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Abstract: Industry 4.0 has become a crucial part in the majority of processes, components, and
related modelling, as well as predictive tools that allow a more efficient, automated and sustainable
approach to industry. The availability of large quantities of data, and the advances in IoT, AI,
and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction
of actionable information, resulting in a better decision-making process. Product picking and its
subsequent packing is an important area, and has drawn increasing attention for the research
community. However, depending of the context, some of the related approaches tend to be either
highly mathematical, or applied to a specific context. This article aims to provide a survey on
the main methods, techniques, and frameworks relevant to product packing and to highlight the
main properties and features that should be further investigated to ensure a more efficient and
optimised approach.
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1. Introduction

Industry 4.0 has become a synonym for the next revolution that will enable companies
to manufacture, enhance, predict, and distribute their products. The availability of new
technologies, fuelled by the advances in the Internet of Things (IoT), Artificial Intelligence
(AI), predictive analytics, and cloud computing, has allowed a paradigm shift, where
services, hardware, and software offerings have been integrated into industry practices.
Furthermore, advanced sensors, embedded software, and robotics can be seamlessly in-
tegrated to extract and identify actionable information from data to inform and facilitate
an improved decision-making process. A notable consequence is increased automation,
with the aim of achieving an increased level of self-sustained efficiency and optimised
responsiveness to new opportunities, as well as proactively adapting and addressing
new challenges.

Developing smart industry processes provides an incredible opportunity for the man-
ufacturing sector to enter the fourth industrial revolution. Analysing the large amounts of
big data collected from sensors on the factory floor ensures real-time visibility of manu-
facturing assets and can provide tools for performing predictive maintenance in order to
minimise equipment downtime.

One sector that has been expanding, due to the above emerging technologies that
have enhanced automated, sustainable, and cost effective packing solutions, is packing.
Smart labelling and Radio Frequency Identification (RFID) tagging, as well as sensor and
hardware technologies, are leading the introduction of disrupting packing approaches to
integrate real-time and historical information to enhance the overall process.

Three-Dimensional Picking and Packing are important operations in the field of
logistics and supply chain management, especially in the context of Industry 4.0. Three-
Dimensional Picking refers to the process of selecting and retrieving items from a storage
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space, such as a bin, a shelf, or a pallet, using a robotic manipulator or a human operator.
Three-Dimensional Packing refers to the process of arranging and placing items into a
container, such as a box, a pallet, or a truck, using a packing algorithm that optimises some
criteria, such as space utilisation, stability, or load balancing.

Furthermore, sustainability within the packing industry is attracting increasing atten-
tion, from both the academic and the industry communities, due to the positive environ-
mental impact, as well as optimised cost effectiveness.

Traditional packing approaches tend to be negatively affected by various factors, such
as rising material costs, environmental issues, and limited opportunities for automated and
optimised activities and services.

However, effectively packing products is based on several parameters, including (but
not limited to) the volume and shape variability of the containers and pallet supports, and
weight, height, width and, length constraints and requirements. The packing order plays
an important role, as this would optimise the overall process, whilst enhancing its speed
and potential automation.

This survey article aims to discuss the main techniques, methods, and frameworks
that are relevant to enhanced packing. The rest of the article is structured as follows:
Section 2 discusses the main methodology utilised in this article. Sections 3–5 contain the
discussion on the main components relevant to product packing, including different com-
putational and theoretical algorithms and frameworks and corresponding implementation
and deployment. Section 6 describes the implementation of an automated extraction and
analysis of large textual data sources identified in a similar manner as per the manual
assessment described in the previous sections. The aim is to identify concepts and mutual
relationships that can be extracted via natural language processing (NLP) tools. Finally,
Section 7 concludes this work and prompts new research directions.

2. Review Objectives and Methodology

To ensure a systematic approach to finding and selecting relevant material, this
study adopted the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) methodology. PRISMA is a widely used method for collating empirical evidence
that fits pre-defined selection criteria to answer specific research questions. The main aim
of this survey article was to explore research trends and challenges in product routing and
loading approaches within the Industry 4.0 context [1]. More specifically, we aimed to
answer the following research questions:

RQ1: How do volumetric techniques contribute to the optimisation of product routing and
loading processes in the context of Industry 4.0?

RQ2: What are the Industry-4.0-driven real-world applications that benefit from the utilisa-
tion of 3D Bin Packing and volumetric techniques in product routing and loading?

RQ3: In the context of Industry 4.0, how can volumetric-based approaches be enhanced
to further improve the efficiency of product packing and routing, while minimising
computational demands

RQ4: What Industry-4.0-specific challenges and constraints are associated with the applica-
tion of volumetric methods in 3D Bin Packing, and what strategies can be employed
to address these challenges effectively?

Figure 1 presents the PRISMA workflow followed for identification, screening, and
selection of the reviewed sources.
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Figure 1. PRISMA workflow diagram.

2.1. Literature Sources and Search Strategy

This study considered three major databases, namely Scopus (https://www.scopus.
com, (accessed on 6 December 2023)), IEEE Xplore (https://ieeexplore.ieee.org, (accessed on
6 December 2023)), and MDPI (https://www.mdpi.com/, accessed on 6 December 2023),
due to their interdisciplinary and multidisciplinary nature within the science subjects.
Further resources were also considered; however, it was noticed that they identified several
duplicated items as well as partially relevant one. Therefore, to ensure consistency, only
the above online tools were utilised.

To ensure all relevant literature was retrieved, search strings were devised based on
the primary keywords/concepts, that are

https://www.scopus.com
https://www.scopus.com
https://ieeexplore.ieee.org
https://www.mdpi.com/
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• Industry 4.0;
• 3D packing;
• Bin packing;
• Container packing;
• Packing heuristics.

A set of secondary keywords included terms that can be used interchangeably with
the primary key words. Combining primary keywords with the secondary ones as well as
with supporting terms such as challenges, solutions, techniques, strategies, optimisation,
etc. with OR and AND Boolean operators formed the search strings. Table 1 presents the
full set of search strings used. This process was performed in October 2023.

Table 1. Databases and search strings used.

Databases Search Strings

Scopus,
IEEE Xplore,
MDPI

“Industry 4.0 definition”, ’3D Packing Strategies, Optimal 3D Packing Techniques,
Efficient 3D Bin Packing Solutions, Three-Dimensional Bin Packing Challenges,
“Packing Efficiency”, 3D Bin Packing OR “Three-Dimensional Packing”, “3D Bin
Packing Problem” OR “Three-Dimensional Packing Problem”, “3D Packing Al-
gorithm” OR “Three-Dimensional Packing Algorithm”, “Container Packing”,
“Bin Packing Optimisation” OR “Bin Packing Optimization”, “Packing Heuris-
tics”, “Three-Dimensional Container Loading”, (“3D Bin Packing” OR “Three-
Dimensional Packing”) AND (“Industry 4.0” OR “Fourth Industrial Revolution”)

2.2. Eligibility Criteria

The eligibility of the retrieved articles to be reviewed was defined based on the
inclusion and exclusion criteria that aligns with the study objectives. Articles that met one
or more of the following inclusion criteria were selected for the review:

• Studies on 3D Picking and Packing for product routing and loading processes;
• Applications within the logistics sector with possible solutions for Industry 4.0 challenges;
• Studies focusing on product packing and routing while minimising

computational demand.

