(p), σ 〉↓
35

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, a 6∈ A

〈 ∂A(p), σ 〉 a−→ 〈 ∂A(p′), σ′ 〉
36

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉

〈 ∂A(p), σ 〉 p d−→ 〈 ∂A(p′), σ′ 〉
37

Table 4.8 Deduction rules for the encapsulation operator.

Rule 35 states that an encapsulation process can terminate, if its process argument
can. Rule 36 states that an encapsulation process can perform an action if its
process argument can perform that action and if that action is not in A, the set
of actions to be encapsulated. With respect to delay steps, encapsulation has no
effect. Rule 37 states that an encapsulation process can perform a delay, if its
process argument can perform that delay too.

Lemma 4.37 Let A and A′ be sets of actions and let p be a process, then

∂A(∂A′(p)) ↔ ∂A∪A′(p).

Proof (Lemma 4.37) We have to prove ∂A(∂A′(p)) ↔ ∂A∪A′(p) for all processes
p and sets of actions A and A′. In this case, we define a relation R ⊆ P × P such
that (∂A(∂A′(p)), ∂A∪A′(p)) ∈ R and show that R is a bisimulation. We define R

as

R = {(p, p)} ∪ {(∂A(∂A′(p)), ∂A∪A′(p))}.

We will now show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions
of Definition 4.5. Since the proofs for the pairs of the form (p, p) are trivial, we will
only consider pairs of the form (∂A(∂A′(p)), ∂A∪A′(p)). So, assume p ≡ ∂A(∂A′(x))
and q ≡ ∂A∪A′(x), for some process x.
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Condition 1 : We have to prove ∀σ:〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. Using Rule 35, the following
computation proves that it holds: 〈 p, σ 〉↓ ⇔ 〈 ∂A(∂A′(x)), σ 〉↓ ⇔ 〈x, σ 〉↓ ⇔
∂A∪A′(x)⇔ 〈 q, σ 〉↓.

Condition 2 : We have to prove ∀σ, a, p′, σ′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 a−→
〈 q′, σ′ 〉 and (p′, q′) ∈ R. So, assume 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 holds. Since Rule 36
is the only rule that applies, we have 〈x, σ 〉 a−→ 〈x′, σ′ 〉 such that a 6∈ A,
a 6∈ A′, and p′ ≡ ∂A(∂A′(x′)). Therefore, a 6∈ A ∪ A′ and we can use Rule 36
to obtain 〈 ∂A∪A′(x), σ 〉 a−→ 〈 ∂A∪A′(x′), σ′ 〉. So, take q′ ≡ ∂A∪A′(x′) and note
that (p′, q′) ∈ R.

Condition 3 : We have to prove ∀σ, a, q′, σ′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ⇒ ∃p′ : 〈 p, σ 〉 a−→
〈 p′, σ′ 〉 and (p′, q′) ∈ R. So, assume 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 holds. Since Rule 36 is
the only rule that applies, we have 〈x, σ 〉 a−→ 〈 x′, σ′ 〉 such that q′ ≡ ∂A∪A(x′)
and a 6∈ A∪A′. Therefore, we have a 6∈ A as well as a 6∈ A′, and we use Rule 36
to derive 〈 ∂A(∂A′(x)), σ 〉 a−→ 〈 ∂A(∂A′(x′)), σ′ 〉. So, take p′ ≡ ∂A(∂A′(x′)) and
note that (p′, q′) ∈ R.

Condition 4 : We have to prove ∀σ, d, p′, σ′ : 〈 p, σ 〉 p
d−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 p

d−→
〈 q′, σ′ 〉 and (p′, q′) ∈ R. Since the proof is almost similar to the proof of
Condition 2, we will not work out the details. In fact, the proof is slightly
simpler, since the sets A and A′ do not influence delay behaviour of p and q.

Condition 5 : As Condition 4.

4.13 Maximal progress operator

In Definition 4.38, we define the maximal progress operator ‘π’. A process π(p) can
delay only if p can delay and p cannot execute an action. We need this operator
in order to establish a desired communicational behaviour. That is, both the send
and the receive process must be able to delay, but if two of these processes can
communicate, they should not delay.

The maximal progress operator is a kind of priority operator [14] that assigns ac-
tion transitions a higher priority than delay transitions. Consequently, it makes
actions undelayable or urgent. In fact, the maximal progress operator of χσ is sim-
ilar to a particular instantiation of the urgency operator UU (p) described in [115]
(the particular instantiation results from taking U = Action). The operator UU (p)
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makes actions in the set U urgent: if p can, at some time, execute actions from U ,
then it cannot delay at that time.

Definition 4.38 (Maximal progress operator) The maximal progress operator has
the following signature:

π : P → P.

The deduction rules for the maximal progress operator are listed in Table 4.9.

〈 p, σ 〉↓

〈π(p), σ 〉↓
38

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈π(p), σ 〉 a−→ 〈π(p′), σ′ 〉
39

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 p, σ 〉 6−→

〈 π(p), σ 〉 p d−→ 〈π(p′), σ′ 〉
40

Table 4.9 Deduction rules for the maximal progress operator.

Rule 38 states that the maximal progress operator can terminate, if its process
argument can terminate. Concerning action behaviour, the maximal progress op-
erator has no effect; Rule 39 states that if a process p can perform an action,
then also the maximal progress process π(p) can perform that action. The de-
lay behaviour of the maximal progress operator is more interesting; the maximal
progress operator postpones delay behaviour as long as its process argument can
perform actions. So, a maximal progress operator only performs a delay if its
process argument p can perform that delay and if p cannot perform actions as
defined by Rule 40.

Lemma 4.39 Let p be a process, then

π(π(p)) ↔ π(p).

Proof (Lemma 4.39) We have to prove that π(π(p)) ↔ π(p) for all processes p.
In this case, we define a relation R ⊆ P × P such that (π(π(p)), π(p)) ∈ R and R

is a bisimulation. We define R as

R = {(p, p)} ∪ {(π(π(p)), π(p))}

and show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions of Defi-
nition 4.5. Since the proofs are trivial for the pairs (p, p), we only give the proofs
for the pairs (π(π(p)), π(p)).
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Suppose p ≡ π(π(x)) and q ≡ π(x). So, note that p ≡ π(q).

Condition 1 : We have to prove that 〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. Using Rule 38 we obtain
that if 〈 p, σ 〉↓ then also 〈 q, σ 〉↓, and that if 〈 q, σ 〉↓ then also 〈 p, σ 〉↓. So,
〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓.

Condition 2 : We have to prove that 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉
and (p′, q′) ∈ R. Suppose 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉. Then, according to Rule 39, we
have 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 and p′ ≡ π(q′). So, (p′, q′) ∈ R.

Condition 3 : The proof is similar to the proof of Condition 2.

Condition 4 : We have to prove that 〈 p, σ 〉 p
d−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 p

d−→ 〈 q′, σ′ 〉
and (p′, q′) ∈ R. Suppose 〈 p, σ 〉 p

d−→ 〈 p′, σ′ 〉. Then, according to Rule 40, we
have 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉 and p′ ≡ π(q′). So, (p′, q′) ∈ R.

Condition 5 : We have to prove that 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉 ⇒ ∃p′ : 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉
and (p′, q′) ∈ R. Suppose 〈 q, σ 〉 p

d−→ 〈 q′, σ′ 〉. Using Rule 40 we obtain that
〈x, σ 〉 6−→. According to Rule 39 we then also have 〈π(x), σ 〉 6−→. So, 〈 q, σ 〉 6−→.
Knowing this, Rule 40 gives 〈 p, σ 〉 p d−→〈 p′, σ′ 〉, where p′ ≡ π(q′). Consequently,
also (p′, q′) ∈ R.

4.14 Abstraction operator

In Definition 4.40, we define the abstraction operator ‘τ ’. A process τA(p) ‘hides’
all actions that p can perform and occur in the set A by renaming those actions
to the internal action τ .

Definition 4.40 (Abstraction operator) The abstraction operator has the following
signature:

τ : P(Action)× P → P.

The deduction rules for the abstraction operator are listed in Table 4.10.

Rule 41 states that an abstraction process can terminate if its process argument
can. Action steps for abstraction processes are described by Rule 42 and 43.
Rule 42 states that if the process argument can perform an action and this action is
not in A, the set of actions to be abstracted from, then the abstraction process can
perform that action too. On the other hand, if the process argument can perform
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〈 p, σ 〉↓

〈 τA(p), σ 〉↓
41

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, a 6∈ A

〈 τA(p), σ 〉 a−→ 〈 τA(p′), σ′ 〉
42

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, a ∈ A

〈 τA(p), σ 〉 τ−→ 〈 τA(p′), σ′ 〉
43

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉

〈 τA(p), σ 〉 p d−→ 〈 τA(p′), σ′ 〉
44

Table 4.10 Deduction rules for the abstraction operator.

an action that is in A, then the abstraction process can perform the ‘invisible’
action τ . This is stated in Rule 43. With respect to delay steps, encapsulation
has no effect. Rule 44 states that an abstraction process can perform a delay if its
process argument can perform that delay too.

Lemma 4.41 Let A and A′ be sets of actions and let p be a process, then

τA(τA′(p)) ↔ τA∪A′(p).

Proof (Lemma 4.41) We have to prove τA(τA′(p)) ↔ τA∪A′(p) for all processes
p and sets of actions A and A′. In this case, we define a relation R ⊆ P × P such
that (τA(τA′(p)), τA∪A′(p)) ∈ R and show R is a bisimulation. We define R as

R = {(p, p)} ∪ {(τA(τA′(p)), τA∪A′(p))}.

We will now show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions
of Definition 4.5. Since the proofs for the pairs of the form (p, p) are trivial, we will
only consider pairs of the form (τA(τA′(p)), τA∪A′(p)). So, assume p ≡ τA(τA′ (x))
and q ≡ τA∪A′(x), for some process x.

Condition 1 : We have to prove ∀σ:〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓. Using Rule 41, the following
computation proves that it holds: 〈 p, σ 〉↓ ⇔ 〈 τA(τA′ (x)), σ 〉↓ ⇔ 〈x, σ 〉↓ ⇔
τA∪A′(x)⇔ 〈 q, σ 〉↓.

Condition 2 : We have to prove ∀σ, a, p′, σ′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 a−→
〈 q′, σ′ 〉 and (p′, q′) ∈ R. So, assume 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 holds. There are two
possibilities, since Rule 42 or Rule 43 applies.
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Rule 42 applies to τA(τA′(x)): Now, we can derive 〈 τA′(x), σ 〉 a−→〈 τA′(x′), σ′ 〉
and a 6∈ A. Since the rules that apply are Rule 42 and Rule 43, we can
make the same distinction again.

Rule 42 applies to τA′(x): Now we can derive 〈x, σ 〉 a−→〈x′, σ′ 〉 and a 6∈ A′.
Since a 6∈ A and a 6∈ A′ we have a 6∈ A ∪ A′. Therefore, using Rule 42,
we can derive 〈 τA∪A′(x), σ 〉 p a−→〈 τA∪A′(x′), σ 〉. So, take q′ ≡ τA∪A′(x′)
and note that (p′, q′) ∈ R.

Rule 43 applies to τA′(x): Now we can derive 〈x, σ 〉 a′
−−→〈x′, σ′ 〉 for some a′

such that a′ ∈ A′. Furthermore, we have a ≡ τ . Since a′ ∈ A′,
we also have a′ ∈ A ∪ A′ and therefore, using Rule 43, we obtain
〈 τA∪A′(x), σ 〉 τ−→ 〈 τA∪A′(x′), σ′ 〉. So, take q′ ≡ τA∪A′(x′) and note
that (p′, q′) ∈ R.

Rule 43 applies to τA(τA′(x)): Now, we can derive 〈 τA′(x), σ 〉 a′
−−→〈 τA′(x′), σ′ 〉

such that a′ ∈ A and p′ ≡ τA′(x′). Furthermore, we have a ≡ τ . Since the
rules that apply are Rule 42 and Rule 43, we can make the same distinction
again.

Rule 42 applies to τA′(x): Now, we can derive that 〈x, σ 〉 a′
−−→〈x′, σ′ 〉 such

that a′ 6∈ A′. However, since a′ ∈ A we have a′ ∈ A ∪A′ and therefore,
using Rule 43, we derive 〈 τA∪A′(x), σ 〉 τ−→ 〈 τA∪A′(x′), σ′ 〉. Therefore,
take q′ ≡ τA∪A′(x′) and note that (p′, q′) ∈ R.

Rule 43 applies to τA′(x): Now, we can derive that 〈x, σ 〉 a′′
−−→〈x′, σ′ 〉 such

that a′′ ∈ A′. Therefore, we have a′′ ∈ A ∪ A′. So, using Rule 43, we
find 〈 τA∪A′(x), σ 〉 τ−→ 〈 τA∪A′(x′), σ′ 〉. Therefore, take q′ ≡ τA∪A′(x′)
and note that (p′, q′) ∈ R.

Condition 3 : We have to prove ∀σ, a, q′, σ′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ⇒ ∃p′ : 〈 p, σ 〉 a−→
〈 p′, σ′ 〉 and (p′, q′) ∈ R. So, assume 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 holds. There are two
possibilities, since Rule 42 or Rule 43 applies.

Rule 42 applies to τA∪A′(x): Now, we have 〈x, σ 〉 a−→〈x′, σ′ 〉 and a 6∈ A∪A′.
Therefore, we have a 6∈ A and a 6∈ A′. According to Rule 42 we can derive
〈 τA(τA′(x)), σ 〉 a−→ 〈 τA(τA′(x′)), σ′ 〉. So, take p′ ≡ τA(τA′(x′)) and note
that (p′, q′) ∈ R.

Rule 43 applies to τA∪A′(x): Now, we have 〈x, σ 〉 a′
−−→〈x′, σ′ 〉 for some a′, such

that a′ ∈ A∪A′. Furthermore, we have a ≡ τ . We distinguish the following
cases.
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a′ ∈ A: Now we can derive 〈 τA(τA′(x)), σ 〉 τ−→〈 τA(τA′(x′)), σ′ 〉, no matter
if Rule 42 or Rule 43 applies to 〈 τA′(x), σ 〉. So, take p′ ≡ τA(τA′(x′))
and note that (p′, q′) ∈ R.

a′ 6∈ A: Now, we have a′ ∈ A′. So, 〈 τA(τA′(x)), σ 〉 τ−→ 〈 τA(τA′ (x′)), σ′ 〉
holds. So, take p′ ≡ τA(τA′(x′)) and note that (p′, q′) ∈ R.

Condition 4 : We have to prove ∀σ, d, p′, σ′ : 〈 p, σ 〉 p
d−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 p

d−→
〈 q′, σ′ 〉 and (p′, q′) ∈ R. Since the proof is almost similar to the proof of
Condition 4 of Lemma 4.37, details are omitted.

Condition 5 : We have to prove ∀σ, d, q′, σ′ : 〈 q, σ 〉 p
d−→ 〈 q′, σ′ 〉 ⇒ ∃p′ : 〈 p, σ 〉 p

d−→
〈 p′, σ′ 〉 and (p′, q′) ∈ R. Since the proof is almost similar to the proof of
Condition 4 of Lemma 4.37, details are omitted.

4.15 Stratification of the deduction rules

As mentioned in Section 4.2, we have to show that the TSS constituted by the
deduction rules given in the previous sections is meaningful. A TSS is meaningful if
there exists an LTS with relations that coincide exactly with the positive formulas
that can be proven from the TSS. To show that such an LTS exists for a given
TSS, it is sufficient to show that the deduction rules of the TSS are stratifiable.
The following definition stems from [1] and is adapted to the TSS of χσ.

Definition 4.42 (Stratification) A mapping S from positive formulas to natural
numbers is a stratification for the SOS of χσ if for every deduction rule H

c and
every closed substitution θ,

• for h ∈ H of the forms 1–4 of Definition 4.3 (the positive hypotheses),
S(θ(h)) ≤ S(θ(c)); and

• for h ∈ H of the forms 5–7 of Definition 4.3 (the negative hypotheses):

form 5: if h = ¬∃p′ ∈ C(P ), σ′, a : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, then for all closed
terms p′: S(〈 θ(p), σ 〉 a−→ 〈 p′, σ′ 〉) < S(θ(c)); and

form 6: if h = ¬∃p′ ∈ C(P ), σ′, a : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, then for all closed
terms p′: S(〈 θ(p), σ 〉 p d−→ 〈 p′, σ′ 〉) < S(θ(c)); and

form 7: if h = ¬〈 p, σ 〉↓, S(〈 θ(p), σ 〉↓) < S(θ(c)); respectively.

A TSS with a stratification is stratifiable.
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We will now define a stratification S for the TSS of χσ. In the definition of S,
the function ops returns the number of process operators in a given closed process
term.

Definition 4.43 Let p and p′ be processes. The function ops : P → N is defined
recursively by

• ops(p) = 0, if p ∈ {δ, ε, skip, x := e, m ! e, m ? e, ∆e},

• ops(e :→ p) = 1 + ops(p),

• ops(p [] p′) = 1 + ops(p) + ops(p′),

• ops(p ; p′) = 1 + ops(p) + ops(p′),

• ops(p∗) = 1 + ops(p),

• ops(p ‖ p′) = 1 + ops(p) + ops(p′),

• ops(|[ s | p ]|) = 1 + ops(p),

• ops(∂A(p)) = 1 + ops(p),

• ops(π(p) = 1 + ops(p),

• ops(τA(p)) = 1 + ops(p).

Definition 4.44 Let p and p′ be closed process terms, σ and σ′ be stacks, a an
action, and d a positive real number. The function S from positive formulas to
natural numbers is defined by

1. S(true(e)) = 0,

2. S(〈 p, σ 〉 a−→ 〈 p′, σ′ 〉) = ops(p),

3. S(〈 p, σ 〉 a−→ 〈 p′, σ′ 〉) = ops(p),

4. S(〈 p, σ 〉↓) = ops(p).

Lemma 4.45 The TSS of χσ is stratifiable.

Proof (Lemma 4.45) This follows from the fact that S of Definition 4.44 is a
stratification for the TSS of χσ.
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4.16 Bisimulation as a congruence

In order to make calculations with bisimulation equivalence more practical, it
would be nice to know that substitution of processes by bisimilar processes is a
valid operation. For instance, if we know that p ↔ q, then it would be nice
that by substituting q for p in the right hand side of p ; r ↔ p ; r, we derive
p ; r ↔ q ; r. This property is called congruence. A binary equivalence relation
R ⊆ S × S on some set S is a congruence if for all n-ary operators ⊗ to construct
elements of S and for all terms t1, . . . , tn, t′1, . . . , t′n, with t1Rt′1, . . . , tnRt′n, we
have ⊗(t1, . . . , tn)R ⊗ (t′1, . . . , t′n). Bisimulation equivalence is a congruence is a
powerful tool to perform calculations on processes. In fact, in some of the proofs
given in previous sections, we implicitly assumed that bisimulation equivalence is
a congruence. For example, see the proof of Lemma 4.23 and in particular the
proof of Condition 5.

The standard approach to show that strong bisimulation on processes is a congru-
ence is to use congruence theorems for specific syntactic formats of the deduction
rules [1, 192, 17, 89, 96, 36, 187]. However, these theorems are usually presented
in a one-sorted setting where each term denotes a process. Since we have many-
sorted terms denoting expressions, stacks, states, real numbers, sets of actions,
and processes, it is unclear whether this approach can be applied to the TSS
of χσ. Moreover, the semantics of these terms is defined in different styles: AS for
data types, SOS for processes, and ordinary mathematical definitions for states
and stacks. To make the situation even worse, χσ has variable binding opera-
tors, which are also not accounted for in the standard congruence theorems. For
example, the implicit operators to evaluate expressions in states and stacks, de-
note by s(e) and σ(e), binds the identifiers occurring in e that are in the domains
of s and σ, respectively. Notice that χσ does not have variable binding process
operators.

Fortunately, the problems of many-sortedness and variable binding operators have
been addressed by others [139, 72]. Furthermore, in [139], also a solution to the
problem of different definition styles is given. The author introduces the notion
of given sorts: sorts for which a well established semantics exists. He argues
that it is impractical and unnecessary to redefine the semantics of given sorts
if the sole purpose of this exercise would be to apply a particular congruence
theorem. Instead, one only has to distinguish given sorts as such and show that
their semantics defines an equivalence relation on terms of these sorts. After that,
one can use the congruence theorem based on the so-called relaxed panth format



112 The specification language χσ 4

defined in [139]. This congruence theorem says that if a TSS is stratifiable and it is
in relaxed panth format, bisimulation equivalence is a congruence. An application
of the relaxed panth format in the area of timed process algebras is given in [16].

The TSS of χσ should define the operational semantics of processes. Therefore, we
consider the remaining sorts as given sorts. These sorts contain expressions, states,
stacks, real numbers, and sets (of actions). By the definition of derivation (of
equalities between expressions) in MEL, Definition C.11, it is clear that there is a
well defined equivalence relation on expressions. For states and stacks, equivalence
relations are defined in Definition A.6 and A.12, respectively. It is well known that
conventional equality on real numbers is an equivalence relation. Similarly equality
on sets is an equivalence relation, too. So, we can consider expressions, states,
stacks, and sets of actions as given sorts. Next, the deduction rules have to be
checked for conformance to the relaxed panth format. Concretely, each deduction
rule should satisfy the following conditions (these conditions stem from [139] and
are adapted for χσ).

1. For each positive hypothesis of the form 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 or 〈 p, σ 〉 p
d−→

〈 p′, σ′ 〉, process p′ should be a variable.

2. For each conclusion of the form 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 or 〈 p, σ 〉 p
d−→ 〈 p′, σ′ 〉,

process p should contain at most one process operator and each process
argument of this operator should be a variable.

3. The variables p′ of positive hypotheses of the form 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 and
〈 p, σ 〉 p d−→〈 p′, σ′ 〉 and the variables occurring in p of conclusions of the form
〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 or 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 are mutually distinct.

Inspection of the deduction rules shows that they satisfy these conditions. There-
fore, the SOS of χσ is in relaxed panth format. Together with the stratification
of the SOS of χσ, see Section 4.15, this means that bisimulation equivalence is a
congruence.

4.17 Properties

In this section we discuss properties of χσ processes. Amongst others, we reflect
on the timing aspects relevant for χσ as discussed in Section 4.3: continuous time,
time factorisation, and time determinism.
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In χσ, we can specify that a process is able to delay a certain number of time
units. At the same time, that process is then also able to delay less. Because we
have continuous time, this implies that if a process can perform a delay d greater
than zero, than it is always able to also perform a delay d′ smaller than d. This is
expressed in Lemma 4.46 below.

Lemma 4.46 Let p and pd be processes; σ and σd be stacks; and d and d′ be
positive real numbers such that d′ < d. Then

〈 p, σ 〉 p d−→ 〈 pd, σd 〉 ⇒ ∃pd′ , σd′ : 〈 p, σ 〉 p d′
−−→ 〈 pd′ , σd′ 〉.

Proof (Lemma 4.46) We have to prove that 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉 ⇒ ∃pd′ , σpd′ :

〈 p, σ 〉 p
d′
−−→ 〈 pd′ , σd′ 〉 for all p and pd processes; σ and σd stacks; and d and d′

positive real numbers such that d′ < d.

First, we prove that this holds for the defined atomic processes. Then we prove
by induction that it also holds for every defined process operator.

Let p be an atomic process. Then we end up with the following cases: p ≡ ε,
p ≡ δ, p ≡ skip, p ≡ x := e, p ≡ m ! e, p ≡ m ? x, and p ≡ ∆e. In case p ≡ ε,
p ≡ δ, p ≡ skip, or p ≡ x := e, the hypothesis does not hold, which then concludes
the proof. For the cases p ≡ m ! e and p ≡ m ? x, Rules 7 and 8 show that if

〈 p, σ 〉 p
d−→ 〈 pd, σd 〉, then for d′ < d we have 〈 p, σ 〉 p

d′
−−→ 〈 pd′ , σd′ 〉 with pd′ ≡ pd.

For the case p ≡ ∆e, Rule 9 shows that if 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉 with pd ≡ ∆e − d,

then for d′ < d we have 〈 p, σ 〉 p
d′
−−→ 〈 pd′, σd′ 〉 with pd′ ≡ ∆e − d′. This concludes

the proof for the defined atomic processes.

In case p is a non-atomic process and if 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉, then we can apply

Rule 12, 20, 21, 22, 23, 15, 16, 26, 30, 31, 34, 37, 40, or 44 and find by induction

that 〈 p, σ 〉 p d′
−−→ 〈 pd′ , σd′ 〉.

The fact that χσ has time factorisation is expressed by Lemma 4.47 below. As can
be seen, the smallest delay can be factored out of the alternative composition.

Lemma 4.47 (Time factorisation) Let e and e′ be expressions, such that e ≥ 0 and
e′ ≥ 0, and let p be a process, then

∆e ; p [] ∆e + e′ ↔ ∆e ; (p [] ∆e′).

Proof (Lemma 4.47) We have to prove ∆e ; p [] ∆e + e′ ↔ ∆e ; (p [] ∆e′) for all
processes p and expressions e and e′, such that e ≥ 0 and e′ ≥ 0. In this case, we
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define a relation R such that (∆e ; p []∆e+ e′, ∆e ; (p [] ∆e′) ∈ R and show that R

is a bisimulation. We define R as

R = {(p, p)} ∪ {(∆e ; p [] ∆e + e′, ∆e ; (p [] ∆e′) | e′ ≥ 0}.

We will now show that all pairs (p, q) ∈ R satisfy the five bisimulation conditions
of Definition 4.5. Since the proof for the pairs of the form (p, p) is trivial, we will
only consider pairs of the form (∆e ; p [] ∆e + e′, ∆e ; (p [] ∆e′).

So, suppose p ≡ ∆e ; x [] ∆e + e′ and q ≡ ∆e ; (x [] ∆e′) for some process x.

Condition 1 : We have to prove ∀σ:〈 p, σ 〉↓ ⇔ 〈 q, σ′ 〉↓. The following computation
completes the proof of Condition 1. In the computation, deduction Rules 2,
17, and 13 are used.

〈 p, σ 〉↓
⇔ 〈∆e ; x [] ∆e + e′, σ 〉↓
⇔ 〈∆e ; x, σ 〉↓ ∨ 〈∆e + e′, σ 〉↓
⇔ (〈∆e, σ 〉↓ ∧ 〈x, σ 〉↓) ∨ σ(e + e′) = 0
⇔ (σ(e) = 0 ∧ 〈x, σ 〉↓) ∨ σ(e + e′) = 0
⇔ (σ(e) = 0 ∧ 〈x, σ 〉↓) ∨ σ(e) + σ(e′) = 0
⇔ {Expressions e and e′ satisfy e ≥ 0 and e′ ≥ 0}

(σ(e) = 0 ∧ 〈x, σ 〉↓) ∨ (σ(e) = 0 ∧ σ(e′) = 0)
⇔ σ(e) = 0 ∧ (〈x, σ 〉↓ ∨ σ(e′) = 0)
⇔ σ(e) = 0 ∧ (〈x, σ 〉↓ ∨ 〈∆e′, σ 〉↓)
⇔ 〈∆e, σ 〉↓ ∧ 〈x [] ∆e′, σ 〉↓
⇔ 〈∆e ; (x [] ∆e′), σ 〉↓
⇔ 〈 q, σ 〉↓.

Condition 2 : We have to prove ∀a, σ′, p′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 a−→
〈 q′, σ′ 〉. So, suppose we have 〈 p, σ 〉 a−→〈 p′, σ′ 〉, where p ≡ ∆e ; x[]∆e+e′. Since
delay processes cannot execute actions, we know that x performs the action.
So, Rules 19 and 14 apply and we obtain 〈∆e, σ 〉↓ and 〈x, σ 〉 a−→ 〈 p′, σ′ 〉.
Note that according to Rule 2, we can derive σ(e) = 0. Finally, using Rules 19
and 14 again, we derive 〈∆e ; (x [] ∆e′), σ 〉 a−→ 〈 p′, σ′ 〉. So take q′ ≡ p′ and
note that (p′, q′) ∈ R.

Condition 3 : We have to prove ∀a, σ′, q′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ⇒ ∃p′ : 〈 p, σ 〉 a−→
〈 p′, σ′ 〉. So, assume 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 where q ≡ ∆e ; (x [] ∆e′). Since delay
processes cannot execute actions, we know that x performs the action. So,
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Rules 19 and 14 apply and we obtain 〈∆e, σ 〉↓ and 〈x, σ 〉 a−→ 〈 q′, σ′ 〉. Note
that according to Rule 2, we can derive σ(e) = 0. Finally, using Rules 19
and 14 again, we derive 〈∆e ; x [] ∆e + e′, σ 〉 a−→ 〈 q′, σ′ 〉. So, take p′ ≡ q′ and
note that (p′, q′) ∈ R.

Condition 4 : We have to prove ∀d, σ′, p′ : 〈 p, σ 〉 p
d−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 p

d−→
〈 q′, σ′ 〉. So, suppose we have 〈 p, σ 〉 p

d−→ 〈 p′, σ′ 〉, where p ≡ ∆e ; x [] ∆e + e′.
Since e ≥ 0 we can distinguish the following cases.

σ(e) = 0: Since e′ ≥ 0 we can distinguish two cases.

σ(e′) = 0: Using Rules 22 and 15 we can derive 〈x, σ 〉 p
d−→ 〈 p′, σ′ 〉. Using

the same rules again, we can derive 〈∆e ; (x [] ∆e′), σ 〉 p d−→ 〈 p′, σ′ 〉. So,
take q′ ≡ p′ and note that (p′, q′) ∈ R.

σ(e′) > 0: Note that we can derive σ(e′) ≥ d, otherwise the assumption
〈 p, σ 〉 p

d−→ 〈 p′, σ′ 〉 cannot be true. Since x can or cannot delay, there
are two cases to distinguish. If x cannot delay, we derive 〈∆e ; x []
∆e + e′, σ 〉 p

d−→ 〈∆e + e′ − d, σ′ 〉. So, p′ ≡ ∆e + e′ − d. Using Rules
22 and 15, we can now derive 〈∆e ; (x [] ∆e′, σ 〉 p

d−→ 〈∆e′ − d, σ′ 〉.
Furthermore, since e = 0, we have e + e′ = e′ and therefore we have
p′ ≡ ∆e + e′ − d = ∆e′ − d. So, take q′ ≡ p′ and note that (p′, q′) ∈ R.
On the other hand, if x can delay, we can derive that it can delay at
least d time units. So, we get 〈∆e ; x[]∆e+e′, σ 〉 p d−→〈x′ []∆e+e′−d, σ′ 〉
for some process x′ such that 〈x, σ 〉 p d−→〈x′, σ′ 〉 and p′ ≡ x′ []∆e+e′−d.
Using Rules 22 and 15, we can now derive 〈∆e ; (x [] ∆e′), σ 〉 p d−→ 〈x′ []
∆e′−d, σ′ 〉. Furthermore, since e = 0, we have e+e′ = e′ and therefore
we have p′ ≡ x′ [] ∆e + e′ − d = x′ [] ∆e′ − d. So, take q′ ≡ p′ and note
that (p′, q′) ∈ R.

σ(e) > 0: Note that we can derive σ(e) ≥ d, otherwise 〈 p, σ 〉p d−→〈 p′, σ′ 〉 cannot
be true. Furthermore, since e′ ≥ 0, we also have σ(e+e′) ≥ d. So, the delay
transition of p is actually 〈∆e ; x[]∆e+e′, σ 〉 p d−→〈∆e−d ; x[]∆e+e′−d, σ′ 〉
and we find p′ ≡ ∆e−d ; x []∆e+e′−d. Using arithmetic, we can rewrite p′

to ∆e − d ; x [] ∆e − d + e′. Furthermore, for process q ≡ ∆e ; (x [] ∆e′)
we can derive 〈 q, σ 〉 p

d−→ 〈∆e − d ; (x [] ∆e′), σ′ 〉 using Rule 20. So, take
q′ ≡ ∆e− d ; (x [] ∆e′) and note that (p′, q′) ∈ R.

Condition 5 : We have to prove ∀d, q′, σ′ : 〈 q, σ 〉 p
d−→ 〈 q′, σ′ 〉 ⇒ ∃p′ : 〈 p, σ 〉 p

d−→
〈 p′, σ′ 〉. So, assume 〈 q, σ 〉 p

d−→ 〈 q′, σ′ 〉 where q ≡ ∆e ; (x [] ∆e′). Since e ≥ 0
we can distinguish two cases.
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σ(e) = 0: Now, using Rules 2 and 22, we can derive 〈x [] ∆e′ 〉 p d−→ 〈 q′, σ′ 〉. We
distinguish two cases.

σ(e′) = 0: Now, using Rule 15, we can derive 〈x, σ 〉 p
d−→ 〈 q′, σ′ 〉. Further-

more, using Rules 2, 22, and 15, we obtain 〈∆e ; x[]∆e+e′, σ 〉p d−→〈 q′, σ′ 〉.
So, take p′ ≡ q′ and note that (p′, q′) ∈ R.

σ(e′) > 0: Note that we can derive σ(e′) ≥ d, otherwise the assumption
〈 q, σ 〉 p d−→〈 q′, σ′ 〉 cannot be true. Since x can or cannot delay, there are
two cases to distinguish. If x cannot delay, we find 〈∆e ; (x[]∆e′), σ 〉p d−→
〈∆e′ − d, σ′ 〉. So, q′ ≡ ∆e′ − d. According to Rule 15, we can derive
〈∆e ; x [] ∆e + e′, σ 〉 p

d−→ 〈∆e + e′ − d, σ′ 〉. Furthermore, since e = 0,
we have e + e′ = e′ and therefore we also have 〈∆e ; x [] ∆e + e′, σ 〉 p d−→
〈∆e′ − d, σ′ 〉. So, take p′ ≡ q′ and note that (p′, q′) ∈ R.

σ(e) > 0: Note that we can derive σ(e) ≥ d, otherwise 〈 q, σ 〉p d−→〈 q′, σ′ 〉 cannot
be true. Furthermore, since e′ ≥ 0, we also have e + e′ ≥ d. So, the delay
transition of q is actually 〈∆e ; (x [] ∆e′), σ 〉 p

d−→ 〈∆e − d ; (x [] ∆e′), σ′ 〉
and we find q′ ≡ ∆e− d ; (x [] ∆e′). According to Rules 9, 20, and 15, we
find 〈∆e ; x [] ∆e + e′, σ 〉 p d−→ 〈∆e− d ; x [] ∆e + e′ − d, σ′ 〉. Furthermore,
we can rewrite ∆e− d ; x [] ∆e + e′− d to ∆e− d ; x [] ∆e− d + e′. So, take
p′ ≡ ∆e− d ; x [] ∆e− d + e′ and note that (p′, q′) ∈ R.

Lemma 4.48 expresses that χσ has time determinism. This lemma states that if a
process can evolve into two or more processes by performing a single delay step,
then these processes must be syntactically equivalent.

Lemma 4.48 (Time determinism) Let p, p′, and p′′ be processes; σ, σ′, and σ′′ be
stacks; and d be a positive real number. Then

(〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ∧ 〈 p, σ 〉 p d−→ 〈 p′′, σ′′ 〉)⇒ (p′ ≡ p′′ ∧ σ′ ≡ σ′′).

Proof (Lemma 4.48) So, we need to show that a delay step always leads to a
unique result. First, we prove that this holds for the defined atomic processes.
Then we prove by induction that it also holds for the defined process operators.

Let p be an atomic process. Then we end up with the following cases: p ≡ ε,
p ≡ δ, p ≡ skip, p ≡ x := e, p ≡ m ! e, p ≡ m ? x, and p ≡ ∆e. In case p ≡ ε, p ≡ δ,
p ≡ skip, or p ≡ x := e, the hypothesis does not hold, which then concludes the
proof. For the cases p ≡ m ! e, p ≡ m ? x, and p ≡ ∆e only one rule per process
operator exists that defines the delay step for p, Rule 7, 8, and 9 respectively.
Hence, the resulting process must be unique.
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In case p is a non-atomic process, we end up with the following cases (x and y are
processes): p ≡ e :→ x, p ≡ x ; y, p ≡ x [] y, p ≡ x∗, p ≡ x ‖ y, p ≡ |[ s | x ]|,
p ≡ ∂A(x), p ≡ π(x), p ≡ τA(x). For the cases p ≡ e :→ x, p ≡ x∗, p ≡ |[ s | x ]|,
p ≡ ∂A(x), p ≡ π(x), and p ≡ τA(x), only one rule per process operator exists that
defines the delay step for p, Rule 12, 26, 34, 37, 40, and 44, respectively. Hence
the resulting process must be unique.

For the cases p ≡ x ; y, p ≡ x [] y, and p ≡ x ‖ y, two or more rules define
possible delay steps. We prove that also for these processes a delay step leads to
a unique result by showing that these rules have mutually exclusive hypotheses or
by showing that their conclusions are syntactically equivalent.

In case p ≡ x ; y, Rule 20, 21, 22, and 23 apply. The hypotheses of Rule 20
and 21 are not mutually exclusive. However, their conclusions are syntactically
equivalent. Furthermore, the hypothesis of Rule 22 excludes the hypotheses of
Rule 20, 21, and 23, and the hypothesis of Rule 23 excludes the hypotheses of
Rule 20, 21, and 22.

In case p ≡ x []y, Rule 15 and 16 apply. The hypotheses of these rules are mutually
exclusive.

In case p ≡ x‖y, Rule 30 and 31 apply. The hypotheses of these rules are mutually
exclusive.

Action and delay transitions can affect the stack that is part of the transition.
Lemma 4.49 below describes how they are effected. As can be seen, τ and delay
transitions leave the stack untouched. The other possible transitions either also
leave the stack untouched (p can be a state process so that the transition effects
the state of that process instead of the stack), or their effect on the stack is the
result of a substitution. Further, Lemma 4.50 below strengthens Lemma 4.49. It
was used to prove the properties of the state operator in Section 4.11.

Lemma 4.49 Let p and p′ be processes; σ and σ′ be stacks such that m ∈ dom(σ),
then

〈 p, σ 〉 τ−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ,

〈 p, σ 〉 aa(x,c)−−−−−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ ∨ σ′ = σ[c/x],

〈 p, σ 〉 sa(m,c)−−−−−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ ∨ σ′ = σ[c/m],

〈 p, σ 〉 ra(m,x)−−−−−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ ∨ σ′ = σ[σ(m)/x],

〈 p, σ 〉 ca(m,x,c)−−−−−−−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ ∨ σ′ = σ[c/m][c/x],

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ.
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Recall that due to the state operator, it can be the case that even though an action
like aa(x, c) is performed, we have σ = σ′.

Proof (Lemma 4.49) We will prove this lemma by structural induction on p.

Basis Let p be an atomic process. The deduction rules for atomic processes are
given in Table 4.1. From these deduction rules it follows immediately that the
stack σ changes as stated in Lemma 4.49.

Inductive step Let p be a compound process with a unary process operator ⊗ and
process argument p0 or with a binary process operator ⊗ and process argument
p0 and p1. Furthermore, the induction hypothesis says that the lemma holds for
the process arguments p0 (and p1). The deduction rules for compound processes
are given in Tables 4.2–4.10. In most deduction rules, σ′ is defined by a transition
of a process argument of p. Therefore, by using the induction hypothesis these
cases are easily proved. The only interesting rule is Rule 29 according to which
communication actions can be derived. So, if this rule applies, we have p ≡
p0 ‖ p1 and 〈 p0 ‖ p1, σ 〉

ca(m,x,c)−−−−−−−→〈 p′0 ‖ p′1, σ
′′ 〉 such that 〈 p0, σ 〉

sa(m,c)−−−−−→〈 p′0, σ′ 〉
and 〈 p1, σ

′ 〉 ra(m,x)−−−−−→ 〈 p′1, σ′′ 〉 (the case that p0 receives and p1 sends is similar).
Applying the induction hypothesis to p0 and p1, we find σ′ = σ[c/m] and σ′′ =
σ′[c/x]. Therefore, we have σ′′ = σ[c/m][c/x].

Lemma 4.50 Let p and p′ be processes, σ0, σ′
0, σ1, and σ′

1 be stacks, a be an
action, and d be a positive real number, then

(〈 p, σ0 〉 a−→ 〈 p′, σ′
0 〉 ∧ 〈 p, σ1 〉 a−→ 〈 p′, σ′

1 〉) ∨
(〈 p, σ0 〉 p d−→ 〈 p′, σ′

0 〉 ∧ 〈 p, σ1 〉 p d−→ 〈 p′, σ′
1 〉)

⇒
(σ′

0 = σ0 ∧ σ′
1 = σ1) ∨ (∃c, i : σ′

0 = σ0[c/i] ∧ σ′
1 = σ1[c/i]) ∨

(∃c, c′, i, i′ : σ′
0 = σ0[c/i][c′/i′] ∧ σ′

1 = σ1[c/i][c′/i′]).

Proof (Lemma 4.50) We distinguish two cases: action transitions and delay
transitions.

Action transition: We have 〈 p, σ0 〉 a−→ 〈 p′, σ′
0 〉 and 〈 p, σ1 〉 a−→ 〈 p′, σ′

1 〉. We will
only consider the case where a is an assignment action, since the other pos-
sibilities (skip action, send action, receive action, and communication action)
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are similar. So, a ≡ aa(x, c) for some programming variable x and value c. We
distinguish the following cases.

σ0 = σ′
0 and σ1 = σ′

1: Trivial.
σ0 = σ′

0 and σ1 6= σ′
1: According to Lemma 4.49, we have σ′

1 = σ1[c/x]. There
are two possibilities for σ0: x ∈ dom(σ0) and x 6∈ dom(σ0).

x ∈ dom(σ0): Now, we either have p ≡ |[ s | p0 ]| for some state s with
x ∈ dom(s) and process p0 or we have σ0(x) = c. In the first case, we

find 〈 p0, s::σ0 〉
aa(x,c)−−−−−→〈 p′0, s′::σ′

0 〉 for some state s′ and process p′0, such

that p′ ≡ |[ s′ | p′0 ]|. But then we also find 〈 p0, s::σ1 〉
aa(x,c)−−−−−→〈 p′0, s′::σ′

1 〉
and since x ∈ dom(s) we have σ1 = σ′

1 which is a contradiction. So, we
must have σ0(x) = c. Now, we have σ′

0 = σ0[c/x] = σ0 and σ′
1 = σ1[c/x].

x 6∈ dom(σ0): Now, according to Lemma A.26, we have σ′
0 = σ0[c/x] = σ0

and σ′
1 = σ1[c/x].

σ0 6= σ′
0 and σ1 = σ′

1: The proof is similar to the proof of the previous case.
σ0 6= σ′

0 and σ1 6= σ′
1: According to Lemma 4.49, we have σ′

0 = σ0[c/x] and
σ′

1 = σ1[c/x].

Delay transition: We have 〈 p, σ0 〉 p d−→〈 p′, σ′
0 〉 and 〈 p, σ1 〉 p d−→〈 p′, σ′

1 〉. According
to Lemma 4.49, we have σ′

0 = σ0 and σ′
1 = σ1.

Transitions from one process to another do not change the domain of the stack.
This is expressed by Lemma 4.51 below.

Lemma 4.51 Let p and p′ be processes, σ and σ′ be stacks, a an action and d a
positive real number, then

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ dom(σ) = dom(σ′),

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ⇒ dom(σ) = dom(σ′).

Proof (Lemma 4.51) Lemma 4.49 showed that for a transition 〈 p, σ 〉 a−→〈 p′, σ′ 〉 or
〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 we have σ′ = σ, σ′ = σ[c/i], or σ′ = σ[c/i][c′/i′]. Furthermore,
Lemma A.25 gives us ∀c, i : dom(σ[c/i]) = dom(σ).

If a process can terminate, perform an action, or delay under a certain stack,
then it can also terminate, perform that action, or delay for the same amount of
time under another stack that is observationally equivalent to that stack. This is
expressed by Lemma 4.52 below.
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Lemma 4.52 Let p and p′ be processes and let σ and σ′ be stacks such that σ $ σ′.
Then we have

〈 p, σ 〉↓ ⇔ 〈 p, σ′ 〉↓.

Furthermore, let a be an action and d a positive real number, then

∃σ : 〈 p, σ 〉 a−→ 〈 p′, σ 〉 ⇔ ∃σ′ : 〈 p, σ′ 〉 a−→ 〈 p′, σ′ 〉,
∃σ : 〈 p, σ 〉 p d−→ 〈 p′, σ 〉 ⇔ ∃σ′ : 〈 p, σ′ 〉 p d−→ 〈 p′, σ′ 〉.

Proof (Lemma 4.52) The proof of this lemma is based on two observations. The
first observation is that for any expression e, and channel m we have σ $ σ′ ⇒
(σ(e) = σ′(e) ∧ σ(m) = σ′(m)), according to Definition A.13.

The second observation is that if a hypothesis of a deduction rule uses a stack σ,
it is to evaluate an expression, σ(e) or a channel, σ(m). So, if a deduction rule
applies to 〈 p, σ 〉, it also applies to 〈 p, σ′ 〉 and vice versa.

We will now present four lemmas: Time confluence, Preservation of terminations,
Preservation of action transitions, and Undelayability of terminations. The proofs
of these lemmas are merged into one.

Lemma 4.53 (Time confluence) Let p, pd, and pd′ be processes; σ, σd, and σd′

be stacks; and d and d′ be positive real numbers such that d′ < d. If 〈 p, σ 〉 p
d−→

〈 pd, σd 〉 ∧ 〈 p, σ 〉 p d′
−−→ 〈 pd′ , σd′ 〉, then 〈 q, σ′ 〉 p d−d′

−−−→ 〈 r, σ′′ 〉.

This lemma says that dividing delay transitions in smaller delay transitions, which
is possible according to Lemma 4.46, does not influence the final process.

Lemma 4.54 (Preservation of terminations) Let p, pd, and pd′ be processes; σ,
σd, and σd′ be stacks; and d and d′ be positive real numbers such that d′ < d. If

〈 p, σ 〉 p d−→〈 pd, σd 〉 ∧ 〈 p, σ 〉 p d′
−−→〈 pd′ , σd′ 〉, then 〈 pd′ , σd′ 〉↓ ⇒ 〈 p, σ 〉↓ ∧ 〈 pd, σd 〉↓.

This lemma says that if a process can terminate after a small delay, then this
termination option was possible before the delay an it is still possible after the big
delay. Therefore, termination behaviour is preserved while delaying. Note that
the inverse is not true. That is, a termination option after a small delay cannot
be derived from a termination option before the small delay or from a termination
option after the big delay.
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Lemma 4.55 (Preservation of action transitions) Let p, pd, and pd′ be processes;
σ, σd, and σd′ be stacks; and d and d′ be positive real numbers such that d′ < d.

If 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉 ∧ 〈 p, σ 〉 p

d′
−−→ 〈 pd′ , σd′ 〉, then ∀pd′,a, σd′,a, a : 〈 pd′ , σd′ 〉 a−→

〈 pd′,a, σd′,a 〉 ⇒ ∃pa, σa, pd,a, σd,a : 〈 p, σ 〉 a−→ 〈 pa, σa 〉 ∧ 〈 pd, σd 〉 a−→ 〈 pd,a, σd,a 〉.

Note that due to Lemma 4.46 we have that if 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉, we also have

〈 p, σ 〉 p d′
−−→ 〈 pd′ , σd′ 〉 for some pd′ , σd′ , and d′ with d′ < d.

This lemma says for action transitions what the previous lemma said for termina-
tions. So, action transitions are preserved while delaying. Again, the other way
around is not true.

Lemma 4.56 (Undelayability of terminations) Let p, pd, and pd′ be processes; σ,
σd, and σd′ be stacks; and d and d′ be positive real numbers such that d′ < d. If

〈 p, σ 〉 p d−→ 〈 pd, σd 〉 ∧ 〈 p, σ 〉 p d′
−−→ 〈 pd′ , σd′ 〉, then 〈 pd′ , σd′ 〉6 ↓.

This lemma says that while delaying, a process can never terminate. This is a
stronger result than Lemma 4.54 (Preservation of terminations). In fact, in the
proof below, we will use the undelayability of terminations to prove preservation
of terminations.

Proof (Lemmas 4.53, 4.54, 4.55, and 4.56) As mentioned above, Lemmas 4.53,
4.54, 4.55, and 4.56 are proved together. We also mentioned that Lemma 4.54
follows from Lemma 4.56. Therefore, we will focus on Lemmas 4.53, 4.55, and 4.56.
These lemmas are proved by structural induction on process p.

