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Abstract

Human-robot interaction (HRI) is vastly addressed in the field of automation and manu-

facturing. Most of the HRI literature in manufacturing explored physical human-robot interaction

(pHRI) and invested in finding means for ensuring safety and optimized effort sharing amongst a team

of humans and robots. The recent emergence of safe, lightweight, and human-friendly robots has

opened a new realm for human-robot collaboration (HRC) in collaborative manufacturing. For such

robots with the new HRI functionalities to interact closely and effectively with a human coworker,

new human-centered controllers that integrate both physical and social interaction are demanded.

Social human-robot interaction (sHRI) has been demonstrated in robots with affective abilities in

education, social services, health care, and entertainment. Nonetheless, sHRI should not be limited

only to those areas. In particular, we focus on human trust in robot as a basis of social interaction.

Human trust in robot and robot anthropomorphic features have high impacts on sHRI.

Trust is one of the key factors in sHRI and a prerequisite for effective HRC. Trust characterizes the

reliance and tendency of human in using robots. Factors within a robotic system (e.g. performance,

reliability, or attribute), the task, and the surrounding environment can all impact the trust dy-

namically. Over-reliance or under-reliance might occur due to improper trust, which results in poor

team collaboration, and hence higher task load and lower overall task performance.

The goal of this dissertation is to develop intelligent control algorithms for the manipulator

robots that integrate both physical and social HRI factors in the collaborative manufacturing. First,

the evolution of human trust in a collaborative robot model is identified and verified through a series

of human-in-the-loop experiments. This model serves as a computational trust model estimating an

objective criterion for the evolution of human trust in robot rather than estimating an individual’s

actual level of trust. Second, an HRI-based framework is developed for controlling the speed of a

robot performing pick and place tasks. The impact of the consideration of the different level of
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interaction in the robot controller on the overall efficiency and HRI criteria such as human perceived

workload and trust and robot usability is studied using a series of human-in-the-loop experiments.

Third, an HRI-based framework is developed for planning and controlling the robot motion in

performing hand-over tasks to the human. Again, series of human-in-the-loop experimental studies

are conducted to evaluate the impact of implementation of the frameworks on overall efficiency and

HRI criteria such as human workload and trust and robot usability. Finally, another framework is

proposed for the cooperative manipulation of a common object by a team of a human and a robot.

This framework proposes a trust-based role allocation strategy for adjusting the proactive behavior

of the robot performing a cooperative manipulation task in HRC scenarios. For the mentioned

frameworks, the results of the experiments show that integrating HRI in the robot controller leads

to a lower human workload while it maintains a threshold level of human trust in robot and does

not degrade robot usability and efficiency.
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Chapter 1

Introduction

1.1 Research Motivation and Background

Conventional industrial robots have been designed for implementation inside safety periph-

eral equipment where only trained operators can interact with them through some external interfaces

under running conditions [105]. However, the advent of light-weight and human-friendly collabo-

rative robots (e.g. Baxter [26], UR10 [78], LBR iiwa [104], YuMi [1]) is changing manufacturing

plants by more flexible and efficient robotic automation. The built-in safety features of these robots

promise sound and close human-robot collaboration (HRC) in manufacturing environments. These

developments improve human-robot interaction (HRI) to the extent that robots are perceived as so-

cial beings with which humans interact rather than simple tools [8]. For a light-weight, flexible, and

human-friendly robot that has new HRI functionalities and interacts closely with a human co-worker,

considering safety and production efficiency objectives may not suffice [108]. Social human-robot

interaction (sHRI) has been demonstrated in robots with affective abilities such as Kismet, iCAT,

Flobi, ERWIN, Kobian, NAO, Kamin, Ifbot, WE-3R III, Robokind, Geminoid [7, 116, 58, 77] in

education, social services, healthcare, and entertainment [8]. Nonetheless, sHRI should not be lim-

ited only to those areas. Some new collaborative robots designed for manufacturing sites such as

Baxter and Sawyer [25] have some social features that make the interaction more human-like and

appealing. Some studies have explored how social behaviors of robots can impact human emotions.

This topic is widely studied in the domain of human-computer interaction (HCI) as Affective Com-

puting [127] which examines how interaction with an interface impacts the emotional state, feelings,
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and satisfaction of the user [82]. The utilization of embodied conversation agents, human-friendly

robots and facial expression are some examples of social capabilities that can be included in robotic

systems for a closer human-like interaction expected by the human [7].

Human to robot trust is one of the key factors in sHRI and a prerequisite for effective

HRC [30, 51]. Trust characterizes the reliance and tendency of human in using robots. Human

trust can be categorized as dispositional and history-based [70]. The dispositional trust is similar

to bias and defined as the initial trust an individual feels towards another being even without any

interaction. The history-based trust is dynamic and is built based on the interaction. In this

dissertation, we only consider the history based-trust which is dynamic and have high impacts on

sHRI. Factors within a robotic system (e.g. performance, reliability, or attribute), the task, and the

surrounding environment can all impact the trust dynamically [30]. Over-reliance or under-reliance

might occur due to improper trust, which results in poor team collaboration, and hence higher task

load and lower overall task performance [30]. Trust-based controllers demonstrate their capabilities

in improving the interaction in teleoperation of mobile robots [98] and motion planning [63] scenarios

in HRI.

