
Noname manuscript No.
(will be inserted by the editor)

Online Results for Black and White Bin Packing

János Balogh · József Békési · György
Dósa · Leah Epstein · Hans Kellerer ·
Zsolt Tuza

Received: date / Accepted: date

Abstract In online bin packing problems, items of sizes in [0, 1] are to be
partitioned into subsets of total size at most 1, called bins. We introduce a
new variant where items are of two types, called black and white, and the item
types must alternate in each bin, that is, two items of the same type cannot
be assigned consecutively into a bin. We design an online algorithm with the
absolute competitive ratio 3. We further show that a number of well-known
algorithms cannot have a better performance, even in the asymptotic sense.
Additionally, we prove a surprising general lower bound 1 + 1

2 ln 2 ≈ 1.7213 on
the asymptotic competitive ratio of any deterministic or randomized online
algorithm. This lower bound significantly exceeds the known upper bound
1.58889 for classic online bin packing.

A proceedings version where some of the results in this article were announced appeared as
[1]. Research supported in part by the Stiftung Aktion Österreich-Ungarn, project No. 82öu9,
by the project K-TET: 10-1-2011-0115, and by the Hungarian Scientific Research Fund, grant
OTKA 81493.

János Balogh and József Békési
Department of Applied Informatics, Gyula Juhász Faculty of Education, University of
Szeged, H-6701 Szeged, POB 396, Hungary. E-mail: {balogh,bekesi}@jgypk.u-szeged.hu

György Dósa
Department of Mathematics, University of Pannonia, H-8200 Veszprém, Egyetem u. 10,
Hungary. E-mail: dosagy@almos.vein.hu

Leah Epstein
Department of Mathematics, University of Haifa, 31905 Haifa, Israel. E-mail:
lea@math.haifa.ac.il

Hans Kellerer
Institut für Statistik und Operations Research, Universität Graz, Universitätsstraße 15, 8010
Graz, Austria. E-mail: hans.kellerer@uni-graz.at

Zsolt Tuza
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1053 Budapest,
Reáltanoda u. 13–15; and Department of Computer Science and Systems Technology, Uni-
versity of Pannonia, H-8200 Veszprém, Egyetem u. 10, Hungary. E-mail: tuza@dcs.vein.hu

2 János Balogh et al.

Keywords Bin packing · Black and white bin packing · Online algorithms ·
Competitive analysis · Any Fit · Conflict graphs

1 Introduction

We deal with a new problem, that we call Black and White Bin Packing,
abbreviated as BWBP. As in standard bin packing, items characterized by
their sizes p1, p2, . . . are given, where 0 ≤ pi ≤ 11 and the goal is to pack them
into the minimum number of unit capacity bins. This well-known problem is
NP-hard (see [13]), and was widely studied.

In our problem the items are divided into two types or classes, i.e., every
item is either black or white. In addition to the capacity constraint, we require
that no two items of the same color are packed into a bin consecutively.

There are three variants of interest, as follows:

Unrestricted offline: In this setting the entire set of items is known in
advance, and they are given as a set. Thus, it is possible to pack them in
any order. In this case the items packed into a bin can be reordered, and
the assumption that no two items of the same type are packed consecutively
is equivalent to the assumption that given a bin A, if it contains b(A) black
items, and w(A) white items, then |w(A)−b(A)| ≤ 1. This variant was studied
in the conference version of this submission [1].

Online: The items are presented one by one according to a list L, and no
information on future items is given in advance; each item can be packed only
into a bin where it fits both with respect to its size, and where the packing
does not violate the condition on types, i.e., if it is packed into a non-empty
bin, then it can be packed only if the last item packed into the bin is of a
different type. Obviously, if a new item cannot be packed into a non-empty
bin, then it must be packed into a new empty bin (but it is always allowed to
pack a new item into a new bin).

Restricted offline: This variant belongs to a class of offline problems where
the input is seen as a sequence that is known to the algorithm in advance (see
the terminology of [3]). In this case the items still are given as a list L, and
they have to be packed sequentially according to this list, but the algorithm
has complete information, that is, the order of items and their properties (sizes
and types) are known in advance.

Motivation. One application of black and white bin packing is optimization
of the distribution of TV or radio programs and their commercial breaks, or
music and another kind of program contents on a radio channel, mainly for
online radio programs. The bins correspond to the blocks of programs (at many
stations these are one-hour intervals) and the black and white items represent
the two kinds of contents, item sizes meaning program duration. The model

1 A more standard assumption is 0 < pi ≤ 1, however in the problem studied here, zero
sized items cannot be neglected, and thus we consider such items as well.

Online Black and White Bin Packing 3

also makes it possible to optimize similar online contents (as an example,
information and advertisement alternately, like on many video-content sharing
portals, e.g. Youtube) onto modern mobile phone devices. On mobile phones
the contents often are observed in a band-like arrangement because on the
tiny display they fit under each other only. Here bin size means the maximum
amount of information fitting on one screen.

In this work we study the online problem. We compare our algorithms
to restricted optimal offline algorithms. This is motivated by the following
example, showing the difference between the unrestricted offline and the re-
stricted offline variants. Consider an input consisting of N white items, each
of size zero, followed by N black items, each of size zero. A solution for the
unrestricted offline problem can pack all the items into a single bin, but a
solution to the restricted offline problem uses N bins, as the first N items
must be packed into N different bins. An online algorithm must pack each
item as it arrives and cannot reorder the items, thus, naturally, we compare it
to restricted offline algorithms, that have the same restriction.

An interesting feature of the problem is that unlike many other packing
problems, is it non-monotone in the following sense. Given a sequence, it is
possible that as a result of deleting some items from the sequence, the cost of
an optimal solution can increase. This is true for all the variants. Consider of
2N zero sized items as above (N items of each color), where the items of each
color alternate. These items can be packed into one bin for all variants, but if
all white items are removed from the input, then any feasible packing requires
N bins.

For an algorithm ALG, let ALG denote both the algorithm and its cost
(the number of bins). We also use ALG(L) for the cost of ALG and an input
list L. An optimal restricted offline solution is denoted simply as OPT (or
OPT (L) for an input list L). For any set S of items let P (S) denote the total
size of items in the set S.

During the packing procedure, at each time, we call a bin where the last
packed item is black, a black bin, and analogously white bin if the last packed
item is white. The level or load of a bin means the total size of items already
packed into the bin.

To evaluate the efficiency of an online algorithm, competitive ratio is one
of the standard measures. If an online algorithm always achieves a solution
within a factor ρ of the cost of an optimal (restricted) offline algorithm, we
say that the online algorithm is ρ-competitive. More accurately, the absolute
competitive ratio of A is defined as

RA,abs = sup
L
{A(L)/OPT (L)} ,

while
RA,as = lim sup

n→∞
sup
L
{A(L)/OPT (L) | OPT (L) ≥ n} ,

is called the asymptotic competitive ratio of A, and when the competitive ratio
of an algorithm does not exceed R′, we say that it is R′-competitive. In the

4 János Balogh et al.

offline setting the analogous measures are called approximation ratio. For both
settings together we simply use the term performance guarantee.