Studies that met one or more of the following exclusion criteria were not selected for
the review.

• Not relevant to 3D Bin Packing or Container Loading;
• Not relevant to logistics;
• Studies focusing on other industries rather than logistics.

2.3. Study Selection and Analysis

Literature retrieval and study selection was completed in four stages in accordance
with the PRISMA protocol (Figure 1). The search was conducted in three different databases
with the following filters:

• Studies conducted within last 10 years, from 2013 onwards, due to the focus on
Industry 4.0;

• Only peer-reviewed journal articles and conference proceedings, i.e., books, editorials,
patents, and theses were filtered out;

• Articles available in English.

With those filters on, using the pre-defined search strings, a total of 907 publications
were retrieved, 419 from Scopus, 320 from IEEE Xplore, and 168 from MDPI. Once dupli-
cates were removed, a total of 739 articles were screened based on the title, abstract, and
conclusion. Papers that were not fully accessible were also removed at this stage. Screening
resulted in the removal of 670 papers, leaving us with 69 studies to be assessed for the
eligibility criteria. All 69 articles were retrieved, read, and assessed based on the inclusion
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and exclusion criteria, as well as on rigour and relevance of the research. At the end of this
phase, only 60 papers were selected for the final review.

In alignment with our research questions, we carried out an in-depth analysis of
the selected studies with the focus on specific techniques, algorithmic approaches, and
technological solutions used, as well as evaluating the impact of Industry-4.0-led solutions
on the real-world applications.

3. Industry 4.0

Industry 4.0, also known as the Fourth Industrial Revolution, is a transformative
concept initially introduced by the German government to encapsulate a set of technological
changes in manufacturing. Its primary goal is to maintain the global competitiveness of
the industrial sector by introducing automation and data exchange into manufacturing
technologies [2].

Industry 4.0 represents the current trend of automation and data exchange in manu-
facturing technologies, including cyber-physical systems, the Internet of Things (IoT), and
cloud computing, and it is gaining significant interest across academia and international
companies, evolving into a new business model characterised by disruptive technologies.
Industry 4.0 creates what has been called a “smart factory”, where cyber-physical systems
monitor the physical processes of the factory and make decentralised decisions [3]. This
section provides a brief overview of Industry 4.0, its core elements, design principles, and
its potential relevance to volumetrics solutions, including the 3D Bin Packing Problem and
its variants.

3.1. Definition and Core Elements

The term “Industry 4.0” has gained popularity, but its precise definition remains elu-
sive, resulting in various interpretations. In their review of 675 selected papers,
Nosalska et al. [4] established a definition framework for Industry 4.0 as a complex
and multifaceted concept that involves the integration of digital technologies and physical
systems in the industrial sector. The core elements of Industry 4.0 include Smart Factory,
Smart Products, Business Models, and Customers. These elements interact with each other
to create a networked, flexible, and dynamically self-organising manufacturing system.
The literature also emphasises terms like Value Chain, Cyber-Physical Systems (CPS), IoT,
new technologies, such as Artificial Intelligence and Big Data, and Customisation.

3.2. Design Principles

These principles help systemise knowledge and offer practical solutions for imple-
menting Industry 4.0, forming the basis of Industry 4.0 design theory. However, while
various design principles exist, including Interoperability, Flexibility, Real-Time Capability,
Decentralisation, Modularity, and more, scholars may not always explicitly label them as
“principles”, even though they use them to enhance their understanding of Industry 4.0 [4].

3.3. Volumetrics Solutions and Their Relevance

Volumetrics solutions, such as 3D Bin Packing, Container Loading, and Cross-Docking,
have significant potential in the context of Industry 4.0. We believe these techniques can
contribute to the optimisation of manufacturing processes, supply chain efficiency, and
customer satisfaction. However, they also present challenges and constraints, such as
balancing, priority, fragility, and others. These challenges can be addressed by leveraging
Industry 4.0 technologies, such as IoT, Artificial Intelligence, Big Data, and Robotics.

4. Volumetrics

In this section, the main components and architectures related to Volumetrics are
introduced and discussed.
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4.1. Optimisation Problems: Container and Pallet Loading Problems

The Container Loading Problem (CLP) is a combinatorial optimisation problem that
focuses on efficiently packing a heterogeneous set of items or boxes into one or more
containers of a fixed size, with the objective of maximising space utilisation or minimising
the number of containers used. The primary goal is to find an arrangement of the items
within the container(s) that optimises a specific objective function, often related to space
efficiency [5–7]. This problem is of practical importance in the field of logistics and trans-
portation, where efficient cargo loading can lead to cost savings and improved overall
supply chain efficiency [8–10]. There are different variants of the CLP, including the Pallet
Loading Problem, and the 2D and 3D packing problems. In 2D variants, only the length
and width of items and the container are considered, while in 3D variants, the height or
depth of items and the container are also taken into account [11].

The CLP has a wide range of practical applications, including optimising cargo loading
in shipping containers, loading items into storage spaces, and even in the layout design of
warehouses and transportation vehicles [8]. Solving the CLP is NP-hard, which means that
finding an optimal solution is a computationally challenging task due to its combinatorial
nature and the need to consider various constraints [5,11]. These constraints encom-
pass container-related factors such as weight limits and weight distribution, item-specific
considerations like loading priorities, orientations, and stacking limits, cargo-related con-
straints regarding parcel completeness and item allocation, and positioning constraints
for hazardous items, relative positioning, and multidrop scenarios, as well as load-related
constraints, focusing on cargo stability and operational complexity [12]. Different algorith-
mic, heuristic, and metaheuristic approaches are commonly used to find near-optimal or
optimal solutions to this problem, depending on the specific objectives and constraints of
the problem instance [13,14].

4.2. 3D Bin Packing Problem

Parallel to the CLP, the 3D Bin Packing Problem (3D-BPP) exhibits notable similar-
ities while featuring two fundamental distinctions. The first point of divergence lies in
load balancing, a trait often shared between the Pallet Loading Problem and 3D-BPP. In
these scenarios, containers are generally not designed to accommodate unbalanced loads,
necessitating a focus on equitable weight distribution [15].

Conversely, the second notable deviation pertains exclusively to 3D-BPP. This discrep-
ancy arises from the existence of two primary variants: the offline 3D-BPP, which bears
semblance to the Pallet Loading Problem, and the online 3D-BPP. The latter represents a dy-
namic perspective where items arrive sequentially, and real-time calculations are required
for the positioning of each item, as they are not known in advance. This dynamic approach
contrasts with the offline version, where all items and container information are avail-
able in advance. These distinctions underscore the unique challenges and considerations
associated with the 3D-BPP, setting it apart from its container and pallet variations [15].

In a recent study [16], notable variations in the Online 3D-BPP have been introduced,
aptly named “Non-Deterministic Ordered Packing” (NDOP) and “Quasi-Online Packing”
(QOP). NDOP encapsulates the intricate task of handling irregularly shaped items arriving
in an unpredictable order. In CLP scenarios, the sequence for item placement is pre-
defined, yet NDOP introduces an element of uncertainty into this sequencing, increasing
the complexity. The main challenge is to efficiently pack odd-shaped items into containers
while dealing with the uncertainty of when each item will arrive.