First, we prove that Lemmas 4.53, 4.55, and 4.56 hold for the atomic processes.
Then we prove by induction that they also hold for every process operator.

Let p be an atomic process. Then we end up with the following cases: p ≡ ε,
p ≡ δ, p ≡ skip, p ≡ x := e, p ≡ m ! e, p ≡ m ? x, and p ≡ ∆e. For the processes
p ≡ ε, p ≡ δ, p ≡ skip, and p ≡ x := e, the hypothesis does not hold, which then
concludes the proof for these processes. The cases that still need proof thus are
p ≡ m ! e, p ≡ m ? x, and p ≡ ∆e.

p ≡ m ! e: Using Rule 7 we obtain 〈m ! e, σ 〉 p d−→〈m ! e, σd 〉 and 〈m ! e, σ 〉 p d′
−−→〈m !

e, σd′ 〉 with d′ < d and σ ≡ σd ≡ σd′ .

The following items prove Lemmas 4.53, 4.55, and 4.56, respectively.

1. We apply Rule 7 and obtain 〈m ! e, σd′ 〉 p d−d′
−−−→ 〈m ! e, σd 〉.
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2. Suppose 〈m ! e, σd′ 〉 sa(m,c)−−−−−→ 〈 ε, σd′,sa(m,c) 〉 for σ(e) = c. Then we also

have 〈m!e, σ 〉 sa(m,c)−−−−−→〈 ε, σsa(m,c) 〉 and 〈m!e, σd 〉
sa(m,c)−−−−−→〈 ε, σd,sa(m,c) 〉

and σ ≡ σd′,sa(m,c) ≡ σd,sa(m,c).
3. Since termination is not defined for send processes, we obtain 〈m!e, σd′ 〉6 ↓.

p ≡ m ? x: Like the proof of case p ≡ m ! e using Rule 8 instead of Rule 7.

p ≡ ∆e: We can use Rule 9 and obtain 〈∆e, σ 〉 p d−→ 〈∆e− d, σ 〉 and 〈∆e, σ 〉 p d′
−−→

〈∆e− d′, σ 〉, with d′ < d.

The following items prove Lemmas 4.53, 4.55, and 4.56, respectively.

1. We can use Rule 9 and obtain 〈∆e− d′, σ 〉 p d−d′
−−−→ 〈∆e− d, σ 〉.

2. The hypothesis does not hold since ∆e−d′ cannot perform an action. So,
we are done.

3. From Item 1, we know that 〈∆e − d′, σ 〉 p
d−d′
−−−→ 〈∆e − d, σ 〉. According

to Rule 9 this gives 0 < d − d′ ≤ σ(e − d′) and since we already knew
that d′ < d, we can derive that σ(e− d′) > 0. Therefore, Rule 2 does not
apply and we have 〈∆e− d′, σ 〉6 ↓.

We proved that Lemmas 4.53, 4.55, and 4.56 hold for all atomic processes. Next,
we prove that they also hold for all process operators.

Guarded processes: Suppose 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉 and 〈 p, σ 〉 p

d′
−−→ 〈 pd′ , σd′ 〉, where

p ≡ e :→ x and d′ < d. Applying Rule 12 gives 〈x, σ 〉 p d−→〈 pd, σd 〉, 〈x, σ 〉 p d′
−−→

〈 pd′ , σd′ 〉, and σ(e) = true, where d′ < d. Induction on x we now gives us

1. 〈 pd′ , σd′ 〉 p d−d′
−−−→ 〈 pd, σd 〉,

2. ∀pd′,a, σd′,a, a : 〈 pd′ , σd′ 〉 a−→〈 pd′,a, σd′,a 〉 ⇒ ∃xa, σa, pd,a, σd,a : 〈x, σ 〉 a−→
〈xa, σa 〉 ∧ 〈 pd, σd 〉 a−→ 〈 pd,a, σd,a 〉,

3. 〈 pd′ , σd′ 〉6 ↓.

This makes the proof of Lemma 4.53 trivial.

To prove Lemma 4.55, assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉. Then, we know
that ∃xa, σa, pd,a, σd,a : 〈x, σ 〉 a−→ 〈xa, σa 〉 ∧ 〈 pd, σd 〉 a−→ 〈 pd,a, σd,a 〉. Since
σ(e) = true, Rule 11 applies and we obtain 〈 p, σ 〉 a−→ 〈xa, σa 〉 ∧ 〈 pd, σd 〉 a−→
〈 pd,a, σd,a 〉.

The proof of 4.56 is trivial.
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Alternative composition: Suppose 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉 and 〈 p, σ 〉 p

d′
−−→ 〈 pd′ , σd′ 〉,

where p ≡ x [] y and d′ < d. Then at least one of the Rules 15 and 16 ap-
plies. Looking at the hypotheses of these rules we can distinguish three cases
regarding the delay behaviour of x and y:

1. 〈x, σ 〉 6p−→ ∧ 〈 y, σ 〉 p d−→ 〈 yd, σd 〉,
2. 〈x, σ 〉 p d−→ 〈xd, σd 〉 ∧ 〈 y, σ 〉 6p−→,
3. 〈x, σ 〉 p d−→ 〈xd, σd 〉 ∧ 〈 y, σ 〉 p d−→ 〈 yd, σd 〉.

For case 1, Rule 15 applies, so we can conclude that pd ≡ yd. From Lemma 4.46

it follows that also 〈 y, σ 〉 p
d′
−−→ 〈 yd′ , σd′ 〉. Again, Rule 15 applies and we can

conclude that pd′ ≡ yd′ .

Induction on y gives us

1. 〈 yd′ , σd′ 〉 p d−d′
−−−→ 〈 yd, σd 〉,

2. ∀yd′,a, σd′,a, a : 〈 yd′ , σd′ 〉 a−→ 〈 yd′,a, σd′,a 〉 ⇒ ∃ya, σa, yd,a, σd,a : 〈 y, σ 〉 a−→
〈 ya, σa 〉 ∧ 〈 yd, σd 〉 a−→ 〈 yd,a, σd,a 〉,

3. 〈 yd′ , σd′ 〉6 ↓.

Lemma 4.53 is easily proved since we already derived that pd ≡ yd and pd′ ≡
yd′ . Result 1 of the induction on y then gives us 〈 pd′ , σd′ 〉 p d−d′

−−−→ 〈 pd, σd 〉.

To prove Lemma 4.55, we assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a,
σd′,a, and a. Since pd′ ≡ yd′ , we find pd′,a ≡ yd′,a. Also, since pd ≡ yd

result 2 of the induction on y gives us ∃ya, σa, yd,a, σd,a : 〈 y, σ 〉 a−→ 〈 ya, σa 〉 ∧
〈 pd, σd 〉 a−→〈 yd,a, σd,a 〉. Furthermore, Rule 14 gives us 〈 p, σ 〉 a−→〈 ya, σa 〉. So,
〈 p, σ 〉 a−→ 〈 pa, σa 〉 with pa ≡ ya and 〈 pd, σd 〉 a−→ 〈 pd,a, σd,a 〉 with pd,a ≡ yd,a.

Lemma 4.56 is easily proved since we already derived that pd′ ≡ yd′ . Result 3
of the induction on y then gives 〈 pd′ , σd′ 〉6 ↓.

Case 2 is proven in a way similar to case 1 with x and y interchanged.

Finally, for case 3, Rule 16 applies and we obtain 〈x [] y, σ 〉 p
d−→ 〈xd [] yd, σd 〉.

Since p ≡ x [] y and 〈 p, σ 〉 p d−→ 〈 pd, σd 〉, we obtain pd ≡ xd [] yd, σd. Also, since
in this case we have 〈x, σ 〉 p

d−→ 〈xd, σd 〉 and 〈 y, σ 〉 p
d−→ 〈 yd, σd 〉, Lemma 4.46

gives us 〈x, σ 〉 p
d′
−−→ 〈xd′ , σd′ 〉 and 〈 y, σ 〉 p

d′
−−→ 〈 yd′ , σd′ 〉, and we obtain 〈x []

y, σ 〉 p d′
−−→ 〈xd′ [] yd′ , σd′ 〉. Since p ≡ x [] y and 〈 p, σ 〉 p d′

−−→ 〈 pd′ , σd′ 〉, we obtain
pd′ ≡ xd′ [] yd′ .

Induction on both x and y gives us

1. 〈xd′ , σd′ 〉 p d−d′
−−−→ 〈xd, σd 〉, and 〈 yd′ , σd′ 〉 p d−d′

−−−→ 〈 yd, σd 〉,
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2. ∀xd′,a, σd′,a, a : 〈xd′ , σd′ 〉 a−→〈xd′,a, σd′,a 〉 ⇒ ∃xa, σa, xd,a, σd,a : 〈x, σ 〉 a−→
〈xa, σa 〉 ∧ 〈xd, σd 〉 a−→ 〈 xd,a, σd,a 〉,
∀yd′,a, σd′, a, a : 〈 yd′ , σd′ 〉 a−→〈 yd′,a, σd′,a 〉 ⇒ ∃ya, σa, yd,a, σd,a : 〈 y, σ 〉 a−→
〈 ya, σa 〉 ∧ 〈 yd, σd 〉 a−→ 〈 yd,a, σd,a 〉,

3. 〈xd′ , σd′ 〉6 ↓, and 〈 yd′ , σd′ 〉6 ↓.

To prove Lemma 4.53 we have to prove that 〈 pd′ , σd′ 〉 p
d−d′
−−−→ 〈 pd, σd 〉. Since

pd′ ≡ xd′ [] yd′ , we can use result 1 of the induction on x and y and Rule 16 to

obtain 〈 pd′ , σd′ 〉 p d−d′
−−−→ 〈xd [] yd, σd 〉. Since pd ≡ xd [] yd, we are done.

To prove Lemma 4.55 we assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a,
σd′,a, and a. Since pd′ ≡ xd′ [] yd′ , Rule 14 should apply. Therefore, we have
〈xd′ , σd′ 〉 a−→〈 pd′,a, σd′,a 〉 or 〈 yd′ , σd′ 〉 a−→〈 pd′,a, σd′,a 〉. Result 2 of the induc-
tion on x and y then gives us 〈x, σ 〉 a−→ 〈xa, σa 〉 and 〈xd, σd 〉 a−→ 〈xd,a, σd,a 〉
or we obtain 〈 y, σ 〉 a−→ 〈 ya, σa 〉 and 〈 yd, σd 〉 a−→ 〈 yd,a, σd,a 〉. So, in the first
case we take pa ≡ xa and pd,a ≡ xd,a, and in the second case we take pa ≡ ya

and pd,a ≡ yd,a.

To prove Lemma 4.56 we use result 3 of the induction on x and y which tells us
that 〈xd′ , σd′ 〉6 ↓ and 〈 yd′, σd′ 〉6 ↓. Since pd′ ≡ xd′ [] yd′ , Rule 13 does not apply
to pd′ and we obtain 〈 pd′ , σd′ 〉6 ↓.

Sequential composition: Suppose that 〈 p, σ 〉 p d−→〈 pd, σd 〉 and 〈 p, σ 〉 p d′
−−→〈 pd′ , σd′ 〉,

where p ≡ x ; y and d′ < d. Then at least one of the Rules 20, 21, 22, and 23
applies. Looking at the hypotheses of these rules we can distinguish three cases
regarding the delay behaviour of x and y:

1. 〈x, σ 〉 p d−→ 〈xd, σd 〉 ∧ (〈x, σ 〉6 ↓ ∨ 〈 y, σ 〉 6p−→),
2. 〈x, σ 〉 6p−→ ∧ 〈x, σ 〉↓ ∧ 〈 y, σ 〉 p d−→ 〈 yd, σd 〉,
3. 〈x, σ 〉 p d−→ 〈xd, σd 〉 ∧ 〈x, σ 〉↓ ∧ 〈 y, σ 〉 p d−→ 〈 yd, σd 〉.

For case 1, Rule 20 or 21 applies and we obtain 〈x ; y, σ 〉 p d−→〈 xd ; y, σd 〉. Since
p ≡ x ; y and 〈 p, σ 〉 p d−→〈 pd, σd 〉, we obtain pd ≡ xd ; y. Also, since in this case

we have 〈 x, σ 〉 p d−→〈xd, σd 〉, Lemma 4.46 gives us 〈x, σ 〉 p d′
−−→〈xd′ , σd′ 〉, and we

obtain 〈x ; y, σ 〉 p d′
−−→ 〈xd′ ; y, σd′ 〉. Since p ≡ x ; y and 〈 p, σ 〉 p d′

−−→ 〈 pd′ , σd′ 〉,
we obtain pd′ ≡ xd′ ; y.

Induction on x gives us

1. 〈xd′ , σd′ 〉 p d−d′
−−−→ 〈xd, σd 〉,

2. ∀xd′,a, σd′,a, a : 〈xd′ , σd′ 〉 a−→〈xd′,a, σd′,a 〉 ⇒ ∃xa, σa, xd,a, σd,a : 〈x, σ 〉 a−→
〈xa, σa 〉 ∧ 〈xd, σd 〉 a−→ 〈 xd,a, σd,a 〉,

3. 〈xd′ , σd′ 〉6 ↓.
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Lemma 4.53 is proved using results 1 and 3 of the induction on x. Together

with Rule 20 they give 〈xd′ ; y, σd′ 〉 p
d−d′
−−−→ 〈xd ; y, σd 〉. Since pd′ ≡ xd′ ; y

and pd ≡ xd ; y, we have 〈 pd′ , σd′ 〉 p d−d′
−−−→ 〈 pd, σd 〉.

To prove Lemma 4.55, assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a, σd′,a,
and a. Since pd′ ≡ xd′ ; y either Rule 18 or 19 applies. However, result 3
of the induction on x gives us 〈xd′ , σd′ 〉6 ↓, so Rule 19 does not apply. As a
consequence, Rule 18 applies and we obtain 〈xd′ , σd′ 〉 a−→〈xd′,a, σd′,a 〉 for some
xd′,a, and σd′,a such that pd′,a ≡ xd′,a ; y. Now, by result 2 of the induction on x

we know that there are xa, σa, xd,a, and σd,a such that 〈x, σ 〉 a−→〈xa, σa 〉 and
〈xd, σd 〉 a−→〈xd,a, σd,a 〉. Using Rule 18 we then obtain 〈x ; y, σ 〉 a−→〈 xa ; y, σa 〉
and 〈 xd ; y, σd 〉 a−→ 〈xd,a ; y, σd,a 〉. So, we have 〈 p, σ 〉 a−→ 〈 pa, σa 〉 and
〈 pd, σd 〉 a−→ 〈 pd,a, σd,a 〉, with pa ≡ xa ; y and pd,a ≡ xd,a ; y.

To prove Lemma 4.56, we use result 3 of the induction on x, which tells us that
〈xd′ , σd′ 〉6 ↓. Since pd′ ≡ xd′ ; y, Rule 17 does not apply to pd′ and we obtain
〈 pd′ , σd′ 〉6 ↓.

For case 2, Rule 22 applies, so we can conclude that pd ≡ yd. From Lemma 4.46

it follows that 〈 y, σp 〉 p
d′
−−→ 〈 yd′ , σd′ 〉. Again, Rule 22 applies and we can con-

clude that pd′ ≡ yd′ .

Induction on y gives us

1. 〈 yd′ , σd′ 〉 p d−d′
−−−→ 〈 yd, σd 〉,

2. ∀yd′,a, σd′a,, a : 〈 yd′ , σd′ 〉 a−→ 〈 yd′,a, σd′,a 〉 ⇒ ∃ya, σa, yd,a, σd,a : 〈 y, σ 〉 a−→
〈 ya, σa 〉 ∧ 〈 yd, σd 〉 a−→ 〈 yd,a, σd,a 〉,

3. 〈 yd′ , σd′ 〉6 ↓.

Lemma 4.53 is easily proved since we already derived that pd ≡ yd and pd′ ≡
yd′ . Result 1 of the induction on y then gives us 〈 pd′ , σd′ 〉 p d−d′

−−−→ 〈 pd, σd 〉.

To prove Lemma 4.55, assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a, σd′,a,
and a. Since pd′ ≡ yd′ , we find pd′,a ≡ yd′,a. Also, since pd ≡ yd re-
sult 2 of the induction on y gives us ∃ya, σa, yd,a, σd,a : 〈 y, σ 〉 a−→ 〈 ya, σa 〉 ∧
〈 pd, σd 〉 a−→ 〈 yd,a, σd,a 〉. Furthermore, since we know that 〈x, σ 〉↓, Rule 19
gives us 〈 p, σ 〉 a−→〈 ya, σa 〉. So, 〈 p, σ 〉 a−→〈 pa, σa 〉 with pa ≡ ya and 〈 pd, σd 〉 a−→
〈 pd,a, σd,a 〉 with pd,a ≡ yd,a.

Lemma 4.56 is easily proved since we already derived that pd′ ≡ yd′ . Result 3
of the induction on y then gives 〈 pd′ , σd′ 〉6 ↓.

Finally, for case 3, Rule 23 applies and we obtain 〈x ; y, σ 〉 p d−→〈xd ; y []yd, σd 〉.
Since p ≡ x ; y and 〈 p, σ 〉 p d−→ 〈 pd, σd 〉, we obtain pd ≡ xd ; y [] yd. Also, since
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in this case we have 〈x, σ 〉 p
d−→ 〈xd, σd 〉 and 〈 y, σ 〉 p

d−→ 〈 yd, σd 〉, Lemma 4.46

gives us 〈x, σ 〉 p
d′
−−→ 〈xd′ , σd′ 〉 and 〈 y, σ 〉 p

d′
−−→ 〈 yd′ , σd′ 〉, and we obtain 〈 x ;

y, σ 〉 p
d′
−−→ 〈 xd′ ; y [] yd′ , σd′ 〉. Since p ≡ x ; y and 〈 p, σ 〉 p

d′
−−→ 〈 pd′ , σd′ 〉, we

obtain pd′ ≡ xd′ ; y [] yd′ .

Induction on both x and y gives us

1. 〈xd′ , σd′ 〉 p d−d′
−−−→ 〈xd, σd 〉, and 〈 yd′ , σd′ 〉 p d−d′

−−−→ 〈 yd, σd 〉,
2. ∀xd′,a, σd′,a, a : 〈xd′ , σd′ 〉 a−→〈xd′,a, σd′,a 〉 ⇒ ∃xa, σa, xd,a, σd,a : 〈x, σ 〉 a−→
〈xa, σa 〉 ∧ 〈xd, σd 〉 a−→ 〈 xd,a, σd,a 〉, and
∀yd′,a, σd′,a, a : 〈 yd′ , σd′ 〉 a−→ 〈 yd′,a, σd′,a 〉 ⇒ ∃ya, σa, yd,a, σd,a : 〈 y, σ 〉 a−→
〈 ya, σa 〉 ∧ 〈 yd, σd 〉 a−→ 〈 yd,a, σd,a 〉,

3. 〈xd′ , σd′ 〉6 ↓, and 〈 yd′ , σd′ 〉6 ↓.

To prove Lemma 4.53, we have pd′ ≡ xd′ ; y [] yd′ and result 4 of the induction
on x and y gives us 〈xd′ , σd′ 〉6 ↓. Consequently, Rule 20 and 16 apply and we

obtain 〈 pd′ , σd′ 〉 p
d−d′
−−−→ 〈xd ; y [] yd, σd 〉 using result 1 of the induction on x

and y. Since pd ≡ xd ; y [] yd, we are done.

To prove Lemma 4.55, assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a, σd′,a,
and a. Since pd′ ≡ xd′ ; y [] yd′ , Rule 14 should apply. Therefore, we have
〈xd′ ; y, σd′ 〉 a−→〈 pd′,a, σd′,a 〉 or 〈 yd′ , σd′ 〉 a−→〈 pd′,a, σd′,a 〉. Since result 3 of the
induction on x and y gives us 〈xd′ , σd′ 〉6 ↓, Rule 19 does not apply to xd′ ; y and
therefore, we must have 〈 xd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉. Result 2 of the induction
on x and y then gives us 〈 x, σ 〉 a−→ 〈xa, σa 〉 and 〈xd, σd 〉 a−→ 〈xd,a, σd,a 〉 or
we obtain 〈 y, σ 〉 a−→〈 ya, σa 〉 and 〈 yd, σd 〉 a−→〈 yd,a, σd,a 〉. So, in the first case
we take pa ≡ xa and pd,a ≡ xd,a, and in the second case we take pa ≡ ya and
pd,a ≡ yd,a.

To prove Lemma 4.56, we use result 3 of the induction on x and y which tells
us that 〈xd′ , σd′ 〉6 ↓ and 〈 yd′ , σd′ 〉6 ↓. Since pd′ ≡ xd′ ; y [] yd′, Rule 17 does not
apply to xd′ ; y and we obtain 〈xd′ ; y, σd′ 〉6 ↓. Consequently, Rule 13 does not
apply to pd′ we obtain 〈 pd′ , σd′ 〉6 ↓.

Repetition: Suppose 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉 and 〈 p, σ 〉 p

d′
−−→ 〈 pd′ , σd′ 〉, where p ≡ x∗

and d′ < d. Using Rule 26 we obtain 〈x, σ 〉 p d−→ 〈xd, σd 〉 and we can conclude

that pd ≡ xd ; x∗. Also, 〈x, σ 〉 p
d′
−−→ 〈xd′ , σd′ 〉 and we can conclude that

pd′ ≡ xd′ ; x∗.

Induction on x gives us

1. 〈xd′ , σd′ 〉 p d−d′
−−−→ 〈xd, σd 〉,
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2. ∀xd′,a, σd′,a, a : 〈xd′ , σd′ 〉 a−→〈xd′,a, σd′,a 〉 ⇒ ∃xa, σa, xd,a, σd,a : 〈x, σ 〉 a−→
〈xa, σa 〉 ∧ 〈xd, σd 〉 a−→ 〈 xd,a, σd,a 〉,

3. 〈xd′ , σd′ 〉6 ↓.
Lemma 4.53 is easily proved since we already derived that pd ≡ xd ; x∗ and
pd′ ≡ xd′ ; x∗. Result 1 and 3 of the induction on x and Rule 20 then give

〈 pd′ , σd′ 〉 p d−d′
−−−→ 〈 pd, σd 〉.

To prove Lemma 4.55, we assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a,
σd′,a, and a. Since pd′ ≡ xd′ ; x∗ we find by result 2 and 3 of the induction
on x that pd′,a ≡ xd′,a ; x∗. Now, by result 2 of the induction on x we know
that there are xa and xd,a, such that 〈x, σ 〉 a−→ 〈xa, σa 〉 and 〈xd, σd 〉

a−→
〈xd,a, σd,a 〉. Using Rule 25 and 18 respectively, we obtain 〈x∗, σ 〉 a−→ 〈xa ;
x∗, σa 〉 and 〈xd ; x∗, σd 〉 a−→〈xd,a ; x∗, σd,a 〉. So, we have 〈 p, σ 〉 a−→〈 pa, σa 〉
and 〈 pd, σd 〉 a−→ 〈 pd,a, σd,a 〉 with pa ≡ xa ; x∗ and pd,a ≡ xd,a ; x∗.

To prove Lemma 4.56 we use result 3 of the induction on x, which tells us that
〈xd′ , σd′ 〉6 ↓. Since pd′ ≡ xd′ ; x∗, Rule 24 does not apply to pd′ and we obtain
〈 pd′ , σd′ 〉6 ↓.

Parallel composition: Suppose 〈 p, σ 〉 p d−→〈 pd, σd 〉 and 〈 p, σ 〉 p d′
−−→〈 pd′ , σd′ 〉, where

p ≡ x‖y and d′ < d. Then at least one of the Rules 30 and 31 applies. Looking
at the hypotheses of these rules we can distinguish three cases regarding the
delay behaviour of x and y:

1. 〈x, σ 〉 6p−→ ∧ 〈x, σ 〉↓ ∧ 〈 y, σ 〉 p d−→ 〈 yd, σd 〉,
2. 〈x, σ 〉 p d−→ 〈xd, σd 〉 ∧ 〈 y, σ 〉 6p−→ ∧ 〈 y, σ 〉↓,
3. 〈x, σ 〉 p d−→ 〈xd, σd 〉 ∧ 〈 y, σ 〉 p d−→ 〈 yd, σd 〉.

For case 1, Rule 30 applies, so we can conclude that pd ≡ yd. From Lemma 4.46

it follows that also 〈 y, σ 〉 p
d′
−−→ 〈 yd′ , σd′ 〉. Again, Rule 30 applies and we can

conclude that pd′ ≡ yd′ .

Induction on y gives us

1. 〈 yd′ , σd′ 〉 p d−d′
−−−→ 〈 yd, σd 〉,

2. ∀yd′,a, σd′,a, a : 〈 yd′ , σd′ 〉 a−→ 〈 yd′,a, σd′,a 〉 ⇒ ∃ya, σa, yd,a, σd,a : 〈 y, σ 〉 a−→
〈 ya, σa 〉 ∧ 〈 yd, σd 〉 a−→ 〈 yd,a, σd,a 〉,

3. 〈 yd′ , σd′ 〉6 ↓.
Lemma 4.53 is easily proved since we already derived that pd ≡ yd and pd′ ≡
yd′ . Result 1 of the induction on y then gives us 〈 pd′ , σd′ 〉 p d−d′

−−−→ 〈 pd, σd 〉.
To prove Lemma 4.55, we assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a,
σd′,a, and a. Since pd′ ≡ yd′ , we find pd′,a ≡ yd′,a. Also, since pd ≡ yd
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result 2 of the induction on y gives us ∃ya, σa, yd,a, σd,a : 〈 y, σ 〉 a−→ 〈 ya, σa 〉 ∧
〈 pd, σd 〉 a−→〈 yd,a, σd,a 〉. Furthermore, Rule 28 gives us 〈 p, σ 〉 a−→〈x ‖ ya, σa 〉.
So, 〈 p, σp 〉 a−→〈 pa, σa 〉 with 〈 pa, σa 〉 ≡ 〈x‖ya, σa 〉 and 〈 pd, σd 〉 a−→〈 pd,a, σd,a 〉
with pd,a ≡ yd,a.

Lemma 4.56 is easily proved since we already derived that pd′ ≡ yd′ . Result 3
of the induction on y then gives us 〈 pd′ , σd′ 〉6 ↓.

Case 2 is proven in a way similar to Case 1 with x and y interchanged.

Finally, for case 3, Rule 31 applies and we obtain 〈x ‖ y, σ 〉 p
d−→ 〈xd ‖ yd, σd 〉.

Since p ≡ x ‖ y and 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉, we obtain pd ≡ xd ‖ yd. Also, since

in this case we have 〈x, σ 〉 p
d−→ 〈xd, σd 〉 and 〈 y, σ 〉 p

d−→ 〈 yd, σd 〉, Lemma 4.46

gives us 〈x, σ 〉 p
d′
−−→ 〈xd′ , σd′ 〉 and 〈 y, σ 〉 p

d′
−−→ 〈 yd′ , σd′ 〉, and we obtain 〈 x ‖

y, σ 〉 p d′
−−→ 〈xd′ ‖ yd′ , σd′ 〉. Since p ≡ x ‖ y and 〈 p, σ 〉 p d′

−−→ 〈 pd′, σd′ 〉, we obtain
pd′ ≡ xd′ ‖ yd′ .

Induction on both x and y gives us

1. 〈xd′ , σd′ 〉 p d−d′
−−−→ 〈xd, σd 〉, and 〈 yd′ , σd′ 〉 p d−d′

−−−→ 〈 yd, σd 〉,
2. ∀xd′,a, σd′,a, a : 〈xd′ , σd′ 〉 a−→〈xd′,a, σd′,a 〉 ⇒ ∃xa, σa, xd,a, σd,a : 〈x, σ 〉 a−→
〈xa, σa 〉 ∧ 〈xd, σd 〉 a−→ 〈 xd,a, σd,a 〉,
∀yd′,a, σd′,a, a : 〈 yd′ , σd′ 〉 a−→ 〈 yd′,a, σd′,a 〉 ⇒ ∃ya, σa, yd,a, σd,a : 〈 y, σ 〉 a−→
〈 ya, σa 〉 ∧ 〈 yd, σd 〉 a−→ 〈 yd,a, σd,a 〉,

3. 〈xd′ , σd′ 〉6 ↓, and 〈 yd′ , σd′ 〉6 ↓.

To prove Lemma 4.53, we can use result 1 of the induction on x and y and

Rule 31 to obtain 〈 pd′ , σd′ 〉 p
d−d′
−−−→ 〈xd ‖ yd, σd 〉 since pd′ ≡ xd′ ‖ yd′ . Because

pd ≡ xd ‖ yd, this means we are done.

To prove Lemma 4.55, we assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a,
σd′,a, and a. Since pd′ ≡ xd′ ‖yd′ , Rule 28 or 29 applies. Since if Rule 29 applies
also Rule 28 applies, it suffices to only consider the case for Rule 28. In that
case we have 〈xd′ , σd′ 〉 a−→〈 pd′,a, σd′,a 〉 or 〈 yd′ , σd′ 〉 a−→〈 pd′,a, σd′,a 〉. Result 2
of the induction on x and y then gives us 〈x, σ 〉 a−→ 〈xa, σa 〉 and 〈xd, σd 〉 a−→
〈xd,a, σd,a 〉 or we obtain 〈 y, σ 〉 a−→ 〈 ya, σa 〉 and 〈 yd, σd 〉 a−→ 〈 yd,a, σd,a 〉. In
the first case we take pa ≡ xa and pd,a ≡ xd,a, and in the second case we take
pa ≡ ya and pd,a ≡ yd,a.

To prove Lemma 4.56 we use result 3 of the induction on x and y, which tells
us that 〈 xd′ , σd′ 〉6 ↓ and 〈 yd′ , σd′ 〉6 ↓. Since pd′ ≡ xd′ ‖ yd′ , Rule 27 does not
apply to 〈 pd′ , σd′ 〉 and we obtain 〈 pd′ , σd′ 〉6 ↓.
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State processes: Suppose 〈 p, σ 〉 p d−→ 〈 pd, σd 〉 and 〈 p, σ 〉 p d′
−−→ 〈 pd′ , σd′ 〉, where p ≡

|[ s | x ]| and d′ < d. Then Rule 34 applies, which gives 〈x, s::σ 〉 p d−→〈xd, sd ::σd 〉
and 〈x, s :: σ 〉 p

d′
−−→ 〈xd′ , sd′ :: σd′ 〉. Note that as a consequence, we find pd ≡

|[ sd | xd ]| and pd′ ≡ |[ sd′ | xd′ ]|.

Induction on x gives us

1. 〈xd′ , sd′ :: σd′ 〉 p d−d′
−−−→ 〈xd, sd :: σd 〉,

2. ∀xd′,a, σd′,a, a : 〈xd′ , sd′ :: σd′ 〉 a−→〈xd′,a, sd′,a :: σd′,a 〉 ⇒ ∃xa, σa, xd,a, σd :
〈x, s :: σ 〉 a−→ 〈xa, sa :: σa 〉 ∧ 〈xd, sd :: σd 〉 a−→ 〈xd,a, sd,a :: σd,a 〉,

3. 〈xd′ , sd′ :: σd′ 〉6 ↓.

Lemma 4.53 is easily proved since we already derived that pd ≡ |[ sd | xd ]|
and pd′ ≡ |[ sd′ | xd′ ]|. Rule 34 and result 1 of the induction on x then give

〈 pd′ , σd′ 〉 p d−d′
−−−→ 〈 pd, σd 〉.

To prove Lemma 4.55, we assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a,
σd′,a, and a. Since pd′ ≡ |[ sd′ | xd′ ]|, using Rule 33 and result 2 of the
induction on x we find that pd′,a ≡ |[ sd′,a | xd′,a ]|. Now, by result 2 of the
induction on x we know that there are xa and xd,a, such that 〈x, s :: σ 〉 a−→
〈xa, sa :: σa 〉 and 〈xd, sd :: σd 〉 a−→〈 xd,a, sd,a :: σd,a 〉. Using Rule 33, we obtain
〈 |[ s | x ]|, σ 〉 a−→ 〈 |[ sa | xa ]|, σa 〉 and 〈 |[ sd | xd ]|, σd 〉 a−→ 〈 |[ sd,a | xd,a ]|, σd,a 〉.
So, we have 〈 p, σ 〉 a−→〈 pa, σa 〉 and 〈 pd, σd 〉 a−→〈 pd,a, σd,a 〉 with pa ≡ |[ sa | xa ]|
and pd,a ≡ |[ sd,a | xd,a ]|.

To prove Lemma 4.56, we use result 3 of the induction on x, which tells us that
〈xd′ , sd′ :: σd′ 〉6 ↓. Since pd′ ≡ |[ sd′ | xd′ ]|, Rule 32 does not apply to pd′ and we
obtain 〈 pd′ , σd′ 〉6 ↓.

Encapsulation: Suppose 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉 and 〈 p, σ 〉 p

d′
−−→ 〈 pd′ , σd′ 〉, where p ≡

∂A(x) and d′ < d. Using Rule 37 we obtain 〈x, σ 〉 p
d−→ 〈xd, σd 〉 and we can

conclude that pd ≡ ∂A(xd). Also, 〈x, σ 〉 p
d′
−−→ 〈xd′ , σd′ 〉 and we can conclude

that pd′ ≡ ∂A(xd′).

Induction on x gives us

1. 〈xd′ , σd′ 〉 p d−d′
−−−→ 〈xd, σd 〉,

2. ∀xd′,a, σd′,a, a : 〈xd′ , σd′ 〉 a−→〈xd′,a, σd′,a 〉 ⇒ ∃xa, σa, xd,a, σd,a : 〈x, σ 〉 a−→
〈xa, σa 〉 ∧ 〈xd, σd 〉 a−→ 〈 xd,a, σd,a 〉,

3. 〈xd′ , σd′ 〉6 ↓.
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Lemma 4.53 is easily proved since we already derived that pd ≡ ∂A(xd) and

pd′ ≡ ∂A(xd′). Rule 37 and result 1 of the induction on x give 〈 pd′ , σd′ 〉 p d−d′
−−−→

〈 pd, σd 〉.

To prove Lemma 4.55, we assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a,
σd′,a, and a. Since 〈 pd′ , σd′ 〉 ≡ 〈 ∂A(xd′), σd′ 〉 we have a 6∈ A and using
Rule 36 and result 2 of the induction on x we find that pd′,a ≡ ∂A(xd′,a).
Now, by result 2 of the induction on x we know that there are xa and xd,a,
such that 〈x, σ 〉 a−→ 〈xa, σa 〉 and 〈xd, σd 〉 a−→ 〈xd,a, σd,a 〉. Using Rule 36 we
obtain 〈 ∂A(x), σ 〉 a−→〈 ∂A(xa), σa 〉 and 〈 ∂A(xd), σd 〉 a−→〈 ∂A(xd,a), σd′,a 〉. So,
we have 〈 p, σ 〉 a−→〈 pa, σa 〉 and 〈 pd, σd 〉 a−→〈 pd,a, σd,a 〉 with pa ≡ ∂A(xa) and
pd,a ≡ ∂A(xd,a).

To prove Lemma 4.56, we use result 3 of the induction on x, which tells us that
〈xd′ , σd′ 〉6 ↓. Since, pd′ ≡ ∂A(xd′), Rule 35 does not apply to pd′ and we obtain
〈 pd′ , σd′ 〉6 ↓.

Maximal progress: Suppose 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉 and 〈 p, σ 〉 p

d′
−−→ 〈 pd′ , σd′ 〉, where

p ≡ π(x) and d′ < d. Using Rule 40 we obtain 〈x, σ 〉 p d−→ 〈xd, σd 〉 and we can

conclude that pd ≡ π(xd). Also, 〈x, σ 〉 p
d′
−−→ 〈xd′ , σd′ 〉 and we can conclude

that pd′ ≡ π(xd′).

Induction on x gives us

1. 〈xd′ , σd′ 〉 p d−d′
−−−→ 〈xd, σd 〉,

2. ∀xd′,a, σd′,a, a : 〈xd′ , σd′ 〉 a−→〈xd′,a, σd′,a 〉 ⇒ ∃xa, σa, xd,a, σd,a : 〈x, σ 〉 a−→
〈xa, σa 〉 ∧ 〈xd, σd 〉 a−→ 〈 xd,a, σd,a 〉,

3. 〈xd′ , σd′ 〉6 ↓.

Lemma 4.53 is easily proved since we already derived that pd ≡ π(xd) and pd′ ≡
π(xd′). Rule 40 and result 1 of the induction on x then give 〈 pd′ , σd′ 〉 p

d−d′
−−−→

〈 pd, σd 〉 provided that 〈xd′ , σd′ 〉 6−→. This follows from the inverse of result 2
and the fact that p ≡ π(x). We know that 〈 p, σ 〉 p d−→〈 pd, σd 〉 and Rule 40 then
gives 〈x, σ 〉 6−→. Consequently, 〈xd′ , σd′ 〉 6−→.

To prove Lemma 4.55, we assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a,
σd′,a, and a. Since pd′ ≡ π(xd′) we find using Rule 39 and result 2 of the
induction on x that pd′,a ≡ π(xd′,a). Now, by result 2 of the induction on
x we know that there are xa and xd,a, such that 〈x, σ 〉 a−→ 〈xa, σa 〉 and
〈xd, σd 〉 a−→〈xd,a, σd,a 〉. Using Rule 39 we obtain 〈π(x), σ 〉 a−→〈π(xa), σa 〉 and
〈π(xd), σd 〉 a−→〈π(xd,a), σd,a 〉. So, we have 〈 p, σ 〉 a−→〈 pa, σa 〉 and 〈 pd, σd 〉 a−→
〈 pd,a, σd,a 〉 with pa ≡ π(xa) and pd,a ≡ π(xd,a).
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To prove Lemma 4.56, we use result 3 of the induction on x, which tells us that
〈xd′ , σd′ 〉6 ↓. Since pd′ ≡ π(xd′), Rule 38 does not apply to pd′ and we obtain
〈 pd′ , σd′ 〉6 ↓.

Abstraction: Suppose 〈 p, σ 〉 p d−→〈 pd, σd 〉 and 〈 p, σ 〉 p d′
−−→〈 pd′, σd′ 〉, where p ≡ π(x)

and d′ < d. Using Rule 44 we obtain 〈x, σ 〉 p d−→ 〈xd, σd 〉 and we can conclude

that pd ≡ τA(xd). Also, 〈x, σ 〉 p d′
−−→ 〈xd′ , σd′ 〉 and we can conclude that pd′ ≡

τA(xd′).

Induction on x gives us

1. 〈xd′ , σd′ 〉 p d−d′
−−−→ 〈xd, σd 〉,

2. ∀xd′,a, σd′,a, a : 〈xd′ , σd′ 〉 a−→〈xd′,a, σd′,a 〉 ⇒ ∃xa, σa, xd,a, σd,a : 〈x, σ 〉 a−→
〈xa, σa 〉 ∧ 〈xd, σd 〉 a−→ 〈 xd,a, σd,a 〉,

3. 〈xd′ , σd′ 〉6 ↓.

Lemma 4.53 is easily proved since we already derived that pd ≡ τA(xd) and

pd′ ≡ τA(xd′). Rule 40 and result 1 of the induction on x give 〈 pd′, σd′ 〉 p d−d′
−−−→

〈 pd, σd 〉.

To prove Lemma 4.55, we assume 〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 for some pd′,a,
σd′,a, and a. Since pd′ ≡ τA(xd′), we find using Rule 42 or 43 and result 2 of
the induction on x that pd′,a ≡ τA(xd′,a). We can distinguish two cases: a 6≡ τ

or a ≡ τ . Suppose a 6≡ τ , then we know by result 2 of the induction on x

that there are xa, σa, xd,a, and σd,a such that 〈x, σ 〉 a−→〈 xa, σa 〉, 〈xd, σd 〉 a−→
〈xd,a, σd,a 〉, and a 6∈ A. Using Rule 42 we obtain 〈 τA(x), σ 〉 a−→ 〈 τA(xa), σa 〉
and 〈 τA(xd), σd 〉 a−→ 〈 τA(xd,a), σd,a 〉. So, we have 〈 p, σ 〉 a−→ 〈 pa, σa 〉 and
〈 pd, σd 〉 a−→ 〈 pd,a, σd,a 〉 with pa ≡ τA(xa) and pd,a ≡ τA(xd,a). In case a ≡ τ ,
we know by result 2 of the induction on x that there are xa′ and xd,a′ , such that

〈x, σ 〉 a′
−−→ 〈xa′ , σa′ 〉, 〈xd, σd 〉 a′

−−→ 〈xd,a′ , σd,a′ 〉, and a′ ∈ A. Using Rule 43
we obtain 〈 τA(x), σ 〉 τ−→ 〈 τA(xτ ), στ 〉 and 〈 τA(xd), σd 〉 τ−→ 〈 τA(xd,τ ), σd,τ 〉.
So, we have 〈 p, σ 〉 a−→〈 pa, σa 〉 and 〈 pd, σd 〉 a−→〈 pd,a, σd,a 〉 with pa ≡ τA(xa),
pd,a ≡ τA(xd,a), and a ≡ τ .

To prove Lemma 4.56 we use result 3 of the induction on x, which tells us that
〈xd′ , σd′ 〉6 ↓. Since pd′ ≡ τA(xd′), Rule 41 does not apply to pd′ and we obtain
〈 pd′ , σd′ 〉6 ↓.
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4.18 Process specifications in χσ

In this section, we describe how process specifications can be written in χσ. It
is important to know that the process specification mechanism of χσ is based on
syntactic replacement. So, formal parameters are replaced by actual parameters.
Furthermore, it is assumed that instantiation is finite and therefore, recursive
process specifications are not allowed. However, infinite behaviour can be specified
by the repetition operator as discussed in Section 4.9.

In χσ, process specifications are equations. The general form is P (x1, . . . , xn) = p,
where P is an identifier, x1, . . . , xn are programming variables, and p is a χσ

process possibly containing the programming variables x1, . . . , xn. An example is
presented in Chapter 8.

4.19 Discussion

We defined the formal syntax and semantics of χσ processes. This is done in an
SOS style. Consequently, the behaviour of χσ processes is defined by deduction
rules. In addition, an equivalence relation, called strong bisimulation, has been
defined on processes. This is an improvement with respect to χ, where a notion
of equivalence is absent. Furthermore, we showed that process operators have
desired properties, the deduction rules are meaningful, and strong bisimulation is
a congruence for all process operators. Together this embodies a mathematical
framework for χσ; a necessary ingredient for a formal method.

We conclude that SOS theory is well suited to define the operational semantics
of χσ. Furthermore, the mathematical framework of χσ could be set up in a way
similar to the frameworks of other languages defined using SOS theory. This con-
firms what was suggested in our motivation for the third alternative in Section 1.3.
However, as became apparent in Section 4.16, combining SOS with AS could not
be done as formal as we would like.
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This chapter discusses the relation between χ and χσ. Its purpose is twofold:
describe improvements and shortcomings of χσ with respect to χ, and provide
evidence to judge whether the formalisation has been successful. Therefore, simi-
larities are discussed and differences are explained.

This chapter is organised as follows. Firstly, Sections 5.1 through 5.3 discuss
fundamental concepts of both languages: concurrent processes, communication,
and imperative programming. Secondly, Sections 5.4 through 5.11 discuss features
of χ that χσ misses. Thirdly, Section 5.12 explains differences between the selection
constructs of χ and χσ, and Section 5.13 describes the abstraction mechanism
of χσ, which is not present in χ. This chapter is concluded by a discussion in
Section 5.14.

5.1 Concurrent processes

One of the most important concepts of χ is that of a process. Usually, a single
entity of a production system is modelled by one process, for instance, a buffer or
a machine. In order to support structural design of production systems, groups of
related entities can be modelled by systems, which are aggregates of concurrent
processes or other systems. To this end, χ incorporates the parallel composition
operator ‘‖’. Note that the ‘‖’ operator has a special status with respect to other
operators, since it is the only operator that can group χ processes; the other
operators group χ statements. Since the process concept of χ is very effective to
model industrial systems, as motivated in [8], χσ has processes, too. Also, χσ

processes can be grouped in the same way as in χ, that is, by means of the ‘‖’
operator. The only difference is that χσ does not have the notion of systems.
Everything is a process and the parallel composition operator can be used to
group processes into a new process.
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Given that in production systems many activities happen at the same time, con-
current processes are very well suited to model these systems. Therefore, χσ has
concurrent processes too. In most descriptions of the operational semantics of χ

[2, 8, 148], it is not stated explicitly whether the language has a true concur-
rency semantics or an interleaving concurrency semantics. In the description of
hybrid χ [68], an explicit choice for an interleaving semantics is made. Further-
more, since one of the goals of χσ is to make available process algebra techniques
to production systems analysis and since an interleaving semantics is standard in
process algebras, χσ also has an interleaving concurrency semantics.

Furthermore, parallelism inside processes can result in more concise specifications.
Situations occur, in particular in real-time control, in which a process waits for
several activities to occur, but the order in which they occur is irrelevant. The
standard strategy to solve this problem in χ is to introduce boolean programming
variables in order to keep track of which activities still have to occur and which
activities have occurred already. For example, suppose a process has to send two
values and receive two values, but the order of the values is irrelevant. In χ this
is specified as

b0 := false ; b1 := false ; b2 := false ; b3 := false ;
∗[ ¬b0 ; m0 ! e0 −→ b0 := true
[] ¬b1 ; m1 ! e1 −→ b1 := true
[] ¬b2 ; m2 ? x0 −→ b2 := true
[] ¬b3 ; m3 ? x1 −→ b3 := true
].

The boolean programming variables b0, b1, b2, and b3 keep track of which activity
has occurred. If b0 is false, the send statement m0 ! e0 has not been executed.
After the send statement is executed, b0 is set to true. A similar explanation can
be given for the other programming variables. As far as functionality concerns,
the solution is correct, however, it is not really an elegant solution. In contrast,
in χσ we can write m0 ! e0 ‖m1 ! e1 ‖m2 ? x0 ‖m3 ? x1.

5.2 Communication

In both languages, communication between concurrent processes is implemented
by channels. Other possibilities for inter-process communication are synchronizing
actions via a (user-definable) communication function in the style of ACP, shared
variables (or memory), and remote procedure calls. Since communication channels



5.2 Communication 135

are a characteristic feature of the χ language, χσ has communication channels too.
Note that communication channels can be seen as a special case of synchronizing
actions where the communication function is defined implicitly. For example, a
send process ∼m ! e or a receive processes ∼m ? x, implicitly defines the (commu-
tative) communication function γ for send and receive actions over channel ∼m:
γ(sa(∼m, e), ra(∼m, x)) = ca(∼m, x, e).

In addition to communication channels, χσ has shared programming variables.
This is a result of the fact that the parallel operator of χ lost its special status
in χσ and can be used inside state operator processes. For example, the following
process has a programming variable x that is shared by two concurrent processes:
|[ x 7→ 0 : λs | x = 0 :→ x := 1 ‖ x > 0 :→ x := 0 ]|.

Channels in χσ have fewer restrictions than channels in χ. First of all, χσ channels
are bidirectional, whereas in χ, channels are unidirectional. Therefore, a process
can use the same channel both to send values and to receive values. The main
reason χσ does not have unidirectional channels is that without them the port
concept need not be formalized. Moreover, it makes some specifications more
concise (see Section 8.8). Since it is possible to use χσ channels as if they were
unidirectional, no expressive power is lost. Sometimes models can be made even
more intuitive, since bidirectional communication devices do exist in real-life and
these can be modelled by bidirectional channels in χσ, whereas they would have
to be modelled as two unidirectional channels in χ.

Secondly, χσ channels can connect more than two processes, whereas in χ a channel
is connected to exactly two processes. Therefore, one channel can be used to
connect an arbitrary number of processes.

Thirdly, communication channels of χ are typed, whereas in χσ, channels are not.
Untyped channels potentially introduce more typing errors. However, in χσ this
effect is limited because communication is still typed in the sense that a value
can only be received in a programming variable of the same type. We preferred
untyped channels, because they simplify the formalisation.

Finally, χσ channels can be used to communicate both synchronously and asyn-
chronously. Communication takes place by first putting a value on a channel and
then reading that value from the channel. In synchronous communication, this
happens during one action (a communication action) whereas in asynchronous
communication, this happens in two successive actions (a send action followed by
a receive action). So, channels can be seen as one-place buffers. Reading is non-
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destructive: reading a value does not remove it. Therefore, the same value can be
read multiple times. On the other hand, χ only has synchronous communication.
Although χσ can be adapted to mimic exactly the communication behaviour of χ,
we think this is not necessary. The current definition of χσ allows the synchronous
communication of χ and, in addition, it allows asynchronous communication.