Classic algorithms and results for the standard bin packing problem. Bin pack-
ing (without item types) was introduced by Johnson [16] and by Ullman [25]
who introduced a number of natural online algorithms (see also [18,17,7,6]).
The algorithm Next Fit [17] keeps only one open bin at any time, and if the
next item cannot be packed into the open bin, then the bin gets closed and this
item is packed into a newly opened bin. With a somewhat different approach
where opened bins do not get closed, in the case of the First Fit, Best Fit, or
Worst Fit algorithms [17,25,18], the next item is always packed into the first
bin where it fits, into a bin with highest level where it fits, or into a bin with
lowest level where it fits, respectively; and if there is no such bin, the item
is packed into a new bin. The generalization of the latter three algorithms is
called Any Fit; these algorithms are allowed to pack the new item into any
open bin where it fits. The item is packed into a new bin if and only if there is
no such bin (where it can be packed). The algorithms are abbreviated as NF,
FF, BF, WF, and AF, respectively. Clearly, FF, BF and WF are restricted
versions of AF.

A totally different packing idea is used by the algorithm Harmonic(K)
[20]. The items here are classified according to their sizes, items from interval
(1
i+1 ,

1
i] belong to Class i for 1 ≤ i ≤ K−1, where K ≥ 2 is a fixed integer. The

smaller items, i.e., items with sizes at most 1
K , belong to Class K. Through the

packing process, any bin only contains items from one class. If an incoming
item fits into a bin of the class of the item then the item is packed there,
otherwise a new bin is opened for this class of items. Thus, in this algorithm
NF is applied on each class independently. While for a class i < K applying
an AF algorithm would get the same result (as exactly i items can be packed
into one bin), for class K it is possible that applying some AF algorithms we
can get slightly different outputs. The asymptotic performance guarantee of
Harmonic(K) is approximately 1.69103 if K is chosen to be sufficiently large,
and the performance guarantee improves by increasing K.

As for AF algorithms, FF has an asymptotic performance guarantee 1.7,
and a parametric performance guarantee 1 + 1/d for any parameter value
of d ≥ 2 such that item sizes do not exceed 1

d , see [18]. A sequence of pa-
pers studied the absolute performance guarantee and the additive constant C
such that FF (L) ≤ 17

10OPT (L) + C, see e.g. [24,27,4,24]. Finally, Dósa and
Sgall [8] answered the question, that as it was conjectured by many people
FF (L)/OPT (L) ≤ 1.7 holds for any input L. Thus, not only that the asymp-
totic ratio 1.7 is tight for FF, but this is also the absolute performance bound.
The current champion algorithm among algorithms for standard online bin
packing is Harmonic++ by Seiden [23], which has an asymptotic competi-
tive ratio of 1.58889. The best lower bound on the asymptotic competitive
ratio was 1.5401 [26] for many years, and recently Balogh et al. improved it
to 248

161 ≈ 1.5403 [2]. The offline version of standard bin packing admits an
APTAS and an AFPTAS [12,19].

Online Black and White Bin Packing 5

Other variants. Many variants of bin packing have been studied (see e.g.
[6]), and we briefly mention one variant where the input must be treated as
a sequence rather than a set. The bin packing problem with LIB constraint
(Largest Item in Bottom) was introduced in [21,22]. In this model the items
are given by a list, and must be packed in this order. The items in a bin must
be packed sorted by non-increasing order. That is, an item can only be packed
into a bin if the previous item packed there is no smaller (and if the load of the
bin is sufficiently small). The best lower bound on the asymptotic competitive
ratio known for this problem is 2 [10], while FF was studied in several papers
[21,22,10], and finally it was shown in [9] that the absolute competitive ratio
of FF is at most 13

6 and at most 2 + 1/d(d+ 2) for the parametric case, where
no item has size above 1

d , for a given integer d.
Lower bounds on the number of bins. It is obvious that the total size of the
items is a lower bound on the cost of any solution, this lower bound is some-
times used in the analysis of bin packing problems. Let this lower bound be
denoted as LB1. Thus, for any input L, the value LB1(L) = P (L) is a valid
lower bound. The examples above demonstrate that this lower bound can be
much smaller than the cost of an optimal solution (even an optimal unre-
stricted offline solution), due to the constraint on types. While for standard
bin packing an analysis using this lower bound only already shows that all AF
algorithms and NF are 2-competitive, BWBP requires stronger lower bounds
(for example, if all items are of one type, then the optimal number of bins
is equal to the number of input items). In Section 4 we develop other lower
bounds on the cost of a restricted offline solution that are based in particular
on the types of items, and we use it to analyze a new online algorithm that
we design.

Our results. First, we consider the classic algorithms. We show that the per-
formance of NF and Harmonic(K) is unbounded. This holds for any K ≥ 2
if Harmonic(K) applies NF on each class, and as K grows to infinity even if
Harmonic(K) applies AF on class K. We also show that FF, BF, and WF
have asymptotic competitive ratios of at least 3, and even for the parametric
case, the asymptotic competitive ratio exceeds 2. Nevertheless, we prove the
AF algorithms have constant absolute competitive ratios of at most 5. We
design a different online algorithm, called Pseudo, and show that its abso-
lute competitive ratio is exactly 3. We also show a surprising lower bound of
1 + 1

2 ln 2 ≈ 1.7213 on the asymptotic competitive ratio of any deterministic or
randomized online algorithm.

2 Lower bounds for classic algorithms

There is a natural way to define the appropriate versions of NF and all the AF
algorithms for BWBP. The algorithms are defined in the same way as in the
pure online case, in the sense that if NF cannot pack an item into its open bin,
no matter if this is due the the constraint on types, or due to load, it closes

6 János Balogh et al.

this bin and opens a new bin. Similarly, for AF algorithms, an item is packed
into one of the bins where it can fit and the last packed item is of another type,
and a new bin is opened if and only if such a suitable bin does not exist. We
can define Harmonic(K) similarly as earlier, however in this case an incoming
item from class i (i < K) is packed into an existing bin of type i if there are
less than i items in the bin, and the colors of the new item and the bin are
different. Otherwise a new bin of this class i is opened and the item is packed
there. The situation is similar in class K: a new bin is opened in this class and
the incoming item is packed there, if the item does not fit into the last open
bin, or in the case if the last bin and the incoming item have the same color.

On the negative side, we observe that neither of the algorithms mentioned
above can work well. The situation is worst in case of NF.

Proposition 1 NF and Harmonic(K) do not have constant asymptotic com-
petitive ratios.

Proof Let us consider the next sequence. Let M be a large integer. The items
are presented in M batches (the items in a batch are obviously presented one
by one), any item has size 0, and there are M + 1 items in each batch, all
having the same color. Batches of an odd index have black items, and other
batches have white items. We find that NF can only combine the last item of
a batch with the first item of the following batch. Therefore, NF uses M + 1
bins for the first batch, and M additional bins for any other batch, for a total
of M2 + 1 bins. A restricted offline algorithm can pack all items into M + 1
bins, where the bin of index i will have every item that has the index i in its
batch.