In contrast, QOP tackles scenarios where the order of item arrivals is unknown, but
it retains some flexibility in the packing process. Unlike immediate online packing, QOP
accommodates the non-deterministic arrival sequence, aiming to optimise the packing
arrangement with a certain degree of adaptability. This concept addresses the challenge of
efficiently placing items into containers when dealing with unpredictable arrival orders,
striking a balance between adaptability and efficiency [16].
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4.3. Cross-Docking and Its Role in Industry 4.0

Cross-docking is a pivotal operation within modern supply chain management, es-
pecially in the context of Industry 4.0. This logistics practice involves the streamlined
movement of goods through a distribution centre, reducing storage time and enhancing
efficiency [17].

In an Industry 4.0 framework, cross-docking plays a critical role in optimising the
flow of products. Technologies such as the Internet of Things (IoT), Big Data, and Robotics
have revolutionised cross-docking operations. The optimisation of mixed pallets further
enhances the efficiency of cross-docking, by reducing the number of pallets required and
minimising the use of space, aligning with the lean and efficient principles of Industry
4.0 [17].

Cross-docking operations, in the context of Industry 4.0, are becoming smarter and
more responsive. IoT devices and sensors provide real-time data on inventory, enabling
predictive maintenance and efficient routing, while robotics and automation streamline
the movement of goods within the facility, reducing human error and increasing speed. By
aligning cross-docking with Industry 4.0 principles, businesses can achieve greater agility,
adaptability, and competitiveness in the modern era of logistics and manufacturing [17].

4.4. Balancing, Priority, Fragility, or Other Constraints

Multidimensional bin packing is a critical logistics challenge that requires efficient
placement of items within containers, taking into account various constraints to ensure
safety, stability, and overall efficiency during transportation. A synthesis of findings from
16 studies reveals a common thread of constraints that researchers consider in solving these
complex packing problems.

Balancing constraints are a fundamental consideration in many of the discussed papers.
These constraints focus on achieving balanced weight distribution, volume distribution, or
the distribution of centre of mass among containers or bins. Maintaining such equilibria is
essential to prevent overloading and maintain stability during transport [17–20].

Priority constraints also play a pivotal role in scenarios where specific items demand
special handling due to factors like fragility, value, or time-sensitivity delivery. These
constraints guide the packing strategy, ensuring that high-priority items are placed with
care and precision [16,21–23].

Breakability constraints are addressed in several papers, emphasising the need to pro-
tect fragile items during transportation. These constraints call for thoughtful arrangements
and protective measures to minimise the risk of damage [12,14,15,24].

Stability constraints, especially in the context of logistics and shipping, ensure that
items are placed in a way that prevents shifting or toppling during transit [14,21,24,25].
Space utilisation constraints are another common theme across studies, where efficient
space usage within containers is a primary goal, as this can contribute to increased stability.

Item rotation or orientation constraints play a crucial role in multidimensional bin-
packing problems, where items or boxes come in various shapes and sizes. These constraints
pertain to how each box can be oriented or rotated within a container or bin; however, these
can contribute to increased complexity [15,22,26,27]. Other constraints like dimension,
weight, and volume are considered in most studies to address the unique requirements
of different scenarios. These constraints collectively form a comprehensive framework
for tackling multidimensional bin-packing problems, highlighting the complexity and
adaptability required to address real-world packing challenges [12,15,16,28].

4.5. Algorithmic Approaches

In this section, a comprehensive discussion on the algorithmic approaches to product
packing is carried out. The discussion is divided into the main approaches that have been
extensively utilised in this context.
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4.5.1. Application of Greedy Algorithms

Aiming to gain insights into the versatility and limitations of Greedy Algorithms,
we delve into six distinct studies to examine how Greedy Algorithms are employed in
resolving complex combinatorial problems.

The study presented by Ábrahám et al. [29] primarily focuses on the application of
Greedy Algorithms to tackle specific instances of the bin-packing problem, particularly for
the Schwerin and Falkenauer U benchmark classes. Their study showcases the efficacy of
Greedy Algorithms in providing efficient solutions for a substantial percentage of instances
within these classes. Notably, the Greedy Algorithm achieves optimal solutions for all
instances in the Schwerin class and approximately 91% of the instances in the Falkenauer U
class. Additionally, their introduction of pre-processing procedures simplifies subsequent
packing processes.

Another study, primarily focused on solving the Container Loading Problem (CLP),
proposes a heuristic algorithm that leverages a multiphase Greedy Strategy. It begins by
assuming that items in a layer must share the same shape, employing a systematic approach
of creating good layers out of high-quality stacks, and packing these stacks into containers.
It exhibits versatility, with the potential for application in the Pallet Loading Problem and
the 3D Bin Packing Problem (3D-BPP) [6].

The Greedy Algorithm is also presented as a core component of solutions proposed by
two studies [9,12] to address a spectrum of packing problems, including the CLP, the Pallet
Loading Problem, and the 3D-BPP. The main difference between the two solutions is that
the authors of the 2014 study [9] propose a Heuristic Binary Tree Search Method (HBTS),
which iteratively selects items to be loaded into the container, considering specific criteria,
such as item dimensions and other constraints. A similar solution, although primarily
focused on the solution of the CLP, presented in another 2014 study [25] proposes the use
of a Greedy Algorithm, specifically the Deepest Bottom Left with Fill (DBLF), as part of its
hybrid approach. The authors employ the DBLF to generate initial solutions for the CLP.

The Greedy Randomised Adaptive Search Procedure (GRASP) is proposed by a recent
study [30] to address the 3D-BPP and the Vehicle Routing Problem (VRP). The authors’
GRASP algorithm plays a crucial role in creating initial solutions for these problems. By
employing a constructive phase that forms clusters of customers based on their distances to
the warehouse, the algorithm introduces randomness to the clustering process, enhancing
the exploration of solution spaces. The paper does not explicitly discuss alignment with
the Industry 4.0 framework, but the efficient packing and routing it entails hold relevance
to Industry 4.0’s goals.

4.5.2. The Three-Dimensional Double Travelling Salesman Problem with Multiple Stacks

The Double Travelling Salesman Problem (DTSP) is a well-known and challenging
combinatorial optimisation problem that has significant relevance in logistics, transporta-
tion, and supply chain management. It is an extension of the classic Travelling Salesman
Problem (TSP), a problem of finding the shortest closed tour that visits a set of given
locations exactly once. The DTSP introduces an additional layer of complexity by requir-
ing two salesmen to find their individual shortest routes while covering the same set of
locations [10].

The DTSP has attracted considerable attention in the field of operations research due to
its real-world applications in various domains. One such extension of the DTSP is the Three-
Dimensional Double Travelling Salesman Problem with Multiple Stacks (3L-DTSPMS), a
problem introduced by Ruan et al. [10]. In this advanced variant, the salesmen are tasked
with optimising their routes in a three-dimensional space that includes container-loading
constraints with multiple stacks. This problem extends beyond simple route optimisation
and dives into the complexities of practical logistics operations where bulky items must be
efficiently loaded into containers.

The incorporation of container-loading constraints with multiple stacks introduces a
set of challenges, including the need for intelligent loading strategies and considerations



Future Internet 2024, 16, 39 9 of 23

for the stability and blocking relationships of loaded items. To address these challenges, the
authors propose the utilisation of the k-means clustering algorithm as a component of their
Improved Genetic Algorithm (IGA) [10]. This algorithmic approach aims to enhance the
optimisation of delivery and loading routes by leveraging clustering techniques to group
related items together.

