
This is a repository copy of Analysing RoboChart with probabilities.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/149113/

Version: Accepted Version

Proceedings Paper:
Conserva Filho, M. S., Marinho, R., Mota, A. et al. (1 more author) (2018) Analysing
RoboChart with probabilities. In: Massoni, Tiago and Mousavi, Mohammad Reza, (eds.)
Formal Methods:Foundations and Applications - 21st Brazilian Symposium, SBMF 2018,
Proceedings. 21st Brazilian Symposium on Formal Methods, SBMF 2018, 26-30 Nov 2018
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) . Springer-Verlag , BRA , pp. 198-214.

https://doi.org/10.1007/978-3-030-03044-5_13

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Analysing RoboChart with Probabilities

M. S. Conserva Filho1, R. Marinho1, A. Mota1, and J. Woodcock2

1 Centro de Informática, Universidade Federal de Pernambuco, Brazil
{mscf,rma6,acm}@cin.ufpe.br

2 Department of Computer Science, University of York, UK
jim.woodcock@york.ac.uk

Abstract. Robotic systems have applications in many real-life scenar-
ios, ranging from household cleaning to critical operations. RoboChart
is a graphical language for describing robotic controllers designed specif-
ically for autonomous and mobile robots, providing architectural con-
structs to identify the requirements for a robotic platform. It also pro-
vides a formal semantics in CSP. RoboChart has a probabilistic operator
(©P) but no associated probabilistic CSP semantics. When ©P is used,
currently a non-deterministic choice (⊓) is used as semantics; this is a
conservative semantics but it does not allow the analysis of stochastic
properties. In this paper we define the semantics of the operator ©P in
terms of the probabilistic CSP operator ⊞. We also show how this aug-
mented CSP semantics for RoboChart can be translated into the PRISM
probabilistic language to be able to check stochastic properties.

Keywords: Robotic systems, CSP, probabilistic analysis, PRISM

1 Introduction

Robotic systems have been used in many real-life scenarios, ranging from simple
domestic assistants [18] (household cleaning) to safety-critical activities, such
as driverless cars [4] and pilotless aircraft [27]. Despite their complexity, the
current practice for implementing such robots applications is performed in an
ad-hoc manner. These practices are often based on standard state machines,
without formal semantics, to describe the robot controller only.

In [21], a domain-specific modelling language, called RoboChart, based on
UML, is proposed. It is a graphical language for describing robotic controllers,
specifically designed for autonomous and mobile robots. It provides architectural
constructs to identify the requirements for a robotic platform. Features of the
RoboChart graphical notation allow, for instance, the behavioural description of
timed, continuous, and probabilistic properties.

Concerning formal verification, RoboChart has a formal semantics in CSP [23]
that can be automatically calculated by RoboTool3, a tool that supports the use
of RoboChart. CSP is a well established process algebra to model and verify con-
current systems. It defines the behaviours of a system in terms of events and the

3 www.cs.york.ac.uk/circus/RoboCalc/robotool

2 M. S. Conserva Filho, R. Marinho, A. Mota, and J. Woodcock

interactions of processes. CSP has support for model checking with FDR [25],
which provides a high degree of automation for early validation. Using FDR, we
can, for instance, establish determinism, and absence of deadlock and divergence.

Besides functional aspects, RoboChart has also a probabilistic operator (©P)
that can be used to express stochastic behaviours. Currently, however, it has no
associated probabilistic CSP semantics. When it is present, for instance, between
processes P and Q , a non-deterministic choice (P ⊓ Q) is used as semantics.

The work reported in [8] presents a version of FDR supporting the probabilis-
tic operator ⊞. But instead of modifying the FDR algorithm itself to perform
probabilistic analysis, the work [8] adds a new algorithm that creates a PRISM
specification [14] from a probabilistic CSP specification. This translation was
named WatchDog Transformation. PRISM is a probabilistic language and model
checking tool (both have the same name) which has already been successfully de-
ployed in a wide range of application domains, such as real-time communication
protocols, robots applications, and biological signalling pathways.

In this paper we define the semantics of the RoboChart probabilistic operator
©P in terms of the CSP probabilistic operator ⊞, preserving all the original
CSP semantics of RoboChart. To check for probabilistic properties, we specify
a CSP property specification; this is different from the usual way of handling
probabilistic model checking, which is based on a temporal logic language to
express properties. We then reuse theWatchDog Transformation provided by [8],
which combines the two CSP processes (property and process under analysis),
yielding a PRISM specification. With this specification, we just have to check
for a specific probabilistic temporal logic formula using the PRISM tool.