If Harmonic(K) applies NF to class K ≥ 2, then this example is valid
for it too. Otherwise, consider an input where there are two kinds of items.
Black items, each of size 2K−1

2K(K−1) (we have 1
K < 2K−1

2K(K−1) <
1

K−1), and white

items, each of size 1
2K(K−1) . There are 2M(K − 1) items, and the sequences

alternates between items of the two kinds, starting with a black item. As the
white items belong to class K while black items belong to class K − 1, the
algorithm is forced to use a dedicated bin for each item. A packing created
by running NF on the input has 2M bins. Thus, the asymptotic competitive
ratio is at least K − 1, and it grows to infinity as K grows. �

Theorem 1 The asymptotic competitive ratios of algorithms FF, BF, and
WF are at least 3. Moreover, in the parametric case, if all item sizes are at
most 1/d, the parametric asymptotic competitive ratio of algorithms FF, BF
and WF are at least 3, 3, and 1 + d

d−1 , respectively.

Proof We start with a lower bound for FF. Let n be a fixed big integer. The
lower bound construction of an input L′ consists of three batches of items. The
first batch contains 2n2 items, each of size 2

4n+1 , alternating between black and
white (the first item is black). FF packs them into n white bins, each such
bin contains n black and n white items, and their loads are 4n

4n+1 . Next, in the

second batch there come n white items of size 1
4n+1 each, and FF is forced

Online Black and White Bin Packing 7

to open a new bin for each of them. These bins are white as well, and have
loads of 1

4n+1 . Finally, in the third batch there are 2n items, each of size 1
4n+1 ,

again alternating between white and black, starting with a black item. The
black items can be packed into the first n bins. Packing each such item results
in the load 1, so no such bin will contain any further items (as all the items
of this input have positive sizes), and thus all bins that can still receive items
are white at all times, so the white items of the last batch will be packed into
dedicated bins. We get a total of 3n bins, i.e. FF (L′) = 3n.

Now we show that the items in list L′ can be packed into n+ 1 bins (i.e.,
the restricted optimal offline solution requires at most n + 1 bins). The first
item of the list (which is black) is packed into a a special bin. The same bin
will contain the first item of the second batch, and all the items of the third
batch. The first item packed into the special bin is black, the second one is
white, and the remaining items alternate between the colors, starting with a
black item. The total size of these items is 2

4n+1 + 1
4n+1 + 2n

4n+1 = 2n+3
4n+1 ≤ 1

for any n.
The items that remain unpacked so far are those in the first batch (except

for first item) and the items in the second batch, except for the first such item.
The 2n2 − 1 items of the first batch (each of size 2

4n+1 where the first item
is white) are packed into n bins. The first n − 1 bins among these n bins are
black, and they have levels of 4n

4n+1 , and the level of the last such bin is 4n−2
4n+1 ,

and it is white. Thus the n − 1 unpacked white items from the second batch
can be packed into the first n− 1 bins among these n bins, and each of them
will be the last item of the bin. Thus OPT (L′) ≤ n+ 1.

It is simple to check that BF makes the same packing as FF. Thus we get
that the asymptotic competitive ratios of algorithms FF and BF are at least
3. The value of n can be chosen to be arbitrarily large, and thus this lower
bound holds even in the parametric case for any d.

Applying WF to the previous construction creates a different packing that
uses 2n bins. We use a different construction to show that WF has an asymp-
totic competitive ratio of at least 3, and furthermore, in the parametric case
the competitive ratio of WF is at least 1 + d

d−1 .
Let the list L consist of dn+ 2 batches, where d ≥ 2 is some fixed integer,

N is a sufficiently large integer, and n = N(d − 1) + d − 2. We have that
nd+ 1 = dN(d− 1) + d(d− 2) + 1 = (d− 1)(Nd+ d− 1) is divisible by d− 1.
Let δ be a small positive value, where δ ≤ 1

6dn+3 . In batch i, (i = 1, . . . , dn+1)
the next four items come in the following order:

– Ai, a white item with size 1/d− 4δ,
– Bi, a black item with size 3δ,
– Ci, a white item with size 3δ,
– Di, a black item with size 3δ.

In the last batch, i.e., the (dn + 2)-th batch, n black items are presented,
each one with size δ.

WF packs the items as follows. The items in the first d − 1 batches are
packed into the first WF bin, as the colors of these items are alternating, and

8 János Balogh et al.

they fit into one bin. The level at this point of the first WF bin is (d−1)(1/d+
5δ) = 1− 1

d + 5(d− 1)δ ≥ 1− 1
d + 5δ since d ≥ 2. Thus no additional Ai item

will fit into this bin. Since the resulting bin is black, no further black items will
be packed into the bin, and white items will always be packed into the current
last bin, since its load will be smaller. Therefore, the items from the next d−1
batches are packed into the second WF bin, and the process continues in the
same way. After packing the first dn + 1 batches there are dn+1

d−1 black bins.
After this moment WF creates n further bins with one black item of size δ
packed into each such bin. Thus WF (L) = dn+1

d−1 + n. (Note that FF and BF
would make much better packing, as the small white and black items would
be packed into such earlier bins what are not used later by WF.)

We define a feasible packing as follows. The items Ci and Di for 1 ≤ i ≤
dn+1 are packed into a single bin. This is possible since their colors alternate,
and their total size is 3(dn+ 1)δ ≤ 3dn+3

6dn+3 < 1. The remaining subsequence for
the first dn+1 batches also contains items of alternating colors. The first item
(A1) is packed into a bin, and the remaining items are packed such that each
bin contains 2d items, and the last item (Bdn+1) is combined into the bin of A1.
That is, for i = 1, . . . , n, items B(i−1)d+1, A(i−1)d+2, B(i−1)d+2, . . . , Bid, Aid+1

are packed into a bin. The load of such a bin is d(1
d − 4δ+ 3δ) = 1− dδ. These

bins are white, and therefore each such bin can receive one black item of the

last batch. We find that OPT (L) ≤ n + 2, and WF (L)/OPT (L) ≥
dn+1
d−1 +n

n+2

holds. This ratio can be arbitrarily close (from below) to 1 + d
d−1 as n tends

to infinity. This value is 3 if d = 2, implying the lower bound for d = 1 as well.
�

3 A lower bound on the competitive ratio of any online algorithm

We prove a lower bound for arbitrary deterministic or randomized online al-
gorithms. The proof is given for deterministic algorithms, while replacing the
variables used in the proof by their expected values does not harm the cor-
rectness, and using Yao’s method [28] (that states that it is possible to assume
that the algorithm is deterministic while the input is randomized) the second
part of the input is picked uniformly at random among all the options.

Theorem 2 There is no online algorithm for BWBP with an asymptotic com-
petitive ratio smaller than 1 + 1

2 ln 2 ≈ 1.7213.

