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Deutsche Zusammenfassung

Sowohl in der Kombinatorik als auch bei dem Entwurf und der Analyse von randomisierten
Algorithmen für kombinatorische Optimierungsprobleme wird vielfach die berühmte Bounded-
Differences-Inequality von C. McDiarmid (1989), die auf der Martingal-Ungleichung von K.
Azuma (1967) beruht, verwendet, um zu zeigen, dass eine echt positive Erfolgswahrschein-
lichkeit vorliegt. In dem Fall, wo Summen von unabhängigen Zufallsvariablen vorliegen,
kommt man mit den Ungleichungen von Chernoff (1952) und Hoeffding (1964) aus und
kann sogar eine effiziente Derandomisierung erreichen, also das Ereignis in deterministischer,
polynomieller Zeit konstruieren (Srivastav und Stangier 1996), was natürlich wünschenswert
ist. Aus dem probabilistischen Existenzresultat oder dem randomisierten Algorithmus erhält
man so eine wirkliche Konstruktion der gesuchten kombinatorischen Struktur oder einen
effizienten, deterministischen Algorithmus.
Dieses Derandomisierungsproblem war bislang für die Bounded-Differences-Inequality von C.
McDiarmid offen. Das Hauptresultat in Kapitel 3 ist eine effiziente Derandomisierung der
Bounded-Differences-Inequality, wobei die Zeit zur Berechnung von bedingten Erwartungswerten
der Zielfunktion in die Komplexität eingeht. Damit wird das genannte offene Problem erst-
malig gelöst. In den nachfolgenden Kapiteln 4 bis 7 wird die Stärke und Reichweite dieser
Derandomisierung demonstriert.
In Kapitel 5 derandomisieren wir die Zufallsstrategie des Makers in dem Maker-Breaker-
Subgraphenspiel, die in der für das Gebiet grundlegenden Arbeit von Bednarska und Luczak
(2000) gegeben und mit der Konzentrationsungleichung von Janson, Luczak und Rucinski
analysiert wurde. Da wir aber die Bounded-Differences-Inequality verwenden, ist es erforder-
lich, einen neuen Beweis der Existenz von Subgraphen in G(n,M)-Zufallsgraphen zu geben,
was in Kapitel 4 geleistet wird.
In Kapitel 6 derandomisieren wir den zweistufigen randomisierten Algorithmus für das Set-
Multicover Problem von El Ouali, Munstermann und Srivastav (2014).
In Kapitel 7 zeigen wir, dass sich der Algorithmus von Bansal, Caprara und Sviridenko
(2009) für das multidimensionale Bin-Packing Problem mit unserer derandomisierten Form
der Bounded-Differences-Inequality elegant derandomisieren lässt, während die genannten
Autoren eine Potentialfunktion, die auf das Problem adaptiert ist, verwendet haben, was zu
einer recht aufwändigen Analyse führte.
In Kapitel 8 wird der Algorithmus von Ahuja und Srivastav (2002) für das Constrained Hyper-
graph Coloring Problem, das sowohl das Property B Problem für die nicht-monochromatische
2-Färbung von Hypergraphen, als auch das multidimensionale Bin-Packing Problem verallge-
meinert, derandomisiert, aber mit vorheriger Analyse mit der Bounded-Differences-Inequality
statt dem Lovasz-Local-Lemma.
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In Kapitel 9 wenden wir uns der Konzentrationsungleichung von Janson (1994) zu, wo beim
Vorliegen von Summen von Zufallsvariablen, die nicht unabhängig, aber teilweise abhängig
sind, oder anders gesagt, in bestimmten Gruppen unabhängig sind, die die bekannte Ungle-
ichung von Hoeffding (1964) verallgemeinert. Wir zeigen eine ähnliche Ungleichung unter
partieller Dependenz der zugrundeliegenden Zufallsvariablen, die die bekannte Konzentra-
tionsungleichung von Alon und Spencer (1991) verallgemeinert.
In Kapitel 10 derandomisieren wir die Ungleichung von Alon und Spencer. Die Deran-
domisierung unserer verallgemeinerten Alon-Spencer-Ungleichung unter partiellen Dependen-
zen verbleibt ein interessantes, offenes Problem.
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Summary

Both in combinatorics and design and analysis of randomized algorithms for combinatorial op-
timization problems, we often use the famous bounded differences inequality by C. McDiarmid
(1989), which is based on the martingale inequality by K. Azuma (1967), to show positive
probability of success. In the case of sum of independent random variables, the inequalities
of Chernoff (1952) and Hoeffding (1964) can be used and can be efficiently derandomized,
i.e. we can construct the required event in deterministic, polynomial time (Srivastav and
Stangier 1996). With such an algorithm one can construct the sought combinatorial structure
or design an efficient deterministic algorithm from the probabilistic existentce result or the
randomized algorithm.
The derandomization of C. McDiarmid’s bounded differences inequality was an open problem.
The main result in Chapter 3 is an efficient derandomization of the bounded differences
inequality, with the time required to compute the conditional expectation of the objective
function being part of the complexity. The following chapters 4 through 7 demonstrate the
generality and power of the derandomization framework developed in Chapter 3.
In Chapter 5, we derandomize the Maker’s random strategy in the Maker-Breaker subgraph
game given by Bednarska and Luczak (2000), which is fundamental for the field, and analyzed
with the concentration inequality of Janson, Luczak and Rucinski. But since we use the
bounded differences inequality, it is necessary to give a new proof of the existence of subgraphs
in G(n,M)-random graphs (Chapter 4).
In Chapter 6, we derandomize the two-stage randomized algorithm for the set-multicover
problem by El Ouali, Munstermann and Srivastav (2014).
In Chapter 7, we show that the algorithm of Bansal, Caprara and Sviridenko (2009) for the
multidimensional bin packing problem can be elegantly derandomized with our derandomiza-
tion framework of bounded differences inequality, while the authors use a potential function
based approach, leading to a rather complex analysis.
In Chapter 8, we analyze the constrained hypergraph coloring problem given in Ahuja and
Srivastav (2002), which generalizes both the property B problem for the non-monochromatic
2-coloring of hypergraphs and the multidimensional bin packing problem using the bounded
differences inequality instead of the Lovasz local lemma. We also derandomize the algorithm
using our framework.
In Chapter 9, we turn to the generalization of the well-known concentration inequality of
Hoeffding (1964) by Janson (1994), to sums of random variables, that are not independent, but
are partially dependent, or in other words, are independent in certain groups. Assuming the
same dependency structure as in Janson (1994), we generalize the well-known concentration
inequality of Alon and Spencer (1991).
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In Chapter 10, we derandomize the inequality of Alon and Spencer. The derandomization of
our generalized Alon-Spencer inequality under partial dependencies remains an interesting,
open problem.
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Chapter 1

Introduction

Derandomization is the task of turning a probabilistic existence result or a randomized
algorithm into a deterministic, polynomial-time algorithm, preferably achieving nearly the
same guarantee. With the evident power of randomized algorithms, derandomization became
an important task in algorithmic discrete mathematics. This is desirable, since deterministic
algorithms give hard guarantees on performance and running times.

The Problem. The derandomization problem considered in this thesis is as follows:

Derandomization Problem Let F be a finite set and let Ω “ F n be a probability space with
probability measure P. Let E1, . . . , Em be events in Ω. We assume that Pp⋂mi“1Eiq ě δ for
some δ ą 0. Hence ⋂mi“1Ei is not empty and derandomization is the task of constructing a
point in ⋂mi“1Ei in time polynomial in n,m and lnp1{δq.

If the probability of the event Ec
i , where the superscript c denotes the complementary event,

can be bounded by Chernoff bounds or the Lovász Local Lemma, the derandomization
problem has been solved and many applications to combinatorial packing, covering and
coloring problems have been given e.g. Raghavan [Rag88], Spencer [Spe94], Srivastav, Stangier
[SS96], Beck [Bec91], Srinivasan [Sri99], Moser, Tardos [MT10]). For obvious reasons let us
call such a procedure, the derandomized (algorithmic) version of underlying large deviation
bound. Further highlights in derandomization are derandomized counterparts of semidefinite
programming based algorithms, e.g. for Max Cut by Mahajan and Ramesh [MR99] and for
Bansal’s [Ban10] low-discrepancy computing algorithm by Bansal and Spencer [BS11]. In
computational geometry derandomization has been advanced by the work of Jiří Matoušek,
e.g. [Mat96].

1.1 Derandomizing the Generalized Bounded Differences Inquality
Erdős and Selfridge [ES73], Beck and Fiala [BF81] and Spencer [Spe77] suggested for
derandomization a very general technique, the conditional probability method. Unfortunately,
in many cases conditional probabilities under consideration cannot be computed efficiently.
Here a milestone for algorithmic progress has been the introduction of so called pessimistic
estimators by Raghavan [Rag88], which are computable upper bounds on the conditional
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Chapter 1. Introduction

probabilities sharing the properties of them. One key fact for the success of the conditional
probability method is that pessimistic estimators can be constructed, whenever linear objective
functions are involved, because the proofs of Chernoff and Hoeffding type inequalities deliver
the right pessimistic estimators. In fact, for a polynomial-time implementation of the method,
approximations of these estimators by Taylor polynomials must be used, too e.g. [SS96].

The efficient derandomization has not been known, when the event probabilities are estimated
by the famous and frequently applied bounded differences inequality (BDI) and its generalized
form due to C. McDiarmid [McD89] which is based on the martingale inequality of K. Azuma
[Azu67]. A. Srivastav and P. Stangier [SS93] could derandomize the Azuma inequality in the
very special application to quadratic lattice approximation, but this is quite far from the
generalized bounded differences inequality. Also, merging of different derandomized algorithms
was not investigated. In consequence, largely for all randomized algorithms using the BDI in
its analysis, derandomized counterparts are not known. To the best of our knowledge the
only exception is the derandomization of the randomized algorithm of Bansal et al. [BCS09]
for the multidimensional bin packing problem, where a potential function approach was used
in this specific context. The potential function given there has a problem adapted form, in
particular it is set oblivious, and thus this approach cannot be lifted to the general BDI
situation, where we only know that the function under consideration is Lipschitz bounded.

On the other hand, since the BDI has a wide range of applications, for example to the
analysis of hybrid randomized algorithms consisting of several subroutines, it is desirable
to derandomize such algorithms with an easily applicable derandomized BDI framework
in a short and elegant way without setting up problem adapted potential functions, whose
construction is non-trivial and differs from case to case.

In order to formulate previous and our results in a mathematical way, we need some technical
notions. A common setting is the following: let X1, . . . , Xn be real-valued random variables.
For i “ 1, . . . ,m, let ψi “ ψipX1, X2, ¨ ¨ ¨ , Xnq be a function of Xj’s for 1 ď j ď n. Given
rational parameters λi ą 0, denote for i “ 1, . . . ,m by Ei either the event “ψi ď Epψiq ` λi”
or the event “ψi ě Epψiq´λi”. If ψi is a linear function or if it has bounded range or Lipschitz
bounded in every coordinate, thus satisfies the assumptions of the bounded differences
inequality (BDI), the various types of large deviation bounds due to Chernoff [Che52],
Hoeffding [Hoe63], Azuma [Azu67] and McDiarmid [McD89] can be summarized by the
inequality PpEc

i q ď e´tiλiEpetiψiq ď fpλiq. (1.1)

An optimal choice of the parameter ti ą 0 gives the sharpest possible upper bound fpλiq.
If ∑m

i“1 fpλiq ă 1 ´ δ for some 0 ă δ ă 1, then Pp⋂mi“1Eiq ě δ ą 0, hence ⋂mi“1Ei is not
empty and derandomization is the task of constructing a point in ⋂mi“1Ei efficiently, i.e. in
polynomial time in n,m, lnp1{δq.

In settings where the ψi’s have bounded range as in generalized BDI or are Lipschitz bounded
as in the BDI, not even appropriate pessimistic estimators are known.
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1.2. The Subgraph Containment Problem

In chapter 3, we resolve the derandomization problem for Azuma’s inequality and the
generalized BDI (consequently BDI) in the probabilistic setting described above. The only
assumptions we must make is the boundedness and the polynomial-time computability of
the functions ψi, their expectations Epψiq and their conditional expectations. We feel that
these are natural assumptions. In fact, in the setting of randomized algorithms with a linear
objective function these assumptions are either automatically satisfied or can easily be proved
(see for example our applications).

The hard part of the derandomization is the construction of suitable pessimistic estimators for
the generealized BDI. Since the generalized BDI is a kind of corollary to Azuma’s martingale
bound, we turn the proof of Azuma’s inequality into an algorithmic form, and this means
that we extract the appropriate pessimistic estimator by passing through the proof. Here
an important aspect is to reduce for some event C, the computation of the conditional
probabilities of the moment generating function Epeψi |Cq , which is not known, to the
computation of the conditional probabilities Epψi|Cq, which by our assumption can be done
in polynomial time. We show this by using properties of a finite martingale. Note that these
arguments do not apply for non-finite probability measures. Now we have found candidates
for the pessimistic estimators, but they are transcendental real-valued functions. Therefore
they cannot be computed in polynomial time, which is a pre-requisite for any polynomial-time
derandomization. Of course, one can approximate them, but then the precision and time for
the approximation has to be taken into account, and even more the concern is that these
approximations might not be pessimistic estimators. The first problem we solve by fast Taylor
polynomial approximations, while the second issue is resolved by an additive perturbation of
the approximations ensuring that the perturbed functions become pessimistic estimators.

Finally, we combined pessimistic estimators for the BDI with pessimistic estimators for
other concentration inequalities. For this purpose we generalize the notion of the pessimistic
estimator to so called weak pessimistic estimators introducing a kind of convexity of a
family of functions. This appears at the first moment only as a technical and mathematical
generalization, but it turns out to be an easily applicable framework, and pays off in later
constructions.

1.2 The Subgraph Containment Problem
In chapter 4, we upper bound the probability of non-existence of a fixed subgraph in larger
random graph using the generalized BDI framework. Let n P N, M P

[(
n
2

)]
and p P r0, 1s.

Gn,M is the set of graphs chosen uniformly at random from the family of all subgraphs of Kn

with exactly M edges and n nodes and Gn,p denotes the set of graphs obtained by adding
edges of Kn with probability p, independently for each edge. We identify a graph in the model
Gn,M resp. Gn,p with the model itself. So we may say that a fixed graph H is a subgraph of
Gn,M resp. Gn,p meaning that H occurs as a subgraph in a random graph from Gn,M resp.

13



Chapter 1. Introduction

Gn,p.

For a fixed graph G, the well known subgraph containment problem can be stated as : Does
Gn,M contain a copy of G ?

Let eG resp. vG be the number of edges resp. nodes of G. Define

dpGq :“ eG ´ 1
vG ´ 2 and mpGq “ max

{
dpHq : H Ď G, vH ě 3

}
mpGq is a measure of graph density frequently appearing in the theory of random graphs
[JŁR11]. A graph G is called strictly K2-balanced if dpHq ă dpGq, where H Ă G, vH ě 3.

The following theorem mentioned in Janson, Łuczak and Ruckinski [JŁR11] is the Gn,M
counterpart of Theorem 4.2 proved by Janson, Rucinski and Łuczack [JŁR90], the best known
upper bound on the probability of non-existence of fixed G in Gn,p.

Theorem 1.1. For every fixed graph G containing a cycle, there exists a constant c11 ą 0 and
n11 P N such that for every n ě n11,n P N, and M “ n2´ 1

mpGq , we have

PpGn,M Č Gq ď e´c
1
1M (1.2)

We prove an analogue of Theorem 4.3 with the generalized bounded differences inequality.
Given the derandomized framework for generalized BDI in chapter 3, we derandomize Maker's
random strategy in chapter 5.

1.3 Derandomizing Maker’s Strategy for the Maker-Breaker Sub-
graph Game

The Maker-Breaker subgraph game GpG, n, bq, where b, n P N is played on the complete graph
Kn on n vertices by two players, Maker and Breaker. In each round of the game, Maker
chooses an edge of Kn, which has not been claimed previously and breaker responds by
selecting at most b edges from Kn. The variable b denotes the bias of the game. The game
ends if each of

(
n
2

)
edges of Kn is claimed by either of the players. If the subgraph constructed

during the game by the Maker contains a copy of G, then he wins, otherwise he looses and
Breaker wins the game. The game GpG, n, bq is a special case of positional games on graphs
with G as a fixed graph.

In their outstanding work, Bednarska and Łuczack [BŁ00] used results of the appearance of
a fixed graph in a random graph to show that for the game GpG, n, bq, a random strategy for
Maker is asymptotically optimal in n, but to find the right matching constants is a major
open problem in this area. They modified the above game so that Maker cannot see Breaker
moves, but Breaker has all the information about the moves of the Maker. They proved that
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1.4. Derandomized Hybrid Algorithm for the Set-Multicover Problem

even with this weak strategy of Maker, where Maker chooses his edges uniformly at random
among all edges, which have not been claimed by him so far, Maker wins with a probability
of at least 1

3 . The main result in [BŁ00] is the following theorem:

Theorem 1.2. For every graph G which contains at least 3 non-isolated vertices, there exist
positive constants c0, n0 such that for every n ě n0 and b ď c0n

1{mpGq, n, b P N, Maker has a
winning strategy for the game GpG, n, bq.

In this chaper 5, we present a deterministic Maker strategy derandomizing the existential
result of Bednarska and Łuczack using the subgraph containment result proved in chapter 4
and derandomization framework of generalized BDI in the chapter 3.

1.4 Derandomized Hybrid Algorithm for the Set-Multicover Problem
In chapter 6, we study a generalized version of the set cover problem, set b-multicover. The
problem can be naturally expressed in the context of hypergraphs. A hypergraph H “ pV, Eq
consists of a finite set V and a set E of subsets of V . We call elements of V as vertices and
the elements of E (hyper-)edges. We fix n :“ |V |, m :“ |E |. For b P N, a set b-multicover
in H is a set of edges C Ď E such that every vertex in V belongs to at least b edges in C.
set b-multicover is the problem of finding a set b-multicover of minimum cardinality.

The edge size is the cardinality of the edge. Let l be the maximum edge size and let ∆ be the
maximum vertex degree, where the degree of a vertex is the number of edges containing that
vertex. Define δ :“ ∆´ b` 1.

We derandomize the presently best set b-multicover approximation algorithm, b P N, published
in [EMS14]. It is a challenging candidate, because here randomized rounding is combined
with a repairing routine, and thus it is an inherently hybrid algorithm. Furthermore, the
various event probabilities in the analysis of this randomized algorithm are estimated not only
by the BDI, but also with some kind of Chernoff bounds, the Angluin-Valiant inequality. So
we must use here the full power of our derandomized BDI joined with pessimistic estimators
for the Angluin-Valiant inequality. Since all constructions are time optimized, the total
derandomization has complexity of only Opm2nq.

1.5 Derandomized Algorithm for the Multidimensional-Bin Packing
Problem

In theoritical computer science, the bin packing problem had profound impact on the field
of approximation algorithms. In the classical bin packing problem, assume we have n items,
{i1, i2, ¨ ¨ ¨ , in}, where the size of each item ik P p0, 1s for all k P rns and bins have capacity 1.
The problem is to partition items into minimal number of subsets such that items in each
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Chapter 1. Introduction

subset can be packed into a bin. The problem was proved to be N P-Hard by Garey and
Johnson in 1979 [GJ79]. Bin packing problem can be naturally extended to higher dimensions,
namely vector bin packing problem and geometric bin packing problem.

In the d-dimensional vector bin packing problem, each bin and item has d dimensions and we
need to partition the items such that we can pack them in minimum number of bins. For
example, we can think of each job as an item with CPU, RAM, disk, network requirements etc.
as its d dimensions. The goal is to assign all the the jobs to minimum number of computing
devices, which can be considered as d-dimensional bins with bounded amount of d resources
required by the jobs.

Bansal et al. [BCS09] gave the Round and Approx framework (R&A) and used it to construct
algorithms for two-dimensional geometric bin packing problem and vector bin packing
problems. In their paper, Bansal et al. derandomized the R&A framework using the potential
function approach.

In chapter 7, we demonstrate that the derandomization of Bansal’s algorithm follows as a
straightforward corollary from our derandomized BDI framework which we developed in the
chapter 3.

1.6 Derandomized Approximation of Constrained Hypergraph Color-
ing (CHC)

Ahuja and Srivastav [AS02] introduced the constrained hypergraph coloring problem(CHC) as
the generalization of the property B hypergraph coloring problem. It also models special cases
of multidimensional bin packing (MDBP) problem and the resource constrained scheduling
(RCS) problem.

Consider the hypergraph H “ pV, Eq with V “ {1, 2, ¨ ¨ ¨ , n}, E “ {E1, . . . , Em}, and l “

max
1ď iďm

|Ei|. Let b “ pb1, b2, . . . , bmq
t be a vector. The problem is to partition the vertex set

into a minimum number of sets such that there are at most bi vertices in Ei of any partition
set for all i P rms. We may color the vertices of each partition set with one color and call the
set color class.

CHC reduces to extensively studied well known problems based on the underlying combina-
torial structure and value of bi. For a simple graph and bi “ 1 for all i P rms, CHC reduces to
the graph coloring problem. The hypergraph H is said to be c-colorable iff there is a function
V Ñ {1, 2, ¨ ¨ ¨ , c} such that no edge is monochromatic. Hypergraph 2-colorability is the
famous property B [Erd63]. For a hypergraph H with property B and bi “ |Ei| ´ 1 for all
i P rms, CHC is equivalent to the problem of finding a non-monochromatic 2-coloring of H.

In chapter 8, we have analyzed the CHC problem using independent BDI and designed
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1.7. Concentration Bounds with Partially Dependent Random Variables

a randomized polynomial time algorithm which outputs a solution for the CHC problem
with d p1 ` εqC e colors with probability at least 1 ´ 1

c1
, c1 ą 0 a constant, provided that

bi ě
1`ε
ε

√
l ln pc1mnq

2 for all i P rms, where C is the optimal solution for linear program for
constrained hypergraph coloring problem. We have also derandomized the algorithm using
our derandomized BDI framework which we developed in the chapter 3.

1.7 Concentration Bounds with Partially Dependent Random Vari-
ables

Svante Janson [Jan04] extended the well known Hoeffding’s bound (Theorem 2.1) for sums of
independent random variables to obtain concentration bounds for sums of dependent random
variables with a defined dependency structure. The method is based on breaking the sum
of non-independent random variables into sums of independent random variables. Janson
applied the framework to U -Statistics, random strings and random graphs. In chapter 9,
we extend the Alon-Spencer [AS04] concentration bound for sums of independent random
variables, which generalizes Hoeffding’s bound, to obtain concentration bounds for the sum
of dependent random variables with similar dependency structure as defined in [Jan04].