The main objective of this dissertation is the integration of quantitative, unbiased and

objective human to robot (and robot to human) computational trust models into the motion and/or

force controllers of a collaborative robotic system with a manipulator in addition to the incorporation

of pHRI and task performance criteria.

1.2 Contributions

This dissertation seeks to investigate and propose trust-based intelligent control frameworks

for three typical tasks that require the cooperation of humans and robots and has application in

flexible manufacturing. These tasks include the assembly task, robot to human handover, and,

cooperative manipulation. These frameworks consider the task both from the theoretical and ex-

perimental point of view. Several objective measures such as total task completion time or robot

average velocity and several subjective measures such as human perceived workload or trust are

used for verification and evaluation of these frameworks. The contributions of this dissertation in

modeling trust and developing trust-based controllers are as follows.
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1.2.1 Human Trust in Robot

The first contribution of this dissertation is to provide a quantitative unbiased and objective

measure for human to robot computational trust in assembly manufacturing task. Human-robot

trust determines his/her acceptance and hence allocation of autonomy to a robot, which alter the

overall task efficiency and human workload. In chapter 2, inspired by well-known human factors,

a time-series trust model for human-robot collaboration tasks is developed. This trust model is a

foundation for the trust-based controllers in this thesis. The major contributions of this chapter are

as follows:

• A new dynamic, quantitative trust model specifically for HRC assembly manufacturing is

proposed and experimentally validated.

• A neural network based robust intelligent scheme for autonomous robot speed control is de-

veloped.

• The quantitative trust models are integrated with robust intelligence for improved performance

in HRC manufacturing.

1.2.2 Collaborative Assembly

Chapter 3 investigates the impacts of augmenting the combined pHRI and sHRI factors

into robot controller on the joint performance of a human-robot team performing an assembly task.

The chosen assembly task is usually accomplished by human workers and includes some repetitive

physical movements for pick-and-place. A flexible robot can assist the human worker in doing such

a task by bringing the required parts to the human worker [93, 94]. This framework allows the

robot arm to select paths between the robot bin and the shared human-robot workspace based on

trust evaluation and then move along the selected path while its translational velocity along the

path is adjustable. The pHRI-based control condition involves prediction of human motion and

synchronization of the robot motion progress with that of the human. Human trust in robot and

robot emotional expressions will be considered as two main aspects of sHRI and devised in two

integrated control conditions.

For this framework, a thorough statistical analysis for a set of robotic experiments with a

human-in-the-loop is performed. The impacts of different control conditions on some of the well-
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known HRI criteria including human perceived workload, human trust in robot, robot usability as

well as objective measures in terms of robot average velocity and assembly time are evaluated and

compared. The main contributions of this chapter are summarized as follows:

• A novel framework that considers pHRI and sHRI for human robot manipulation is proposed.

• Thorough statistical analysis for a set of robotic experiments with a human-in-the-loop is

performed. The impacts of different control conditions on some of the well-known HRI criteria

including human perceived workload, human trust in robot, robot usability as well as objective

measures in terms of robot average velocity and assembly time are evaluated and compared.

More details are provided in Section 3.5 and Section 3.6.

• Both human-to-robot trust and dynamic robot emotions are integrated into the framework for

a more comprehensive consideration of sHRI factors. More details are in Section 3.4.4 and

Section 3.4.5.

• A trust-based robot path selection strategy is devised such that if human trust in robot drops

below some threshold value, the robot chooses a safer path with less chance of collision. More

details are in Section 3.3.1.

• To increase transparency of HRI, an HCI is designed to show the HRC system variables and

robot emotion. More details are in Section 3.4.7.

1.2.3 Robot-Human Handover

Chapter 4 proposes a trust-triggered motion planning strategy for the robot-human han-

dovers of payloads during the collaborative assembly. More specifically, based on robot trust in

human, robots handover configuration and motion of reducing are varied via kinematic redundancy

to reduce potential impact forces on the human during the handover. A hybrid assembly cell is

developed for a typical collaborative task. The trust-based collaborative assembly task including

the trust-triggered handover is evaluated based on a comprehensive evaluation scheme. The re-

sults show that the inclusion of robot trust and trust-triggered handover improve the effectiveness

in human-robot interaction and task performance through increasing safety, handover success rate,

team fluency, human trust in robot, and assembly efficiency and reducing cognitive workload, with

a small sacrifice in handover efficiency.
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1.2.4 Cooperative Manipulation

Chapter 5 investigates human-robot cooperative manipulation. Cooperative manipulation

refers to joint coordination of two or more robots handling a common object. This concept can

address the typical limitations of single-arm robots in terms of dexterity and payload and open up

new applications in flexible manufacturing systems and service robotics. In human-robot cooperative

manipulation, a team of humans and robots coordinate together to handle a common object. Two

major approaches are available for human-robot cooperative manipulation: (i) reactive or complaint

approach in which the human in the leader and the robot is compliant and follows the force applied

by the human to the object and (ii) proactive approach in which the robot reduces the human effort

by estimating the human desired motion and force and acting as a collaborator rather than a simple

follower. This dissertation proposes a trust-based control policy that balances between the human

effort and the disagreement between the human and robot by dynamic or switching role allocation

based on the proactive and reactive behavior of the robot.