In χσ, one can define urgent (send and receive) actions. An urgent action is an
action that has to occur before time passes. Note that χσ’s internal action and
assignment actions are always urgent, whereas send, receive, and communication
actions are delayable. In order to define urgent send, receive, and communication
actions, the maximal progress operator of χσ can be used. For example, pro-
cess p ≡ π(∼m ! 1) has to send the value 1 over channel ∼m immediately. Here the
maximal progress operator prohibits the delay transitions of the send process. The
result is that p can only perform an action transition with the action sa(∼m, 1),
hence, an urgent send action. As can be seen, urgent send and delay actions are a
result of the interaction between different language constructs of χσ.

In χ, urgent send and receive statements are impossible. The best one can do is to
define a very small timeout, as in [∼m ! 1 []∆0.0001]. This process wants to engage
in a communication over m only if it happens within 0.0001 time units. Note that
it is still not an urgent action, because a very small delay is possible before the
action is executed. In addition, it is not an elegant solution. In previous versions
of χ this problem was noticed already and it was allowed to write [true ; ∼m !1 −→
skip [] true ; ∆0 −→ skip ] in order to prevent the send statement from delaying.
However, the informal explanation of ∆0 depended on the context, which made it
a difficult construct to formalize.

Still, urgent send and receive actions are useful features of a modelling language
for industrial systems. For example, in a model of a conveyor belt, an urgent send
action concisely models the obligation to remove a product that has reached the
end of the belt. If the send action is not urgent, the product could stay at the
end of the belt indefinitely and this may not always correspond to the real-life
situation.

5.3 Imperative programming

Imperative programming is a style in which there is a notion of states and transi-
tions. Usually, states are defined by the values of programming variables. Program
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execution consists of transitions between states; each transition can change the
state by modifying the values of some programming variables. In a sequential pro-
gramming language, the main construct to change the state is the assignment. In
a concurrent language, communication constructs, like χσ’s send and receive pro-
cesses, can also change the state. Another programming style is called functional
programming [32]. Here, a program is a (mathematical) function and program
execution is just function application. The reason χσ has an imperative program-
ming style, is that χ has it too. A consequence of this decision is the introduction
of the state operator in χσ.

Related to imperative programming is scoping of variables. The scope of a variable
defines that part of the program in which this variable can be used. The state
operator of χσ defines a scope for programming variables (and channels). Since
state operators can be nested, χσ has nested scopes. In contrast, the scope of
programming variables in χ is the process in which they are declared. Since χ

processes cannot be nested, χ does not have nested scopes.

The multiple assignment construct of χ enables one to assign values to several
programming variables at once. This construct is not present in χσ. This is not
really a problem, since by introducing additional programming variables, multiple
assignments can be written as a series of normal assignments.

5.4 Real numbers

As mentioned in Chapter 2, χσ does not have a MEL specification for the real
numbers. The reason is that a MEL specification of real numbers is impossible.
This can be understood easily, since MEL specifications have an initial algebra
semantics (see Section C.2). Consequently, for every element of a model of a
MEL specification, there is a syntactic representation and, therefore, these sets
are countable. Since the set of real numbers is uncountable, it is impossible to
define a MEL specification of the real numbers. We think this is a serious omission
of χσ that should be resolved in future versions. We are aware that it is possible to
define part of the real numbers in a first order algebraic setting [169]. The authors
claim that it is strong enough for many practical purposes, in particular certain
numerical applications. A similar approach can be taken for χσ using MEL.
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5.5 Probabilities and distributions

A language with probabilistic or stochastic constructs is very useful to model
industrial systems. Therefore, χ has a distribution data type. Elements of this
data type are stochastic distributions, for example, uniform distributions with
given lower and upper bound and Gamma distributions with given mean and
standard deviation. A distribution can be used to take samples. These samples
can be used to model, for instance, inter-arrival times of products or processing
times of machines.

As mentioned in Section 1.4, χσ does not have these probabilistic features. We
admit that the lack of probabilistic language constructs is a serious omission if χσ

is to be really useful in modelling industrial systems. Therefore, research on future
versions of χσ should focus on the integration of probabilities. Note, however, that
tools developed for χσ have extensions that support probabilities and distributions
(see Section 7.6).

Probabilistic and stochastic formalisms are subject of active research in Formal
Methods. An introduction to three different probabilistic models is presented
in [78]. A widely accepted definition of weak-bisimulation on probabilistic transi-
tion systems is described in [183, 184]. The first definition of (strong) probabilistic
bisimulation is given in [127]. In [98, 99] extensions of CCS with both time and
probabilistic constructs are described. In [129], a probabilistic extension of CSP
is given. The specification language LOTOS is extended with probabilistic con-
structs in [140]. In [87], stochastic process algebras are used to analyse functional
and performance properties of distributed systems. In [7, 114, 15], probabilistic
extensions of process algebras are described. A particular stochastic process alge-
bra, called PEPA, is described in [104]. Finally, stochastic automata are discussed
in [59].

5.6 Current time expression

In Chapter 3, we described that χ models can refer to the current time. In a χ

model, the read only programming variable τ (which should not be confused with
the internal action τ of χσ) always has the value of the current time. In many χ

specifications, τ is used to compute performance measures, like cycle time and
throughput. In these situations, τ is not needed to specify the behaviour of a
particular system, but it is merely used to analyze the system. On the other
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hand, there are χ specifications in which τ plays a crucial role. The conveyor belt
process C on page 46 is a good example. Here, each time a product is received
by the conveyor, τ is used to compute the time at which the product should leave
the conveyor. In situations like this, the specification can usually be rewritten
into a functionally equivalent specification that does not use τ . For instance, the
conveyor belt system can be rewritten into the parallel composition of n processes,
where n is the capacity of the conveyor belt. Note that the original χ specification
of conveyor C has infinite capacity.

The remainder of this section presents four alternatives to incorporate a current
time expression in χσ. Firstly, it is possible to add time to action transitions, delay
transitions, and terminations of χσ-LTSs. In literature, two variants can be found.
First, it is possible to add a time stamp to the transitions [182, 61, 70]. Second, it is
possible to add a start time and an end time to the transitions of the χσ-LTSs [90,
115, 16]. If the first approach is chosen for χσ, action transitions, delay transitions,

and terminations would get the form 〈 p, σ 〉 a,t−−→〈 p′, σ′ 〉, 〈 p, σ 〉 p d,t−−→〈 p′, σ′ 〉, and
〈 p, σ 〉↓t, respectively. Here t ∈ R≥0 denotes the time at which the transition
or termination occurs or starts. If the second approach is chosen for χσ, action
transitions, delay transitions, and terminations would get the form 〈 p, σ, t 〉 a−→
〈 p′, σ′, t′ 〉, and 〈 p, σ, t 〉 p

d−→ 〈 p′, σ′, t′ 〉, and 〈 p, σ, t 〉↓, respectively. Here, t, t′ ∈
R≥0 are the start time and end time of the action and delay transitions. Note
that termination is instantaneous and does not have an end time. In addition
to changing the action transitions, delay transitions, and terminations, a new
expression denoting the current time has to be introduced. The value of this
expression is the value of the time stamp t in the first approach and the value of
the start time t in the second approach.

Another option is to introduce a data type of real-valued clocks, as in timed-
automata [64, 3, 4]. The value of a clock increases during delay transitions and it
can be reset to 0 by a special language construct. In addition, a clock can be used
as a read-only programming variable in expressions, thus providing a current time
expression. If a data type of real-valued clocks is included in χσ, the state-stacks
could be used to keep track of the values of the clocks. Just as programming
variables and channels, clocks can be represented by identifiers to which values are
associated. Consequently, processes can have multiple clocks possibly occurring
in different (nested) scopes. In addition, a clock reset process and a clock reset
action should be defined. The clock reset process takes a clock as argument and
can perform a clock reset action on that clock. Finally, the deduction rules with
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delay transitions as a conclusion need to be adapted in order to realize the increase
of the clock values present in the stack. Suppose the clocks are γ0, . . . , γn−1 for
some natural number n. Then in general, the conclusions will have the form
〈 p, σ 〉 p d−→ 〈 p′, σ[σ(γ0) + d/γ0][σ(γ1) + d/γ1] . . . [σ(γn−1) + d/γn−1] 〉.

For example, suppose γ is a clock identifier. The clock reset process for γ and
the clock reset action for γ are denoted by reset γ and cra(γ), respectively. The
following example defines a machine that repeatedly receives a product in x, pro-
cesses this product for 5 time units, and send that product away via ∼out . The
total waiting time for all these products is computed in y (using the clock γ):

|[ (γ 7→ 0.0) : (x 7→ ⊥) : (y 7→ 0.0) : λs | P ∗ ; δ ]|,

where P = (reset γ ; ∼in ?x ; y :=y +γ ; ∆5 ; ∼out !x). Suppose this process has
to wait 2.57 time units before it receives a product (represented by the value 0)
over channel ∼in. This results in the following transitions (we omit the stacks):

|[ (γ 7→ 0.0) : (x 7→ ⊥) : (y 7→ 0.0) : λs | P ∗ ; δ ]|
cra(γ)−−−−→
|[ (γ 7→ 0.0) : (x 7→ ⊥) : (y 7→ 0.0) : λs

| (ε ; ∼in ? x ; y := y + γ ; ∆5 ; ∼out ! x) ; P ∗ ; δ

]|
p
2.57−−−→
|[ (γ 7→ 2.57) : (x 7→ ⊥) : (y 7→ 0.0) : λs

| (∼in ? x ; y := y + γ ; ∆5 ; ∼out ! x) ; P ∗ ; δ

]|
ra(∼in,x)−−−−−−−→
|[ (γ 7→ 2.57) : (x 7→ 0) : (y 7→ 0.0) : λs

| (ε ; y := y + γ ; ∆5 ; ∼out ! x) ; P ∗ ; δ

]|
aa(y,2.57)−−−−−−−→
|[ (γ 7→ 2.57) : (x 7→ 0) : (y 7→ 2.57) : λs | (ε ; ∆5 ; ∼out ! x) ; P ∗ ; δ ]|
p
5−→
|[ (γ 7→ 7.57) : (x 7→ 0) : (y 7→ 2.57) : λs | (∆5− 5 ; ∼out ! x) ; P ∗ ; δ ]|
sa(∼out,0)−−−−−−−→
|[ (γ 7→ 7.57) : (x 7→ 0) : (y 7→ 2.57) : λs | ε ; P ∗ ; δ ]|.
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Since delaying is a global property, it seems natural to update all clocks during
delay transitions, even the ones that are not visible in the stack. Note that this
changes the scoping properties of the state operator. On the other hand, if only
visible clocks are updated during delay transitions, hiding a clock has the effect of
stopping that clock.

In addition, it is possible to specify a clock process explicitly. In [42], this approach
is taken to add time to the untimed specification language Promela and in [178,
Chapter 14] this approach is taken to add time to (untimed) CSP. In χσ, a clock
process could be defined by |[ c :7→ 0 : λs | (∆t ; c := c + t)∗ ; δ ]|, where t ∈ R>0

is an arbitrary, but fixed, positive real number denoting the size of the minimal
time step. This process models the current time by the real-valued programming
variable c which is updated after delay transitions. The programming variable c

represents the current time expression. The advantage of this alternative is that χσ

is powerful enough to support it; the deduction rules need not be adapted. The
disadvantage is that the clock is updated at discrete times, which effectively means
that the model has a discrete time domain (with time unit t). Another potential
problem with this alternative is that the update of c is an ordinary assignment
action that will be interleaved arbitrarily with other actions. Therefore, if another
process uses c as the current time expression, it is possible that c has not been
updated yet. However, a simple solution to this problem is to split the ∆t process
into two sequential delay processes ∆t0 and ∆t1, such that t0 + t1 = t and put the
assignment to c in between: |[ c :7→ 0.0 : λs | (∆t0 ; c := c + t ; ∆t1)∗ ; δ ]|.

Finally, alternatives to incorporate continuous behaviour in χσ can be investigated.
This will make χσ a hybrid formalism in which both discrete and continuous be-
haviour can be modelled. Well known hybrid formalisms are hybrid automata [102]
and hybrid I/O automata [132]. Continuous functions can be specified by systems
of differential equations. A clock can be modelled by a continuous function with
derivative 1. An advantage of this approach is that clocks are modelled in the
(hybrid) language, just as in the previous solution. Therefore, the deduction rules
need not be changed and all lemmas and theorems still hold. Eventually, χσ should
include constructs to specify hybrid systems.

Considering these alternatives, we see that all but one of the alternatives mentioned
above suffer from the fact that some properties do not hold anymore. For example,
Lemma 4.47 (Time factorisation) on page 113 states that ∆e ; p[]∆e+e′ ↔ ∆e ; (p[]
∆e′). Suppose the current time is denoted by the expression τσ. Then, the lemma
does not hold anymore, since we do not have ∆τσ ; p[]∆τσ+2τσ ↔ ∆τσ ; (p[]∆2τσ).
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The clock process solution does not have this drawback. However, the clock process
solution turns χσ into a discrete time language.

5.7 List-like data types

In χ several list-like data types, each with its own interface, are defined: lists,
strings, files, and tuples. In contrast, χσ has just lists and tuples. There are at
least two reasons why χσ has no strings and files. First of all, we think strings and
files are just special types of lists: lists of characters and lists of bytes, respectively.
Since χσ has lists, there is no need to include strings and files, too. Secondly,
and more importantly, strings and files are mostly used for input and output of
model parameters and analysis of data. Therefore, they are usually not used to
model aspects of industrial systems, but to provide analysis functionality. We
think analysis functionality should not be part of the specification, but should be
provided by an experiment environment (see Section 7.8).

5.8 Ranges

Ranges and the associated range programming variables are powerful constructs
to model large systems. For example, to instantiate five parallel processes P , one
can write ‖ i : nat ← 0..5 : P (i). Recall that a range includes its lower bound,
but excludes its upper bound. Semantically, the expression above is equivalent to
P (0) ‖P (1) ‖P (2) ‖P (3) ‖P (4). Furthermore, χ requires the range expressions to
be constant expressions. Per definition, constant expressions do not depend on the
value of programming variables. Therefore, ranges are just syntactic sugar and we
did not include them in χσ.

5.9 Terminate statement

In χ, the terminate statement is used to terminate a simulation run. That is,
as soon as it is executed, it blocks all activity of the simulation. The terminate

statement is introduced in χ mainly to ease simulation-based analysis. As ac-
knowledged by the χ developers, the functionality of this statement should really
be provided by an experiment environment. Therefore, the terminate statement is
not included in χσ.
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5.10 Input and output statements

The input and output statements of χ are ?x and !e, respectively. These statements
are used to provide an interactive user-interface for χ specifications. An interactive
user-interface can provide functionality to set parameters of a simulation, which
is very useful during analysis of the specification.

However, a specification in a modelling language should model a particular real-
life system and nothing more. Only if there is a need to model input and output
behaviour of a system, should the modelling language provide constructs to specify
this behaviour. However, χ (χσ) already has these constructs, namely, normal send
and receive statements (processes). Therefore, we did not include input and output
processes in χσ.

We are aware of the fact that during analysis, whether it is simulation or verifi-
cation, it is important to have access to the data of a concrete instantiation of a
model. If input and output statements are not available, alternatives should be
provided. The alternative we propose is an experiment environment with access
routines or functions to manipulate concrete models. This alternative supports a
clear separation between functionality of the model and functionality to analyze
the model. In a verification setting this is important, since usually only the func-
tionality of the model needs to be verified, not the functionality to analyze the
model. In Section 7.8, we discuss the χσ experiment environment in more detail.

5.11 Functions

The χσ language does not have a function definition mechanism comparable to χ.
However, like all built-in functions of χσ, user-defined functions can be specified
in MEL. Since χ has always had the requirement that user-defined functions be
‘mathematical’ functions (in the sense that they return the same value for the
same parameters) it is possible to translate χ functions into MEL functions.

5.12 Selection

As described in Chapter 3, χ has two selection statements: the guarded command
statement and the selective waiting statement. A drawback of these statements is
that they are context dependent. That is, depending on the context (non-repetitive
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versus repetitive) they can or cannot deadlock. Another drawback is that they have
similar functionality, which can be confusing. Furthermore, they have different
delay behaviour. To be more specific, the guarded command statement does not
have time factorisation, whereas the selective waiting statement does have time
factorisation. The cause of these problems is that too much functionality has
been put in one statement. In χσ, this functionality is distributed over separate
process operators. This is illustrated by the translation of the guarded command
statement and the selective waiting statement in the next chapter.

5.13 Abstraction

The abstraction operator of χσ enables one to hide certain actions. This feature
is necessary if one wants to check formally if an implementation satisfies a specifi-
cation. As described in Chapter 1, such checks are typical examples of functional
analysis. Since one of the main reasons to formalise χ was to enable functional
analysis, the abstraction operator has been incorporated in χσ.

5.14 Discussion

In this chapter, the relation between χ and χσ is discussed. Its purpose is twofold:
describe improvements and shortcomings of χσ with respect to χ, and provide
evidence to judge whether the formalisation has been successful.

We believe χσ improves upon χ in several ways. First of all, some restrictions
in χ are not present in χσ. For example, in χσ, the parallel composition operator
and the state operator can be mixed freely with other process operators. Also,
the concept of unidirectional typed channels between exactly two processes has
been generalised to bidirectional untyped channels between many processes. As a
result, the number of channels needed in a χσ specification is usually less than in
the corresponding χ specification. Also, with respect to orthogonality of language
constructs, χσ is an improvement of χ. For example, with respect to selection, time
factorisation, and guarding, χσ has a clear separation of concerns, whereas χ has
not. Another improvement is the ability to perform specification-implementation
checks in χσ. These checks are possible because of the abstraction operator.

Some constructs of χ have been excluded from χσ. The language constructs ex-
cluded were (mostly) used for analysis purposes. Functionality to analyse χσ
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specifications should not be provided by the language, but by a mathematical
framework and by an experiment environment. Examples of χ constructs excluded
from χσ are the current time expression τ and the terminate statement.

We are aware of the fact that χ has useful features which χσ lacks. For instance,
a data type of real numbers, a data type of distributions, and syntactic sugar to
denote ranges. In future versions of χσ, these features should be included, because
they are very useful to analyse large, real-life industrial systems.
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This chapter defines a translation scheme from χ into χσ. The purpose of this
chapter is to show that χσ is a formal version of χ. In particular, the ‘look and feel’
of the languages should the same, and the translation should be straightforward.
Together with the formal semantics of χσ the translation provides the formal
semantics of χ.

The translation scheme is defined as a ‘function’ from syntactic entities in χ to
syntactic entities in χσ: T : χ→ χσ. The function T has been designed such that
it can be automated. In this respect it is interesting to note that the translation
scheme is currently used in new implementations of χ tools (the chipy project [38]).

This chapter has the same structure as Chapter 3. That is, first, we translate type
aliases and constants (Sections 6.1 and 6.2). Then, we translate processes, systems,
and functions (Sections 6.3, 6.4, and 6.5). Next, we show how to translate χ

experiments (Section 6.6). This chapter is concluded by a discussion (Section 6.7).

6.1 Type aliases

Type alias definition has been defined in Section 3.1. Although type aliases usually
increase readability, they are just syntactic sugar. Therefore, χσ does not have
type aliases.

6.2 Constants

Constant definition has been defined in Section 3.2. Constants can be defined
as nullary functions in a MEL specification. In addition, the MEL specification
should contain an equation that defines the value of the constant.
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6.3 Processes

In Section 3.3, the syntax of process definitions in χ has been defined. Here, we
define the translation of χ process definitions into χσ process definitions and the
translation of χ statements into χσ processes.

Process definitions in χ are translated into process definitions in χσ. There are
several issues involved. First of all, local programming variables of χ processes
should be mapped onto local programming variables in χσ processes. Therefore,
we translate χ process bodies to χσ state operator processes. If the χ process
does not have local programming variables, the χσ process has an empty state.
Note that, according to Lemma 4.32, this does not influence the behaviour of the
process. Secondly, formal parameters of χ processes are both formal parameters
and local programming variables of χσ processes. The reason for this is that
inside a χ process, formal parameters can be used as local programming variables,
whereas in χσ processes, formal parameters are replaced by the actual parameters
upon instantiation (see Section 4.18), and cannot be used as local programming
variables. By defining formal parameters of χ processes in χσ processes both as
formal parameters and as local programming variables initialized by the actual
value of the formal parameters, this problem is solved. For instance, the χ process
definition

proc P (x : int) = |[ y : nat | S ]|,

where S is an arbitrary χ statement, is translated into

P (x : int) = |[ (x : int 7→ x) : (y : nat 7→ ⊥) : λs | T (S) ]|.

The instantiation mechanism of χσ ensures that the local programming variable x

of p is initialized with the actual value of parameter x. Notice, that the valuations
are typed. In a typed valuation, identifier i is of type t. This is denoted by
i : t 7→ c. Typed valuations should be type-correct, meaning, the type of the
identifier should be the same as the type of the value.

Channel parameters are treated differently, since in χ channel parameters cannot
be used as local programming variables. Therefore, the translation of channel
parameters does not involve defining local channel programming variables, but
it suffices to define them as channel parameters of χσ process definitions. For
instance, the process definition
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proc P (x : int, c : !bool) = |[ y : nat | S ]|,

where S is an arbitrary χ statement, is translated into

P (x : int, c : chan) = |[ (x : int 7→ x) : (y : nat 7→ ⊥) : λs | T (S) ]|.

Note that the channel type of χ is lost, since χσ channels do not have types.

The translation of χ statements into χσ processes is defined in Tables 6.1 and 6.2.
The first table translates basic statements and the second table translates com-
pound statements. The left column in these tables shows the χ statements and
the right column shows their translation into χσ processes. If the right column is
empty, the concerning χ statement cannot be translated directly into χσ.

χ statement: S χσ process: T (S)

skip skip

terminate

setseed(d, enum)
x := e x := e

∆e ∆e

m ! e m ! e

m ? x m ? x

m! m ! 〈〉
m? |[ x : tuple[ ] | m ? x ]|
m∼ m ! 〈〉 [] |[ x : tuple[ ] | m ? x ]|
!e
?x

Table 6.1 Translation of basic χ statements into χσ processes.

The terminate, setseed (a probabilistic construct), ‘!e’, and ‘?x’ statements are not
translated (see Chapter 5).

The translation of assignment statements assumes that χ expressions can be trans-
lated into χσ expressions. A similar remark can be made for the delay statement
and the send statement.

Send and receive statements are translated into send and receive processes, respec-
tively. Since send and receive statements communicate synchronously, whereas
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χ statement: S χσ process: T (S)

[ b1 −→ S1

[] b2 −→ S2

...
[] bn −→ Sn

]

( b1 :→ skip ; T (S1)
[] b2 :→ skip ; T (S2)

...
[] bn :→ skip ; T (Sn)
)

∗[ b1 −→ S1

[] b2 −→ S2

...
[] bn −→ Sn

]

( b1 :→ skip ; T (S1)
[] b2 :→ skip ; T (S2)

...
[] bn :→ skip ; T (Sn)
) ∗ ; ¬(b1 ∨ b2 ∨ . . . ∨ bn) :→ ε

[ b1 ; s1 −→ S1

[] b2 ; s2 −→ S2

...
[] bn ; sn −→ Sn

]

( b1 :→ T (s1) ; skip ; T (S1)
[] b2 :→ T (s2) ; skip ; T (S2)

...
[] bn :→ T (sn) ; skip ; T (Sn)
)

∗[ b1 ; s1 −→ S1

[] b2 ; s2 −→ S2

...
[] bn ; sn −→ Sn

]

( b1 :→ T (s1) ; skip ; T (S1)
[] b2 :→ T (s2) ; skip ; T (S2)

...
[] bn :→ T (sn) ; skip ; T (Sn)
) ∗ ; ¬(b1 ∨ b2 ∨ . . . ∨ bn) :→ ε

Table 6.2 Translation of compound χ statements into χσ processes.

send and receive processes communicate both synchronously and asynchronously,
the behaviour of the translated version is slightly different. In Section 6.6, we dis-
cuss how to prohibit asynchronous communication by means of the encapsulation
operator.

In addition, send and receive statements in χ delay until both parties are ready to
communicate: urgent communication. However, in χσ send and receive processes
can delay even if both parties are ready to communicate: delayable communication.
In Section 6.6, we discuss how to enforce urgent communication by means of the
maximal progress operator.
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Directed synchronisation statements are translated into send and receive processes.
Since the value communicated is an empty tuple, denoted by 〈〉, there is no infor-
mation transfer. Effectively, this means that the two processes synchronize. Note
that the receive process is enclosed in a state operator process in order to introduce
a fresh programming variable x : tuple[ ].

The undirected synchronization statement has no counterpart in χσ. It behaves
either as a send synchronisation statement or a receive synchronisation statement.
Therefore, the translation is the alternative composition of the translations of these
two statements.

This completes the translation of basic χ statements. Next, we describe the trans-
lation of compound statements. As mentioned above, this translation is given in
Table 6.2.

Note that Table 6.2 introduces skip processes that are not present in the respec-
tive χ statements. The reason for this is that guarded command statements and
selective waiting statements in χ make a choice after the guards are evaluated, but
before the statements following the ‘−→’ are executed. So, a choice is made ‘at
the ‘−→’ symbol’. In contrast, the alternative composition of χσ makes a choice
by executing an action of one of its alternatives. By translating the ‘−→’ into a
skip process, the selection of an alternative in χ is translated into an explicit action
in χσ.

In the repetitive guarded command and the repetitive selective waiting, the body
is repeated as long as at least one of the guards is true. If none of the guards is true,
the repetition terminates successfully. To capture this behaviour, the translation
is a sequential composition of a repetition process and an ‘exit’ process. The
repetition process contains the translation of the body of the loop, which is the
translation of a guarded command or a selective waiting statement. The exit
process contains an empty process guarded by the negation of the disjunction of
the guards of the alternatives.

6.4 Systems

In Section 3.4, the syntax of system definitions in χ has been defined. The trans-
lation of system definitions is similar to the translation of process definitions.
Therefore, the system definition
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syst P (x : int, c : ?int) = |[ y : int |S ]|,

where S is a valid system body of χ, is translated into

P (x : int, c : chan) = |[ (x : int 7→ x) : (y : int 7→ ⊥) : λs | S ]|.

Notice, that the body of a χ system is a parallel composition of several process or
system instantiations. Therefore, the translation of a system body is the identity
function.

6.5 Functions

In Section 3.5, the syntax of function definitions in χ has been defined. Function
definitions are not translated into χσ. This does not mean user-definable functions
are impossible in χσ. It just means the function definitions have to be translated
manually (see Section 5.11).

6.6 Experiments

In Section 3.6, the syntax of experiment definitions in χ has been defined. It follows
from the description that an experiment is just a process or system instantiation.
Therefore, a natural translation of

xper = |[ P (3.5) ]|

would be the instantiation of the corresponding χσ process definition. For conve-
nience, we call the χσ process definition T (P ). This gives the following translation:
T (P )(3.5). However, the process T (P )(3.5) does not have the same behaviour
as P (3.5). Firstly, if P (3.5) has communication statements, s, these statements
wait until both parties are ready to communicate. Therefore, in P (3.5), send and
receive statements cannot be executed in isolation. However, T (P (3.5) can execute
isolated send and receive processes, since this is not forbidden by the SOS rules
of χσ. A solution is to encapsulate the send and receive actions. So, if we define
A = {sa(m, c) | m ∈ Channel , c ∈ Value} ∪ {ra(m, x) | m ∈ Channel , x ∈ Var},
the translation is

∂A(T (P )(3.5)).
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Secondly, χ has maximal progress built in. Therefore, if P (3.5) is at a point
where at least one non-delay statement can be executed (possibly a communica-
tion), the process (or system) cannot delay. However, χσ does not have maximal
progress built in, but provides a maximal progress operator to enforce this be-
haviour. Therefore, in addition to the encapsulation operator, a maximal progress
operator is added to the translation of χ experiments, with A as defined above:

π(∂A(T (P )(3.5))).

6.7 Discussion

In this chapter, a translation scheme from χ into χσ has been defined. The fact
that the scheme is straightforward and maintains the ‘look and feel’ of χ specifi-
cations, shows that χσ is a formal version of χ. This is an important observation
with respect to one of our starting points: formalise an engineering language (see
Section 1.3).

The presented scheme is linear in the size of the χ specification. Recently, a tool
has been developed to perform the translation automatically.

Unfortunately, since χσ lacks several features of χ (see previous chapter), some χ

statements cannot be translated.
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This chapter describes the tools we used to validate the formal definitions of Chap-
ters 2 and 4 and to perform case studies with χσ. These tools are collectively called
the χσ engine and have been implemented in Python [24, 130] and Maude. The
current version of the χσ engine is a prototype. It can be used to analyze (small)
production systems, as we show in Chapter 8. We do not describe the implemen-
tation of the χσ engine but confine ourselves to its theoretical foundation and its
architecture. At a global level, the χσ engine consists of the following components.

Front end The task of the front end of the χσ engine is to parse χσ specifications
and to build an internal representation of these specifications.

SOS checker The SOS checker verifies whether a given termination or transition
formula can be derived according to the SOS of χσ.

SOS computer The SOS computer calculates the SOS of a χσ process; it computes
transition and termination options.

Back end The back end of the χσ engine provides functionality to simulate speci-
fications and to generate state spaces of specifications.

The χσ engine is integrated with third party tools to minimize state spaces, check
equivalences of state spaces, and visualize state spaces. In addition, we describe
an experiment environment that provides a uniform interface to the functionality
of the χσ engine and the third party tools.

This chapter is organised as follows. First of all, we discuss the goals and re-
quirements of the χσ engine in Section 7.1. The tools are then discussed from
front end in Section 7.2, to back end in Section 7.5. In Section 7.6, we describe
several extensions of χσ that have been implemented. Third party tools are then
discussed in Section 7.7, and in Section 7.8, we discuss an experiment environment
to perform case studies. This chapter is concluded by a discussion in Section 7.9.
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7.1 Goals and requirements

The goals of the χσ engine are validation of the formal semantics of χσ, illustration
of constructs and concepts, and automatic analysis of χσ models. These goals are
discussed below.

Validation of the formal semantics of χσ means investigating the consequences of
the formal definitions of χσ. This can be done in at least two ways. Firstly, by
proving lemmas and theorems general results can be established that give insight
in the formal semantics of χσ. Secondly, by executing actual χσ specifications
in the χσ engine, their behaviour can be analysed. If the behaviour exposed is
undesired, we can conclude that either the implementation of the χσ engine is not
correct with respect to the formal definitions, or the formal definitions are wrong.

The χσ engine can be used to illustrate constructs and concepts of χσ. For
instance, the interaction between different process operators can be visualized
by a graphical representation of the state space (see Chapter 8). In addition,
the χσ engine can illustrate concepts like nondeterminism, time factorisation,
deadlock, and specification-implementation correctness.

By automatic analysis of a χσ specification, we obtain information about that
specification. For instance, the χσ engine can be used to show that it is deadlock-
free. In theory, this can be done by hand. However, only if the specification is
small, is this approach practical. Consequently, to analyse χσ specifications of
real-life production systems, tool support is indispensable.

Based on the three goals mentioned above, we define the following requirements.

1. The χσ engine should correctly implement the formal semantics of χσ.

A correctness proof for the χσ engine is outside the scope of the research
described in this thesis. In order to satisfy the first requirement, we subjected
the χσ engine to tests. In order to increase the credibility of test results, we
implemented two versions of the formal semantics: the SOS checker and the
SOS computer.

2. The χσ engine should handle all χσ processes.

As we explain in Section 7.4, we cannot implement a tool that computes the
complete process graph of a χσ process, because it is infinite. Therefore, we
present some lemmas by which we can reduce the process graph such that
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is becomes finite while preserving important properties. The χσ engine can
compute these finite process graphs.

3. The output of the χσ engine should be in terms of the formal semantics
of χσ: processes, terminations, action transitions, and delay transitions.

4. The χσ engine should have a practical user-interface to analyse both small
and large χσ specifications.

5. It should be relatively easy to integrate existing tools with the χσ engine.

The χσ engine should not be a stand alone application, but it should co-
operate with existing applications. As mentioned above, the χσ engine is
integrated with different kinds of tools to analyse and visualize state spaces.

7.2 Front end

The front end of the χσ engine transforms a (textual) χσ specification into an in-
ternal representation. During the transformation, the front end performs syntactic
and semantic checks on the specification. Syntactic checking is based on the χσ

grammar for textual input. Semantic checking is currently limited to formal-actual
parameter checks of process instantiations and should be extended to type check-
ing.

7.3 SOS checker

The SOS checker verifies termination formulas and transition formulas (see Def-
inition 4.3). For instance, given a termination formula 〈 p, σ 〉↓ or a transition
formula 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, the SOS checker verifies if this formula can be derived
according to the deduction rules of processes and the MEL specifications of the
data types. As such, the SOS checker is an automatic theorem prover for theorems
of the forms 〈 p, σ 〉↓, 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, and 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉.

The functionality of the SOS checker is useful in several ways. First of all, early
in the formalisation process of χσ, the SOS checker greatly aided us in checking
hand-made derivations of terminations and transitions. Since even for relatively
small processes, generating these derivations is error-prone, a correctness check by
an automated tool like the SOS checker is very valuable. Furthermore, if the result
of the SOS checker did not comply with our intuition about the SOS of χσ, the
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tool usually indicated where the mismatch occurred. Based on this information,
we then had to decide whether to change the definitions or to adapt our intuition.

Another useful application of the SOS checker is to verify terminations and tran-
sitions computed by other χσ tools. For instance, the χσ simulator and model
checker were both validated using the SOS checker; each termination and tran-
sition computed by these tools, can be verified by the SOS checker. During the
development of the simulator and model checker, several implementation errors
were discovered by the SOS checker. Furthermore, if new χσ tools are developed,
the SOS checker can be a valuable testing device.

The main requirement of the SOS checker is that it is a correct implementation of
χσ. In order to validate this requirement, we chose to write an implementation of
the SOS checker that more or less literally resembles the formal definitions of the
data types and the deduction rules.

We implemented the SOS checker for χσ in Maude. Recall that Maude was also
used to test the data type specifications given in Chapter 2. The implementation
of the χσ data types in Maude is straightforward, since they are defined in MEL
and Maude supports MEL. The implementation of the deduction rules in Maude
can be done in several ways.

First of all, deduction rules can be implemented by unconditional equations in
Maude. For instance, by defining a boolean valued operator 〈 , 〉−→〈 , 〉 → bool
in MEL (and similar operators for delay transitions and termination relations), a
transition 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 is a boolean term. Equations can be used to define
the semantics of this operator. The main problem with this approach is that
sometimes several equations apply. Consider, for instance, the action rules for the
sequential composition (Rules 18 and 19, page 77):

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 p ; q, σ 〉 a−→ 〈 p′ ; q, σ′ 〉
,
〈 p, σ 〉↓, 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉

〈 p ; q, σ 〉 a−→ 〈 q′, σ′ 〉
.

If these rules are translated into equations, as in

〈 p ; q, σ 〉 a−→ 〈 p′ ; q, σ′ 〉 = 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉,
〈 p ; q, σ 〉 a−→ 〈 q′, σ′ 〉 = 〈 p, σ 〉↓ ∧ 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉,

it is possible that several equations apply. If the first equation applies, then also the
second equation applies. The problem with this translation is that selection of an
equation is based solely on the syntactic form of the conclusion of a deduction rule.
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Therefore, Maude’s built-in strategy to apply equations decides which equation will
actually be used. Consequently, even if the hypotheses of a deduction rule cannot
be satisfied, it is still possible to select this deduction rule. This makes it useless
for the implementation of the SOS checker.

Secondly, as described in [57], operational semantics can be defined using Maude’s
rewriting logic [137]. That is, each deduction rule is implemented by one or more
rewrite rules in Maude. Notice that rewrite rules are not equations; Maude sup-
ports both MEL (equations) and Rewriting Logic (rewrite rules). If we apply this
approach to χσ, each transition 〈 p, σ 〉 a−→〈 p′, σ′ 〉 is translated into a rewrite rule
of the form 〈 p, σ 〉 ⇒ {a}〈 p′, σ′ 〉, where {a}〈 p′, σ′ 〉 denotes the resulting pro-
cess p′ and stack σ′ after executing action a. Unfortunately, this approach has
similar problems as the approach described above.

Based on these observations, we developed another approach. In this approach,
the hypotheses of a deduction rule are regarded as conditions of the equation.
In addition, the conclusion is the left-hand side of the equation, and the right-
hand side of the equation is simply the boolean constant true. For example, the
deduction rule for the action transitions of the sequential composition operator
are translated into

〈 p ; q, σ 〉 a−→ 〈 p′ ; q, σ′ 〉 = true ⇐ 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉,
〈 p ; q, σ 〉 a−→ 〈 q′, σ′ 〉 = true ⇐ 〈 p, σ 〉↓ ∧ 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉.

Since Maude can apply an equation only if its condition is true, this approach first
evaluates the hypotheses of a deduction rule and Maude can evaluate the conclu-
sion only if the hypotheses are satisfied. Note that it is still possible that several
equations apply. However, in that case it does not matter which equation is cho-
sen, since all hypotheses are satisfied and the result will always be true. It is clear
that the implementation of the SOS checker based on this conditional equations
approach, can straightforwardly be validated. Therefore, the main requirement of
the SOS checker, a correct implementation of χσ, is met by this approach.

7.4 SOS computer

The SOS computer computes the semantics of a χσ process as defined in Chapter 4.
That is, given a process, the SOS computer determines whether or not the process
can terminate successfully and it determines the set of transitions the process
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can execute. Formally, the SOS computer should implement the function sc of
Definition 7.1.

Definition 7.1 (SOS computer) The SOS computer function sc : P → P(P ×
Stack) ∪ P(P × Stack × (Action ∪R>0)× P × Stack) is defined by

sc(p)= {(p, σ) | 〈 p, σ 〉↓, σ ∈ Stack}
∪ {(p, σ, a, p′σ′) | 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, σ, σ′ ∈ Stack , p′ ∈ P, a ∈ Action}
∪ {(p, σ, d, p′σ′) | 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, σ, σ′ ∈ Stack , p′ ∈ P, d ∈ R>0}.

The elements (p, σ) ∈ sc(p) are the terminations of p, the elements (p, σ, a, p′, σ′) ∈
sc(p) are the action transitions of p, and the elements (p, σ, d, p′σ′) ∈ sc(p) are the
delay transitions of p.

In general, the result of sc(p) is an infinite set. For instance, the set sc(ε) =
{〈 ε, σ 〉 | σ ∈ Stack} and since there are infinitely many stacks, this is an infinite
set. Another cause of infinity of sc(p) is the number of delay transitions a process
can have: if a process can delay for d time units, then, for every d′ < d, it can
delay d′ time units too (see Lemma 4.46). Since the time domain of χσ is the set
of positive real numbers, there are infinitely many of such d′ transitions. Conse-
quently, there is no terminating algorithm to compute sc(p) completely. However,
it is possible to compute a finite subset of representatives of sc(p) such that many
interesting properties of p can be checked formally on the set of representatives.

The reduction of the set sc(p) is based on two observations. Firstly, it suffices
to compute only the terminations and the transitions for the empty stack. The
intuition behind this is that if a termination or a transition is possible under
the empty stack, it is possible under any stack. This property of the SOS is
exemplified by Lemma 7.2. Notice that the visible identifiers in a non-empty
stack can be added to p by combining these identifiers and p in a state operator.
Moreover, the number of terminations and action transitions is finite for any stack.
Lemma 7.3 shows that for a given stack, each process has at most one termination.
In addition, Lemma 7.4 shows that the set of action transitions of a process is finite
for a given stack. Based on this lemma, we define a function that computes the
action transitions for a process and a stack (Definition 7.5). Lemma 7.6 shows the
correctness of this function with respect to the SOS of χσ.

Secondly, in many situations, the order of actions performed by a process is more
important than the exact time at which the actions occur. Lemma 7.7, shows that
for a (large) subset of χσ processes, it suffices to compute only one delay transi-
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tion. This subset includes the translation of χ processes as defined in Chapter 6.
Definition 7.8 defines a function that computes a unique delay value for a process
given a stack. If the result of this functions is 0, the process cannot delay under
the given stack. The correctness of this function is shown in Lemma 7.9. In Def-
inition 7.10, this unique delay value is used to compute a set of delay transitions
for a given process and stack. This set contains at most one delay transition and
is empty if and only if the process cannot delay (under the given stack).

Finally, the results of the observations are put together and a function sc′ is
defined that computes a finite number of terminations, action transitions, and
delay transitions for a process (Definition 7.12). This function is implemented in
the χσ engine.

As mentioned above, we start by showing that if a process has a termination or
a transition for the empty stack, then it has terminations and transitions for any
other stack.

Lemma 7.2 Let p and p′ be processes, a be an action, and d be a positive real
number, then

〈 p, λσ 〉↓ ⇒ ∀σ : 〈 p, σ 〉↓,
〈 p, λσ 〉 a−→ 〈 p′, λσ 〉 ⇒ ∀σ : ∃σ′ : 〈 p, σ 〉 a−→ 〈 p, σ′ 〉,
〈 p, λσ 〉 p d−→ 〈 p′, λσ 〉 ⇒ ∀σ : ∃σ′ : 〈 p, σ 〉 p d−→ 〈 p, σ′ 〉.

Proof (Lemma 7.2) The proof is based on the observation that the role of stacks
in deduction rules, is to provide values for programming variables occurring in χσ

processes. Furthermore, by close inspection of the deduction rules, we see that
whenever an expression is used in a rule (Table 4.1), it evaluates to a constant
value: σ(e) = c. Suppose σ = λσ and we have σ(e) = c for some expression e and
value c. Let σ′ be another stack, then we can make the following computation:
σ′(e) = σ′(λσ(e)) = σ′(σ(e)) = σ′(c) = c. Therefore, if an expression evaluates to
a constant value under the empty stack, it evaluates to this value under any stack.
Consequently, if a termination or transition concerning the empty stack can be
derived, it can be derived for arbitrary stacks.

Of course, the implication symbols of Lemma 7.2 cannot be reversed; if there is
a termination or a transition for a nonempty stack, it does not mean there are
terminations or transitions for the empty stack.

The notation |S|, where S is a set, denotes the number of elements in S. If S is
an infinite set, |S| =∞, otherwise, |S| ∈ N .
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Lemma 7.3 Let p ∈ P be a process and σ ∈ Stack be a stack. Then |{(p, σ) ∈
sc(p, σ) | 〈 p, σ 〉↓}| ≤ 1.

Proof Lemma 7.3 This lemma follows immediately from the fact that termination
relations are given by stacks (Section 4.2).

Next, we show that the set of action transitions of a process is finite for a given
stack. To that extent, we use Action(p, σ) to denote the set {a ∈ Action | ∃p′ ∈
P, σ′ ∈ Stack : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉}, for any process p and stack σ.

Lemma 7.4 (Finite number of actions) Let p ∈ P be a process and σ ∈ Stack be a
stack, then |Action(p, σ)| ∈ N .

One might expect this lemma to follow immediately from results of theory on
syntactic formats for TSSs. For instance, for TSSs in the De Simone format [187],
it is known that if certain conditions are met, the corresponding LTS is computable,
meaning that there exists an algorithm that computes for each state of the LTS
the finite set of outgoing transitions. However, the TSS defined by the deduction
rules of χσ do not adhere to the De Simone format. This can be seen easily, since
one of the restrictions of the De Simone format is that deduction rules do not have
negative hypotheses.

Proof (Lemma 7.4) Suppose p is a process and σ is a stack. We use structural
induction on p to prove that |Action(p, σ)| ∈ N . The basis of the induction proof
consists of cases for all atomic processes and the inductive step consists of cases
for all compound processes. During the proofs of the inductive step, we can use
induction hypothesis (IH-7.4).

Let p0 ∈ P be an argument of p and σ ∈ Stack be a stack, then
|Action(p0, σ)| ∈ N .

(IH-7.4)

Basis We distinguish the following cases.

p ≡ δ: Since there are no action rules for δ, it is clear that Action(δ, σ) = ø.
Consequently, we have |Action(p, σ)| = 0 ∈ N .

p ≡ ε: The proof is similar to the previous case.

p ≡ skip: There is only one action rule for skip, Rule 3. According to Rule 3, we
have 〈 skip, σ′ 〉 τ−→〈 ε, σ′ 〉 for any stack σ′. Therefore, for stack σ, there is only
one action transition, 〈 skip, σ 〉 τ−→〈 ε, σ 〉. So, we have |Action(p, σ)| = 1 ∈ N .
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p ≡ x := e: There is only one action rule for x := e, Rule 4. This rule only applies
if ∃c ∈ Value : σ(e) = c. So, suppose σ(e) = c ∈ Value. Then, according to

Rule 4, we have 〈 x :=e, σ 〉 aa(x,c)−−−−−→〈 ε, σ[c/x] 〉, which is exactly one transition.
So, we have |Action(p, σ)| = 1 ∈ N . Remains to consider the possibility that
σ(e) 6∈ Value. In that case, no rule applies and |Action(p, σ)| = 0 ∈ N .

p ≡ m ! e: The proof is similar to the previous case.

p ≡ m ? x: The proof is similar to the previous case.

p ≡ ∆e: The proof is similar to the first case.

Inductive Step We distinguish the following cases.

p ≡ b :→ p0: Rule 11 is the action rule for the guard operator. This rule applies
if σ(b) = true. Therefore, we make a case distinction based on the value
of σ(b). So, suppose σ(b) = true. Then, for each action a, process p′0, and σ′,
with 〈 p0, σ 〉 a−→ 〈 p′0, σ′ 〉, we can use Rule 11 to derive 〈 p, σ 〉 a−→ 〈 p′0, σ′ 〉.
Therefore, Action(p0, σ) = Action(p, σ). Using induction hypothesis (IH-7.4),
we know that |Action(p0, σ)| ∈ N . Consequently, we get |Action(p, σ)| ∈ N .
Remains to consider the case σ(b) 6= true. Now, Rule 11 does not apply and
we have |Action(p, σ)| = 0 ∈ N .

p ≡ p0 [] p1: Rule 14 is the action rule for the alternative composition operator.
Therefore, if this rule does not apply to p and σ, we have |Action(p, σ)| =
0 ∈ N . If this rule applies, there is a process p′, an action a, and a stack σ′,
such that 〈 p0, σ 〉 a−→ 〈 p′, σ′ 〉 or 〈 p1, σ 〉 a−→ 〈 p′, σ′ 〉. Therefore, for each ac-
tion transition of p0 or p1, we obtain an action transition of p. So, we have
|Action(p, σ)| ≤ |Action(p0, σ)| + |Action(p1, σ)|. Note the ‘≤’ operator, since
it is possible that two action transitions of p0 and p1, respectively, result in the
same action transition for p. Using induction hypothesis (IH-7.4), we obtain
|Action(p0, σ)| ∈ N and |Action(p1, σ)| ∈ N . So, we derive |Action(p, σ)| ∈ N .

p ≡ p0 ; p1: The action transition rules for sequential composition are Rules 18
and 19. If none of these rules applies to p and σ, we have |Action(p, σ)| = 0 ∈
N . If at least one of these rules applies, that is, if we have 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉,
we can derive that p0 or p1 can execute action a. Consequently, we find
|Action(p, σ)| ≤ |Action(p0, σ)| + |Action(p1, σ)|. Using induction hypothe-
sis (IH-7.4), we obtain |Action(p0, σ)| ∈ N and |Action(p1, σ)| ∈ N . So, we
derive |Action(p, σ)| ∈ N .
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p ≡ p0
∗: Rule 25 is the action rule for the repetition operator. If this rule does not

apply to p and σ, we have |Action(p, σ)| = 0 ∈ N . If this rule applies, we find
an action transition for p for every action transition of p0. So, we can derive
that |Action(p0, σ)| = |Action(p, σ)|. Using induction hypothesis (IH-7.4), we
obtain |Action(p0, σ)| ∈ N . Consequently, we have |Action(p, σ)| ∈ N .

p ≡ p0 ‖ p1: Rules 28 and 29 are the action transition rules for the parallel composi-
tion operator. If none of these rules applies to p and σ, we have |Action(p, σ)| =
0 ∈ N . If Rule 28 applies, we find an action transition of p for every ac-
tion transition of p0 and for every action transition of p1. If Rule 29 ap-
plies, we find an action transition of p for every two matching send and
receive action transitions of p0 and p1, respectively. Therefore, we obtain
|Action(p, σ)| ≤ (2 · |Action(p0, σ)|) + (2 · |Action(p1, σ)|). Using induction hy-
pothesis (IH-7.4), we obtain |Action(p0, σ)| ∈ N and |Action(p1, σ)| ∈ N . So,
we derive |Action(p, σ)| ∈ N .

p ≡ |[ s | p0 ]|: Rule 33 is the action rule for the state operator. If this rule does
not apply to p and σ, we have |Action(p, σ)| = 0 ∈ N . If this rule applies,
we see that for every action transition of p0 and stack s :: σ, we obtain an
action transition of p. So, |Action(p, σ)| = |Action(p0, s :: σ)|. Using induc-
tion hypothesis (IH-7.4), we obtain |Action(p0, s :: σ)| ∈ N , which gives us
|Action(p, σ)| ∈ N .

p ≡ ∂A(p0): Rule 36 is the action rule for the encapsulation operator. If this rule
does not apply to p and σ, we have |Action(p, σ)| = 0 ∈ N . If this rule
applies, we see that for every action transition of p0, we obtain an action
transition of p. Consequently, |Action(p, σ)| ≤ |Action(p0, σ)|. Using induc-
tion hypothesis (IH-7.4), we obtain |Action(p0, σ)| ∈ N . Therefore, we have
|Action(p, σ)| ∈ N .

p ≡ π(p0): Rule 39 is the action rule for the maximal progress operator. If this
rule is does not apply to p and σ, we have |Action(p, σ)| = 0 ∈ N . If this
rule applies, we see that for every action transition of p0, we obtain an action
transition of p. Consequently, |Action(p, σ)| = |Action(p0, σ)|. Using induc-
tion hypothesis (IH-7.4), we obtain |Action(p0, σ)| ∈ N . Therefore, we have
|Action(p, σ)| ∈ N .

p ≡ τA(p0): Rules 42 and 43 are the action transition rules for the abstraction op-
erator. If none of these rules applies to p and σ, we have |Action(p, σ)| = 0 ∈ N .
If a rule applies, we see that for every action transition of p0, we obtain an
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action transition of p (possibly the action is replaced by the τ action). There-
fore, |Action(p, σ)| ≤ |Action(p0, σ)|. Using induction hypothesis (IH-7.4), we
obtain |Action(p0, σ)| ∈ N and, consequently, |Action(p, σ)| ∈ N .