1.8 Derandomizing Alon-Spencer Concentration Inequality
In Chapter 9, we have stated the Alon-Spencer bound (Theorem 9.2). In this chapter,
we derandomize the Alon-Spencer inequality assuming all random variables are mutually
independent.
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Chapter 2

Concentration Inequalities and Proofs

The Probabilistic Method has developed intensively into one of the most powerful tools
widely used in Combinatorics. The method was developed majorly because of increased
used of randomness in Theoretical Computer Science, a field which has resulted in many
combinatorial problems. The goal of any application of the Probabilistic Method is to show
that “good events” occur with positive probability or equivalently "bad events" occur with
probability less than 1. Frequently we tend to bound the tail distribution, the probability
that a random variable takes on values far from the expectation. In the context of analysis of
algorithms, these bounds are tools for estimating the failure probability of the algorithms.
Concentration bounds for tail distribution hence are the most important tools for showing
that probability of the event is very small, not merely less than 1.

In this chapter, we cover Hoeffding bounds in case we have independent random variables,
the Azuma-Hoeffding inequality and its closely related generalized independent bounded
differences bounds. The Chernoff bound is used for tail distribution of a sum of independent
0´ 1 random variables. Hoeffding’s bound extends the Chernoff bound technique to bounded
independent random variables.

2.1 The Hoeffding Bound
Theorem 2.1. (Hoeffding’s Bound) Let Z1, Z2, ¨ ¨ ¨ , Zn be independent random variables with
ai ď Zi ď bi for each i, for suitable constants ai, bi. Let Sn “

∑n
i“1 Zi and let E [Sn] “ µ.

Then for any t ě 0, Pp|Sn ´ µ| ě tq ď 2e´2t2{
∑n

i“1pbi´aiq
2 (2.1)

We need the below lemma to prove the theorem.

Lemma 2.2. Let the random variable Z satisfy E [Z] “ 0 and a ď Z ď b, where a and b are
constants. Then for any h ą 0, E

[
ehZ

]
ď e

1
8h

2pb´aq2

Proof. Since ehz is a convex function of z, for a ď z ď b,

ehz ď
z ´ a

b´ a
ehb `

b´ z

b´ a
eha
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Now we consider eλZ and take expectations on both sides.

E
[
ehZ

]
ď

b

b´ a
eha ´

a

b´ a
ehb (as E [Z] “ 0)

“ p1´ pqe´py ` pep1´pqy

“ e´pyp1´ p` peyq “ efpyq

where p “ ´a{pb´ aq, y “ pb´ aqh and fpzq “ ´pz ` lnp1´ p` pezq.

f 1pzq “ ´p`
pez

p1´ pq ` pez “ ´p`
p

p` p1´ pqe´z

and

f2pzq “
pp1´ pqe´z

pp` p1´ pqe´zq2 ď
1
4 (2.2)

(since the geomteric mean is at most the arithmetic mean). Also fp0q “ f 1p0q “ 0, and hence
by Taylor’s theorem, for any z ą 0 there is a z1 P {0, z} such that

fpzq “ fp0q ` zf 1p0q ` 1
2z

2f2pz1q (2.3)

Hence

fpyq ď
1
8y

2
“

1
8pb´ aq

2h2 (by 2.2) ,

which gives the desired inequality.

Now we give the proof of Theorem 2.1.
Proof. For h ą 0, we have

E
[
ehpSn´µq

]
“ E

[
n∏
i“1

ehpZi´E[Zi]q
]

“

n∏
i“1

E
[
ehpZi´E[Zi]q

]
(by Independence of Zi, i P rns)

ď e
1
8h

2
∑n

i“1pbi´aiq
2 (by Lemma 2.2)

20



2.2. Preliminary Facts about Martingales

By Markov’s inequality,

PpSn ´ µ ě tq ď e´htE
[
ehpSn´µq

]
ď e´ht`

1
8h

2
∑n

i“1pbi´aiq
2

To minimize the RHS, set h “ 4t{∑n
i“1pbi ´ aiq

2 to obtain,

PpSn ´ µ ě tq ď e´2t2{
∑n

i“1pbi´aiq
2

Replacing Zi by ´Zi to obtain

PpSn ´ µ ď ´tq ď e´2t2{
∑n

i“1pbi´aiq
2
,

and we have completed the proof.

In one of our applications, for the sum of independent {0, 1}-random variables, we also use
the large deviation inequality due to Angluin and Valiant:

Theorem 2.3. (Angluin-Valiant Bound)[McD98] Let Z1, . . . , Zn be independent {0, 1}-random
variables. Let Z “ ∑n

i“1 Zi. For every β ą 0 it holds that

(i) PpZ ě p1` βq ¨ E [Z]q ď exp
(
´
β2E[Z]

3

)
(ii) PpZ ď p1´ βq ¨ E [Z]q ď exp

(
´
β2E[Z]

2

)

2.2 Preliminary Facts about Martingales
We will frequently apply Azuma’s inequality throughout this thesis. Let pΩ,Σ,Pq be a
probability space and Q a second probability measure on Ω absolutely continuous with
respect to P, i.e. PpAq “ 0 implies QpAq “ 0 for all A P Σ. Then Q possesses a density
function with respect to P. This is just the celebrated Radon-Nikodym theorem [Nik30]:

Theorem 2.4. (Radon-Nikodym)
There exists an integrable function X : Ω Ñ R, X ě 0 such that

QpAq “
∫
A
X dP

for all A P Σ.
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Chapter 2. Concentration Inequalities and Proofs

Let Σ0 Ď Σ be a sub σ-algebra of Σ and let X : Ω Ñ R be any P-integrable function.

Definition 2.5. Let Y : Ω Ñ R be a Σ0-measurable function satisfying∫
A
Y dP “

∫
A
X dP

for all A P Σ0. Then Y is called the conditional expectation of X subject to Σ0, and is
denoted by E [X|Σ0].

Note that for every non-negative P-integrable function X and every Σ0 Ď Σ the conditional
expectation E [X|Σ0] exists, is unique, integrable and non-negative almost surely. We shall
need some useful properties of conditional expectations. The following theorem can be found
in any textbook of probability theory, for example in [BB96].

Theorem 2.6. Let pΩ,Σ,Pq be a probability space, Σ0 Ď Σ a sub-σ-algebra and X, Y non-
negative, integrable random variables. Then the following properties of E [X|Σ0] are true

piq E [X|Σ0] “ E [X] (X and Σ0 are independent)
piiq If X is Σ0-measurable, then E [X|Σ0] “ X a.s.
piiiq If X “ Y a.s., then E [X|Σ0] “ E [Y |Σ0] a.s.
pivq If X “ α “ const., then E [X|Σ0] “ α a.s.
pvq E [αX ` βY |Σ0] “ αE [X|Σ0]` βE [Y |Σ0] a.s. for α, β P R.
pviq If X ď Y a.s. then E [X|Σ0] ď E [Y |Σ0] a.s.
pviiq If Z : Ω Ñ R is Σ0-measurable and bounded, then E [ZX|Σ0] “ ZE [X|Σ0] .
pviiiq If B “ {B, B P Σ0} is a partition of Ω and B generates Σ0, then

E [X|Σ0] “
∑
BPB

E [X|B] 1B,

where 1B is the indicator function for the set B and E [X|B] is the average E [X|B] “
1

PpBq
∫
BX dP.

Let Σ be a σ-algebra over Ω. A sequence
(
Σk

)8
k“0

of sub-σ-algebras of Σ is called a filtration,
if Σk Ď Σk`1 for all k.

Definition 2.7. (Martingale)
Let pΩ,Σ,Pq be a probability space,

(
Σk

)8
k“0

a filtration and
(
Xk

)8
k“0

a sequence of integrable
random variables.
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(i) Then
(
Xk

)8
k“0

is called a martingale, if

E [Xk`1|Σk] “ Xk

for all k “ 0, 1, . . . ,.
(ii) The sequence

(
Yk
)8
k“1

with Yk “ Xk ´ Xk´1 is the martingale difference sequence of(
Xk

)8
k“0

.

Most useful is a special martingale, the Doob-martingale.

Proposition 2.8. Let f : Ω Ñ R be an integrable function, Σ,
(
Xk

)8
k“0

as above.

1. The sequence
(
Xk

)
k
with Xk “ E [f |Σk] is a martingale, called Doob’s martingale.

2. If the filtration is finite such that {φ,Ω} “ Σ0 Ď ¨ ¨ ¨ Ď Σn “ Σ, then X0 “ E [f ] and
Xn “ f.

A finite filtration can be realized by a sequence of partitions of Ω. Suppose that |Ω| “ n. For
each integer k, 0 ď k ď n´ 1 let Pk be a partition of Ω where

paq P0 “ {Ω}
pbq Pn “ {{ω};ω P Ω} .
pcq Pk`1 is finer than Pk.

Then the σ-algebras Σk generated by the Pk’s form a finite filtration with

{φ,Ω} “ Σ0 Ď ¨ ¨ ¨ Ď Σn “ PpΩq

where PpΩq is the power set of Ω. For an P-integrable function f : Ω Ñ R, let Xk “ E [f |Σk]
be the Doob martingale. Joel Spencer gave a nice interpretation of this martingale ([Spe94],
p. 56): the martingale process

(
Xk

)
can be viewed as a process exhibiting more and more

information about the function f . In the initial state of the process all information is hidden
in the average X0 “ E [f ], but in the final state all information is available, because Xn “ f .
So, for combinatorial functions f such a martingale is a “scanning machine” which provides
us with information about f step by step.

2.3 Azuma Inequality and Bounded Differences Inequality (BDI)
We are interested in bounding large deviations. Let

(
Yk
)n
k“1

be the martingale differences of
the martingale

(
Xk

)n
k“0

, Xk “ E [f |Σk]. Then

f ´ E [f ] “
n∑
k“1

Yk
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and the deviations of |f ´ E [f ] | are exactly the deviations of the sum of the martingale
differences. Deviations of the sum of martingale differences can be bounded by an exponentially
decreasing function. This is achieved by Azuma’s inequality [Azu67], a generalization of the
Chernoff inequality. We now state the famous martingale inequality of K. Azuma.

Theorem 2.9. (Azuma-Hoeffding Inequality) Let X0, X1, X2, . . . , Xn be a martingale sequence
with bounded differences, i.e. |Xk´Xk´1| ď ck for each k “ {1, 2, ¨ ¨ ¨ , n}. Then for any t ą 0,
it holds

Pp|Xn ´X0| ě tq ď 2 exp
(

´t2

2∑n
k“1 c

2
k

)
(2.4)

Proof. We will first derive an upper bound for E
[
eαpXn´X0q

]
. We already defined Yk “

Xk ´Xk´1 for k “ 1, 2, ¨ ¨ ¨ , n. Since X0, X1, ¨ ¨ ¨ , Xn is a martingale,

E [Yk |X0, X1, ¨ ¨ ¨ , Xk´1] “ E [Xk ´Xk´1 |X0, X1, ¨ ¨ ¨ , Xk´1]
“ E [Xk |X0, X1, ¨ ¨ ¨ , Xk´1]´Xk´1

“ 0

Now consider

E
[
eαYk |X0, X1, ¨ ¨ ¨ , Xk´1

]
(2.5)

Writing

Yk “ ´ck
1´ Yk{ck

2 ` ck
1` Yk{ck

2 (2.6)

and using convexity of eαYk , we have that

eαYk ď
1´ Yk{ck

2 e´αck `
1` Yk{ck

2 eαck

“
eαck ` e´αck

2 `
Yk
2ck
peαck ´ e´αckq

Since E [Yk |X0, X1, ¨ ¨ ¨ , Xk´1] “ 0, we have

E
[
eαYk |X0, X1, ¨ ¨ ¨ , Xk´1

]
ď E

[
eαck ` e´αck

2 `
Yk
2ck
peαck ´ e´αckq |X0, X1, ¨ ¨ ¨ , Xk´1

]

“
eαck ` e´αck

2
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2.3. Azuma Inequality and Bounded Differences Inequality (BDI)

ď epαckq
2{2

It follows that

E
[
eαpXn´X0q

]
“ E

[
n∏
k“1

eαYk
]

“ E
[
n´1∏
k“1

eαYk
]
E
[
eαYn |X0, X1, ¨ ¨ ¨ , Xn´1

]

ď E
[
n´1∏
k“1

eαYk
]
epαcnq

2{2

ď eα
2
∑n

k“1 c
2
k{2.

Hence,

PpXn ´X0 ě tq “ PpeαpXn´X0q ě eαtq

ď
E
[
eαpXn´X0q

]
eαt

ď eα
2
∑n

k“1 c
2
k{2´αt

ď e

´t2

(2
∑n

k“1 c
2
k)

where the last inequality holds by choosing α “ t{
∑n
k“1 c

2
k. A similar argument gives the

bound for PpXn ´X0 ď ´tq, by replacing Xn by ´Xn, hence proving the theorem.

Colin McDiarmid in his seminal paper [McD89] proved the generalized bounded differences
inequality. The generalized bounded difference inequality (BDI) is a martingale-free formula-
tion of Azuma’s inequality. Let Z “ pZ1, Z2, ¨ ¨ ¨ , Znq be family of random variables with Zk
taking values in a set Ak. Let f be a real-valued function defined on ∏Ak.
Let V be an event that Zj “ zj where zj P Aj for each j “ 1, 2, 3, ¨ ¨ ¨ , k ´ 1. Let the random
variable W be distributed like Zk conditioned on the event V . For z P Ak, let

gpzq “ E [fpZq |V, Zk “ z]´ E [fpZq |V ] ,

The function gpzq measures how much the expected value of fpZq changes if it is revealed
that Zk takes the value z. We can easily see that E [gpW q] “ 0. Let range of gpW q,
ranpz1, z2, ¨ ¨ ¨ , zk´1q be defined as the function sup{|gpzq ´ gpuq| : z, u P Ak}. Let us de-
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fine maximum range of gpW q, r̂k, as supz1,z2,¨¨¨ ,zk´1
ranpz1, z2, ¨ ¨ ¨ , zk´1q for all k. Let r2, the

sum of squared maximum ranges, be the sum of the values r̂2
k. So r2 “

∑n
k“1 r̂

2
k. We now state

the generalized bounded differences inequality.

Theorem 2.10. (Generalized BDI) [McD98] Let Z “ pZ1, Z2, ¨ ¨ ¨ , Znq be the family of random
variables that are not necessarily independent, with Zk taking on values in a set Ak, and
let f be a real-valued function defined on ∏Ak. Let µ denote the mean of fpZq, and let r2

denote the sum of squared maximum ranges. Then for any t ě 0,

PpfpZq ´ µ ě tq ď e´2t2{r2 (2.7)

If the random variables Z1, Z2, ¨ ¨ ¨ , Zn are independent then the above theorem reduces to
the independent bounded differences inequality (BDI) due to C. Mcdiarmid [McD89].

Theorem 2.11. (Independent BDI) Let Z “ pZ1, Z2, . . . , Znq be a family of of independent
random variables with Zk taking on values from set Ak for each k. Suppose that the real
valued function f defined on ∏n

k“1Ak, satisfies |fpZq ´ fpZ 1q| ď ck for all k P rns if the
vectors Z and Z 1 differ only in the k-th coordinate. Then for any t ą 0, it holds

(i) PpfpZq ě E [fpZq]` tq ď exp p ´2t2∑n

k“1 c
2
k

q

(ii) PpfpZq ď E [fpZq]´ tq ď exp p ´2t2∑n

k“1 c
2
k

q
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Chapter 3

Derandomizing the Generalized Bounded
Differences Inequality

3.1 Derandomization Concept
Derandomization is the task of turning a probabilistic existence result or a randomized
algorithm into a deterministic, polynomial-time algorithm, preferably achieving nearly the
same guarantee. With the evident power of randomized algorithms, derandomization became
an important task in algorithmic discrete mathematics. This is important, since deterministic
algorithms give hard guarantees on performance and running times.

In derandomization the algorithmic problem often is to find points in the probability space
satisfying events whose existence is guaranteed by large deviation bounds. Erdős and Selfridge
[ES73], Beck and Fiala [BF81] and Spencer [Spe77] suggested for derandomization a very
general technique, the conditional probability method. Unfortunately, in many cases conditional
probabilities under consideration cannot be computed efficiently. A milestone for algorithmic
progress has been the introduction of so called pessimistic estimators by Raghavan [Rag88],
which are computable upper bounds on the conditional probabilities sharing the properties of
them. One key fact for the success of the conditional probability method is that pessimistic
estimators can be constructed, whenever linear objective functions are involved, because
the proofs of Chernoff and Hoeffding type large deviation bound inequalities for sums of
independent random variables deliver the right pessimistic estimators. In fact, for a polynomial-
time implementation of the method, approximations of these estimators by Taylor polynomials
must be used, too e.g. [SS96].

When the probability of the events under consideration can be estimated by Chernoff bounds
or the Lovász Local Lemma (LLL), the problem has been solved e.g. Raghavan [Rag88], Beck
[Bec91], Srivastav & Stangier [SS96], Matoušek [Mat96], Srinivasan et al. [Sri99], Moser &
Tardos 2010 [MT10]. For obvious reasons let us call such a procedure, the derandomized
(algorithmic) version of underlying large deviation bound. In this chapter, we resolve the
derandomization problem for the Azuma inequality and the generalized bounded differences
inequality (BDI) of C. McDiarmid [McD89] resp. using the conditional probability and
Pessimistic estimator approach in a finite, but quite general probabilistic setting.
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Our derandomized BDI forms a general and easily applicable framework for the derandomzi-
ation of randomized algorithms, where the BDI is used in the analysis. We further show,
introducing the notion of a weak pessimistic estimator, that pessimistic estimators of the
BDI can be joined with pessimistic estimators of other derandomized inequalities, like the
Chernoff-Hoeffding bounds or the Lovász Local Lemma, and thus further extend the range of
applicability.

3.2 Statement of the Derandomized Generalized BDI
We define first the probability space under consideration. Let A1, A2, ¨ ¨ ¨ , An be finite sets
with |Ai| “ Ni P N for all i, and set N :“ max1ďiďnNi. Let Ω “

∏n
i“1Ai be the sample

space.

Let P be an arbitrary probability measure on Ω and pΩ,Pq is a probability space with the
powerset PpΩq of Ω as the σ-algebra. Let Z1, Z2, ¨ ¨ ¨ , Zn be n random variables, where Zi
takes value in the set Ai, i P rns. In this setting we do not assume that the Z1, Z2, ¨ ¨ ¨ , Zn
are independent.

We say ω, ω1 P Ω are k-equivalent, i.e. ω –k ω1 if and only if ωj “ ω1j for all 1 ď j ď k.
k-equivalency defines an equivalency relation on Ω and induces for each k a partition Pk of Ω
with {Ω} “ P0 Ă . . . Ă Pn “ {{ω};ω P Ω}

Let Σk be the σ-algebra generated by Pk. Then the sequence pΣkq
n
k“0 is a filtration, where

Σ0 “ {∅,Ω} and Σn “ PpΩq.

Definition 3.1. Let ψ1, . . . , ψm be rational-valued functions on Ω with Epψiq “ µi. For i P rms,
let λi ą 0 be rational numbers and define the event Ep`qi by ψi ď µi ` λi and let Ep´qi denote
the event ψi ě µi ´ λi. Furthermore set E “ ⋂m

i“1Ei where Ei is either E
p`q

i or Ep´qi . W.l.o.g
we can assume Ei “ E

p`q

i .

Let Z :“ pZ1, Z2, ¨ ¨ ¨ , Znq. Let Xi0, Xi1, ¨ ¨ ¨ , Xin be the martingale obtained by setting
Xik “ E [ψipZq |Σk] for all i P rms, k P rns. Let Yi1, Yi2, ¨ ¨ ¨ , Yin be the corresponding
martingale difference sequence obtained by Yik “ Xik ´Xi,k´1. Let us assume that

||Yik||8 ď dik for all k P rns. (3.1)

Set for l P rns, Dil :“ d2
il` d

2
i,l`1` ¨ ¨ ¨` d

2
in. Then for any λi ą 0, by Azuma’s inequality (2.9),

PpEc
i q ď fpλiq where fpλiq “ expp´ 2λ2

i

Di1
q for all i P rms. We assume that for some δ P p0, 1q

m∑
i“1

fpλiq ď 1´ δ. (3.2)
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Then, the union bound gives

Pp
m⋂
i“1

Eiq ě 1´ Pp
m⋃
i“1

Ec
i q ě 1´

m⋃
i“1

PpEc
i q ě 1´

m∑
i“1

fpλiq ě δ ą 0, thus
m⋂
i“1

Ei ‰ H. (3.3)

In this setting we can show the following general theorem:

Theorem 3.2. (Derandomized Azuma Inequality) Let ψ1, . . . , ψm be rational valued functions
on Ω and let E1, . . . , Em be associated events as in Definition 3.1 satisfying (3.2). Let P,Q
denote functions in n,m,N and suppose that the following conditions are satisfied:

(1) maxω PΩ |ψipωq| ď P for all i P rms.

(2) For every i P rms, ω P Ω and k P rns, the conditional expectation E [ψi|Σk] pωq can be
computed in OpQq time.

Then a vector x P ⋂mi“1Ei can be constructed in OpmnN rP maxi λi
Di1
` log mn

δ
`Qsq time.

Remark 3.3. While the computation time in its general form here may depend on the arbitrary
functions P and Q, in most of our applications P and Q will be polynomials. However, in
the application to the Maker Breaker game, we will see that especially Q is not a polynomial,
but superexponentially dependent on n. So, it is necessary and useful to specify P and Q
only in a quite general form. Further, note that the theorem makes sense and is an efficient
algorithm only, if P and Q are small compared to |Ω|, because otherwise by brute force one
could try all points of Ω and find the right one, where by 3.3 exists.

C. McDiarmid in his seminal paper [McD89] proved the generalized bounded differences
inequality. The generalized bounded difference inequality (BDI) is a martingale-free formu-
lation of Azuma’s inequality. We use the above context to state the generalized bounded
differences inequality.

Let Vk´1 be an event that Zj “ zj where zj P Aj for each j “ 1, 2, 3, ¨ ¨ ¨ , k ´ 1, k P rns. Let
the random variable W be distributed like Zk conditioned on the event Vk´1. For z P Ak, let

gikpzq “ E [ψipZq |Vk´1, Zk “ z]´ E [ψipZq |Vk´1] ,

for all i P rms and k P rns.

The function gikpzq measures how much the expected value of ψipZq changes if it is revealed
that Zk takes the value z. We can easily see that E [gikpW q] “ 0. Let range of gikpW q is
defined by

ran
piq
k pz1, z2, ¨ ¨ ¨ , zk´1q :“ max{|gikpzq ´ gikpuq| : z, u P Ak}
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Chapter 3. Derandomizing the Generalized Bounded Differences Inequality

for all i P rms and k P rns.

Let us define the maximum range of gikpW q by,

r̂ik :“ max
z1,z2,¨¨¨ ,zk´1

ran
piq
k pz1, z2, ¨ ¨ ¨ , zk´1q

for all i P rms and k P rns.

Let r2
i , the sum of squared maximum ranges, be the sum of the values r̂2

ik. So

r2
i “

n∑
k“1

r̂2
ik

.