In the context of the 3L-DTSPMS, the k-means clustering algorithm plays a pivotal
role in several stages of the optimisation process. Initially, it contributes to the generation
of an approximate optimal delivery route within the Genetic Algorithm framework. Subse-
quently, the algorithm aids in optimising the loading route, considering the independence
of pickup warehouses and the potential blocking relationships between items in the loading
and delivery routes. The k-means clustering algorithm, coupled with heuristics, facilitates
the regeneration of the loading path to align it with the current delivery route.

4.5.3. Mixed-Integer Linear Programming (MILP)

The use of Mixed-Integer Linear Programming (MILP) is proposed by Trivella and
Pisinger [19] to solve the load-balanced multidimensional bin-packing problem (LB-MBP),
which is a variant of the 3D Bin Packing Problem that considers both packing and balancing
objectives, and it is also proposed by Erbayrak et al. [18] to solve the 3D Bin Packing
Problem with balancing constraints.

Similarly, a study presented by Tresca et al. [31] proposes the use of MILP to solve the
3D-BPP. Their solutions align with Industry 4.0 frameworks as they leverage data analyt-
ics and optimisation techniques to improve the efficiency and quality of manufacturing
processes. The model presented by Tresca and co-authors [31] was tested on both realistic
and industrial data, including scenarios provided by a logistics company, which aligns
with Industry 4.0 focus on real-world implementations of advanced technologies. Industry
4.0 often involves the use of digital twins, which are virtual representations of physical
assets or systems. In a study presented by Hasachoo et al. [28], the use of MILP to model
and optimise the container-loading process can be seen as a form of digital twinning. The
model represents the physical process, and MILP allows for virtual experimentation and
optimisation of packing patterns before actual execution.

4.5.4. Biased-Random-Key Genetic Algorithm (BRKGA)

The Biased-Random-Key Genetic Algorithm (BRKGA) is a novel approach that com-
bines Genetic Algorithm principles with the concept of random-key representation. In
essence, it follows the standard Genetic Algorithm framework, encompassing phases such
as initialisation, selection, crossover, mutation, and fitness evaluation. This systematic pro-
cess allows for the evolutionary refinement of solutions across generations, progressively
enhancing the quality of packing arrangements, as highlighted by two studies [32,33].

In their work, proposed to solve the 2D and 3D packing problems, Gonçalves et al. [32]
introduce an inventive fitness function to assess solution quality, demonstrating the al-
gorithm’s flexibility and adaptability. Meanwhile, Zheng et al. [33] employ the BRKGA
to address multiple packing problems, including the Container Loading Problem (CLP),
Pallet Loading Problem (PLP), and 3D Bin Packing Problem (3D-BPP). The algorithm uses
a unique approach by representing solutions as vectors of random numbers, referred to as
random keys. These random keys are mapped to feasible solutions in the packing problems.

The distinctive feature of the BRKGA, setting it apart from traditional Genetic Al-
gorithms, is the introduction of bias during the selection of parents in both crossover
and mutation phases. This bias is strategically designed to favour the selection of spe-
cific random keys that exhibit the potential to yield superior solutions. By doing so, the
algorithm steers itself towards the convergence of high-quality solutions, a noteworthy
characteristic for optimising packing scenarios. Additionally, the incorporation of a Fuzzy
Logic Controller (FLC) further enhances the algorithm’s efficiency by dynamically adjust-
ing parameters to adapt to the evolving problem landscape, as described by Zheng and
co-authors [33].
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4.5.5. Monte Carlo Tree Search

In the context of solving the 3D-Bin Packing Problem (3D-BPP), the application of the
Monte Carlo Tree Search (MCTS) algorithm has proven to be a pivotal technique in various
research approaches.

In their study [22], Puche et al. harness MCTS as a cornerstone of their 3D-BPP solution
driven by reinforcement learning. MCTS, known for its ability to navigate combinatorial
spaces represented as trees, offers an effective strategy for decision making. In the context
of 3D-BPP, the nodes of this tree represent different problem states or configurations.
Notably, the authors adapt the AlphaGo algorithm for operation in single-player and
score-based scenarios. They introduce a buffer to facilitate multi-item action selection
and employ a data augmentation strategy. This comprehensive approach demonstrates
MCTS’s adaptability and potential in reinforcement-learning-driven solutions for complex
optimisation problems.

The study by Wu and Yao [34] introduces MCTS as a key component of another
approach to tackle the 3D-BPP, specifically under incomplete information. The algorithm
begins by selecting the most optimal node at the current state to expand the search tree.
Subsequently, it conducts simulations to evaluate potential outcomes of various actions,
which, in the context of 3D-BPP, equates to estimating the effectiveness of stacking actions.
The outcomes of these simulations play a pivotal role in updating the status of nodes in the
search tree. This information is then propagated back up the tree, informing the selection
process in subsequent iterations. In this way, MCTS enhances the decision-making process,
especially in scenarios where information is not complete, and decisions must rely on
estimating outcomes.

MCTS’s efficiency and forward-looking capabilities are leveraged in the 3D-BPP
solution presented by Jia et al. [35]. In a unique integration, MCTS collaborates with a
robotic system tasked with packing objects into pallets. This application of MCTS in a
robotic context is particularly valuable for its ability to simulate potential future moves and
evaluate their consequences. In the context of packing, it means considering how placing an
object in a specific location may impact the available space for subsequent objects, thereby
optimising the packing process and enhancing efficiency.

4.5.6. Matheuristics

Two studies [30,31] employ matheuristics, a hybrid approach blending mathematical
precision with heuristic ingenuity, to solve optimisation problems, while both studies align
with key aspects of Industry 4.0, such as transportation optimisation, automation, efficiency,
and scalability, they differ in their scopes and methodologies.

The study conducted by Moura et al. [30] takes a comprehensive approach, addressing
a wide range of packing challenges, encompassing the Container Loading Problem (CLP),
Pallet Loading Problem (PLP), and the 3D Bin Packing Problem (3D-BPP). This study
leverages mathematical programming models to handle the Vehicle Routing Problem
with Simultaneous Delivery and Pickup and Time Windows (VRPSDPTW) in addition to
the 3D-BPP.

In contrast, the research conducted by Tresca et al. [31] is more specialised, concen-
trating specifically on the intricacies of the 3D-BPP. Here, the problem is formulated as
a mixed-integer non-linear programming (MINLP) challenge, highlighting the study’s
precision in addressing this specific packing problem.

4.5.7. Constrained Markov Decision Process (CMDP)

Two reviewed studies [22,36] tackle the Online 3D Bin Packing Problem (3D-BPP) using
Constrained Markov Decision Processes (CMDPs). The CMDP is an extension of traditional
Markov Decision Processes (MDPs) that accommodates constraints. In the context of
3D-BPP, these constraints relate to the order dependence of items and the imperative for
physical stability during the packing process.
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The approach presented by Zhao et al. [36] introduces a novel application of CMDP,
leveraging it to guide the reinforcement learning process. Their use of CMDP facilitates the
modelling and resolution of the intricate 3D-BPP with inherent constraints. The integration
of a 2D height-map representation enhances the learning process, enabling effective policy
optimisation. Additionally, the incorporation of Monte Carlo Tree Search (MCTS) for han-
dling multiple look-ahead items contributes to the adaptability of their proposed approach.