Lemma 7.4 guarantees that for a given process and stack, the number of action
transitions is finite. However, it does not provide an algorithm to compute this
set of action transitions. Definition 7.5 defines a function ac that computes this
set.

Definition 7.5 (Action computation) The function ac : P×Stack → P(P×Stack×
Action × P × Stack) is defined in Table 7.1.

The correctness of the ac function is established in Lemma 7.6. This lemma says
that for all processes p and stacks σ the elements of ac(p, σ) coincide with the
action transitions of p under σ.

Lemma 7.6 (Correctness of ac) Let p, p′ ∈ P be processes, let a ∈ Action be an
action, and let σ, σ′ ∈ Stack be stacks, then

(p, σ, a, p′, σ′) ∈ ac(p, σ)⇔ 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉.

Proof (Lemma 7.6) We prove the lemma by structural induction on process p.
The basis consists of the cases where p is an atomic process. The inductive step
consists of the cases where p is a compound process. During the proof of the
inductive step, we can use induction hypothesis (IH 7.6).

Let p0, p
′ ∈ P be processes such that p0 is a process argument of p,

let a ∈ Action be an action, and let σ, σ′ ∈ Stack be stacks, then
(p, σ, a, p′, σ′) ∈ ac(p, σ)⇔ 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉.

(IH 7.6)

Basis We distinguish the following cases.

p ≡ δ: The proof is trivial.

p ≡ ε: The proof is trivial.

p ≡ skip: Rule 3 is the action rule for skip. Therefore, there is exactly one tran-
sition 〈 skip, σ 〉 τ−→ 〈 ε, σ 〉 for a given stack σ. According to Definition 7.5, we
also have ac(skip, σ) = {(skip, σ, τ, ε, σ)}.
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ac(δ, σ) = ø
ac(ε, σ) = ø

ac(skip, σ) = {(skip, σ, τ, ε, σ)}
ac(x := e, σ) = {(x := e, σ, aa(x, c), ε, σ[c/x]) ∧ σ(e) = c ∈ Value}
ac(m ! e, σ) = {(m ! e, σ, sa(m, c), ε, σ[c/m]) ∧ σ(e) = c ∈ Value}
ac(m ? x, σ) = {(m ? x, σ, ra(m, x), ε, σ[c/x]) ∧ σ(e) = c ∈ Value}

ac(∆e, σ) = ø
ac(e :→ p, σ) = {(e :→ p, σ, a, p′, σ′) | ∈a

σ,σ′(p, p′) ∧ σ(e) = true}
ac(p [] q, σ) = {(p [] q, σ, a, p′, σ′) | ∈a

σ,σ′(p, p′) ∨ ∈a
σ,σ′(q, p′)}

ac(p ; q, σ) = {(p ; q, σ, a, p′ ; q, σ′) | ∈a
σ,σ′(p, p′)}

∪ {(p ; q, σ, a, q′, σ′) | ∈a
σ,σ′(q, q′) ∧ 〈 p, σ 〉↓}

ac(p∗, σ) = {(p∗, σ, a, p′ ; p∗, σ′) | ∈a
σ,σ′(p, p′)}

ac(p ‖ q, σ) = {(p ‖ q, σ, a, p′ ‖ q, σ′) | ∈a
σ,σ′(p, p′)}

∪ {(p ‖ q, σ, a, p ‖ q′, σ′) | ∈a
σ,σ′(q, q′)}

∪ { (p ‖ q, σ, a, p′ ‖ q′, σ′′)
| a ≡ ca(m, x, c)
∧ ∈sa(m,c)

σ,σ′ (p, p′) ∧ ∈ra(m,x)
σ′,σ′′ (q, q′)

∨∈ra(m,x)
σ′,σ′′ (p, p′) ∧ ∈sa(m,c)

σ,σ′ (q, q′)
}

ac(|[ s | p ]|, σ) = {(|[ s | p ]|, σ, a, |[ s′ | p′ ]|, σ′) | ∈a
s::σ,s′::σ′(p, p′)}

ac(∂A(p), σ) = {(∂A(p), σ, a, ∂A(p′), σ′) | ∈a
σ,σ′(p, p′) ∧ a 6∈ A}

ac(π(p), σ) = {(π(p), σ, a, π(p′), σ′) | ∈a
σ,σ′(p, p′)}

ac(τA(p), σ) = {(τA(p), σ, a, τA(p′), σ′) | ∈a
σ,σ′(p, p′) ∧ a 6∈ A}

∪ {(τA(p), σ, τ, τA(p′), σ′) | ∈a
σ,σ′(p, p′) ∧ a ∈ A}

where ∈a
σ,σ′(p, p′) ≡ (p, σ, a, p′, σ′) ∈ ac(p, σ)

Table 7.1 Definition of function ac.

p ≡ x := e: Rule 4 is the action rule for x:=e. Therefore, there is exactly one tran-

sition 〈x := e, σ 〉 aa(x,c)−−−−−→ 〈 ε, σ′ 〉, where σ(e) = c ∈ Value, for a given stack σ.
Furthermore, the rule gives us σ′ = σ[c/x]. According to Definition 7.5, we
also have ac(x := e, σ) = {(x := e, σ, τ, ε, σ[c/x])}.
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p ≡ m ! e: The proof is similar to the previous case.

p ≡ m ? x: The proof is similar to the previous case.

p ≡ ∆e: The proof is trivial.

Inductive step We consider the following cases.

p ≡ e :→ p0: Rule 11 is the action rule for the guard operator. So, we have

〈 e :→ p0, σ 〉 a−→ 〈 p′, σ′ 〉
⇔ {Rule 11}

σ(e) = true ∧ 〈 p0, σ 〉 a−→ 〈 p′, σ′ 〉
⇔ {Induction hypothesis (IH 7.6)}

σ(e) = true ∧ (p0, σ, a, p′, σ′) ∈ ac(p0, σ)
⇔ {Definition 7.5 and p ≡ e :→ p0}

(e :→ p0, σ, a, p′, σ′) ∈ ac(p, σ).

p ≡ p0 [] p1: Rule 14 is the action rule for the alternative composition operator.
So, we have

〈 p0 [] p1, σ 〉
a−→ 〈 p′, σ′ 〉

⇔ {Rule 14 (two possibilities)}
〈 p0, σ 〉 a−→ 〈 p′, σ′ 〉 ∨ 〈 p1, σ 〉 a−→ 〈 p′, σ′ 〉

⇔ {Induction hypothesis (IH 7.6) two times}
(p0, σ, a, p′, σ′) ∈ ac(p0, σ) ∨
(p1, σ, a, p′, σ′) ∈ ac(p1, σ)

⇔ {Definition 7.5 and p ≡ p0 [] p1}
(p, σ, a, p′, σ′) ∈ ac(p, σ).

p ≡ p0 ; p1: Rules 18 and 19 are the action transition rules for the sequential
composition operator. So, we have

〈 p0 ; p1, σ 〉 a−→ 〈 p′, σ′ 〉
⇔ {Rule 18 or Rule 19}
〈 p0, σ 〉 a−→ 〈 p′0, σ′ 〉 ∧ p′ ≡ p′0 ; q ∨ 〈 p1, σ 〉 a−→ 〈 p′, σ′ 〉 ∧ 〈 p, σ 〉↓

⇔ {Induction hypothesis (IH 7.6) two times}
(p0, σ, a, p′0, σ) ∈ ac(p0, σ) ∧ p′ ≡ p′0 ; q ∨
(p1, σ, a, p′, σ′) ∈ ac(p1, σ) ∧ 〈 p, σ 〉↓

⇔ {Definiton 7.5 and p ≡ p0 ; p1}
(p, σ, a, p′, σ′) ∈ ac(p, σ).
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p ≡ p0
∗: Rule 25 is the action rule for the repetition operator. So, we have

〈 p0
∗, σ 〉 a−→ 〈 p′, σ′ 〉

⇔ {Rule 25}
〈 p0, σ 〉 a−→ 〈 p′0, σ′ 〉 ∧ p′ ≡ p′0 ; p0

⇔{Induction hypothesis (IH 7.6)}
(p0, σ, a, p′0, σ

′) ∈ ac(p0, σ) ∧ p′ ≡ p′0 ; p0

⇔{Definition 7.5}
(p, σ, a, p′, σ′ 〉).

p ≡ p0 ‖ p1: Rules 28 and 29 are the action transition rules for the parallel com-
position operator. So, we have

〈 p0 ‖ p1, σ 〉 a−→ 〈 p′, σ′ 〉
⇔ {Rules 28 (two possibilities) and 29 (two possibilities)}

(〈 p0, σ 〉 a−→ 〈 p′0, σ′ 〉 ∧ p′ ≡ p′0 ‖ p1) ∨ (〈 p1, σ 〉 a−→ 〈 p′1, σ′ 〉 ∧ p′ ≡ p0 ‖ p′1)

∨ (〈 p0, σ 〉
sa(m,c)−−−−−→ 〈 p′0, σ′

0 〉 ∧ 〈 p1, σ
′
0 〉

ra(m,x)−−−−−→ 〈 p′1, σ′ 〉
∧ p′ ≡ p′0 ‖ p′1 ∧ a ≡ ca(m, x, c))

∨ (〈 p0, σ
′
1 〉

ra(m,x)−−−−−→ 〈 p′0, σ′ 〉 ∧ 〈 p1, σ 〉
sa(m,c)−−−−−→ 〈 p′1, σ′

1 〉
∧ p′ ≡ p′0 ‖ p′1 ∧ a ≡ ca(m, x, c))

⇔ {Induction hypothesis (IH 7.6) multiple times}
((p0, σ, a, p′0, σ

′) ∈ ac(p0, σ) ∧ p′ ≡ p′0 ‖ p1) ∨ ((p1, σ, a, p′1, σ
′) ∈ ac(p1, σ)

∧ p′ ≡ p0 ‖ p′1)
∨ ((p0, σ, sa(m, c), p′0, σ

′
0) ∈ ac(p0, σ) ∧ (p1, σ

′
0, ra(m, x), p′1, σ

′) ∈ ac(p1, σ
′
0)

∧ p′ ≡ p′0 ‖ p′1 ∧ a ≡ ca(m, x, c))
∨ ((p0, σ

′
1, ra(m, x), p′0, σ

′) ∈ ac(p0, σ
′
1) ∧ (p1, σ, sa(m, c), p′1, σ

′
1) ∈ ac(p1, σ)

∧ p′ ≡ p′0 ‖ p′1 ∧ a ≡ ca(m, x, c))
⇔ {Definition 7.5 and p ≡ p0 ‖ p1}

(p, σ, a, p′, σ′) ∈ ac(p, σ).

p ≡ |[ s | p0 ]|: Rule 33 is the action rule for the state operator. So, we have

〈 |[ s | p0 ]|, σ 〉 a−→ 〈 p′, σ′ 〉
⇔ {Rule 33}
〈 p0, s :: σ 〉 a−→ 〈 p′0, s′ :: σ′

0 〉 ∧ p′ ≡ |[ s′ | p′0 ]| ∧ σ′ ≡ s′ :: σ′
0

⇔ {Induction hypothesis (IH 7.6)}
(p0, s :: σ, a, p′0, s

′ :: σ′
0) ∈ ac(p0, s :: σ) ∧ p′ ≡ |[ s′ | p′0 ]| ∧ σ′ ≡ s′ :: σ′

0

⇔ {Definition 7.5 and p ≡ |[ s | p0 ]|}
(p, σ, a, p′, σ′) ∈ ac(p, σ).
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p ≡ ∂A(p0): Rule 36 is the action rule for the encapsulation operator. So, we have

〈 ∂A(p0), σ 〉 a−→ 〈 p′, σ′ 〉
⇔ {Rule 36}
〈 p0, σ 〉 a−→ 〈 p′0, σ′ 〉 ∧ p′ ≡ ∂A(p′0) ∧ a 6∈ A

⇔{Induction hypothesis (IH 7.6)}
(p0, σ, a, p′0, σ

′) ∈ ac(p0, σ) ∧ p′ ≡ ∂A(p′0) ∧ a 6∈ A

⇔{Definition 7.5 and p ≡ ∂A(p0)}
(p, σ, a, p′, σ′) ∈ ac(p, σ).

p ≡ π(p0): Rule 39 is the action rule for the maximal progress operator. So, we
have

〈π(p0), σ 〉 a−→ 〈 p′, σ′ 〉
⇔ {Rule 39}
〈 p0, σ 〉 a−→ 〈 p′0, σ′ 〉 ∧ p′ ≡ π(p′0)

⇔ {Induction hypothesis (IH 7.6)}
(p0, σ, a, p′0, σ′) ∈ ac(p0, σ) ∧ p′ ≡ π(p′0)

⇔ {Definition 7.5 and p ≡ π(p0)}
(p, σ, a, p′, σ′) ∈ ac(p, σ).

p ≡ τA(p0): Rules 42 and 43 are the action transition rules for the abstraction
operator. So, we have

〈 τA(p0), σ 〉 a−→ 〈 p′, σ′ 〉
⇔ {Rules 42 and 43}

(〈 p0, σ 〉 a−→ 〈 p′0, σ′ 〉 ∧ p′ ≡ τA(p′0) ∧ a 6∈ A)

∨ (〈 p0, σ 〉 a′
−−→ 〈 p′0, σ′ 〉 ∧ p′ ≡ τA(p′0) ∧ a ≡ τ ∧ a′ ∈ A)

⇔ {Induction hypothesis (IH 7.6) two times}
((p0, σ, a, p′0, σ

′) ∈ ac(p0, σ) ∧ p′ ≡ τA(p′0) ∧ a 6∈ A)
∨ ((p0, σ, a′, p′0, σ

′) ∈ ac(p0, σ) ∧ p′ ≡ τA(p′0) ∧ a ≡ τ ∧ a′ ∈ A)
⇔ {Definition 7.5 and p ≡ τA(p0)}

(p, σ, a, p′, σ′) ∈ ac(p, σ).

So far, we have focused on the action transitions of processes and we have shown
that for a given stack, the number of action transitions is finite. Furthermore, we
defined a function ac that computes this set of action transitions. Next, we focus
on reducing the number of delay transitions of a process.
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Lemma 7.7 can be used to reduce computation of the set of delay transitions of
a maximal progress process to computation of a single delay transition, without
losing the possibility to verify interesting properties.

Lemma 7.7 Let p be a maximal progress process: p ≡ π(p′) for some process p′.

Suppose 〈 p, σ 〉 p d−→ 〈 r, σ′′ 〉 and 〈 p, σ 〉 p d′
−−→ 〈 q, σ′ 〉 and d′ < d. Then 〈 q, σ′ 〉 p d−d′

−−−→
〈 r, σ′′ 〉 and 〈 q, σ′ 〉6 ↓ and 〈 q, σ′ 〉 6−→.

Proof (Lemma 7.7) Suppose 〈 p, σ 〉 p d−→〈 r, σ′′ 〉 and 〈 p, σ 〉 p d′
−−→〈 q, σ′ 〉. According

to Lemma 4.53 (Time confluence), we immediately have 〈 q, σ′ 〉 p
d−d′
−−−→ 〈 r, σ′′ 〉.

Similarly, we also have 〈 q, σ′ 〉6 ↓. So, we only have to prove that 〈 q, σ′ 〉 6−→. Suppose
there exist a, qa and a σa, such that 〈 q, σ′ 〉 a−→ 〈 qa, σa 〉. Using Lemma 4.55
(Preservation of action transitions), this would mean that there exists a pa and
a σa such that 〈 p, σ 〉 a−→ 〈 pa, σa 〉. However, since p ≡ π(p′) and p can perform
delay transitions, this is a contradiction. Therefore, the assumption that there
exist a, qa and a σa, such that 〈 q, σ′ 〉 a−→ 〈 qa, σa 〉 is invalid. Consequently, we
have 〈 q, σ′ 〉 6−→.

Lemma 7.7 has reduced the problem of computing all possible delay transitions to
computing only one delay transition. Note that the reduction applies to maximal
progress processes only. Definition 7.8 defines a function Dd0 that computes a delay
value for a χσ process and a stack. The parameter d0 is a positive real number. It
is a default delay value that is used for processes that can delay arbitrary long, like
send and receive processes. Furthermore, Lemma 7.9 shows that for any process p

and any stack σ, if Dd0(p, σ) = 0, then 〈 p, σ 〉 6p−→. Also, if Dd0(p, σ) = d 6= 0, then
there exists a delay transition 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 for some p′ and σ′.

Definition 7.8 (Unique delay value) Let d0 ∈ R>0 be an arbitrary positive real
number. The function Dd0 : P × Stack → R≥0 is defined in Table 7.2.

Lemma 7.9 (Valid unique delay value) Let p ∈ P be a process, σ ∈ Stack be
a stack, and d0 ∈ R>0 be a positive real number. Then, if Dd0(p, σ) = 0 then

〈 p, σ 〉 6p−→, and if Dd0(p, σ) > 0 then ∃p′ ∈ P, σ′ ∈ Stack : 〈 p, σ 〉 p
Dd0(p,σ)
−−−−−−→ 〈 p′, σ′ 〉.

Proof (Lemma 7.9) We prove this lemma by structural induction on process p.
The basis of the induction consists of the cases where p is an atomic process. The
inductive step consists of the cases where p is a compound process. In the proof
of the inductive step, we can use induction hypothesis (IH-7.9).
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Dd0(δ, σ) = 0
Dd0(ε, σ) = 0

Dd0(skip, σ) = 0
Dd0(x := e, σ) = 0
Dd0(m ! e, σ) = d0

Dd0(m ? x, σ) = d0

Dd0(∆e, σ) = σ(e) if σ(e) ∈ Value ∧ σ(e) > 0
= 0 otherwise

Dd0(e :→ p, σ) = Dd0(p, σ) if σ(e) = true
= 0 otherwise

Dd0(p [] q, σ) = Dd0(p, σ) if 〈 p, σ 〉p−→ ∧ 〈 q, σ 〉 6p−→
= Dd0(q, σ) if 〈 q, σ 〉p−→ ∧ 〈 p, σ 〉 6p−→
= min(Dd0(p, σ),Dd0(q, σ)) otherwise

Dd0(p ; q, σ) = Dd0(p, σ) if 〈 p, σ 〉p−→ ∧ (〈 p, σ 〉6 ↓ ∨ 〈 q, σ 〉 6p−→)
= Dd0(q, σ) if 〈 p, σ 〉↓ ∧ 〈 p, σ 〉 6p−→ ∧ 〈 q, σ 〉p−→
= min(Dd0(p, σ),Dd0(q, σ)) otherwise

Dd0(p∗, σ) = Dd0(p, σ)
Dd0(p ‖ q, σ) = Dd0(p, σ) if 〈 p, σ 〉p−→ ∧ 〈 q, σ 〉↓ ∧ 〈 q, σ 〉 6p−→

= Dd0(q, σ) if 〈 p, σ 〉↓ ∧ 〈 p, σ 〉 6p−→ ∧ 〈 q, σ 〉p−→
= min(Dd0(p, σ),Dd0(q, σ)) otherwise

Dd0(|[ s | p ]|, σ) = Dd0(p, s :: σ)
Dd0(∂A(p), σ) = Dd0(p, σ)
Dd0(π(p), σ) = Dd0(p, σ) if 〈 p, σ 〉 6−→

= 0 otherwise
Dd0(τA(p), σ) = Dd0(p, σ)

where 〈 p, σ 〉 −→ denotes ∃a, p′, σ′ : 〈 p, σ 〉 a−→ 〈 p′σ′ 〉, and

〈 p, σ 〉 p−→ denotes ∃d, p′, σ′ : 〈 p, σ 〉 p d−→ 〈 p′σ′ 〉

Table 7.2 Definition of the function Dd0 .
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Let p0 ∈ P be a process argument of p, σ ∈ Stack be a stack,
and d0 ∈ R>0 be a positive real number. Then, if Dd0(p0, σ) = 0
then 〈 p0, σ 〉 6p−→, and if Dd0(p0, σ) > 0 then ∃p′0 ∈ P, σ′ ∈ Stack :

〈 p0, σ 〉 p
Dd0(p0,σ)
−−−−−−−→ 〈 p′0, σ′ 〉.

(IH-7.9)

Basis We distinguish the following cases.

p ≡ δ: The proof is trivial, because Dd0(p, σ) = 0 and 〈 δ, σ 〉 6p−→.

p ≡ ε: The proof is trivial, because Dd0(p, σ) = 0 and 〈 ε, σ 〉 6p−→.

p ≡ skip: The proof is trivial, because Dd0(p, σ) = 0 and 〈 skip, σ 〉 6p−→.

p ≡ x := e: The proof is trivial, because Dd0(p, σ) = 0 and 〈x := e, σ 〉 6p−→.

p ≡ m ! e: According to Definition 7.8 we have Dd0(p, σ) = d0. So, we have to
prove 〈 p, σ 〉 p

d0−−→ 〈 p′, σ′ 〉 for some p′ and σ′. This immediately follows from
Rule 7.

p ≡ m ? x: The proof is similar to the proof of the previous case.

p ≡ ∆e: According to Definition 7.8, we can distinguish the following cases.

σ(e) ∈ Value ∧ σ(e) > 0: According to Definition 7.8 we have Dd0(p, σ) = σ(e).

So, we have to prove 〈 p, σ 〉 p

σ(e)−−−→ 〈 p′, σ′ 〉 for some p′ and σ′. This imme-
diately follows from Rule 9.

¬(σ(e) ∈ Value ∧ σ(e) > 0): According to Definition 7.8 we have Dd0(p, σ) =
0. So, we have to prove 〈 p, σ 〉 6p−→. Since ¬(σ(e) ∈ Value ∧ σ(e) > 0), we
can derive that there is no d such that 0 < d ≤ σ(e). Consequently, the
only delay rule for the delay process (Rule 9) does not apply.

Inductive step We distinguish the following cases.

p ≡ e :→ p0: According to Definition 7.8, we distinguish the following cases.

σ(e) = true: According to Definition 7.8 we have Dd0(p, σ) = Dd0(p0, σ). We
distinguish two cases: Dd0(p0, σ) = 0 and Dd0(p0, σ) > 0. In the first case,
we have to show that 〈 p, σ 〉 6p−→. By using induction hypothesis (IH-7.9)
on p0, we obtain 〈 p0, σ 〉 6p−→. Consequently, the only delay rule for the
guard operator (Rule 12) does not apply. In the second case, we have to
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show that 〈 p, σ 〉 p
Dd0 (p,σ)
−−−−−−→ 〈 p′, σ′ 〉 for some p′ and σ′. By using induction

hypothesis (IH-7.9) on p0, we obtain 〈 p0, σ 〉 p
Dd0(p0,σ)
−−−−−−−→〈 p′0, σ′

0 〉 for some p′0
and σ′

0. So, since σ(e) = true, we can use Rule 12 to obtain 〈 p, σ 〉p
Dd0(p,σ)
−−−−−−→

〈 p′0, σ′
0 〉.

¬(σ(e) = true): According to Definition 7.8 we have Dd0(p, σ) = 0. So, we
have to prove 〈 p, σ 〉 6p−→. Since ¬(σ(e) = true), the only delay rule for the
guard operator (Rule 12) does not apply. Consequently, 〈 p, σ 〉 6p−→.

p ≡ p0 [] p1: According to Definition 7.8, we distinguish three cases.

〈 p0, σ 〉p−→ ∧ 〈 p1, σ 〉 6p−→: Definition gives 7.8 Dd0(p, σ) = Dd0(p0, σ). Suppose
Dd0(p, σ) = 0. By using induction hypothesis (IH-7.9) on p0, we obtain
〈 p0, σ 〉 6p−→. Since we have 〈 p0, σ 〉p−→, this is a contradiction. Consequently,

Dd0(p, σ) > 0. This means we have to show that 〈 p, σ 〉 p

Dd0(p,σ)
−−−−−−→ 〈 p′, σ′ 〉

for some p′ and σ′. By using induction hypothesis (IH-7.9) on p0, we obtain

〈 p0, σ 〉 p
Dd0(p0,σ)
−−−−−−−→〈 p′0, σ′

0 〉 for some p′0 and σ′
0. So, since 〈 p0, σ 〉 p

Dd0 (p0,σ)
−−−−−−−→

〈 p′0, σ′
0 〉 and 〈 p1, σ 〉 6p−→, we can use Rule 15 to obtain 〈 p, σ 〉 p

Dd0(p,σ)
−−−−−−→

〈 p′0, σ′
0 〉.

〈 p0, σ 〉 6p−→ ∧ 〈 p1, σ 〉p−→: The proof is similar to the previous case.
otherwise: Definition 7.8 gives Dd0(p, σ) = min(Dd0(p0, σ),Dd0(p1, σ)). We

distinguish two cases: Dd0(p, σ) = 0 and Dd0(p, σ) > 0. In the first case,
from Dd0(p, σ) = min(Dd0(p0, σ),Dd0(p1, σ)), it follows that Dd0(p0, σ) = 0
and Dd0(p1, σ) = 0. By using induction hypothesis (IH-7.9) on both p0

and p1, we obtain 〈 p0, σ 〉 6p−→ and 〈 p1, σ 〉 6p−→. Therefore, none of the de-
lay rules for the alternative composition operator (Rules 15 and 16) ap-
ply. Consequently, 〈 p, σ 〉 6p−→. In the second case, we have to show that

〈 p, σ 〉 p

Dd0(p,σ)
−−−−−−→ 〈 p′, σ′ 〉 for some p′ and σ′. Since we have Dd0(p, σ) =

min(Dd0(p0, σ),Dd0(p1, σ)), it follows that Dd0(p0, σ) > 0 and Dd0(p1, σ) >

0. By using induction hypothesis (IH-7.9) on both p0 and p1, we obtain

〈 p0, σ 〉 p
Dd0 (p0,σ)
−−−−−−−→〈 p′0, σ′

0 〉 and 〈 p1, σ 〉 p
Dd0(p1,σ)
−−−−−−−→〈 p′1, σ′

1 〉 for some p′0, p′1,
σ′

0, and σ′
1. According to Lemma 4.49, we have σ = σ′

0 = σ′
1. We dis-

tinguish the following cases: Dd0(p0, σ) = min(Dd0(p0, σ),Dd0(p1, σ)) and
Dd0(p0, σ) 6= min(Dd0(p0, σ),Dd0(p1, σ)). In the first case, Lemmas 4.46

and 4.49 give 〈 p1, σ 〉 p

Dd0(p0,σ)
−−−−−−−→ 〈 p′′1 , σ 〉 for some p′′1 . From the facts that

〈 p0, σ 〉 p

Dd0(p0,σ)
−−−−−−−→ 〈 p′0, σ 〉 and 〈 p1, σ 〉 p

Dd0(p0,σ)
−−−−−−−→ 〈 p′′1 , σ 〉, we know that

Rule 16 applies and therefore we can derive 〈 p, σ 〉 p

Dd0(p,σ)
−−−−−−→ 〈 p′0 [] p′′1 , σ 〉.

The second case is similar.
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p ≡ p0 ; p1: According to Definition 7.8, we distinguish three cases.

〈 p0, σ 〉p−→ ∧ (〈 p0, σ 〉6 ↓ ∨ 〈 p1, σ 〉 6p−→): According to Definition 7.8 we know that
Dd0(p, σ) = Dd0(p0, σ). Suppose Dd0(p, σ) = 0. By using induction hypoth-
esis (IH-7.9) on p0, we obtain 〈 p0, σ 〉 6p−→. Since we have 〈 p0, σ 〉p−→, this is
a contradiction. Consequently, Dd0(p, σ) > 0. This means we have to show

that 〈 p, σ 〉 p

Dd0 (p,σ)
−−−−−−→ 〈 p′, σ′ 〉 for some p′ and σ′. By using induction hy-

pothesis (IH-7.9) on p0, we obtain 〈 p0, σ 〉 p

Dd0(p0,σ)
−−−−−−−→ 〈 p′0, σ′

0 〉 for some p′0
and σ′

0. So, since 〈 p0, σ 〉 p
Dd0 (p0,σ)
−−−−−−−→〈 p′0, σ′

0 〉 and 〈 p0, σ 〉6 ↓ ∨ 〈 p1, σ 〉 6p−→, we

can either use Rule 20 or 21 to obtain 〈 p, σ 〉 p
Dd0(p,σ)
−−−−−−→ 〈 p′0 ; p1, σ

′
0 〉.

〈 p0, σ 〉↓ ∧ 〈 p0, σ 〉 6p−→ ∧ 〈 p1, σ 〉p−→: According to Definition 7.8 we know that
Dd0(p, σ) = Dd0(p1, σ). Suppose Dd0(p, σ) = 0. By using induction hy-
pothesis (IH-7.9) on p1, we obtain 〈 p1, σ 〉 6p−→. Since we have 〈 p1, σ 〉p−→, this
is a contradiction. Consequently, Dd0(p, σ) > 0. This means we have to

show that 〈 p, σ 〉 p
Dd0 (p,σ)
−−−−−−→ 〈 p′, σ′ 〉 for some p′ and σ′. By using induction

hypothesis (IH-7.9) on p1, we obtain 〈 p1, σ 〉 p
Dd0(p1,σ)
−−−−−−−→〈 p′1, σ′

1 〉 for some p′1
and σ′

1. So, since 〈 p1, σ 〉 p
Dd0 (p1,σ)
−−−−−−−→ 〈 p′1, σ′

1 〉 and 〈 p0, σ 〉↓ ∧ 〈 p0, σ 〉 6p−→, we

can use Rule 22 to obtain 〈 p, σ 〉 p
Dd0(p,σ)
−−−−−−→ 〈 p′1, σ′

1 〉.
otherwise: The negations of the conditions in the previous cases give us: if
〈 p0, σ 〉p−→ then 〈 p0, σ 〉↓. According to Definition 7.8 we have Dd0(p, σ) =
min(Dd0(p0, σ),Dd0(p1, σ)). We distinguish two cases: Dd0(p, σ) = 0 and
Dd0(p, σ) > 0. In the first case, it follows from the fact Dd0(p, σ) =
min(Dd0(p0, σ),Dd0(p1, σ)), that we have Dd0(p0, σ) = 0 and Dd0(p1, σ) =
0. By using induction hypothesis (IH-7.9) on both p0 and p1, we obtain
〈 p0, σ 〉 6p−→ and 〈 p1, σ 〉 6p−→. Therefore, none of the delay rules for the se-
quential composition operator (Rules 20 through 23) apply. Consequently,

〈 p, σ 〉 6p−→. In the second case, we have to show that 〈 p, σ 〉 p
Dd0 (p,σ)
−−−−−−→〈 p′, σ′ 〉

for some p′ and σ′. From Dd0(p, σ) = min(Dd0(p0, σ),Dd0(p1, σ)), it fol-
lows that Dd0(p0, σ) > 0 and Dd0(p1, σ) > 0. By using induction hy-

pothesis (IH-7.9) on both p0 and p1, we obtain 〈 p0, σ 〉 p
Dd0(p0,σ)
−−−−−−−→ 〈 p′0, σ′

0 〉
(so, we have 〈 p0, σ 〉↓) and 〈 p1, σ 〉 p

Dd0(p1,σ)
−−−−−−−→ 〈 p′1, σ′

1 〉 for some p′0, p′1,
σ′

0, and σ′
1. According to Lemma 4.49, we have σ = σ′

0 = σ′
1. We dis-

tinguish the following cases: Dd0(p0, σ) = min(Dd0(p0, σ),Dd0(p1, σ)) and
Dd0(p0, σ) 6= min(Dd0(p0, σ),Dd0(p1, σ)). In the first case, according to

Lemmas 4.46 and 4.49 we have 〈 p1, σ 〉 p
Dd0 (p0,σ)
−−−−−−−→ 〈 p′′1 , σ 〉 for some p′′1 . So,

since 〈 p0, σ 〉 p

Dd0(p0,σ)
−−−−−−−→ 〈 p′0, σ 〉, 〈 p1, σ 〉 p

Dd0(p0,σ)
−−−−−−−→ 〈 p′′1 , σ 〉, and 〈 p0, σ 〉↓,
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we can use Rule 23 to obtain 〈 p, σ 〉 p
Dd0 (p,σ)
−−−−−−→〈 p′0 ; p1 []p′′1 , σ 〉. In the second

case, according to Lemmas 4.46 and 4.49, we have 〈 p0, σ 〉p
Dd0(p1,σ)
−−−−−−−→〈 p′′0 , σ 〉

for some p′′0 . So, since 〈 p0, σ 〉 p
Dd0 (p1,σ)
−−−−−−−→〈 p′′0 , σ 〉, 〈 p1, σ 〉 p

Dd0(p1,σ)
−−−−−−−→〈 p′1, σ 〉,

and 〈 p0, σ 〉↓, we can use Rule 23 to obtain 〈 p, σ 〉 p
Dd0(p,σ)
−−−−−−→〈 p′′0 ; p1 []p′1, σ 〉.

p ≡ p0
∗: According to Definition 7.8, we have Dd0(p, σ) = Dd0(p0, σ). We dis-

tinguish two cases: Dd0(p0, σ) = 0 and Dd0(p0, σ) > 0. In the first case, we
have to show that 〈 p, σ 〉 6p−→. By using induction hypothesis (IH-7.9) on p0,
we obtain 〈 p0, σ 〉 6p−→. Consequently, the only delay rule for the repetition op-
erator (Rule 26) does not apply. In the second case, we have to show that

〈 p, σ 〉 p

Dd0(p,σ)
−−−−−−→ 〈 p′, σ′ 〉 for some p′ and σ′. By using induction hypothe-

sis (IH-7.9) on p0, we obtain 〈 p0, σ 〉 p

Dd0(p0,σ)
−−−−−−−→ 〈 p′0, σ′

0 〉 for some p′0 and σ′
0.

So, we can use Rule 26 to obtain 〈 p, σ 〉 p
Dd0(p,σ)
−−−−−−→ 〈 p′0 ; p∗, σ′

0 〉.

p ≡ p0 ‖ p1: According to Definition 7.8, we distinguish three cases.

〈 p0, σ 〉p−→ ∧ 〈 p1, σ 〉↓ ∧ 〈 p1, σ 〉 6p−→: Definition 7.8 gives Dd0(p, σ) = Dd0(p0, σ).
Suppose Dd0(p, σ) = 0. By using induction hypothesis (IH-7.9) on p0, we
obtain 〈 p0, σ 〉 6p−→. Since we have 〈 p0, σ 〉p−→, this is a contradiction. Conse-

quently, Dd0(p, σ) > 0. This means we have to show that 〈 p, σ 〉 p
Dd0(p,σ)
−−−−−−→

〈 p′, σ′ 〉 for some p′ and σ′. By using induction hypothesis (IH-7.9) on p0, we

obtain 〈 p0, σ 〉 p
Dd0(p0,σ)
−−−−−−−→ 〈 p′0, σ′

0 〉 for some p′0 and σ′
0. Since we know that

〈 p0, σ 〉 p

Dd0(p0,σ)
−−−−−−−→ 〈 p′0, σ′

0 〉, 〈 p1, σ 〉↓, and a〈 p1, σ 〉 6p−→ we can use Rule 30

to obtain 〈 p, σ 〉 p
Dd0 (p,σ)
−−−−−−→ 〈 p′0, σ′

0 〉.
〈 p0, σ 〉↓ ∧ 〈 p0, σ 〉 6p−→ ∧ 〈 p1, σ 〉p−→: The proof is similar to the previous case.
otherwise: Definition 7.8 gives Dd0(p, σ) = min(Dd0(p0, σ),Dd0(p1, σ)). We

distinguish two cases: Dd0(p, σ) = 0 and Dd0(p, σ) > 0. In the first case,
from Dd0(p, σ) = min(Dd0(p0, σ),Dd0(p1, σ)), it follows that Dd0(p0, σ) = 0
and Dd0(p1, σ) = 0. By using induction hypothesis (IH-7.9) on both p0

and p1, we obtain 〈 p0, σ 〉 6p−→ and 〈 p1, σ 〉 6p−→. Therefore, none of the delay
rules for the parallel composition operator (Rules 30 and 31) apply. Conse-

quently, 〈 p, σ 〉 6p−→. In the second case, we have to show that 〈 p, σ 〉p
Dd0(p,σ)
−−−−−−→

〈 p′, σ′ 〉 for some p′ and σ′. From Dd0(p, σ) = min(Dd0(p0, σ),Dd0(p1, σ)),
it follows that Dd0(p0, σ) > 0 and Dd0(p1, σ) > 0. By using induction hy-

pothesis (IH-7.9) on both p0 and p1, we obtain 〈 p0, σ 〉 p
Dd0(p0,σ)
−−−−−−−→ 〈 p′0, σ′

0 〉
and 〈 p1, σ 〉 p

Dd0(p1,σ)
−−−−−−−→ 〈 p′1, σ′

1 〉 for some p′0, p′1, σ′
0, and σ′

1. Accord-
ing to Lemma 4.49, we have σ = σ′

0 = σ′
1. We distinguish the fol-



176 Tool support 7

lowing cases: Dd0(p0, σ) = min(Dd0(p0, σ),Dd0(p1, σ)) and Dd0(p0, σ) 6=
min(Dd0(p0, σ),Dd0(p1, σ)). In the first case, according to Lemmas 4.46

and 4.49, we have 〈 p1, σ 〉 p

Dd0 (p0,σ)
−−−−−−−→ 〈 p′′1 , σ 〉 for some p′′1 . So, since we

have 〈 p0, σ 〉 p
Dd0 (p0,σ)
−−−−−−−→ 〈 p′0, σ 〉 and 〈 p1, σ 〉 p

Dd0(p0,σ)
−−−−−−−→ 〈 p′′1 , σ 〉, we can use

Rule 31 to obtain 〈 p, σ 〉 p
Dd0 (p,σ)
−−−−−−→ 〈 p′0 [] p′′1 , σ 〉. The second case is similar.

p ≡ |[ s | p0 ]|: According to Definition 7.8, we have Dd0(p, σ) = Dd0(p0, s :: σ).
We distinguish two cases: Dd0(p0, s :: σ) = 0 and Dd0(p0, s :: σ) > 0. In
the first case, we have to show that 〈 p, σ 〉 6p−→. By using induction hypothe-
sis (IH-7.9) on p0, we obtain 〈 p0, s :: σ 〉 6p−→. Consequently, the only delay rule
for the state operator (Rule 34) does not apply. In the second case, we have

to show that 〈 p, σ 〉 p

Dd0(p,σ)
−−−−−−→ 〈 p′, σ′ 〉 for some p′ and σ′. By using induc-

tion hypothesis (IH-7.9) on p0, we obtain 〈 p0, s :: σ 〉 p
Dd0(p0,s::σ)
−−−−−−−−→ 〈 p′0, σ′

0 〉 for
some p′0, and σ′

0. According to Lemma 4.49, we have s :: σ = σ′
0. Therefore,

we have 〈 p0, s :: σ 〉 p
Dd0 (p0,s::σ)
−−−−−−−−→ 〈 p′0, s :: σ 〉. So, we can use Rule 34 to obtain

〈 p, σ 〉 p
Dd0(p,σ)
−−−−−−→ 〈 |[ s | p′0 ]|, σ 〉.

p ≡ ∂A(p0): The proof is similar to the proof of the case p ≡ p0
∗.

p ≡ π(p0): According to Definition 7.8, we distinguish the following cases.

〈 p0, σ 〉 6−→: According to Definition 7.8 we have Dd0(p, σ) = Dd0(p0, σ). We
distinguish two cases: Dd0(p0, σ) = 0 and Dd0(p0, σ) > 0. In the first case,
we have to show that 〈 p, σ 〉 6p−→. By using induction hypothesis (IH-7.9)
on p0, we obtain 〈 p0, σ 〉 6p−→. Consequently, the only delay rule for the
maximal progress operator (Rule 40) does not apply. In the second case,

we have to show that 〈 p, σ 〉 p
Dd0(p,σ)
−−−−−−→〈 p′, σ′ 〉 for some p′ and σ′. By using

induction hypothesis (IH-7.9) on p0, we obtain 〈 p0, σ 〉 p

Dd0 (p0,σ)
−−−−−−−→ 〈 p′0, σ′

0 〉
for some p′0 and σ′

0. So, since 〈 p0, σ 〉 6−→, we can use Rule 40 to obtain

〈 p, σ 〉 p
Dd0(p,σ)
−−−−−−→ 〈π(p′0), σ′

0 〉.
¬〈 p0, σ 〉 6−→: According to Definition 7.8 we have Dd0(p, σ) = 0. So, we have to

prove 〈 p, σ 〉 6p−→. Since ¬〈 p0, σ 〉 6−→, we can derive that 〈 p0, σ 〉 a−→ 〈 p′0, σ′
0 〉

for some a, p′0, and σ′
0. Therefore, the only delay rule for the maximal

progress operator (Rule 40) does not apply. Consequently, 〈 p, σ 〉 6p−→.

p ≡ τA(p0): The proof is similar to the proof of the case p ≡ p0
∗.
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The next step is to define a function dcd0 that takes a process and a stack and
computes a delay transition using Dd0 . The dcd0 function is defined in Defini-
tion 7.10.

Definition 7.10 (Delay computation) Let d0 ∈ R>0 be a positive real number. The
function dcd0 : P × Stack → (P × Stack ×R>0 × P × Stack) is defined by

dcd0(p, σ) = { (p, σ,Dd0(p, σ), p′, σ′)
| Dd0(p, σ) > 0 ∧ (p, σ,Dd0(p, σ), p′, σ′) ∈ sc(p, σ)
}.

Note that, due to time determinism (Lemma 4.48), the set dcd0(p, σ) for a process p

and stack σ contains at most one element. This is formalised in the next lemma.

Lemma 7.11 Let p ∈ P be a process and σ ∈ Stack be a stack, then |dcd0(p, σ)| ≤ 1.

Proof (Lemma 7.11) Suppose that |dcd0(p, σ)| > 1. Then according to Def-
inition 7.10 there are p′, p′′, σ′, and σ′′, such that (p, σ,Dd0(p, σ), p′, σ′) and
(p, σ,Dd0(p, σ), p′′, σ′′) and p′ 6= p′′ or σ′ 6= σ′′. Since (p, σ,Dd0(p, σ), p′, σ′) ∈
sc(p, σ) we can use Definition 7.1, to obtain 〈 p, σ 〉 p

Dd0(p,σ)
−−−−−−→ 〈 p′, σ′ 〉. Similarly,

we obtain 〈 p, σ 〉 p

Dd0 (p,σ)
−−−−−−→ 〈 p′′, σ′′ 〉. According to Lemma 4.48, we have p′ = p′′

and σ′ = σ′′. This means we have a contradiction.

We are now able to define a finite SOS computer function sc′ that determines a
finite number of terminations and transitions of a process. The terminations and
transitions form a subset of the terminations and transitions computed by the
function sc of Definition 7.1: only terminations and transition under the empty
stack are considered, and at most one delay transition is computed. Since we use
function Dd0 from Definition 7.8, the finite SOS computer function is parameter-
ized by a positive real number d0 and denoted by sc′d0

. This function is given in
Definition 7.12.

Definition 7.12 (Finite SOS computer) Let d0 be a positive real number. The finite
SOS computer function sc′d0

: P → P(P ×Stack)∪P(P ×Stack×(Action∪R>0)×
P × Stack) is defined by

sc′d0
(p) = {(p, λσ) | (p, λσ) ∈ sc(p)} ∪ ac(p, λσ) ∪ dcd0(p, λσ).

The fact that sc′d0
(p) is finite, results from the following properties of sc′d0

(p):

• it contains at most one termination (Lemma 7.3),
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• it contains finitely many action transitions (Lemma 7.4),

• it contains at most one delay transition (Lemma 7.11).

Recall that the function sc defines the terminations, the action transitions, and
the delay transitions of processes. That is, for a given process, it defines a χσ-LTS.
In general, this LTS is infinite. The function sc′d0

also defines a χσ-LTS for a given
process. This LTS is finite. Therefore, we can define a reduction for any process p

that reduces sc(p) into sc′d0
(p). This reduction has two important applications.

Firstly, since the state space of a χσ specification is finite (after reduction), effective
implementations to compute this state space are possible. The χσ engine is an
example of such an implementation. Secondly, existing tools that manipulate finite
LTSs can be used to manipulate χσ processes. For instance, using tools from the
Formal Methods, bisimulation checks on χσ processes can be performed. These
tools implement various kinds of bisimulations on LTSs, like (untimed) strong
bisimulation and (untimed) branching bisimulation. Consequently, although we
did not formalise timed branching-bisimulation on χσ processes, these tools can
be used to perform specification-implementation checks (see Chapter 8).

In order to the verify a property using the reduced χσ-LTS, it is important to know
whether the property is preserved under the reduction. Based on Lemma 7.7,
we can conclude that the reduction does preserve many properties of maximal
progress processes (proofs are omitted), see Table 7.3. Notice that all translations
of χ processes are maximal progress processes (Chapter 6).

property preserved

π(p) has deadlock yes
π(p) has live lock yes
a always occurs before b yes
a occurs at most d time before b yes
π(p) can/cannot delay yes
π(p) can/cannot delay d time no
π(p) can do different delays no

Table 7.3 Influence of reduction on example properties.

This concludes the discussion about the SOS computer. We have shown that even
though in general the set of terminations and transitions of a process is infinite, it
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is possible to define a relevant, finite subset that can be computed effectively. The
SOS computer determines this finite subset. In the next section, we will describe
the components of the χσ engine that employ the SOS computer.

7.5 Back end

The back end of the χσ engine provides functionality to simulate χσ specifications
and functionality to compute the state space of χσ specifications. A state space is
in fact a χσ-LTS (see Definition 4.2).

The simulator functionality consists of:

• instantiating a simulator with a χσ process,

• computing the set of terminations and transitions according to the SOS
computer function sc′ (see Definition 7.12),

• selecting a transition for execution,

• executing a transition, and

• executing arbitrary many, randomly chosen, successive transitions.

Selection of a transition can be controlled by the user. This enables user-directed
simulations in which the effect of certain sequences of transitions can be studied.
By executing (randomly chosen) successive transitions, the χσ engine provides
simulation functionality comparable to that of previous χ engines [2].