We now state the generalized bounded differences inequality.

Theorem 3.4. (Generalized BDI) [McD98] Let Z “ pZ1, Z2, ¨ ¨ ¨ , Znq be the family of random
variables that are not necessarily independent, with Zk taking on values in a set Ak, and let
ψi be real-valued functions defined on ∏Ak for all i P rms. Let µi denote the mean of ψipZq,
and let r2

i denote the sum of squared maximum ranges for all i P rms. Then for any λi ě 0,

PpψipZq ´ µi ě λiq ď e´2λ2
i {r

2
i (3.4)

for all i P rms.

If the random variables Z1, Z2, ¨ ¨ ¨ , Zn are independent and let dik ě 0 denote the Lipschitz
bounds, so for every k-th coordinate of the function ψi, we have

|ψipZ1, . . . , Zk´1, Zk, Zk`1, . . . , Znq ´ ψipZ1, . . . , Zk´1, Z
1

k, Zk`1, . . . , Znq| ď dik (3.5)

We observe that
r̂ik “ dik

for all i P rms, k P rns.

We now state the bounded differences inequality (BDI) due to C. Mcdiarmid [McD89] for
independent random variables. This corollary of generalized BDI is used in many combinatorial
applications.

Theorem 3.5. (Independent BDI) Let Z “ pZ1, Z2, . . . , Znq be a family of of independent
random variables with Zk taking on values from set Ak for each k. Suppose that the real
valued functions ψi defined on ∏n

k“1Ak for all i P rms, satisfies |ψipZq ´ ψipZ 1q| ď dik if the
vectors Z and Z 1 differ only in the k-th coordinate. Then for any t ą 0, it holds

(i) PpψipZq ě E [ψipZq]` tq ď exp p ´2t2∑n

k“1 d
2
ik

q

(ii) PpψipZq ď E [ψipZq]´ tq ď exp p ´2t2∑n

k“1 d
2
ik

q

30



3.2. Statement of the Derandomized Generalized BDI

for all i P rms.

If random variables Z1, Z2, ¨ ¨ ¨ , Zn are not independent, then define

dik :“ r̂ik

for all i P rms, k P rns.

Set for l P rns, Dil :“ d2
il ` ¨ ¨ ¨ ` d2

in. Then for any λi ą 0, by the generalized BDI (3.4),
PpEc

i q ď fpλiq where fpλiq :“ expp´ 2λ2
i

Di1
q for all i P rms. We assume that for some δ P p0, 1q

m∑
i“1

fpλiq ď 1´ δ, (3.6)

so using the union bound

Pp
m⋂
i“1

Eiq ě 1´ Pp
m⋃
i“1

Ec
i q ě δ ą 0, thus

m⋂
i“1

Ei ‰ H. (3.7)

The derandomized generalized BDI is:

Theorem 3.6. (Derandomized Generalized BDI) Let ψ1, . . . , ψm be rational valued functions
on Ω “ ∏

Ak and let E1, . . . , Em be associated events as in Definition 3.1 satisfying (3.6). Let
P,Q denote functions in n,m,N and suppose that the following conditions are satisfied.

(1) maxω PΩ |ψipωq| ď P for all i P rms.

(2) For every i P rms, ω P Ω and k P rns, the conditional expectation E [ψi|Σk] pωq can be
computed in OpQq time.

Then a vector x P ⋂mi“1Ei can be constructed in OpmnN rP maxi λi
Di1
` log mn

δ
`Qsq time.

With Theorem 3.2 we can immediately prove the derandomized generalized BDI.

Proof. Let the σ-field Σk in the filtration be the σ-field generated by Z1, Z2, ¨ ¨ ¨ , Zk where
Σ0 “ {∅,Ω}. Let Xi0, Xi1, ¨ ¨ ¨ , Xin be the martingale obtained by setting Xik “ E [ψipZq |Σk]
for all i P rms, k P rns. Let Yi1, Yi2, ¨ ¨ ¨ , Yin be the corresponding martingale difference sequence
obtained by Yik “ Xik ´Xi,k´1 for all i P rms, k P rns.

We need to upper bound Yik in terms of the maximum range function defined earlier. We
observe Yik is uppper bounded by

max
a PAk

E [ψipZq |Σk´1, Zk “ a]´ E [ψipZq |Σk´1]

and bounded from the below by
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Chapter 3. Derandomizing the Generalized Bounded Differences Inequality

min
b PAk

E [ψipZq |Σk´1, Zk “ b]´ E [ψipZq |Σk´1] .

Thus if we can upper bound the below quantity then we are done.

max
a PAk

E [ψipZq |Σk´1, Zk “ a]´ min
b PAk

E [ψipZq |Σk´1, Zk “ b]

The above quantity is equivalent to:

max
a,b PAk

E [ψipZq |Σk´1, Zk “ a]´ E [ψipZq |Σk´1, Zk “ b]

Hence by definition of range and maximum range, we establish

||Yik||8 ď r̂ik

So, the associated martingale satisfies (3.1), thus the derandomized Azuma inequality implies
the derandomized generalized BDI.

We use the derandomized independent bounded differences inequality for various applications,
hence we will now state the same. The proof is same as the proof for generalized BDI, hence
not stated here. Observe that |Ai| “ N for all i P rns.

Theorem 3.7. (Derandomized Independent BDI) Let ψ1, . . . , ψm be rational valued functions
on Ω “ ∏

Ak and let E1, . . . , Em be associated events as in Definition 3.1 satisfying (3.6). Let
P,Q denote functions in n,m,N and suppose that the following conditions are satisfied.

(1) maxω PΩ |ψipωq| ď P for all i P rms.

(2) For every i P rms, ω P Ω and k P rns, the conditional expectation E [ψi|Σk] pωq can be
computed in OpQq time.

Then a vector x P ⋂mi“1Ei can be constructed in OpmnN rP maxi λi
Di1
` log mn

δ
`Qsq time.

We define the pessimistic estimators in the next section and use them to prove derandomized
Azuma inequality.

3.3 General Form of Pessimistic Estimators
The basic notion of pessimistic estimators was introduced by Raghavan [Rag88]. We generalize
this definition in order to cope with different concentration bounds.

Definition 3.8. Let U be a family of functions of the form Ul : rN sl ÞÑ Q, l P rns plus a function
U0 . Let pΩ,Pq be a probability space, E Ă Ω an event and 0 ă δ ă 1.
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3.3. General Form of Pessimistic Estimators

(i) U is called a weak pessimistic estimator for the event E, if for each l P rns the following
conditions are satisfied:

(a) PpEc|ω1, . . . , ωlq ď Ulpω1, . . . , ωlq for all ω1, . . . , ωl P rN s.

(b) Given ω1, . . . , ωl´1, there exists an ωl such that
Ulpω1, . . . , ωlq ď Ul´1pω1, . . . , ωl´1q.

(c) U0 ď 1´ δ.

(ii) U is called a pessimistic estimator, if U is a weak pessimistic estimator and each value
Ulpω1, . . . , ωlq and U0 can be computed in time polynomially bounded in n,N and log 1

δ
.

In the next definition, we join the weak pessimistic estimators of finitely many events to a
weak pessimistic estimators of their intersection. The crucial property is a kind of convexity.

Definition 3.9. 1. A family U as in Definition 3.8 is called convex, if there are real numbers µj ą
0, j P rN s, with µ1`. . .`µN “ 1 such that∑N

j“1 µjUlpω1, . . . , ωl´1, jq ď Ul´1pω1, . . . , ωl´1q

for all ω1, . . . , ωl P rN s and all l P rns.

2. The sum ⊕m
i“1 Ui of m families Ui is the set of functions Ul with Ul :“ ∑m

i“1 U
piq
l , U piql P

Ui, l P rns.

Proposition 3.10. If Ui is a weak pessimistic estimator for an event Ei, i P rms,
⊕m

i“1 Ui is
convex and ∑m

i“1 U
piq
0 ď 1´ δ for some δ ą 0, then ⊕m

i“1 Ui is a weak pessimistic estimator
for the event ⋂mi“1Ei.
Proof. We need to establish the conditions specified in Definition 3.8: condition (c) is true by
the assumption, thus we need to prove conditions (a) and (b). Let l P rns and ω1, . . . , ωl P rN s

be arbitrary, but fixed. Then

Ppp
m⋂
i“1

Eiq
c
|ω1, . . . , ωlq “ Pp

m⋃
i“1

Ec
i |ω1, . . . , ωlq ď

m∑
i“1

PpEc
i |ω1, . . . , ωlq

ď

m∑
i“1

U
piq
l pω1, . . . , ωlq

“ Ulpω1, . . . , ωlq

Condition (b) is a direct consequence of the convexity of⊕m
i“1 Ui. Let

⊕m
i“1 Ui be the functions

pUlql as in Definition 3.9 (2). Define ωl as the minimizer of j ÞÑ Ulpω1, . . . , ωl´1, jq, so

Ulpω1, . . . , ωl´1, ωlq ď
N∑
j“1

µjUlpω1, . . . , ωl´1, jq ď Ulpω1, . . . , ωl´1q
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Chapter 3. Derandomizing the Generalized Bounded Differences Inequality

With pessimistic estimators, we have a polynomial time implementation of the conditional
probability method.

Algorithm DERAND

INPUT: An event E Ă ∏
Ak and a pessimistic estimator U for E.

OUTPUT: A vector x P E.

ALGORITHM: For l “ 0, . . . , n´ 1 do:
If x1 . . . , xl´1 have been selected, choose xl P Al as the minimizer of the function ω Ñ

Ul`1pE
c | x1 . . . , xl´1, ωq, ω P Al.

Suppose we can compute each evaluation of the function Ul, l P rns Y {0}, in OptpUqq time.
The striking observation is

Proposition 3.11. The algorithm DERAND computes x P E in OpnNtpUqq time.
Proof. Since U is a pessimistic estimator for the event E, each Ulpx1, . . . , xl´1, ωq, ω P Al,
can be computed in OptpUqq time, thus the minimizer xl can be computed in OpNtpUqq time.
The vector x “ px1, . . . , xnq satisfies

PpEc
|x1, . . . , xns ď Unpx1, . . . , xnq ď Un´1px1, . . . , xn´1q

...
ď U0 ď 1´ δ ă 1,

so PpEc |x1, . . . , xnq “ 0, and x P E. Since we iterate the minimizer computation over all n
variables, we consume OpnNtpUqq time.

The next statement will be used to ensure that a suitable approximation of a weak pessimistic
estimator is still a weak pessimistic estimator. Now, if the approximation is computable in
polynomial time, we get the desired pessimistic estimator.

Proposition 3.12. Let V “ pVlq, l P rns Y {0} be a weak pessimistic estimator for an event
E Ă

∏
Ak and let δ ą 0. Suppose that V0 ď 1 ´ δ. Let γ ă δ

4n`1 and let W “ pWlq,
l P rns Y {0} be a family of functions with

|Vl ´Wl| ď γ for all rns Y {0}.

Then the family U “ pUlq, l P rns Y {0}, with Ul :“ Wl ` 2p2n ´ lqγ is a weak pessimistic
estimator for E.
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3.4. Proofs for the Derandomized Inequalities

Proof. We must show that pUlq, l P rns Y {0}, satisfies all conditions of Definition 3.8.

Condition (a): For arbitrary l P rns, let ω̃ :“ pω1, . . . , ωlq where ω1, . . . , ωl P rN s are arbitrary,
but fixed. We have

PpEc
| ω1, ω2, . . . , ωlq ď Vlpω̃q

“ Vlpω̃q ´Wlpω̃q ´ 2p2n´ lqγ `Wlpω̃q ` 2p2n´ lqγ
ď Wlpω̃q ` 2p2n´ lqγ
“ Ulpω̃q.

Condition (b): Let l P rns and ω̃ :“ pω1, . . . , ωlq, where ω1, . . . , ωl P rN s are arbitrary, but
fixed. If x1, x2, . . . , xl P rN s are already chosen and Ulpx1, x2, . . . , xlq is known, let xl`1 be
the value that minimizes the function ω ÞÑ Ul`1px1, x2, . . . , xl, ωq, ω P rN s. We have

Ulpω̃q ´ Ul`1pω̃, xl`1q “ Wlpω̃q ` 2p2n´ lqγ ´Wl`1pω̃, xl`1q ´ 2p2n´ pl ` 1qqγ
“ Wlpω̃q ´Wl`1pω̃, xl`1q ` 2γ
“ Wlpω̃q ´ Vlpω̃q ` Vl`1pω̃, xl`1q ´Wl`1pω̃, xl`1q

` Vlpω̃q ´ Vl`1pω̃, xl`1q ` 2γ
ě Vlpω̃q ´ Vl`1pω̃, xl`1q ě 0.

Hence condition (b) of Definition 3.8 is established with the choice of xl`1.

Condition (c):

For l “ 0, we show that U0 ď 1´ β where β :“ δ ´ p4n` 1qγ:

U0 “ W0 ` 4nγ “ W0 ´ V0 ` V0 ` 4nγ
ď V0 ` p4n` 1qγ ď 1´ δ ` p4n` 1qγ
“ 1´ β.

3.4 Proofs for the Derandomized Inequalities
Srivastav and Stangier [SS96] constructed pessimistic estimators for events which are governed
by concentration inequalities like Angluin-Valiant bound (Theorem 2.3) for the sum of
independent {0, 1}-random variables and is a variation of Chernoff or Hoeffding’s bound.
Using Proposition (3.10), we can construct pessimistic estimators for mixed situation where
events are governed by generalized BDI and Angluin-Valiant bound. We will set the context
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Chapter 3. Derandomizing the Generalized Bounded Differences Inequality

for derandomized Angluin-Valiant bound. Let X1, . . . , Xn be independent {0, 1}-random
variables. Let φi “

∑n
j“1 aijXj with aij P r0, 1s, i P rls, j P rns.

Definition 3.13. For βi ą 0, let us define the event F p`qi by φi ď E [φi] p1 ` βiq and let F p´qi

denote the event φi ě E [φi] p1´ βiq. Let Fi be one of these events. W.l.o.g we can assume
Fi “ F

p`q

i .

Then by the Angluin-Valiant inequality (2.3), PpF c
i q ď gpβiq with gpβiq “ exp

(
´
β2
i E[φi]
p

)
for

all i, and some p P {2, 3}. We assume that for some ε P p0, 1q,
l∑

i“1
PpF c

i q ď

l∑
i“1

gpβiq ď 1´ ε,

so using the union bound, Pp
l⋂

i“1
Fiq ě 1´ Pp

l⋃
i“1

F c
i q ě ε ą 0, thus

l⋂
i“1

Fi ‰ H (3.8)

For the mixed situation, where E “ {E1, . . . , Em} is a set of m events in the generalized BDI
setting and F “ {F1, . . . , Fl} is a set of l events in the Angluin-Valiant setting as above,
satisfying (3.7) resp. (3.8). We furthermore assume

m∑
i“1

PpEc
i q `

l∑
j“1

PpF c
j q ď

m∑
i“1

fpλiq `
l∑

j“1
gpβjq ď 1´ δ ` 1´ ε ă 1 (3.9)

Thus

Pp
m⋂
i“1

Ei X
l⋂

j“1
Fjq ą ε` δ ´ 1 ą 0, so

m⋂
i“1

Ei X
l⋂

j“1
Fj ‰ H. (3.10)

We have

Theorem 3.14. Consider E and F as above satisfying (3.10). Let P,Q denote polynomials in
n,m,N satisfying the conditions of Theorem 3.6. Then a vector x P p⋂mi“1Ei X

⋂l
j“1 Fjq can

be constructed in OpmnN rP maxi λi
Di1
` log mn

δ
`Qs `Nn2l log Nln

ε
q time.

Note that for E “ H we have the derandomized Angluin-Valiant bound which is proved in
[SS96]. Theorem 3.14 is thus the mixed situation.
Proof. By Proposition 3.10, we can combine the pessimistic estimators of the Angluin-Valiant
bound (constructed in [SS96]) and generalized BDI resp. to get the pessimistic estimator
for the event ⋂mi“1Ei X

⋂l
j“1 Fj. The time complexity to derandomize the event ⋂lj“1 Fj is

OpNn2l log Nln
ε
q [SS96] and for the event ⋂mi“1Ei is OpmnN rP maxi λi

Di1
` log mn

δ
`Qsq (by

Theorem 3.6) and by adding these time complexities we get our result.
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3.4. Proofs for the Derandomized Inequalities

We now define the pessimistic estimators for the derandomization of Azuma’s inequality and
proceed to the proof of Theorem 3.2. With the next lemma, we reduce the computation of
the conditional expectation of the moment generating function to the computation of the
conditional expectation of the objective function.

Lemma 3.15. Let t ą 0 and i P rms. For all k P rns, let C P Pk. We have

E
[
e tXik |C

]
“ e tE[ψi|C].

Proof. Let Pk “ {C1, . . . , Cl} and for C P Pk, let 1C be the characteristic function of C.
Because pXkqk is a discrete, finite martingale, we have according to the definition of the Doob
martingale and Theorem 2.6 (viii), Xik “

∑
CPPk 1CE [ψi|C] .

Hence for an arbitary, but fixed C P Pk we have for ω P C, Xikpωq “ E [ψi|C] , so

E
[
e tXik |C

]
“

1
PpCq

∑
ωPC

e tXikpωqPpωq “
1

PpCq
∑
ωPC

e tE[ψi|C]Ppωq

“ e tE[ψi|C] 1
PpCq

∑
ωPC

Ppωq “ e tE[ψi|C].

The following lemma will be used frequently in upcoming proofs.

Lemma 3.16. ([McD98], Lemma 2.6)
Let X be a random variable with E [X] “ 0 and a ď X ď b where a, b are constants. Then
for any t ą 0

E
[
etX

]
ď exp

(1
8t

2
pb´ aq2

)
.

Next we define the functions which will form the weak pessimistic estimators for the events
Ei. Let si be the signum of the event Ei: we set si “ 1 iff Ei “ E`i and si “ ´1 iff Ei “ E´i .

Definition 3.17. For each i P rms, let Vi be a family of functions Vil : ∏l
i“1Ai ÞÑ Q, l P rnsY{0}

defined as follows. For ω1, . . . , ωl P rN s, set

(i) Vilpω1, . . . , ωlq “ e´tipλi`siXi0qe
t2
i
Di,l`1

8 e tisiEpψi|ω1,...,ωlq

(ii) Vi0 “ e´tiλie
t2
i
Di1
8 .

Theorem 3.18. Under the assumption (3.3) and with ti :“ 4λi
Di1

, the family ⊕m
i“1 Vi is a weak

pessimistic estimator for the event ⋂mi“1Ei.
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Chapter 3. Derandomizing the Generalized Bounded Differences Inequality

Proof. We first show that each Vi is a weak pessimistic estimator for the event Ei. Then we
prove the convexity of ⊕m

i“1 Vi and by Proposition 3.10 we will be done.

Fix an arbitrary i P rms. W.l.o.g we assume that Ei “ E`i , so si “ 1. Let l P rns and
ω1, . . . , ωl P

∏l
i“1Ai. Define

C :“ {ω1 P Ω; ω1k “ ωk for k “ 1, . . . , l},

and for j P Al`1

Cj :“ {ω1 P Ω; ω1k “ ωk for k “ 1, . . . , l and ω1l`1 “ j}.

We first show that Vi is a weak pessimistic estimator for Ei. Let us check conditions (a) – (c)
of Definition 3.8.

Condition (a): We have

PpEc
i |ω1, . . . , ωlq “ PpEc

i |Cq

“ PpXin ´Xi0 ą λi|Cq

ď e´tiλiE
[
e tipXin´Xi0q|C

]
“ e´tiλiE

[
1Ce tipXin´Xi0q

]
¨ PpCq´1

“ e´tiλiE
[
Ep1Ce tipXin´Xi0q|Σn´1q

]
¨ PpCq´1

“ e´tiλiE
[
Ep1Ce tipXi,n´1´Xi0qe tiYin |Σn´1q

]
¨ PpCq´1

“ e´tiλiE
[
1Ce tipXi,n´1´Xi0qEpe tiYin |Σn´1q

]
¨ PpCq´1 (Theorem 2.6 (vii))

ď e´tiλie
t2
i
d2
in

8 ¨ E
[
1C e tipXi,n´1´Xi0q

]
¨ PpCq´1 (Lemma 3.16)

“ e´tiλie
t2
i
d2
in

8 ¨ E
[
e tipXi,n´1´Xi0q|C

]
ď e´tiλie

t2
i
Di,l`1

8 ¨ E
(
1Ce tipXil´Xi0q

)
¨ PpCq´1

“ e´tiλie
t2
i
Di,l`1

8 e tiE[ψi|C]e´tiXi0 (Lemma 3.15)
“ Vilpω1, . . . , ωlq .

Condition (b): We first show the convexity of Vi for all i P rms. For i P rms and j P rN s put
µij :“ PpCjq

PpCq . So µij does not depend on i. Then for any choice of ω1, . . . , ωl P rN s

N∑
j“1

Vi,l`1pω1, . . . , ωl, jqµij “ e´tiλie
t2
i
Di,l`2

8

N∑
j“1

µije
tiE[ψi|Cj ]´tiXi0

︸ ︷︷ ︸
:= T

(3.11)
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With Lemma 3.15 expptiE [ψi|Cj]q “ E
[
e tiXi,l`1 |Cj

]
,

so we have
N∑
j“1

µije
tiE[ψi|Cj ] “

N∑
j“1

µijE
[
e tiXi,l`1 |Cj

]
“

1
PpCq

N∑
j“1

PpCjqE
[
e tiXi,l`1 |Cj

]
“ E

[
e tiXi,l`1 |C

]
.

(3.12)
We continue

T “ e´tiλie
t2
i
Di,l`2

8

 N∑
j“1

µije
tiE[ψi|Cj ]

 e´tiXi0
“ e´tiλie

t2
i
Di,l`2

8 E
[
e tiXi,l`1 |C

]
¨ e´tiE[ψi] (By 3.12)

ď e´tiλie
t2
i
Di,l`1

8 E
[
e tiXil |C

]
e´tiXi0 (Similar to the proof of (a))

“ e´tiλie
t2
i
Di,l`1

8 e tirE[ψi|C]´Xi0s

“ Vilpω1, . . . , ωlq.

Condition (c): For i P rms put ti “ 4λi
Di1

. Then the proof of Theorem 2.9 gives

Vi0 “ e´tiλie
t2
i
Di1
8 ď fpλiq.

We can now conclude the proof. We have ∑m
i“1 Vi0 ď

∑m
i“1 fpλiq ď 1´ δ according to (3.3).

Since the µij “ PpCjq
PpCq , i P rms, i P rms do not depend on i, the convexity of Vi’s implies the

convexity of ⊕i Vi. Hence by Proposition 3.10, ⊕i Vi is a weak pessimistic estimator for the
event ⋂mi“1Ei.

We state here the technical Lemma 2.7 from [SS96] which will be used in the proof of Theorem
3.2. It is an extension of Brent’s approximation [Bre76] of the exp pxq function on a compact
interval to arbitrary rational numbers involving their encoding length.