Conversely, Puche et al. [22] adopt a model-based strategy inspired by AlphaGo. Their
CMDP formulation assumes a deterministic transition model, representing the bin state
through a height map. The policy network is central to their approach, providing placement
probabilities based on the height map and item dimensions. The method addresses single-
item, item reorientation, and multi-item scenarios with a buffer, showcasing its versatility.

4.5.8. The Pareto-Based Approach

The Pareto-based principle is applied to handle the inherent multiobjective nature
of CLP, wherein conflicting objectives, such as space utilisation and total box value, need
simultaneous optimisation.

In the work of Zheng et al. [33] a Multi-Objective Genetic Algorithm (mompGA) is
used. The algorithm optimises container space utilisation and the total value of loaded
boxes concurrently. Notably, the authors employ adaptive weights to dynamically balance
the importance of the two objectives during optimisation. The use of a multipopulation
strategy and tracking convergence over multiple generations contributes to the algorithm’s
superior performance.

Conversely, Phongmoo et al. [13] introduce the Artificial Bee Colony (ABC) algorithm
for solving the multiobjective three-dimensional single-container loading problem. The
ABC algorithm, inspired by the foraging behaviour of honeybees, is integrated with a
Pareto-based approach. The authors address complex constraints such as box rotation and
non-overlapping boxes in their mathematical model. Optimal parameters for the ABC
algorithm are identified using the LINGO optimisation solver.

The integration of adaptive weights in mompGA allows for dynamic adjustment of
focus during optimisation, providing flexibility in handling trade-offs between conflicting
objectives. In contrast, the ABC algorithm relies on identifying optimal parameters through
an external optimisation solver.

4.5.9. Proximal Policy Optimisation (PPO)

Whereas Yang et al. [37] do not explicitly detail the application of PPO, they reference
indirectly incorporating the PPO algorithm within their heuristics DRL framework. In con-
strast, Que et al. [11] explicitly employ the PPO algorithm to tackle the Three-Dimensional
Packing Problem (3D-PP) with variable height. PPO is a pivotal component of the Deep
Reinforcement Learning (DRL) approach adopted for solving this packing problem. The
authors provide a comprehensive description of how PPO is applied, including the choice
of hyper-parameters and their integration into the training process. PPO is selected as
the optimisation algorithm for training the DRL models, engaging both policy and value
networks. The policy network dictates the actions, determining how to place the boxes,
while the value network assesses the quality of these actions. Notably, the authors carefully
set hyper-parameters such as the learning rate, discount factor, and decay factor.

4.5.10. Heuristic Binary Tree Search (HBTS) Algorithm

The application of the Heuristic Binary Tree Search (HBTS) Algorithm, as proposed
by Liu et al. [9] to address the 3D-BPP. The algorithm employs a Branch-and-Bound
approach to address the problem of efficiently loading a set of three-dimensional boxes into
a container with limited space.

The HBTS algorithm commences by grouping the rectangular boxes into strips, which
are subsequently organised into layers. These layers form the foundation for constructing
a binary tree. Each node within the binary tree corresponds to a container-loading plan,



Future Internet 2024, 16, 39 12 of 23

defined as a set of layers. Notably, these layers can be either perpendicular or parallel to
the left side of the container. The traversal of the binary tree aims to identify the solution
with the highest total volume of packed boxes. The algorithm meticulously addresses
constraints such as full support, orientation, and guillotine cutting. Guillotine cutting, a
method employed where cutting is consistently made perpendicular to one of the sides
of the items, ensures a systematic approach to accommodating boxes within the container.
The termination criterion involves exceeding a predefined computational limit, upon which
the best-found solution is returned.

The efficacy of the HBTS algorithm is substantiated by Liu et al. [9] through compu-
tational experiments, comparing its performance with existing methods, and the results
manifest that HBTS excels, particularly in strongly heterogeneous instances. The evaluation
includes filling rates and computational times, providing a comprehensive assessment of
the algorithm’s prowess in diverse scenarios.

4.5.11. Data-Driven Tree Search (DDTS) Algorithm & Convolutional Neural
Networks (CNNs)

Aiming to enhance the decision-making process when solving the Container Loading
Problem (CLP), the Data-Driven Tree Search (DDTS) algorithm integrates machine learning
principles with traditional tree search methods. Notably, Convolutional Neural Networks
(CNNs) play a pivotal role in this innovative approach [38].

The algorithm is trained on a dataset derived from diverse container packing sce-
narios, allowing it to learn and generalise patterns from past instances. The integration
of CNNs facilitates the algorithm in learning intricate representations directly from raw
data, alleviating the necessity for explicit feature engineering. The tree search mechanism
within DDTS is characterised by an iterative exploration of potential packing configurations.
This exploration is guided by learned heuristics derived from the CNN-processed training
dataset. The adaptability inherent in this decision-making process contributes substantively
to the algorithm’s efficacy, resulting in an improved ability to identify feasible solutions
efficiently [38].

4.5.12. Ternary Search Tree-Based Differential Evolution (TSTDE) Algorithm

The TSTDE is introduced as a novel approach to solving the 3D-BPP. The core inno-
vation lies in the incorporation of a ternary search tree model for generating the initial
population in the differential evolution process. Unlike conventional practices, TSTDE
avoids the use of upper and lower bounds for trial individuals. Instead, the ternary tree
model is leveraged to assess the feasibility of generated solutions, contributing to a unique
and adaptive initialisation process. Similar to the termination criterion in HBTS, where it
entails surpassing a predetermined computational limit, the developers of TSTDE recog-
nise the difficulty in establishing practical termination conditions and similarly choose a
termination approach based on a maximum number of iterations. Key parameters include
the maximum number of iterations, crossover probability, scaling factor, and population
size [8].

Experimental results, conducted using Bischoff and Ratcliff instances with varying
cargo types, demonstrate the effectiveness of TSTDE. Comparative analyses against estab-
lished optimisation algorithms, such as Particle Swarm Optimisation (PSO), Differential
Evolution (DE), Simulated Annealing (SA), and Ant Colony Optimisation (ACO), reveal
the superiority of TSTDE in handling the 3D-BPP [8].

4.5.13. Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) is a nature-inspired optimisation algorithm that
leverages the collaborative behaviour of particles in a swarm to explore and converge
towards optimal solutions in a given solution space. In the study presented by Li et al. [39],
it is specifically applied to address the challenges of the 3D-BPP in the context of an IoT-
based automated e-fulfilment packaging system. The novel 3D adaptive PSO-based packing
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algorithm, introduced by Li and co-authors [39], exhibits adaptability by dynamically
adjusting its behaviour based on the distinctive characteristics of the packing scenario. The
primary evaluative metrics include Center-of-Gravity (COG) distances and computation
times, with the algorithm employing two searching strategies to enhance efficiency across
diverse scenarios.

The experimental setup integrates a mobile application, a server, a delivery robot, and
a robot manipulator, highlighting the confluence of IoT and robotics in the e-fulfilment
process, while the results exhibit promise, the authors acknowledge the limitations of the
laboratory environment and advocate for further research. Specifically, they propose testing
the system in a real smart factory to assess scalability and robustness.