The remaining of this paper is structured as follows. The next section provides
an overview of RoboChart, and its CSP semantics. Section 3 briefly presents
PRISM. The translation from CSP to PRISM is discussed in Section 4. Section 5
presents our proposed strategy, and case studies are described in Section 6.
Finally, we draw our conclusions, and discuss future work in Section 7.

2 RoboChart

RoboChart [21] is a UML-like notation designed for modelling autonomous and
mobile robots. It provides constructs for capturing the architectural patterns of
typical timed and reactive robotic systems, and probabilistic primitives as well.
As opposed to other approaches for describing robotic systems, RoboChart has
a formal semantics that can be automatically calculated.

We give an overview of RoboChart using a toy model, as illustrated in Fig-
ure 1. A robotic system is defined in RoboChart by a module. In our example, it
is called CFootBot, and specifies a robot that can move around and detect obsta-
cles. A module contains a robotic platform and one or more controllers that run
on this platform. The robotic platform FootBot defines the interface of the sys-
tem with its environment, via variables, operations, and events. In our example,
the operation move(lv,av) captures the movement of the robot with linear speed
lv and angular speed av. The event obstacle occurs when the robot gets close

Analysing RoboChart with Probabilities 3

to any object in its environment; it is an abstraction of a sensor that detects
obstacles. There may be one or more controllers, interacting with the platform
via asynchronous events, and between them via synchronous or asynchronous
events. Our example has just a single controller Movement. The behaviour of a
controller is defined by one or more state machines, specifying threads of execu-
tion. Here, the behaviour of Movement is defined by the machine SMovement.

Event Constant Initial state Controller
State machine Robotic Platform Used Interface Event
Operation Required Interface Clock Provided Interface

Fig. 1. RoboChart: obstacle detection

Interfaces can group variables, operations, and events. In Figure 1, the in-
terface MovementI has only the operation move(lv,av), provided by the robotic
platform, and required by the controller. ObstacleI has just the event obstacle,
which is used in the platform, the controller, and the state machine. In general,
different events may be connected, as long as they have the same type, or no
type. Types are used when an event communicates an input or output value.

A state machine is the main behavioural construct of RoboChart. It is similar
to that in UML, except that they have a well defined action language. In our
example, the behaviour of SMovement is as follows: upon entry in the state
Moving, after calling the operation move(lv,0), the robot waits for one time unit.
The operation call move(lv,0) takes no time; it can be, for example, implemented
as a simple assignment to the register of an actuator. The machine, however, is
blocked by wait(1) for one time unit (which is a budget for the platform to react
to this operation) before it completes entry to Moving.

SMovement declares a clock MBC. In Moving, when an obstacle is detected,
MBC is reset (#MBC) and the machine moves to the state Turning. There, a
call move(0,av) turns the robot. A transition back to Moving is guarded by
since(MBC) >= PI/av. As soon as the guard is satisfied, the transition is taken.
The guard requires that the value of MBC is greater than or equal to that of

4 M. S. Conserva Filho, R. Marinho, A. Mota, and J. Woodcock

PI/av, to ensure that the robot waits enough time to turn PI degrees, before
going back to Moving, and proceeding in a straight line again.

There may be one or more controllers, interacting with the platform via
asynchronous events, and between them via synchronous or asynchronous events.
Here, we have just a single controller CForaging. The behaviour of a controller is
defined by one or more state machines, specifying threads of execution. In the
example, the behaviour of CForaging is defined by the machine SForaging.

Interfaces can group variables, operations, and events. In Figure 1, the inter-
face IForaging has the events stop, forage and flip, which are used in the platform,
the controller, and the state machine. In general, different events may be con-
nected, as long as they have the same type, or no type. Types are used when an
event communicates an input or output value.

Further information regarding RoboChart can be found in [21, 22, 20].

2.1 Semantics

The semantics of RoboChart is defined using a dialect of CSP called tock-
CSP [23]. It is used to describe concurrent reactive systems that are composed
by interacting components, which are independent entities called processes, that
can be combined using high level operators to create complex concurrent sys-
tems. In tock-CSP, a special event tock marks the discrete passage of time.

Before presenting the semantics for our example, we first introduce the re-
quired CSP syntax. The process SKIP represents the terminating process, and
STOP represents a deadlock process. The prefixing a → P is initially able to
perform only the simple event a, and behaves like process P after that. Events
may also be compound. For instance, b.n is composed by the channel b and the
value n. The process P ✷ Q is an external choice between process P and Q .
The process P ; Q combines the processes P and Q in sequence. The process
if b then P else Q behaves as P if b holds and as Q otherwise. Further informa-
tion regarding CSP can be found in [23].