Lemma 3.19. Let y be a rational number with encoding length L and let γ1 P p0, 1q be a
positive real number. Let q be a positive integer with q ě 8d|y|e ` dlog 1

γ1
e. Then the q-th

degree Taylor polynomial, Tqpyq “
∑q
k“0

yk

k! of exppyq has encoding length OpLq ` q log qq,
can be computed in Opqq time and the inequality | exppyq ´ Tqpyq| ď γ1 holds.

Proof of Theorem 3.2: By Theorem 3.18, we have constructed a weak pessimistic estimator.
We approximate them by efficiently computable polynomials using Lemma 3.19. Let us define
V :“ ⊕

i Vi where the Vi are as in Theorem 3.18. Recall that si, i P rms, is the sign of the
event Ei, i.e. si “ `1 or si “ ´1,i P rms. For pω1, . . . , ωlq P

∏l
i“1Ai each function Vil P Vi has
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Chapter 3. Derandomizing the Generalized Bounded Differences Inequality

the form

Vilpω1, . . . , ωlq “ exp
(
´tipλi ` siEpψiqq `

t2iDi,l`1

8 ` tisiE [ψi|ω1, . . . , ωl]
)
. (3.13)

Denote the exponent in the r.h.s of (3.13) by gil. We first bound |gil|. By the assumption (i) of
Theorem 3.2, ||ψi||8 ď P for all i P rms, where P is a polynomial in n,m,N . We can assume
that λi ď P for i P rms (otherwise, if for some i, λi ą P , the inequality ψi ď E [ψi] ` λi is
trivial and can be neglected). Then using ti “ 4λi

Di1
and the assumption (i) in Theorem 3.2 we

get
max
i,l
|gil| “ OpP max

i

λi
Di1

q.

Set γ :“ δ
mp4n`1q . Let T be the q-th degree Taylor polynomial of the exponential function

with q “ αpP maxi λi
Di1
` log 1

γ
q and let α ą 0 be a constant. Invoking Lemma 3.19 with a

sufficiently large α we have for all i P rms and ω1, . . . , ωl P rN s

|Vilpω1, . . . , ωlq ´ T pgilq| ď γ. (3.14)

Note that T depends upon ω1, . . . , ωl as well. Define the family Wi “ pW
piq
l ql, i P rms, by

W
piq
l pω1, . . . , ωlq :“ T pgilq. Further define the family Ui “ pU piql ql by

U
piq
l pω1, . . . , ωlq :“ W

piq
l pω1, . . . , ωlq ` 2p2n´ lqγ, (3.15)

Set U :“ ⊕
i Ui. By Theorem 3.18, V is a weak pessimistic estimator for ⋂mi“1Ei. Since

Ul “ Wl ` 2p2n´ lq δ
4n`1 for all l P rns Y {0}, by Proposition 3.12, U is a a weak pessimistic

estimator for ⋂mi“1Ei as well.

We show now the claimed time complexity. According to Lemma 3.19 one evaluation of T for
exponents as given in (3.13) takes

Opqq “ OpP max
i

λi
Di1

` log mn
δ
q (3.16)

time. Let i P rms and l P rns Y {0}. In order to compute W i
l pω1, . . . , ωlq we have to

compute the exponent of (3.13). By the assumption (ii) in Theorem 3.2, the computa-
tion of E [ψi | ω1, . . . , ωl] takes OpQq time. Thus the named exponent can be computed in
OpQq time. For fixed i P rms and l P rns Y {0} the time to compute T pgilq is therefore
OpP maxi λi

Di1
` log mn

δ
` Qq, and this is also the time to compute each evaluation of U piql .

Thus for each l P rns Y {0}, the computation time for Ul is OpmpP maxi λi
Di1
` log mn

δ
`Qqq.

We can run the algorithm DERAND with U and get by Proposition 3.11 a total running
time of OpmnNpP maxi λi

Di1
` log mn

δ
`Qqq, and this completes the proof of Theorem 3.2.
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Chapter 4

The Subgraph Containment Problem

Let us recall the standard models of random graphs. Let n P N, M P
[(
n
2

)]
and p P r0, 1s.

Gn,M is the set of graphs chosen uniformly at random from the family of all subgraphs of
Kn with exactly M edges and n nodes. It is the famous random graphs model invented by
Erdős and Rényi [ER59]. Gn,p denotes the set of graphs obtained by adding edges of Kn with
probability p, independently for each edge. This is the random graph model introduced by
Gilbert [Gil59]. We may identify a graph in the model Gn,M resp. Gn,p with the model itself.
So we may say that a fixed graph H is a subgraph of Gn,M resp. Gn,p meaning that H occurs
as a subgraph in a random graph from Gn,M resp. Gn,p. The famous subgraph containment
problem can be stated as follows.

Problem 4.1. (Subgraph Containment Problem in Gn,M) Let G be a fixed graph.
Does Gn,M contain a copy of G ?

In this chapter, we give a new proof of the containment of a fixed subgraph in Gn,M with the
generalized bounded differences inequality (Theorem 2.10).

4.1 Basic Definitions and Known Results
Let eG resp. vG be the number of edges resp. nodes of G. Define

dpGq :“ eG ´ 1
vG ´ 2 and mpGq “ max

{
dpHq : H Ď G, vH ě 3

}
mpGq is a measure of graph density frequently appearing in the theory of random graphs
[JŁR11]. A graph G is called strictly K2-balanced if dpHq ă dpGq, where H Ă G, vH ě 3.
Complete graphs, complete bipartite graphs, cycles etc are examples of strictly K2-balanced
graphs. Let us use the notation “G Ď Gn,M” resp. “G * Gn,M”, if G is a subgraph of Gn,M
resp. is not a subgraph of Gn,M . The same notation should be valid for the Gn,p model.

The theory of random graphs delivers an asymptotically precise answer to the subgraph
containment problem. Janson, Rucinski and Łuczack [JŁR90] proved a remarkable and up to
date best upper bound on the probability of non-existence of fixed G in Gn,p:

41



Chapter 4. The Subgraph Containment Problem

Theorem 4.2. For every fixed graph G containing a cycle, there exists a constant c1 ą 0 and
n1 P N such that for every n ě n1,n P N, and n´

1
mpGq ď p ď 3n´

1
mpGq

PpGn,p Č Gq ď e´c1n2p. (4.1)

The following theorem mentioned in Janson, Łuczak and Ruckinski [JŁR11] is the Gn,M
counterpart of Theorem 4.2.

Theorem 4.3. For every fixed graph G containing a cycle, there exists a constant c11 ą 0 and
n11 P N such that for every n ě n11,n P N, and M “ n2´ 1

mpGq , we have

PpGn,M Č Gq ď e´c
1
1M (4.2)

4.2 Subgraph Containment via the BDI
We will prove an analogue of Theorem 4.3 with the generalized bounded differences inequality,
which will become the basis for derandomizing Maker's random strategy in chapter 5. We
generate a graph in the Gn,M model by choosing M edges randomly in an iterative way.
Let Z1, Z2, ¨ ¨ ¨ , ZM be the random variables corresponding to M iterations. In the k-th
iteration, Zk is chosen from the set Ek :“ {EpKnq z pe1, e2, ¨ ¨ ¨ , ek´1q} uniformly at random,
where pe1, e2, ¨ ¨ ¨ , ek´1q are the edges already chosen in the first k ´ 1 iterations. So, the
E1, E2, ¨ ¨ ¨ , EM are the edge sets depending on the Z1, Z2, ¨ ¨ ¨ , ZM . The Zi’s are dependent
random variables, of course. Note that every graph generated in this way has exactly n nodes
and M edges, and appears with the same probability. Therefore, it is a random graph in the
Gn,M model. The main result of this chapter is the following theorem.

Theorem 4.4. For every fixed, strictly K2-balanced graph G containing a cycle, there exists
constants c̃ ą 0 and ñ P N such that for every n ě ñ, n P N, and M “ Θpn2´1{mpGqq, we have

PpGn,M Č Gq ď 2 exp
(
´c̃M

( M

np2´1{mpGqq

)2peG´1q)
. (4.3)

We first prove a lemma which is essential in the proof of Theorem 4.4. It is a well known
fact for Gn,p [FK15], but has to be established for Gn,M as well. We prove the lemma by the
asymptotic equivalence of the model Gn,p and Gn,M for p “ M

(n2)
.

Lemma 4.5. For every fixed graph G containing a cycle, let eG resp. vG be the number of edges
resp. nodes of G. Let XG be the number of copies of G in the random graph Gn,M . Let p “ M

(n2)
.

Then, for sufficiently large M , we have

E [XG] “ ΘpnvGpeGq (4.4)
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4.2. Subgraph Containment via the BDI

Proof. Let Nn
G be the number of copies of G in the complete graph Kn. It is known that

Nn
G “

( nvG) vG!
autpGq

, where autpGq is the cardinality of the automorphism group of G [FK15]. Since
G is a fixed graph, we may view vG and autpGq as constants not depending on n. Thus

Nn
G “ ΘpnvGq. (4.5)

Let SG be the set of all copies of G in Kn. For each copy, H P SG, let

IH “

{
1 : if H is a subgraph of Gn,M
0 : if H is not a subgraph of Gn,M

We first introduce some terminology. A graph property is a property that holds for a graph
regardless of how its vertices are labeled. We say that a graph property is monotonically
increasing, when the following assertion holds: if the property is true for the graph G1

“ pV,E
1

q,
then it holds for any graph G

2

“ pV,E
2

q where E 1

Ď E
2 . Let P pn,Mq resp. P pn, pq be

the probability that a certain graph property P holds for a graph in Gn,M resp. Gn,p. Let
p` “ p1 ` εqM{

(
n
2

)
and p´ “ p1 ´ εqM{

(
n
2

)
for a constant 0 ă ε ă 1. Then Lemma 5.14

[MU17] says

P pn, p´q ´ e´OpMq
ď P pn,Mq ď P pn, p`q ` e´OpMq (4.6)

In our context, let P pn,Mq resp. P pn, pq be the probability of the occurence of the subgraph
H in Gn,M resp. Gn,p. The property of occurence of H in Gn,p̃ resp. Gn,M̃ is montononically
increasing for any p̃ P r0, 1s and any M̃ P r

(
n
2

)
s. For any p̃ P r0, 1s, we have P pn, p̃q “ p̃epHq.

By (4.6), we getp1´ εqM(
n
2

)
eH ´ e´OpMq

ď P pn,Mq ď

p1` εqM(
n
2

)
eH ` e´OpMq (4.7)

For large value of M , the term e´OpMq tends exponentially fast to 0, and is negligible. Hence
we can choose constants c1, c2 ą 0 such that for large M ,

c1p
eH ď P pn,Mq ď c2p

eH (4.8)

We calculate E [XG]:

E [IH ] “ PpIH “ 1q “ P pn,Mq (4.9)

Since XG “
∑
HPSG IH , by linearity of expectation and (4.8), we get for sufficiently large M

E [XG] “ Nn
GP pn,Mq “ ΘpnvGpeGq. (4.10)
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Let s :“ cE [XG] for a suitably chosen constant c ą 0 and let π “ pP1, P2, ¨ ¨ ¨ , Psq be
an arbitrary partition of the set of edges of Kn into sets Pi of size |Pi| ă n2{2s for all
i “ 1, 2, ¨ ¨ ¨ , s. Two copies of G are called π-disjoint if for each index i at most one of them
has an edge in Pi. Let Dπ,GpHq be the maximal number of pairwise π-disjoint copies of G in
a graph H from Gn,M .

Since Gn,M is generated by the random variables Z1, Z2, ¨ ¨ ¨ , ZM , we may write

fpZ1, Z2, ¨ ¨ ¨ , ZMq “ Dπ,G (4.11)

for a suitable function f .

Let z1, z2, ¨ ¨ ¨ , zk´1 be some arbitrary values the random variables Z1, Z2, ¨ ¨ ¨ , Zk´1 can take.
Let z :“ pz1, z2, ¨ ¨ ¨ , zk´1q. Set

rankpzq :“ sup
e,e1 PEk

∣∣∣E [Dπ,G | z, Zk “ e]´ E
[
Dπ,G | z, zk´1, Zk “ e

1
]∣∣∣ (4.12)

rank is the range function w.r.t Dπ,G as defined in the context of the generalized BDI (chapter
1, 2.10). Further, let for k “ 1, 2, ¨ ¨ ¨ ,M

r̂k :“ max
z
rankpzq, and r2 :“

M∑
k“1

r̂2
k. (4.13)

r2 is the essential parameter for the generalized BDI. As we wish to prove Theorem 4.4 using
the generalized BDI, we have to fix the value of r2 in the following lemma.

Lemma 4.6. For every fixed graph G containing a cycle, let r2 be the sum of squared maximum
ranges of the function Dπ,G as in (4.13), where Dπ,GpHq be the maximal number of pairwise
π-disjoint copies of G in a random graph H from Gn,M . Then r2 ďM .
Proof. Claim 1: r2 ďM

This claim follows from the inequality r̂k ď 1 for all k “ 1, 2, ¨ ¨ ¨ ,M , which on the other
hand follows from rankpzq ď 1 for all z, and this follows from

Claim 2:
∣∣∣E [Dπ,G | z, Zk “ e]´ E

[
Dπ,G | z, zk´1, Zk “ e

1
]∣∣∣ ď 1 for all z.

For the proof of Claim 2, we estimate the change of Dπ,G, when only one edge is changed.
So let H be the graph associated to some arbitrary, but now fixed evaluations of the
random variables Z1, Z2, ¨ ¨ ¨ , Zk´1, Zk, Zk`1, ¨ ¨ ¨ , ZM , and let H be the graph associated to
Z1, Z2, ¨ ¨ ¨ , Zk´1,Zk, Zk`1, ¨ ¨ ¨ , ZM , where Zk is an edge e1 different from the edge Zk “ e.
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4.2. Subgraph Containment via the BDI

Claim 3: |Dπ,GpHq ´Dπ,GpHq| ď 1

For the proof, let l resp. l1 be the cardinality of maximal sets of π-disjoint copies of G in H
resp. H. So Dπ,GpHq “ l and Dπ,GpHq “ l

1 and Claim 3 says

|l ´ l1 | ď 1 (4.14)

Assume for a moment that l ´ l1 ě 2. W.l.o.g let l ą l
1 . Let SmaxpHq resp. SmaxpHq be sets

of maximal π-disjoint copies of G in H resp. H. Thus |SmaxpHq| “ l and |SmaxpHq| “ l
1 .

Case 1: There is a graph G˚ P SmaxpHq with e P G˚.

By π-disjointness, e R G1 for all G1

P SmaxpHq z {G˚}, and all of these G1 are copies of G in
H. But their number is l ´ 1 ą l

1 , in contradiction to the maximality of l1 .

Case 2: e R G˚ for all G˚ P SmaxpHq. Then obviously, all these G˚ are copies of G in H, but
their number is l ą l

1 , a contradiction to the maximality of l1 .

We have proved Claim 3.

Now we proceed to prove Claim 2.

To shorten the notation, let us set gpωq :“ Dπ,Gpωq, where ω P Ω, and Ω is the sample space.
Claim 3 says that |gpωq ´ gpω

1

q| ď 1, if ω and ω1 differs only at one coordinate. The proof
of Claim 2 is in fact a very general argrument relying on Claim 3. Let Σk be the σ-field
generated by the random variables Z1, Z2, ¨ ¨ ¨ , Zk, k “ 1, 2, ¨ ¨ ¨ ,M . The equivalence relation
““k”, where ω “k ω

1 iff ω and ω1 are equal for the first k coordinates, generates a partition
Pk of Ω, and

E [g |Σk] “
∑
C PPk

E [g |C]1C , (4.15)

Let C0 P Pk resp. C1 P Pk be the partition sets with

C0 “ {ω P Ω : z, ωk “ e}, C1 “ {ω P Ω : z, ωk “ e
1},

Now

E [g |C0] “ E [g | z, Zk “ e] and E [g |C1] “ E
[
g | z, Zk “ e

1
]
, (4.16)

Let ϕ : C0 Ñ C1 be the map defined by

ϕpω1, ¨ ¨ ¨ , ωk´1, e, ωk`1, ¨ ¨ ¨ , ωMq :“ pω1, ¨ ¨ ¨ , ωk´1, e
1

, ωk`1, ¨ ¨ ¨ , ωMq.

ϕ is a bijective function and
Ppϕpωqq “

PpC1q

PpC0q
Pp{ω}q (4.17)

45



Chapter 4. The Subgraph Containment Problem

Note: In the current scenario, we choose ωk`1, ωk`2, ¨ ¨ ¨ , ωM uniformly at random from the
corresponding sets Ek`1, Ek`2, ¨ ¨ ¨ , EM . Hence

Pp{ωj}q “
1
|Ej|

(4.18)

for all j P {k ` 1, k ` 2, ¨ ¨ ¨ ,M} devoid of ω P C0 or ω P C1. So

PpC0q “
∑
ω PC0

Pp{ω}q “
∑
ω PC0

M∏
j“k`1

1
|Ej|

“
∑
ω PC1

M∏
j“k`1

1
|Ej|

“ PpC1q, (4.19)

and

|E [g |C0]´ E [g |C1] | “
∣∣∣∣ 1
PpC0q

∑
ω PC0

gpωqPp{ω}q ´ 1
PpC1q

∑
ω PC1

gpωqPp{ω}q
∣∣∣∣

“

∣∣∣∣ 1
PpC0q

∑
ω PC0

gpωqPp{ω}q ´ 1
PpC1q

∑
ω PC0

gpϕpωqqPp{ϕpωq}q
∣∣∣∣

“

∣∣∣∣ 1
PpC0q

∑
ω PC0

gpωqPp{ω}q ´ 1
PpC0q

∑
ω PC0

gpϕpωqqPp{ω}q
∣∣∣∣ (by 4.17)

ď
∑
ω PC0

|gpωq ´ gpϕpωqq|︸ ︷︷ ︸
ď 1, by Claim 3

Pp{ω}q
PpC0q

ď 1

and Claim 2 is proved.

In the next lemma, we establish the relationship between E [Dπ,G] and E [XG]. As we have an
explicit formula for E [XG] (see (4.10)), we shall use it to give a bound on E [Dπ,G].

Lemma 4.7. For every fixed strictly K2-balanced graph G containing a cycle, let Dπ,GpHq be
the maximal number of pairwise π-disjoint copies of G in a random graph H from Gn,M . Then
for large M , E [Dπ,G] “ ΘpE [XG]q.
Proof. Obviously Dπ,G ď XG, so E [Dπ,G] ď E [XG]. The lower bound for E [Dπ,G] needs some
work:

Let Yπ,G be the number of non π-disjoint pairs of copies of G in Gn,M . Clearly, Dπ,G ě XG´Yπ,G.
By definition, a pair pH 1

, H
2

q is a non π-disjoint pair of copies of G if either H 1

XH
2

‰ ∅ or
H
1

XH
2

“ ∅ and H 1

, H
2 have an edge in at least one common Pi for some i P rss.

Case 1: pH 1

XH
2

q ‰ ∅
By (4.5), for each proper subgraph K of G, Nn

K “ ΘpnvKq and Nn
G´K “ ΘpnvG´vKq. Let

46



4.2. Subgraph Containment via the BDI

N1,K be the number of pairs pH 1

, H
2

q of copies of graph G in the complete graph Kn with
pH

1

XH
2

q isomorphic to K. Then

N1,K “ Nn
KN

n
G´KN

n
G´K “ ΘpnvKn2pvG´vKqq. (4.20)

Case 2: pH 1

XH
2

q “ ∅
As mentioned above, in this case for pH 1

, H
2

q to be a non π-disjoint pair of copies of G, H 1

, H
2

both must have an edge in at least one common Pi for some i P rss. Let N2 be the number of
pairs pH 1

, H
2

q of copies of graph G in the complete graph Kn satisfying this condition. There
are s partitions and at most n2

2s edges in each partition Pi, i P rss. We can choose edges e, e1 in
the same parition in s

(
n2{2s

2

)
ways. By p4.5q, we have Nn

pH 1´eq
“ Nn

pH2´e1 q
“ ΘpnvG´2q copies of

H
1

´ e, resp. H2

´ e
1 in Kn, and hence N2 “ s

(
n2{2s

2

)
Nn
pH 1´eq

Nn
pH2´e1 q

“ Θ
(
s
(
n2{2s

2

)
n2pvG´2q

)
.

In our context, let P pn,Mq resp. P pn, pq be the probability of the occurence of the non
π-disjoint pair of copies of G, pH 1

, H
2

q in Gn,M resp. Gn,p. The property of occurence of the
non π-disjoint pair of copies of G, pH 1

, H
2

q in Gn,p̃ resp. Gn,M̃ is montononically increasing
for any p̃ P r0, 1s and any M̃ P r

(
n
2

)
s. In case 1, pH 1

XH
2

q is isomorphic to a graph K of G.
So, for a p̃ P r0, 1s, we have P pn, p̃q “ p̃2epGq´epKq. By (4.6), we getp1´ εqM(

n
2

)
2eG´eK

´ e´OpMq
ď P pn,Mq ď

p1` εqM(
n
2

)
2eG´eK

` e´OpMq (4.21)

For large value of M , the term e´OpMq tends exponentially fast to 0, and is negligible. Hence
we can choose constants c1, c2 ą 0 such that:

c1p
2eG´eK ď P pn,Mq ď c2p

2eG´eK (4.22)

Similarly, in case 2, for a p̃ P r0, 1s, we have P pn, p̃q “ p̃2epGq. By (4.6), we getp1´ εqM(
n
2

)
2eG

´ e´OpMq
ď P pn,Mq ď

p1` εqM(
n
2

)
2eG

` e´OpMq (4.23)

For large value of M , the term e´OpMq tends exponentially fast to 0, and is negligible. Hence
we can choose constants c3, c4 ą 0 such that:

c3p
2eG ď P pn,Mq ď c4p

2eG (4.24)

As G is strictly K2 balanced, E [XG] “ opE [XL]q for any proper subgraph L of G (see Remark
3.17 and Section 3.2 [JŁR11]). Also note when M “ Θpn2´ 1

mpGq q then E [XG] “ Θp1q. Hence
the expected number of non π-disjoint pairs is:
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E [Yπ,G] “
∑

K“H 1XH2‰∅

N1,K p
2eG´eK `

∑
H 1XH2“∅

p2eG (K “ H
1

XH
2

‰ ∅ in all first sums)

“
∑

K“H 1XH2

N1,K Opp2eG´eKq `N2 Opp2eGq (by 4.22 and 4.24)

“
∑

K“H 1XH2

Opn2vG´vKp2eG´eKq `O
(
s

(
n2{2s

2

)
n2pvG´2qp2eG

)

“
∑

K“H 1XH2

O
(
E [XG]2

E [XK]

)
`O

(
s

(
n2{2s

2

)
n2pvG´2qp2eG

)
(by Lemma 4.5)

“
∑

K“H 1XH2

O
(
E [XG]2

E [XK]

)
︸ ︷︷ ︸

is negligible given E [XG] “ opE [XK ]q

`O
(
s

(
n2{2s

2

)
n2pvG´2qp2eG

)
(4.25)

“ O
(
s

(
n2{2s

2

)
n2pvG´2qp2eG

)

“ O
(
s

(
n2{2s

2

)
n2pvG´2qp2eG

)

“ O
(
n4

s
n2pvG´2qp2eG

)

“ O
(
n2vGp2eG

s

)

“ O
(
pE [XG]q2

s

)
(by Lemma 4.5) (4.26)

The term ∑
K“H 1XH2 O

(
E[XG]2
E[XK ]

)
in inequality p4.25q is negligible given E [XG] “ opE [XK ]q

and the sum is finite as K is fixed since H is fixed.

