1,586 research outputs found

    Online Bin Covering with Limited Migration

    Get PDF
    Semi-online models where decisions may be revoked in a limited way have been studied extensively in the last years. This is motivated by the fact that the pure online model is often too restrictive to model real-world applications, where some changes might be allowed. A well-studied measure of the amount of decisions that can be revoked is the migration factor beta: When an object o of size s(o) arrives, the decisions for objects of total size at most beta * s(o) may be revoked. Usually beta should be a constant. This means that a small object only leads to small changes. This measure has been successfully investigated for different, classical problems such as bin packing or makespan minimization. The dual of makespan minimization - the Santa Claus or machine covering problem - has also been studied, whereas the dual of bin packing - the bin covering problem - has not been looked at from such a perspective. In this work, we extensively study the bin covering problem with migration in different scenarios. We develop algorithms both for the static case - where only insertions are allowed - and for the dynamic case, where items may also depart. We also develop lower bounds for these scenarios both for amortized migration and for worst-case migration showing that our algorithms have nearly optimal migration factor and asymptotic competitive ratio (up to an arbitrary small epsilon). We therefore resolve the competitiveness of the bin covering problem with migration

    New Results on the Probabilistic Analysis of Online Bin Packing and its Variants

    Get PDF
    The classical bin packing problem can be stated as follows: We are given a multiset of items {a1, ..., an} with sizes in [0,1], and want to pack them into a minimum number of bins, each of which with capacity one. There are several applications of this problem, for example in the field of logistics: We can interpret the i-th item as time a package deliverer spends for the i-th tour. Package deliverers have a daily restricted working time, and we want to assign the tours such that the number of package deliverers needed is minimized. Another setup is to think of the items as boxes with a standardized basis, but variable height. Then, the goal is to pack these boxes into a container, which is standardized in all three dimensions. Moreover, applications of variants of the classical bin packing problem arise in cloud computing, when we have to store virtual machines on servers. Besides its practical relevance, the bin packing problem is one of the fundamental problems in theoretical computer science: It was proven many years ago that under standard complexity assumptions it is not possible to compute the value of an optimal packing of the items efficiently - classical bin packing is NP-complete. Computing the value efficiently means that the runtime of the algorithm is bounded polynomially in the number of items we have to pack. Besides the offline version, where we know all items at the beginning, also the online version is of interest: Here, the items are revealed one-by-one and have to be packed into a bin immediately and irrevocably without knowing which and how many items will still arrive in the future. Also this version is of practical relevance. In many situations we do not know the whole input at the beginning: For example we are unaware of the requirements of future virtual machines, which have to be stored, or suddenly some more packages have to be delivered, and some deliverers already started their tour. We can think of the classical theoretical analysis of an online algorithm A as follows: An adversary studies the behavior of the algorithm and afterwards constructs a sequence of items I. Then, the performance is measured by the number of used bins by A performing on I, divided by the value of an optimal packing of the items in I. The adversary tries to choose a worst-case sequence so this way to measure the performance is very pessimistic. Moreover, the chosen sequences I often turn out to be artificial: For example, in many cases the sizes of the items increase monotonically over time. Instances in practice are often subject to random influence and therefore it is likely that they are good-natured. In this thesis we analyze the performance of online algorithms with respect to two stochastic models. The first model is the following: The adversary chooses a set of items SI and a distribution F on SI. Then, the items are drawn independently and identically distributed according to F. In the second model the adversary chooses a finite set of items SI and then these items arrive in random order, that is random with respect to the uniform distribution on the set of all possible permutations of the items. It is possible to show that the adversary in the second stochastic model is at least as powerful as in the first one. We can classify the results in this thesis in three parts: In the first part we consider the complexity of classical bin packing and its variants cardinality-constrained and class-constrained bin packing in both stochastic models. That is, we determine if it is possible to construct algorithms that are in expectation nearly optimal for large instances that are constructed according to the stochastic models or if there exist non-trivial lower bounds. Among other things we show that the complexity of class-constrained bin packing differs in the two models under consideration. In the second part we deal with bounded-space bin packing and the dual maximization variant bin covering. We show that it is possible to overcome classical worst-case bounds in both models. In other words, we see that bounded-space algorithms benefit from randomized instances compared to the worst case. Finally, we consider selected heuristics for class-constrained bin packing and the corresponding maximization variant class-constrained bin covering. Here, we note that the different complexity of class-constrained bin packing with respect to the studied stochastic models observed in the first part is not only a theoretical phenomenon, but also takes place for many common algorithmic approaches. Interestingly, when we apply the same algorithmic ideas to class-constrained bin covering, we benefit from both types of randomization similarly. </ul