4.5.14. Biogeography Algorithm

The Biogeography algorithm, inspired by ecological processes, simulates the migration
of species between habitats and the sharing of information among populations. In the
context of CLP, the algorithm is adapted to represent the arrangement of items within con-
tainers as solutions. The migration species corresponds to the movement or rearrangement
of items, and the habitats symbolise potential solutions [40].

The algorithm incorporates a fitness function to evaluate the quality of solutions
based on factors such as space utilisation, load distribution, and adherence to constraints.
Through iterations, the algorithm refines the solutions by mimicking the natural processes
of migration and information exchange, gradually converging towards an optimal or
near-optimal arrangement of items within the containers [40].

4.5.15. Pattern-Based Algorithm

The Pattern-Based Algorithm for the Online Bin Packing Problem, proposed by Lin
et al. [41], encompasses three fundamental sub-algorithms: pattern generation, pattern
update, and packing. The algorithm maintains a record of the sizes of incoming items within
predefined sections, representing equally sized intervals. Patterns, two-dimensional tables
of fixed combinations of differently sized items, are generated based on historical data. The
pattern plan, continually updated, guides the packing process, with bin waiting queues
facilitating the orderly application of patterns. Best-Fit serves as a fallback option when a
pattern is not applicable. The algorithm demonstrates advantages in bin usage, particularly
in scenarios where items have medium sizes. Comparative experiments with the Best-Fit
algorithm reveal superior performance in certain distributions. The proposed algorithm
exhibits lower CPU time consumption compared to Best-Fit under various experimental
settings. This suggests its potential for real-world applications where computational
efficiency is crucial.

4.6. Deep Reinforcement Learning

Several studies have ventured into the application of Deep Reinforcement Learning
(DRL) in the context of the 3D-BPP, aiming to efficiently pack objects with varying shapes
and orientations into a confined space. These studies propose unique contributions and
insights into the world of DRL and its applicability within this domain. While most studies
do not explicitly mention Industry 4.0, they indirectly align with its principles, showcasing
how advanced technologies, including Machine Learning (ML) and robotics, can enhance
logistics processes.

A study published by Yang et al. [42] employs DRL to optmise the bin-packing
process. The approach involves the creation of an intelligent agent that learns to make
optimal decisions when packing items into a three-dimensional container. A distinctive
feature of the authors methodology is the integration of heuristics derived from human
experiences and physical rules with DRL, resulting in an improved packing policy. In a sim-
ilar vein, Zhao et al., 2021 [36] also delve into 3D bin packing using DRL. However, their
particular focus lies on the online variant of this problem. Building upon this foundation,
Zhao et al., 2022 [43] further extend the application of DRL to address the 3D-BPP, empha-
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sising the online version. Their approach introduces novel elements such as a stacking
tree structure, a decoupled packing policy learning framework, and the incorporation of a
reward function.

In a recent study conducted by Chien and Wong [44], DRL was introduced to address
the 3D-BPP, with an emphasis on efficiently packing objects with diverse shapes. Their ap-
proach entails the amalgamation of DRL with the Soft Actor–Critic (SAC) algorithm and the
utilisation of a task simulator to facilitate efficient training. Moreover, they incorporate dy-
namic adjustments to task difficulty and devise a reward function, both of which contribute
to enhancing the learning process. Notably, the trained model exhibits a 70% success rate
for moderately challenging tasks. In a parallel endeavour, Xiong et al. [45] opt for the Ad-
vantage Actor–Critic (A2C) algorithm to address the 3D-BPP within a robotic environment.
Their approach emphasises maximising space utilisation while respecting constraints.

Furthermore, in the research conducted by Wu and Yao [34], DRL is used to address the
3D-BPP within the context of port logistics. In their study, the authors model the problem as
a Markov Decision Process (MDP) and also employ the A2C algorithm, albeit supplemented
with Generalised Advantage Estimation (GAE). Their research is centred on the efficient
use of space while adhering to specific constraints associated with port logistics.

The methodologies presented by Jia et al. and Liu et al. [35,46] align with the funda-
mental tenets of Industry 4.0, emphasising the advancement of algorithms and automation
to enhance the efficiency of manufacturing and logistics operations. By applying DRL to the
Online 3D-BPP, Jia et al.[35] aim to leverage an improved Actor–Critic algorithm and com-
bine DRL with the Monte Carlo Tree Search (MCTS) algorithm. In addition, they introduce
a packing configuration tree model to address the challenge of action space discretisation.

Similarly, Liu et al. [46] tackle the 3D-BPP within the context of e-commerce warehous-
ing. Their approach is based on the deployment of a Deep Q-Network (DQN) algorithm
within the domain of DRL, optimising various aspects, and encompassing the selection of
box types, the sequence of loading, and the orientation of the boxes.

In two recent studies [11,47], researchers direct their focus towards tackling the 3D
Container Loading Problem (3D-CLP) with DRL. Whereas Murdivien and Um [47] pro-
pose the application of DRL to a specific instance of the 3D-BPP using the Proximal Policy
Optimisation (PPO) algorithm, and conduct experiments involving hyper-parameter adjust-
ments, Que et al. [11] introduce a groundbreaking approach, marked by a novel container
state representation and a revised sequence of sub-actions within the DRL framework.
Their DRL-based approach demonstrates superior performance in utilisation rate.

4.6.1. Implications for Industry 4.0

The integration of DRL in addressing complex combinatorial optimisation challenges
such as the 3D-BPP and CLP holds potential implications for Industry 4.0. These studies
implicitly encompass some key principles of Industry 4.0, which include the integration of
digital technologies, automation, and data-driven decision making into manufacturing and
logistics processes.

DRL techniques are instrumental in optimising various aspects of these problems,
including efficient resource utilisation, decision making, and process automation. Fur-
thermore, these studies underscore the pivotal role played by Artificial Intelligence (AI)
and robotics in enhancing the landscape of logistical operations, reflecting the broader
trend within Industry 4.0, and accentuating the transformative potential held by advanced
technologies in reshaping the future of manufacturing and logistics.

4.6.2. Soft Actor–Critic Algorithm (SAC)

Two studies [35,44] use the Soft Actor–Critic (SAC) algorithm to address the 3D Bin
Packing Problem (3D-BPP). Both contributions integrate SAC within the framework of deep
reinforcement learning. The study by Zheng et al. [33] proposes employing SAC to tackle
the Online 3D-BPP, particularly focusing on autonomous packing of diverse and novel
objects in smart warehouse systems. The authors extend traditional offline packing methods
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to the online scenario. The SAC algorithm is instrumental in training a policy network
capable of handling irregular-shaped objects with varying orientations. The methodology
includes the generation of a diverse object dataset, simulation in PyBullet with RGB-D
cameras, and a reward system incentivising successful placements while penalising failures
and collisions.

Conversely, Jia et al. [35] focus on the Online 3D-BPP using a combination of deep
reinforcement learning and Monte Carlo tree search, while SAC is employed to enhance the
learning process, specific implementation details are not explicitly discussed. The authors
introduce an improved Actor–Critic algorithm within the deep reinforcement learning
framework, emphasising efficient and robust packing strategies.