Hence, for sufficiently large c, using s “ cE [XG], we have

E [Dπ,G] ě E [XG]´ E [Yπ,G]

ě E [XG]
(

1´O
(
E [XG]
s

))
(by 4.26)

“ E [XG]
(

1´O
(1
c

))
ě c5E [XG] (for some constant c5 ą 0) (4.27)

Proof. (of Theorem 4.4)
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We apply McDiarmid’s generalized bounded differences inequality (Theorem 2.10) and get

PpGn,M Č Gq “ PpXG “ 0q
ď PpDπ,G “ 0q
ď Pp|Dπ,G ´ E [Dπ,G] | ě E [Dπ,G]q

ď 2 exp
(´2pE [Dπ,G]q2∑M

k“1 r̂
2
k

)
ď 2 exp

(´2pE [Dπ,G]q2
M

)
(by Lemma 4.6)

ď 2 exp
(
´
c2pE [XG]q2

M

)
(by Lemma 4.7)

ď 2 exp
(
´
c3n

2vGp2eG

M

)
(for some constant c3 ą 0 with Lemma 4.5)

ď 2 exp
(
´c4n

2vG´4eGM2eG´1
)
(for some constant c4 ą 0)

“ 2 exp
(
´c4n

2vG´4´4eG`4M2eG´1
)

“ 2 exp
(
´c4n

2peG´1qp vG´2
eG´1´2qM2eG´1

)
ď 2 exp

(
´c4n

2peG´1qp 1
mpGq

´2qM2eG´1
)
(as mpGq ě eG´1

vG´2)

“ 2 exp
(
´c4M

( M

np2´1{mpGqq

)2peG´1q)
.

Finally, we can prove Theorem 4.3:

Proof of Theorem 4.3:

Let’s fix M “ n2´1{mpGq. In this case Theorem 4.4 implies Theorem 4.3.

�
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Chapter 5

Derandomizing Maker’s Strategy for the
Maker-Breaker Subgraph Game

In this chaper we study the Maker-Breaker subgraph game GpG, n, bq, where b, n P N and
present a deterministic Maker strategy by derandomizing the random strategy of Bednarska
and Łuczack [BŁ00]. The game is played on the complete graph Kn on n vertices by two
players, Maker and Breaker. In each round of the game, Maker chooses an edge of Kn, which
has not been claimed previously and breaker responds by selecting at most b edges from Kn.
The variable b denotes the bias of the game. The game ends if each of

(
n
2

)
edges of Kn is

claimed by either of the players. If the subgraph constructed during the game by the Maker
contains a copy of G, then he wins, otherwise he looses and Breaker wins the game.

5.1 Previous Work
The game GpG, n, bq is a special case of positional games on graphs with G as a fixed graph.
Games where the size of G depends upon n, like spanning trees, big stars, Hamiltonian cycles
etc. have been extensively studied by Beck [Bec81; Bec94; Bec85; Bec82]. The game where
G “ K3 was introduced by Erdős and Chvátal [CE78]. They showed that for b ď

√
2n Maker

has a winning strategy, while for b ě 2
√
n Breaker has a winning strategy. For 40 years, there

was no essential progress to close the gap between
√

2
√
n and 2

√
n. Recently, Glazik and

Srivastav [GS18] gave a deterministic breaker strategy for b ě
√

8
3 ` ε

√
n, where ε ą 0 is

small and fixed, introducing a new potential function approach, and almost matching the
lower bound of Maker’s win of

√
2
√
n “

√
8
4
√
n.

Beck [Bec94; Bec85; Bec82] also explored the relation of the bias of positional games and
threshold properties of random graphs. Bednarska and Łuczack [BŁ00] in a breakthrough
work used the results on random graphs to show that for the game GpG, n, bq, a random
strategy for the maker is asymptotically optimal in n, but to find the right matching constants
is a major open problem in this area. They modified the above game so that Maker cannot
see Breaker moves but Breaker has all the information about the moves of the Maker. They
proved that even with this weak strategy of Maker, where Maker chooses his edges uniformly
at random among all edges which have not been claimed by him so far, Maker wins with a
probability of at least 1

3 . The main result in [BŁ00] is the following theorem:
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Theorem 5.1. For every graph G which contains at least 3 non-isolated vertices, there exist
positive constants c0, n0 such that for every n ě n0 and b ď c0n

1{mpGq, n, b P N, Maker has a
winning strategy for the game GpG, n, bq.

The above result by Bednarska and Łuczack is based on the following theorem mentioned in
Janson, Łuczak and Ruckinski [JŁR11].

Theorem 5.2. For every graph G containing a cycle, there exists a constant c11 ą 0 and n11 P N
such that for every n ě n11, n P N, and M “ n2´ 1

mpGq , we have

PpGn,M Č Gq ď e´c
1
1M (5.1)

5.2 Proof Strategy and Main Theorem
We briefly describe the proof strategy adopted by Bednarska and Łuczack [BŁ00] to prove
the existence of a random winning strategy for Maker for b ď c0n

1
mpGq .

1. Assume that Maker has no information about the moves of the Breaker, while Breaker has
full information about moves of the Maker. Let e1, e2, ¨ ¨ ¨ , ek´1 be the edges chosen by the
Maker in first k ´ 1 rounds. In the k-th move, Maker chooses edges uniformly at random
from the set Ek “ {EpKnq z {e1, e2, ¨ ¨ ¨ , ek´1}} where EpKnq is the set of edges for Kn.

2. Maker may choose a Breaker edge, in which case Maker looses his chance, and this instance
is referred as failure.

3. Let Sd be the set of edge-disjoint copies of G in Gn,M where M “ 2n2´ 1
mpGq . Let D be the

event, “|Sd| ě δ
1

M”, where δ1 ą 0. In Lemma 4 [BŁ00], it was established that PpDq ě 2
3 .

4. For the random strategy to be successful, it must be shown that the number of failures
f is upper bounded by δ1M . Let us denote this event by F . In fact, it was shown that
PpF q ě 2

3 . Hence PpD X F q ě 1
3 .

Now let us now move to our derandomized strategy.

Since PpD X F q ě 1
3 , Maker’s random strategy is successful with positive probability, and we

would like to derandomize it. But the critical point here is that in the proof of Bednarska
and Łuczack [BŁ00], there is no derandomized version of Theorem 5.2. Our approach will
be to use the new proof of Theorem 5.2 for graphs which are strictly K2-balanced which we
estbalished in chapter 4 with the generalized BDI, and then invoke the derandomized BDI
(Theorem 3.6). Here are the steps:

1. The π-disjointness property implies edge-disjointness. Let Sπ be the set of π-disjoint copies
of G in Gn,M where M “ 2n2´ 1

mpGq . Let D1 be an event, “|Sπ| ě δ
1

M” where δ1 ą 0. We
analyze the event D1 using generalized bounded differences inequality (2.10) and construct
pessimistic estimators pVlql as defined in the chapter 3.
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2. Let us define F 1 as the event “f ď 3
4δ
1

M” where f is the number of failures. We analyze the
event F 1 using generalized bounded differences inequality (2.10) and construct pessimistic
estimators pUlql as defined in chapter 3.

3. Using Proposition 3.10, we define the pessimistic estimators for the event D1

X F
1 . Using

the DERAND algorithm, we get our desired derandomized Maker winning strategy.

Let Z1, Z2, ¨ ¨ ¨ , ZM be the random variables corresponding to the M moves of the Maker.
In the k-th iteration, Zk is chosen from the set Ek :“ {EpKnq z {e1, e2, ¨ ¨ ¨ , ek´1}} uniformly
at random, where e1, e2, ¨ ¨ ¨ , ek´1 are the edges already chosen in the first k ´ 1 iterations.
So, the E1, E2, ¨ ¨ ¨ , EM are the edge sets depending on the random variables Z1, Z2, ¨ ¨ ¨ , ZM .
The Zi’s are dependent random variables, of course. Note that every graph generated in this
way has exactly n nodes and M edges, and appears with the same probability. Therefore,
the graph generated by the Maker moves is a random graph in the Gn,M model.

We want to show that the Maker graph contains a copy of G with positive probability, and
will derandomize this probabilistic statement. Let A be the event that the Maker graph
contains a copy of G. Actually, we consider a much stronger event in the upcoming analysis,
namely that the number of edge-disjoint copies of G in the Maker graph is at least αM for
some suitable constant α ą 0. Let Bα be this event. Then, Bα enforces A. We proceed to
show that

PpBαq ě
1
3 , (5.2)

for some α, and thereafter enter derandomization.

Now as we want to apply the derandomized BDI , we consider two other events enforcing
Bα. The first event D1 is “Dπ,G ě δ

1

M” where constant δ1, δ1 ą 0, was fixed in the proof by
Bednarska and Łuczack [BŁ00]. The second event F 1 is “f ď 3

4δ
1

M”.

Remark 5.3. Now, if the number of failures f is at most 3
4δ
1

M , then among at least δ1M
edge-disjoint copies of G in Gn,M at most 3

4 -th of them are affected by failures, and 1
4δ
1

M

edge-disjoint copies of G with Maker edges, which were never claimed by Breaker remain.
Thus Bα hold with α “ δ

1

4 , enforcing the desired event A, which represents Maker’s win. In
the subesquent corollary 5.7, we will prove that D1

X F
1 enforces Bδ1{4 with probability at

least 1
3 .

First, we count the number of edge-disjoint copies of G with the BDI.

Theorem 5.4. For every fixed strictly K2-balanced graph G containing a cycle let Sd be the
set of edge-disjoint copies of G in Gn,M . Then there exists ñ P N such that for every n ě ñ,
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n P N, a constant δ1 , δ1 ą 0 and M “ 2n2´1{mpGq, we have

Pp|Sd| ě δ
1

Mq ě
2
3 (5.3)

Proof. Let p :“ M

(n2)
. By Lemma 4.5,

E [XG] ě c1n
vG´2eGM eG (for some constant c1 ą 0)

“ c1n
vG´2´2eG`2M eG

“ c1n
peG´1qp vG´2

eG´1´2qM eG

“ c1n
peG´1qp 1

mpGq
´2qM eG

(
mpGq “

eG ´ 1
vG ´ 2

)
“ c1

1
pn2´ 1

mpGq qeG´1
M eG

“ c2M (for some constant c2 ą 0) (5.4)

Let D1 be the event Dπ,G ě δ1M . Now we apply McDiarmid’s generalized bounded differences
inequality (Theorem 2.10) and get:

PpDπ,G ď δ1Mq “ PpDπ,G ´ E [Dπ,G] ď δ1M ´ E [Dπ,G]q
ď PpDπ,G ´ E [Dπ,G] ď δ1M ´ c̃E [XG]q (by Lemma 4.7 )
ď PpDπ,G ´ E [Dπ,G] ď δ1M ´ c3Mq (by 5.4)

ď exp
(
´

c4M
2∑M

k“1 r̂
2
k

)
(by Theorem 2.10) (5.5)

“ exp
(
´c4M

)
(by Lemma 4.6) (5.6)

ď
1
3 , (5.7)

where c̃, c3, c4 ą 0 are suitable constants where c3 ą δ1.

Since |Sd| ě Dπ,G, we are done.

Remark 5.5. For b ď 1
8δ
1

n1{mpGq, M “ 2n2´ 1
mpGq and sufficiently large n, after M rounds at

most δ
1

2

(
n
2

)
edges are either claimed by Maker or Breaker.

Recall that f is the number of failures and F 1 is the event “f ď 3
4δ
1

M” for δ1 ą 0. We now
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show that the probability of event F 1 is at least 2
3 . It was established in [BŁ00] that the

probability of failure is at most δ1{2. Let X1, X2, ¨ ¨ ¨ , XM be the 0-1 random variables which
represent whether the i-th round by the Maker resulted in a failure, i P rM s. Let Bi be the
set of edges acquired by Breaker in the first i´ 1 rounds, i P rM s. So,

Xi “

{
1 if Zi P Bi

0 otherwise,
i P rM s. Clearly,X1, X2, ¨ ¨ ¨ , XM are dependent random variables and f “ X1`X2`¨ ¨ ¨`XM .
Since, the probability of failure in an round is at most δ1{2, we have E [f ] ď δ

1

M{2.

By the generalized bounded differences inequality (Theorem 2.10), we get

Lemma 5.6. Under the assumptions of Theorem 5.4, given b ď 1
8δ
1

n1{mpGq and constant δ1 ,
δ
1

ą 0, we have PpF 1cq ď 1
3 .

Proof. Let x1, x2, ¨ ¨ ¨ , xk´1 be arbitrary but fixed values of the random variablesX1, X2, ¨ ¨ ¨ , Xk´1.
Let x :“ px1, x2, ¨ ¨ ¨ , xk´1q. Set

rankpxq :“ sup
e,e1 PEk

∣∣∣E [f |x,Xke ]´ E
[
f |x,Xk

e
1

]∣∣∣ (5.8)

where Xk “ Xke , Xk
e
1 if Zk “ e, Zk “ e

1 respectively. rank is the range function w.r.t f as
defined in the context of the generalized BDI (chapter 1, 2.10). Further, let for k “ 1, 2, ¨ ¨ ¨ ,M

r̂k :“ max
x

rankpxq, and r2 :“
M∑
k“1

r̂2
k. (5.9)

Let f resp. f 1 be the failures given x “ px1, x2, ¨ ¨ ¨ , xk´1, xk, xk`1, ¨ ¨ ¨ , xMq resp. x1 “
px1, x2, ¨ ¨ ¨ , xk´1, x

1

k, xk`1, ¨ ¨ ¨ , xMq where x be some arbitrary but now fixed values of ran-
dom variables X1, X2, ¨ ¨ ¨ , XM where Xk “ Xke and x

1 where Xk “ Xk
e
1 . Hence |f ´ f

1

| “

|Xke ´Xk
e
1 | ď 1. Now as shown in the proof of Claim 2 of Lemma 4.6, we can establish that

rankpxq ď 1. Hence r2 ďM . So,

Ppf ě
3
4δ

1

Mq “ Ppf ´ E [f ] ě 3
4δ

1

M ´ E [f ]q

“ Ppf ´ E [f ] ě 3
4δ

1

M ´
1
2δ

1

Mq

ď P

f ´ E [f ] ě δ
1

M

4︸ ︷︷ ︸
=:t

 (5.10)

ď e´
2t2

r2 (5.11)
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ď e´
pδ
1
q2M
8 (5.12)

ď
1
3 , for sufficiently large M . (5.13)

Corollary 5.7. Under the assumptions of Theorem 5.4, given b ď 1
8δ
1

n1{mpGq and constant δ1 ,
δ
1

ą 0, we have PpD1

X F
1

q ě 1
3 , and PpAq ě 1

3 , so with probability at least 1
3 the Maker

graph without failure edges contains a copy of G.
Proof. By (5.13), Theorem 5.4 and Remark 5.3 we are done.

Thus we can construct a derandomized winning strategy for Maker using the derandomization
framework developed for the generalized BDI.

5.3 The Derandomized Maker Strategy
We construct pessimistic estimators V “ pVlql, l P {0, 1, 2, ¨ ¨ ¨ ,M}, for the event D1 and
U “ pUlql, l P {0, 1, 2, ¨ ¨ ¨ ,M}, for the event F 1 according to the Definition 3.17 in chapter
3. Using Proposition 3.10, we can then define the pessimistic estimators W “ pWlql, where
Wl “ Ul ` Vl, l P {0, 1, 2, ¨ ¨ ¨ ,M}, for the event D1

X F
1 . Maker plays according to the

following algorithm. Maker chooses an edge in each iteration which mimimizes the value of
the pessimistic estimator pWlql.

Algorithm 1: DERANDOMIZED MAKER STRATEGY
Input :The event D1

X F
1 representing Maker’s win and pessimistic estimators

W “ pWlql for the event D1

X F
1 and M :“ 2n2´ 1

mpGq

Ź For l “ 1, ¨ ¨ ¨ ,M , do : If the edges corresponding z1, ¨ ¨ ¨ , zl´1 are fixed, choose Zl as the
minimizer of the function ω Ñ Wlpz1, . . . , zl´1, ωq.

Output :A vector z P D1

X F
1

Theorem 5.8. Let G be a fixed and strictly K2-balanced graph with at least 3 non-isolated
vertices and a cycle.

(i) There exist positive constants c̃0, n0 such that for every n ě n0 and b ď c̃0n
1{mpGq,

Maker wins the game GpG, n, bq playing according to Algorithm 1.

(ii) In each round of the game, Maker needs Op2n
2´ 1

mpGq logpnqq time to compute the pes-
simistic estimator.
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Proof. We have two events F 1 and D1 . Let, in view of Theorem 3.6, F 1 be the first event and
D
1 be the second event. So, m “ 2. Further, since the Ak’s are subsets of EpKnq, N ď n2

2 .
The sample space in Theorem 3.6 is of the form Ω “ ∏n1

k“1Ak for some n1 P N. In our context,
the game is played for M rounds, so n1 “M . For the first event F 1 , according to the notation
of Theorem 3.6 as r̂k ď 1, d1k “ 1 for all k P rM s, D11 “ d2

11 ` ¨ ¨ ¨ ` d
2
1M “M , and by (5.10),

λ1 ďM . Furthermore, f is sum of M indicator random variables so f ďM as well. Since f
is linear and has M terms, we can compute E [f |x1, x2, ¨ ¨ ¨ , xl], where Xi “ xi for i P rls, in
OpMq time, for any choice of l ďM , z1, ¨ ¨ ¨ , zl and corresponding x1, ¨ ¨ ¨ , xl.

We now consider the second event D1 . According to the bound used in the generalized
BDI estimation (5.5), λ2 “ ΘpMq. The parameter D21 as defined in the context of the
derandomized generalized BDI (Theorem 3.6), is D21 “ r̂2

1` ¨ ¨ ¨` r̂
2
M , and by (5.6), D21 “M .

Furthermore,

‖Dπ,G‖8 “ max
H PGn,M

Dπ,GpHq “ OpMq (5.14)

Here is an argument for (5.14). Let us fix an H P Gn,M . The partition π has at most s
partition sets, where s “ cE [XG]. Since two π-disjoint copies of partition set cannot share an
edge in a partition set, there are at most s π-disjoint copies of G in H.

By (4.10) and by argument similar to given in (5.4), we have

E [XG] “ ΘpnvGpeGq “ OpMq.

So,
Dπ,GpHq “ OpMq, and ‖Dπ,G‖8 “ OpMq.

Let Q0 be the running time to compute the conditional expectations E [Dπ,G | z1, z2, ¨ ¨ ¨ , zl],
l P rM s and set Q “ maxpOpMq, Q0q. Then the overall running time according to Theorem
3.6 is

O
(
mn1N

[
max
i“1,2

Pi
λi
Di1

` logpmn
1

δ
q `Q

])
. (5.15)

Further, from the above

λ1

D11
ď

M

D11
“
M

M
“ 1.

And,

λ2

D21
“
θpMq

M
“ Op1q.

Thus, (5.15) becomes
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O
(
n4
[
n2´ 1

mpGq ` logpn2
q `Q

])
“ O

(
n6´ 1

mpGq ` n4Q
)

(5.16)

We now compute Q0, and hence Q.

Correctness : By corollary 5.7, and assuming Q being calculated, the generalized BDI delivers
a vector z P F 1

XD
1 . By remark 5.3, this is Maker’s win.

Running Time : We now upper bound the computation time time Q0 for the conditional
expectation in Theorem 3.6. This needs some work for the event D1 .

Claim: The conditional expectations E [Dπ,G | z1, z2, ¨ ¨ ¨ , zl], can be computed for each l P rM s

in Op2
1

mpGq
n

2´ 1
mpGq logpnq

q time. Thus, Q0 “ Op2
1

mpGq
n

2´ 1
mpGq logpnq

q. So Q “ Op2
1

mpGq
n

2´ 1
mpGq logpnq

q,
and this is also the overall running time according to (5.16).

We define a configuration as a set of M Maker edges from Kn. Let us first compute the
number of configurations C after l rounds of the game. Set u :“

(
n
2

)
´ l. Then u is the number

of edges left for Maker after l rounds, including failures. As l out of the M edges are already
chosen by Maker, he can choose rest M ´ l edges from u in upcoming rounds, and there are(

u
pM´lq

)
such choices. So,

C “

(
u

M ´ l

)
“

u!
pu´M ` lq!M ´ l! (5.17)

We can easily see that the value of C is monotonically decreasing in l. So

C “
u!

u´ pM ´ lq!pM ´ lq! ď

(
n
2

)
!((

n
2

)
´M

)
!M !

ď

(
n2

2

)M /
M !

ď

(
n2

2

)M
eM

eMM
(by Stirling’s formula)

ď

(
2n2

M

)M
ď pn

1
mpGq q

M

“ O
(

2
1

mpGq
n

2´ 1
mpGq logpnq

)
(5.18)

Now let’s choose an arbitrary, but now fixed configuration. We count copies of G upto
isomorphism in the subgraph formed by the configuration. We can do this in OpnvGe2

G
q time

but since G is fixed, the running time is OpnvGq.
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Let LG be the set of copies of G in the aforementioned configuration computed so far. Recall
from Chapter 4 that π “ pP1, P2, ¨ ¨ ¨ , Psq be an arbitrary parition of the edges of the complete
graph Kn. For each graph K P LG, let PK be the set of partition sets of π, which contain
some edge of K. Let us consider a graph Γ with vertices as elements of LG, and an edge
{K,K 1}, K,K 1

P LG exists, if PK X PK1 ‰ ∅. The size of a maximum independent set in Γ
is equal Dπ,G. We can find the maximum independent set in Op2n

2´ 1
mpGq

q time.

So,

Q0 ď 2
1

mpGq
n

2´ 1
mpGq logpnq.nvG .2n

2´ 1
mpGq

“ 2
1

mpGq
n

2´ 1
mpGq logpnq`vG logpnq`n

2´ 1
mpGq

“ 2
1

mpGq
n

2´ 1
mpGq logpnqp1`op1qq

leading to Q “ maxpM,Q0q “ 2
1

mpGq
n

2´ 1
mpGq logpnqp1`op1qq and with (5.16) the overall running

time is 2
1

mpGq
n

2´ 1
mpGq logpnqp1`op1qq.