We present below a CSP process CFootBot that specifies the behaviour of
our example in Figure 1. The formal semantics of RoboChart is implemented by
a tool (RoboTool) that automatically calculates a process that is equivalent to
CFootBot below.

CFootBot = EMoving ; Obstacle; ETurning ; wait(PI /av); CFootBot

CFootBot composes in sequence processes EMoving, Obstacle, ETurning, and
wait(PI/av) followed by a recursive call. EMoving is below; it engages in the event
moveCall.lv.0, which represents the operation call move(lv,0) in the entry action
of the state Moving. In sequence (prefixing operator →), EMoving engages in the
moveRet event that marks the return of that operation, and then behaves like
the process wait(1).

EMoving = moveCall .lv .0 → moveRet → wait(1)
wait(n) = if n == 0 then SKIP else tock → wait(n − 1)

Analysing RoboChart with Probabilities 5

The definition of the parameterised process wait(n) is recursive; it engages
in n occurrences of tock to mark the passage of n time units, and after that
terminates: SKIP . So, wait(1) corresponds directly to the wait(1) primitive of
RoboChart. The process Obstacle defined below allows time to pass until an
event obstacle occurs, when it then terminates. So, the events obstacle and tock

are offered in an external choice (✷).

Obstacle = obstacle → SKIP ✷ tock → Obstacle

Finally, the process EntryTurning models the entry action of Turning.

EntryTurning = moveCall .0.av → moveRet → SKIP

3 PRISM

Probabilistic model checking [1] is a complementary form of model checking
aiming at analyzing stochastic systems. The specification describes the behaviour
of the system in terms of probabilities (or rates) in which a transition can occur.

Probabilistic model checkers can be used to analyze quantitative properties
of (non-deterministic) probabilistic systems by applying rigorous mathematics-
based techniques to establish the correctness of such properties. The use of proba-
bilistic model checkers reduces the costs during the construction of a real system
by verifying in advance that a specific property does not conform to what is
expected about it. This is useful to redesign models.

There are some tools that specialize in probabilistic model checking. The
most well-known are: PRISM [14], Storm [3], PEPA [26], and MRMC [11].

This work focuses in the syntax of the language PRISM, which can be ana-
lyzed by the PRISM tool, the Storm model checker and other probabilistic model
checkers as well. The next section gives an overview of PRISM.

The PRISM Language The PRISM language [14] is a probabilistic specifi-
cation language designed to model and analyze systems of several application
domains, such as multimedia protocols, randomized distributed algorithms, se-
curity protocols, and many others.

The PRISM tool uses a specification language also called PRISM. It is an
ASCII representation of a Markov chain/process, having states, guarded com-
mands and probabilistic temporal logics such as PCTL, CSL, LTL and PCTL∗.

PRISM can be used to effectively analyze probabilistic models such as Discre-
te-Time Markov Chains (DTMCs), Continuous-Time Markov Chains (CTMCs),
Markov Decision Processes (MDPs), Probabilistic Automata (PAs), and Proba-
bilistic Timed Automata (PTAs).

To introduce the syntax of the PRISM language, consider the simple proba-
bilistic algorithm due to Knuth and Yao [12] for emulating a 6-sided die with a
fair coin (see Figure 2) that can be found in the PRISM website4. The PRISM
code corresponding to this algorithm can be seen in what follows.

4 http://www.prismmodelchecker.org/tutorial/die.php

6 M. S. Conserva Filho, R. Marinho, A. Mota, and J. Woodcock

Fig. 2. Graphical illustration of the 6-sided die with a fair coin

dtmc

module die

s : [0..7] init 4;
d : [0..6] init 0;
[] s = 0 → 0.5 : (s ′ = 1) + 0.5 : (s ′ = 2);
[] s = 1 → 0.5 : (s ′ = 3) + 0.5 : (s ′ = 4);
[] s = 2 → 0.5 : (s ′ = 5) + 0.5 : (s ′ = 6);
[] s = 3 → 0.5 : (s ′ = 1) + 0.5 : (s ′ = 7)&(d ′ = 1);
[] s = 4 → 0.5 : (s ′ = 7)& (d ′ = 2) + 0.5 : (s ′ = 7)&(d ′ = 3);
[] s = 5 → 0.5 : (s ′ = 7)& (d ′ = 4) + 0.5 : (s ′ = 7)&(d ′ = 5);
[] s = 6 → 0.5 : (s ′ = 2) + 0.5 : (s ′ = 7)& (d ′ = 6);
[] s = 7 → (s ′ = 7);

endmodule

The first thing to note is the reference to the kind of Markov chain being
addressed. In this example, a Discrete-Time Markov Chain (DTMC) was used.