4.6.3. Deep Q-Network (DQN)

The Deep Q-Network is proposed by Liu et al. [46] to address the 3D-BPP for irregular
items in e-commerce warehousing. The authors present a DQN algorithm framework for
intelligent optimisation, emphasising the initialisation of replay memory, the architecture of
linear networks, and the Q-learning process. The algorithm represents the system state as a
dynamic sequence during episodes, iteratively selecting actions with a stochastic element.
Actions, rewards, and transitions are stored in the replay memory, with rewards reflecting
the objective to maximise packing space utilisation. Training involves gradient descent on
the mean squared error between predicted and target Q-values. Periodic updates to the
target Q-network ensure stability.

4.7. Technological Solutions

Advances in technology have allowed a significant enhancement of the different
packing techniques. This section will focus on these aspects.

4.7.1. Robotics- and IoT-Based Solutions

In the realm of logistics and manufacturing, the integration of advanced technologies
is essential to meet the challenges of modern industry. This section explores how various
studies have leveraged robotics, machine learning, and advanced algorithms to address
complex problems like the 3D Bin Packing Problem (3D-BPP), the Pallet Loading Prob-
lem (PLP), and the Container Loading Problem (CLP). These innovative solutions align
with the principles of Industry 4.0, emphasising automation, efficiency, and data-driven
decision making.

A study presented by Agarwal et al. [48] proposes the use of robotics to tackle the
3D-BPP, PLP, and CLP. The authors’ approach integrates a robotic arm and introduces the
“Jampack” algorithm for efficient 3D bin packing. Furthermore, the Fault Recovery Module
(FRM) ensures reliability by detecting and correcting packing errors, minimising the need
for manual intervention. This automated solution embodies the core principles of Industry
4.0, emphasising technology-driven efficiency.

In another study [35], robotics plays a central role in solving the 3D-BPP, CLP, and PLP.
The authors method combines a vision system for object recognition, machine learning
algorithms for optimal packing configuration, and autonomous robotic packing. This
approach aligns with the Smart Factory concept, a cornerstone of Industry 4.0, by leveraging
intelligent devices and data-driven decision making.

The application of robotics and intelligent algorithms in IoT-based e-fulfilment systems
echoes the core tenets of Industry 4.0, emphasising automation, connectivity, and data-
driven decision making. These solutions illustrate the principles of cyber-physical systems,
making them suitable for contemporary manufacturing environments [39].

Numerous other studies explore the application of robotics to solve the CLP and its
variants. For instance, Nguyen and Nguyen [49] propose a heuristic-based solution for the
Online 3D-BPP, highlighting the simplicity of the solution. Shuai et al. [21] address the
real-world challenges of handling non-standard and deformable boxes, demonstrating a
robotic system capable of accommodating such complexities. Xiong et al. [45] combine
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Deep Reinforcement Learning (DRL) with advanced hardware technology, employing
robotic arms equipped with suction-based end-effectors and vision feedback modules.

In the study presented by Yang et al., 2023 [42], items are automatically picked from a
conveyor belt and placed in containers, showcasing the effectiveness of DRL-based packing
algorithms. Finally, Yang et al., 2021 [37] develop a sophisticated robotic system that
combines DRL with a suction-based picking module and mounts the robot on an Automated
Guided Vehicle (AGV), streamlining the transportation of items to target containers.

In the dynamic landscape of Industry 4.0, the application of robotics, machine learning,
and advanced algorithms has emerged as a transformative force in addressing intricate
packing and loading challenges. These studies exemplify the synergy between technol-
ogy and efficiency, underscoring the potential of Industry 4.0 to revolutionise logistics
and manufacturing.

4.7.2. Unity Game Engine and Augmented Reality (AR)

The Unity game engine is used by Murdivien and Um [47] as a pivotal platform for
simulating and training a Deep Reinforcement Learning (DRL) model to automate the
loading process in a simulated environment. The authors highlight Unity’s advantages in
terms of visualisation, user-friendly interface, and flexibility. Noteworthy is Unity’s capa-
bility to handle various shapes, providing flexibility in modelling packing configurations
beyond cuboid boxes. The user-friendly interface enables seamless parameter adjustments,
while the visualisation capabilities contribute to a clear and intuitive representation of the
packing process.

A comprehensive framework, proposed by Jaoua et al. [24], integrates the Unity game
engine and augmented reality (AR) to enhance 3D-BPP solutions. The optimisation module,
employing heuristics in Python, generates solutions considering stability, weight, volume,
and item nature. The AR module, implemented using Unity, creates a virtual environment
mimicking real-world packing scenarios. The framework visualises packing solutions in an
immersive AR environment, aiding operators in decision making. The connecting module
facilitates the seamless transfer of coordinates from the optimisation module to the AR
module, resulting in a mobile application for real-world use. The authors position their
work within the context of Industry 4.0, emphasising the transition to the fourth revolution
of logistics.

4.7.3. FPGA-Based Enhancement of 3D Bin Packing Solutions

Borra et al. [50] advocate for the adoption of a Field-Programmable Gate Array (FPGA)
as a hardware accelerator, emphasising its parallel processing capabilities in tackling the
intricacies of the 3D-BPP. The implementation of FPGAs in the context of the 3D-BPP
offers notable contributions to the field. The parallelisation of operations on the Layered
Dense Container (LDC) and the utilisation of a Deep Q-Network (DQN) for enhanced
decision making represent significant strides. Despite the promising outcomes, the authors
acknowledge certain limitations inherent in their FPGA-based approach. Challenges in
FPGA implementation, including the need for extensive customisation using Hardware
Description Languages (HDLs) and potential accuracy degradation during DQN parameter
quantisation, are noted. The paper highlights the trade-offs between ease of use and
customisation, contrasting the benefits of utilising different tools. Additionally, the reported
speedup of approximately 15 times on average prompts a nuanced evaluation of the
achieved performance boost in practical applications.

4.7.4. Depth Camera and Vision System

The study presented by Ladplee et al. [51] proposes an automated system for volu-
metric measurement of rectangular parcel boxes using a single LiDAR depth camera. It
addresses the need for efficient and accurate dimensioning of boxes in the logistics industry,
particularly in warehouse management. The system utilises a range of image processing
techniques, including the flood fill algorithm, to detect the top plane of boxes, extract their
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dimensions, and measure their height, while the study does not directly delve into solving
the 3D-BPP, the Pallet Loading Problem, or the CLP, it does briefly mention the integration
of the box dimensions into a 3D bin packing application. Since the system proposes the
integration of automated dimensioning with a 3D bin packing application, it supports
principles of automation, data-driven decision making, efficiency, real-time tracking, and
sustainability, all of which are central to Industry 4.0’s goals for smart manufacturing
and logistics.

The authors of another study [35] employ a Realsense depth camera as part of their
experimental setup to capture data in the real-world environment. This vision system is
crucial for perception in the context of the Online 3D-BPP problem. Specifically, it is used
to simulate the online packing and palletising scene. The target object, represented by
a cuboid wooden block, is captured by the depth camera shooting vertically downward
during the process. The authors present fitting results of three target objects segmented by
Euclidean clustering, with the geometric centre points identified. The actual dimensions
of the target objects are compared to the final average fitting results after 300 tests. The
reported error of the final fitting results is within 1%, indicating a high level of accuracy.