    Best Fit Bin Packing with Random Order Revisited

    Get PDF
    Best Fit is a well known online algorithm for the bin packing problem, where a collection of one-dimensional items has to be packed into a minimum number of unit-sized bins. In a seminal work, Kenyon [SODA 1996] introduced the (asymptotic) random order ratio as an alternative performance measure for online algorithms. Here, an adversary specifies the items, but the order of arrival is drawn uniformly at random. Kenyon's result establishes lower and upper bounds of 1.08 and 1.5, respectively, for the random order ratio of Best Fit. Although this type of analysis model became increasingly popular in the field of online algorithms, no progress has been made for the Best Fit algorithm after the result of Kenyon. We study the random order ratio of Best Fit and tighten the long-standing gap by establishing an improved lower bound of 1.10. For the case where all items are larger than 1/3, we show that the random order ratio converges quickly to 1.25. It is the existence of such large items that crucially determines the performance of Best Fit in the general case. Moreover, this case is closely related to the classical maximum-cardinality matching problem in the fully online model. As a side product, we show that Best Fit satisfies a monotonicity property on such instances, unlike in the general case. In addition, we initiate the study of the absolute random order ratio for this problem. In contrast to asymptotic ratios, absolute ratios must hold even for instances that can be packed into a small number of bins. We show that the absolute random order ratio of Best Fit is at least 1.3. For the case where all items are larger than 1/3, we derive upper and lower bounds of 21/16 and 1.2, respectively.Comment: Full version of MFCS 2020 pape

    Overcommitment in Cloud Services -- Bin packing with Chance Constraints

    Full text link
    This paper considers a traditional problem of resource allocation, scheduling jobs on machines. One such recent application is cloud computing, where jobs arrive in an online fashion with capacity requirements and need to be immediately scheduled on physical machines in data centers. It is often observed that the requested capacities are not fully utilized, hence offering an opportunity to employ an overcommitment policy, i.e., selling resources beyond capacity. Setting the right overcommitment level can induce a significant cost reduction for the cloud provider, while only inducing a very low risk of violating capacity constraints. We introduce and study a model that quantifies the value of overcommitment by modeling the problem as a bin packing with chance constraints. We then propose an alternative formulation that transforms each chance constraint into a submodular function. We show that our model captures the risk pooling effect and can guide scheduling and overcommitment decisions. We also develop a family of online algorithms that are intuitive, easy to implement and provide a constant factor guarantee from optimal. Finally, we calibrate our model using realistic workload data, and test our approach in a practical setting. Our analysis and experiments illustrate the benefit of overcommitment in cloud services, and suggest a cost reduction of 1.5% to 17% depending on the provider's risk tolerance

    Derandomizing Concentration Inequalities with dependencies and their combinatorial applications

    Get PDF
    Both in combinatorics and design and analysis of randomized algorithms for combinatorial optimization problems, we often use the famous bounded differences inequality by C. McDiarmid (1989), which is based on the martingale inequality by K. Azuma (1967), to show positive probability of success. In the case of sum of independent random variables, the inequalities of Chernoff (1952) and Hoeffding (1964) can be used and can be efficiently derandomized, i.e. we can construct the required event in deterministic, polynomial time (Srivastav and Stangier 1996). With such an algorithm one can construct the sought combinatorial structure or design an efficient deterministic algorithm from the probabilistic existentce result or the randomized algorithm. The derandomization of C. McDiarmid's bounded differences inequality was an open problem. The main result in Chapter 3 is an efficient derandomization of the bounded differences inequality, with the time required to compute the conditional expectation of the objective function being part of the complexity. The following chapters 4 through 7 demonstrate the generality and power of the derandomization framework developed in Chapter 3. In Chapter 5, we derandomize the Maker's random strategy in the Maker-Breaker subgraph game given by Bednarska and Luczak (2000), which is fundamental for the field, and analyzed with the concentration inequality of Janson, Luczak and Rucinski. But since we use the bounded differences inequality, it is necessary to give a new proof of the existence of subgraphs in G(n,M)-random graphs (Chapter 4). In Chapter 6, we derandomize the two-stage randomized algorithm for the set-multicover problem by El Ouali, Munstermann and Srivastav (2014). In Chapter 7, we show that the algorithm of Bansal, Caprara and Sviridenko (2009) for the multidimensional bin packing problem can be elegantly derandomized with our derandomization framework of bounded differences inequality, while the authors use a potential function based approach, leading to a rather complex analysis. In Chapter 8, we analyze the constrained hypergraph coloring problem given in Ahuja and Srivastav (2002), which generalizes both the property B problem for the non-monochromatic 2-coloring of hypergraphs and the multidimensional bin packing problem using the bounded differences inequality instead of the Lovasz local lemma. We also derandomize the algorithm using our framework. In Chapter 9, we turn to the generalization of the well-known concentration inequality of Hoeffding (1964) by Janson (1994), to sums of random variables, that are not independent, but are partially dependent, or in other words, are independent in certain groups. Assuming the same dependency structure as in Janson (1994), we generalize the well-known concentration inequality of Alon and Spencer (1991). In Chapter 10, we derandomize the inequality of Alon and Spencer. The derandomization of our generalized Alon-Spencer inequality under partial dependencies remains an interesting, open problem

    Volumetric Techniques for Product Routing and Loading Optimisation in Industry 4.0: A Review

    Get PDF
    Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in IoT, AI, and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction of actionable information, resulting in a better decision-making process. Product picking and its subsequent packing is an important area, and has drawn increasing attention for the research community. However, depending of the context, some of the related approaches tend to be either highly mathematical, or applied to a specific context. This article aims to provide a survey on the main methods, techniques, and frameworks relevant to product packing and to highlight the main properties and features that should be further investigated to ensure a more efficient and optimised approach
    corecore