Proof The construction consists of a list of very small items, and one list
concatenated with it, where the second list has larger items, all of the same
type. The lists are defined as follows. Let a = 1

4k , where k is large positive

integer, and let yi = i
2k for k ≤ i < 2k. We have 1

2 ≤ yi < 1. Items of size a
are called small. Now let n > k be an additional large positive integer. Define
the first list, L0, as a list of 4kn items of size a. The list L0 contains a large
number identical very small items of size a, where the cumulative size of the
small items is n. The colors of the items are alternating, i.e., the items with

Online Black and White Bin Packing 9

odd indices are white, while the items with even indices are black (thus, the
first small item is white).

Define Liw as a list of ni = n
yi

white items, each of size 0 < 1− yi ≤ 1/2,
and we have ni > n. Similarly define Lib to be a list of ni = n

yi
black items,

each of size 1 − yi. The proof of the lower bound is based on the analysis of
the behavior of an arbitrary online algorithm for the lists L0Liw and L0Lib
and all possible values of i (k ≤ i < 2k), that is, 2k inputs in total.

Lemma 1 OPT (L0Liw) = ni and ni ≤ OPT (L0Lib) ≤ ni + 1.

Proof Clearly, all the items of the lists Lib and Liw must be packed into
different bins, and thus OPT (L0Liw) ≥ ni and OPT (L0Lib) ≥ ni hold.

We present an algorithm that packs the lists L0Lib and L0Liw using the
stated number of bins. For L0Liw, we create ni identical bins, such that each
bin contains 2i items of alternating colors, starting with a white item. The
resulting bins are black. The total number of packed items is 2i · ni = 2i · n ·
2k/i = 4nk. The loads of these bins are 2i

4k = i
2k , thus each bin can receive a

white item of size 1− yi = 1− i
2k .

The packing for L0Lib is similar, but the bins with 2i small items should
be white, thus, the very first white item is packed into the first bin, then ni−1
white bins, each containing 2i items (the first of which is black), are created,
and a white bin with 2i−2 items is created as well (these are the bins of indices
2, . . . , ni + 1). The last small black item is combined with the first small item
into the same bin, while the black items of size 1 − yi are combined into the
other bins. �

We introduce the following notation. Consider the state of an online algo-
rithm A just after all small items were packed. Let zkb be the number of black
bins that contain at most 2k small items. Let zlb for k+ 1 ≤ l ≤ 2k denote the
number of black bins that contain 2l or 2l − 1 items. The variables zkw and
zlw for k + 1 ≤ l ≤ 2k are defined analogously for white bins.

Lemma 2 The next inequality must hold:

4nk ≤
2k∑
l=k

2l(zlw + zlb)

Proof There are zlw + zlb bins that contain at most l items, and the bins were
partitioned such that every bin is counted in one variable. �

Next, we analyze the cost of the algorithm in each one of the cases.

Lemma 3 The cost of the algorithm for the different inputs satisfies:

A(L0Liw) ≥ ni +

2k∑
l=k

zlw +

2k∑
l=i+1

zlb

10 János Balogh et al.

and

A(L0Lib) ≥ ni +

2k∑
l=k

zlb +

2k∑
l=i+1

zlw .

Proof Consider the list L0Liw for a given value of i (the proof for L0Lib is the
same). The last ni items are white, and each one of them must be packed into
a separate bin. A white item of size 1− yi can only combined into a black bin
that contains at most 2i small items. �

Let xl = zlw + zlb, and Ai = A(L0Liw) + A(L0Lib). We find that Ai ≥
2ni +

∑2k
l=k xl +

∑2k
l=i+1 xl, and 4nk ≤

∑2k
l=k 2lxl.

Assume that R is the asymptotic competitive ratio of A. Since in all cases
the optimal cost is at least n, there exists a value εn such that A(L) ≤ (R +
εn)OPT (L) for all the lists considered here (and limn→∞ εn = 0). Thus, Ai ≤
2(R + εn)(ni + 1). Using the lower bound on Ai we find 2ni +

∑2k
l=k xl +∑2k

l=i+1 xl ≤ Ai ≤ 2(R + εn)(ni + 1), or alternatively,
∑2k
l=k xl +

∑2k
l=i+1 xl ≤

(2R + 2εn − 2)(ni + 1) + 2. Taking the sum over all values of i (k ≤ i < 2k),
we find:

2k−1∑
i=k

(
2k∑
l=k

xl +

2k∑
l=i+1

xl

)
≤ (2R+ 2εn − 2)(

2k−1∑
i=k

(ni + 1)) + 2k.

Rearranging the left hand size, writing ni = n
yi

= 2kn
i , and using 2nk ≤∑2k

i=k ixi we get:

2nk ≤
2k−1∑
i=k

ixi ≤ (2R+ 2εn − 2)(2nk

2k−1∑
i=k

1

i
+ k) + 2k .

Now let f(k) =
∑2k−1
i=k

1
i . We get 2k(n − 1) ≤ 2(R + εn − 1)(2nkf(k) +

k), or alternatively, R ≥ n−1
2nf(k)+1 − εn + 1 = 1−1/n

2f(k)+1/n − εn + 1. We have

limk→∞ f(k)− ln 2 = 0, thus, f(k) = ln 2 + δk, where δk tends to zero when k

tends to infinity. Thus, R ≥ 1−1/n
2 ln 2+2δk+1/n − εn + 1. Letting k (and therefore

also n) tend to infinity we find R ≥ 1
2 ln 2 + 1. �

An important aspect of this lower bound is the comparison to the known
1.58889-competitive algorithm (that we mentioned earlier) for classic online
bin packing. It follows that BWBP is conceptually harder.

4 Competitive algorithms

For the analysis of algorithms, we start with defining a new lower bound for
optimal solutions.

Online Black and White Bin Packing 11

4.1 A second lower bound for optima of restricted offline instances

The lower bound LB1 mentioned above is computed based on item sizes only.
Here, we present a further bound, which is determined by the color pattern
of list L, that is, by the list of item types. These lower bounds on restricted
offline algorithms will allow us to analyze online algorithms. At the end of the
paper we define a third lower bound which one takes both the color pattern
and the item sizes into account. In this section the number of items in an input
is denoted by n, and the list of items is L = p1, p2, . . . , pn.
The lower bound LB2. We have seen in the introduction that by deleting some
items, the optimal cost can possibly increase. This is not the case, however,
if we delete items from the beginning of the sequence, or from the end of the
sequence. More exactly, the next lemma holds.

Lemma 4 Given an input L, partition it into L = L1L2L3 (where L1 and L3

may be empty). We have OPT (L2) ≤ OPT (L).

Proof It is sufficient to show that given an input L, and L′ that results from
L by removing the first item and L” results from L by removing the last item,
then OPT (L′) ≤ OPT (L) and OPT (L”) ≤ OPT (L) must hold.

Consider an optimal solution for L, and remove the last item. This item was
packed last in a bin, and thus it can be removed without violating the condition
on types, and we get a valid packing for L”. This proves OPT (L”) ≤ OPT (L).
The proof for L′ is similar, only in this case the first item is removed. The
first item is packed first in some bin, and thus its removal does not violate
the condition on the types, and we get a valid packing for L′. This proves
OPT (L′) ≤ OPT (L). �

Let si = 1 if the ith item is black and let si = −1 if it is white. Let

1 ≤ i < j ≤ n be two arbitrary indices, and let LB2(i, j) =
∣∣∣∑j

k=i sk

∣∣∣. We

call ‘segment’ a set of subsequent elements of the list without any gaps. If S
means that segment which starts with i and ends with j, then LB2(i, j) will
be also denoted as LB2(S). Moreover the maximum value of LB2(i, j) will be
denoted by LB2. Then the next lemma holds.