This PRISM specification is composed of a single module, but if more than
one module is presented an implicit parallel composition of them is considered
as semantics [14]. This standard parallel composition can be customised to a
new semantics by the use of a system . . . endsystem section.

Inside a module, we can have local variables such as the s and d of this
example. Both are natural numbers, ranging from 0..7 and 0..6, respectively.
They need an initialisation. In this case, s is initially set to 4 and d to 0.

The rest of the module’s body is basically composed of a sequence of proba-
bilistic transitions, each one starting with a choice ([]) operator. A transition has
a guard (expression before the → operator), followed by the destination alter-
natives. The alternatives are identified by the use of + signals. Each alternative
has a probability (or rate) before the colon and update rules afterwards. Each
update comes inside parenthesis and the apostrophe is used to characterise the
value of the variable in the next state of the system. The symbol & is used to
describe logic conjunction.

Analysing RoboChart with Probabilities 7

Thus the transition

[] s = 0 → 0.5 : (s ′ = 1) + 0.5 : (s ′ = 2);

may be read as follows: if s = 0 holds, then this transition is fired. At this state,
we have a 50-50% alternative to update the variable s. In the first alternative,
the new value of s is set to 1. Otherwise, 2. Figure 3 shows its Markov chain5.

Fig. 3. Markov chain for the 6-sided die

Finally, we can perform probabilistic analysis. For this example, we can calcu-
late the probability of getting one of its 6-sides by writing the following property
(standing for “What is the chance of eventually s becomes 7 and d becomes x?”)

const int x ;
P =? [F s = 7 & d = x]

where the constant x refers to a specific face of the die (x ∈ {1, 2, . . . , 6}). In
this example, the probability for each value of x equals 16.67%.

4 WatchDog Transformation

The concurrent language CSP was extended to incorporate probabilistic and
timed aspects in [16]. The probabilistic operator ⊞ was defined. However, this
extension was entirely theoretical; no tool support was available at that time. In
the work [8], a version of FDR was extended to handle the operator ⊞.

Essentially, the standard CSPM notation (the machine-readable version of
CSP used by FDR) was augmented by the following new operator ([· ∼ ·]). Let
P and Q be CSP processes. Then

P m
(m+n)

⊞ n
(m+n)

Q == P [m ∼ n]Q

where m and n are natural numbers.

5 To create such a graph, we export the Markov model in the PRISM tool and use the
graphviz tool (http://www.graphviz.org/) to create Figure 3.

8 M. S. Conserva Filho, R. Marinho, A. Mota, and J. Woodcock

The work [8], however, did not change the FDR algorithm to perform prob-
abilistic analysis. Instead, FDR was extended to create a PRISM specification
from a refinement assertion. This translation is briefly described as follows.

The WatchDog Transformation consists in analysing the probability with
which a probabilistic CSP implementation (I) refines a non-probabilistic CSP
specification process (S). In this paper it is enough to briefly present the Watch-

Dog Transformation concerning the traces semantics

S ⊑T I

It consists in mapping a specification process, say S , to a watchdog process that
monitors the traces of an implementation process, say I , to indicate whether
or not I refines S according to CSP’s traces semantics. Precisely, a watchdog
process WDTS is defined such that it can perform a distinguished fail event
when I performs a trace not allowed by S .

WDTS (i) = (✷ e ∈ αI ∩ A(i) • e → WDTS (after(i , e)))
✷

(✷ e ∈ αI \A(i) • e → fail → STOP)

where A(i) is calculated by FDR as part of the transformation.
The intention is that WDTS (i0) can perform any trace tr of I that S can

perform, but it can also perform events from the alphabet of I not allowed by
S/tr (after which it can only perform the event fail). Note that this definition of
WDT is expressed in terms of the alphabet, αI , of the implementation process
I which again must be calculated as part of the transformation. The original
refinement check S ⊑T I is true precisely when WDTS (i0) ||αI I can never
perform the event fail .

The previous CSP process in its LTS semantic form is translated into a
PRISM specification based on a very few set of variables. The boolean variable
trace error matches the event fail . With this, the WatchDog Transformation

is able to calculate a probability using the following formula6

Pmax =? [F trace error]

which mathematically corresponds to the following relation

S ⊑T I ⇔ Pmax = 0% [F trace error]

The refinement holds exactly when the maximum probability of trace error

becomes true is zero (or the event fail never happens). Other interesting prob-
abilities emerge when such a refinement can eventually fail. The interpretation of
the above relation is that Pmax =? [F trace error] gives us the degree on which
the refinement S ⊑T I may fail.