4.7.5. Parallel Processing with CUDA (Compute Unified Device Architecture)

A study presented by Bozejko et al. [26] leverages the parallel processing capabilities
offered by CUDA, a parallel platform developed by NVIDIA. In the specific context of
the 3D-BPP, the paper employs parallel processing to expedite the packing algorithm’s
execution, especially when dealing with large and complex instances of the problem.
Parallelisation is achieved by distributing the computational workload across multiple
threads or processing units available on the GPU.

Parallel processing significantly enhances the performance of the packing algorithm.
The inherent parallel nature of the 3D-BPP, where different containers or regions within a
container can be processed concurrently, aligns well with the capabilities of GPUs. This
leads to a substantial reduction in the time required to find an optimal or near-optimal
packing solution. CUDA technology enables the algorithm to scale efficiently with the
size and complexity of the problem instances. As the number of items to be packed or
the diversity of box types increases, parallel processing allows for a more scalable and
expedited solution without compromising the quality of the packing [26].

5. Discussion

The advent of Industry 4.0 has brought about a paradigm shift in the manufacturing
sector, with an increased emphasis on automation, data exchange, and smart systems. This
study explores the role of various algorithmic approaches and technological solutions in
addressing packing problems within this context.

Our findings, summarised in Figures 2 and 3, underscore the potential of these ap-
proaches and solutions in enhancing packing efficiency and effectiveness in Industry 4.0.
Each algorithm and technology addresses specific packing problems, highlighting the need
for a tailored approach based on the unique requirements of each problem.

The diversity and complexity of packing problems necessitate a diverse range of
solutions. Our research suggests that there is no one-size-fits-all solution. Instead, the
choice of algorithm or technology should be guided by the specific problem at hand and
the requirements of the Industry 4.0 environment. Each algorithm has its strengths and
weaknesses, and the choice of algorithm should be guided by the specific requirements of
the problem at hand. For instance, while most reviewed algorithms are effective for the
3D Bin Packing Problem, more complex problems such as the 3D Bin Packing Problem
with Balancing Constraints may require more sophisticated approaches like Mixed-Integer
Linear Programming.

Furthermore, our study points to the potential benefits of integrating algorithmic ap-
proaches with technological solutions. This integrated approach could lead to more robust
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and efficient packing solutions, contributing to the overall productivity and competitiveness
of manufacturing operations in Industry 4.0.

In conclusion, our research provides valuable insights into the application of packing
solutions in Industry 4.0. It underscores the importance of continued research and develop-
ment in this field as the demand for efficient and effective packing solutions continues to
grow in line with the advancements in Industry 4.0.

Figure 2. A summary of the algorithmic approaches and the packing problems they address.

Figure 3. A summary of the technological solutions and the packing problems they address.
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6. Automated Extraction of Relevant Concepts and Mutual Relationships

The above discussion has highlighted the importance of product packing with respect
to Industry 4.0. All this analysis has been carried out manually. In this section, an automated
approach to information extraction from textual sources is discussed. The aim is to support
the above discussion and assess some properties that can provide further details on the
main concepts and mutual relationships between them, related to the overall topic of
this investigation. Despite the potential likelihood of the identification of unrelated or
erroneous concepts or mutual relationships, automated textual analysis performed by
natural language processing techniques can leverage such issues with the use of large
quantity of (textual) data.

Depending of the overall context and the available semantic information, a diverse
range of text-mining techniques can be employed. The choice of techniques generally
hinges on the type of data and its inherent structure. The method introduced in this section
is based on the work of Trovati et al. [52], in which specific probabilistic and topological
properties are identified, assessed and evaluated to automatically produce fragments of
Bayesian Networks. Bayesian networks are graphical modelling structures which focus on
cause and effect modelling, capturing both the probabilistic relationships between variables
and their historical information. Despite not directly identifying Bayesian Networks, a
similar extraction approach is used.

More specifically:

• Over 5000 abstracts were identified using the following keywords: volumetrics, smart
packing, industry 4.0 and their lexical and semantic variations as outlined in Table 1;

• The abstracts were downloaded and pre-processed to remove unnecessary data in-
cluding (but not limited to) metadata, web-links, authors’ details, and any other word
or character which would not have any use in this context.

Subsequently, a set of keywords associated with influence as per Trovati et al. [52]
was used to identify those sentences containing such keywords and the following steps
were followed:

• All the sentences were first tokenised and parsed via SpaCy (https://spacy.io/, (ac-
cessed on 6 December 2023)) to identify the overall syntactic structure;

• A grammar-based extraction identified triples of the form (NP1, keyword, NP2),
where NP1 and NP2 are the noun phrases, and keyword consists of one or more key-
words as mentioned above.

The triples play a role in populating the nodes and edges of the associated network.
This is achieved by identifying relationships among the predefined keywords and the cor-
responding elements in the datasets. To avoid redundancy, all extracted terms underwent
normalisation—a process that maps various variants of a term to a unique and standardised
form. A detailed discussion of this approaches can be found in [52].

The aim of this approach is to assess the topology associated with the query defined
by the above keywords, which would enable an understanding as to whether the identified
relations, concepts, and methods are related as per the above section. However, this can
only support the previous findings as opposed to categorically demonstrate them due
to the intrinsic statistical and methodological issues related to this type of analysis [52].
Figure 4 depicts the degree distribution of the network extracted.

Based on the above, the following concept pairs were identified, including the relation
strength as per [52], which is associated with a numerical value in the interval [0, 1]. Table 2
shows the most representative concepts identified via the above approach, which are
linked by a mutual relationship. This identifies a strong relationship (measured by the
relation strength) between those concepts, which broadly supports the above discussion.
As mentioned above, the terms in Table 2 are semantically equivalent to those described
in Table 1.

https://spacy.io/
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Figure 4. The degree distribution of the network extracted, as described in Section 6. Note that is
appears to exhibit some level of scale-free topology, which is supported by the overall behaviour of
textual information [53–55].

Table 2. Concepts discovered via the NLP approach described in Section 6. Note that these concepts
can be swapped, that is, their relations are commutative.

Concept Concept Relation Strength

Product packing Smart manufacturing 0.81
Product packing Data-driven Industry 0.78

Volumetrics Heuristics 0.71
Product packing Security 0.76

Industry 4.0 Efficiency/Sustainability 0.71
Smart Logistics Volumetrics 0.69

Decision Process Product packing 0.64
Delivery Product packing 0.63

Table 2 is not an exhaustive list and only captures a snapshot of the concepts linked by
the strongest relations. All these are components of the network defined above. Note that
product packing appears strongly connected with security, which is not usually highlighted
in several applications and/or methods.

7. Conclusions

Product packing is a crucial aspect of Industry 4.0, due to its implications to cost
efficiency, processing and delivery time, sustainability, and overall industry processes.
This survey article highlights the state-of-the-art research, frameworks, applications, and
deployments of product packing. Despite the maturity of some of the topics that fall under
the overall umbrella, the advances in product packing are still very much confined within
different research fields. This poses significant challenges from an implementation and
deployment perspective, as the current algorithms tend to lack a wider applicability. As a
consequence, product packing should be investigated in a more holistic manner in order to
achieve a seamless integration of hardware, software, and algorithmic efficiency to ensure
a far-reaching impact.
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