The state space computation functionality consists of:

• instantiating a state space generator with a χσ process,

• computing the state space for the current process,

• checking for deadlock states,

• writing the state space in a format suitable for model checking, and

• writing the state space in a format suitable for visualisation.

The algorithm ComputeStateSpace for state space computation is given in code
listing below. It has one parameter p: the χσ process for which the state space
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should be computed. Each state of the state space is a χσ process. The algorithm
explores the state space in a breadth-first-search approach. Variable Q is a queue
of unexplored states; it is initialized to the singleton list containing process p.
Variable S is the state space that is computed; it is initialized to the empty state
space (no states, no terminations, and no transitions). As long as queue Q has
unexplored states (Q 6= [ ]) the first state of Q is selected for exploration and
removed from Q. This state, the current state, is stored in the variable cp. It is
explored by computing its (reduced) semantics sc′d0

(cp). This semantics is stored
in the variable sos. Note that it contains terminations, action transitions, and
delay transitions (see Definition 7.1). The semantics stored in sos is added to the
state space S. Further, the fresh states in sos are appended to the queue Q. Fresh
states are those states in sos that are neither in S nor in Q. These states are
computed by the function freshStates. If there are no more unexplored states, the
algorithm ends and returns the state space S.

ComputeStateSpace(p) :
Q := [p]
S := emptyStateSpace()
while Q 6= [ ] :

cp := hd(Q)
Q := tl(Q)
sos := sc′d0

(cp)
S := S ∪ sos
Q := Q ++ freshStates(S, Q, sos)

return S

Once the state space is computed, deadlock states can easily be detected by scan-
ning through all states and filtering out those states that cannot terminate and
that do not have (outgoing) transitions. In addition, the state space can be saved
both as an fc2 file and as a dot file. The fc2 file can be used for model checking
by the fcTools. The dot file can be used for visualisation by the Graphviz tools.
These tools are discussed in Section 7.7.

7.6 Tool related extensions

In this section we discuss some extensions of χσ that are implemented in the
χσ engine, but are not defined formally. The extensions include a data type for
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real numbers, some syntactic sugar for programming variable declarations and
initializations, and probabilistic language constructs.

The real number extension is based on the real number data type of Python (the
implementation language of the χσ engine). This extension adds a type for real
numbers, called real, and common operations on those numbers.

Recall that states have the syntactic form v1 : v2 : . . . : vn : λs, where for 0 <

i ≤ n, we have that vi is a valuation. There are two types of valuations: channel
valuations and programming variable valuations. A channel valuation has the form
m 7→ c, for m a channel and c a value. A programming variable valuation has
the form x : t 7→ c, for x a programming variable, t a type, and c a value. A
concrete example of a state is (x : nat 7→ ⊥) : (∼m 7→ 1) : (y : real 7→ −1.2) : λs.
Recall that ‘⊥’ denotes an unspecified value. This state contains two programming
variable valuations (programming variables x : nat and y : real) and one channel
valuation (channel ∼m). Instead of the ‘7→’, we can use the equality symbol ‘=’.
Also, the colons separating the valuations in a state may be replaced by commas.
In that case, the parentheses and the ‘λs’ at the end can be dropped as well.
Finally, channel valuations of the form ∼m 7→ ⊥ can be abbreviated to ∼m, and
programming variable valuations of the form x : t 7→ ⊥ can be abbreviated to x : t.
So, our example can be abbreviated to x : nat,∼m = 1, y : real = −1.2.

In Section 5.5, we mentioned that χ does have probabilistic language constructs
and χσ does not. We also mentioned that this is a serious omission of χσ, since
without these language constructs, performance properties like average cycle time
and average throughput cannot be determined. Therefore, the χσ engine is ex-
tended with a data type for real-valued distributions and a sample expression to
draw samples from a distribution. The real-valued distribution type is denoted by
dist[real]. A distribution can be sampled by means of the sample construct. For
instance, if d is a distribution, sampling d is denoted by sample(d). Values of dis-
tribution types are created by a built-in function. Table 7.4 shows the distributions
implemented in the χσ engine.

Let us reconsider machine M presented on page 45. This machine processes lots
with a processing time that is Gamma distributed. Lots are represented by nat-
ural numbers and the setseed statement is not translated (see Section 6.3). The
definition of machine M in χσ reads

M(a, b : chan, m, v : real) =
|[ d : dist[real] = gamma(m2

v , v
m ), x : nat | (a ? x ; ∆sample(d) ; b ! x)∗ ; δ ]|.
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Distribution Syntax Parameters Value range

Exponential exp(m) m ∈ R mean value R≥0

Normal nor(m, d) m ∈ R mean value R

d ∈ R standard deviation
Gamma gamma(p, q) p, q ∈ R R≥0

p× q mean value
p× q2 variance

Uniform uni(l, u) l ∈ R lower bound {r ∈ R | l ≤ r < u}
u ∈ R upper bound

Table 7.4 Distributions of the χσ engine.

7.7 Third party tools

The χσ engine is designed in such a way that it can be integrated with third party
tools. The main reason for this is that we wanted to reuse existing applications
and libraries as much as possible. The main consequence of this decision is that the
programming interface of the χσ engine is defined in Python, since this language
is particularly useful if it comes to integration of tools and libraries. Currently,
the χσ engine is integrated with two different tools: fcTools, and Graphviz.

The fcTools are developed jointly by INRIA and Ecole des Mines/CMA as part
of the MEIJE research team [168]. The tools share a common file exchange format,
called fc2, for networks of communicating systems, and provide functionality to
construct, reduce, and analyze concurrent systems. The fc2 file format is designed
to specify finite LTSs. Multiple LTSs can be structured using networks of LTSs.
Furthermore, a network can contain sub-networks, thereby enabling a hierarchical
architecture of systems.

The fcTools provide functionality to flatten hierarchical networks of LTSs into
one big LTS. After that, it is possible to minimize the LTSs under different equiva-
lence relations on the states of the LTS. The equivalence relations the fcTools un-
derstand are strong bisimulation, weak bisimulation, and branching bisimulation.
In addition, the fcTools can check if two LTSs are equal under one of these equiv-
alence relations. This functionality enables specification-implementation checks of
models of industrial systems. To this end, the user can define both a specification
and an implementation of the concurrent system under consideration. Usually,
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the implementation contains internal actions. Under branching equivalence, the
fcTools can abstract from these internal actions and check if the abstracted LTS
of the implementation is branching bisimilar to the specification LTS.

The χσ engine can write state spaces of χσ processes as LTSs in the fc2 file for-
mat. Since the fcTools do not make a distinction between delay transitions and
action transitions, the transformation from state spaces of χσ processes into fc2
LTSs disregards this difference. As mentioned above, the χσ-LTSs computed by
the χσ engine are finite and can therefore be analysed by the fcTools. Conse-
quently, after generation of the (reduced) state space of a process, it is possible to
use the fcTools to analyze this state space. For example, we can minimize the
state space under (untimed) strong bisimulation or (untimed) branching bisim-
ulation. If two processes p and q are branching bisimular under this (untimed)
branching bisimulation, we write p ↔b q. In addition, the χσ engine contains a
script that transforms fc2 files into dot files, the input format for the visualisation
tools discussed in the next section. Using this script, it is possible to visualize
state spaces minimized by the fcTools.

Graphviz [74, 124] is an open toolkit for graph visualisation. It is developed at
AT&T Labs-Research. The Graphviz tools use a common language to specify
attributed graphs. This language is called Libgraph, but is probably better known
as the dot format, after its best-known application. Graphviz provides tools for
graph filtering and graph rendering. The filtering tools can be batch-oriented as
well as interactive.

For our application, visualisation of state spaces of χσ processes, we only need a
small part of the functionality offered by Graphviz. For instance, there are only
four different types of nodes (initial, termination, deadlock, and normal nodes) and
two different types of edges (action and delay transitions) in our graphs. Moreover,
we do not need Graphviz facilities to structure graph specifications hierarchically.

7.8 Experiment environment

If different instantiations of χσ process definitions should be analysed, manipula-
tion of output becomes a considerable task. An experiment environment provides
functionality to perform this task efficiently. The experiment environment of χσ is
a front end to the functionality of the χσ engine. In addition, it provides scripting
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features and interfaces to the fcTools and the Graphviz toolkit. In Appendix B,
a sample session with the experiment environment is presented.

We implemented the experiment environment in Python, the same language as the
implementation language of the χσ engine. Python is an object-oriented scripting
language. Consequently, χσ experiments can be defined as Python scripts. Since
the functionality of the χσ engine is available to these scripts, they can read, simu-
late, and model check χσ specifications. This results in internal representations of
specifications, traces (sequences of transitions), and process graphs, respectively.
These results can be manipulated like ordinary Python objects. For example, after
simulating the specification of a production system, the throughput and average
cycle time can be computed by analysing the trace obtained. So, analysis need
not be coded in the specification. Moreover, scripts have complete control over
simulation steps. For instance, the number of simulation steps and the selection
of steps can be programmed in scripts. Therefore, functionality as offered by the
terminate statement of χ is also provided.

7.9 Discussion

In this chapter, we showed that χσ can be supported by tools. The tools we
developed for χσ provide functionality to check if a process can terminate, and if
it can perform an action or a delay transition. We validated the correctness of the
implementation with respect to the formal semantics by testing. In addition, two
versions of the formal semantics have been implemented and checked for mutual
consistency. Furthermore, we established theoretical results enabling a reduction
of infinite process graphs to finite process graphs. This reduction enables effective
computation of (reduced) process graphs and integration with existing tools to
manipulate finite process graphs. The reduction applies to all (χσ translations
of) χ processes.

The tools developed are integrated with third party tools to analyse and visualise
process graphs. In addition, an experiment environment for χσ has been developed.
It provides a uniform interface to the functionality of both the χσ tools and the
integrated third party tools. Even though the current version of the χσ engine is
a prototype, it already proved to be useful during analysis of industrial systems
(see next chapter).
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In this chapter, we explain the behaviour of χσ operators and show how they
interact with each other. Examples containing small χσ models are discussed
and their behaviour is illustrated by process graphs. Furthermore, we describe
results of case studies. Each study considers a (small) production system that we
specify in χσ and subsequently analyse with respect to its performance behaviour
or functional behaviour.

In this chapter, we applied the reduction technique for infinite LTSs as imple-
mented by the χσ engine (see Section 7.4). Some examples and case studies that
are discussed in this chapter, were analysed using the χσ engine and use real num-
bers and distributions.

This chapter is organised as follows. Section 8.1 describes graphical conventions
used in this chapter and Section 8.2 describes process specifications. Next, Sec-
tions 8.3 through 8.5 illustrate fundamental concepts of χσ. Section 8.6 illustrates
specification-implementation checks by discussing a toy example. Sections 8.7
through 8.9 illustrate how industrial systems can be analysed in χσ. This chapter
is concluded by a discussion in Section 8.10.

8.1 Process graphs

Section 4.2 introduced conventions to depict process graphs:

• action transitions are solid edges labelled by an action,

• delay transitions are dashed edges labelled by a positive real number,

• terminations are represented by grey states,

• the initial state has a double circle,

• states without (outgoing) transitions and terminations are black.
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It is often the case that there exists more than one graph which correctly illustrates
a process’ behaviour. For instance, consider the process |[ (x : nat 7→ ⊥) : λs |
(x := 4)∗ ]|. Both graphs in Figure 8.1 are correct process graphs for this process.

1

0

aa(x,4)

aa(x,4) 0 aa(x,4)

Figure 8.1 Process graphs.

8.2 Process specifications

In Section 4.18, we described how process specifications can be written in χσ.
Here, we illustrate the general case by an example. Consider the specification of
machine M :

M(a, b : chan, pt : int) = |[ (x : int 7→ 0) : λs | (a ? x ; ∆pt ; b ! x)∗ ; δ ]|.

By instantiating a process specification, a concrete process results. For instance,
M(∼m,∼n, 3), that is, instantiating M with channels ∼m and ∼n, and with
process time 3, results in the process

|[ (x : int 7→ 0) : λs | (∼m ? x ; ∆3 ; ∼n ! x)∗ ; δ ]|.

Note that the formal parameters of M are replaced by the actual parameters;
instantiation is just syntactic replacement. Therefore, the formal parameter pt
cannot be used as a programming variable in the process term that defines M .
Therefore, the definition

M(a, b : chan, pt : int) =
|[ (x : int 7→ 0) : λs | pt := pt + 2 ; (a ? x ; ∆pt ; b ! x)∗ ; δ ]|

is an invalid process definition. The problem is that after instantiation, the left-
hand side of the assignment is not a programming variable anymore, but a value:

|[ (x : int 7→ 0) : λs | 3 := 3 + 2 ; (∼m ? x ; ∆3 ; ∼n ! x)∗ ; δ ]|.
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The syntactic replacement applies only to the free programming variables in a
process. A programming variable is free in a process, if it is not defined in a state
operator enclosing that process. However, free programming variables can occur
in expressions that define initial values for programming variables in the state of a
state process. Consequently, it is possible to use one identifier both as a parameter
and as a local programming variable:

M(a, b : chan, pt : int) =
|[ (x : int 7→ 0) : (pt : int 7→ pt) : λs | pt := pt + 2 ; (a ? x ; ∆pt ; b ! x)∗ ; δ ]|.

If this process specification is instantiated as above, M(∼m,∼n, 3), we obtain

|[ (x : int 7→ 0) : (pt : int 7→ 3 ) : λs | pt := pt + 2 ; (∼m ? x ; ∆pt ; ∼n ! x)∗ ; δ ]|.

As can be seen, only the occurrence of pt in the right-hand side of a valuation of
the local state is substituted by the actual parameter.

8.3 Time factorisation and maximal progress

In Section 4.3, we discussed the notion of time factorisation and maximal progress.
We explained that we decided for an interpretation of time factorisation such that
opportunities for action performance and termination cannot be ignored (Fig-
ure 4.3(c)). The examples below illustrate that in χσ this is indeed the case. Fur-
thermore, we also illustrate the distribution of the sequential composition operator
over the alternative composition operator as formalised in Lemma 4.23 and the
time factorisation property as formalised in Lemma 4.47. Consider the following
processes:

TF1 = ∆3 [] ∆4,

TF2 = ∆3 ; skip [] ∆4 ; skip,

TF3 = (∆3 [] ∆4) ; skip,

TF4 = ∆3 ; skip [] ∆4,

TF5 = ∆3 ; (skip [] ∆1).

The graph of process TF1 is depicted in Figure 8.2(a). It shows that both al-
ternatives delay together and that TF1 cannot delay more than 3 time units at
once.

Processes TF2 and TF3 are equal according to Lemma 4.23. Consequently, their
process graphs are identical (see Figure 8.2(b)). Also here, we see that both
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alternatives delay together and that they cannot delay more than 3 time units at
once. The same holds for the processes TF4 and TF5 . They are equal according
to Lemma 4.47 and their process graph is depicted in Figure 8.2(c).

2

1

3

0

1

(a) Graph of TF1 .

3

2

3

1

0

tau

tau

1

(b) Graph of TF2 ,3 .

0

1

3

2

tau 1

(c) Graph of TF4 ,5 .

Figure 8.2 Time Factorisation.

Let us next reconsider the processes TF1 , TF3 , and TF5 under maximal progress:

MP1 = π(∆3 [] ∆4),
MP2 = π((∆3 [] ∆4) ; skip),
MP3 = π(∆3 ; (skip [] ∆1)).

The graph of process MP1 , as depicted in Figure 8.3(a), is identical to the graph
of process TF1 . Here the maximal progress operator has no effect because pro-
cess TF1 does not perform any actions. However, the maximal progress operator
does have effect when applied to the processes TF3 and TF5 . Their process graphs
are depicted in Figure 8.3(b) and 8.3(c). As can be seen, the alternative to delay
for 1 time unit is lost because of the opportunity to perform the internal action τ .
As a consequence, under maximal progress the processes TF3 and TF5 are equal.

Besides the alternative composition operator, also the sequential composition op-
erator accounts for time factorisation. This is illustrated by the following process:

TF6 = (∆3 [] ε) ; ∆4.
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Figure 8.3 Maximal progress.

Since the first argument of the sequential composition can both delay and termi-
nate, and the second argument can delay too, we have in fact two delay alterna-
tives, which should delay together.

The graph of process TF6 is depicted in Figure 8.4. At first sight, it may not
be obvious that this process graph corresponds to the behaviour specified in pro-
cess TF6 . Therefore, consider the following computation:

TF6 ↔ (∆3 [] ε) ; ∆4
↔ {Lemma 4.23}

∆3 ; ∆4 [] ε ; ∆4
↔ {Lemma 4.20}

∆3 ; ∆4 [] ∆3 + 1
↔ {Lemma 4.47}

∆3 ; (∆4 [] ∆1)
↔ {Lemma 4.16}

∆3 ; (∆1 [] ∆4)
↔ {Lemma 4.19}

∆3 ; (∆1 ; ε [] ∆1 + 3)
↔ {Lemma 4.47}

∆3 ; ∆1 ; (ε [] ∆3).

So, we see that TF6 ↔ ∆3 ; ∆1 ; (ε []∆3), which corresponds directly to the graph
of Figure 8.4.
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0 2
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3 1
31

Figure 8.4 Graph of TF6 .

8.4 Programming variables and scoping

This section explains how we can use programming variables by introducing the
state operator. We first present a rather simple example, followed by a more
complex one containing nested states.

Consider the following process:

S1 = |[ (x : nat 7→ 1) : λs | x := x + 1 ]|.

We derive the action this process can perform and we derive the process that
results from performing that action. If there is a transition possible, Rule 33
should apply:

〈 |[ (x : nat 7→ 1) : λs | x := x + 1 ]|, σ 〉 a−→ 〈 |[ s | p ]|, σ′ 〉,

with a an action, s a state, and p a process. According to that same rule, we also
have

〈x := x + 1, (x : nat 7→ 1) : λs :: σ 〉 a−→ 〈 p, s :: σ′ 〉.

This is indeed possible due to Rule 4, since ((x : nat 7→ 1) : λs :: σ)(x + 1) = 2
according to Definition A.11. Consequently, we obtain

〈x := x + 1, (x : nat 7→ 1) : λs :: σ 〉 aa(x,2)−−−−−→ 〈 ε, ((x : nat 7→ 1) : λs :: σ)[2/x] 〉.

According to Definition A.10, this is equal to

〈x := x + 1, (x : nat 7→ 1) : λs :: σ 〉 aa(x,2)−−−−−→ 〈 ε, (x : nat 7→ 2) : λs :: σ 〉.

This now gives us the transition we were looking for, because we can apply Rule 33
and obtain

〈 |[ (x : nat 7→ 1) : λs | x := x + 1 ]|, σ 〉 aa(x,2)−−−−−→ 〈 |[ (x : nat 7→ 2) : λs | ε ]|, σ 〉.



8.4 Programming variables and scoping 191

The next example we consider is slightly more complicated. Consider a process S2

with two nested states. The outermost state has two programming variables, x

and y, whereas the innermost state has only one programming variable, y:

S2 =
|[ (x : nat 7→ 3) : (y : nat 7→ 1) : λs

| |[ (y : nat 7→ 2) : λs | x := x + y ; y := x× y ]| ; y := x− y

]|.

The behaviour of this process is depicted in Figure 8.5. As can be seen, first the
assignment action aa(x, 5) is performed, thereby updating the value of x in the
outermost state to 5. Note that the value of y in the expression x + y is obtained
from the innermost state. After that, it performs action aa(y, 10) and updates the
value of y in the innermost state to 10. The final action S2 performs is aa(y, 4),
thereby updating the value of y in the outermost state to 4. Note that the value
of y in the innermost state does not influence this final assignment to y. The
first transition of process S2 is derived as follows. Using Rule 4, we have (for
arbitrary σ)

〈x := x + y

, (y : nat 7→ 2) : λs :: (x : nat 7→ 3) : (y : nat 7→ 1) : λs :: σ

〉
aa(x,5)−−−−−→

〈 ε
, (y : nat 7→ 2) : λs :: (x : nat 7→ 5) : (y : nat 7→ 1) : λs :: σ

〉.

According to Rule 18 we have

〈x := x + y ; y := x× y

, (y : nat 7→ 2) : λs :: (x : nat 7→ 3) : (y : nat 7→ 1) : λs :: σ

〉
aa(x,5)−−−−−→

〈 ε ; y := x× y

, (y : nat 7→ 2) : λs :: (x : nat 7→ 5) : (y : nat 7→ 1) : λs :: σ

〉.

Applying Rule 33 then gives
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〈 |[ (y : nat 7→ 2) : λs | x := x + y ; y := x× y ]|
, (x : nat 7→ 3) : (y : nat 7→ 1) : λs :: σ

〉
aa(x,5)−−−−−→

〈 |[ (y : nat 7→ 2) : λs | ε ; y := x× y ]|
, (x : nat 7→ 5) : (y : nat 7→ 1) : λs :: σ

〉.

Next, by applying Rule 18 we obtain

〈 |[ (y : nat 7→ 2) : λs | x := x + y ; y := x× y ]| ; y := x− y

, (x : nat 7→ 3) : (y : nat 7→ 1) : λs :: σ

〉
aa(x,5)−−−−−→

〈 |[ (y : nat 7→ 2) : λs | ε ; y := x× y ]| ; y := x− y

, (x : nat 7→ 5) : (y : nat 7→ 1) : λs :: σ

〉.

Finally, we apply Rule 33 again and find the transition we were looking for:

〈 |[ (x : nat 7→ 3) : (y : nat 7→ 1) : λs

| |[ (y : nat 7→ 2) : λs | x := x + y ; y := x× y ]| ; y := x− y

]|
, σ

〉
aa(x,5)−−−−−→

〈 |[ (x : nat 7→ 5) : (y : nat 7→ 1) : λs

| |[ (y : nat 7→ 2) : λs | ε ; y := x× y ]| ; y := x− y

]|
, σ

〉.

Similar derivations can be made for the remaining transitions of Figure 8.5.

8.5 Concurrency and communication

In this section we present some examples in order to illustrate the idea of concur-
rency and the concept of communication. The main operator under consideration
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0 1
aa(x,5)

32
aa(y,4)aa(y,10)

Figure 8.5 Graph of S2.

is the ‘‖’ operator. With respect to this operator, we look at action interleaving,
communication, and delay behaviour.

Consider the following process:

C1 = skip ; ∆3 ‖ |[ (b : bool 7→ ⊥) : λs | b := true ; ∆4 ]|.

By looking at its process graph, which is depicted in Figure 8.6, we can see that
if two processes are put in parallel, their actions are interleaved. As far as their
delay behaviour is concerned, we see that if two processes are able to perform a
certain delay, then they perform that delay together. In Figure 8.6 that would be
the delay of 3 time units. After that delay, the left-hand side argument of the ‘‖’
operator of C1 can do nothing but terminate, which enables the right-hand side
argument to finish by performing a delay of 1 time unit.

3

1tau

0
aa(b,true)

54
1

2

aa(b,true)

tau
3

Figure 8.6 Graph of C1.

Besides interleaving actions, the merge operator is also able to let send and receive
processes communicate. This is illustrated by the following process:

C2 = |[ (∼m 7→ ⊥) : λs | ∼m ! true ‖ |[ (b : bool 7→ ⊥) : λs | ∼m ? b ]| ]|.

In Figure 8.7(a) the process graph of C2 is depicted. As can be seen, process C2

can perform a send action and send the value true via channel ∼m. After that, it
can perform a receive action and receive the value true in programming variable b
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via ∼m. Besides asynchronous communication, C2 can also perform a commu-
nication action and thereby communicate the value true synchronously via ∼m.
The process graph of C2 also shows that both the send and receive process in C2,
∼m !true and ∼m?b, can delay for an arbitrary number of time units (this is needed
because we want send and receive processes to be able to wait for communication).

Often, we are only interested in synchronous communication. In that case we can
use the encapsulation operator to encapsulate send and receive actions. Suppose
we want to encapsulate all send and receive actions in process C2. In that case,
we define a set A = {sa(m, c) | m ∈ Channel ∧ c ∈ Value} ∪ {ra(m, x) | m ∈
Channel ∧ x ∈ Var} and a process

C3 = ∂A|[ (∼m 7→ ⊥) : λs | ∼m ! true ‖ |[ (b : bool 7→ ⊥) : λs | ∼m ? b ]| ]|.

The process graph of C3 is depicted in Figure 8.7(b). The ability to delay an
arbitrary number of times still exist. The latter is mostly also unwanted. We
do not want processes to delay if they can also perform an action. This can be
established by using the maximal progress operator. This operator enforces a
process to perform actions if it can and allows it to delay if it cannot perform any
activity. If we apply the maximal progress operator to process C3, we obtain

C4 = π∂A|[ (∼m 7→ ⊥) : λs | ∼m ! true ‖ |[ (b : bool 7→ ⊥) : λs | ∼m ? b ]| ]|.

The process graph of C4 is depicted in Figure 8.7(c). As we can see, the ability to
delay is lost.

8.6 Specification-implementation equivalence

Branching bisimulation enables us to analyse specification-implementation equiv-
alence. For example, if the desired external behaviour of a system is defined
separately in the specification, then we can check whether the implementation
satisfies this behaviour by abstracting from internal behaviour. Recall that we use
untimed branching bisimulation on process graphs as described in Section 7.7.

For example, consider the processes Sum1 and Sum2 :
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Figure 8.7 Communication.

Sum1 (a, b : chan) =
|[ (x : nat 7→ ⊥) : (y : nat 7→ 0) : λs

| a ? x ; (x > 0 :→ y := y + x ; x := x− 1)∗ ; (x = 0 :→ b ! y)
]|,

Sum2 (a, b : chan) =
|[ (x : nat 7→ ⊥) : λs | a ? x ; b ! 1

2 × x× (x + 1) ]|.

Process Sum1 computes the sum of the series
∑x

i=0 i for a natural number x that
it receives via a. The computed result is sent via b. However, the desired result
can be obtained in a more efficient way because

x∑
i=0

i =
1
2
× x× (x + 1),

for every natural number x (proof omitted). This way to compute the sum of
series

∑x
i=0 i is specified in process Sum2 .

Let us now define the two processes I and S which represent implementation and
specification, respectively:

I(m : nat) = |[ (∼in 7→ m) : (∼out 7→ ⊥) : λs | πSum1 (∼in ,∼out) ]|,

S(m : nat) = |[ (∼in 7→ m) : (∼out 7→ ⊥) : λs | πSum2 (∼in,∼out) ]|,
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and show that for A = {aa(x, c) | x ∈ Var ∧ c ∈ Value} we have τAI(n) ↔b S(n)
for every natural number n.

We start with the definition of process I ′:

I ′(m : nat, i : nat) =
π|[ (x : nat 7→ m) : (y : nat 7→ i) : λs

| (x > 0 :→ y := y + x ; x := x− 1)∗ ; (x = 0 :→ ∼out ! y)
]|.

Its process graph is defined as follows, where n and j are natural numbers:

I ′(0, j)
sa(∼out,j)−−−−−−−→ π|[ (x : nat 7→ n) : (y : nat 7→ j) : λs | ε ]| if n = 0,

I ′(n, j)
aa(y,j+n)−−−−−−−→ I ′(n, j + n)

aa(x,n−1)−−−−−−−→ I ′(n− 1, j + n) if n > 0.

For the graph of process τAI(n) we find

τA|[ (∼in 7→ n) : (∼out 7→ ⊥) : λs

| π|[ (x : nat 7→ ⊥) : (y : nat 7→ 0) : λs

| ∼in ? x ; (x > 0 :→ y := y + x ; x := x− 1)∗ ; (x = 0 :→ ∼out ! y)
]|

]|

ra(∼in,x)−−−−−−−→

τA|[ (∼in 7→ n) : (∼out 7→ ⊥) : λs

| π|[ (x : nat 7→ n) : (y : nat 7→ 0) : λs

| ε ; (x > 0 :→ y := y + x ; x := x− 1)∗ ; (x = 0 :→ ∼out ! y)
]|

]|,

which is in fact

τAI(n)
ra(∼in,x)−−−−−−−→ τA|[ (∼in 7→ n) : (∼out 7→ ⊥) : λs | I ′(n, 0) ]|.

So, we find that the process graph of τAI(n) starts with receive action ra(∼in , n),
followed by n pairs of internal actions τ (the hidden possible assignment actions
of I ′(n, 0)), and finishes with send action ∼out ! n′ where n′ is the computed sum
of the series 0 +

∑n
i=0 n− i, which is equal to

∑n
i=0 i (proof omitted).

For the graph of process S(n) we find
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τA|[∼in 7→ n : ∼out 7→ ⊥ : λs

| π|[ (x : nat 7→ ⊥) : (y : nat 7→ 0) : λs | ∼in ? x ; ∼out ! 1
2 × x× (x + 1)) ]|

]|

ra(∼in,x)−−−−−−−→

τA|[ (∼in 7→ n) : (∼out 7→ ⊥) : λs

| π|[ (x : nat 7→ n) : (y : nat 7→ 0) : λs | ε ; ∼out ! 1
2 × x× (x + 1)) ]|

]|

sa(∼out,n′)−−−−−−−−→

τA|[ (∼in 7→ n) : (∼out 7→ ⊥) : λs

| π|[ (x : nat 7→ n) : (y : nat 7→ 0) : λs | ε ]|
]|,

where n′ is the computed outcome of 1
2 × n× (n + 1).

Now we know the structure of the process graphs of both τAI(n) and S(n), we can
construct a branching bisimulation relation between the two. Figure 8.8 depicts
such a branching bisimulation relation. The dotted arrow in the process graph of
τAI(n) represents the n pairs of τ steps.

8.7 A simple flow line

In this section, we discuss a small case study on performance analysis. The per-
formance properties we study here are throughput and average cycle time. The
production system we consider is a flow line that consists of four buffer-machine
units. The environment is modelled by a generator, which generates the lots to be
processed by the machines, and an exit process that consumes all produced lots.

The throughput of the flow line and average cycle time of the lots depends on the
number of lots present in the system during production. This number is referred
to as WIP level; the level of work in process. Our objective is to determine how
throughput and average cycle time relate to the selected WIP level. To that end,
we introduce a WIP controller. This controller is integrated in the generator and
keeps the WIP level at a constant level. Such controllers are also referred to as
CONWIP controllers [110].
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Figure 8.8 Branching bisimulation between τAI(n) and S(n).

The generator, the buffers, the machines, and the exit are each modelled by a
process. The material and information flow in the system is modelled by com-
munication between the different processes. That is, communication between two
processes models transport of a lot from one process to another, or the exchange
of information between two processes.

The generator, the buffers, the machines, and the exit are represented by the
processes G, B, M , and E, respectively. Processes B and M are combined into a
buffer machine unit BM . The flow line itself, called FL, is constructed from these
units. The processes mentioned above are connected by the channels ∼gb, ∼bm ,
∼mb1 , ∼mb2 , ∼mb3 , ∼me, and ∼eg. All channels but channel ∼eg model the
transportation of lots. Channel∼eg is part of the WIP controller. The architecture
of BM and FL is depicted in Figure 8.9.

We start with the definition of the processes G and E:

G(a, b : chan, wip : nat) =
|[ (w : nat 7→ 0) : (x : bool 7→ ⊥) : λs

| (w < wip :→ a ! 0 ; w := w + 1 [] b ? x ; w := w − 1)∗ ; δ

]|,
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B M
a ∼bm b

(a) System BM with parameters a and b.

G BM BM BM BM E
∼gb ∼mb1 ∼mb2 ∼mb3 ∼me

∼eg

(b) System FL.

Figure 8.9 Architecture of production system FL.

E(a, b : chan) = |[ (x : nat 7→ ⊥) : λs | (a ? x ; b ! true)∗ ; δ ]|.

We specify infinite behaviour by defining a sequential composition containing a
repetition followed by a deadlock. The deadlock process prevents the repetition
from terminating which results in an infinite loop. The WIP level of FL is con-
trolled by parameter wip of process G. The actual number of lots in the system is
registered by programming variable w. If w < wip, a lot is sent to the first buffer
and w is increased. Note that lots are represented by natural numbers. If we can
communicate with the exit via b, this means that a lot has left the system so w is
decreased.

Next, we define the processes B and M . Process B is defined by

B(a, b : chan) =
|[ (x : nat 7→ ⊥) : (y : nat 7→ 0) : λs

| (a ? x ; y := y + 1 [] y > 0 :→ b ! 0 ; y := y − 1)∗ ; δ

]|.

Process B is a buffer with unlimited capacity. This allows us to specify every WIP
level we want. Namely, should the buffer capacity be limited, then the maximal
WIP level is also limited. Depending on the value of guard y > 0 and opportunities
for communication over the parameters a and b, process B either receives a lot
via a, or sends a lot via b. The number of lots present in the buffer is registered
in y.



200 Examples and cases 8

Process M is defined by

M(a, b : chan, m, v : real) =
|[ (d : dist[real] 7→ uni(0, 1)) : (s : real 7→ ⊥) : (x : nat 7→ ⊥) : λs

| ( a ? x

; s := sample(d) ; (s < 0.5 :→ ∆m− v [] s ≥ 0.5 :→ ∆m + v)
; b ! x

)∗ ; δ

]|.

This process repeatedly receives a lot, processes it, and sends it away. Variation
in processing times is modelled by specifying a mean processing time m plus or
minus a variation v. We define a continuous uniform distribution d with lower
bound 0 and upper bound 1 (see Table 7.4), and determine the processing time
of each lot by drawing a sample s from distribution d. If s < 0.5, the processing
time equals m− v. If s ≥ 0.5, the processing time equals m + v.

Define A = {sa(∼bm, c) | c ∈ Value} ∪ {ra(∼bm, x) | x ∈ Var}, then process BM
is now defined as

BM (a, b : chan) = |[ (∼bm 7→ ⊥) : λs | ∂AB(a,∼bm) ‖M(∼bm , b, 0.2, 0.1) ]|.

For reasons of simplicity, we assume that all machines have identical processing
times. Their mean processing time is set to 0.2 hours with a variation of 0.1 hours.

Finally, we define A′ = {sa(m, c) | m ∈ Channel ∧ c ∈ Value} ∪ {ra(m, x) | m ∈
Channel ∧ x ∈ Var} and process FL as

FL(wip : nat) =
π∂A′ |[ (∼mb1 7→ ⊥) : (∼mb2 7→ ⊥) : (∼mb3 7→ ⊥)

: (∼gb 7→ ⊥) : (∼me 7→ ⊥) : (∼eg 7→ ⊥) : λs

| G(∼gb,∼eg,wip)
‖ BM (∼gb,∼mb1 ) ‖ BM (∼mb1 ,∼mb2 )
‖ BM (∼mb2 ,∼mb3 ) ‖ BM (∼mb3 ,∼me)
‖ E(∼me,∼eg)
]|.

Process FL can be simulated and its dynamic behaviour can be studied. We inves-
tigate how throughput and average cycle time depend on the specified WIP level.
The result is depicted in Figure 8.10. It shows the throughput and average cycle
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time versus WIP level. As can be seen, there is a trade off between throughput
and average cycle time. Depending on certain factors one can choose to have an
almost maximal throughput if one accepts the average cycle time to be quite large.
If a large average cycle time is not acceptable, then one will have to compromise
on the throughput.
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Figure 8.10 Throughput and average cycle time versus WIP.
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8.8 A coating system

In this section, we design a controller for a coating system and show using specifica-
tion-implementation equivalence that it works properly. In addition, we analyse
performance properties of the coating system. A preliminary version of this case
study is published in [41]. Below, we describe the case study in more detail. The
coating system example, is taken from the semiconductor industry. It consists of
a buffer, a coating machine, and a controller. The coating machine covers prod-
ucts with a special layer, the coating, in order to give it particular chemical and
physical properties. Once the machine starts coating products, it should operate
continuously. If the machine has to wait for a new product, then the coating pro-
cess hampers and the machine must be stopped and cleaned. Furthermore, after
a certain amount of products have been processed the machine has to be cleaned
anyway. Our goal is to design a correct controller for the buffer-coating-machine
combination.

Figure 8.11 shows the components of the coating system, which are, buffer B,
coating machine M , and controller C. Buffer B receives products from the en-
vironment via channel EB and stores them. Machine M processes these prod-
ucts, which it receives via channel ∼bm , and returns them to the environment
via channel me. We consider all products equal and model them by the value 0.
Via channels ∼cbget , ∼cbput , ∼cmcoat , and ∼cmclean the controller communicates
control signals to buffer B and machine M . All control signals are modelled by
the value true.

B M

C

∼eb ∼bm ∼me

∼cbget
∼cbput

∼cmcoat

∼cmclean

Figure 8.11 Architecture of the coating system.

We assume the arrival times of the products at buffer B are nondeterministic.
This is a legal assumption, since if we can establish correctness of the controller in
situations with nondeterministic arrival times, then the system will also operate
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correctly in more realistic situations where we have stochastic or deterministic
arrival times.

We start with the definition of the processes B and M . Process B is defined by

B(in , out , get , put : chan) =
|[ (b : bool 7→ ⊥) : (x : nat 7→ ⊥) : (m : nat 7→ 0) : λs

| (get ? b ; in ? x ; m := m + 1 ; get ! true)∗ ; δ

‖ (put ? b ; (m > 0 :→ out ! 0) ; m := m− 1 ; put ! true)∗ ; δ

]|.

Buffer B has four parameters. Via the parameters in and out products are trans-
ported to and from the buffer, respectively. Via the parameters get and put , B is
instructed to receive a product from the environment and to send a product to the
machine, respectively. Within process B three programming variables are used.
Programming variable b is used to receive control signals, programming variable x

is used to receive products, and programming variable m denotes the number of
products in the buffer.

As can be seen, process B has two concurrently executing infinite repetitions. In
the first repetition, B waits for a control signal over get . This signal indicates
that the buffer should try to receive a product from the environment via in. If a
product is received, m is increased and B sends a control signal back over get (note
that we communicate over channels in two directions). Parallel to this cycle, the
buffer executes another cycle that waits for a control signal over put . If this signal
arrives, process B tries to send a product to machine M via out . However, this
is only possible if there is at least one product available. Therefore, we guarded
process out ! 0 with the boolean expression m > 0. Consequently, if the buffer
receives a control signal over put and it contains no products, it will deadlock.
The implementation of the controller should prevent this. After B has sent a
product, it sends a control signal back to the controller via put .

Process M is defined by

M(in, out , coat , clean : chan, tp, tc : real) =
|[ (b : bool 7→ ⊥) : (x : nat 7→ ⊥) : λs

| ( coat ? b ; π(in ? x ; ∆tp ; out ! 0 ; coat ! true)
; (π(coat ? b ; in ? x ; ∆tp ; out ! 0 ; coat ! true))∗

; clean ? b ; ∆tc ; clean ! true )∗ ; δ

]|.
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Process M has six parameters. Via the parameters in and out products are re-
ceived and sent, respectively. Via the parameters coat and clean control signals
are received that instruct the machine to start coating and cleaning, respectively.
Parameter tp models the required processing time for coating one product and
parameter tc models the time it takes to clean machine M .

Machine M operates as follows. It waits for a control signal over coat . If this signal
has been received, then it must be able to receive a product via in, process this
product, send this product to the environment via out , and notify the controller
that it did so over coat . Furthermore, due to the maximal progress operator, M

is not able to wait for communication. If possible without delay, this can be
repeated, else it waits for a cleaning signal over clean . When this signal has been
received, the machine is cleaned, which is then signalled back to the controller
via clean . So, the controller of the machine has to make sure that whenever it
instructs the machine to start coating a product, the machine is able to receive a
product without delay and, after processing, is able to send the product to the exit
without delay. If either one of these actions is impossible, the machine deadlocks.

Before we specify the controller, we first define the desired external behaviour of
the coating system. Depending on this specification, the controller has to satisfy
some formal requirements.

We assume that the buffer has a finite storage capacity cap. As long as there
are less than cap products in the buffer, new products can be accepted. If the
buffer is full, we simply do not accept more products until at least one product
is removed from the buffer. Further, in order to not risk cleaning obligations
after only a few products, we define a minimal batch size min . The coating
machine should not be started unless there are at least min products available in
the buffer. While the coating machine is processing products, new products can
arrive. These products are added to the current batch. However, the number of
products that can be put in one batch is limited, since after a certain amount
of products the coating machine has to be cleaned anyway. Therefore, we define
another parameter max , representing the maximal batch size. As long as the
machine has not processed max products in one batch, new products should be
added to the current batch. Besides the parameters cap, min, and max , for the
specification we also need the already introduced parameters in , out , tp and tc.

Observe that during operation, there are two parallel activities going on. On the
one hand, new products are stored in the buffer, while on the other hand products
are processed by the coating machine. Moreover, these activities influence each



8.8 A coating system 205

other. That is, a full buffer can only accept a new product after it has sent a
product to the coating machine, and the coating of products can start only if
there are at least min products available in the buffer. Based on this observation,
we define the specification, process S, by

S(in, out : chan,min,max , cap : nat, tp , tc : real) =
|[ (∼sync 7→ ⊥) : (m : nat 7→ 0) : (n : nat 7→ 0)
: (bs : nat 7→ 0) : (x : nat 7→ ⊥) : (b : bool 7→ ⊥) : λs

| ( m < cap :→ in ? x ; m := m + 1
; (bs < max :→ bs := bs + 1 [] bs ≥ max :→ ε)

[] bs ≥ min :→ ∼sync ! true
[]∼sync ? b ; (m ≤ max :→ bs := m [] m > max :→ bs := max )
)∗ ; δ

‖ (∼sync ? b

; (bs > n :→ m := m− 1 ; ∆tp ; π(out ! 0) ; n := n + 1)∗

; (bs = n :→ n := 0 ; ∆tc)
; ∼sync ! true
)∗ ; δ

]|.

Process S is a state process with the following channels and programming variables
in its state:

• ∼sync: an internal channel to synchronize between the two parallel activities,

• m: the number of products in the buffer,

• n: the number of products processed in the current batch,

• bs : the size of the current batch,

• x: a programming variable to receive products,

• b: a programming variable to receive control signals.

The process part of the state process consists of a parallel process. The first argu-
ment of the parallel process models the buffering activity. The second argument
of the parallel process models the coating activity. Both activities are modelled
by infinite repetitions. Regarding the buffering activity, we see that as long as
m < cap products can be received. If the size of the current batch is smaller
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than the maximum batch size, bs < max , then the received product is added to
the current batch. If this is not the case, bs > max , nothing happens. When
the buffering activity detects that the number of buffered products is at least the
minimal batch size, bs ≥ min, then it sends a control signal via ∼sync to the
second argument of the parallel process. This argument then starts processing all
products currently in the batch. As soon as a complete batch is processed, bs = n,
the coating activity starts to delay for tc time units. This models the cleaning of
the coating machine. After that, the coating activity notifies the buffering activity
via ∼sync that it is ready to process a new batch. Since the buffering activity was
running while the machine was being cleaned, new products can have been stored
in the buffer. Programming variable m denotes the total number of these prod-
ucts. The products should be processed in the next batch. However, if m ≥ max ,
we cannot include all m products in the next batch. Therefore, bs is set to the
minimum of m and max (m ≤ max :→ bs := m [] m > max :→ bs := max ).

Based on specification S, we design an implementation of the controller. We
derive the controller from the specification and consequently they resemble each
other quite strongly. Controller C is defined by

C (get , put , coat , clean : chan,min,max , cap : nat) =
|[ (∼sync 7→ ⊥) : (m : nat 7→ 0) : (n : nat 7→ 0) :

(bs : nat 7→ 0) : (b : bool 7→ ⊥) : λs

| ( m < cap :→ ( get ! true
[] get ? b; m := m + 1

; (bs < max :→ bs := bs + 1 [] bs ≥ max :→ ε)
)

[] bs ≥ min :→ ∼sync ! true
[]∼sync ? b ; (m ≤ max :→ bs := m [] m > max :→ bs := max )
)∗ ; δ

‖ (∼sync ? b

; (bs > n :→ (put ! true ‖ coat ! true)
; m := m− 1 ; put ? b ; coat ? b ; n := n + 1

)∗

; (bs = n :→ n := 0 ; clean ! true ; clean ? b)
; ∼sync ! true
)∗ ; δ

]|.



8.8 A coating system 207

As can be seen, the only differences with specification S are the places where S

communicates with the environment via in and out , and the parameters tp and tc,
respectively. At those places the controller communicates with the buffer via get
and put , and with the machine via coat and clean.

Let A = {sa(m, c) | m ∈ Channel ∧ c ∈ Value} ∪ {ra(m, x) | m ∈ Channel ∧ x ∈
Var} be the set of all send actions and receive actions. The implementation I of
the coating system as depicted in Figure 8.11 is defined by

I(in, out : chan,min ,max , cap : nat, tp, tc : real) =
π∂A( B(in ,∼bm,∼cbget ,∼cbput )
‖ M(∼bm, out ,∼cmcoat ,∼cmclean , tp, tc)
‖ C(∼cbget ,∼cbput ,∼cmcoat ,∼cmclean ,min ,max , cap)
).

As mentioned above, our goal is to establish correctness of the coating system
with respect to its specification. To be more precise, we analyse for a number of
relevant parameter settings if the implementation is equivalent to the specification
as far as input, output, and delay behaviour is concerned. To that extent, we also
define the environment by the processes Eg and Ee representing a generator and
exit, respectively:

Eg(out : chan) = (skip ; out ! 0 [] skip ; ∆1)∗ ; δ,

Ee(in : chan) = |[ (x : nat 7→ ⊥) : λs | (in ? x)∗ ; δ ]|.

Process Eg is a simple infinite repetition. During each execution of the repetition,
it decides to send a product or to delay for one time unit. The choice between these
two options is nondeterministic. Note that by choosing the delay option several
times, different delays can occur. Process Ee is an even simpler infinite repetition.
During each execution of the loop, it waits until it can receive a product. So, the
environment is always able to receive a product from machine M .

Using process Eg and Ee, we can define

I ′(min ,max , cap : nat, tp, tc : real) =
π∂A(Eg(∼eb) ‖ I(∼eb,∼me,min,max , cap, tp, tc) ‖ Ee(∼me)),

S′(min,max , cap : nat, tp, tc : real) =
π∂A(Eg(∼es) ‖ S(∼es ,∼se,min,max , cap, tp, tc) ‖ Ee(∼se)),
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with ∼eb, ∼me, ∼es , and ∼se channels to connect I ′ and S to the environment,
respectively.

Since both I ′ and S′ contain more detail than just input, output, and delay be-
haviour, we abstract from behaviour irrelevant for this verification. We define the
set

A′ = {aa(x, c) | x ∈ Var ∧ c ∈ Value}
∪ { ca(m, x, c) | m ∈ {∼bm,∼cbget ,∼cbput ,∼cmcoat ,∼cmclean , }

∧ x ∈ Var
∧ c ∈ Value

}

and check for various parameter settings whether

τA′I ′(min,max , cap, tp, tc) ↔b τA′S′(min ,max , cap, tp, tc).

Recall that p ↔b q denotes that there exists an untimed branching bisimulation
between p and q, see discussion at the end of Section 7.7.

Table 8.1 shows the number of states for different settings of the capacity of the
buffer with a fixed minimal and maximal batch size and a fixed processing time
and cleaning time. For these configurations, we found that indeed

τA′I ′(min,max , cap, tp, tc) ↔b τA′S′(min ,max , cap, tp, tc).

The minimal batch size, min, is set to 4 and the maximal batch size, max , is set
to 8. The values 4 and 8 are not arbitrary, but real-life settings. The processing
times and cleaning times relate to each other as 1:6. So, since the time unit to use
is arbitrary, we set tp to 1 and tc to 6. The capacity, cap, ranges between 3 and 9.
Note that for cap = 3, the minimal batch size will never be reached. Therefore,
no products will be processed. This explains the very small number of states for
the cap = 3 configuration.

In addition to the functional analysis described above, performance properties of
the coating system have been analysed. In particular, we determined the average
cycle time and throughput. These properties were determined experimentally by
performing simulations.

Verification showed that the implementation is branching bisimilar to the speci-
fication. Consequently, simulation of the implementation will produce the same
results as simulation of the specification. Since the specification has fewer states
than the implementation, it is more efficient to simulate the specification than the
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cap τA′S′(4, 8, cap, 1, 6) τA′I ′(4, 8, cap, 1, 6) minimized

3 70 133 12
4 3164 20737 456
5 3699 26821 577
6 4206 32723 704
7 4685 38443 836
8 5126 43961 902
9 5567 49508 968

10 6008 55055 1034

Table 8.1 Number of states of τA′S′ and τA′I ′ for varying buffer capacities.

implementation. Here, we see an interesting application of combining simulation
with verification.