Thus, to explore the traces refinement to get useful probabilistic temporal
analysis, one has to think of CSP processes as properties in such a way that the

6 Pmin can be used to calculate the minimum probability as well.

Analysing RoboChart with Probabilities 9

traces refinement holds up to a certain point and then fail. From the temporal
formula operator F , the traces refinement must resemble a reachability analysis.

By default, the WatchDog Transformation creates an MDP PRISM speci-
fication. But, if non-determinism may be ignored (for instance, in the 6-sided
die example presented in Section 3), one can simply change the mdp directive
to a dtmc one in the PRISM specification. In such a case, the PRISM tool can
calculate a single probability instead of a min/max probabilistic interval.

4.1 CSP to PRISM

To illustrate that the Markov chain generated by this approach is exactly what
we need, we use the same example of Section 3. That algorithm written in CSP
can be described as follows.

channel die : {1..6}
SixSidedDie =

let

S0 = S1 [1 ∼ 1] S2
S1 = S3 [1 ∼ 1] S4
S2 = S5 [1 ∼ 1] S6
S3 = S1 [1 ∼ 1] DIE (1)
S4 = DIE (2) [1 ∼ 1] DIE (3)
S5 = DIE (4) [1 ∼ 1] DIE (5)
S6 = S2 [1 ∼ 1] DIE (6)
DIE (x) = die.x → DIE (x)

within S0

To obtain the exact Markov chain as depicted in Figure 3, it suffices to apply
the WatchDog Transformation on the following refinement

RUN (αSixSidedDie) ⊑T SixSidedDie

The reason is simple. The process RUN (αSixSidedDie) can be refined by any
process in the traces model and thus the PRISM variable trace error is always
false and the formula Pmax =? [F trace error] will always return 0%.

10 M. S. Conserva Filho, R. Marinho, A. Mota, and J. Woodcock

The generated PRISM code in what follows is naturally different from the
one presented in Section 3. But its Markov chain is the same of Figure 3.

dtmc
moduleWATCHDOG

pc : [0..1] init 0;
trace error : bool init false;
[e2] pc! = 0 → 1 : (trace error ′ = true); //die.1
[e2] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.1
[e3] pc! = 0 → 1 : (trace error ′ = true); //die.3
[e3] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.3
[e4] pc! = 0 → 1 : (trace error ′ = true); //die.2
[e4] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.2
[e5] pc! = 0 → 1 : (trace error ′ = true); //die.4
[e5] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.4
[e6] pc! = 0 → 1 : (trace error ′ = true); //die.6
[e6] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.6
[e7] pc! = 0 → 1 : (trace error ′ = true); //die.5
[e7] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.5

endmodule
moduleP0

pc0 : [0..13] init 0;
[] pc0 = 0 → 0.5 : (pc′

0 = 1) + 0.5 : (pc′

0 = 2); // prob.0
[] pc0 = 1 → 0.5 : (pc′

0 = 3) + 0.5 : (pc′

0 = 4); // prob.1
[] pc0 = 2 → 0.5 : (pc′

0 = 5) + 0.5 : (pc′

0 = 6); // prob.2
[] pc0 = 3 → 0.5 : (pc′

0 = 1) + 0.5 : (pc′

0 = 7); // prob.3
[] pc0 = 4 → 0.5 : (pc′

0 = 8) + 0.5 : (pc′

0 = 9); // prob.4
[] pc0 = 5 → 0.5 : (pc′

0 = 10) + 0.5 : (pc′

0 = 11); // prob.5
[] pc0 = 6 → 0.5 : (pc′

0 = 2) + 0.5 : (pc′

0 = 12); // prob.6
[e2] pc0 = 7 → 1 : (pc′

0 = pc0 = 7?7 : 13); //die.1
[e3] pc0 = 9 → 1 : (pc′

0 = pc0 = 9?9 : 13); //die.3
[e4] pc0 = 8 → 1 : (pc′

0 = pc0 = 8?8 : 13); //die.2
[e5] pc0 = 10 → 1 : (pc′

0 = pc0 = 10?10 : 13); //die.4
[e6] pc0 = 12 → 1 : (pc′

0 = pc0 = 12?12 : 13); //die.6
[e7] pc0 = 11 → 1 : (pc′

0 = pc0 = 11?11 : 13); //die.5
endmodule
system

WATCHDOG || P0

endsystem

Instead of the variables s and d , we have integer variables whose prefix start
with pc (resembling the program counter of an assembly code and match the
LTS state) and the trace error boolean variable. Therefore, if one is interested
to analyse this generated PRISM code directly, instead of using the formula
P =? [F s = 7& d = x], it is necessary to use P =? [F pc0 = y] where y must
assume one of the values 7, 8, 9, 10, 11, or 12, corresponding to the events
die.1,. . . , die.6, which can be detected by simply reading the comments.