Lemma 5 LB2 is a lower bound on the optimal cost, that is, OPT (L) ≥ LB2.

Proof By Lemma 4, it suffices to consider a shortest subsequence (with the
smallest value of j− i) attaining the maximum value of LB2(i, j), i.e. LB2. We
assume that the sum is positive, i.e., that the number of black items exceeds
the number of white ones (the other case is symmetric), and without loss of
generality we assume i = 1 and j = n.

Consider a specific algorithm that packed the n items into a certain number
of bins. Let us introduce the following notation:

ak =
∑k
i=1 si, and under the assumed packing procedure, let bk denote the

number of white items among the first k items that started a new bin, i.e.,
each of which has been packed as a first item into a bin. By the minimality

12 János Balogh et al.

of j − i, ak > 0 holds for all 1 ≤ k ≤ n. Additionally, by definition, 0 ≤ b1 ≤
b2 ≤ ... ≤ bn must hold. We will prove the following claim by induction on k.
The lemma will follow from it.

Claim After packing the first k items, the number of black bins is exactly
ak + bk.

Proof of the claim The first item is black, hence we have a1 = 1, b1 = 0,
and the number of black bins is a1 + b1 = 1. Suppose that the claim is valid
after the packing of the first k − 1 items, and consider the kth item. If it is
black, then ak = ak−1 + 1 and bk = bk−1, hence ak + bk = ak−1 + bk−1 + 1.
We calculate the change in the number of black bins. The kth item cannot be
packed into a black bin. If the kth item is packed into an empty bin, then this
new bin is a new black bin. If the kth item it is packed into a white bin, then
this bin becomes black, and the number of black bins also increases by 1 in
this case as well, as claimed.

If the kth item is white, then ak = ak−1 − 1. The kth item cannot be
packed into a white bin. If it is packed into a new bin, then bk = bk−1 + 1,
and hence the sum ak + bk = ak−1 + bk−1 remains unchanged, and so does the
number of black bins. Otherwise, it is packed into a black bin. The number
of black bins decreases by precisely 1. But then we have bk = bk−1, therefore
ak + bk = ak−1 + bk−1 − 1 holds, hence the sum decreases by 1 as well. This
proves the claim.

The lemma follows by letting k = n, and applying the claim on a restricted
optimal algorithm; we have OPT ≥ an = LB2. �

Lemma 6 Let L be an instance of BWBP for which AF creates s bins, all of
them having level at most 1/2. Then LB2 ≥ s.

Proof Denote the s bins by A1, . . . , As. Let us introduce the following notation:

– b(i) : the bottom item in Ai, 1 ≤ i ≤ s ;
– ti(j) : the top item in Aj at the moment when Ai is opened (i.e., when
b(i) arrives), 1 ≤ j ≤ i− 1. For formal reasons we also write ti(i) := b(i).

Note that all ti(j) have the same color as b(i), for otherwise item b(i) could
be packed into Aj and hence AF would not be allowed to open the bin Ai.

The key point in the proof is the following observation, from which the
lemma follows.

Claim There exists a segment S of L that ends with item b(s) and satisfies
LB2(S) ≥ s and it is the color of b(s) that occurs at least s more times in S
than the other color.

Proof of the claim We prove the Claim by induction on s. It clearly holds for
s = 1 because b(1) is the very first item in L.

Let s > 1 and assume that the claim is valid for the smaller value s′ = s−1.
That is, there exists a segment S′ of L ending with b(s−1), in which the color
of b(s− 1) occurs at least s− 1 more times than the other color.

Online Black and White Bin Packing 13

Case 1. Items b(s− 1) and b(s) have the same color.
In this case we extend S′ to the segment with the items of L arriv-

ing between b(s − 1) and b(s), also including b(s). In this larger segment
S, inside each Aj (1 ≤ j ≤ s − 1) the number of black and white items
arriving after ts−1(j) is the same because they alternate and all the four
items b(s − 1), b(s), ts−1(j), ts(j) have the same color. Hence, the appear-
ance of b(s) in S increases the black-white difference by 1 and we obtain
LB2(S) = LB2(S′) + 1 ≥ s.
Case 2. Item b(s− 1) is black and b(s) is white (or vice versa).

Now we consider the segment S ending with b(s), which consists of all
the items arriving after b(s − 1). Since ts−1(j) is black and ts(j) is white for
all 1 ≤ j ≤ s − 1, alternating colors imply that inside each Aj the number
of white items packed above ts−1(j) is larger by 1 than the number of black
items packed there. Counting also b(s), which is the single item of S in As,
this immediately implies the inequality LB2(S) ≥ s. �

Corollary 1 If all items have zero sizes (or alternatively, the bins have in-
finite capacities), then LB2 is equal to the restricted offline optimal value.
Moreover, any AF algorithm creates a solution with exactly LB2 bins.

Proof Suppose AF creates s bins. Let us realize that all AF bins have zero level,
thus the condition of Lemma 6 is satisfied, thus s ≤ LB2 follows. On the other
hand, from Lemma 5 we know LB2 ≤ OPT . Thus s ≤ LB2 ≤ OPT , and since
s cannot be smaller than OPT as AF creates s bins, AF = s = LB2 = OPT
follows. �

We need another lemma for the behavior of algorithm AF in the general
case.

Lemma 7 Let L be an instance of BWBP for which the algorithm AF creates
s+t bins, s of them having level at most 1/2 and t of them with level exceeding
1/2. Then LB2(L) ≥ s− t.

Proof Denote the s bins of level at most 1/2 by A1, . . . , As and the t bins
of level higher than 1/2 by B1, . . . , Bt. First we restrict our attention to the
shorter list LA which consists of the items packed into A1, . . . , As. The order
of items in LA is supposed to be the same as they appear in L. It is clear that
AF generates the solution (A1, . . . , As) for the instance LA.

We have seen in Lemma 6 that there exists a segment S of LA which
satisfies LB2(S) ≥ s. We now extend S with those items of L \ LA which
arrive later than the first item of S and earlier than the last item of S. This
yields a segment S∗ of the original list L. The items packed from S∗ into any
Bi (1 ≤ i ≤ t) respect their order in L, with no interruption by items from
L\S∗. Hence, their colors alternate in Bi, therefore the number of black items
in Bi ∩ S∗ is at most one larger and at most one smaller than the number of
white items in Bi ∩ S∗. Thus, LB2(S∗) ≥ LB2(S)− t ≥ s− t. This completes
the proof of the lemma. �

14 János Balogh et al.

4.2 An efficient online algorithm Pseudo

Before defining a new algorithm, we prove that the absolute approximation
ratio of AF is at most 5 (for items of arbitrary sizes).

Theorem 3 AF has an absolute approximation ratio of at most 5.