In order to simulate realistic situations, we had to adapt the nondeterministic
generator process Eg. Instead of nondeterministic arrival times, the new generator
process has stochastic arrival times. The new generator process E′

g is defined by

E′
g(out : chan) =
|[ (d : dist[real] 7→ exp(1.0)) : (s : real 7→ ⊥) : λs

| (s := sample(d) ; ∆s ; out ! 0)∗ ; δ

]|.

As can be seen, E′
g is a state operator process with two programming variables in

its state. Programming variable d is a distribution programming variable which is
initialised with the value exp(1.0), that is, the exponential distribution with mean
value 1.0. Programming variable s is a real programming variable which is used
to store samples of distribution d. The main loop of the new generator starts with
sampling d. After that, the process delays for the time just sampled. Finally, it
sends a product over channel out , after which the main loop is repeated.

We are aware of the fact that by changing the generator, it is unclear whether the
verification results can be applied to systems containing the new generator. That
is, we verified that the controller satisfies the specification in an environment with a
nondeterministic generator, but by changing the environment, it could be possible
that the controller operates differently and probably unsatisfactorily. We cannot
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provide formal arguments showing that this will not occur, because stochastic
behaviour is not formalised in χσ. However, we can make it plausible as follows.
As can be seen from the definition of E′

g, only the delay behaviour of the generator
is changed. Furthermore, close inspection of the definition of controller C shows
that it does not make assumptions about the arrival times of products. Therefore,
if it is correct for nondeterministic arrival times, it is correct for stochastic arrival
times, too.

The simulation experiments to determine the average throughput of the coating
machine and average cycle time of the products are set up as follows. First, a large
number of simulations with different parameter settings was performed in order
to estimate the minimal number of products that should be produced in order to
get reliable simulation results. Next, the performance properties were determined
for simulations in which this minimal number of products was produced.

In order to determine the reliability of the simulations, we proceeded as follows.
We defined an experiment that simulated the (stochastic version of) the coating
machine in which only the buffer capacity was variable. For each buffer capacity,
we performed simulations to generate 10, 20, . . . , 1000 products. Furthermore, for
each number of products, the process was simulated 50 times. For each simula-
tion, the average throughput and cycle time are computed. This resulted in 10.000
numbers, which we call tpi,j and ct i,j , where i denotes the number of products,
i ∈ {10, 20, . . . , 1000}, and j denotes the sequence number in each series of 50
simulations, 0 ≤ j < 50. After that, for each i ∈ {10, 20, . . . , 1000} the aver-
age cycle time and throughput and the standard deviation of these averages was
computed. This resulted in 400 numbers: ct i (average cycle time), tpi (average
throughput), σ(ct i) (standard deviation average cycle time), and σ(tpi) (standard
deviation throughput), for i ∈ {10, 20, . . . , 1000}. Figures 8.12(a) and 8.12(b)
show the graphs of σ(ct i) and σ(tpi), respectively.

Since σ(ct i) is the standard deviation of the average of 50 average cycle times, it is
a measure for the reliability of the simulation: the smaller the standard deviation,
the higher the reliability of the simulation. Similarly, σ(tpi) is a measure for
the reliability of the simulation, too. As can be seen in the last two graphs, the
reliability of the simulation increases if the number of products increases. However,
in the beginning it increases much faster than at the end. That is, the increase in
reliability from 10 to 500 products is much higher than the increase in reliability
from 500 to 1000 products. We conclude that the reliability does not increase
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significantly for simulation runs of more than 500 products. So, simulating 500
products suffices to obtain reliable results.
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Figure 8.12 Standard deviation of performance properties.
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After determining the minimal number of products to produce in order to get
reliable simulation results, we computed the average cycle time and throughput for
several buffer capacities. The results are depicted in Figures 8.13(a) and 8.13(b).
The graphs do not suggest an optimal buffer capacity. If small average cycle times
are desired, one should compromise on the throughput. Similarly, if a maximal
throughput is desired, one should compromise on the average cycle times. However,
since average cycle times range from 4–14 and throughput ranges from 0.4–0.57, a
change of buffer capacity has much more effect on the average cycle time than on
the throughput. Therefore, it is probably best to minimize the average cycle time
by taking a buffer capacity of 4.

We can conclude that we managed to prove that our implementation satisfies
the specification for some relevant parameter settings and that both are deadlock
free. Furthermore, we can conclude that once the specification has been properly
formulated, a controller can be derived from it. Unfortunately, coming up with
a proper formulation of the desired specification is still not easy. Finally, by
performing several simulation experiments, we analysed the performance of the
coating system.

8.9 A turntable system

The subject of this case study is a turntable with a drill and a testing device.
Products are transported by the turntable so that they can be drilled and tested.
Testing is necessary because it is possible that drilling went wrong. For example,
the drill could break during intensive usage.

The turntable is used for research in the area of (real-time) machine control. A χ

model of the turntable exists, that has been analysed with the χ simulator. In this
particular case, the emphasis is on functional analysis. As mentioned in Chapter 1,
simulation-based analysis is insufficient in this respect. A first attempt to improve
the simulation-based analysis can be found in [40]. There we showed that the ex-
isting χ model can be translated into Promela and checked by the model checker
Spin [109] (alternative 1 of Section 1.3). Even though successful, this method has
some drawbacks. First, a χ modeller now has to deal with two formalisms instead
of one and has to perform a translation. Second, analysis has to be performed
on the translated version, hence on a specification in another language. Further-
more, should you consider the translation scheme from χ to Promela as another
definition of χ’s semantics (a semantics in terms of Promela constructs), then it
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Figure 8.13 Performance properties of the coating system.

should be possible to compare this alternative semantics with the semantics pro-
vided in this thesis and establish some kind of equivalence. Unfortunately, this is
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not possible because there is no definite document available describing Promela’s
semantics. Papers like [193, 31, 154] undertake attempts to provide a semantics
but have no official status.

The existing χ model, and hence its Promela translation, were not suited for
functional analysis because they abstracted from error situations. For example, in
reality, the drill can be moved down (to drill a product) without being switched
on. Also, the turntable can receive a new product while turning. Obviously, such
behaviour is undesired and it is up to the controller to prevent this. However,
these situations cannot occur in the χ model. Therefore, using this model, it
is impossible to check whether the controller functions properly. In the study
presented here, we discuss a χσ model that is suited for functional analysis because
things can go wrong.

The turntable system consists of a round turntable, a clamp, a drill, and a testing
device as depicted in Figure 8.14. Figure 8.14(a) depicts the turntable itself. It
transports products to the drill and the testing device. It has four slots that can
hold a product. Each slot can hold at most one product. A slot can be in one of
the following positions: input position (0), drill position (1), test position (2), and
output position (3). There are two sensors attached to the turntable: tt1 and tt2 .
If a new product is added at position 0, tt1 sends a signal. If the turntable has
completed a 90◦ counter-clockwise rotation, tt2 sends a signal.

Figure 8.14(b) is a schematic view of the clamp and drill located at position 1
of the turntable. Sensors d1 and d2 detect whether the drill is in its up or down
position, respectively. Note that both sensors are located above the turntable.
Therefore, if d2 signals, this merely means the drill is in its down position and
not that the drill succeeded in drilling through a product. The sensors c1 and c2

detect whether the clamp is unlocked or locked, respectively.

Figure 8.14(c) schematically depicts the tester. The tester is located at position 2
of the turntable and has two sensors t1 and t2. Sensor t1 detects whether the tester
is in its up position. Sensor t2 detects whether the tester has reached its down
position. Unlike sensor d2, sensor t2 is located at the surface of the turntable.
Therefore, only if the drill drilled completely through the product (or if there is
no product at position 2) will t2 send a signal if the tester has reached its down
position.

Table 8.2 defines the controller interface for the turntable system. This is a high-
level interface that abstracts from the low-level hardware interface. We chose the



8.9 A turntable system 215

0

1

2

3

tt1

tt2

(a) Turntable.

d1

d2

c1 c2

(b) Drill and clamp.

t1

t2

(c) Tester.

Figure 8.14 Components of the turntable system.

high-level interface for reasons of simplicity; the same approach to verification can
be taken for a low-level interface. The interface consists of commands and sensors
for each of the physical components.

The turntable is controlled via the command turnOn. It instructs the turntable to
rotate 90◦ counter-clockwise. So, by one rotation, a product can be transported
from the input position to the drill position, or from the drill position to the test
position, etc. Note that if a product is not removed from position 3, it will be
transported to position 1 (the input position).

The clamp, drill, and tester are controlled by switching commands. We call them
switching commands, since they have two possible effects, which alternate with
each invocation. The command clampOnOff instructs the clamp to lock if it is
unlocked and instructs it to unlock if it is locked. The command drillOnOff turns
the drill motor on or off and the command drillUpDown moves the drill up or
down. The tester is also controlled by a switching command. This command,
testUpDown, either moves the tester up or down.

Before we specify the components of the turntable controller, we first mention
some assumptions. For example, it is assumed that the master controller can
send requests to the environment to add a new product at position 0. These
requests are honoured immediately and confirmed by a signal from sensor tt1 .
So, eventually, the turntable enters a cycle in which there are always products at
position 1 and 2. Also, we know that if position 0 is empty, a new product is
added without delay. Similarly, the master controller can send a request to the
environment to remove a product from position 3. Since there is no sensor to detect
removal from this position, it is assumed that the environment always honours
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Command

Turntable turnOn start 90◦ rotation
Clamp clampOnOff lock or unlock product
Drill drillOnOff start or stop drill motor

drillUpDown start moving up or down
Tester testUpDown start moving up or down

Sensor

Turntable tt1 product received at position 0
tt2 90◦ rotation completed

Clamp c1 clamp is unlocked
c2 clamp is locked

Drill d1 drill is up
d2 drill is down

Tester t1 tester is up
t2 tester is down

Table 8.2 Control interface of the turntable system.

such a request immediately. Consequently, if there is a product at position 3, it is
removed without delay. Given these assumptions, we define the initial state of the
turntable as follows, position 0: empty, position 1 and 2: not empty, and position 0:
empty. Furthermore, we assume that the operations that can be performed at each
position still have to be started.

Concerning the tester, we assume that if a good product is tested, the signal ‘tester
is down’ from sensor t2 will be received in at most 2 time units. Therefore, at most
2 time units after issuing the command testUpDown, a signal should have been
received. Otherwise, drilling did not succeed. The controller then knows whether
the drill succeeded in drilling through the product.

Given these assumptions, we want to verify the following properties:

1. no deadlock,

2. no obsolete remove operations,

3. every product is locked during drilling,

4. the turntable does not rotate when operations are being performed.
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The architecture of the resulting system is depicted in Figure 8.15. The physi-
cal components, turntable, clamp, drill, and tester, are represented by the pro-
cesses TT , C, D, and T , respectively. Each physical component has its own
controller, TTC , CC , DC , and TC , respectively. The master controller MC is
responsible for proper cooperation between these controllers. The environment is
modelled by the processes A and R, which add and remove products from the
turntable, respectively, and process E which consumes all error products.

MC

TTC

CC

DC

TC

TT

C

D

T

A R E∼add ∼remove ∼error

∼tt1 ∼tt2 ∼turnOn

∼c1
∼c2

∼clampOnOff

∼d1 ∼d2∼drillOnOff
∼drillUpDown

∼t1

∼t2

∼testerUpDown

∼reqadd ∼reqremove

∼testresult

∼pp
∼turned ∼turn

∼unlocked

∼unlock

∼locked
∼lock

∼drilled ∼drill

∼tested

∼test

Figure 8.15 Components of the turntable model.

The turntable and its controller are specified in process TT and TTC , respectively.
Process TT is defined by
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TT (tt1 , tt2 , turnOn, add , remove : chan) =
|[ (p0 : bool 7→ false) : (p1 : bool 7→ false) : (p2 : bool 7→ false)
: (p3 : bool 7→ false) : (x : bool 7→ ⊥) : (y : bool 7→ ⊥) : λs

| ( turnOn ? x

; ∆4
; y := p3 ; p3 := p2 ; p2 := p1 ; p1 := p0 ; p0 := y

; tt2 ! true
)∗ ; δ

‖ (add ? x ; (¬p0 :→ p0 := true) ; tt1 ! true)∗ ; δ

‖ (remove ! p3 ; p3 := false)∗ ; δ

]|,

and process TTC is defined by

TTC (tt1 , tt2 , turnOn, pp, turn, turned : chan) =
|[ (x : bool 7→ ⊥) : λs

| (tt1 ? x ; pp ! true ; turn ? x ; turnOn ! true ; tt2 ? x ; turned ! true)∗ ; δ

]|.

In process TT the programming variables p0, p1, p2, and p3 represent the presence
of products at the four positions (false : no product, true: product present). The
turntable executes three infinite repetitions in parallel. First, it is able to rotate 90◦

if instructed to do so via turnOn. Second, a new product can be added. If
position 0 is not empty (¬p0), the turntable deadlocks. Third, a product can
be removed. Notice that if position 3 is empty, the value false is sent. Process
TT needs correct control such that no products are added or removed while the
turntable is turning. Also, to prevent deadlock, no products should be added if
position 0 is not empty. The turntable controller first waits for a signal from tt1
and then notifies the master controller via pp that position 0 contains a product.
Then it waits for a signal (turn) to start a rotation via turnOn. If a signal via tt2
is received, the turntable controller confirms that the 90◦ turn was successful via
turned .

The clamp and its controller are specified in process C and CC , respectively.
Process C is defined by

C(c1 , c2 , clampOnOff : chan) =
|[ (x : bool 7→ ⊥) : λs

| (clampOnOff ? x ; ∆2 ; c2 ! true ; clampOnOff ? x ; ∆2 ; c1 ! true)∗ ; δ

]|,
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and process CC is defined by

CC (c1 , c2 , clampOnOff , lock , locked , unlock , unlocked : chan) =
|[ (x : bool 7→ ⊥) : λs

| ( lock ? x ; clampOnOff ! true ; c2 ? x ; locked ! true
; unlock ? x ; clampOnOff ! true ; c1 ? x ; unlocked ! true
)∗ ; δ

]|.

Initially, the clamp is unlocked. Signal clampOnOff instructs the clamp to lock.
This takes 2 time units. If the clamp is locked, it sends a signal to its controller
via c2. Then it waits to be instructed to unlock via signal clampOnOff . Unlock-
ing also takes 2 time units and via c1, the controller is signalled that unlocking
succeeded. The clamp controller is instructed by the master controller to lock via
lock . Then it locks the clamp via clampOnOff , waits for confirmation via c2 , and
confirms locking to the master controller via locked . Next, it waits to be instructed
to unlock via unlock , unlocks the clamp via clampOnOff , waits for confirmation
via c1 , and confirms unlocking to the master controller via unlocked .

The drill and its controller are specified in process D and DC , respectively. Pro-
cess D is defined by

D(d1 , d2 , drillOnOff , drillUpDown : chan) =
|[ (x : bool 7→ ⊥) : λs

| ( (drillOnOff ? x)∗ ; δ

‖ (drillUpDown ? x ; ∆3 ; d2 ! true ; drillUpDown ? x ; ∆2 ; d1 ! true)∗ ; δ

)
]|,

and process DC is defined by

DC (d1 , d2 , drillOnOff , drillUpDown , drill , drilled : chan) =
|[ (x : bool 7→ ⊥) : λs

| ( drill ? x ; drillOnOff ! true ; drillUpDown ! true ; d2 ? x

; drillUpDown ! true ; d1 ? x ; drillOnOff ! true ; drilled ! true
)∗ ; δ

]|.

The drill can be turned on and off via drillOnOff and can be moved up and
down via drillUpDown . Initially, the drill is turned off and in its up position.
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If the drill receives a signal via drillUpDown from the drill controller, it moves
downwards which takes 3 time units. When it reaches its down position, it sends
a signal to its controller via d2. Then it waits to be instructed to move back up,
again via drillUpDown . Moving up takes 2 time units and when the up position
is reached the controller is signalled via d1. Like the turntable, also the drilling
device needs to be controlled correctly in order to behave as desired. For example,
the drill should be turned on before being moved down into a product. The drill
controller is instructed to start drilling via drill . It then starts a drill session by
turning the drill on via drillOnOff . The drill is then instructed to move downwards
via drillUpDown . The controller waits for confirmation via d2 that the drill has
reached its down position. Then the drill is instructed to move up again via
drillUpDown and confirmation is received via d1. Finally, the master controller is
informed via drilled that drilling finished.

The tester and its controller are specified in process T and TC , respectively. Pro-
cess T is defined by

T (t1 , t2 , testerUpDown : chan) =
|[ (x : bool 7→ ⊥) : λs

| ( testerUpDown ? x ; ∆2 ; (t2 ! true [] skip)
; testerUpDown ? x ; ∆2 ; t1 ! true
)∗ ; δ

]|,

and process TC is defined by

TC (t1 , t2 , testerUpDown, test , tested : chan) =
|[ (x : bool 7→ ⊥) : (y : bool 7→ ⊥) : λs

| ( test ? x

; testerUpDown ! true ; (t2 ? x ; y := true [] ∆2 ; y := false)
; testerUpDown ! true ; t1 ? x

; tested ! y
)∗ ; δ

]|.

The tester operates similar to the clamp and the tester controller operates similar
to the clamp controller. The only difference is the fact that if a bad product is
tested, no confirmation via t2 is sent. The possible test results are implemented by
nondeterministic choice (t2 ! true [] skip). If no confirmation is received, the tester
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controller times out after 2 time units and sets programming variable y to false .
If a good product is tested, a signal is received via t2 and y is set to true. This
test result is sent to the master controller via tested .

The master controller is specified in process MC . This process is defined by

MC (turn, turned , pp, lock , locked , unlock , unlocked ,

drill , drilled , test , tested , reqadd , reqremove , testresult : chan) =
|[ (p0 : bool 7→ false) : (p1 : bool 7→ false) : (p2 : bool 7→ false)
: (p3 : bool 7→ false)(x : bool 7→ ⊥) : (y : bool 7→ ⊥) : (z : bool 7→ ⊥) : λs

| ( ( (p0 :→ ε [] ¬p0 :→ reqadd ! true ; pp ? x ; p0 := true)
‖ ( p1:→ lock ! true ; locked ? x

; drill ! true ; drilled ? x

; unlock ! true ; unlocked ? x

[] ¬p1 :→ ε

)
‖ (p2 :→ test ! true ; tested ? y [] ¬p2 :→ ε)
‖ (p3 :→ reqremove ! true ; p3 := false ; testresult ! z [] ¬p3 :→ ε)
)

; turn ! true
; turned ? x

; x := p3 ; p3 := p2 ; p2 := p1 ; p1 := p0 ; p0 := x

; (a3 :→ z := y [] ¬a3 :→ ε)
)∗ ; δ

]|.

In process MC , the programming variables p0, p1, p2, and p3 represent the four
product positions at the turntable. Initially, all slots are empty (p0 through p3 are
set to false). If the turntable does not rotate, the following tasks are executed in
parallel by the master controller. If there is no product at position 0 (p0 equals
false), a request to add a product is sent via reqadd and the controller waits for
confirmation via pp. If a product is present at position 1 (p1 equals true), a drill
session is started. First, the clamp is locked via lock and locked , then a product
is drilled via drill and drilled , and finally the clamp is unlocked via unlock and
unlocked . If a product is present at position 2 (p2 equals true), a test session
is started via test and untested. The test result for that product is stored in
programming variable y. If a product is present at position 3 (p3 equals true), a
request to remove that product is sent via reqremove and the test result for that
product is sent to the process that removes it via testresult . Once these tasks have
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been performed, the controller instructs the turntable to turn via turn and waits
for confirmation that a 90◦ turn has been completed via turned . Finally, it updates
the values for the programming variables p0 through p3 and, if necessary, z which
contains the test result for the product now at position 3.

This ends our discussion on the specifications for the turntable components and
their controllers. We omit the specifications of the processes A, R, and E. Model
checking the specification of the turntable system results in a state space con-
taining 1346 states. We can use abstraction to generate a picture of the state
space that only shows the external behaviour of the turntable system (the actions
ca(∼add , x, true), ca(∼remove, x, true), and ca(∼error , x, true)). This picture is
displayed in Figure 8.16.

Looking at Figure 8.16, we see that properties 1 (no deadlock) and 2 (no obsolete
remove) are satisfied, because there is no deadlock state and there is no action
ca(∼remove, x, false). Before we consider the other verification properties, we first
describe Figure 8.16. Recall that in the initial state, positions 0 and 3 are empty,
and positions 1 and 2 contain a product. Furthermore, none of the operations has
started yet. The initial state of the displayed graph is state 3. First, a new product
is added. Note that no product can be removed. Next, drilling and testing starts.
After testing (state 1), the graph splits into a part representing the case that the
tested product is properly drilled (left), and a part representing the case that the
tested product is not properly drilled (right). After completion of all operations
(drilling, testing, and rotating), the system is either in state 6 or in state 16. In
these states, new products can be added and processed products can be removed.
Finally, note that in case of a negative test result (determined in state 1), an error
message is sent.

Where the graph of Figure 8.16 displays the external behaviour of the turntable
system, other graphs can be generated that display other behaviour. For ex-
ample, if we want to check property 3, the following actions are important and
can therefore not be abstracted from: ca(∼locked , x, true), ca(∼drill , x, true),
ca(∼drilled , x, true), and ca(∼unlocked , x, true). Figure 8.17 depicts the graph
of the system after abstracting from all but these actions. As can be seen,
the pair of actions ca(∼drill , x, true) and ca(∼drilled , x, true) is enclosed by the
pair ca(∼locked , x, true) and ca(∼unlock , x, true). Therefore, a product is always
locked while being drilled.

Property 4 can be verified similarly. We do not provide details but suffice by
mentioning the property is satisfied.
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We conclude that in χσ one can specify and analyse the turntable system. It
improves the χ specification in a sense that now the model can be verified directly.
In case of the χ model, only validation by means of simulation was possible, or
translation to another formalism was required.

8.10 Discussion

The smaller examples showed specific features of χσ. These features, like time fac-
torisation and communication, are results of combinations of process operators. In
addition, we illustrated strong and branching bisimulation equivalence by means
of examples. In order to show the practical value of χσ, we performed several case
studies. Both functional and performance properties were analysed. Furthermore,
the case studies show that the features illustrated earlier by some small exam-
ples do occur in specifications of real-life systems. Therefore, it is beneficial to
understand them properly.

This chapter shows that performance analysis as possible with χ can also be done
with χσ. Moreover, it also shows that χσ enables functional analysis. The ap-
proach we have chosen for functional analysis is called model checking. Of all
formal techniques, model checking is among the most successful and has been
applied to many industrial case studies.

We realize that the number and the size of the case studies performed in this
chapter are insufficient to conclude that χσ is a practical formal method. However,
they confirm our believe that χσ has the potential to become one.

Besides more and larger case studies, some more deficiencies need to be addressed.
For instance, the case study of the coating system shows that a formal treatment
of distributions is desired. Also, branching bisimulation should be incorporated in
our mathematical framework.
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Figure 8.16 External behaviour of the turntable system.
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In this chapter, we draw conclusions regarding the work presented in this thesis.
First, we draw general conclusions regarding formal specification and analysis of
industrial systems. These are followed by conclusions regarding the engineering
language χ and the formal language χσ. Finally, we discuss opportunities for
further research.

Existing analysis techniques are powerful with respect to performance analysis, but
lack proper support for functional analysis. We suggested that formal methods
are good candidates for improvements in that direction. This lead to Research
topic 1: Is it possible to improve specification and analysis techniques for industrial
systems by means of formal methods? Regarding this topic, we conclude that
existing analysis techniques can be improved with respect to functional analysis
using formal methods.

Integration of simulation techniques with formal methods techniques will enable
both performance and functional analysis. This lead to Research topic 2: Is it pos-
sible to integrate formal methods with existing simulation techniques? Regarding
this topic we conclude that integration is possible indeed. Moreover, performance
analysis can be done more efficiently by using results obtained from functional
analysis. This is illustrated by the case study presented in Section 8.8.

As discussed in Section 1.3, our choice to integrate simulation techniques with for-
mal methods is to formalise an engineering language. We decided to formalise χ,
because it is a good representative. This lead to Research topic 3: Is it possible
to convert χ into a formal method? With respect to this topic, we are inter-
ested mainly in formal theories, rather than the languages based on these theories.
Research in the field of Formal Methods has produced various theories to de-
fine formal languages. Well-known examples are Algebraic Specification (AS) and
Structural Operational Semantics (SOS). Looking at these theories, we notice that
each one has its own specific purpose. For example, AS is well suited to define
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(countable) data types, and SOS is well suited to define dynamic behaviour. For-
malising a whole engineering language requires a combination of such theories.
Unfortunately, we find that little is known on how to combine AS and SOS (see
for example Section 4.16). Furthermore, for some common aspects of engineering
languages (like real number arithmetic), to our knowledge it is unknown how to
achieve rigorous formalisation at all (see Section 5.4).

Recall that we restricted ourselves to the basis of χ, called discrete χ. First
of all, we can conclude that we managed to completely formalise this language
except for the real numbers and the probabilistic constructs. This resulted in the
formal method χσ consisting of a formal syntax and semantics, a mathematical
framework, and tool support. Developing a formal method requires an integral
approach towards these three aspects since they influence each other. For example,
the tools have proved themselves valuable during the development of the semantics
of χσ; only after several experiments did we understand how certain operators, like
the ‘ ; ’ and the ‘‖’ operator, should be defined.

We believe χσ has the potential to be a practical formal method. Firstly, χσ

resembles discrete χ closely (see Chapters 5 and 6). To perform formal anal-
ysis, engineers using discrete χ need not learn another language. Secondly, in
Chapter 7, we established results describing a property preserving reduction from
infinite to finite transition systems. This reduction applies to all (χσ translations
of) discrete χ specifications. With respect to tool support, this is of great rele-
vance. Thirdly, we were able to implement prototype tools to simulate and model
check χσ specifications. Of all formal techniques, model checking is among the
most successful. Furthermore, much research on model checking aims to improve
practical applicability by including, for instance, probabilistic and continuous fea-
tures. Finally, the case studies conducted in Chapter 8 show that in χσ, formal
analysis can be combined with existing analysis techniques.

We believe χσ improves upon discrete χ in several ways. Firstly, χσ enables math-
ematical reasoning. Secondly, χσ has notions of equivalence and of abstraction.
These notions enable equivalence checks and specification-implementation checks.
Thirdly, χσ has a maximal progress operator. Using this operator, it is possible
to distinguish delayable and urgent actions (see Section 5.2). This distinction can
be useful to model industrial systems (see Section 5.2). Finally, the constructs
of the language are more orthogonal with respect to each other. For example,
the parallel composition operator and the state operator can be mixed freely with
other process operators, and guarded command statements and selective waiting
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statements are no longer separate constructs, but can be constructed from simpler
constructs.

Besides improvements, χσ lacks several features of discrete χ that are useful to
model industrial systems. The most important missing features are probabilistic
constructs (like distributions) and a formal treatment of the real numbers. In
Chapter 5, we discussed why these features are not included in χσ.

We conclude this chapter by indicating directions for further research. As men-
tioned above, we believe that χσ has the potential to be a practical formal method.
To become a practical formal method, future research on χσ should concern the-
ory development, tool design, and case studies. For instance, theory development
should result in the definition of timed branching bisimulation on χσ processes,
and tool design should result in robust and efficient implementations rather than
prototype implementations. In addition, more and larger case studies should be
conducted.

As mentioned in Section 1.4, eventually χσ should replace discrete χ. This is not
yet possible and therefore further research in this direction is needed. In particular,
solutions have to be found to incorporate real number arithmetic and probabilistic
constructs. So, discrete χ cannot yet be replaced. In this context, it is interesting
to remark that currently new discrete χ tools have been developed that use χσ

internally. In fact, these tools implement an automatic translation from discrete χ

into χσ.

Further research should also investigate opportunities to extend χσ with contin-
uous behaviour. In particular, we hint at the inclusion of differential algebraic
equations. If this succeeds, χσ can replace hybrid χ (discrete χ with extensions to
describe continuous behaviour).





Bibliography

[1] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics.
In Bergstra et al. [28], chapter 3, pages 197–292.

[2] W.T.M. Alberts and G. Naumoski. A Discrete-Event Simulator for Systems
Engineering. PhD thesis, Technische Universiteit Eindhoven, 1998.

[3] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.
In Proceedings of the 5th Annual on Logic in Computer Science, pages 414–
425, Philadelphia, 1990. IEEE Computer Society Press.

[4] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[5] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of
embedded systems. IEEE Transactions on Software Engineering, 22:181–
201, 1996.

[6] M. Andersson. Object-oriented Modeling and Simulation of Hybrid Systems.
PhD thesis, Department of Automatic Control, Lund Institute of Technol-
ogy, 1994.

[7] S. Andova. Probabilistic Process Algebra. PhD thesis, Technische Universiteit
Eindhoven, 2002. To appear.

[8] N.W.A. Arends. A Systems Engineering Specification Formalism. PhD the-
sis, Technische Universiteit Eindhoven, 1996.

[9] E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors. Algebraic
Foundations of Systems Specification. Springer, 1999.

[10] J. Backus. The syntax and semantics of the proposed international algebraic
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Report DAIMI FN-19, Århus University, Computer Science Department,
1981.

[164] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on the Foundations of Computer Science, pages 46–57,
Providence, Rhode Island, November 1977. IEEE.

[165] N. Rajan, S. Shankar and M.K. Srivas. An integration of model checking
with automated proof checking. In P. Wolper, editor, Proceedings of the 1995
Workshop on Computyer-Aided Verification, volume 939 of Lecture Notes in
Computer Science, pages 84–97, June 1995.

[166] W. Reisig. Petri Nets - An Introduction, volume 4 of EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, 1985.

[167] M.A. Reniers. Message Sequence Chart: Syntax and Semantics. PhD thesis,
Technische Universiteit Eindhoven, 1998.

[168] Annie Ressouche, Robert de Simone, Amar Bouali, and Valérie Roy.
The fcTools User Manual. INRIA Sophia Antipolis/EN-SMP-CMA,
Sophia Antipolis. Online document: http://www-sop.inria.fr/meije/

verification/index.html.



Bibliography 245
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States and stacks A

We assume there is a countably infinite number of distinct identifiers, which are
typically denoted by i , i ′, . . . . Identifiers can be used to denote programming
variables or channels. Recall that programming variables are typically denoted
by x , x ′, . . . (see Chapter 3). Channels are typically denoted by m, m ′, . . . .
Programming variable identifiers and channel identifiers are associated with values
(also called constant expressions, see Chapter 3). Recall that values are typically
denoted by c, c′, . . . . The association of an identifier and a value is called a
valuation.

Definition A.1 (Valuation) Let v be a valuation, i be an identifier, and c be a value.
A valuation is a mapping from an identifier to a value with syntax v ::= i 7→ c.

Valuations are typically denoted by v , v ′, . . . . The notation i 7→ ⊥ denotes that
there is a value c such that i 7→ c. This notation allows the value of an identifier
to be unspecified.

Valuations occur in states. States gather valuations so that programming variables
or channels can be assigned a value. Typically, we use s , s ′, . . . to denote states.

Definition A.2 (State) The empty state is denoted by λs. Further, let v be a
valuation. A state s is a list of valuations with syntax

s ::= λs

| v : s.

By definition, states have unique identifiers. That is, each identifier occurs at most
once in a state. In addition, all possible states are contained in the set State.

Note that the colon-symbol ‘:’ is used as the construction operator for states.

If a state contains a valuation from a certain identifier to a value, then that iden-
tifier is in the domain of that state.
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Definition A.3 Let s be a state, i be an identifier, and c be a value. The function
dom, which returns the domain of a state, is defined by

dom(λs) = ø,

dom(i 7→ c : s) = {i} ∪ dom(s).

The value corresponding to an identifier in a state can be changed by the substi-
tution operator.

Definition A.4 Let s be a state, i and i′ be identifiers, and c and c′ be values.
Substitution on states is defined by

λs[c/i] = λs,

(i 7→ c : s)[c′/i] = i 7→ c′ : s,

(i 7→ c : s)[c′/i′] = i 7→ c : s[c′/i′] if i 6= i′.

Note that an update can never add new valuations (and consequently new identi-
fiers) to states. If the identifier to be updated does not occur in a valuation in a
state, then substitution is the identity operation.

If e is an expression and s a state, then the evaluation of e in s is written as s(e).
A variable is defined in a state if and only if it is in the domain of the state. If it is
not in the domain, it is undefined in that state. If all variables occurring in e are
defined in s, then the result of s(e) will be a value. If variables occurring in e are
not defined in s, then the result of s(e) does not have to be a value but can still
be an expression containing variables. Evaluation of identifiers in states is defined
below. Evaluation of expressions is not defined here.

Definition A.5 Let s be a state, i and i′ be identifiers, and c be a value. Looking
up identifiers in states is defined by

λs(i) = i,

(i 7→ c : s)(i) = c,

(i 7→ c : s)(i′) = s(i′) if i 6= i′.

Two states are equivalent if for every identifier i evaluation of i in those two states
has the same result.

Definition A.6 Let s and s′ be states, and i be an identifier. Equivalence on states
is defined by s = s′ if ∀i : s(i) = s′(i).

It can be proven easily that equivalence on states is an equivalence relation; it
is reflexive (s = s for all s ∈ State), symmetric (s = s′ if and only if s′ = s



251

for all s, s′ ∈ State), and transitive (if s = s′ and s′ = s′′ then s = s′′, for all
s, s′, s′′ ∈ State).

The substitution operator does not add new valuations to states. It only updates
values of existing identifiers. Sometimes however, we do want an identifier to be
added to a state if this identifier is not yet contained by that state. The set function
does just this; it changes values of existing identifiers and adds new identifiers and
their corresponding values to states.

Definition A.7 Let s and s′ be states, i be an identifier, and c be a value. The set
function on states is defined by

set(s, λs) = s,

set(s, i 7→ c : s′) = set(s[c/i], s′) if i ∈ dom(s),
set(s, i 7→ c : s′) = set(i 7→ c : s, s′) if i 6∈ dom(s).

States can be stacked in so-called state stacks. These state stacks are typically
denoted by σ, σ′, . . . . Usually, we refer to state stacks simply by the word stack.
In a stack, the same identifier can occur more than once, but only in different
states of the stack.

Definition A.8 (State stack) The empty state stack is denoted by λσ. Let σ be a
state stack and s be a state. A state stack has syntax

σ ::= λσ

| s :: σ.

All possible state stacks are contained in the set Stack.

As can be seen, we use the double colon symbol ‘::’ as the push operator for state
stacks.

As for states, the function dom is also defined for stacks.

Definition A.9 Let σ be a stack, and s be a state. The function dom is defined by

dom(λσ) = ø,
dom(s :: σ) = dom(s) ∪ dom(σ).

The substitution operation is generalized to stacks as defined below.
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Definition A.10 Let σ be a stack, s be a state, i be an identifier, and c be a value.
Substitution on stacks is defined by

λσ[c/i] = λσ,

(s :: σ)[c/i] = s[c/i] :: σ if i ∈ dom(s),
(s :: σ)[c/i] = s :: σ[c/i] if i 6∈ dom(s).

In the same way we evaluate expressions in states, we can also evaluate expressions
in stacks. For instance, if e is an expression and σ a stack, then σ(e) is the
evaluation of e in σ. Variables in expressions are looked up starting in the top
state of the stack. A variable in lower levels of a stack is made invisible by the
same variable in a higher level of the stack.

Definition A.11 Let σ be a stack, s be a state, and i be an identifier. Looking up
identifiers in stacks is defined by

λσ(i) = i,

(s :: σ)(i) = s(i) if i ∈ dom(s),
(s :: σ)(i) = σ(i) if i 6∈ dom(s).

Definition A.12 Let σ and σ′ be stacks, and i be an identifier. Equivalence on
stacks is defined by

λσ = λσ,

s :: σ = s′ :: σ′ if s = s′ ∧ σ = σ′.

It can be proven easily that equivalence on stacks is an equivalence relation.

Definition A.13 Let σ and σ′ be stacks, and i be an identifier. Observational
equivalence on stacks is defined by σ $ σ′ if ∀i : σ(i) = σ′(i).

Next, we present some lemmas regarding states and stacks.

The order of valuations in states is irrelevant.

Lemma A.14 Let s be a state, i and i′ be identifiers, and c and c′ be values. Then
i 7→ c : i′ 7→ c′ : s = i′ 7→ c′ : i 7→ c : s.

Proof (Lemma A.14) Recall that according to Definition A.2 states have unique
identifiers. So, we know that i 6= i′. According to Definition A.6, proving that
i 7→ c : i′ 7→ c′ : s = i′ 7→ c′ : i 7→ c : s means proving that ∀i′′ : (i 7→ c : i′ 7→ c′ :
s)(i′′) = (i′ 7→ c′ : i 7→ c : s)(i′′). With respect to i′′, we distinguish three cases:
i′′ = i, i′′ = i′, and i′′ 6= i ∧ i′′ 6= i′.
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i′′ = i: For the left-hand side we obtain

(i 7→ c : i′ 7→ c′ : s)(i′′) = (i 7→ c : i′ 7→ c′ : s)(i)
= {Definition A.5}

c,

and for the right-hand side we obtain

(i′ 7→ c′ : i 7→ c : s)(i′′) = (i′ 7→ c′ : i 7→ c : s)(i)
= {Definition A.5}

(i 7→ c : s)(i)
= {Definition A.5}

c.

i′′ = i′: The proof is similar to the previous case.

i′′ 6= i ∧ i′′ 6= i′: For the left-hand side we obtain

(i 7→ c : i′ 7→ c′ : s)(i′′) = {Definition A.5}
(i′ 7→ c′ : s)(i′′)

= {Definition A.5}
s(i′′),

and for the right-hand side we obtain

(i′ 7→ c′ : i 7→ c : s)(i′′) = {Definition A.5}
(i 7→ c : s)(i′′)

= {Definition A.5}
s(i′′).

Lemma A.15 Let s and s′ be states, i be an identifier, and c be a value. Then

s = i 7→ c : s′ ⇒ dom(s′) ⊂ dom(s).

Proof (Lemma A.15) According to Definition A.2, states have unique identifiers.
As a consequence, we know that i 6∈ dom(s′). Structural induction on s′ gives us
the following.

Basis s′ = λs. This gives us s = i 7→ c : λs. From Definition A.3 it follows that
dom(s) = i and dom(s′) = ø. So, dom(s′) ⊂ dom(s).
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Inductive step s′ = i′ 7→ c′ : s′′, with s = i 7→ c : s′′ ⇒ dom(s′′) ⊂ dom(s)
the induction hypothesis. Recall that due to Definition A.2 we have that i 6= i′.
Using the induction hypothesis, we find that dom(s′′) ⊂ dom(s′). Combined with
the knowledge that i 6∈ dom(s′) we now know that i 6∈ dom(s′′). Furthermore,
using Definition A.3, we can derive that dom(s) = {i, i′}∪dom(s′′) and dom(s′) =
{i′} ∪ dom(s′′). Since i 6∈ dom(s′′), we have dom(s′) ⊂ dom(s).

Substitution on a state does not change its domain.

Lemma A.16 Let s be a state, i be an identifier, and c be a value. In that case,
dom(s[c/i]) = dom(s).

Proof (Lemma A.16) We prove that dom(s[c/i]) = dom(s) by structural induction
on s.

Basis s = λs. Consider the following computation:

dom(s[c/i]) = dom(λs[c/i])
= {Definition A.4}

dom(λs)
= dom(s).

Inductive step s = i′ 7→ c′ : s′ with dom(s′[c/i]) = dom(s′) the induction hypoth-
esis. We distinguish two cases: i′ = i and i′ 6= i.

i′ = i: Consider the following computation:

dom(s[c/i]) = dom((i 7→ c′ : s′)[c/i])
= {Definition A.4}

dom(i 7→ c : s′)
= {Definition A.3}
{i} ∪ dom(s′)

= dom(s).
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i′ 6= i: Consider the following computation:

dom(s[c/i]) = dom((i′ 7→ c′ : s′)[c/i])
= {Definition A.4}

dom(i′ 7→ c′ : s′[c/i])
= {Definition A.3}
{i′} ∪ dom(s′[c/i])

= {Induction hypothesis}
{i′} ∪ dom(s′)

= dom(s).

Substitution of value s(i) for identifier i in state s is an identity operation on states
provided that i ∈ dom(s). If i 6∈ dom(s) then every arbitrary substitution is an
identity operation.

Lemma A.17 Let s be a state, i be an identifier, and c be a value. Then

s[s(i)/i] = s if i ∈ dom(s),
s[c/i] = s if i 6∈ dom(s).

Proof (Lemma A.17) First, we prove that s[s(i)/i] = s if i ∈ dom(s). Suppose
i ∈ dom(s). According to Lemma A.14, we can say without loss of generality that
s = i 7→ c : s′ for some c and s′. Note that s(i) = c. Consider the following
computation:

(i 7→ c : s′)[s(i)/i] = (i 7→ c : s′)[s(i)/i]
= {Definition A.4}

i 7→ s(i) : s′

= i 7→ c : s′

= s.

Next, we prove that s[c/i] = s if i 6∈ dom(s). Structural induction on s gives us
the following.

Basis s = λs. Consider the following computation:

s[c/i] = λs[c/i]
= {Definition A.4}

λs

= s.
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Inductive step s = i′ 7→ c′ : s′, with i′ 6= i and s′[c/i] = s′ if i 6∈ dom(s′) the
induction hypothesis. Using Lemma A.15 we obtain i 6∈ dom(s′). Now, consider
the following computation:

s[c/i] = (i′ 7→ c′ : s′)[c/i]
= {Definition A.4}

i′ 7→ c′ : s′[c/i]
= {Induction hypothesis}

i′ 7→ c′ : s′

= s.

For two or more substitutions on states we have that if two substitutions address
the same identifier, only the last substitution is relevant. If they address different
identifiers then their order is irrelevant.

Lemma A.18 Let s be a state, i and i′ be identifiers, and c and c′ be values. Then

s[c/i][c′/i′] = s[c′/i′] if i = i′,
s[c/i][c′/i′] = s[c′/i′][c/i] if i 6= i′.

Proof (Lemma A.18) We first prove that s[c/i][c′/i′] = s[c′/i′] if i = i′. Suppose
i = i′. Structural induction on s gives us the following.

Basis s = λs. Consider the following computation:

s[c/i][c′/i′] = λs[c/i][c′/i′]
= {Definition A.4}

λs[c′/i′]
= s[c′/i′].

Inductive step s = i′′ 7→ c′′ : s′, with s′[c/i][c′/i′] = s′[c′/i′] if i = i′ the induction
hypothesis. With respect to i′′ we distinguish two cases: i′′ = i and i′′ 6= i.

i′′ = i: For the left-hand side we obtain

s[c/i][c′/i] = (i 7→ c′′ : s′)[c/i][c′/i]
= {Definition A.4}

(i 7→ c : s′)[c′/i]
= {Definition A.4}

i 7→ c′ : s′,
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and for the right-hand side we obtain

s[c′/i] = (i 7→ c′′ : s′)[c′/i]
= {Definition A.4}

i 7→ c′ : s′.

i′′ 6= i: For the left-hand side we obtain

s[c/i][c′/i′] = (i′′ 7→ c′′ : s′)[c/i][c′/i′]
= {Definition A.4}

(i′′ 7→ c′′ : s′[c/i])[c′/i′]
= {Definition A.4}

i′′ 7→ c′′ : s′[c/i][c′/i′]
= {Induction hypothesis}

i′′ 7→ c′′ : s′[c′/i′],

and for the right-hand side we obtain

s[c′/i′] = (i′′ 7→ c′′ : s′)[c′/i′]
= {Definition A.4}

i′′ 7→ c′′ : s′[c′/i′].

Next, we prove that s[c/i][c′/i′] = s[c′/i′][c/i] if i 6= i′. Suppose i 6= i′. Structural
induction on s gives us the following.

Basis s = λs. For the left-hand side we obtain

s[c/i][c′/i′] = λs[c/i][c′/i′]
= {Definition A.4}

λs[c′/i]
= {Definition A.4}

λs,

and for the right-hand side we obtain

s[c′/i′][c/i] = λs[c′/i′][c/i]
= {Definition A.4}

λs[c′/i′]
= {Definition A.4}

λs.
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Inductive step s = i′′ 7→ c′′ : s′, with s′[c/i][c′/i′] = s′[c′/i′][c/i] if i 6= i′ the
induction hypothesis. With respect to i′′ we distinguish three cases: i′′ = i,
i′′ = i′, and i′′ 6= i ∧ i′′ 6= i′.

i′′ = i: For the left-hand side we obtain

s[c/i][c′/i′] = (i 7→ c′′ : s′)[c/i][c′/i′]
= {Definition A.4}

(i 7→ c : s′)[c′/i′]
= {Definition A.4}

i 7→ c′ : s′[c′/i′],

and for the right-hand side we obtain

s[c′/i′][c/i] = (i 7→ c′′ : s′[c′/i′])[c/i]
= {Definition A.4}

i 7→ c : s′[c′/i′].

i′′ = i′: The proof is similar to the previous case.

i′′ 6= i ∧ i′′ 6= i′: For the left-hand side we obtain

s[c/i][c′/i′] = (i′′ 7→ c′′ : s′)[c/i][c′/i′]
= {Definition A.4}

(i′′ 7→ c′′ : s′[c/i])[c′/i]
= {Definition A.4}

i′′ 7→ c′′ : s′[c/i][c′/i′],

and for the right-hand side we obtain

s[c′/i′][c/i] = (i′′ 7→ c′′ : s′)[c′/i′][c/i]
= {Definition A.4}

(i′′ 7→ c′′ : s′[c′/i′])[c/i]
= {Definition A.4}

i′′ 7→ c′′ : s′[c′/i′][c/i]
= {Induction hypothesis}

i′′ 7→ c′′ : s′[c/i][c′/i′].

Lemma A.19 Let s be a state, i and i′ be identifiers, and c be a value. Then

s[c/i](i) = c if i ∈ dom(s),
s[c/i](i) = i if i 6∈ dom(s),
s[c/i](i′) = s(i′) if i 6= i′.
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Proof (Lemma A.19) We first prove that s[c/i](i) = c if i ∈ dom(s). Suppose
i ∈ dom(s). According to Lemma A.14, we can say without loss of generality that
s = i 7→ c′ : s′ for some c′ and s′. Now, consider the following computation:

s[c/i](i) = (i 7→ c′ : s′)[c/i](i)
= {Definition A.4}

(i 7→ c : s′)(i)
= {Definition A.5}
= c.

Next, we prove that s[c/i](i) = i if i 6∈ dom(s). Suppose i 6∈ dom(s). Structural
induction on s gives us the following.

Basis s = λs. Consider the following computation:

s[c/i](i) = λs[c/i](i)
= {Definition A.4}

λs(i)
= {Definition A.5}

i.

Inductive step s = i′ 7→ c′ : s′, with s′[c/i](i) = i if i 6∈ dom(s′) the induction
hypothesis. Using Lemma A.15 we obtain dom(s′) ⊂ dom(s). Since i 6∈ dom(s),
this implies that also i 6∈ dom(s′). Further, it also implies that i′ 6= i.

Now, consider the following computation:

s[c/i](i) = (i′ 7→ c′ : s′)[c/i](i)
= {Definition A.4}

(i′ 7→ c′ : s′[c/i])(i)
= {Definition A.5}

s′[c/i](i)
= {Induction hypothesis}

i.

Finally, we prove that s[c/i](i′) = s(i′) if i′ 6= i. Suppose that i′ 6= i. Structural
induction on s gives us the following.
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Basis s = λs. For the left-hand side we obtain

s[c/i](i′) = λs[c/i](i′)
= {Definition A.4}

λs(i′),

and for the right-hand side we obtain

s(i′) = λs(i′).