Fortunately, we do not need to know anything about the pc variables, nor
the above automatically generated PRISM specification. Instead, we just have
to formulate the appropriate traces refinement directly in CSP terms and check
for Pmax =? [F trace error]. For this example, the CSP refinement could be

Prop ⊑T SixSidedDie

where Prop = die.x → STOP and x ∈ {1..6} to check the probability of each
face of the die. The property Pmax =? [F trace error] yields the probability of
83.33%. This means that the refinement Prop ⊑T SixSidedDie has a 16.67%
complementary probability of holding. This corresponds exactly to the calcula-
tion in the PRISM website and also shown here in Section 3.

Analysing RoboChart with Probabilities 11

5 Using probabilities in RoboChart

In this section we present our strategy that allows probabilistic analysis of
RoboChart models. We first introduce the use of the probabilistic RoboChart
operator and then the extended RoboChart probabilistic semantics.

5.1 The RoboChart probabilistic operator

To create RoboChart models with probabilistic properties, we have to use a
specific operator: Probabilistic Junction (©P). To illustrate its usage, we now
consider an extension of the state machine of the RoboChart model presented in
Section 2. We consider that the robot is equally likely to turn to the right and
to the left. This new model is shown in Figure 4.

Probabilistic Junction

Fig. 4. RoboChart: obstacle detection with probabilities.

In this new version, when an obstacle is detected, the control of the model
proceeds to a probabilistic junction between two equally likely alternatives. One
alternative moves into the TurningLeft state, in which the robot turns to the left.
The other alternative moves into the TurningRight state, turning the robot to
the right. Afterwards, in both cases, the control goes back to the Moving state.

In the current state of RoboChart, probabilistic properties cannot be au-
tomatically analysed, since there is no direct translation from RoboChart to a
probabilistic language. Recall from Section 2.1 that RoboChart models are au-
tomatically translated into CSP. This translation loses probabilistic aspects by
using internal choices as semantics. This does not represent the correct meaning
of a probabilistic specification; stochastic analyses cannot be done.

12 M. S. Conserva Filho, R. Marinho, A. Mota, and J. Woodcock

5.2 Dealing with probabilities

To extend the semantics of RoboChart models to deal with probability aspects,
we have to consider the CSP probabilistic operator ⊞ to define the semantics of
©P , instead of internal choices. Let 〈| · |〉 be this extended semantics.

To be able to analyse probabilistic RoboChart models, it suffices to apply the
strategy presented in Section 4. That is, take a RoboChart model R, formulate
the desired property about R as a CSP specification S , apply the WatchDog

Transformation on the refinement

S ⊑T 〈|R|〉

and use the PRISM model checker using the single LTL formula

Pmax =? [F trace error]

Finally, interpret the result of the above formula as it is related to S 6⊑T 〈|R|〉.

6 Case Study

In this section, we present a RoboChart model with probabilistic primitives.
Furthermore, we also discuss some probabilistic analysis of the RoboChart model
that the robotic engineers are now able to do.

6.1 Obstacle Detection

In this section we just illustrate the kind of analysis we can perform on our
running example from Section 5.1.

We can use as property the following CSP specification.

Prop = moveCall → moveRet → SMovement obstacle →
SMovement turnRight → STOP

After performing the refinement

Prop ⊑T Obstable Detection

and checking for the probability of Pmax =? [F trace error] we get 100%, indi-
cating that (by the probabilistic complement) such a refinement does not hold.

6.2 Foraging Robot

This is a more complex example than the previous one. It is a simple foraging
robot. It is equipped with an idealised randomising device with two activities
that are equally likely to occur; the device generates an outcome in every time
step. The robot uses the device to decide whether to terminate or to continue a
particular activity (here, foraging). For reasons of its own, the robot may choose

Analysing RoboChart with Probabilities 13

Fig. 5. RoboChart model

to ignore the outcome of the device. Finally, the robot considers only a limited
number of times whether to continue foraging (see Figure 5).