Remark 5.9. In the proof of Theorem 5.8, i.e. the computation of the pessimistic estimator,
we saw that the superexponential time complexity stems from three hard problems: Counting
subgraphs, the subgraph isomorphism problem and the maximum independent set problem.

Open Question: Is there a polynomial-time deterministic Maker strategy for the subgraph
problem which is asymptotically optimal for b “ Opn

1
mpGq q?
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Chapter 6

Derandomized Hybrid Algorithm for the
Set-Multicover Problem

Set cover is an important problem in field of combinatorial optimization which led to the
development of fundamental techniques in the field of approximation algorithms. We will
study generalized version set b-multicover, of the set cover problem. The problem can be
naturally expressed in the context of hypergraphs. A hypergraph H “ pV, Eq consists of a
finite set V and a set E of subsets of V . We call elements of V as vertices and the elements
of E (hyper-)edges. We fix n :“ |V |, m :“ |E |.

The edge size is the cardinality of the edge. Let l be the maximum edge size and let ∆ be the
maximum vertex degree, where the degree of a vertex is the number of edges containing that
vertex. For v P V , let Epvq be the set of hyperedges containing v. For b P N, a set b-multicover
in H is a set of edges C Ď E such that every vertex in V belongs to at least b edges in
C. set b-multicover is the problem of finding a set b-multicover of minimum cardinality.
Define δ :“ ∆´ b` 1.

6.1 Previous Work
For a minimization problem, a polynomial-time algorithm A has an approximation ratio
α ě 1, or is an α-approximation, if for all problem instances I it holds that the set b-multicover
ApIq returned by A satisfies |ApIq| {Opt ď α where Opt is the optimum value of the problem
instance. Hall and Hochbaum [HH86] gave a δ-approximation algorithm with running time
of Opm ¨max{n,m}q. Peleg, Schechtman and Wool [PSW97], broke the δ barrier and gave
an approximation algorithm with an approximation ratio of δ ¨ p1´ p c

n
q

1
δ q, where c ą 0 is a

constant bounded from below roughly by 2´250 and hence the approximation ratio tends to δ
as n grows. The authors conjectured that unless P “ N P , there does not exist a polynomial
time approximation algorithm with a constant approximation ratio smaller than δ.

El Ouali et al. [EMS14] settled this conjecture for l P max{pnbq 1
5 , n

1
4 }. They presented

a hybrid randomized algorithm, combining LP-based randomized rounding and a greedy
repairing, if the randomized solution is infeasible. It was shown that the algorithm achieves
an approximation ratio of δ ¨

(
1´ 11p∆´bq

72l

)
with constant probability for l P max{pnbq 1

5 , n
1
4 }.
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They improve upon results of Peleg et al. [PSW97]: For any l satisfying l “ O
(
p∆´ bq ¨ n

1
δ

)
approximation ratio is at most the ratio of Peleg et al., and it is better, smaller the l is. In the
important case of l being a constant, the ratio is δ ¨ p1´ cq, c P p0, 1q a constant independent
of n.

El Ouali et al. use two different methods to analyze the algorithm and hence get two bounds
on l. They use independent bounded differences inequality and Angluin-Valiant bound for
analysis of the algorithm where l ď pnbq 1

5 . Hence we use the derandomization framework
described in the Theorem 3.14 to get deterministic counterpart of randomized algorithm.

6.2 Linear Program and the Hybrid Randomized Algorithm
We will define the linear program for the set b-multicover. Let A “ paijqpi,jqPrnsˆrms be
its incidence matrix of hypergraph H, where aij “ 1 if vertex i is contained in edge j, and
aij “ 0 otherwise. Then the (relaxed) linear programming formulation of set b-multicover
is the following:

pb´ LP q min
m∑
j“1

xj

m∑
j“1

aijxj ě b for all i P rns

xj P r0, 1s for all j P rms.

Let Opt˚ be the value of an optimal solution to b´LP.
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We first briefly describe the algorithm of El Ouali et al.

Algorithm 2: SET b-MULTICOVER
Input : b P N, ε P p0, 1q, a hypergraph H “ pV, Eq with maximum degree ∆
Output :A set b-multicover C
1. Initialize C :“ H and set λ :“ p1´ εqδ.
2. Obtain an optimal solution x˚ P r0, 1sm by solving the LP relaxation of set multicover.
3. Set S0 :“ {Ej P E | x˚j “ 0}, Sě :“ {Ej P E | x˚j ě 1

λ
}

and Să :“ {Ej P E | 0 ­“ x˚j ă
1
λ
}.

4. Take all edges of Sě into the cover C and set E “ EzS0.
5. (Randomized Rounding) For all edges Ej P Să include the edge Ej in

the cover C, independently for all such Ej, with probability λx˚j .
6. (Repairing) Repair the cover C (if necessary) as follows: Include arbitrary

edges from Să, incident to vertices not covered by b edges, to C until all
vertices are covered by at least b edges.

7. Return the cover C.

The following lemma shows that all vertices are almost covered after step 4 of Algorithm 2.

Lemma 6.1. (Lemma 2.1, [PSW97]) Let 0 ă ε ď 1
4 and b, d,∆ P N with 2 ď b ď d´ 1 ď ∆´ 1.

Let λ “ p1´ εqδ and let xj P r0, 1s, j P rds, such that ∑d
j“1 xj ě b. Then at least b´ 1 of the

xj fulfill the inequality xj ě 1
λ
.

For the derandomization we need some more details of the analysis of the randomized
algorithm, in particular we need to identify the events of interest. Let X1, ..., Xm be {0, 1}-
random variables defined as follows:

Xj “

1 if the edgeEj was picked into the set cover before repairing
0 otherwise.

Note that the X1, ..., Xm are independent random variables. For all i P rns we define the
{0, 1}-random variables Zi as follows:

Zi “

1 if the vertex vi is covered by at least b edges before repairing
0 otherwise.

Then Y :“ ∑m
j“1Xj is the cardinality of set cover after randomized rounding andW :“ ∑n

i“1 Zi
is the number of vertices which are covered at least b times after this step. By Lemma 6.1,
there exists atleast b´ 1 edges in Sě that contains v for all v P V .

Thus the number of additional edges taken into the cover in the repairing step is at most
n´W . So the size of the cover can be estimated as below:

|C| ď Y ` n´W. (6.1)
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Let us denote by tpLP q the time to solve the LP relaxation in step 2 of the Algorithm 2. We
know that tpLP q is polynomial as we can use any polynomial time LP-solver (e.g. Khachiyan
[Kha79] or Karmakar [Kar84]).

6.3 The Derandomized Algorithm
We now state the derandomized version of the randomized set b-multicover algorithm (Theorem
4, [EMS14]).

Theorem 6.2. Let b P Ně2 and let H be a hypergraph with maximum vertex degree ∆ and
maximum edge size l, 3 ď l ď 2´1{4

¨ 3´1︸ ︷︷ ︸
«0.28

¨pnbq
1
5 . Let Opt˚ be the value of an optimal solution

of relaxed linear program. Then there exists a deterministic OptpLP q `m2nq time algorithm
that returns a set b-multicover of size

|C| ď
(

1´ 11p∆´ bq

72l

)
δ ¨Opt˚. (6.2)

Proof. Given 3 ď l ď 2´1{4
¨ 3´1︸ ︷︷ ︸

«0.28

¨pnbq
1
5 and β “

√
2l√
nb
, let us now define the event E, which

takes care of the feasibility of the solution as:

W ą np1´ ε2q ´ α, (6.3)

where α :“
√
δ ¨
∑m
k“1 |Ek|2 and E [W ] ě np1´ ε2q. The event F , which relates to the quality

of the solution is defined as:

Y ă λp1` βqOpt˚. (6.4)

We will first analyze the event Ec. Consider the function fpX1, . . . , Xmq :“ ∑n
i“1 Zi. Then

we have for any two vectors x “ px1, . . . , xk, . . . , xmq and x1 “ px1, . . . , x
1
k, . . . , xmq that only

differ in the k-th coordinate

|fpx1, . . . , xk, . . . , xmq ´ fpx1, . . . , x
1
k, . . . , xmq| ď |Ek|

for all k P rms.

In [EMS14] it is shown that the BDI (Theorem 3.5) for event E and the Angluin-Valiant
inequality (Theorem 2.3) for event F give PpEc Y F cq ď e´2 ` e´4, hence PpE X F q ě 0.84.
It is shown in [EMS14] that a vector from E X F satisfies the approximation in (6.2). We
wish to apply Theorem 3.14 to the event E X F leading to the derandomized construction
of vector in E X F . For application of Theorem 3.14 we have to first fix P and Q. Since
max{0,1}n

∑n
i“1 Zi ď n, so we can set P “ n. For computing Ep∑n

i“1 Zi|X1, . . . , Xlq the
linearity of expectation reduce the problem to the computation of EpZi|X1, . . . , Xlq. Let
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Sl :“ Sě Y {E1, E2, ¨ ¨ ¨ , Ek} where E1, E2, ¨ ¨ ¨ , Ek denote the chosen hyperedges, once Xi,
1 ď i ď l, are fixed. Let Epviq denote the set of hyperedges which contain vertex i. We have

E
( n∑
i“1

Zi |X1, . . . , Xl

)
“

n∑
i“1

EpZi |X1, . . . , Xlq

“

n∑
i“1

(
1´ PpZi “ 0 |X1, . . . , Xlq

)

“

n∑
i“1

(
1´

∏
EjPpEpviqzSlq

p1´ λx˚j q
)

Hence we need Opnmq pre-computation time (to construct Epviq sets for every i P rns) and
at most Opnδq “ Opnmq (as m ą δ) steps to compute the conditional expectation, so we can
set Q :“ nm. Also λ

D11
“ α∑m

k“1|Ek|2 “

√
δ¨
∑m

k“1|Ek|2∑m

k“1|Ek|2 ď 1.

By Theorem 3.14, the running time to construct x P E X F is Opmpn ` lnpmq ` mnq `

m2 lnpmqq “ Opm2nq.
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Chapter 7

Derandomized Algorithm for the
Multidimensional-Bin Packing Problem

Bin packing is another extensively studied problem which had rich implications on the field
of approximation algorithms. In the classical bin packing problem, assume we have n items,
{i1, i2, ¨ ¨ ¨ , in}, where the size of each item ik P p0, 1s for all k P rns and bins have capacity 1.
A solution is optimal if it minimizes the number of bins which are required to pack all the
items. The problem was proved to be N P-Hard by Garey and Johnson in 1979 [GJ79]. Bin
packing problem can be naturally extended to higher dimensions, namely vector bin packing
problem and geometric bin packing problem.

In 2-dimensional geometric bin packing problem, we are given a collection of rectangular
items to be packed into minimum unit-sized squares. This variant and other high dimensional
variants have applications in cutting stock, vehicle loading, pellet packing and other logistics,
robotics related problems. In the d-dimensional vector bin packing problem, each bin and
item has d dimensions and we need to partition the items such that we can pack them in
minimum number of bins. For example, we can think of each job as an item with CPU, RAM,
disk, network requirements etc. as its d dimensions. The goal is to assign all the the jobs to
minimum number of computing devices, which can be considered as d-dimensional bins with
bounded amount of d resources required by the jobs.

7.1 Bansal’s Algorithm
Bansal et al. [BCS09] gave the Round and Approx framework (R&A) and used it to construct
algorithms for two-dimensional geometric bin packing problem and vector bin packing
problem. In their paper, Bansal et al. derandomized the R&A framework using the potential
function approach. We give an alternative approach using our derandomization framework
for independent bounded differences inequality.

We first describe the randomized R&A framework of Bansal et al. The basic idea is to
formulate the bin packing problem as a set covering problem. Please note bin packing problem
considered below can either be vector bin packing problem or geometric bin packing problem.
Let us define a configuration C as a subset of items I, which can be packed into a bin. Let us
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denote the set of configurations as C Ď 2I . Note that C can be exponentially large. We safely
assume that the relaxation of the below mentioned LP problem can be solved with in p1` κq
accuracy where κ ą 0. The set covering formulation is to choose the minimum number of
configurations which covers all the items :

min
{ ∑
C P C

xC :
∑
C Q i

xC ě 1 pi P Iq, xC P {0, 1} pC P Cq
}

(7.1)

They construct an approximate solution of the set covering problem (7.1) by performing the
following steps, where α ą 0 is a parameter to be specified later.

1. Solving LP: Solve the linear programming relaxation of the integer linear program (7.1),
possibly approximately in case C is exponentially large in the input size. Let x˚ be the
near-optimal solution of the LP relaxation and z˚ “ ∑

CPC x
˚
C .

2. Randomized Rounding: Define a binary vector xr P R|C| where initially xrC “ 0, for all C P C.
We will iterate dαz˚e times where for each iteration, we select one configuration C 1

independently at random, letting each C P C be selected with probability x˚C
z˚
. Put xrC1 :“ 1.

3. Solving the residual instance: Consider the set of items S Ď I that are not covered by xr,
namely i P S if and only if ∑CQ i x

r
C “ 0, and the associated optimization problem for the

residual instance of the problem is:

min
{ ∑
C P C

xC :
∑
C Q i

xC ě 1 pi P Sq, xC P {0, 1} pC P Cq
}

(7.2)

Apply an approximation algorithm to the residual instance (7.2) yielding solution xa.

4. Combining the solution: Return the solution xh :“ xr ` xa.

This framework was analyzed using Theorem 3.5 and hence we can derandomize its step 2
using Theorem 3.7.

We will fix definitions before we state the result of Bansal et al. Given a deterministic
approximation algorithm, we say that it has asymptotic approximation guarantee ρ if there
exists a constant λ such that the value of the solution found by the algorithm is atmost
ρOPTpIq`λ for each instance I. The OPTpIq denotes the optimal value of the given problem
instance I. If λ “ 0, then the algorithm has absolute approximation guarantee of ρ. Given a
randomized approximation algorithm, we say that it has asymptotic approximation guarantee
ρ if there exists a constant λ such that the value of the solution found by the algorithm is
atmost ρOPTpIq ` λ for each instance I with a probability tending to 1 as OPTpIq tends to
infinity.

We also introduce the concept of subset oblivious algorithms. We let OPTpSq and ApSq
respectively, the optimal value of solution of (7.2) and the value of the heuristic solution by
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the approximation algorithm.

Definition 7.1. An asymptotic ρ-approximation algorithm for the problem (7.1) is called subset
oblivious, if for any fixed ε ą 0, there exist constants k, β, δ (possibly depending upon ε) such
that, for every instance I of (7.1), there exists vectors v1, . . . , vk P R|I| with the following
properties:

1. ∑i PC v
j
i ď β, for each C P C and j “ 1, 2, . . . , k.

2. OPTpIq ě maxkj“1
∑
i P I v

j
i

3. ApSq ď ρmaxkj“1
∑
i PS v

j
i ` εOPTpIq ` δ, for each S Ď I.

This means that quality of approximation algorithm can be expressed in terms of the
above stated set of vectors v1, . . . , vk. Essentially Bansal et al. established that if have an
ρ-approximation algorithm which satisfies subset oblivious property then R&A frameowork
gives an approximation algorithm with asymptotic approximation guarantee of lnpρq ` 1.

The main result of Bansal et al. is:

Theorem 7.2. (Theorem 2, [BCS09]) If the method R&A uses a µ-approximation algorithm to
find an optimal solution of the LP relaxation for µ ă ρ,i.e. z˚ ď µ OPTpIq, and there exists
an asymptotic ρ-approximation subset oblivious algorithm for problem (7.1) then, for any
constant γ ą 0, the cost of the final heuristic solution produced by R&A using that algorithm
in step 3 with α :“ ln ρ´ lnµ is at most

pµpln ρ´ lnµ` 1q ` εqOPTpIq ` δ ` γz˚ ` 1 (7.3)

with probability at least 1´ke´2pγz˚q2{pβ2dz˚ ln ρeq, i.e. method R&A is a randomized asymptotic
pln ρ` ε` 1q-approximation algorithm for problem (7.1) in case when µ “ 1 or µ “ 1` δ for
δ arbitrarily close to 0.

Now, we wish to apply our derandomization framework. For this purpose, more details of the
analysis, in particular the definition of the events we are interested in, are necessary.

Let C1, . . . , Cm P C be the configurations associated with nonzero components of the relaxed
LP solution x˚. Set dαz˚e :“ c. Let us define c random variables Z1, . . . , Zc where for each
i P rcs, Zi P {1, 2, . . . ,m}. The random variable Zi represents the configuration selected in
ith randomized rounding step. At the end of the c iterations of the randomized rounding
step, we would possibly have a set S of items still uncovered by the selected configurations.
We choose atmost dαz˚e edges in the randomized rounding step hence cost of xr is dαz˚e ď
αµOPTpIq ` 1 ď µ lnpρ{µqOPTpIq ` 1.
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Now we calculate the cost of xa. Consider the random variable ∑i PS v
j
i for j “ 1, . . . , k. This

is the same quantity which occurs on the right hand side of the inequality for ApSq given in
the Definition 7.1 for subset-oblivious algorithms. Let us first approximate the expectation of
the random variable ∑i PS v

j
i :

E
(∑
i PS

vji

)
“
∑
i P I

vjiPpi P Sq “
∑
i P I

vji

(
1´

∑
C Q i

x˚C{z
˚

)dαz˚e
ď e´α

∑
i P I

vji (7.4)

where the above inequality holds because ∑C Q i x
˚
C ě 1 for i P I and p1 ´ 1{aqdαae ď

p1´ 1{aqαa ď e´α for a ą 0.

By the structure of the algorithm, the random variable ∑i PS v
j
i is a function of Z1, Z2, . . . , Zc.

Let us define functions fj by

fjpZ1, Z2, . . . , Zcq :“
∑
i PS

vji (7.5)

for all j “ 1, 2, . . . , k.

In our context, changing value of Zi means that we choose a different configuration C 1 in
place of configuration C. Let S 1 be the resulting set of uncovered items. Then

∣∣∣∣ ∑
i PS

vji ´
∑
i PS1

vji

∣∣∣∣ ď max
( ∑
CzC1

vji ,
∑
C1zC

vji

)
ď β (7.6)

The last inequality follows from the first property of subset oblivious algorithms.

Let us define a event Ej for j “ 1, 2, ¨ ¨ ¨ , k by:

∑
i PS

vji ´ Ep
∑
i PS

vji q ď γz˚ (7.7)

Applying Theorem 3.5, we get the following upper bound on probability for Ec
j

P
[∑
i PS

vji ´ Ep
∑
i PS

vji q ě γz˚
]
ď e´2pγz˚q2{pβ2dαz˚eq (7.8)

Based on the above bound, we substitute maxkj“1
∑
i PS v

j
i by E

[∑
i PS v

j
i

]
` γz˚ in the third

condition of subset obliviousness to calculate the cost of xa. By union bound, we get the
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probability of the event ⋃j Ec
j and hence we establish the statement of Theorem 7.2.

7.2 The Dearandomized Algorithm
We now prove the derandomized counterpart of Theorem 7.2.

Theorem 7.3. If the method R&A uses a µ-approximation algorithm to find an optimal
solution of the LP relaxation for µ ă ρ,i.e. z˚ ď µ OPTpIq, and there exists an asymptotic
ρ-approximation subset oblivious algorithm for problem (7.1), then, for any constant γ ą 0,
we can construct a solution deterministically using the algorithm in step 3 with α :“ ln ρ´lnµ
with the final cost at most

pµpln ρ´ lnµ` 1q ` εqOPTpIq ` δ ` γz˚ ` 1, (7.9)

i.e. method R&A is an asymptotically pln ρ` ε` 1q-approximation algorithm for problem
(7.1) in case when µ “ 1 or µ “ 1` δ for δ arbitarily close to 0.
Proof. We invoke the derandomized BDI (Theorem 3.7). Let E be the event E :“ ⋂k

j“1Ej.
It is proved in [BCS09] that the probability of E is lower bounded by some α for α ą 0.
For the application of Theorem 3.7, we have to first fix P and Q. We can choose P “ |I| as∑
i PS v

j
i ď

∑
i P I v

j
i ď OPTpIq ď |I|. Estimating the value of Q is not straightforward. Q is

the time to compute Epfj |Z1, Z2, ¨ ¨ ¨ , Zlq. We choose l not necessarily distinct configurations.
Let U be the union of the l selected configurations. Hence

E
(∑
i PS

vji |Z1, Z2, ¨ ¨ ¨ , Zl

)
“

∑
i P IzU

vjiPpi P Sq “
∑
i P IzU

vji

(
1´

∑
C Q i

x˚C{z
˚

)c´l
(7.10)

The above expression can be computed in Op|I|pm ` cqq time. Hence Q “ Op|I|pm ` cqq.
With maxi λi

Di1
“

γz˚

cβ2 , the running time of the derandomization step according to Theorem
3.7 is Opmkcr|I|γz˚

cβ2 ` log kc
β
` |I|pm ` cqsq, and we have derandomized the step 2 of R&A

framework i.e. randomized rounding step.

Note that Bansal et al. proved that for the 1-dimensional bin packing problem the aysmptotic
polynomial time approximation algorithm of Vega and Lueker [Fer81] with minor adaptation
is subset oblivious. Based on this modified algorithm, Bansal et al. designed a subset oblivious
algorithm for the d-dimensional bin packing problem with asymptotic approximation guarantee
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arbitarily close to d. They improved the known asymptotic approximation guarantee of d-
dimensional bin packing from Oplnpdqq to lnpdq ` 1. Details of the impact of R&A method
can be found in the survey article by Christensen et al. [CKP+17]. We conclude this section
with the remark that our derandomization approach is applicable to all results using R&A
method as the framework.
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Chapter 8

Derandomized Approximation of Constrained
Hypergraph Coloring (CHC)

The constrained hypergraph coloring problem(CHC) problem was introduced by Ahuja and
Srivastav [AS02] as a multicolor generalization of the property B hypergraph coloring prob-
lem. It also models special cases of multidimensional bin packing (MDBP) problem and the
resource constrained scheduling (RCS) problem.

Definition 8.1. (Constrained hypergraph coloring problem(CHC), [AS02]) LetA “ paijq1ď iďm
1ď jďn

P

{0, 1}mˆn be the edge-vertex incidence matrix for hypergraph H “ pV, Eq with V “

{1, 2, ¨ ¨ ¨ , n}, E “ {E1, . . . , Em}, and l “ max
1ď iďm

|Ei|. Let b “ pb1, b2, . . . , bmq
t be a vec-

tor. The problem is to partition the vertex set into a minimum number of sets such that there
are at most bi vertices in Ei of any partition set for all i P rms. We may color the vertices of
each partition set with one color and call the set color class.

CHC reduces to extensively studied well known problems based on the underlying combina-
torial structure and value of bi. For a simple graph and bi “ 1 for all i P rms, CHC reduces to
the graph coloring problem. The hypergraph H is said to be c-colorable iff there is a function
V Ñ {1, 2, ¨ ¨ ¨ , c} such that no edge is monochromatic. Hypergraph 2-colorability is the
famous property B [Erd63]. For a hypergraph H with property B and bi “ |Ei| ´ 1 for all
i P rms, CHC is equivalent to the problem of finding a non-monochromatic 2-coloring of H.