Inductive step s = i′′ 7→ c′ : s′, with s′[c/i](i′) = s′(i′) if i′ 6= i the induction
hypothesis. With respect to i′′, we distinguish three cases: i′′ = i, i′′ = i′, and
i′′ 6= i ∧ i′′ 6= i′.

i′′ = i: For the left-hand side we obtain

s[c/i](i′) = (i 7→ c′ : s′)[c/i](i′)
= {Definition A.4}

(i 7→ c : s′[c/i])(i′)
= {Definition A.5}

s′[c/i](i′)
= {Induction hypothesis}

s′(i′),

and for the right-hand side we obtain

s(i′) = (i 7→ c′ : s′)(i′)
= {Definition A.5}

s′(i′).

i′′ = i′: For the left-hand side we obtain

s[c/i](i′) = (i′ 7→ c′ : s′)[c/i](i′)
= {Definition A.4}

(i′ 7→ c′ : s′[c/i])(i′)
= {Definition A.5}

c′,

and for the right-hand side we obtain

s(i′) = (i′ 7→ c′ : s′)(i′)
= {Definition A.5}

c′.
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i′′ 6= i ∧ i′′ 6= i′: For the left-hand side we obtain

s[c/i](i′) = (i′′ 7→ c′ : s′)[c/i](i′)
= {Definition A.4}

(i′′ 7→ c : s′[c/i])(i′)
= {Definition A.5}

s′[c/i](i′)
= {Induction hypothesis}

s′(i′),

and for the right-hand side we obtain

s(i′) = (i′′ 7→ c′ : s′)(i′)
= {Definition A.5}

s′(i′).

Lemma A.20 Let s and s′ be states, c be a value, and i be an identifier. Then
set(i 7→ c : s, s′) = i 7→ c : set(s, s′) if i 6∈ dom(s′).

Proof (Lemma A.20) Structural induction on s′ gives us the following.

Basis s′ = λs. For the left-hand side we obtain

set(i 7→ c : s, s′) = set(i 7→ c : s, λs)
= {Definition A.7}

i 7→ c : s,

and for the right-hand side we obtain

i 7→ c : set(s, s′) = i 7→ c : set(s, λs)
= {Definition A.7}

i 7→ c : s.

Inductive step s′ = i′ 7→ c′ : s′′, for some i′, c′, and s′′ such that i′ 6= i and
i 6∈ dom(s′′). Furthermore, we have the following induction hypothesis: set(i 7→
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c : s, s′′) = i 7→ c : set(s, s′′) if i 6∈ dom(s′′). Now, for the left-hand side we obtain

set(i 7→ c : s, s′) = set(i 7→ c : s, i′ 7→ c′ : s′′)
= {Definition A.7}

set(i′ 7→ c′ : i 7→ c : s, s′′)
= {Definition A.6}

set(i 7→ c : i′ 7→ c′ : s, s′′)
= {Induction hypothesis}

i 7→ c : set(i′ 7→ c′ : s, s′′),

and for the right-hand side we obtain

i 7→ c : set(s, s′) = i 7→ c : set(s, i′ 7→ c′ : s′′)
= {Definition A.7}

i 7→ c : set(i′ 7→ c′ : s, s′′).

Lemma A.21 Let s and s′ be states. Then dom(set(s, s′)) = dom(s) ∪ dom(s′).

Proof (Lemma A.21) Structural induction on s′ gives us the following.

Basis s′ = λs. For the left-hand side we obtain

dom(set(s, s′)) = dom(set(s, λs))
= {Definition A.3}

dom(s),

and for the right-hand side we obtain

dom(s) ∪ dom(s′) = dom(s) ∪ dom(λs)
= {Definition A.3}

dom(s) ∪ ø
= dom(s).

Inductive step s′ = i 7→ c : s′′, with dom(set(s, s′′)) = dom(s) ∪ dom(s′′) the
induction hypothesis. We distinguish two cases: i ∈ dom(s) and i 6∈ dom(s).
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i ∈ dom(s): For the left-hand side we obtain

dom(set(s, s′)) = dom(set(s, i 7→ c : s′′))
= {Definition A.7}

dom(set(s[c/i], s′′))
= {Induction hypothesis}

dom(s[c/i]) ∪ dom(s′′)
= {Lemma A.16}

dom(s) ∪ dom(s′′)
= {Lemma A.14 and ∃s′′′ : i 7→ c : s′′′}

dom(i 7→ c; s′′′) ∪ dom(s′′)
= {Definition A.3}
{i} ∪ dom(s′′′) ∪ dom(s′′),

and for the right-hand side we obtain

dom(s) ∪ dom(s′) = dom(s) ∪ dom(i 7→ c : s′′)
= {Lemma A.14 and ∃s′′′ : i 7→ c : s′′′}

dom(i 7→ c; s′′′) ∪ dom(i 7→ c : s′′)
= {Definition A.3}
{i} ∪ dom(s′′′) ∪ {i} ∪ dom(s′′)

= {i} ∪ dom(s′′′) ∪ dom(s′′).

i 6∈ dom(s): For the left-hand side we obtain

dom(set(s, s′)) = dom(set(s, i 7→ c : s′′))
= {Definition A.7}

dom(set(i 7→ c : s, s′′))
= {Induction hypothesis}

dom(i 7→ c : s) ∪ dom(s′′)
= {Definition A.3}
{i} ∪ dom(s) ∪ dom(s′′),

and for the right-hand side we obtain

dom(s) ∪ dom(s′) = dom(s) ∪ dom(i 7→ c : s′′)
= {Definition A.3}

dom(s) ∪ {i} ∪ dom(s′′)
= {i} ∪ dom(s) ∪ dom(s′′).
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Lemma A.22 Let s and s′ be states, c be a value, and i be an identifier. Then

set(s, s′)[c/i] = set(s, s′[c/i]) if i ∈ dom(s′),
set(s, s′)[c/i] = set(s[c/i], s′) if i 6∈ dom(s′).

Proof (Lemma A.22) First, we prove that set(s, s′)[c/i] = set(s, s′[c/i]) if i ∈
dom(s′). Suppose i ∈ dom(s′). According to Lemma A.14, we can say without
loss of generality that s′ = i 7→ c′ : s′′ for some c′ and s′′ such that, according to
Lemma A.15, i 6∈ dom(s′′). Now, consider the following computation:

set(s, s′)[c/i] = set(s, s′[c/i])
set(s, i 7→ c′ : s′′)[c/i] = set(s, (i 7→ c′ : s′′)[c/i])

= {Definition A.4}
set(s, i 7→ c : s′′).

We distinguish two cases: i ∈ dom(s) and i 6∈ dom(s).

i ∈ dom(s): As a consequence, according to Lemma A.14, we can say without loss
of generality that s = i 7→ c′′ : s′′′ for some c′′ and s′′′ such that, according to
Lemma A.15, i 6∈ dom(s′′′). For the left-hand side we obtain

set(s, i 7→ c′ : s′′)[c/i] = set(i 7→ c′′ : s′′′, i 7→ c′ : s′′)[c/i]
= {Definition A.7}

set(i 7→ c′ : s′′′, s′′)[c/i]
= {Lemma A.20}

(i 7→ c′ : set(s′′′, s′′))[c/i]
= {Definition A.4}

i 7→ c : set(s′′′, s′′),

and for the right-hand side we obtain

set(s, i 7→ c : s′′) = set(i 7→ c′′ : s′′′, i 7→ c : s′′)
= {Definition A.7}

set(i 7→ c : s′′′, s′′)
= {Lemma A.20}

i 7→ c : set(s′′′, s′′).
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i 6∈ dom(s): For the left-hand side we obtain

set(s, i 7→ c′ : s′′)[c/i] = set(i 7→ c′ : s, s′′)[c/i]
= {Lemma A.20}

(i 7→ c′ : set(s, s′′))[c/i]
= {Definition A.4}

i 7→ c : set(s, s′′),

and for the right-hand side we obtain

set(s, i 7→ c : s′′) = set(i 7→ c : s, s′′)
= {Lemma A.20}

i 7→ c : set(s, s′′).

Next, we prove that set(s, s′)[c/i] = set(s[c/i], s′) if i 6∈ dom(s′). Suppose i 6∈
dom(s′). We distinguish two cases: i ∈ dom(s) and i 6∈ dom(s).

i ∈ dom(s): As a consequence, according to Lemma A.14 we can say without loss
of generality that s = i 7→ c′ : s′′ for some c′ and s′′ such that, according to
Lemma A.15, i 6∈ dom(s′′). For the left-hand side we obtain

set(s, s′)[c/i] = set(i 7→ c′ : s′′, s′)[c/i]
= {Lemma A.20}

(i 7→ c′ : set(s′′, s′))[c/i]
= {Definition A.4}

i 7→ c : set(s′′, s′),

and for the right-hand side we obtain

set(s[c/i], s′) = set((i 7→ c′ : s′′)[c/i], s′)
= {Definition A.4}

set(i 7→ c : s′′, s′)
= {Lemma A.20}

i 7→ c : set(s′′, s′).

i 6∈ dom(s): Here we have i 6∈ dom(s) and i 6∈ dom(s′). According to Lemma A.21,
this implies that also i 6∈ dom(set(s, s′)). Using Lemma A.17, we now imme-
diately obtain set(s, s′)[c/i] = set(s, s′).

Lemma A.23 Let s and s′ be states, and i be an identifier. Then

set(s, s′)(i) = s′(i) if i ∈ dom(s′),
set(s, s′)(i) = s(i) if i 6∈ dom(s′).
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Proof (Lemma A.23) We first prove that set(s, s′)(i) = s′(i) if i ∈ dom(s′).
Suppose i ∈ dom(s′). According to Lemma A.14, we can say without loss of
generality that s′ = i 7→ c : s′′ and from Definition A.2, it follows that i 6∈ dom(s′′).
For the left-hand side, we obtain set(s, i 7→ c : s′′)(i), and for the right-hand side
we obtain (i 7→ c : s′′)(i), which equals c according to Definition A.5. So, we need
to prove that set(s, i 7→ c : s′′)(i) = c. Structural induction on s′′ gives us the
following.

Basis s′′ = λs. We distinguish two cases: i ∈ dom(s) and i 6∈ dom(s).

i ∈ dom(s): Consider the following computation:

set(s, i 7→ c : λs)(i) = {Definition A.7}
set(s[c/i], λs)(i)

= {Definition A.7}
s[c/i](i)

= {Lemma A.19}
c.

i 6∈ dom(s): Consider the following computation:

set(s, i 7→ c : λs)(i) = {Definition A.7}
set(i 7→ c : s, λs)(i)

= {Definition A.7}
(i 7→ c : s)(i)

= {Definition A.5}
c.

Inductive step s′′ = i′ 7→ c′ : s′′′, with set(s, i 7→ c : s′′′)(i) = c the induction
hypothesis. Now, consider the following computation:

set(s, i 7→ c : s′′)(i) = set(s, i 7→ c : i′ 7→ c′ : s′′′)(i)
= {Lemma A.14}

set(s, i′ 7→ c′ : i 7→ c : s′′′)(i).

We distinguish two cases: i′ ∈ dom(s) and i′ 6∈ dom(s).
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i′ ∈ dom(s): This gives us

set(s, i′ 7→ c′ : i 7→ c : s′′′)(i) = set(s[c′/i′], i 7→ c : s′′′)(i)
= {Induction hypothesis}

c.

i′ 6∈ dom(s): This gives us

set(s, i′ 7→ c′ : i 7→ c : s′′′)(i) = set(i′ 7→ c′ : s, i 7→ c : s′′′)(i)
= {Induction hypothesis}

c.

Next, we prove that set(s, s′)(i) = s(i) if i 6∈ dom(s′). Suppose i 6∈ dom(s′).
Structural induction on s′ gives us the following.

Basis s′ = λs. Consider the following computation:

set(s, s′)(i) = set(s, λs)(i)
= {Definition A.7}

s(i).

Inductive step s′ = i′ 7→ c : s′′, with set(s, s′′)(i) = s(i) if i 6∈ dom(s′′) the
induction hypothesis. We have i 6∈ dom(s′′) since i 6∈ dom(s′) and Lemma A.15
gives dom(s′′) ⊂ dom(s′). Consequently, also i 6∈ dom(s′′). Furthermore, since
i 6∈ dom(s′), we know that i′ 6= i.

Now, consider the equation set(s, s′)(i) = set(s, i′ 7→ c : s′′)(i). We distinguish
two cases: i′ ∈ dom(s) and i′ 6∈ dom(s).

i′ ∈ dom(s): This gives us

set(s, i′ 7→ c : s′′)(i) = {Definition A.7}
set(s[c/i′], s′′)(i)

= {Induction hypothesis}
s[c/i′](i)

= {Lemma A.19}
s(i).
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i′ 6∈ dom(s): This gives us

set(s, i′ 7→ c : s′′)(i) = {Definition A.7}
set(i′ 7→ c : s, s′′)(i)

= {Induction hypothesis}
(i′ 7→ c : s)(i)

= {Definition A.5}
= s(i).

Lemma A.24 Let s be a state and σ and σ′ be stacks. Then

σ = s :: σ′ ⇒ dom(s) ⊆ dom(σ) ∧ dom(σ′) ⊆ dom(σ).

Proof (Lemma A.24) Suppose σ = s :: σ′. We distinguish two cases: σ′ = λσ and
σ′ = s′ :: σ′′.

σ′ = λσ: Using Definition A.9, we can perform the following computations:

dom(s) ⊆ dom(σ)
⊆ dom(s :: λσ)
⊆ dom(s) ∪ dom(λσ)
⊆ dom(s) ∪ ø
⊆ dom(s),

dom(σ′) ⊆ dom(σ)
dom(λσ) ⊆ dom(s :: λσ)

ø ⊆ dom(s) ∪ dom(λσ)
⊆ dom(s) ∪ ø
⊆ dom(s).

σ′ = s′ :: σ′′: Using Definition A.9, we can perform the following computations:

dom(s) ⊆ dom(σ)
⊆ dom(s :: s′ :: σ′′)
⊆ dom(s) ∪ dom(s′) ∪ dom(σ′′),

dom(σ′) ⊆ dom(σ)
dom(s′ :: σ′′) ⊆ dom(s :: s′ :: σ′′)

dom(s′) ∪ dom(σ′′) ⊆ dom(s) ∪ dom(s′) ∪ dom(σ′′).
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Substitution on a stack does not change its domain.

Lemma A.25 Let σ be a stack, i be an identifier, c be a value, I be a set of
identifiers, and ci be a value for all i ∈ I. Then dom(σ[c/i]) = dom(σ).

Proof (Lemma A.25) We prove that dom(σ[c/i]) = dom(σ) by structural induc-
tion on σ.

Basis σ = λσ. Consider the following computation:

dom(σ[c/i]) = dom(λσ[c/i])
= {Definition A.10}

dom(λσ)
= dom(σ).

Inductive step σ = s :: σ′ with dom(σ′[c/i]) = dom(σ′) the induction hypothesis.
We distinguish two cases: i ∈ dom(s), and i 6∈ dom(s).

i ∈ dom(s): Consider the following computation:

dom(σ[c/i]) = dom((s :: σ′)[c/i])
= {Definition A.10}

dom(s[c/i] :: σ′)
= {Definition A.9}

dom(s[c/i]) ∪ dom(σ′)
= {Lemma A.16}

dom(s) ∪ dom(σ′)
= dom(σ).

i 6∈ dom(s): Consider the following computation:

dom(σ[c/i]) = dom((s :: σ′)[c/i])
= {definition A.10}

dom(s :: σ′[c/i])
= {Definition A.9}

dom(s) ∪ dom(σ′[c/i])
= {Induction hypothesis}

dom(s) ∪ dom(σ′)
= dom(σ).
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Substitution of value σ(i) for identifier i in stack σ is an identity operation on
states provided that i ∈ dom(σ). If i 6∈ dom(σ) then every arbitrary substitution
is an identity operation.

Lemma A.26 Let σ be a stack, i be an identifier, and c be a value. Then

σ[σ(i)/i] = σ if i ∈ dom(σ),
σ[c/i] = σ if i 6∈ dom(σ).

Proof (Lemma A.26)

First, we prove that σ[σ(i)/i] = σ if i ∈ dom(σ). Suppose i ∈ dom(σ). Then
σ = s :: σ′ for some s and σ′ such that i ∈ dom(s) or i ∈ dom(σ′). Structural
induction on σ′ gives us the following.

Basis σ′ = λσ. This gives us i ∈ dom(s). Now, consider the computation:

σ[σ(i)/i] = (s :: λσ)[(s :: λσ)(i)/i]
= {Definition A.11}

(s :: λσ)[s(i)/i]
= {Definition A.10}

s[s(i)/i] :: λσ

= {Lemma A.17}
s :: λσ

= σ.

Inductive Step σ′ = s′ :: σ′′, with σ′′[σ′′(i)/i] = σ′′ if i ∈ dom(σ′′) the induc-
tion hypothesis. With respect to i, we distinguish three cases: i ∈ dom(s),
i 6∈ dom(s) ∧ i ∈ dom(s′), and i 6∈ dom(s) ∧ i 6∈ dom(s′).

i ∈ dom(s): Consider the following computation:

σ[σ(i)/i] = (s :: s′ :: σ′′)[(s :: s′ :: σ′′)(i)/i]
= {Definition A.11}

(s :: s′ :: σ′′)[s(i)/i]
= {Definition A.10}

s[s(i)/i] :: s′ :: σ′′

= {Lemma A.17}
s :: s′ :: σ′′

= σ.
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i 6∈ dom(s) ∧ i ∈ dom(s′): Consider the following computation:

σ[σ(i)/i] = (s :: s′ :: σ′′)[(s :: s′ :: σ′′)(i)/i]
= {definition A.11}

(s :: s′ :: σ′′)[s′(i)/i]
= {definition A.10}

s :: s′[s′(i)/i] :: σ′′

= {lemma A.17}
s :: s′ :: σ′′

= σ.

i 6∈ dom(s) ∧ i 6∈ dom(s′): This gives us, i ∈ dom(σ′′). Now, consider the following
computation:

σ[σ(i)/i] = (s :: s′ :: σ′′)[(s :: s′ :: σ′′)(i)/i]
= {definition A.11}

(s :: s′ :: σ′′)[σ′′(i)/i]
= {definition A.10}

s :: s′ :: σ′′[σ′′(i)/i]
= {Induction hypothesis}

s :: s′ :: σ′′

= σ.

Next we proof that σ[c/i] = σ if i 6∈ dom(σ). Structural induction on σ gives us
the following.

Basis σ = λσ . Now, according to Definition A.10, we have σ[c/i] = λσ[c/i] =
λσ = σ.

Inductive step σ = s ::σ′ with σ′[c/i] = σ′ if i 6∈ dom(σ′) the induction hypothesis.
Consider the following computation:

σ[c/i] = (s :: σ′)[c/i]
= {Definition A.10}

s[c/i] :: σ′[c/i]
= {Lemma A.17 and induction hypothesis}

s :: σ′.
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In this appendix, we consider a small example of a production system to illustrate
how to use the experiment environment. The system consists of a generator, a
buffer, a machine, and an exit. The χσ specification reads (line numbers are listed
for referencing):

1 % File: prodsys.chi

2 %

3 G(output: chan) = (skip; output!1 | skip; delay 2)*; deadlock

4

5 E(input: chan) = |[ x: int | (input?x)*; deadlock]|

6

7 B(input, output: chan, cap: int) =

8 |[ x: int, xs: list[int] = mtlist

9 | ( len(xs) < cap :-> input?x; xs := xs ++ (x:mtlist)

10 | len(xs) > 0 :-> output!hd(xs); xs := tl(xs)

11 )*; deadlock

12 ]|

13

14 M(input, output : chan, pt: real) =

15 |[ x : int | (input?x; delay pt; output!x)*; deadlock ]|

16

17 GBME(cap: int, pt: real) =

18 mp enc sa(*,*): ra(*,*): mtset

19 |[ ~gb, ~bm, ~me

20 | G(~gb) || B(~gb, ~bm, cap) || M(~bm, ~me, pt) || E(~me)

21 ]|

Lines starting with the ‘%’ sign, lines 1–3 of the example, are comments. Genera-
tor G is defined on line 4. It makes a nondeterministic choice between sending a
new product (represented by the integer 1) over its output channel, or delaying 2
time units. This is repeated infinitely many times.

Line 6 defines the exit process E. It repeatedly tries to receive a product over its
input channel.
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Buffer B is defined on lines 8–13. It stores received products in the list xs. If the
length of this list is less than cap, representing the capacity of the buffer, the buffer
is able to receive new products over its input channel. Similarly, if the list xs is
not empty, the buffer is able to send a product over its output channel.

Machine M is defined on lines 15–16. It repeatedly executes a receive-delay-send
loop. This loop repeatedly receives a product over its input channel, processes the
product for pt time units (pt represents the process time of one product), and
sends the product over its output channel.

The parallel composition of the previous processes is defined in process GBME on
lines 18–22. Furthermore, this process also enforces maximal progress, using the mp
operator, and it prohibits single send and receive actions, using the enc operator.
Notice that instead of sets of actions, action patterns are used in the encapsulation
operator. For example, aa(i,*) is an action pattern denoting the set {aa(x, e) |
x ≡ i ∧ e ∈ Expr}.

The χσ engine is started in interactive mode by the command iachi. After the
χσ engine has started, commands to read and parse χσ specifications, to instanti-
ate process definitions, to simulate processes, to generate process graphs, etc., can
be given. The following session illustrates the interactive mode of the χσ engine.
Each line starting with the symbol ‘>>>’ contains a command for the χσ engine.
The other lines contain output of the χσ engine. End of line comments start with
the hash sign ‘#’.

1 >>> m = Model("prodsys.chi") # read and parse model

2 >>> s0 = m.instantiate("GBME(4, 2)") # instantiate process

3 >>> sim = Simulator(s0) # make simulator for process

4 >>> sim.run(100) # run 100 steps

5 >>> sim.reset() # reset simulator

6 >>> sim.stepFunction = sim.tracedStep # choose different step function

7 >>> sim.run(1) # run one step, produces output:

8 Option 0: tau

9 Option 1: tau

10 Step 0: tau

11

12 ----------------------------------------------------------------------

13 (mp ((enc sa(*, *) : ra(*, *) : mtset (|[ ~gb : ~bm : ~me : mtstate |

14 ((((((empty ; ~gb ! 1) ; (((skip ; ~gb ! 1) | (skip ; delay 2)) *)) ;

15 deadlock) || |[ x: int : xs: list[int] = mtlist : mtstate | (((((len

16 (xs) < 4) :-> (~gb ? x ; xs := (xs ++ (x : mtlist)))) | ((len(xs) > 0)

17 :-> (~bm ! hd(xs) ; xs := tl(xs)))) *) ; deadlock) ]|) || |[ x: int :

18 mtstate | ((((~bm ? x ; delay 2) ; ~me ! x) *) ; deadlock) ]|) || |[
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19 x: int : mtstate | ((~me ? x *) ; deadlock) ]|) ]|))))

20 ----------------------------------------------------------------------

21

22 >>> sim.run(1) # run another step:

23 Option 0: ca(~gb, x, 1)

24 Step 1: ca(~gb, x, 1)

25

26 ----------------------------------------------------------------------

27 (mp ((enc sa(*, *) : ra(*, *) : mtset (|[ ~gb = 1 : ~bm : ~me :

28 mtstate | (((((empty ; (((skip ; ~gb ! 1) | (skip ; delay 2)) *)) ;

29 deadlock) || |[ x: int = 1 : xs: list[int] = mtlist : mtstate | (((

30 empty ; xs := (xs ++ (x : mtlist))) ; ((((len(xs) < 4) :-> (~gb ? x ;

31 xs := (xs ++ (x : mtlist)))) | ((len(xs) > 0) :-> (~bm ! hd(xs) ; xs

32 := tl(xs)))) *)) ; deadlock) ]|) || |[ x: int : mtstate | ((((~bm ? x

33 ; delay 2) ; ~me ! x) *) ; deadlock) ]|) || |[ x: int : mtstate | ((

34 ~me ? x *) ; deadlock) ]|) ]|))))

35 ----------------------------------------------------------------------

In line 1, the file prodsys.chi is read and parsed and the result, a χσ model, is
stored in the programming variable m. Python programming variables are created
on the fly, they do not have to be declared. In line 2, process definition GBME is
instantiated with parameters 4 and 2, representing the buffer capacity and the
process time, respectively. The instantiated process is stored in programming
variable s0.

Line 3 creates a simulator for this process and stores it in programming vari-
able sim. A simulator has different step functions : functions that perform one
step (transition) of the process of the simulator. The default step function is
called quietStep. This step function does not generate output, except for possi-
ble warnings and error messages. Line 4 tells sim to perform 100 consecutive steps.
Since sim uses the default step function, no output is generated. After these steps,
the process of the simulator is different from the originally instantiated process and
it is possible to continue simulation from that point.

Line 5 resets the simulator. Now, the simulator is in its original state. Line 6
changes the step function of sim into tracedStep. This step function generates
a trace of the simulation. A trace is a sequence of steps. Each step consists of
a list of options, a selected option, and the resulting process. Line 7 instructs
the simulator to perform 1 step. For instance, on line 8 and 9, two options are
displayed, both being tau actions. In line 10, one of the options is selected as the
first step, Step 0. In lines 12–20, a textual presentation of the process resulting
from performing the selected option is displayed. With some effort, it is possible to
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see that the selected option corresponded to the skip process of the first alternative
of the generator G. In line 22, another step is performed. Note that here, only one
option is possible. This option is the communication over channel ~gb. Lines
26–35 display the resulting process. The session is continued below.

36 >>> mc = ModelChecker(s0) # make a model checker for s0

37 >>> pg = mc.getProcessGraph() # compute process graph for s0

38 chi log(5): Total time: 2.350 sec

39 chi log(5): Average speed: 156.170 states/sec

40 >>> pg.nrOfStates() # show number of states

41 367

42 >>> pg.nrOfDeadlockStates() # show number of deadlock states

43 0

44 >>> pg.nrOfTerminationStates() # show number of termination states

45 0

46 >>> pgmin = pg.minimize() # minimize process graph

47 >>> pgmin.nrOfStates() # show number of states

48 84

49 >>> pgmin.writePSFile("gbme-min.ps") # write PostScript file of

50 # minimized process graph

In line 36, a model checker if created for the original process GBME(4, 2), which
was stored in programming variable s0. A χσ model checker can generate process
graphs of (finite) χσ processes. Line 37 computes the process graph of GBME(4, 2)
and stores it in programming variable pg. The output of this command, shows
information about the state space generation process, for example, the total time
needed and the number of states per second.

In Lines 40, 42, and 44, the numbers of states, deadlock states, and termination
states are computed. We see that there are no deadlock and termination states in
the process graph. In Line 47, the process graph is minimized and the result is
stored in pgmin. By default, the minimize function reduces process graphs under
strong bisimulation. If minimization under branching bisimulation is desired, use
pg.minimize(’b’), instead. As can be seen on line 48, the number of states is
reduced considerably. In line 49, the minimized process graph is written to a
PostScript file.

It is possible to attach user-defined call-backs to χσ transitions. Each time a
simulator performs a transition, it also executes the call-backs attached to that
transition. The parameters of the action or the delay of the transition are accessible
from within the call-back. For example, it is possible to define a call-back that
keeps track of the current simulation time. This call-back, which is attached to
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delay transitions, has its own (Python) variable that stores the simulation time.
Each time a delay transition is performed, the call-back is executed and it increases
the value of the current time with the value of the delay. In many situations,
such a ‘current time call-back’ is a practical alternative to using χ’s current time
expression τ .

Call-backs have several advantages over traces. Firstly, since call-backs are de-
fined in ordinary Python code, all of Python’s programming power is available.
Secondly, call-backs are usually attached to a relatively small number of actions.
This means that during most of the steps of a simulation, no call-back is executed.
In order to generate traces, however, each simulation step has to write output to
the screen. Therefore, traces are much more time consuming than call-backs. Fi-
nally, even though traces contain usually enough information, this does not mean
that the information is readily accessible. In fact, since traces are available only
after simulation, a considerable amount of parsing of traces is required in order to
retrieve information from the traces. In contrast, call-backs have access to data
structures representing χσ transitions at run time.





Membership equational logic C

This appendix provides an introduction to membership equational logic (MEL) so
that the MEL specifications presented in Chapter 2 can be understood.

MEL is a formalism for algebraic specification. It was developed by Meseguer [138,
43]. In this section we present the syntax and semantics of MEL. In Chapter C.1,
we define the minimal MEL syntax. In Section C.2, the semantics of MEL is
defined. In Section C.3, we define a more user-friendly syntax for MEL.

C.1 Syntax of membership equational logic

MEL extends many other equational logics, including order-sorted equational
logic [85] in a conservative way and is therefore an expressive algebraic frame-
work. Traditionally in the algebraic specification community, sort names denote
syntactic classes of terms. In MEL, we will identify these classes by so-called kind
names and we use sort names for another notion, explained below. Kind names
are used to categorise terms purely on their syntax. As we will see in Defini-
tion C.6, each term has a certain kind. Furthermore, the kind of a term can be
derived from the syntax of the term. Kind names are unique identifiers written in
some presumed alphabet. We will not give a definition of identifiers, but we do
assume there are infinitely many different identifiers.

Definition C.1 (Kind name) A kind name is an identifier K.

Sort names are used to subdivide the syntactic classes of terms defined by kind
names. Sorts are useful to split up huge classes of terms into smaller subclasses.
For example, the class of numbers can be divided into subclasses of real numbers,
integer, etc. In addition, sorts allow for a natural treatment of partial functions. A
sort name belongs to exactly one kind name, but a kind name can have more than
one sort names. Thus, a sort name is an identifier qualified with a kind name. As
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we will explain below, the notion of a term belonging to a sort is based on axioms
and derivation rules and can in general not be determined purely from the syntax
of a term. Furthermore, a term may have more than one sort (provided that all
these sorts have the same kind) or no sort at all.

Definition C.2 (Sort name) A sort name is a qualified identifier s.K, where s is
an identifier and K is a kind name.

If the kind of a sort name s.K can be determined from the context, we will leave
out the kind qualification K and just write s.

Function names are built up from an identifier and a function type. A function
type has the form input kind names → output kind name. The input kind names
specify the kinds of the parameters and the output kind name specifies the kind
of the result of the function. Constants are function names without parameters.
There are no special ‘constructor’ function names; whether or not application of
function names construct new terms depends on the equations (see below).

Definition C.3 (Function name) A function name consists of an identifier f and
a function type K1 K2 . . . Kn → K (n ≥ 0), where K1, K2, . . . , Kn, K are kind
names. It is written like: f : K1 K2 . . . Kn → K. Kind names K1, . . . , Kn are
called the input kinds or input kind names and K is called the output kind or
output kind name of the function.

A signature is a triple of sets containing kind names, sort names, and function
names. Signatures define the basic syntactic elements of MEL specifications. It is
required the kind names of the sorts and the kind names in the function types be
defined in the signature.

Definition C.4 (Signature) A signature Ω is a triple (K,S,F) where K is a set of
kinds, S is a set of sort names, and F is a set of function names. Furthermore, for
all s.K ∈ S, we require that K ∈ K; and for all function names f : K1K2 . . . Kn →
K ∈ F , we require that K1, K2, . . . , Kn, K ∈ K.

As mentioned above, signatures define the elementary syntax of MEL specifica-
tions. More complicated syntactic structures (terms) are composed from function
names and logical variables, see Definition C.5. Logical variables are place holders
and may be replaced by terms of the same kind. Consequently, logical variables
have to belong to a certain kind.

Definition C.5 (Logical variable) A logical variable is a qualified identifier x.K,
where x is an identifier and K is a kind name.
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As with sort names, we will leave out the kind qualification K of a variable x.K

if it can be determined from the context.

Terms are built up from function names and logical variables. The rules by which
we construct terms are listed in Definition C.6. The (identifiers of) nullary function
names are basic terms. Logical variables are basic terms, too. More complicated
terms are constructed by function application of n-ary function names (n > 0).
Note that the function type of function names does not occur in terms. The
separate treatment of constants is merely for readability. The second rule and the
third rule could be merged into one by taking n ≥ 0.

Definition C.6 (Terms) Let Ω = (K,S,F) be a signature and X a set of variables of
kinds in K. The set of terms over Ω parameterised by X is denoted by TermΩ(X).
The set TermΩ(X) is recursively defined by the following rules.

1. Every variable x.K ∈ X is a term of kind K: x.K ∈ TermΩ(X).

2. Every nullary function name f :→ K ∈ F is a term of kind K: f :→ K ∈
TermΩ(X).

3. If t1, t2, . . . , tn ∈ TermΩ(X) are terms of kinds K1 K2 . . . Kn (for n > 0)
respectively, and f : K1 K2 . . . Kn → K ∈ F is a function name, then
f(t1, t2, . . . , tn) ∈ TermΩ(X) is a term of kind K.

Terms that do not contain variables are called closed terms.

Variables occurring in terms can be replaced by other terms (of the same kind).
Formally, this is done by substitutions: functions from variables to terms. We
assume substitutions are total functions. Since variables may be mapped onto
themselves, this is not really a limitation. For example, if a variable x is undefined
in a substitution θ, we define θ(x) = x. If x occurs in a term t and we apply θ to t

(see below), the resulting term will still have the original occurrences of x.

Definition C.7 (Substitution) Let Ω = (K,S,F) be a signature and X a set of
variables of kinds in K. A substitution is a function θ : X → TermΩ(X) such that
for all x.K ∈ X the term θ(x.K) is of kind K.

We use the notation θ[t/x] to denote the following substitution:

θ[t/x](x′) =

{
t if x = x′

θ(x′) if x 6= x′.

Below, we will apply substitutions not only to variables, but also to terms. For
example, we often write θ(t) for some term t. This represents the term t in which
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all variables are replaced by their values according to θ. Thus, a substitution can
be extended to terms.

Definition C.8 (Extending a substitution) Let Ω = (K,S,F) be a signature and
X a set of variables of kinds in Ω. Let x ∈ X be a variable, c :→ K a nullary
function name in Ω; t1, . . . , tn be terms in TermΩ(X); and f an n-ary function
name such that f(t1, . . . , tn) ∈ TermΩ(X) is a term. The extended substitution
θ of a substitution θ : X → TermΩ(X) is a function θ : TermΩ(X)→ TermΩ(X)
defined by θ(x) = θ(x), θ(c) = c, and θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn)).

Usually, we will implicitly extend a substitution and write θ instead of θ.

In MEL, there are two kinds of atomic formulas, namely, equations and member-
ship assertions. An equation says that two terms are equal and a membership
assertion says that a term has a certain sort. A sentence is a pair of an atomic
formula and a condition, where a condition is a list of atomic formulas. The infor-
mal meaning of a sentence is that it should be true if the atomic formulas of the
condition are true. That is, a sentence is an implication. As with atomic formulas,
there are also two types of compound formulas, namely, conditional equations and
conditional membership assertions.

Definition C.9 (Formulas) Let Ω = (K,S,F) be a signature and X a set of variables
of kinds in K. Atomic formulas of membership equational logic are equations and
membership assertions. We use the character a (possibly indexed) to range over
equations or membership assertions.
Let t1, t2 ∈ TermΩ(X) be terms of the same kind.

1. An equation has the form: t1 = t2.

Let t ∈ TermΩ(X) be a term of kind K and s.K ∈ S a sort name.

2. A membership assertion has the form: t : s.K.

Sentences (or compound formulas) of membership equational logic are conditional
equations and conditional membership assertions.
Let t1, t2 ∈ TermΩ(X) be terms and a1, . . . , an (n ≥ 0) be atomic formulas.

3. A conditional equation has the form: t1 = t2 ⇐ a1, . . . , an.

Let t ∈ TermΩ(X) be a term of kind K, s.K ∈ S a sort name, and a1, . . . , an

(n ≥ 0) equations or membership assertions.

4. A conditional membership assertion has the form: t : s.K ⇐ a1, . . . , an.
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We now have all ingredients to construct MEL specifications. Note that there are
also MEL theories and MEL views, but they are not introduced until Section C.3.
A MEL specification is a signature, a set of equations, and a set of membership
assertions. The terms occurring in the equations and membership assertions should
comply to the signature of the specification.

Definition C.10 (Membership equational specification) A membership equational
specification is a tuple (Ω, E, M) where Ω is a signature, E is a set of equations
and conditional equations over Ω, and M is a set of membership assertions and
conditional membership assertions over Ω.

A MEL specification defines the syntax of terms. In addition, a MEL specification
defines which terms are considered equal and which terms belong to a certain sort.
So, the sentences of a MEL specification play the role of axioms. Using the axioms
of a MEL specification, it is sometimes possible to derive that two terms are equal
in that specification, or that a term belongs to a certain sort. As in any formal
logic, the derivation is a purely syntactic game governed by derivation rules.

Definition C.11 (Derivation in MEL) Let T = (Ω, E, M) be a membership
equational specification with Ω = (K,S,F), X a set of variables of kinds in K;
f : K1 . . . Kn → K an n-ary function name, t, t′, t′′, t1 . . . tn, r ∈ TermΩ(X);
a1, . . . , an equations or membership assertions; K, K ′ ∈ K; s.K, s.K ′ ∈ S; and θ

a substitution. The MEL derivation relation ‘`’ (for 0 < i ≤ n) is defined by

1. equational axiom: if t = t′ ∈ E then T ` θ(t) = θ(t′),

2. membership axiom: if r : s.K ∈M then T ` θ(r) : s.K,

3. conditional equational axiom: if t = t′ ⇐ a1, . . . , an ∈ E and T ` θ(ai),
then T ` θ(t) = θ(t′),

4. conditional membership axiom: if r : s.K ⇐ a1, . . . , an ∈M and T ` θ(ai),
then T ` θ(r) : s.K,

5. subject reduction: if T ` t′ : s.K and T ` t = t′ then T ` t : s.K,

6. reflexivity: T ` t = t,

7. symmetry: if T ` t = t′ then T ` t′ = t,

8. transitivity: if T ` t = t′ and T ` t′ = t′′, then T ` t = t′′,

9. congruence: if T ` ti = t′i, then T ` f(t1, . . . , tn) = f(t′1, . . . , t′n).
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C.2 Semantics of membership equational logic

We will now define the semantics of membership equational logic. In literature
on membership equational logic, the semantics is usually defined using category
theory. Since we do not presume the reader is familiar with category theory, we
define the semantics using set theory only.

The mathematical structures we use to interpret a MEL specification are algebras.
An algebra is a system of sets and functions satisfying certain properties. Firstly,
there should be a set for every kind name of the MEL specification. Secondly,
there should be a set for every sort name of the MEL specification such that it is a
subset of the set for the kind of the sort name. Finally, there should be a function
for every function name of the MEL specification, such that the domain of the
function is the Cartesian product of the sets for the input kinds of the function
name and the range of the function is the set for the kind of the output kind of
the function name. It follows that algebras depend on the signatures of a MEL
specification. Therefore, we call them Ω Algebras. For a particular signature Ω,
there are usually many Ω algebras.

Definition C.12 (Ω Algebra) An Ω Algebra A for a signature Ω = (K,S,F), is a
triple (KA,SA,FA) of sets, where for each K ∈ K there is a set KA ∈ KA; for
each s.K ∈ S there is a set (s.K)A ∈ SA such that (s.K)A ⊆ KA; and for each
f : K1 K2 . . . Kn → K ∈ F there is a function fA : KA

1 × . . .×KA
n → KA ∈ FA.

Note that nullary function names, c :→ K, are mapped to elements of the set KA,
that is, c is mapped to an element cA ∈ KA.

Knowing the structure of Ω algebras, it is not surprising to see that the KA sets
are the interpretations of the kind names of a MEL specification, the s.KA sets are
the interpretations of the sort names, and the fA functions are the interpretations
of the function names. This means that terms of a certain kind K (or sort s.K)
are interpreted as elements of the corresponding set KA or (s.KA). The variables
that may occur in the axioms of a MEL specification stand for arbitrary terms.
The usual way to deal with variables in formal logics is by valuations: functions
from (syntactic) variables to (semantic) elements of algebras.

Definition C.13 (Valuation) Let X be a set of variables and A an Ω algebra for
signature Ω = (K,S,F). A valuation is a function v : X →

⋃
K∈K

KA, such that

v(x.K) ∈ KA for all x ∈ X.
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The interpretation of terms of a MEL specification in an Ω algebra can now be
defined recursively in a straightforward way. We use the usual notation [[t]]Av to
denote the interpretation of a term t in the Ω algebra A with valuation v. Usually
the algebra A is known from the context and we just write [[t]]v. As in the definition
of terms, Definition C.6, we treat constants separately, but this is merely for
readability.

Definition C.14 (Interpretation) Let Ω = (K,S,F) be a signature, x ∈ X be a
variable, c :→ K ∈ F a nullary function name, and f : K1 . . . Kn → K ′ ∈ F a
n-ary function name. The interpretation of a term t ∈ TermΩ(X) in an Ω algebra
A is denoted by [[t]]Av , where v is a valuation. It is defined by

1. [[x]]Av = v(x),

2. [[c]]Av = cA,

3. [[f(t1, . . . , tn)]]Av = fA([[t1]]Av , . . . , [[tn]]Av ).

A model of a MEL specification is an Ω algebra in which all axioms of the specifica-
tion are satisfied. That is, if t : s.K and t = t′ are axioms in a MEL specification,
then for an Ω algebra to be a model, [[t]]v ∈ (s.K)A and [[t]]v = [[t′]]v should hold
for all valuations v. Below, we will use the notation [[a]]v where a is a membership
or equational axiom. If a is a membership axiom t : s.K, the notation [[a]]v is an
abbreviation for [[t]]v ∈ (s.K)A. If a is an equational axiom t = t′, the notation
[[a]]v is an abbreviation for [[t]]v = [[t′]]v

Definition C.15 (Membership equational model) Let T = (Ω, E, M) be an equa-
tional specification with Ω = (K,S,F). An Ω algebra A is a model of T if it
satisfies the following conditions:

1. if t1 = t2 ∈ E, then [[t1]]v = [[t2]]v should hold for all valuations v,

2. if t : s.K ∈ M , then [[t]]v ∈ (s.K)A should hold for all valuations v,

3. if t1 = t2 ⇐ a1, . . . an ∈ E and [[a1]]v, . . . , [[an]]v hold, then [[t1]]v = [[t2]]v
should hold for all valuations v,

4. if t : s.K ⇐ a1, . . . an ∈ M and [[a1]]v, . . . , [[an]]v hold, then [[t]]v ∈ (s.K)A

should hold for all valuations v.

We use the notations A, v |= t = t′ and A, v |= t : s.K to denote that [[t]]v = [[t′]]v
and [[t]]v ∈ (s.K)A hold for a particular algebra A and valuation v. If it holds for
all valuations, we write A |= t = t′ and A |= t : s, respectively.
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As mentioned above, a signature Ω usually admits more than one Ω algebra. Some
of the algebras have the same structure, meaning that the result of a function
application in one algebra equals the result of the corresponding function in the
other algebra. A homomorphism is a function between Ω algebras that preserves
these structural properties. As such, homomorphisms are well suited to compare
different Ω algebras.

Definition C.16 (Homomorphism) Let A and A′ be Ω algebras, where Ω = (K,S,F)
and let c1, . . . , cn ∈

⋃
K∈K

KA. A function h :
⋃

K∈K
KA →

⋃
K∈K

KA′
is a homomor-

phism from A to A′ if it satisfies

h(fA(c1, . . . , cn)) = fA′
(h(c1), . . . , f(cn)).

Usually, we write h : A → A′ to denote a homomorphism h from A to A′. A
homomorphism that is surjective and injective is called an isomorphism. If there
exists an isomorphism between two Ω algebras, they are isomorphic. This means
that the algebras only differ in representation, if they differ at all, but not in
structure.

A well known concept from algebraic specification is initiality of an Ω algebra with
respect to a MEL specification. An Ω algebra A is initial for a MEL specification
with signature Ω if there exists a unique homomorphism from A to any Ω algebra
A′.

Definition C.17 (Initiality) An Ω algebra A is initial if for any Ω algebra A′ there
is a unique homomorphism h : A→ A′.

It can be shown that for any membership equational specification T = (Ω, E, L),
there exists a unique initial Ω algebra for T , modulo isomorphism. Therefore,
it is legitimate to speak about the initial algebra of a membership equational
specification.

Initial algebras are useful since they have some interesting properties. First of all,
every element in an initial algebra has a closed term representation in the concern-
ing MEL specification. This property is called ‘no junk’ and can be paraphrased
as “there exist no elements in the initial algebra that cannot be represented by
closed terms in the MEL specification.” In addition, in an initial algebra two
closed terms are equal if and only if they can be proven equal by formal derivation
in the concerning MEL specification. This property is called ‘no confusion’ and
can be paraphrased as “everything that holds in the MEL specification, holds in
the initial algebra of the specification and vice versa.”
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Property C.18 (No junk and no confusion) Let Ω = (K,S,F) be a signature and A

an initial algebra for a membership equational specification T = (Ω, E, M). Then
A has the following three properties,

1. no junk: for each element c of a set KA, there is a closed term t ∈ TermΩ,
such that [[t]] = c,

2. no confusion: for all closed terms t, t′ ∈ TermΩ: A |= t = t′ if and only if
T ` t = t′,

3. no sort confusion: for all closed terms t ∈ TermΩ and sort names s.K ∈ S:
A |= t : s.K if and only if T ` t : s.K.

These properties are well known in theory about algebraic specifications and there-
fore, we do not provide their proofs.

Summarising the discussion so far, we have achieved the following. Ω algebras are
mathematical structures of sets and functions such that every kind name and sort
name of the signature corresponds to a set and every function name corresponds
to a function. Furthermore, the sets for the sort names are subsets of the sets
of their corresponding kind names. Terms of a MEL specification T = (Ω, E, M)
can be interpreted in an Ω algebra. Basic terms and nullary function names (con-
stants) are interpreted as nullary functions and compound terms are interpreted
recursively as the function applications of the function names in the term. Valua-
tions are used to deal with the interpretation of variables occurring in the terms.
An Ω algebra is a model of the MEL specification T , if the (interpretation of the)
axioms in E and M hold in the algebra. In general, there is more than one model
for a MEL specification. An initial algebra is an Ω algebra with ‘no junk’ and ‘no
confusion’. Every MEL specification has a unique (modulo isomorphism) initial
algebra.

C.3 A specification language for MEL

In this section, we describe a specification language for MEL. The specifications
of Chapter 2 are written in this language. The language alleviates the writing
process of MEL specifications and it defines a uniform format, which makes it
easier to understand MEL specifications. Furthermore, the language provides
some structuring mechanisms by which specifications can be built up from other
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specifications. We explain how specifications written in this language should be
interpreted in terms of the definitions of Sections C.1 and C.2.

We use the keywords spec and end to define a membership equational specifi-
cation. By convention, the name of a specification is written in (small) capitals.
The contents of a specification is split up into so-called theory-sections. Successive
theory-sections are separated by white space. The general form is given below.

spec theoryname

〈theory section〉
...
〈theory section〉

end

The basic theory-sections are kinds, operators, variables, memberships, and equal-
ities. Each theory-section starts with a keyword and ends with a ‘.’ (period).
Theory-section keywords have a single and a plural form. For example, the kinds
section starts with either kind or kinds. There is no semantical difference be-
tween the single and plural version of a theory-section keyword; choices to use
one form instead of the other should be based on aesthetic grounds. In a theory-
section, a sequence of comma separated entities is defined. For example, in a kind
theory-section, kind names are defined, in an operator theory-section, operators
are defined, etc.

We first describe the kind theory-section. In this section we define kind names,
as in:

kinds K1[s1,1, . . . , s1,n1 ],
...
Km[sm,1, . . . , sm,nm ].

This theory-section defines kind names Ki (where 0 < i ≤ m) and sort names
si,j (where 0 < i ≤ m and 0 < j ≤ ni). Each sort name si,j is implicitly
qualified with the kind name Ki. That is, the full sort names are actually si,j .Ki

(see Definition C.2). However, we almost never use this explicit notation. As an
example of a kind section, we give a definition of the ‘Number’ kind with sorts
nat, int, and rat (See also Sections 2.3–2.5):

kind Number[nat, int, rat].
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Function names are defined in theory-sections starting with the keyword opera-
tor(s):

operator f : K1 . . . Kn → K.

Here, K, Ki (0 < i ≤ n) are kind names. Each kind name occurring in a function
name definition should be defined in a kind theory-section. Recall from Section C.1
that there is no difference between constructors and operators. Therefore, instead
of using the keyword operator, one can also use constructor.

Note that operators defined like this have a prefix syntax. In order to define
operators with a non-prefix syntax, the underscore symbol ‘ ’ can be used. For
example, the boolean infix operator ∧ can be defined by the following function
name definition:

operator ∧ : BB → B.

Here, we assume that B is the kind name of the booleans. Using underscores,
arbitrary ‘mixfix’ operators can be defined. For example,

operator if then else : B B B → B.