The initial transition in Foraging leads to state Forage, in which a number
of transitions can be taken. If a flip is allowed (represented by the occurrence
of the event flip), the robot may ignore the randomising device and remain in
the Forage state. Another possible transition from Forage happens when the
event flip occurs and the number of choices has not been exhausted, given by
(flips < N). The constant N represents the maximum number of choices. In this
case, the control proceeds to a probabilistic junction between two equally likely
alternatives. One alternative is to move into the Stop state, which it signals with
the stop event. The other is to return to the Forage state, signalling this with
the forage event. In both cases, the value of flips is incremented (flips = flips+1).
This is used by the machine to keep track of the number of choices made.

There is only one transition available in the Stop state: the flip event keeps
the controller in Stop; this transition is included to model the fact that flip occurs
in every time step, even when the controller has terminated.

The CSP refinement property to check this model can be written as:

Prop = (✷ e : {flip, forage} • e → Prop)
✷ stop → STOP

By varying the N from 1 to 20 we get the graph depicted in Figure 6.

7 Conclusions

In this paper we defined the semantics of the RoboChart probabilistic operator
©P as the CSP probabilistic operator ⊞, preserving all the original CSP semantics
of RoboChart as provided by [21]. We then reused theWatchDog Transformation

provided by [8], obtaining a PRISM specification corresponding to the analysis

14 M. S. Conserva Filho, R. Marinho, A. Mota, and J. Woodcock

Fig. 6. Graph for Foraging Robot model plotting N from 1 to 20

of a refinement such as P ⊑T Q , where Q is the probabilistic CSP specification
automatically generated by RoboTool and P is some property of interest.

The strategy reported in this paper has two main advantages over other
attempts found in literature. The first is that it is based on CSP refinement and
not in LTL model checking. This allows a more closer analysis style as already
present in RoboChart. The second is that all data structures and functional
language already available in CSP is inherited by the automatically generated
PRISM specification. This is very interesting because it is hard to find rich data
structures as well as a readable PRISM specification in literature.

One drawback of our strategy is that we never get a parameterised PRISM
specification. But we can generate several models, each one corresponding to
the values of the parameters being analysed. This is what the PRISM tool does
directly from a parameterised PRISM specification.

Some works have been proposed for analyzing stochastic properties of robotic
systems. In [13], probabilistic analysis are performed focusing on the robotic
control software, ignoring the environment. It manually captures probabilistic
state machines (using the PRISM language) of swarm systems from [15] in order
to check specific properties in PCTL. No formal semantics is reported in this
work. Probabilistic properties of swarm robotic models are also verified in [17].
It uses the process algebra Bio-PEPA [2] for modelling such models, which can
be mapping to PRISM models by the Bio-PEPA suite of software tools.

We are working on another route to analysis of RoboChart models. This
route goes from RoboChart to PRISM’s Reactive Modules formalism via prob-
abilistic Statecharts [10], and will give an alternative way of establishing proba-
bilistic temporal properties. This translation is being built from metamodels of
RoboChart, probabilistic Statecharts, and Reactive Modules, with the transla-
tion carried out using the Epsilon model transformation tool7. Our translation

7 www.eclipse.org/epsilon/doc/book/

Analysing RoboChart with Probabilities 15

can also be expressed in Unifying Theories of Programming [9] as a Galois con-
nection between Statecharts and Reactive Modules, suggesting a bidirectional
transformation in Epsilon, supporting traceability of analysis results and coun-
terexamples, and giving a formal way of verifying the translation using a seman-
tics based on probabilistic predicate transformers in the style of McIver [19]. An
interesting question is whether this more direct route will lead to models with
different analysis performance in the PRISM tool.

Our translations will allow the use of more than just PRISM: the Reactive
Modules formalism is also used for input to the MRMC and Storm model check-
ers, amongst others, and a dialect of probabilistic CSP is used for input to the
PAT model checker [24]. We plan to explore the use of these alternatives and
compare their performance on benchmarks that we will establish in robotic and
autonomous control.

Finally, we plan to verify the results used in this paper, and in particular,
the WatchDog Transformation as an implementation technique, using the CSP
theories in Isabelle/UTP [5, 7, 6].

Acknowledgements.
This research was partially supported by INES 2.0, CAPES, FACEPE (grants
PRONEX APQ 0388-1.03/14 and APQ-0399-1.03/17), and CNPq (grant 465614/
2014-0). We would like to thank André Didier and Matheus Santana.

References

1. C. Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

2. F. Ciocchetta and J. Hillston. Bio-pepa: a framework for the modelling and analysis
of biological systems, 2008.

3. C. Dehnert, S. Junges, Joost-Pieter Katoen, and M. Volk. A storm is coming: A
modern probabilistic model checker. In CAV (2), volume 10427 of LNCS, pages
592–600. Springer, 2017.

