1,082 research outputs found

    Dynamic Hand Gesture-Featured Human Motor Adaptation in Tool Delivery using Voice Recognition

    Full text link
    Human-robot collaboration has benefited users with higher efficiency towards interactive tasks. Nevertheless, most collaborative schemes rely on complicated human-machine interfaces, which might lack the requisite intuitiveness compared with natural limb control. We also expect to understand human intent with low training data requirements. In response to these challenges, this paper introduces an innovative human-robot collaborative framework that seamlessly integrates hand gesture and dynamic movement recognition, voice recognition, and a switchable control adaptation strategy. These modules provide a user-friendly approach that enables the robot to deliver the tools as per user need, especially when the user is working with both hands. Therefore, users can focus on their task execution without additional training in the use of human-machine interfaces, while the robot interprets their intuitive gestures. The proposed multimodal interaction framework is executed in the UR5e robot platform equipped with a RealSense D435i camera, and the effectiveness is assessed through a soldering circuit board task. The experiment results have demonstrated superior performance in hand gesture recognition, where the static hand gesture recognition module achieves an accuracy of 94.3\%, while the dynamic motion recognition module reaches 97.6\% accuracy. Compared with human solo manipulation, the proposed approach facilitates higher efficiency tool delivery, without significantly distracting from human intents.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Intuitive Human-Robot Interaction by Intention Recognition

    Get PDF

    Trust-Based Control of Robotic Manipulators in Collaborative Assembly in Manufacturing

    Get PDF
    Human-robot interaction (HRI) is vastly addressed in the field of automation and manufacturing. Most of the HRI literature in manufacturing explored physical human-robot interaction (pHRI) and invested in finding means for ensuring safety and optimized effort sharing amongst a team of humans and robots. The recent emergence of safe, lightweight, and human-friendly robots has opened a new realm for human-robot collaboration (HRC) in collaborative manufacturing. For such robots with the new HRI functionalities to interact closely and effectively with a human coworker, new human-centered controllers that integrate both physical and social interaction are demanded. Social human-robot interaction (sHRI) has been demonstrated in robots with affective abilities in education, social services, health care, and entertainment. Nonetheless, sHRI should not be limited only to those areas. In particular, we focus on human trust in robot as a basis of social interaction. Human trust in robot and robot anthropomorphic features have high impacts on sHRI. Trust is one of the key factors in sHRI and a prerequisite for effective HRC. Trust characterizes the reliance and tendency of human in using robots. Factors within a robotic system (e.g. performance, reliability, or attribute), the task, and the surrounding environment can all impact the trust dynamically. Over-reliance or under-reliance might occur due to improper trust, which results in poor team collaboration, and hence higher task load and lower overall task performance. The goal of this dissertation is to develop intelligent control algorithms for the manipulator robots that integrate both physical and social HRI factors in the collaborative manufacturing. First, the evolution of human trust in a collaborative robot model is identified and verified through a series of human-in-the-loop experiments. This model serves as a computational trust model estimating an objective criterion for the evolution of human trust in robot rather than estimating an individual\u27s actual level of trust. Second, an HRI-based framework is developed for controlling the speed of a robot performing pick and place tasks. The impact of the consideration of the different level of interaction in the robot controller on the overall efficiency and HRI criteria such as human perceived workload and trust and robot usability is studied using a series of human-in-the-loop experiments. Third, an HRI-based framework is developed for planning and controlling the robot motion in performing hand-over tasks to the human. Again, series of human-in-the-loop experimental studies are conducted to evaluate the impact of implementation of the frameworks on overall efficiency and HRI criteria such as human workload and trust and robot usability. Finally, another framework is proposed for the cooperative manipulation of a common object by a team of a human and a robot. This framework proposes a trust-based role allocation strategy for adjusting the proactive behavior of the robot performing a cooperative manipulation task in HRC scenarios. For the mentioned frameworks, the results of the experiments show that integrating HRI in the robot controller leads to a lower human workload while it maintains a threshold level of human trust in robot and does not degrade robot usability and efficiency