In resource constrained scheduling problem(RCS) we are given m resources and n jobs, where
for the ith resource bi units are available at each time slot, i P rms. Each job requires at least
one resource and the aim is to partition the set of jobs such that resource constraints are not
violated for each partition and the time taken to process the jobs is minimum. We now define
the hypergraph H in this scenario. We consider V as the index set of jobs and Ei for all i P rms,
is the hyperedge with length n where the jth element of Ei is 1 if job j requires resource i
and 0 otherwise. In the special case of the multidimensional bin backing problem(MDBP),
we are given n items which are m-dimensional integral vectors y1, y2, ¨ ¨ ¨ , yn P {0, 1}m and
an unlimited number of m-dimensional bins. We assume that the ith coordinate of each bin
is at most bi for all i P rms. We aim to assign the items to a minimum of bins such that in
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each bin the sum of the i-th coordinate of items in this bin is at most bi, i P rms. Again, this
is a partitioning problem and “packing” simply means to partition the set of items.

In 1997, Srivastav, Stangier [SS97] gave an randomized polynomial time algorithm for the
RCS problem with a makespan of at most d p1`εqCopt e where ε ą 0 is arbitrary provided that
bi ě

3p1`εq
ε2

logp8Cmq and m ě
3p1`εq
ε2

logp8Cq. Let Copt and C resp. denote the optimal integer
solution and optimal fractional solution respectively of the linear programming relaxation of
the RCS problem. We present a deterministic polynomial time algorithm with a makespan
of at most d p1 ` εqCopt e provided that bi ě 1`ε

ε

√
l ln pc1mnq

2 for all i P rms, where c1 ą 1
is a constant. Our bound on bi is better if l ď 18 log2p8mnq

ε2
pc1 P r1, 8sq. We claim similar

improvements to MDBP results presented in [SS97].

Ahuja and Srivastav [AS02] gave a deterministic algorithm for CHC with at most d p1`εqCopt e
color classes for any ε P p0, 1q, provided that bi “ Ωpε´2p1 ` εq logpDqq, where D can be
understood as the dependency of the graph used in the Lovász-Local-Lemma invoked in the
analysis of their algorithm. From [AS02], it is known that D “ OppCmq2q. Our bound on bi
is better, if l ď c3 log2pgCmq

ε2 log c1mn
ď

c3 logpvmnq
ε2

, given constants c3, g ą 0, and v “ maxpg, c1q.

8.1 CHC as an Integer Linear Program
Since the randomized algorithm for the CHC problem uses the randomized rounding scheme,
let us state an integer linear programming formulation of CHC (CHC ´ ILP). Consider
vectors xpkq “ px1,k, x2,k, . . . , xn,kq

t P Rn, k P {1, ¨ ¨ ¨ , T} for some T P N, T ď n. The integer
linear program is the following:

pCHC ´ ILPq minT
Axpkq ď b @k P {1, 2, ¨ ¨ ¨ , T} (8.1)
T∑
k“1

xj,k “ 1 @j P {1, 2, ¨ ¨ ¨ , n} (8.2)

xj,k “ 0 @j P {1, 2, ¨ ¨ ¨ , n} and k ą T (8.3)
xj,k P {0, 1} @j, k. (8.4)

Let Copt be the minimum value for T for CHC ´ ILP.

Proposition 8.2. CHC ´ ILP is equivalent to CHC.
Proof. We start with a solution of CHC ´ ILP with T color classes. For i P rms and k P rT s
condition (8.1) is pAxpkqqi ď bi, and says that each color class has at most bi elements in each
Ei for all i P rms.
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(8.2) ensures that each vertex of the hypergraph is in one of the color classes. Hence all the
conditions of the CHC problem are satisfied by the CHC ´ ILP. On the other hand, given
a solution of the CHC problem with T color classes, we get a solution of CHC ´ ILP as
follows. We define the variables xj,k as 1 if vertex j is in color class k, and 0 otherwise, for all
j P rns, k P rT s. Then Axpkq ď b for all k P rT s. Since the other conditions of CHC ´ ILP are
satisfied by definition, we established the equivalence of CHC and CHC ´ ILP.

Let us relax the integrality condition xj,k P {0, 1} to xj,k P r0, 1s for all j, k. We call this
program CHC´LP. We can find an optimal T for CHC´LP by binary search solving at most
logpT q linear programs starting with T “ n. Hence C can be computed in polynomial time,
if we use standard polynomial time LP algorithms. Let an optimal solution for CHC ´ LP
corresponding to C colors be x̃jk, 0 ď x̃jk ď 1. A possible randomized rounding procedure is
to represent each vertex j independently by a C-faced dice with face probabilities x̃jk, where
k represents the choice of the color for the vertex j for all k “ 1, 2, . . . , C and j “ 1, 2, . . . , n.
Unfortunately, there is a high probability of constraints getting violated, when we follow this
rounding procedure. We therefore modify the first constraint and tighten the right hand side
of the first constraint as follows. Let ε ą 0 and consider the tighter LP:

pCHC ´ LPTq minT

Axpkq ď
b

1` ε @k P {1, 2, ¨ ¨ ¨ , T}
T∑
k“1

xj,k “ 1 @j P {1, 2, ¨ ¨ ¨ , n}

xj,k “ 0 @j P {1, 2, ¨ ¨ ¨ , n} and k ą T

xj,k P r0, 1s @j, k.

We construct a new fractional solution with value d p1` εqC e.

Let δ “ 1
1`ε , α “ εδ{dεCe and set

I :“ {1, 2, . . . , d p1` εqC e},

I1 :“ {1, . . . , C} and Iε1 “ {C ` 1, . . . , C ` dεCe}. So I “ I1 Y I
ε
1.

The new fractional assignments x˚j,k are:

x˚j,k :“
δx̃jk for k P I1

α for k P Iε1
(8.5)

Proposition 8.3. The px˚j,kq1ďjďn,
1ďkďT

satisfy the constraints of (CHC ´ LPT) with d p1 ` εqC e
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colors.
Proof. We have ∑

k P I

x˚j,k “
∑
k P I1

x˚j,k `
∑
k P Iε1

x˚j,k “ δ ` αdεCe “ 1

Consider an arbitrary, but fixed i P rms, k P rT s. We have for k P I

pAx˚
pkq

qi “

n∑
j“1

aijx
˚
j,k “ δ

n∑
j“1

aijx̃jk ď δbi

For k P Iε1, we have

pAx˚
pkq

qi “

n∑
j“1

aijx
˚
j,k “

n∑
j“1

αaij “
n∑
j“1

αaij
∑
k P I1

x̃jk

“
∑
k P I1

α
n∑
j“1

aijx̃jk

ď
∑
k P I1

αbi

ď αCbi

ď δbi

By definition of our solution, we used d p1` εqC e colors.

8.2 The Randomized Algorithm and its Analysis
We give the detailed description of the algorithm.

Algorithm 3: Constrained Hypergraph Coloring Problem
Input :A hypergraph H “ pV, Eq with maximum edge cardinality l,

n :“ |V |,m :“ |E |.
Output :Coloring of the vertices of H with d p1` εqC e colors.
1. LP-Relaxation:

Solve the relaxed version of CHC - ILP: Starting with T “ n consider at most lnpnq
times to find smallest value of T for which the LP is feasible. Let px̃jkqj P rns& k P {1,2,...,C}
be the optimal solutions associated to C, the smallest value of T .

2. Extending the Solution: We extend the solution by modifying the solution px̃jkq to get a
solution px˚j,kq with d p1` εqC e color classes as in (8.5).

3. Rounding the Solution: We carry out randomized rounding for each j, with px˚j,kq being the
probability for rounding the k-th color to 1 for k P d p1` εqC e.

4. Return d p1` εqC e and all corresponding color class vectors.
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8.2. The Randomized Algorithm and its Analysis

We proceed to the analysis of the randomized algorithm.

Theorem 8.4. Let ε ą 0. Algorithm 3 outputs in randomized polynomial time a solution for
the CHC problem with d p1` εqC e colors with probability at least 1´ 1

c1
, c1 ą 0 a constant,

provided that bi ě 1`ε
ε

√
l ln pc1mnq

2 for all i P rms.
Proof. Let X1, X2, . . . , Xn be mutually independent random variables taking values in I,
where for each k P I, the distribution of Xj is defined by

PpXj “ kq “ x˚jk, j P rns (8.6)

For k P I and j P rns, let Xj,k be the 0-1 random variable, which is 1, if Xj “ k and zero
otherwise. For i P rms and k P I, we define events Eik such that for each color class vector
and each edge, the following constraint is not violated:

n∑
j“1

aijXj,k ď bi for all i, k (8.7)

Let us define fikpX1,k, X2,k, . . . , Xn,kq “
∑n
j“1 aijXj,k for all i, k. We first bound the expecta-

tion of fik from above.

Epfikq “ E
( n∑
j“1

aijXj,k

)
“

n∑
j“1

aijEpXj,kq “

n∑
j“1

aijx
˚
j,k ď

1
1` εbi for all i, k (8.8)

Note that for all i, j, k, |fikpXq ´ fikpX 1q| “ aij, where X “ pX1,k, ¨ ¨ ¨ , Xj´1,k, Xj,k,

Xj`1,k, ¨ ¨ ¨ , Xn,kq and X 1 “ pX1,k, ¨ ¨ ¨ , Xj´1,k, X
1
j,k, Xj`1,k, ¨ ¨ ¨ , Xn,kq differ only on the j-th

coordinate. Since aij P {0, 1} for all i, j,
n∑
j“1

a2
ij “

n∑
j“1

aij “ |Ei| (8.9)

Let i P rms and k P I. We now apply the independent bounded differences inequality (Theorem
2.11) for t “ ε

1`εbi:

PpEc
ikq “ P

(
fik ě biq ď P

(
fik ´ Epfikq ě

εbi
1` ε

)
(by 8.8)

ď exp
(
´

2ε2b2
i

p1` εq2|Ei|

)
(Theorem 2.11)

ď exp
(
´

2ε2b2
i

p1` εq2l

)
(as |Ei| ď l) (8.10)
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Using bi ě 1`ε
ε

√
l ln pc1mnq

2 and the fact that |I| ď n, (8.10) and the union bound give

Pp
i“m,k“|I|⋃
i“1,k“1

Ec
ikq ď

i“m,k“|I|∑
i“1,k“1

PpEc
ikq

ď

i“m,k“n∑
i“1,k“1

PpEc
ikq

ď

m∑
i“1

n∑
k“1

exp
(
´

2ε2b2
i

p1` εq2l

)
(by 8.10)

ď
1
c1

(lower bound on bi used) (8.11)

The randomized polynomial running time stems from the fact that there are polynomial time
LP solvers [Kha79; Kar84].

8.3 The Derandomized CHC Algorithm
In this section, we derandomize the randomized algorithm given in the above section. Let us
set c :“ d p1` εqC e.

For the values of bi in Theorem 8.4, we have by (8.11)

m∑
i“1

c∑
k“1

e

(
´

2ε2b2
i

p1`εq2l

)
ď

1
c1

(8.12)

with constant c1 ą 0 as there.

This means that Pp⋂i“m,k“ci“1,k“1 Eikq ě 1 ´ 1
c1
. Hence, we can apply Theorem 3.7 to the event⋂i“m,k“c

i“1,k“1 Eik. For application of Theorem 3.7, we have to fix P and Q. As

max
i,k

fik “ max
i,k

n∑
j“1

aijXj,k ď n, (8.13)

we can set P “ n. Since

E [fik |X1,k, ¨ ¨ ¨ , X1,l] “ E

 n∑
j“1

aijXj,k |X1,k, ¨ ¨ ¨ , X1,l

 “ n∑
j“1

E [aijXj,k |X1,k, ¨ ¨ ¨ , X1,l]

(8.14)
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we can set the computation time Q for the conditional expectations as Q “ Opnq.

Theorem 8.5. Let ε P p0, 1q and b :“ pb1, b2, ¨ ¨ ¨ , bmq
t where bi ě 1`ε

ε

√
l ln pc1mnq

2 for all i P
rms.Then a solution of the CHC problem with respect to b with atmost c :“ d p1 ` εqC e
colors can be computed in Opcmnrn` log cmn

1´ 1
c1
sq time.

Proof. Observe that we have cn random varibles Xj,k for j P rms, k P rcs. We also have
maxi λi

Di1
“ maxi εbi

p1`εq|Ei| “
ε

1`ε ď 1 as bi ď |Ei|. Now by Theorem 3.7, we get the desired
solution of the CHC problem in Opcmnrn` log cmn

1´ 1
c1
sq time.
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Chapter 9

Concentration Bounds with Partially
Dependent Random Variables

Svante Janson [Jan04] extended Hoeffding’s bound (Theorem 2.1) for sums of independent
random variables to obtain concentration bounds for sums of dependent random variables
with a defined dependency structure. The method is based on breaking the sum of non-
independent random variables into sums of independent random variables. Janson applied the
framework to U -Statistics, random strings and random graphs. In this chapter, we extend the
Alon-Spencer [AS04] concentration bound for sums of independent random variables, which
generalizes Hoeffding’s bound, to obtain concentration bounds for the sum of dependent
random variables with similar dependency structure as defined in [Jan04]. Let us first define
the dependency structure as given in [Jan04].

In Hoeffding’s bound, we have the following situation: Yi, with i P I where I is some index
set, are mutually independent random variables, and one considers large deviation for the
sum

Z :“
∑
i P I

Yi (9.1)

We will now investigate the case where the random variables Yi are not mutually independent,
but there is some amount of independence for partial sums. A typical example would be

Z “
∑

pi1,i2q P I
Wi1Wi2 (9.2)

where W1,W2, ¨ ¨ ¨ ,Wn be n independent random variables and I is the set of all pairs pi1, i2q
with 1 ď i1 ă i2 ď n. We can easily see that each summand is dependent on n´ 2 summands
and independent of pn´2qpn´3q

2 summands as for fixed i1, i2, we have pn´2qpn´3q
2 random variables

which are independent of Wi1Wi2 .

We now define the dependency structure, which forms the basis of our work. We are given an
finite index set I and random variables Yi, i P I

Ź A subset I 1 of I is independent if the corresponding random variables {Yi | i P I 1} are
independent.

81



Chapter 9. Concentration Bounds with Partially Dependent Random Variables

Ź A family {Ij}j of subsets of I is a cover of I if ⋃j Ij “ I.

Ź A family {pIj, wjq}j of pairs pIj, wjq, where Ij Ď I and wj P r0, 1s, is called a fractional
cover of I, if ∑j wj1Ij ě 1I , i.e.

∑
j : i P Ij wj ě 1 for each i P I. A fractional cover is said

to be exact if ∑j wj1Ij “ 1I .

Ź A (fractional) cover is called proper if each set Ij in it is independent.

Ź χpIq is the size of a smallest cover of I, i.e. the smallest m such that I is union of m
independent subsets. If I itself is independent, then χpIq “ m “ 1.

Ź χ˚pIq is the minimum of ∑j wj over all proper fractional covers {pIj, wjq}j.

Let us first define the dependency graph for Yi, i P I. The dependency graph G has vertex
set I and edge set such that if vertices i, j P I does not have an edge implies Yi and Yj are
independent. So, if I 1 Ă I is an independent set of G, then random variables Yi, i P I 1 are
independent. Let χpGq and χ˚pGq be the chromatic number and fractional chromatic number
resp. of graph G. Hence, χpIq ď χpGq and χ˚pIq ď χ˚pGq. Given ∆pGq as the maximum
degree of graph G, and since the computation of χpIq and χpGq is N P-hard, we may use
χpGq ď ∆pGq ` 1 [Bro41] in the bounds, and work with ∆pGq without serious loss.

We now state lemma from [Jan04], which we will use as well.

Lemma 9.1. (Janson [Jan04] Lemma 3.1) If {pIj, wjq}j is an exact fractional cover of I, and
ci, i P I, be any numbers, then ∑

i P I
ci “

∑
j

wjrj (9.3)

where rj :“ ∑
i P Ij ci. In particular, |I| “ ∑

j wj|Ij|.

Let us assume |I| “ n and Yi “ 1 ´ qi with probability qi and Yi “ ´qi with probability
1´ qi, where qi P r0, 1s for i P rns. Let q :“

∑
i
qi

n
.

In the above setting, Alon and Spencer improved upon Hoeffding’s bound (Theorem 2.1) by
replacing n by qn. We will first state the Alon-Spencer bound [AS04] (Theorem A.1.11 and
A.1.13).

Theorem 9.2. (Alon, Spencer [AS04]) Let I be a set with |I| “ n, and let the independent
random variables Yi, i P I satisfy PpYi “ 1 ´ qiq “ qi and PpYi “ ´qiq “ 1 ´ qi, where
qi P r0, 1s. Let q :“

∑
i
qi

n
and Z :“ ∑

i P I Yi. Then for any a ą 0,

1. PpZ ě aq ď e
´ a2

2nq`
a3

2pnqq2 .

2. PpZ ă ´aq ď e´
a2

2nq .
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We now proceed to our main result of this chapter, which generalizes the Alon-Spencer
bound to sums of partially dependent random variables, where χ˚pIq resp. χpIq enters the
Alon-Spencer bounds in a very natural way.

Theorem 9.3. Let I be a set with |I| “ n, and let the random variables Yi, i P I satisfying
PpYi “ 1´qiq “ qi and PpYi “ ´qiq “ 1´qi, where qi P r0, 1s. Let q :“

∑
i
qi

n
and Z :“ ∑

i P I Yi.
Then for any a ą 0,

1. PpZ ě aq ď e
´ a2

2nqχ˚pIq2
` a3

2pnqq2χ˚pIq3 .

2. PpZ ă ´aq ď e
´ a2

2nqχ˚pIq .
Proof. Let {pIj, wjq}j be an exact proper fractional cover of I and Zj :“ ∑

i P Ij Yi. By Lemma
9.1, Z “ ∑

j wjZj . Note that by definition, each Zj is a sum of independent random variables
Yi, i P Ij. Let pj ą 0 such that ∑j pj “ 1. We will choose the pj’s later in an appropriate
way. By Jensen’s inequality we have

exp puZq “ exp
(∑

j

uwjZj
)

ď exp
(∑

j

pj
uwjZj
pj

)
ď
∑
j

pj exp
(uwjZj

pj

)
(Jensen’s inequality)

Note we have broken down the sum into j summands, where each of them is expressed in
terms of independent random variables. Now computing the expection of exp puZq, we get

EpeuZq ď
∑
j

pjE
(
e
uwjZj
pj

)

“
∑
j

pj
∏
i P Ij

E
(
e
uwjYi
pj

)
(Zj is sum of independent random variables)

“
∑
j

pj
∏
i P Ij

(
e
uwjp1´qiq

pj qi ` e
´
uwjqi
pj p1´ qiq

)

“
∑
j

pj
∏
i P Ij

e
´
uwjqi
pj

(
e
uwj
pj qi ` 1´ qi

)

“
∑
j

pje
´
uwjQj |Ij |

pj

∏
i P Ij

(
e
uwj
pj qi ` 1´ qi

)
(with Qj “

∑
i P Ij qi

|Ij|
)
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By geometric mean/arithmetic mean inequality, we get

EpeuZq ď
∑
j

pje
´
uwjQj |Ij |

pj

(
e
uwj
pj Qj ` 1´Qj

)|Ij |
(9.4)

Applying Markov’s inequality, we get

PpZ ě aq “ PpeuZ ě euaq ď
EpeuZq
eua

(9.5)

Now by (9.4) and (9.5), we get

PpZ ě aq ď
∑
j

pje
´
uwjQj |Ij |

pj

(
e
uwj
pj Qj ` 1´Qj

)|Ij |
e´ua (9.6)

We minimize the RHS of (9.6) with respect to u. By definition, we know χ˚pIq “ ∑
j wj.