Proof We use the notations of Lemma 7, hence let the number of bins created
by AF be s + t, s of them having level at most 1/2 and t of them with level
exceeding 1/2. Then LB2 ≥ s− t. We get

AF

OPT
≤ s+ t

max {LB1, LB2}
≤ s+ t

max {t/2, s− t}
≤ s− t
s− t

+
2t

t/2
= 5.

�

Next, we define a simple online algorithm with an absolute competitive
ratio of 3, and a parametric absolute competitiveness of 1 + d

d−1 if all sizes are
at most 1/d. As d→∞, this competitiveness approaches 2 from above, while
we have seen that FF never can be better than 3-competitive, even for very
small items. The algorithm uses the concept of pseudo-bins. These are bins of
unbounded capacity. These bins are split further into valid bins in an online
fashion.

Algorithm Pseudo

1. Arriving items are packed into pseudo-bins of infinite size using FF.
2. The items of each pseudo-bin are packed into bins using NF (NF is applied

obliviously of item types).

Note that the choice of NF for the packing of items of each pseudo-bin
is not arbitrary. The subsequence of items of each pseudo-bin has items of
alternating colors. As this subsequence is split into subsequences of consecutive
items using NF, the resulting bins also have items of alternating colors, and
thus the output packing is valid (even though NF is applied obviously of the
types). The correctness follows from this observation. On the other hand, while
the algorithm uses FF for packing the pseudo-bins, replacing FF by some AF
algorithm does not harm the validity of the upper bounds proved in the next
theorem.

Theorem 4 Algorithm Pseudo has (an asymptotic and absolute) competitive
ratio of 3, and it has (an asymptotic and absolute) competitive ratio of 1+ d

d−1
in the parametric case, where all items have sizes at most 1/d.

Proof We start with upper bounds on the absolute competitive ratio, and
afterwards we prove lower bounds on the asymptotic competitive ratio.

Online Black and White Bin Packing 15

Let L be an input. By Corollary 1, the number of created pseudo-bins
is exactly LB2(L). Suppose that pseudo-bin i is split into exactly mi ≥ 1
valid bins. Then, the total number of bins packed by the algorithm is exactly∑LB2(L)
i=1 mi.
As the items of each pseudo-bin are packed using NF, every two consecutive

bins of the same pseudo-bin have items of a total size exceeding 1. Moreover,
if all item sizes are at most 1

d and mi > 1, then all packed bins but the last
one (for a given pseudo-bin) are packed with a total size that exceeds 1 − 1

d .
Partitioning the bins into consecutive pairs (and neglecting the last bin, if mi

is odd), in the absolute case (d = 1) we find

LB1(L) ≥
LB2(L)∑
i=1

⌊mi

2

⌋
≥
LB2(L)∑
i=1

mi − 1

2
=

LB2(L)∑
i=1

mi

2
− LB2(L)

2
.

Thus, we have
∑LB2(L)
i=1 mi ≤ 2LB1(L) + LB2(L) ≤ 3OPT (L). In the para-

metric case we find

LB1(L) ≥
LB2(L)∑
i=1

(1− 1

d
)(mi − 1) ≥ (

d− 1

d
)

LB2(L)∑
i=1

(mi − 1)

= (
d− 1

d
)(

LB2(L)∑
i=1

mi − LB2(L)) .

Thus, we have
∑LB2(L)
i=1 mi ≤ d

d−1LB1(L) + LB2(L) ≤ (1 + d
d−1)OPT (L).

Now we present a simple example showing that the analysis of the algo-
rithm is tight, and already the asymptotic competitive ratio of the algorithm
is 3. The sequence consists of 3N items for a large integer N . For i = 1, . . . , N ,
the item of index 3i−2 is white and the items of indices 3i−1 and 3i are black
(i.e., the sequence of item colors is W,B,B,W,B,B,. . .). Thus Pseudo creates
one bin with the items of indices 1, 2, 4, 5, 7, 8, . . . (the items of indices 3i− 2
and 3i−1 for all i are in this bin), and N bins with the items of indices 3, 6, . . .
(i.e., for all i, the item of index 3i is packed into a dedicated pseudo-bin). The
sizes of the items of indices 3i− 2 and 3i (for 1 ≤ i ≤ N) are 1/(2N) and the
sizes of the items of indices 3i − 1 are 1 (i.e. the middle item in any triple is
a large item and the two other items are small items). As a result, the first
pseudo-bin of Pseudo is split into valid bins, the algorithm packs every item
in a separate bin. So Pseudo(L) = 3N . A restricted optimal offline solution,
however, packs all items of size 1/(2N) into one bin, and every larger item
into a separate bin. Thus OPT = N + 1. Note that this example is not valid
for AF algorithms, that obtain optimal solutions.

For the parametric case with d ≥ 2, we show that the asymptotic compet-
itive ratio is at least 1 + d

d−1 . The sequence consists of (4d− 1)(d− 1)N items,
partitioned into N(d− 1) batches. Each batch has 4d− 1 items. The first two
items of each batch are white, and the remaining colors are alternating, start-
ing and ending with black items. Let γ = 1

4d2(d−1)N . The first item of each

16 János Balogh et al.

batch, as well as the items of indices of the form 4`+ 2 for 1 ≤ ` ≤ d− 1, i.e.,
indices 6, 10, . . . , 4d−2 (inside the batch) have sizes of 1

d − (d−1)γ (according
to the definition above, they are all white). All items of indices of the form
4`+1 for 1 ≤ ` ≤ d−1, i.e., indices 5, 9, . . . , 4d−3 (inside the batch) have sizes
of dγ (according to the definition above, they are all black). The remaining
items have sizes of 2dγ. There are 2d such items, and their colors alternate,
starting with a white item, and ending with a black item. An optimal solution
packs all items of sizes 2dγ in one bin. There are 2d(d− 1)N such items, and
their total size is 2d(d − 1)N · 2d · 1

4d2(d−1)N = 1. Moreover, their colors are

alternating, and thus this bin is valid. The remaining items of each batch al-
ternate between white large items, having sizes of 1

d − (d−1)γ and black small
items of sizes dγ. There are d large items and d− 1 small items in each batch,
giving a total of N(d− 1) bins. The total size of these items (for one batch) is
d(1
d − (d− 1)γ) + (d− 1)dγ = 1. Pseudo packs all items into one pseudo-bin,

except for the items that are second items in their batches, that are packed
into dedicated bins. This creates N(d− 1) additional bins. We claim that the
first pseudo-bin is split into at least Nd bins, and more specifically, that every
bin receives at most d− 1 items of size 1

d − (d− 1)γ. Assume by contradiction
that some bin receives d such items. As the first pseudo-bin is split into sub-
sequences of items that are packed into it consecutively, there is at least one
item of size dγ between every pair of items of size 1

d − (d−1)γ. Thus, the total
size of items in the bin is at least d(1

d−(d−1)γ)+(d−1)dγ = 1+d(d−1)γ > 1,
which is a contradiction. Thus, the algorithm creates at least N(2d− 1) bins,
for a ratio of 2d−1

d−1 = 1 + d
d−1 .