    Progress and Prospects of the Human-Robot Collaboration

    Get PDF
    International audienceRecent technological advances in hardware designof the robotic platforms enabled the implementationof various control modalities for improved interactions withhumans and unstructured environments. An important applicationarea for the integration of robots with such advancedinteraction capabilities is human-robot collaboration. Thisaspect represents high socio-economic impacts and maintainsthe sense of purpose of the involved people, as the robotsdo not completely replace the humans from the workprocess. The research community’s recent surge of interestin this area has been devoted to the implementation of variousmethodologies to achieve intuitive and seamless humanrobot-environment interactions by incorporating the collaborativepartners’ superior capabilities, e.g. human’s cognitiveand robot’s physical power generation capacity. In fact,the main purpose of this paper is to review the state-of-thearton intermediate human-robot interfaces (bi-directional),robot control modalities, system stability, benchmarking andrelevant use cases, and to extend views on the required futuredevelopments in the realm of human-robot collaboration

    Proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET 2013)

    Get PDF
    "This book contains the proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET) 2013 which was held on 16.-17.September 2013 in Paphos (Cyprus) in conjunction with the EC-TEL conference. The workshop and hence the proceedings are divided in two parts: on Day 1 the EuroPLOT project and its results are introduced, with papers about the specific case studies and their evaluation. On Day 2, peer-reviewed papers are presented which address specific topics and issues going beyond the EuroPLOT scope. This workshop is one of the deliverables (D 2.6) of the EuroPLOT project, which has been funded from November 2010 – October 2013 by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission through the Lifelong Learning Programme (LLL) by grant #511633. The purpose of this project was to develop and evaluate Persuasive Learning Objects and Technologies (PLOTS), based on ideas of BJ Fogg. The purpose of this workshop is to summarize the findings obtained during this project and disseminate them to an interested audience. Furthermore, it shall foster discussions about the future of persuasive technology and design in the context of learning, education and teaching. The international community working in this area of research is relatively small. Nevertheless, we have received a number of high-quality submissions which went through a peer-review process before being selected for presentation and publication. We hope that the information found in this book is useful to the reader and that more interest in this novel approach of persuasive design for teaching/education/learning is stimulated. We are very grateful to the organisers of EC-TEL 2013 for allowing to host IWEPLET 2013 within their organisational facilities which helped us a lot in preparing this event. I am also very grateful to everyone in the EuroPLOT team for collaborating so effectively in these three years towards creating excellent outputs, and for being such a nice group with a very positive spirit also beyond work. And finally I would like to thank the EACEA for providing the financial resources for the EuroPLOT project and for being very helpful when needed. This funding made it possible to organise the IWEPLET workshop without charging a fee from the participants.

    Nudging lifestyles for better health outcomes: crowdsourced data and persuasive technologies for behavioural change

    Get PDF
    For at least three decades, a Tsunami of preventable poor health has continued to threaten the future prosperity of our nations. Despite its effective destructive power, our collective predictive and preventive capacity remains remarkably under-developed This Tsunami is almost entirely mediated through the passive and unintended consequences of modernisation. The malignant spread of obesity in genetically stable populations dictates that gene disposition is not a significant contributor as populations, crowds or cohorts are all incapable of experiencing a new shipment of genes in only 2-3 decades. The authors elaborate on why a supply-side approach: advancing health care delivery cannot be expected to impact health outcomes effectively. Better care sets the stage for more care yet remains largely impotent in returning individuals to disease-free states. The authors urge an expedited paradigmatic shift in policy selection criterion towards using data intensive crowd-based evidence integrating insights from system thinking, networks and nudging. Collectively these will support emerging potentialities of ICT used in proactive policy modelling. Against this background the authors proposes a solution that stated in a most compact form consists of: the provision of mundane yet high yield data through light instrumentation of crowds enabling participative sensing, real time living epidemiology separating the per unit co-occurrences which are health promoting from those which are not, nudging through persuasive technologies, serious gaming to sustain individual health behaviour change and intuitive visualisation with reliable simulation to evaluate and direct public health investments and policies in evidence-based waysJRC.DDG.J.4-Information Societ

    Safety by design in Danish construction

    Get PDF
    • …
    corecore