Further, we may choose pj, namely set pj :“ wj
χ˚pIq . To condense the below calculations, we

denote χ˚pIq by χ˚. By elementary calculus, we may find the optimal solution, but which is
too cumbersome to give a analytic formula in a, n, q and χ˚. Using an suboptimal u satisfying
the equation euχ˚ “ 1` a

nqχ˚
and the fact that p1` a

n
qn ď ea in (9.6) gives

PpZ ě aq ď
∑
j

wj
χ˚
e
´
uχ˚wjQj |Ij |

pjχ
˚

(
e
uχ˚wj
pjχ

˚
Qj ` 1´Qj

)|Ij |
e´ua

ď
∑
j

wj
χ˚

(
1` a

nqχ˚

)´Qj |Ij |(
euχ

˚

Qj ` 1´Qj

)|Ij |
e´ua (given wj “ pj{χ

˚)

“
∑
j

wj
χ˚

(
1` a

nqχ˚

)´Qj |Ij |(
p1` a

nqχ˚
qQj ` 1´Qj

)|Ij |
e´ua

“
∑
j

wj
χ˚

(
1` a

nqχ˚

)´Qj |Ij |(
1` aQj

nqχ˚

)|Ij |
e
uχ˚p´ a

χ˚
q

“
∑
j

wj
χ˚

(
1` a

nqχ˚

)´Qj |Ij |(
1` aQj

nqχ˚

)n. |Ij |
n

e
uχ˚p´ a

χ˚
q

ď
∑
j

wj
χ˚

(
1` a

nqχ˚

)´Qj |Ij |
e
aQj |Ij |
nqχ˚ e

uχ˚p´ a
χ˚
q (as p1` a

n
q
n
ď ea )

ď
∑
j

wj
χ˚

e
´p a

χ˚
`Qj |Ij |q ln p1` a

nqχ˚
q`

aQj |Ij |
nqχ˚ (9.7)
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With k :“ a
nqχ˚

, the inequality

ln p1` kq ě k ´
k2

2 (9.8)

is valid for all k ě 0. (9.8) applied to (9.7) gives

PpZ ě aq ď
∑
j

wj
χ˚
e
´p a

χ˚
`Qj |Ij |qp a

nqχ˚
´ a2

2n2q2pχ˚q2
q`

aQj |Ij |
nqχ˚

ď
∑
j

wj
χ˚
e
´ a2
nqpχ˚q2

` a3
2n2q2pχ˚q3

´
aQj |Ij |
nqχ˚

`
a2Qj |Ij |

2n2q2pχ˚q2
`
aQj |Ij |
nqχ˚

ď
∑
j

wj
χ˚
e
´ a2

2nqpχ˚q2
` a3

2n2q2pχ˚q3 (as Qj|Ij| ď nq) (9.9)

“ e
´ a2

2nqpχ˚q2
` a3

2pnqq2pχ˚q3 (since
∑
j

wj “ χ˚ ) (9.10)

Proof for lower tail

We use the same terminology and set up as above. By application of Markov’s inequality we
get

PpZ ď ´aq “ Pp´Z ě aq

ď Ppe´uZ ě euaq

ď
Epe´uZq
eua

(9.11)

We first estimate the expectation Epe´uZq. As above, with Lemma 9.1, Z “ ∑
j wjZj. So

exp p´uZq “ exp
(
´
∑
j

uwjZj
)

“ exp
(
´
∑
j

pj
uwjZj
pj

)
ď
∑
j

pj exp
(
´
uwjZj
pj

)
(by Jensen’s inequality)

We further upper bound the expectation of exp p´uZq

Epe´uZq ď
∑
j

pjE
(
e
´
uwjZj
pj

)
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“
∑
j

pj
∏
i P Ij

E
(
e
´
uwjYi
pj

)
(Zj is sum of independent random variables)

“
∑
j

pj
∏
i P Ij

(
e
´
uwjp1´qiq

pj qi ` e
uwjqi
pj p1´ qiq

)

“
∑
j

pj
∏
i P Ij

e
uwjqi
pj

(
e
´
uwj
pj qi ` 1´ qi

)

With Qj “

∑
i P Ij

qi

|Ij | and by the geometric mean/arithmetic mean inequality we get

Epe´uZq ď
∑
j

pje
uwjQj |Ij |

pj

(
e
´
uwj
pj Qj ` 1´Qj

)|Ij |
(9.12)

Using the inequality

1` λ ď eλ

for any λ, we get

(
e
´
uwj
pj Qj ` 1´Qj

)
“ 1` pe´

uwj
pj ´ 1qQj ď e

(
e
´
uwj
pj ´1

)
Qj (9.13)

We now employ the inequality,

e´λ ď 1´ λ` λ2

2

for λ ą 0, so

e

(
e
´
uwj
pj ´1

)
Qj
ď e

(
´
uwj
pj
`
u2w2

j

2p2
j

)
Qj

(9.14)

We apply (9.13) and (9.14) to (9.12)

Epe´uZq ď
∑
j

pje
uwjQj |Ij |

pj e

(
e
´
uwj
pj ´1

)
Qj |Ij | (by 9.13)

ď
∑
j

pje
uwjQj |Ij |

pj e

(
´
uwj
pj
`
u2w2

j

2p2
j

)
Qj |Ij |

(by 9.14)

86



“
∑
j

pje
uwjQj |Ij |

pj e
´
uwjQj |Ij |

pj e

u2w2
j
Qj |Ij |

2p2
j

“
∑
j

pje

u2w2
j
Qj |Ij |

2p2
j (9.15)

Now we choose pj :“ wj
√
Qj |Ij |
T

, where T “ ∑
j wj

√
Qj|Ij|. Substituting the pj ’s in expression

(9.15) we get

Epe´uZq ď
∑
j

pje

u2w2
j
Qj |Ij |T

2

2w2
j
Qj |Ij |

“
∑
j

pje
u2T2

2

ď e
u2T2

2 (as
∑
j

pj “ 1) (9.16)

(9.16) applied to (9.11) gives

PpZ ď ´aq ď e
u2T2

2 ´ua (9.17)

Note that u is a free parameter. We set u “ a
T 2 to minimize the RHS of (9.17) leading to

PpZ ď ´aq ď e
a2.T2
2.T4 ´

a.a
T2

“ e´
a2

2T2 (9.18)

As defined earlier χ˚pIq “ ∑
j wj. By the Cauchy-Schwarz inequality and Lemma 9.1, we get

T 2
“
(∑

j

wj
√
Qj|Ij|

)2

“ p
∑
j

√
wj
√
wjQj|Ij|

)2

ď
∑
j

wj︸ ︷︷ ︸
χ˚pIq

∑
j

wjQj|Ij|

“ χ˚pIq
∑
j

wj
∑
i P Ij

qi (as Qj “
∑
i P Ij

qi
|Ij|

q
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“ χ˚pIq
∑
i P I

qi (by Lemma 9.1)

“ nqχ˚pIq (since q “
∑
i P I

qi
n
q (9.19)

So (9.18) reduces to,

PpZ ď ´aq ď e
´ a2

2nqχ˚pIq (9.20)

Remark 9.4. Let ∆pDq be maximum degree of graph D and ∆1pDq :“ ∆pDq ` 1. We know by
Brooks theorem [Bro41]that χpDq ď ∆1pDq. Thus

χ˚pIq ď χ˚pDq ď χpDq ď ∆1pDq (9.21)

Hence we can replace χ˚pIq by any of the quantity χ˚pDq, χpDq,∆1pDq in Theorem 9.3
without much detoriation to the sharpness of the bound.

Remark 9.5. In case the optimal exact fractional cover of I is given, then we can use the χ˚pIq
in our result. Since the calculation of optimal exact fractional cover can be modelled as a set
cover problem so finding the exact fractional cover is a intractable problem. By definition,
the exact fractional cover is calculated for the indpendent sets and even enumerating all the
independent sets of I has exponential complexity as number of independent sets ě 2αpDq,
where αpDq is the independence number of D.
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Chapter 10

Derandomizing the Alon-Spencer
Concentration Inequality

In Chapter 9, we stated the Alon-Spencer bound (Theorem 9.2). In this chapter, we deran-
domize the Alon-Spencer bound.

Let Yj, j P rns, be independent random variables defined by Yj “ 1´ qj with probability qj
and Yj “ ´qj with probability 1´ qj, where qj P r0, 1s for all j. Let q :“

∑
j
qj

n
.

Definition 10.1. For i P rms, let ψi denote the random variable ψi :“ ∑n
j“1 aijYj where

aij P {0, 1} for all i, j. Let ai ą 0 be rational numbers and for i P rms, let Ep`qi denote the
event ψi ď ai and let Ep´qi denote the event ψi ě ´ai. Furthermore set E “ ⋂m

i“1Ei where
Ei is either Ep`qi or Ep´qi . Let ni “

∑n
j“1 aij for all i P rms.

For each event Ei, let fpEc
i q be the upper bound on PpEc

i q as in Theorem 9.2, so fpEc
i q “

e
´ a2

2niq
` a3

2pniqq2 or fpEc
i q “ e

´ a2
2niq . We assume that for some 0 ă δ ă 1

m∑
i“1

fpEc
i q ď 1´ δ, (10.1)

so using the union bound, we get

Pp
m⋂
i“1

Eiq ě 1´ Pp
m⋃
i“1

Ec
i q ě 1´

m∑
i“1

PpEc
i q ě δ ą 0, thus

m⋂
i“1

Ei ‰ H. (10.2)

The problem in derandomization is to construct a vector x P ⋂mi“1Ei in polynomial time.

10.1 Pessimistic Estimators
We first consider the event Ei “ E`i and define the weak pessmistic estimator for the event
Ei by going through the proof of the Alon-Spencer bound [AS04], Corollary A.1.8/Theorem
A.1.11.
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Definition 10.2. For each i P rms, let Vi be a family of functions pVilql, l P rns Y {0} defined as
follows. For y1, . . . , yl with yj P {´qj, 1´ qj} with j P {1, 2, . . . , l}, ui ą 0 for i P rms, set

(i) Vilpy1, . . . , ylq “ e´uiaie
∑l

j“1 uiaijyj
∏n
j“l`1

(
qje

uiaijp1´qjq ` p1´ qjqe´uiaijqj
)

(ii) Vi0 “ e
´ a2

2niq
` a3

2pniqq2

We now prove that the family Vi is a weak pessimistic estimator for the event Ei for i P rms.

Lemma 10.3. Under the assumption (10.2), the family Vi “ pVilql, l P rns Y {0}, is a weak
pessimistic estimator for the event Ei.
Proof. We need to check conditions (a)-(c) of the definition of weak pessmistic estimator
(Definition 3.8).

Let l P rns Y {0} be arbitrary, but fixed and let y1, . . . , yl with yj P {´qj, 1 ´ qj} for
j P {1, 2, . . . , l}. We condition on Yj “ yj for l P {1, 2, . . . , n}.

Condition (a): PpEc
i | y1, . . . , ylq ď Vilpy1, . . . , ylq. Here is the proof. Let ui ą 0 the parameter

as in Definition 10.2.

PpEc
i | y1, . . . , ylq “ Ppψi ě ai | y1, . . . , ylq

“ P
( n∑
j“1

aijYj ě ai | y1, . . . , yl

)

ď E
[
eui
∑n

j“1 aijYj ě euiai | y1, . . . , yl

]
e´uiai (by Markov’s inequality)

“ E
[
e
∑l

j“1 uiaijyj`
∑n

j“l`1 uiaijYj
]
e´uiai

“ e´uiaie
∑l

j“1 uiaijyjE
[
e
∑n

j“l`1 uiaijYj
]

“ e´uiaie
∑l

j“1 uiaijyj
n∏

j“l`1

(
qje

uiaijp1´qjq ` p1´ qjqe´uiaijqj
)

“ Vil

Condition (b):

From Definition 10.2, we know that

Vi,l`1py1, . . . , yl, yl`1q “ e´uiaie
∑l`1

j“1 uiaijyj
n∏

j“l`2

(
qje

uiaijp1´qjq ` p1´ qjqe´uiaijqj
)

To shorten the notation we define
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Vi,l`1p1´ ql`1q :“ Vi,l`1py1, . . . , yl, 1´ ql`1q (10.3)

Further, we define

Vi,l`1p´ql`1q :“ Vi,l`1py1, . . . , yl,´ql`1q

“ e´uiaie
∑l

j“1 uiaijyj´uiai,l`1ql`1
n∏

j“l`2

(
qje

uiaijp1´qjq ` p1´ qjqe´uiaijqj
)

(10.4)

Now let us define V con
i,l`1 as the convex combination of Vi,l`1p1´ ql`1q and Vi,l`1p´ql`1q, so

V con
i,l`1 “ ql`1Vi,l`1p1´ ql`1q ` p1´ ql`1qVi,l`1p´ql`1q (10.5)

Now we have

V con
i,l`1 “ e´uiai

(
ql`1e

∑l

j“1 uiaijyj`uiai,l`1p1´ql`1q ` p1´ ql`1qe
∑l

j“1 uiaijyj´uiai,l`1ql`1
)

n∏
j“l`2

(
qje

uiaijp1´qjq ` p1´ qjqe´uiaijqj
)

“ e´uiaie
∑l

j“1 uiaijyj
(
ql`1e

uiai,l`1p1´ql`1q ` p1´ ql`1qe
´uiai,l`1ql`1

)
n∏

j“l`2

(
qje

uiaijp1´qjq ` p1´ qjqe´uiaijqj
)

“e´uiaie
∑l

j“1 uiaijyj
n∏

j“l`1

(
qje

uiaijp1´qjq ` p1´ qjqe´uiaijqj
)

“Vilpy1, . . . , ylq

Thus min pVi,l`1p1´ ql`1q, Vi,l`1p´ql`1qq ď Vilpy1, . . . , ylq.

Condition (c): By Definition 10.2, Vi0 “ e
´ a2

2niq
` a3

2pniqq2 and we have

Vi0 ď 1´ δ.

For sake of completeness, we now define the pessimistic estimators for the event Ei “ E
p´q

i

by passing through the proof of Theorem A.1.13 [AS04].

Definition 10.4. For each i P rms, let Vi be a family of functions pVilql, l P rns Y {0}, defined
as follows. For y1, . . . , yl P {´ql, 1´ ql}, vi ą 0 for i P rms, set
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(i) Vilpy1, . . . , ylq “ e´viaie
∑l

j“1´viaijyj
∏n
j“l`1

(
qje

´viaijp1´qjq ` p1´ qjqeviaijqj
)

(ii) Vi0 “ e
´ a2

2niq

Lemma 10.5. The family Vi is a weak pessmistic estimator for the event Ei “ E
p´q

i .
Proof. We need to check conditions (a)-(c) of the definition of weak pessmistic estimator
(Definition 3.8).

Let l P rns Y {0} be arbitrary, but fixed and let y1, . . . , yl with yj P {´qj, 1 ´ qj} for
j P {1, 2, . . . , l}. We condition on Yj “ yj for l P {1, 2, . . . , n}.

Condition (a): PpEc
i | y1, . . . , ylq ď Vilpy1, . . . , ylq. Here is the proof. Let vi ą 0 the parameter

as in Definition 10.4.

PpEc
i | y1, . . . , ylq “ Ppψi ď ´ai | y1, . . . , ylq

“ P
(
´

n∑
j“1

aijYj ě ai | y1, . . . , yl

)

ď E
[
e´vi

∑n

j“1 aijYj ě eviai | y1, . . . , yl

]
e´viai (by Markov’s inequality)

“ E
[
e´
∑l

j“1 viaijyj´
∑n

j“l`1 viaijYj
]
e´viai

“ e´viaie
∑l

j“1´viaijyjE
[
e
∑n

j“l`1´viaijYj
]

“ e´viaie
∑l

j“1´viaijyj
n∏

j“l`1

(
qje

´viaijp1´qjq ` p1´ qjqeviaijqj
)

“ Vil

Condition (b):

From Definition 10.2, we know that

Vi,l`1py1, . . . , yl, yl`1q “ e´viaie
∑l`1

j“1´viaijyj
n∏

j“l`2

(
qje

´viaijp1´qjq ` p1´ qjqeviaijqj
)

To shorten the notation we define

Vi,l`1p1´ ql`1q :“ Vi,l`1py1, . . . , yl, 1´ ql`1q (10.6)

Further, we define
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Vi,l`1p´ql`1q :“ Vi,l`1py1, . . . , yl,´ql`1q

“ e´viaie
∑l

j“1´viaijyj`viai,l`1ql`1
n∏

j“l`2

(
qje

´viaijp1´qjq ` p1´ qjqeviaijqj
)

(10.7)

Now let us define V con
i,l`1 as the convex combination of Vi,l`1p1´ ql`1q and Vi,l`1p´ql`1q, so

V con
i,l`1 “ ql`1Vi,l`1p1´ ql`1q ` p1´ ql`1qVi,l`1p´ql`1q (10.8)

Now we have

V con
i,l`1 “ e´viai

(
ql`1e

∑l

j“1´viaijyj´viai,l`1p1´ql`1q ` p1´ ql`1qe
∑l

j“1´viaijyj`viai,l`1ql`1
)

n∏
j“l`2

(
qje

´viaijp1´qjq ` p1´ qjqeviaijqj
)

“ e´viaie
∑l

j“1´viaijyj
(
ql`1e

´viai,l`1p1´ql`1q ` p1´ ql`1qe
viai,l`1ql`1

)
n∏

j“l`2

(
qje

´viaijp1´qjq ` p1´ qjqeviaijqj
)

“e´viaie
∑l

j“1´viaijyj
n∏

j“l`1

(
qje

´viaijp1´qjq ` p1´ qjqeviaijqj
)

“Vilpy1, . . . , ylq

Thus min pVi,l`1p1´ ql`1q, Vi,l`1p´ql`1qq ď Vilpy1, . . . , ylq.

Condition (c): By Definition 10.2, Vi0 “ e
´ a2

2niq and we have

Vi0 ď 1´ δ.

Let E1, E2, . . . , Em be events, where either Ei “ E
p`q

i or Ei “ E
p´q

i , i P rms. Let E “ ⋂m
i“1Ei.

We assume that E satisfies (10.1) of Definition 10.1, so ∑m
i“1 fpE

c
i q ď 1´δ for some 0 ă δ ă 1.

Thus, by (10.2), E ‰ H.

Definition 10.6. Let V “
⊕m

i“1 Vi be the family of functions, serving as the candidate for a
weak pessimistic estimator for the event E “ ⋂m

i“1Ei.

Indeed,
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Lemma 10.7. V is a weak pessimistic estimator for the event E “ ⋂m
i“1Ei.

Proof. We apply Proposition 3.10, and must show ∑m
i“1 Vi0 ď 1´ δ and the convexity of V .

By Definition 10.2/10.4, Vi0 “ e
´ a2

2niq
` a3

2pniqq2 for Ei “ E
p`q

i and Vi0 “ e
´ a2

2niq for Ei “ E
p´q

i .
By (10.1) of Definition 10.1, we have ∑m

i“1 Vi0 ď 1´ δ for some 0 ă δ ă 1.

For the convexity of V , we must show for any l P rns and yj P {qj, 1´ qj} for j P rl ´ 1s that
there are real numbers µj, j=1,2, with µ1 ` µ2 “ 1 such that

µ1

m∑
i“1

Vilpy1, . . . , yl´1,´qlq ` µ2

m∑
i“1

Vilpy1, . . . , yl´1, 1´ qlq ď
m∑
i“1

Vi,l´1py1, . . . , yl´1q (10.9)

Let µ1 “ 1´ ql and µ2 “ ql. From Lemma 10.3 / 10.5, we have

p1´ qlqVilpy1, . . . , yl´1,´qlq ` qlVilpy1, . . . , yl´1, 1´ qlq ď Vi,l´1py1, . . . , yl´1q

.

Summing all terms in the above expression for i P rms, we get requisite condition (10.9).

We are ready to state the main theorem, which we call the algorithmic or derandomized form
of the Alon-Spencer bound.

Theorem 10.8. Let 0 ă δ ă 1 and E1, E2, ¨ ¨ ¨ , Em be the events estimated by the Alon-Spencer
bound which satisfy (10.1). We further assume that the probabilities of the underlying random
setting in Definition 10.1 stay away from zero, i.e. for all j P rns, qj “ Ωpn´kq for some
constant k ą 0. Then a vector x P ⋂mi“1Ei can be constructed in Opmn2pn lnpnq ` lnpmn

δ
qqq.

Proof. We approximate the functions of the weak pessimistic estimator V for the event E by
suitable Taylor polynomials and then define the pessimistic estimator for the event E. Let’s
start with an event of the form Ei “ E

p`q

i . The functions Vil, l P rns, i P rms have the form

Vilpy1, y2, ¨ ¨ ¨ , ylq “ e´uiaie
∑l

j“1 uiaijyj
n∏

j“l`1

(
qje

uiaijp1´qjq ` p1´ qjqe´uiaijqj
)

“ e´uiaie
∑l

j“1 uiaijyj
n∏

j“l`1
E
[
euiaijYj

]

By Theorem A.1.9 [AS04], the optimal choice of ui satisfies eui “ bi :“ 1` ai∑n

j“1 aijqj
. Set
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Qil :“
∏

j P {rnsY {0}}
E
[
elnpbiqcij

]
(10.10)

where

cij “


´ai : j “ 0
aijyj : j “ 1, 2, ¨ ¨ ¨ , l
aijYj : j “ l ` 1, 2, ¨ ¨ ¨ , n

So,

Vilpy1, . . . , ylq “ Qil (10.11)

Note that Yj is a random variable, so cij is also a random variable for j “ l ` 1, l ` 2, ¨ ¨ ¨ , n.
Set γ “ δ

6mn . Let T pcijdiq be the N -th degree Taylor polynomial of the exponential function
elnpbiqcij , where di be a rational number approximating lnpbiq for i P rms. Now we establish
the value for N using Lemma 2.8 (i) of [SS96] such that the following approximation

|
∏

j P {rnsY {0}}
elnpbiqcij ´

∏
j P {rnsY {0}}

T pcijdi| ď γ (10.12)

uniformly holds for all cij depending upon y1, y2, ¨ ¨ ¨ , yl.

Clearly, |cij| ď 1 for j P {1, 2, ¨ ¨ ¨ , l} and |ci0| ď n. Hence n `∑l
j“1 |cij| ď 2n “ P . Also

bi “ 1` ai∑n

j“1 aijqj
ď 1` ni∑n

j“1 aijqj
ď Opnkq “ Q by our assumption qj “ Ωpn´kq, for all j P rns

and k ą 0 constant. By Lemma 2.8 (i) of [SS96], with N “ O
(
n lnpnq ` lnpn`1

γ
q
)
a rational

number di approximating lnpbiq and the numbers T pcijdiq for all i P rms, j P {rns Y {0}} can
be computed in O

(
n lnpnq ` lnp 1

γ
q
)
time so that (10.12) holds.

Given the independence of random variables Yj , j P rns, taking expectation on (10.12), we get∣∣∣∣ ∏
j P {rnsY {0}}

E
[
elnpbiqcij

]
´

∏
j P {rnsY {0}}

E [T pcijdiq]
∣∣∣∣ ď γ (10.13)

Since the Yj , j P {l`1, . . . , n} takes only two values, each factor of the product∏j P {rnsY {0}} E [T pcijdiq]
can be calculated in O

(
n lnpnq ` lnp 1

γ
q
)
time.

Now let us consider the event Ei “ E
p´q

i . For sake of completeness, we repeat the arguments.

Vilpy1, . . . , ylq “ e´viaie
∑l

j“1´viaijyj
n∏

j“l`1

(
qje

´viaijp1´qjq ` p1´ qjqeviaijqj
)
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“ e´viaie
∑l

j“1´viaijyj
n∏

j“l`1
E
[
e´viaijYj

]

By Theorem A.1.13 [AS04], the optimal choice of vi is vi “ fi :“ ai∑n

j“1 aijqj
. Set

Qil :“
∏

j P {rnsY {0}}
E
[
eficij

]
(10.14)

where

cij “


´ai : j “ 0
´aijyj : j “ 1, 2, ¨ ¨ ¨ , l
´aijYj : j “ l ` 1, 2, ¨ ¨ ¨ , n

So,

Vilpy1, . . . , ylq “ Qil (10.15)

By our assumption, fi “ ai∑n

j“1 aijqi
“ Opnkq. Clearly, |cij| ď 1 for j P {1, 2, ¨ ¨ ¨ , l} and

|ci0| ď n. Hence n`∑l
j“1 |cij| ď 2n “ P . By Lemma 2.8 (ii) of [SS96], N “ O

(
n` lnpn`1

γ
q
)

and the computation of the N -th degree Taylor polynomial T pficijq of the exponential
function eficij can be done in O

(
n` lnp 1

γ
q
)
time.

Set Til :“ ∏
j P {rnsY {0}} E [T pcijdiq] or

∏
j P {rnsY {0}} E [T pcijfiq].

Hence, for all i P rms, l P rns,

|Vil ´ Til| ď γ and |Vl ´ Tl| ď mγ “ γ
1 (10.16)

We invoke Proposition 3.12 with γ 1 as the approximation error. Now γ
1

“ mγ “ m. δ
6mn “

δ
6n ă

δ
4n`1 , so γ

1 satisfies the assumption of Proposition 3.12. By Proposition 3.12,

Ul “ Tl ` p2n´ lqγ
1

, l P {rns Y 0}

is a pessimistic estimator for the event E.

We now fix the computation time for the lth round of sequential derandomization. For each
Qil, there are at most n ` 1 Taylor approximations. So the computation time for all m
summands will be Opmnpn lnpnq ` lnpmn

δ
qqq. For n` 1 rounds, the total computation time is

Opmn2pn lnpnq ` lnpmn
δ
qqq.
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Remark 10.9. The above proof assumes mutually independent random variables. In case we
assume partial dependency structure as we defined in chapter 9, proving convexity of the
pessimistic estimators remains an open problem.
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