The number of underscores in a function name definition should be 0 (zero) if the
function name is written in prefix notation, and equal to the arity of the function
name if it is written in mixfix notation.

Theory-sections starting with the keyword var(s) define variables of certain kinds.
The variables are used to define membership axioms and equational axioms (see
below). For example, the following theory-section defines three variables, two of
kind K1, and one of kind K2:

vars x, y : K1,

x′ : K2.

Sections starting with the keyword membership(s) define membership assertions
(see items 2 and 4 of Definition C.9). Since these membership assertions are
supposed to hold in any model of the specification, they are sometimes called
(membership) axioms. Consider, for example, the following membership axioms:

membership t : s,

t : s⇐ a1, . . . , an.
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Here, t is a term built up from function names and variables defined in operator
sections and var sections, respectively; s is a sort name defined in a kind section
or in a sort section; and a1, . . . , an are unconditional equations or membership
assertions, possibly containing variables defined in var sections.

Theory-sections starting with the keyword equation(s) define equations (see item
1 and 3 of Definition C.9). Since these equations are supposed to hold in any model
of the specification, they are sometimes called (equational) axioms:

equation t1 = t2,

t1 = t2 ⇐ a1, . . . , an.

The terms t1 and t2 are built up from function names and variables defined in
operator sections and var sections, respectively and a1, . . . , an are unconditional
equations or membership assertions possibly containing variables defined in var
sections.

With the keyword sort(s), sort names can be introduced without defining a kind
name explicitly. Using this keyword, the specification writer does not have to
bother about the actual kind names; he can just assume that for every sort name
he defines, there exists a kind name. In order to make the kind names explicit, only
one fresh kind name has to be added to the specification. All sort names without
a kind name belong to this new kind name. In the specifications of Chapter 2, this
approach to define sort names is preferred over the explicit kind name approach.

The keyword subsorts(s) starts theory-sections in which subsort relations are
defined. As we will explain below, subsort relations are not new features, since
they can be defined in terms of membership assertions. In fact, subsort relations
are just syntactic sugar. Consider, for example, the following definitions:

subsorts s1 < s2,

s1 < s3 < s4.

Each sort name occurring in a subsort section, has to be defined in a kind theory-
section or a sort theory-section. A subsort declaration is a conditional membership
axiom in disguise. For example, to get the same results with a membership theory-
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section only, we could write

memberships t : s2 ⇐ t : s1,

t : s3 ⇐ t : s1,

t : s4 ⇐ t : s3.

Membership assertions and equations of a MEL specification may be labelled for
referencing purposes. In fact, we have labelled each membership assertion and
each equations of the specifications given in Chapter 2. A label is a string enclosed
in square brackets, like [LABEL0], and it precedes the membership assertion or
equation it labels. To prevent labels from standing out in the text of a MEL
specification, we usually use a smaller font for labels:

equation [E1] s p 0 = 0,

[E2] p s 0 = 0.

As a notational convention, function names may be defined using sort names in-
stead of kind names. For example, the following theory-sections are allowed in
MEL specifications:

kind Number[int].

operator succ : int→ int.

This is an abbreviation for the theory-sections:

kind Number[int].

operator succ : Number→ Number.

var n : Number.

membership succ(n) : int⇐ n : int.

That is, a unary operator succ from the kind Number to the kind Number is
defined together with a membership axioms stating that succ(n) is of sort int if n

is of sort int.
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Similarly, variables can be defined using sort names instead of kind names. The
following theory-sections together are equivalent to the previous two examples:

operator succ : Number→ Number.

var n : int.

membership succ(n) : int.

Here, it looks like the membership axiom is unconditional, but this is not really
the case; every axiom in which the variable n occurs is conditional and one of the
conditions is n : int.

In order to structure specifications, that is composing specifications from (smaller)
specifications, there are theory-sections to import specifications. The keyword of
these sections is protecting. Suppose S is the name of a specification, then it can
be imported in another specification by the section

protecting S.

The importing specification can use all sorts, constructors, and operators of S.

Now, we explain MELs mechanism to parameterize specifications. The bottom
up approach would be to first describe MEL theories, then MEL views, and fi-
nally parameterized specifications and theories. However, since MEL theories and
MEL views are just means to implement parameterisation, we start by describ-
ing parameterised specifications. After that, we describe MEL theories and MEL
views. Finally, we describe the difference between MEL theories and ordinary
MEL specifications.

A powerful structuring mechanism for MEL specifications is parameterisation.
MEL specifications can be parameterised by other MEL specifications. For exam-
ple, a specification of finite sets could be parameterised by a theory of elements
(see also Section 2.9):

spec set[X :: element] . . . end

where element is a MEL theory describing properties of set-elements needed to
specify SET. The only property required to specify finite sets, is that there is a
sort of elements (of the set). Therefore, the MEL theory element-example is
very simple:

theory element-example
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sort E.
end

Note that MEL theories start with the theory keyword. To get a specification
of, say, sets of booleans, one can instantiate set with bool, as in set[bool].
Informally, this means that whenever a sort, constructor, or operator of mel is
used in set, it is replaced by the ‘corresponding’ sort, constructor, or operator
of bool. In order to explain what we mean by ‘corresponding’ in this context,
we have to define a mapping from element-example to bool. Such mappings
are called MEL views. A view from element-example to bool has to map the
sort elt onto a sort of bool. In general, there are many views from a theory to a
specification (or to another theory). However, since bool has only one sort, there
is no choice. Consequently, the view is defined by

view bool-example

from element-example to bool

sort elt to bool.
end

In the formal discussion of Sections C.1 and C.2, parameterisation was not de-
scribed. The reason for this omission is that parameterisation is probably best
described formally in a categorical setting and that would be outside the scope
of this document. A general treatment of parameterisation of algebraic specifica-
tions can be found in [9]. For a formal discussion on parameterisation in MEL
we refer to [138, 43]. Informally, the interpretation of a parameterised theory is
a function from the class of algebras for its parameter to the class of algebras
for the specification you get after substituting the formal parameter by an actual
specification.

Note that the semantics of a MEL theory cannot be the initial semantics, since that
would be too restrictive. For instance, the initial semantics of element-example

is an algebra wit just one empty set onto which the sort elt is mapped. However,
this interpretation does not allow us to map the sort elt onto, for example, the sort
bool of bool, since that sort has a set with two elements as its interpretation in
the initial algebra of bool. A solution is to allow all algebras that have (at least)
a set for each sort name and a function for each operator as valid interpretations
of MEL theories. This kind of ‘loose semantics’ is used frequently in algebraic
specifications, since it gives us opportunities to leave (parts of) specifications open
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to many interpretations. Only after complete instantiation, will the initial algebra
semantics hold.

Consequently, there is a clear distinction between MEL specifications and MEL
theories: the former have an initial algebra semantics whereas the latter have
a loose semantics. As such, the MEL specifications should be used to define
concrete data types and MEL theories should be used to define formal parameters
of parameterised specifications or theories. Of course, there subtleties involved
in situations where MEL specifications include (using the include keyword) MEL
theories and vice versa, or if a parameterised specification or theory is instantiated
with another parameterised specification or theory. A thorough treatment of these
subtleties is outside the scope of this document.
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Definition 4.1 [p. 56] (LTS) An LTS is a triple (S, RS×S , RS), with S a set of
states, RS×S a set of binary relations on states, and RS a set of unary relations
on states.

Definition 4.2 [p. 57] (χσ-LTS) A χσ-LTS, is an LTS (S, RS×S , RS), such that

• S ⊆ C(P ),

• all r ∈ RS×S are binary relations on closed χσ processes given by triples

– (σ, a, σ′) ∈ Stack ×Action × Stack or
– (σ, d, σ′) ∈ Stack ×R>0 × Stack, and

• all r ∈ RS are unary relations on closed χσ processes given by stacks σ ∈
Stack.

Definition 4.3 [p. 59] (Formulas) A formula has one of the following forms, where
eb ∈ bool, p, p′ ∈ P , σ, σ′ ∈ Stack, a ∈ Action, and d ∈ R>0:

1. true(eb),

2. 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉,

3. 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉,

4. 〈 p, σ 〉↓,

5. ¬∃p′ ∈ C(P ), σ′, a : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉,

6. ¬∃p′ ∈ C(P ), σ′, d : 〈 p, σ 〉 d−→ 〈 p′, σ′ 〉,

7. ¬〈 p, σ 〉↓ .
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Definition 4.4 [p. 59] (Deduction rule) A deduction rule consists of a set of for-
mulas H and a formula c. H is the set of hypotheses and c is the conclusion.
Furthermore, c is of the form 2, 3, or 4 of Definition 4.3. A deduction rule is
denoted by H

c .

Definition 4.5 [p. 64] (Strong Bisimulation) A strong bisimulation on processes is
a relation R ∈ P × P such that for all (p, q) ∈ R the following holds:

1. ∀σ : 〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓,

2. ∀σ, a, p′, σ′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ∧ (p′, q′) ∈ R,

3. ∀σ, a, q′, σ′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ⇒ ∃p′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ∧ (p′, q′) ∈ R,

4. ∀σ, d, p′, σ′ : 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ⇒ ∃q′ : 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉 ∧ (p′, q′) ∈ R,

5. ∀σ, d, q′, σ′ : 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉 ⇒ ∃p′ : 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ∧ (p′, q′) ∈ R.

Two processes p and q are strongly bisimilar, denoted by p ↔ q, if there exists a
bisimulation relation R such that (p, q) ∈ R.

Definition 4.6 [p. 65] (Bisimulation up to ↔) A relation R ∈ P × P on processes
is a ‘bisimulation up to ↔’ if for all (p, q) ∈ R the following holds:

1. ∀σ : 〈 p, σ 〉↓ ⇔ 〈 q, σ 〉↓,

2. ∀σ, a, p′, σ′ : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒
∃p′′, q′, q′′ : p′ ↔ p′′ ∧ 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ∧ q′ ↔ q′′ ∧ (p′′, q′′) ∈ R,

3. ∀σ, a, q′, σ′ : 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉 ⇒
∃q′′, p′, p′′ : q′ ↔ q′′ ∧ 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ∧ p′ ↔ p′′ ∧ (p′′, q′′) ∈ R,

4. ∀σ, d, p′, σ′ : 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ⇒
∃p′′, q′, q′′ : p′ ↔ p′′ ∧ 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉 ∧ q′ ↔ q′′ ∧ (p′′, q′′) ∈ R,

5. ∀σ, d, q′, σ′ : 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉 ⇒
∃q′′, p′, p′′ : q′ ↔ q′′ ∧ 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ∧ p′ ↔ p′′ ∧ (p′′, q′′) ∈ R.

Lemma 4.7 [p. 65] Let R be a ‘bisimulation up to ↔’ relation and p and q be
processes. If (p, q) ∈ R then p ↔ q.
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Definition 4.8 [p. 68] (Atomic processes) The atomic processes of χσ have the
following signature with ExprR the set of real number expressions:

ε : P,

δ : P,

skip : P,

∆ : ExprR → P,

:= : Id × Expr → P,

! : Channel × Expr → P,

? : Channel × Id → P.

The deduction rules for χσ’s atomic processes are listed in Table 4.1.

Lemma 4.9 [p. 69] ∆0 ↔ ε.

Definition 4.10 [p. 70] (Guard operator) The guard operator has the following
signature with bool the set of boolean expressions according to specification bool

from Section 2.2:

:→ : bool× P → P.

The deduction rules for the guard operator are listed in Table 4.2.

Lemma 4.11 [p. 71] Let p be a process, then

true :→ p ↔ p.

Lemma 4.12 [p. 72] Let p be a process, then

false :→ p ↔ δ.

Definition 4.13 [p. 73] (Alternative composition operator) The alternative compo-
sition operator has the following signature:

[] : P × P → P.

The deduction rules for the alternative composition operator are listed in Table 4.3.

Lemma 4.14 [p. 73] Let p be a process, then

p [] δ ↔ p.
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Lemma 4.15 [p. 74] Let p be a process, then

p [] p ↔ p.

Lemma 4.16 [p. 75] Let p and q be processes, then

p [] q ↔ q [] p.

Lemma 4.17 [p. 75] Let p, q, and r be processes, then

(p [] q) [] r ↔ p [] (q [] r).

Definition 4.18 [p. 76] (Sequential composition operator) The sequential composi-
tion operator has the following signature:

; : P × P → P.

The deduction rules for the sequential composition operator are listed in Table 4.4.

Lemma 4.19 [p. 77] Let p be a process, then

p ; ε ↔ p.

Lemma 4.20 [p. 78] Let p be a process, then

ε ; p ↔ p.

Lemma 4.21 [p. 79] Let p be a process, then

δ ; p ↔ δ.

Lemma 4.22 [p. 80] Let p, q, and r be processes, then

(p ; q) ; r ↔ p ; (q ; r).

Lemma 4.23 [p. 83] Let p, q, and r be processes, then

(p [] q) ; r ↔ p ; r [] q ; r.
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Definition 4.24 [p. 89] (Repetition operator) The repetition operator has the fol-
lowing signature:

∗ : P → P.

The deduction rules for the repetition operator are listed in Table 4.5.

Lemma 4.25 [p. 90] δ∗ ↔ ε.

Lemma 4.26 [p. 90] Let p be a process, then

p∗ ↔ p ; p∗ [] ε.

Definition 4.27 [p. 92] (Parallel composition operator) The parallel composition
operator has the following signature:

‖ : P × P → P.

The deduction rules for the parallel composition operator are listed in Table 4.6.

Lemma 4.28 [p. 93] Let p be a process, then

ε ‖ p ↔ p.

Lemma 4.29 [p. 94] Let p and q be processes, then

p ‖ q ↔ q ‖ p.

Lemma 4.30 [p. 94] Let p, q, and r be processes, then

(p ‖ q) ‖ r ↔ p ‖ (q ‖ r).

Definition 4.31 [p. 96] (State operator) The state operator has the following signa-
ture:

|[ | ]| : State × P → P.

The deduction rules for the state operator are listed in Table 4.7.

Lemma 4.32 [p. 97] Let p be a process, then

|[ λs | p ]| ↔ p.
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Lemma 4.33 [p. 98] Let s0 and s1 be states and let p be a process, then

|[ s0 | |[ s1 | p ]| ]| ↔ |[ set(s0, s1) | p ]|.

Lemma 4.34 [p. 101] Let s and s′ be states, p and p′ be processes, σ and σ′ be
stacks, a be an action, and d be a positive real number. Then

〈 |[ s | p ]|, σ 〉 a−→ 〈 |[ s′ | p′ ]|, σ′ 〉 ⇒ dom(s) = dom(s′),

〈 |[ s | p ]|, σ 〉 p d−→ 〈 |[ s′ | p′ ]|, σ′ 〉 ⇒ dom(s) = dom(s′).

Lemma 4.35 [p. 102] Let p and p′ be a processes, s and s′ be states, σ and σ′ be
stacks, i be an identifier, c be a value, a be an action, and d be a positive real
value. Then for i ∈ dom(s) we have

〈 |[ s | p ]|, σ 〉↓ ⇔ 〈 |[ s | p ]|, σ[c/i] 〉↓,
〈 |[ s | p ]|, σ 〉 a−→ 〈 |[ s′ | p′ ]|, σ′ 〉 ⇔ 〈 |[ s | p ]|, σ[c/i] 〉 a−→ 〈 |[ s′ | p′ ]|, σ′[c/i] 〉,
〈 |[ s | p ]|, σ 〉 p d−→ 〈 |[ s′ | p′ ]|, σ′ 〉 ⇔ 〈 |[ s | p ]|, σ[c/i] 〉 p d−→ 〈 |[ s′ | p′ ]|, σ′[c/i] 〉.

Definition 4.36 [p. 103] (Encapsulation operator) The encapsulation operator has
the following signature:

∂ : P(Action)× P → P.

The deduction rules for the encapsulation operator are listed in Table 4.8.

Lemma 4.37 [p. 103] Let A and A′ be sets of actions and let p be a process, then

∂A(∂A′(p)) ↔ ∂A∪A′(p).

Definition 4.38 [p. 105] (Maximal progress operator) The maximal progress operator
has the following signature:

π : P → P.

The deduction rules for the maximal progress operator are listed in Table 4.9.

Lemma 4.39 [p. 105] Let p be a process, then

π(π(p)) ↔ π(p).
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Definition 4.40 [p. 106] (Abstraction operator) The abstraction operator has the
following signature:

τ : P(Action)× P → P.

The deduction rules for the abstraction operator are listed in Table 4.10.

Lemma 4.41 [p. 107] Let A and A′ be sets of actions and let p be a process, then

τA(τA′(p)) ↔ τA∪A′(p).

Definition 4.42 [p. 109] (Stratification) A mapping S from positive formulas to
natural numbers is a stratification for the SOS of χσ if for every deduction rule H

c

and every closed substitution θ,

• for h ∈ H of the forms 1–4 of Definition 4.3 (the positive hypotheses),
S(θ(h)) ≤ S(θ(c)); and

• for h ∈ H of the forms 5–7 of Definition 4.3 (the negative hypotheses):

form 5: if h = ¬∃p′ ∈ C(P ), σ′, a : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, then for all closed
terms p′: S(〈 θ(p), σ 〉 a−→ 〈 p′, σ′ 〉) < S(θ(c)); and

form 6: if h = ¬∃p′ ∈ C(P ), σ′, a : 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, then for all closed
terms p′: S(〈 θ(p), σ 〉 p d−→ 〈 p′, σ′ 〉) < S(θ(c)); and

form 7: if h = ¬〈 p, σ 〉↓, S(〈 θ(p), σ 〉↓) < S(θ(c)); respectively.

A TSS with a stratification is stratifiable.

Definition 4.43 [p. 110] Let p and p′ be processes. The function ops : P → N is
defined recursively by

• ops(p) = 0, if p ∈ {δ, ε, skip, x := e, m ! e, m ? e, ∆e},

• ops(e :→ p) = 1 + ops(p),

• ops(p [] p′) = 1 + ops(p) + ops(p′),

• ops(p ; p′) = 1 + ops(p) + ops(p′),

• ops(p∗) = 1 + ops(p),

• ops(p ‖ p′) = 1 + ops(p) + ops(p′),
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• ops(|[ s | p ]|) = 1 + ops(p),

• ops(∂A(p)) = 1 + ops(p),

• ops(π(p) = 1 + ops(p),

• ops(τA(p)) = 1 + ops(p).

Definition 4.44 [p. 110] Let p and p′ be closed process terms, σ and σ′ be stacks, a

an action, and d a positive real number. The function S from positive formulas to
natural numbers is defined by

1. S(true(e)) = 0,

2. S(〈 p, σ 〉 a−→ 〈 p′, σ′ 〉) = ops(p),

3. S(〈 p, σ 〉 a−→ 〈 p′, σ′ 〉) = ops(p),

4. S(〈 p, σ 〉↓) = ops(p).

Lemma 4.45 [p. 110] The TSS of χσ is stratifiable.

Lemma 4.46 [p. 113] Let p and pd be processes; σ and σd be stacks; and d and d′

be positive real numbers such that d′ < d. Then

〈 p, σ 〉 p d−→ 〈 pd, σd 〉 ⇒ ∃pd′ , σd′ : 〈 p, σ 〉 p d′
−−→ 〈 pd′ , σd′ 〉.

Lemma 4.47 [p. 113] (Time factorisation) Let e and e′ be expressions, such that
e ≥ 0 and e′ ≥ 0, and let p be a process, then

∆e ; p [] ∆e + e′ ↔ ∆e ; (p [] ∆e′).

Lemma 4.48 [p. 116] (Time determinism) Let p, p′, and p′′ be processes; σ, σ′, and
σ′′ be stacks; and d be a positive real number. Then

(〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ∧ 〈 p, σ 〉 p d−→ 〈 p′′, σ′′ 〉)⇒ (p′ ≡ p′′ ∧ σ′ ≡ σ′′).
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Lemma 4.49 [p. 117] Let p and p′ be processes; σ and σ′ be stacks such that
m ∈ dom(σ), then

〈 p, σ 〉 τ−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ,

〈 p, σ 〉 aa(x,c)−−−−−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ ∨ σ′ = σ[c/x],

〈 p, σ 〉 sa(m,c)−−−−−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ ∨ σ′ = σ[c/m],

〈 p, σ 〉 ra(m,x)−−−−−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ ∨ σ′ = σ[σ(m)/x],

〈 p, σ 〉 ca(m,x,c)−−−−−−−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ ∨ σ′ = σ[c/m][c/x],

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ⇒ σ′ = σ.

Lemma 4.50 [p. 118] Let p and p′ be processes, σ0, σ′
0, σ1, and σ′

1 be stacks, a be
an action, and d be a positive real number, then

(〈 p, σ0 〉 a−→ 〈 p′, σ′
0 〉 ∧ 〈 p, σ1 〉 a−→ 〈 p′, σ′

1 〉) ∨
(〈 p, σ0 〉 p d−→ 〈 p′, σ′

0 〉 ∧ 〈 p, σ1 〉 p d−→ 〈 p′, σ′
1 〉)

⇒
(σ′

0 = σ0 ∧ σ′
1 = σ1) ∨ (∃c, i : σ′

0 = σ0[c/i] ∧ σ′
1 = σ1[c/i]) ∨

(∃c, c′, i, i′ : σ′
0 = σ0[c/i][c′/i′] ∧ σ′

1 = σ1[c/i][c′/i′]).

Lemma 4.51 [p. 119] Let p and p′ be processes, σ and σ′ be stacks, a an action
and d a positive real number, then

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉 ⇒ dom(σ) = dom(σ′),

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉 ⇒ dom(σ) = dom(σ′).

Lemma 4.52 [p. 120] Let p and p′ be processes and let σ and σ′ be stacks such that
σ $ σ′. Then we have

〈 p, σ 〉↓ ⇔ 〈 p, σ′ 〉↓.

Furthermore, let a be an action and d a positive real number, then

∃σ : 〈 p, σ 〉 a−→ 〈 p′, σ 〉 ⇔ ∃σ′ : 〈 p, σ′ 〉 a−→ 〈 p′, σ′ 〉,
∃σ : 〈 p, σ 〉 p d−→ 〈 p′, σ 〉 ⇔ ∃σ′ : 〈 p, σ′ 〉 p d−→ 〈 p′, σ′ 〉.

Lemma 4.53 [p. 120] (Time confluence) Let p, pd, and pd′ be processes; σ, σd,
and σd′ be stacks; and d and d′ be positive real numbers such that d′ < d. If

〈 p, σ 〉 p d−→ 〈 pd, σd 〉 ∧ 〈 p, σ 〉 p d′
−−→ 〈 pd′ , σd′ 〉, then 〈 q, σ′ 〉 p d−d′

−−−→ 〈 r, σ′′ 〉.
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Lemma 4.54 [p. 120] (Preservation of terminations) Let p, pd, and pd′ be processes;
σ, σd, and σd′ be stacks; and d and d′ be positive real numbers such that d′ < d. If

〈 p, σ 〉 p d−→〈 pd, σd 〉 ∧ 〈 p, σ 〉 p d′
−−→〈 pd′ , σd′ 〉, then 〈 pd′ , σd′ 〉↓ ⇒ 〈 p, σ 〉↓ ∧ 〈 pd, σd 〉↓.

Lemma 4.55 [p. 121] (Preservation of action transitions) Let p, pd, and pd′ be
processes; σ, σd, and σd′ be stacks; and d and d′ be positive real numbers such

that d′ < d. If 〈 p, σ 〉 p
d−→ 〈 pd, σd 〉 ∧ 〈 p, σ 〉 p

d′
−−→ 〈 pd′ , σd′ 〉, then ∀pd′,a, σd′,a, a :

〈 pd′ , σd′ 〉 a−→ 〈 pd′,a, σd′,a 〉 ⇒ ∃pa, σa, pd,a, σd,a : 〈 p, σ 〉 a−→ 〈 pa, σa 〉 ∧ 〈 pd, σd 〉 a−→
〈 pd,a, σd,a 〉.

Lemma 4.56 [p. 121] (Undelayability of terminations) Let p, pd, and pd′ be pro-
cesses; σ, σd, and σd′ be stacks; and d and d′ be positive real numbers such that

d′ < d. If 〈 p, σ 〉 p d−→ 〈 pd, σd 〉 ∧ 〈 p, σ 〉 p d′
−−→ 〈 pd′ , σd′ 〉, then 〈 pd′ , σd′ 〉6 ↓.

Definition 7.1 [p. 160] (SOS computer) The SOS computer function sc : P →
P(P × Stack) ∪ P(P × Stack × (Action ∪R>0)× P × Stack) is defined by

sc(p)= {(p, σ) | 〈 p, σ 〉↓, σ ∈ Stack}
∪ {(p, σ, a, p′σ′) | 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, σ, σ′ ∈ Stack , p′ ∈ P, a ∈ Action}
∪ {(p, σ, d, p′σ′) | 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, σ, σ′ ∈ Stack , p′ ∈ P, d ∈ R>0}.

Lemma 7.2 [p. 161] Let p and p′ be processes, a be an action, and d be a positive
real number, then

〈 p, λσ 〉↓ ⇒ ∀σ : 〈 p, σ 〉↓,
〈 p, λσ 〉 a−→ 〈 p′, λσ 〉 ⇒ ∀σ : ∃σ′ : 〈 p, σ 〉 a−→ 〈 p, σ′ 〉,
〈 p, λσ 〉 p

d−→ 〈 p′, λσ 〉 ⇒ ∀σ : ∃σ′ : 〈 p, σ 〉 p d−→ 〈 p, σ′ 〉.

Lemma 7.3 [p. 162] Let p ∈ P be a process and σ ∈ Stack be a stack. Then
|{(p, σ) ∈ sc(p, σ) | 〈 p, σ 〉↓}| ≤ 1.

Lemma 7.4 [p. 162] (Finite number of actions) Let p ∈ P be a process and σ ∈ Stack
be a stack, then |Action(p, σ)| ∈ N .

Definition 7.5 [p. 165] (Action computation) The function ac : P × Stack →
P(P × Stack ×Action × P × Stack) is defined in Table 7.1.

Lemma 7.6 [p. 165] (Correctness of ac) Let p, p′ ∈ P be processes, let a ∈ Action
be an action, and let σ, σ′ ∈ Stack be stacks, then

(p, σ, a, p′, σ′) ∈ ac(p, σ)⇔ 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉.
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Lemma 7.7 [p. 170] Let p be a maximal progress process: p ≡ π(p′) for some

process p′. Suppose 〈 p, σ 〉 p
d−→ 〈 r, σ′′ 〉 and 〈 p, σ 〉 p

d′
−−→ 〈 q, σ′ 〉 and d′ < d. Then

〈 q, σ′ 〉 p d−d′
−−−→ 〈 r, σ′′ 〉 and 〈 q, σ′ 〉6 ↓ and 〈 q, σ′ 〉 6−→.

Definition 7.8 [p. 170] (Unique delay value) Let d0 ∈ R>0 be an arbitrary positive
real number. The function Dd0 : P × Stack → R≥0 is defined in Table 7.2.

Lemma 7.9 [p. 170] (Valid unique delay value) Let p ∈ P be a process, σ ∈ Stack
be a stack, and d0 ∈ R>0 be a positive real number. Then, if Dd0(p, σ) = 0 then

〈 p, σ 〉 6p−→, and if Dd0(p, σ) > 0 then ∃p′ ∈ P, σ′ ∈ Stack : 〈 p, σ 〉 p
Dd0(p,σ)
−−−−−−→ 〈 p′, σ′ 〉.

Definition 7.10 [p. 177] (Delay computation) Let d0 ∈ R>0 be a positive real num-
ber. The function dcd0 : P × Stack → (P × Stack × R>0 × P × Stack) is defined
by

dcd0(p, σ) = { (p, σ,Dd0(p, σ), p′, σ′)
| Dd0(p, σ) > 0 ∧ (p, σ,Dd0(p, σ), p′, σ′) ∈ sc(p, σ)
}.

Lemma 7.11 [p. 177] Let p ∈ P be a process and σ ∈ Stack be a stack, then
|dcd0(p, σ)| ≤ 1.

Definition 7.12 [p. 177] (Finite SOS computer) Let d0 be a positive real number.
The finite SOS computer function sc′d0

: P → P(P × Stack) ∪ P(P × Stack ×
(Action ∪R>0)× P × Stack) is defined by

sc′d0
(p) = {(p, λσ) | (p, λσ) ∈ sc(p)} ∪ ac(p, λσ) ∪ dcd0(p, λσ).

Definition A.1 [p. 249] (Valuation) Let v be a valuation, i be an identifier, and c

be a value. A valuation is a mapping from an identifier to a value with syntax
v ::= i 7→ c.

Definition A.2 [p. 249] (State) The empty state is denoted by λs. Further, let v be
a valuation. A state s is a list of valuations with syntax

s ::= λs

| v : s.

By definition, states have unique identifiers. That is, each identifier occurs at most
once in a state. In addition, all possible states are contained in the set State.
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Definition A.3 [p. 250] Let s be a state, i be an identifier, and c be a value. The
function dom, which returns the domain of a state, is defined by

dom(λs) = ø,

dom(i 7→ c : s) = {i} ∪ dom(s).

Definition A.4 [p. 250] Let s be a state, i and i′ be identifiers, and c and c′ be
values. Substitution on states is defined by

λs[c/i] = λs,

(i 7→ c : s)[c′/i] = i 7→ c′ : s,

(i 7→ c : s)[c′/i′] = i 7→ c : s[c′/i′] if i 6= i′.

Definition A.5 [p. 250] Let s be a state, i and i′ be identifiers, and c be a value.
Looking up identifiers in states is defined by

λs(i) = i,

(i 7→ c : s)(i) = c,

(i 7→ c : s)(i′) = s(i′) if i 6= i′.

Definition A.6 [p. 250] Let s and s′ be states, and i be an identifier. Equivalence
on states is defined by s = s′ if ∀i : s(i) = s′(i).

Definition A.7 [p. 251] Let s and s′ be states, i be an identifier, and c be a value.
The set function on states is defined by

set(s, λs) = s,

set(s, i 7→ c : s′) = set(s[c/i], s′) if i ∈ dom(s),
set(s, i 7→ c : s′) = set(i 7→ c : s, s′) if i 6∈ dom(s).

Definition A.8 [p. 251] (State stack) The empty state stack is denoted by λσ. Let
σ be a state stack and s be a state. A state stack has syntax

σ ::= λσ

| s :: σ.

All possible state stacks are contained in the set Stack.

Definition A.9 [p. 251] Let σ be a stack, and s be a state. The function dom is
defined by

dom(λσ) = ø,
dom(s :: σ) = dom(s) ∪ dom(σ).
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Definition A.10 [p. 252] Let σ be a stack, s be a state, i be an identifier, and c be
a value. Substitution on stacks is defined by

λσ[c/i] = λσ,

(s :: σ)[c/i] = s[c/i] :: σ if i ∈ dom(s),
(s :: σ)[c/i] = s :: σ[c/i] if i 6∈ dom(s).

Definition A.11 [p. 252] Let σ be a stack, s be a state, and i be an identifier. Looking
up identifiers in stacks is defined by

λσ(i) = i,

(s :: σ)(i) = s(i) if i ∈ dom(s),
(s :: σ)(i) = σ(i) if i 6∈ dom(s).

Definition A.12 [p. 252] Let σ and σ′ be stacks, and i be an identifier. Equivalence
on stacks is defined by

λσ = λσ,

s :: σ = s′ :: σ′ if s = s′ ∧ σ = σ′.

Definition A.13 [p. 252] Let σ and σ′ be stacks, and i be an identifier. Observational
equivalence on stacks is defined by σ $ σ′ if ∀i : σ(i) = σ′(i).

Lemma A.14 [p. 252] Let s be a state, i and i′ be identifiers, and c and c′ be values.
Then i 7→ c : i′ 7→ c′ : s = i′ 7→ c′ : i 7→ c : s.

Lemma A.15 [p. 253] Let s and s′ be states, i be an identifier, and c be a value.
Then

s = i 7→ c : s′ ⇒ dom(s′) ⊂ dom(s).

Lemma A.16 [p. 254] Let s be a state, i be an identifier, and c be a value. In that
case, dom(s[c/i]) = dom(s).

Lemma A.17 [p. 255] Let s be a state, i be an identifier, and c be a value. Then

s[s(i)/i] = s if i ∈ dom(s),
s[c/i] = s if i 6∈ dom(s).
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Lemma A.18 [p. 256] Let s be a state, i and i′ be identifiers, and c and c′ be values.
Then

s[c/i][c′/i′] = s[c′/i′] if i = i′,
s[c/i][c′/i′] = s[c′/i′][c/i] if i 6= i′.

Lemma A.19 [p. 258] Let s be a state, i and i′ be identifiers, and c be a value.
Then

s[c/i](i) = c if i ∈ dom(s),
s[c/i](i) = i if i 6∈ dom(s),
s[c/i](i′) = s(i′) if i 6= i′.

Lemma A.20 [p. 261] Let s and s′ be states, c be a value, and i be an identifier.
Then set(i 7→ c : s, s′) = i 7→ c : set(s, s′) if i 6∈ dom(s′).

Lemma A.21 [p. 262] Let s and s′ be states. Then dom(set(s, s′)) = dom(s) ∪
dom(s′).

Lemma A.22 [p. 264] Let s and s′ be states, c be a value, and i be an identifier.
Then

set(s, s′)[c/i] = set(s, s′[c/i]) if i ∈ dom(s′),
set(s, s′)[c/i] = set(s[c/i], s′) if i 6∈ dom(s′).

Lemma A.23 [p. 265] Let s and s′ be states, and i be an identifier. Then

set(s, s′)(i) = s′(i) if i ∈ dom(s′),
set(s, s′)(i) = s(i) if i 6∈ dom(s′).

Lemma A.24 [p. 268] Let s be a state and σ and σ′ be stacks. Then

σ = s :: σ′ ⇒ dom(s) ⊆ dom(σ) ∧ dom(σ′) ⊆ dom(σ).

Lemma A.25 [p. 269] Let σ be a stack, i be an identifier, c be a value, I be a set of
identifiers, and ci be a value for all i ∈ I. Then dom(σ[c/i]) = dom(σ).

Lemma A.26 [p. 270] Let σ be a stack, i be an identifier, and c be a value. Then

σ[σ(i)/i] = σ if i ∈ dom(σ),
σ[c/i] = σ if i 6∈ dom(σ).
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Definition C.1 [p. 279] (Kind name) A kind name is an identifier K.

Definition C.2 [p. 280] (Sort name) A sort name is a qualified identifier s.K, where
s is an identifier and K is a kind name.

Definition C.3 [p. 280] (Function name) A function name consists of an identifier
f and a function type K1 K2 . . . Kn → K (n ≥ 0), where K1, K2, . . . , Kn, K are
kind names. It is written like: f : K1 K2 . . . Kn → K. Kind names K1, . . . , Kn

are called the input kinds or input kind names and K is called the output kind
or output kind name of the function.

Definition C.4 [p. 280] (Signature) A signature Ω is a triple (K,S,F) where K
is a set of kinds, S is a set of sort names, and F is a set of function names.
Furthermore, for all s.K ∈ S, we require that K ∈ K; and for all function names
f : K1 K2 . . . Kn → K ∈ F , we require that K1, K2, . . . , Kn, K ∈ K.

Definition C.5 [p. 280] (Logical variable) A logical variable is a qualified identifier
x.K, where x is an identifier and K is a kind name.

Definition C.6 [p. 281] (Terms) Let Ω = (K,S,F) be a signature and X a set of
variables of kinds in K. The set of terms over Ω parameterised by X is denoted
by TermΩ(X). The set TermΩ(X) is recursively defined by the following rules.

1. Every variable x.K ∈ X is a term of kind K: x.K ∈ TermΩ(X).

2. Every nullary function name f :→ K ∈ F is a term of kind K: f :→ K ∈
TermΩ(X).

3. If t1, t2, . . . , tn ∈ TermΩ(X) are terms of kinds K1 K2 . . . Kn (for n > 0)
respectively, and f : K1 K2 . . . Kn → K ∈ F is a function name, then
f(t1, t2, . . . , tn) ∈ TermΩ(X) is a term of kind K.

Definition C.7 [p. 281] (Substitution) Let Ω = (K,S,F) be a signature and X a
set of variables of kinds in K. A substitution is a function θ : X → TermΩ(X)
such that for all x.K ∈ X the term θ(x.K) is of kind K.

Definition C.8 [p. 282] (Extending a substitution) Let Ω = (K,S,F) be a signature
and X a set of variables of kinds in Ω. Let x ∈ X be a variable, c :→ K a nullary
function name in Ω; t1, . . . , tn be terms in TermΩ(X); and f an n-ary function
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name such that f(t1, . . . , tn) ∈ TermΩ(X) is a term. The extended substitution
θ of a substitution θ : X → TermΩ(X) is a function θ : TermΩ(X)→ TermΩ(X)
defined by θ(x) = θ(x), θ(c) = c, and θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn)).

Definition C.9 [p. 282] (Formulas) Let Ω = (K,S,F) be a signature and X a set
of variables of kinds in K. Atomic formulas of membership equational logic are
equations and membership assertions. We use the character a (possibly indexed)
to range over equations or membership assertions.

Let t1, t2 ∈ TermΩ(X) be terms of the same kind.

1. An equation has the form: t1 = t2.

Let t ∈ TermΩ(X) be a term of kind K and s.K ∈ S a sort name.

2. A membership assertion has the form: t : s.K.

Sentences (or compound formulas) of membership equational logic are conditional
equations and conditional membership assertions.

Let t1, t2 ∈ TermΩ(X) be terms and a1, . . . , an (n ≥ 0) be atomic formulas.

3. A conditional equation has the form: t1 = t2 ⇐ a1, . . . , an.

Let t ∈ TermΩ(X) be a term of kind K, s.K ∈ S a sort name, and a1, . . . , an

(n ≥ 0) equations or membership assertions.

4. A conditional membership assertion has the form: t : s.K ⇐ a1, . . . , an.

Definition C.10 [p. 283] (Membership equational specification) A membership equa-
tional specification is a tuple (Ω, E, M) where Ω is a signature, E is a set of equa-
tions and conditional equations over Ω, and M is a set of membership assertions
and conditional membership assertions over Ω.

Definition C.11 [p. 283] (Derivation in MEL) Let T = (Ω, E, M) be a membership
equational specification with Ω = (K,S,F), X a set of variables of kinds in K;
f : K1 . . . Kn → K an n-ary function name, t, t′, t′′, t1 . . . tn, r ∈ TermΩ(X);
a1, . . . , an equations or membership assertions; K, K ′ ∈ K; s.K, s.K ′ ∈ S; and θ

a substitution. The MEL derivation relation ‘`’ (for 0 < i ≤ n) is defined by
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1. equational axiom: if t = t′ ∈ E then T ` θ(t) = θ(t′),

2. membership axiom: if r : s.K ∈M then T ` θ(r) : s.K,

3. conditional equational axiom: if t = t′ ⇐ a1, . . . , an ∈ E and T ` θ(ai),
then T ` θ(t) = θ(t′),

4. conditional membership axiom: if r : s.K ⇐ a1, . . . , an ∈M and T ` θ(ai),
then T ` θ(r) : s.K,

5. subject reduction: if T ` t′ : s.K and T ` t = t′ then T ` t : s.K,

6. reflexivity: T ` t = t,

7. symmetry: if T ` t = t′ then T ` t′ = t,

8. transitivity: if T ` t = t′ and T ` t′ = t′′, then T ` t = t′′,

9. congruence: if T ` ti = t′i, then T ` f(t1, . . . , tn) = f(t′1, . . . , t′n).

Definition C.12 [p. 284] (Ω Algebra) An Ω Algebra A for a signature Ω = (K,S,F),
is a triple (KA,SA,FA) of sets, where for each K ∈ K there is a set KA ∈ KA;
for each s.K ∈ S there is a set (s.K)A ∈ SA such that (s.K)A ⊆ KA; and for each
f : K1 K2 . . . Kn → K ∈ F there is a function fA : KA

1 × . . .×KA
n → KA ∈ FA.

Definition C.13 [p. 284] (Valuation) Let X be a set of variables and A an Ω algebra
for signature Ω = (K,S,F). A valuation is a function v : X →

⋃
K∈K

KA, such that

v(x.K) ∈ KA for all x ∈ X.

Definition C.14 [p. 285] (Interpretation) Let Ω = (K,S,F) be a signature, x ∈ X be
a variable, c :→ K ∈ F a nullary function name, and f : K1 . . . Kn → K ′ ∈ F a
n-ary function name. The interpretation of a term t ∈ TermΩ(X) in an Ω algebra
A is denoted by [[t]]Av , where v is a valuation. It is defined by

1. [[x]]Av = v(x),

2. [[c]]Av = cA,

3. [[f(t1, . . . , tn)]]Av = fA([[t1]]Av , . . . , [[tn]]Av ).

Definition C.15 [p. 285] (Membership equational model) Let T = (Ω, E, M) be an
equational specification with Ω = (K,S,F). An Ω algebra A is a model of T if it
satisfies the following conditions:
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1. if t1 = t2 ∈ E, then [[t1]]v = [[t2]]v should hold for all valuations v,

2. if t : s.K ∈ M , then [[t]]v ∈ (s.K)A should hold for all valuations v,

3. if t1 = t2 ⇐ a1, . . . an ∈ E and [[a1]]v, . . . , [[an]]v hold, then [[t1]]v = [[t2]]v
should hold for all valuations v,

4. if t : s.K ⇐ a1, . . . an ∈ M and [[a1]]v, . . . , [[an]]v hold, then [[t]]v ∈ (s.K)A

should hold for all valuations v.

Definition C.16 [p. 286] (Homomorphism) Let A and A′ be Ω algebras, where
Ω = (K,S,F) and let c1, . . . , cn ∈

⋃
K∈K

KA. A function h :
⋃

K∈K
KA →

⋃
K∈K

KA′
is

a homomorphism from A to A′ if it satisfies

h(fA(c1, . . . , cn)) = fA′
(h(c1), . . . , f(cn)).

Definition C.17 [p. 286] (Initiality) An Ω algebra A is initial if for any Ω algebra
A′ there is a unique homomorphism h : A→ A′.
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[p. 69]

〈 ε, σ 〉↓
1

[p. 69]

σ(e) = 0

〈∆e, σ 〉↓
2

[p. 69]

〈 skip, σ 〉 τ−→ 〈 ε, σ 〉
3

[p. 69]

σ(e) = c

〈x := e, σ 〉 aa(x,c)−−−−−→ 〈 ε, σ[c/x] 〉
4

[p. 69]

σ(e) = c

〈m ! e, σ 〉 sa(m,c)−−−−−→ 〈 ε, σ[c/m] 〉
5

[p. 69]

σ(m) = c

〈m ? x, σ 〉 ra(m,x)−−−−−→ 〈 ε, σ[c/x] 〉
6

[p. 69]

〈m ! e, σ 〉 p d−→ 〈m ! e, σ 〉
7

[p. 69]

〈m ? x, σ 〉 p d−→ 〈m ? x, σ 〉
8
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[p. 69]

d ≤ σ(e)

〈∆e, σ 〉 p d−→ 〈∆e− d, σ 〉
9

[p. 70]

σ(e) = true, 〈 p, σ 〉↓

〈 e :→ p, σ 〉↓
10

[p. 70]

σ(e) = true, 〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 e :→ p, σ 〉 a−→ 〈 p′, σ′ 〉
11

[p. 70]

σ(e) = true, 〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉

〈 e :→ p, σ 〉 p d−→ 〈 p′, σ′ 〉
12

[p. 73]

〈 p, σ 〉↓

〈 p [] q, σ 〉↓, 〈 q [] p, σ 〉↓
13

[p. 73]

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 p [] q, σ 〉 a−→ 〈 p′, σ′ 〉, 〈 q [] p, σ 〉 a−→ 〈 p′, σ′ 〉
14

[p. 73]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q, σ 〉 6p−→

〈 p [] q, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q [] p, σ 〉 p d−→ 〈 p′, σ′ 〉
15

[p. 73]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉

〈 p [] q, σ 〉 p d−→ 〈 p′ [] q′, σ′ 〉
16

[p. 77]

〈 p, σ 〉↓, 〈 q, σ 〉↓

〈 p ; q, σ 〉↓
17
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[p. 77]

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 p ; q, σ 〉 a−→ 〈 p′ ; q, σ′ 〉
18

[p. 77]

〈 p, σ 〉↓, 〈 q, σ 〉 a−→ 〈 q′, σ′ 〉

〈 p ; q, σ 〉 a−→ 〈 q′, σ′ 〉
19

[p. 77]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 p, σ 〉6 ↓

〈 p ; q, σ 〉 p d−→ 〈 p′ ; q, σ′ 〉
20

[p. 77]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q, σ 〉 6p−→

〈 p ; q, σ 〉 p d−→ 〈 p′ ; q, σ′ 〉
21

[p. 77]

〈 p, σ 〉↓, 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉, 〈 p, σ 〉 6p−→

〈 p ; q, σ 〉 p d−→ 〈 q′, σ′ 〉
22

[p. 77]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 p, σ 〉↓, 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉

〈 p ; q, σ 〉 p d−→ 〈 (p′ ; q) [] q′, σ′ 〉
23

[p. 89]

〈 p∗, σ 〉↓
24

[p. 89]

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 p∗, σ 〉 a−→ 〈 p′ ; p∗, σ′ 〉
25

[p. 89]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉

〈 p∗, σ 〉 p d−→ 〈 p′ ; p∗, σ′ 〉
26

[p. 92]

〈 p, σ 〉↓, 〈 q, σ 〉↓

〈 p ‖ q, σ 〉↓
27
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[p. 92]

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈 p ‖ q, σ 〉 a−→ 〈 p′ ‖ q, σ′ 〉, 〈 q ‖ p, σ 〉 a−→ 〈 q ‖ p′, σ′ 〉
28

[p. 92]

〈 p, σ 〉 sa(m,c)−−−−−→ 〈 p′, σ′ 〉, 〈 q, σ′ 〉 ra(m,x)−−−−−→ 〈 q′, σ′′ 〉

〈 p ‖ q, σ 〉 ca(m,x,c)−−−−−−−→ 〈 p′ ‖ q′, σ′′ 〉, 〈 q ‖ p, σ 〉 ca(m,x,c)−−−−−−−→ 〈 q′ ‖ p′, σ′′ 〉
29

[p. 92]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q, σ 〉↓, 〈 q, σ 〉 6p−→

〈 p ‖ q, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q ‖ p, σ 〉 p d−→ 〈 p′, σ′ 〉
30

[p. 92]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 q, σ 〉 p d−→ 〈 q′, σ′ 〉

〈 p ‖ q, σ 〉 p d−→ 〈 p′ ‖ q′, σ′ 〉
31

[p. 96]

〈 p, s :: σ 〉↓

〈 |[ s | p ]|, σ 〉↓
32

[p. 96]

〈 p, s :: σ 〉 a−→ 〈 p′, s′ :: σ′ 〉

〈 |[ s | p ]|, σ 〉 a−→ 〈 |[ s′ | p′ ]|, σ′ 〉
33

[p. 96]

〈 p, s :: σ 〉 p d−→ 〈 p′, s′ :: σ′ 〉

〈 |[ s | p ]|, σ 〉 p d−→ 〈 |[ s′ | p′ ]|, σ′ 〉
34

[p. 103]

〈 p, σ 〉↓

〈 ∂A(p), σ 〉↓
35

[p. 103]

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, a 6∈ A

〈 ∂A(p), σ 〉 a−→ 〈 ∂A(p′), σ′ 〉
36
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[p. 103]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉

〈 ∂A(p), σ 〉 p d−→ 〈 ∂A(p′), σ′ 〉
37

[p. 105]

〈 p, σ 〉↓

〈π(p), σ 〉↓
38

[p. 105]

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉

〈π(p), σ 〉 a−→ 〈π(p′), σ′ 〉
39

[p. 105]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉, 〈 p, σ 〉 6−→

〈π(p), σ 〉 p d−→ 〈 π(p′), σ′ 〉
40

[p. 107]

〈 p, σ 〉↓

〈 τA(p), σ 〉↓
41

[p. 107]

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, a 6∈ A

〈 τA(p), σ 〉 a−→ 〈 τA(p′), σ′ 〉
42

[p. 107]

〈 p, σ 〉 a−→ 〈 p′, σ′ 〉, a ∈ A

〈 τA(p), σ 〉 τ−→ 〈 τA(p′), σ′ 〉
43

[p. 107]

〈 p, σ 〉 p d−→ 〈 p′, σ′ 〉

〈 τA(p), σ 〉 p d−→ 〈 τA(p′), σ′ 〉
44
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