�

4.3 A third lower bound for optima of restricted offline instances

In this section we use the concept of conflict graphs. Such graphs are undirected
graphs, where the set of vertices is the set of items, and an edge represents the
constraint that the two items cannot be packed into the same bin. Unlike the
problem of bin packing with conflicts [15,14,11], here the conflicts result from
analyzing the input rather than from constraints given as an input.

For any list L = {p1, . . . , pn} of items, an instance of the problem, we
denote by L = LB ∪ LW the partition into the sets of black and white items.

Definition 1 The conflict graph of black items in an instance of the online
or restricted offline problem is an undirected graph, denoted by GB . It has
vertex set LB . Two items pi, pj ∈ LB with 1 ≤ i < j ≤ n are joined by an
edge if and only if, for every white item pk in the range i < k < j we have
pi + pj + pk > 1. The conflict graph of white items, denoted by GW , is defined
analogously on the vertex set LW .

For any graph G, we use the standard notation ω(G) for the clique number
(largest number of mutually adjacent vertices) and χ(G) for the chromatic
number (smallest number of independent sets into which the vertex set can be

Online Black and White Bin Packing 17

partitioned). Since no two vertices adjacent by an edge of GB or GW can be
packed into the same bin, it is immediate by definition that

opt(L) ≥ max{χ(GB), χ(GW)} ≥ max{ω(GB), ω(GW)} =: LB3 (1)

holds for all instances L = LB ∪ LW .

Remark 1 Consider an input of n = 4N items, where the items of odd indices
are black and have sizes of 1

2 , and the items of even indices are white and
have sizes of 1

2N . For this list L, we have LB1(L) = N + 1. Moreover, as the
items have alternating colors, we find that LB2(L) = 1. For this instance, the
conflict graph of black items is complete, and thus LB3(L) = 2N . This shows
that LB3 provides new information on optimal solutions.

Definition 2 A graph G = (V,E) is said to be chordal if every induced cycle
inG has length 3. In other words, each cycle longer than 3 has a chord. A vertex
v ∈ V is called a simplicial vertex if its neighbors are mutually adjacent. A sim-
plicial order is a linear ordering of the vertex set, say v1, v2, . . . , v|V |, such that
each vi is a simplicial vertex in the subgraph induced by {vi, vi+1, . . . , v|V |}.

It is easy to see that every graph admitting a simplicial order is chordal,
because no vertex of an induced cycle longer than 3 can occur as the first vertex
in any simplicial order.2 Let us mention some further well-known properties of
graphs having a simplicial order. For references, see e.g. [5]. In a fixed ordering
v1, . . . , v|V | of the vertex set we denote by d+i the number of vertices vj such
that j > i and vivj is an edge.

1. The clique number is equal to max1≤i≤|V | d
+
i + 1.

2. The chromatic number is equal to max1≤i≤|V | d
+
i + 1.

To see property 1, observe that the d+i neighbors following vi together
with vi induce a complete subgraph, moreover each non-extendable complete
subgraph is exactly the closed neighborhood of its vertex that appears first in
the simplicial order. In this way a lower bound on the chromatic number is
also obtained. Moreover, one can color the graph with that many colors, and
hence prove property 2, by assigning the smallest available color to each vertex
in reverse simplicial order because vi has at most max d+i colored neighbors
when the procedure reaches vi, hence the ‘+1’ term ensures that there is a
free color available for vi.

Lemma 8 Suppose that pi ∈ LB is a smallest black item, i.e., let pi =
min1≤j≤|LB | pj. Then vertex pi is simplicial in the conflict graph GB.

2 The existence of simplicial order is actually not only sufficient but also necessary for a
graph to be chordal; but we shall not need this theorem in our discussion.

18 János Balogh et al.

Proof Assume that pi has two non-adjacent neighbors pj and pj′ in GB . Let
j < j′. Since pjpj′ is a non-edge, there exists some pk ∈ LW such that j <
k < j′ and pj + pj′ + pk ≤ 1. If i < k, using pi ≤ pj we obtain

pi + pj′ + pk ≤ pj + pj′ + pk ≤ 1,

and since i < k < j′, the inequality above contradicts the assumption that pi
and pj′ are adjacent. If k < i, then in a similar way we obtain the analogous
contradiction that pipj should not be an edge of GB . �

Lemma 9 If pi1 ≤ pi2 ≤ · · · ≤ pi|LB |
is a non-decreasing order of black items,

then it is a simplicial order of GB.

Proof The assertion follows by the repeated application of the previous lemma.
�

Certainly, the analogous properties can be proved in the same way for the
conflict graph GW of the white vertices, too. From this, we can derive the
following result.

Theorem 5 Both GB and GW are chordal, and we have χ(GB) = ω(GB)
and χ(GW) = ω(GW). Moreover, the lower bound in (1) can be computed in
O(n2) time.

Proof The first part of the theorem follows by the properties of the simplicial
order as described above. The crucial part to prove in the assertion is that
an algorithm with guaranteed quadratic running time can be designed. We
apply Algorithm 1. We describe it for GB ; the procedure for GW is completely
analogous. The following variables are introduced:

LB — the currently best lower bound on ω(GB), initialized to 1 and up-
dated each time when the treatment of a vertex of GB is completed.

B — the set of black vertices not treated completely yet.
qW — currently smallest size of the white items which separate the black

vertex under treatment from the members of B that have not yet been con-
sidered in connection with the treated one; re-initialized3 to 2 for each black
vertex at the beginning of its treatment.

nB — number of neighbors of the black item under treatment, in the
subgraph induced by the set B in GB ; initialized to 0 for each black vertex at
the beginning of its treatment.

Sorting of LB requires just O(n log n) comparisons, and it determines a
simplicial order on GB . Then, each round of the main for loop determines
the number of neighbors of the jth vertex of GB in the jth induced subgraph
(after the deletion of its first j − 1 vertices). Steps 6–11 proceed forward (by
increasing index) in the original order of items in the input, while steps 13–18

3 The value 2 is chosen to make sure that two black items of size 0 cannot be packed into
the same bin if they are not separated by a white item. If all black items have positive size,
then also qW = 1 is a suitable initialization.

Online Black and White Bin Packing 19

Algorithm 1 LOWER BOUND χ(GB) = ω(GB)

Require: Black-and-white instance L = LB ∪ LW = {p1, p2, . . . , pn}
Ensure: Value of lower bound χ(GB) = ω(GB) for OPT (L)
1: Sort the black items to ensure pi1 ≤ pi2 ≤ · · · ≤ pi|LB |

2: LB := 1, B := {i1, i2, . . . , i|LB |}
3: for j = 1 to |LB | do
4: nB := 0
5: qW := 2
6: for k = ij + 1 to n do
7: if pk ∈ LW then
8: qW := min{qW , pk}
9: else

10: if pij + pk + qW > 1 then
11: nB := nB + 1
12: qW := 2
13: for k = ij − 1 downto 1 do
14: if pk ∈ LW then
15: qW := min{qW , pk}
16: else
17: if pij + pk + qW > 1 then
18: nB := nB + 1
19: LB := max{LB, nB + 1}
20: B := B \ {pij }
21: print LB and STOP

proceed backward. The set of neighbors is the union of those in both directions,
this is the reason why nB has to be initialized only once (Step 4). On the other
hand, the separating white items that ensure the packability of two black items
into the same bin, need to occur on the proper side of the jth vertex of GB ,
therefore their size has to be re-initialized for both halves of the main for loop
(Steps 5 and 12).