4. L. Fernandes, V. Custodio, G. Alves, and M. Fisher. A rational agent controlling
an autonomous vehicle: Implementation and formal verification. In EPTCS, pages
35–42, 2017.

5. S. Foster and J. Woodcock. Unifying theories of programming in isabelle. In
ICTAC Training School on Software Engineering, volume 8050 of LNCS, pages
109–155. Springer, 2013.

6. S. Foster and J. Woodcock. Mechanised theory engineering in isabelle. In Depend-
able Software Systems Engineering, volume 40 of NATO Science for Peace and
Security Series, D: Information and Communication Security, pages 246–287. IOS
Press, 2015.

7. S. Foster, F. Zeyda, and J. Woodcock. Isabelle/utp: A mechanised theory engi-
neering framework. In UTP, volume 8963 of LNCS, pages 21–41. Springer, 2014.

8. M. Goldsmith. Csp: The best concurrent-system description language in the world-
probably! In Communicating Process Architectures, pages 227–232, 2004.

9. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall,
1998.

16 M. S. Conserva Filho, R. Marinho, A. Mota, and J. Woodcock

10. David N. Jansen, Holger Hermanns, and Joost-Pieter Katoen. A probabilistic ex-
tension of UML statecharts. In Werner Damm and Ernst-Rüdiger Olderog, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systems, 7th International
Symposium, FTRTFT 2002, Co-sponsored by IFIP WG 2.2, Oldenburg, Germany,
September 9-12, 2002, Proceedings, volume 2469 of Lecture Notes in Computer
Science, pages 355–374. Springer, 2002.

11. Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and
David N. Jansen. The ins and outs of the probabilistic model checker mrmc.
Perform. Eval., 68(2):90–104, February 2011.

12. D. Knuth and A. Yao. Algorithms and Complexity: New Directions and Recent Re-
sults, chapter The complexity of nonuniform random number generation. Academic
Press, 1976.

13. Fisher M. Konur S., Dixon C. Formal verification of probabilistic swarm be-
haviours.

14. M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic
real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification, pages 585–591. Springer Berlin Heidelberg, 2011.

15. W. Liu, Alan F. T. Winfield, and Jin Sa. Modelling swarm robotic systems : A
case study in collective foraging. 2007.

16. Gavin Lowe. Probabilistic and prioritized models of timed CSP. Theoretical Com-
puter Science, 138(2):315 – 352, 1995.

17. D. Latella M. Dorigo M. Massink, M. Brambilla and M. Birattari. On the use
of bio-pepa for modelling and analysing collective behaviours in swarm robotics.
page 201228.

18. M. Fisher M. Salem J. Saunders K. L. Koay M. Webster, C. Dixon and K. Dauten-
hahn. Formal verification of an autonomous personal robotic assistant. In AAAI
Spring Symposium Series, page 7479, 2014.

19. A. McIver. Quantitative refinement and model checking for the analysis of proba-
bilistic systems. In FM, volume 4085 of LNCS, pages 131–146. Springer, 2006.

20. A. Miyazawa, A. Cavalcanti, P. Ribeiro, W. Li, J. Woodcock, and
J. Timmis. RoboChart Reference Manual. University of York, 2016.
https://www.cs.york.ac.uk/circus/RoboCalc/assets/RoboChart-manual.pdf.

21. A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, and J. Timmis. Automatic property
checking of robotic applications. In IROS, pages 3869–3876, 2017.

22. P. Ribeiro, A. Miyazawa, W. Li, A. Cavalcanti, and J. Timmis. Modelling and
verification of timed robotic controllers. In IFM 2017, pages 18–33, 2017.

23. A.W. Roscoe. Understanding Concurrent Systems. Springer-Verlag.
24. Songzheng Song, Jun Sun, Yang Liu, and Jin Song Dong. A model checker for

hierarchical probabilistic real-time systems. In CAV, volume 7358 of LNCS, pages
705–711. Springer, 2012.

25. A. Boulgakov A.W. Roscoe T. Gibson-Robinson, P. Armstrong. FDR3 — A Mod-
ern Refinement Checker for CSP. In Erika brahm and Klaus Havelund, editors,
Tools and Algorithms for the Construction and Analysis of Systems, volume 8413
of Lecture Notes in Computer Science, pages 187–201, 2014.

26. M. Tribastone. The pepa plug-in project, 2009.
27. M. Webster, M. Fisher, N. Cameron, and M. Jump. Formal methods for the

certification of autonomous unmanned aircraft systems. SAFECOMP, pages 228–
242. Springer, 2011.