Soundness of the algorithm follows from the properties of chordal graphs
as quoted above. Each execution of the main for loop takes O(n) time because
each individual step requires constant time only. Hence, the overall running
time is quadratic in the number of items. �

Remark 2 It is worth noting that one may need as much as Θ(n2) steps to
check whether a given single vertex of a graph is simplicial. Therefore, it is a
substantial improvement in the running time that we find a simplicial order in
O(n log n) steps. This efficiency is obtained by using the special structure of
graphs obtained from instances of Black and White Bin Packing.

An interesting aspect of the time bound O(n2) is that already checking the
adjacency of a single vertex pair in the conflict graph GB or GW may take
Ω(n) time.

The following problem may be of interest on its own right: Characterize
the structure of graphs that can occur as conflict graphs of black (or white)
items.

20 János Balogh et al.

5 Conclusion

We studied a new variant of online bin packing. We showed that it admits
constant competitive algorithms. In particular, we have defined a new online
algorithm Pseudo, and showed that its (absolute and asymptotic) competitive
ratio is 3 and 1 + d

d−1 in the parametric case, while for FF, BF, and WF, the

asymptotic competitive ratios are at least 3, 3, and 1+ d
d−1 , respectively, in the

parametric case. We have proved, however, that AF algorithms are constant
competitive, and their absolute competitive ratios are at most 5. A similar
analysis can be applied in the parametric case, yielding an upper bound of
3d−1
d−1 on the competitive ratio (in this case, in the proofs, the threshold level

of bins should be d−1
d instead of 1

2). This shows that the analysis of FF and BF
for very small items is almost tight. Additionally, the worst-case performance
of Pseudo is at least as good as the performance of FF, BF, and WF. In the
parametric cases with d ≥ 3 Pseudo performs strictly better than FF and BF,
and at least as well as WF. There is still a gap between the bounds on the
best competitive ratio for BWBP, and it is interesting to find whether the true
bound is below 2, above 2, or possibly simply 2. Furthermore, providing a tight
analysis of the asymptotic and absolute competitive ratios of AF algorithms
remains an open problem.

References

1. Balogh, J., Békési, J., Dósa, Gy., Kellerer H., Tuza, Zs.: Black and white bin packing.
In: Proc. of WAOA’12, Lecture Notes in Computer Science, to appear.

2. Balogh, J., Békési, J., Galambos G.: New lower bounds for certain classes of bin packing
algorithms. Theoretical Computer Science 440—441, 1–13 (2012)

3. Benkő, A. Dósa, Gy., Tuza, Zs.: Bin covering with a general profit function: approx-
imability results. Central European Journal of Operations Research, online published
(2012). doi:: 10.1007/s10100-012-0269-0

4. Boyar, J., Dósa, Gy., Epstein, L.: On the absolute approximation ratio for First Fit and
related results. Discrete Applied Mathematics 160(13–14), 1914–1923 (2012)

5. Brandstädt, A., Le, V.B., Spinrad, J.P., Graph Classes – A Survey. SIAM Monographs
on Discrete Mathematics and Applications, SIAM Press, Philadelphia, PA (1999)

6. Coffman, E.G., Jr, Garey, M., Johnson, D.: Approximation algorithms for bin packing:
A survey. In: Hochbaum, D. (ed.) Approximation algorithms for NP-hard problems, pp.
46–93. PWS Publishing Co., Boston (1996)

7. Csirik J., Woeginger G.J.: On-line packing and covering problems. In: A. Fiat and G. J.
Woeginger, editors, Online Algorithms: The State of the Art, pp. 147–177 (1998)

8. Dósa, Gy., Sgall, J.: First Fit bin packing: A tight analysis. STACS 2013, to appear.
9. Dósa, Gy., Tuza, Zs., Ye, D.: Bin packing with “Largest In Bottom” constraint: tighter

bounds and generalizations. Journal of Combinatorial Optimization, online published
(2012). doi: 10.1007/s10878-011-9408-0

10. Epstein, L.: On online bin packing with LIB constraints. Naval Research Logistics 56(8),
780–786 (2009)

11. Epstein, L., Levin, A.: On bin packing with conflicts. SIAM Journal on Optimization
19(3), 1270–1298 (2008)

12. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1+ε in linear
time. Combinatorica 1, 349–355 (1981)

13. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the theory of
NP-Completeness. Freeman, New York (1979)

Online Black and White Bin Packing 21

14. Jansen, K.: An approximation scheme for bin packing with conflicts. Journal of Com-
binatorial Optimization 3(4), 363–377 (1999)

15. Jansen, K., Öhring, S.: Approximation algorithms for time constrained scheduling. In-
formation and Computation 132(2), 85–108 (1997)

16. Johnson, D.S.: Near-optimal bin-packing algorithms. Doctoral Thesis, MIT, Cambridge
(1973)

17. Johnson, D.S.: Fast algorithms for bin packing. Journal of Computer and System Sci-
ences 8(3), 272–314 (1974)

18. Johnson, D., Demers, A., Ullman, J., Garey, M., Graham, R.: Worst-case performance
bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing 3,
25–278 (1974)

19. Karmarkar, N., Karp, R.: An efficient approximation scheme for the one-dimensional
bin packing problem. In: Proceedings of the 23rd Annual Symposium on Foundations
of Computer Science (FOCS’82), pp. 312–320 (1982)

20. Lee, C.C., Lee, D.T., A simple on-line packing algorithm. J. ACM 32, 562–572 (1985)
21. Manyem, P.: Uniform sized bin packing and covering: Online version. In: J.C. Misra

(ed.) Topics in Industrial Mathematics, pp. 447–485. Narosa Publishing House, New
Delhi (2003)

22. Manyem, P., Salt, R., Visser, M.: Approximation lower bounds in online LIB bin packing
and covering. Journal of Automata, Languages and Combinatorics 8(4), 663–674 (2003)

23. Seiden, S.: On the online bin packing problem. Journal of the ACM 49(5), 640–671
(2002)

24. Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Research
Logistics 41(4), 579–585 (1994)

25. Ullman J.D.: The performance of a memory allocation algorithm. Technical Report
100, Princeton University, Princeton, NJ, 1971.

26. van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Information
Processing Letters 43(5), 277–284 (1992)

27. Xia, B.Z., Tan, Z.Y.: Tighter bounds of the First Fit algorithm for the bin-packing
problem. Discrete Applied Mathematics 158(15), 1668–1675 (2010)

28. Yao A.C.C.: Probabilistic computations: Toward a unified measure of complexity (ex-
tended abstract). In: Proc. of the 18th Annual Symposium on Foundations of Computer
Science (FOCS’77), pp. 222–227 (1977)