1.3 Dissertation Outline

The next chapters of this dissertation are organized as follows. Chapter 2 presents a study

on modeling trust in HRC in manufacturing. Chapter 3 presents a framework for integration of HRI

factors into the robot motion controller for human-robot collaborative assembly tasks in a manu-

facturing hybrid cell. Chapter 4 presents a framework for trust-based handover strategy. Chapter 5

proposes a trust-based strategy for human-robot collaborative manipulation. Chapter 6 discusses

the conclusions of this dissertation.
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Chapter 2

Modeling Trust in Human-Robot

Collaboration in Manufacturing

2.1 Introduction

Human-robot trust determines his/her acceptance and hence allocation of autonomy to a

robot, which alter the overall task efficiency and human workload. Inspired by well-known human

factors research, we develop a time-series trust model for human-robot collaboration tasks, which

is a function of prior trust, robot performance, and human performance. The robot performance is

evaluated by its flexibility to keep pace with the human coworker and is molded as the difference

between human and robot speed. The human performance in doing physical tasks is directly related

to his/her muscle fatigue level. We use the muscle fatigue and recovery dynamics to capture the

fatigue level of the human body when performing repetitive kinesthetic tasks, which are typical

types of human motions in manufacturing. The robot speed can be controlled in three different

modes: manually by the human worker, autonomously through robust intelligence algorithms, or

collaboratively by the combination of manual and autonomous inputs. We first simulate a typical

9-hour work day for human-robot collaborative tasks and implement the proposed trust model and

the three control schemes. Furthermore, we experimentally validate our model and control schemes

by conducting a series of human-in-the-loop experiments using the Rethink Robotics Baxter robot.

This chapter considers hybrid manufacturing systems [43] in which a human worker and a
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peer human-friendly robot (for example, Rethink Robotics Baxter [89], KUKA LBR iiwa [5], and

Universal Robots UR5 and UR10 [78]) collaborate with each other to fabricate customized prod-

ucts [23, 105] in the same workspace at the same time. For instance, a skilled human worker can

collaborate with a lightweight, flexible, and human-friendly robot to perform an assembly opera-

tion. In such applications, human’s capability in performing highly skilled tasks such as assembly

is combined with the advantages of robots such as precision, performance consistency in performing

repetitive jobs, data processing, sensor, and actuator based assistance [43]. The resulting collabo-

ration between human and robot in production cells [112] is expected to lead to high productivity,

flexibility, and safety, as well as balanced human working experience. However, improper HRC may

cause counter effects such as misuse of a machine and/or safety issues and hence there arises a need

for investigating HRC in advanced manufacturing [42]. There are potentially many issues worth ad-

dressing, but this chapter focuses on human-robot trust as a critical element in HRC manufacturing

because trust will directly affect the degree of autonomy that a human delegates to the industrial

robot, which determines the efficiency as well as quality of the manufacturing processes. We adopt

the concept of trust among humans to study HRC in manufacturing automation [52]. Thus we

investigate empirical as well as theoretical studies to utilize trust analysis [52] in HRC manufactur-

ing. There exist two types of trust related to the automation use among different individuals, i.e.

dispositional trust and history-based trust [70]. Dispositional trust reflects trust in other persons (or

machines) upon initially encountering them, even if no interaction has yet taken place. In contrast,

history-based trust is founded on interactions between the person and another person or machine.

Due to the dynamic nature of HRC, this chapter studies the history-based trust. Several works have

developed mathematical models for trust [73, 53, 37, 22]. In our previous works, inspired by Lee

and Moray’s (1992) trust study for an automated juice plant [49], we used a model for human-robot

trust in HRC manufacturing tasks and showed examples of changing robot performance based on

human’s trust [92, 90]. In this chapter, we describe a time-series model of human-robot trust for

real-time control allocation in HRC manufacturing tasks, a model of robot performance that ties

speed to flexibility, a model of human performance that includes muscle fatigue, and a series of

experimental validations to capture the impact of performance on trust within the HRC system [91].

The proposed dynamic trust model is a function of prior trust, change of robot performance, and

change of human performance, as well as fault occurrence.

The robot performance can be described in terms of reliability, flexibility, dexterity, etc.
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Because robot reliability is almost always guaranteed in manufacturing applications, here we will

focus on understanding and improving the robot flexibility assuming the robot is reliable. Flexibility

is required for factory environments with frequent changes, varying positions of transport containers,

and various uses of machine tools. Flexibility is envisioned to increase productivity and humaniza-

tion of the work place [109]. In fact, it is one of the advancements brought by the new generation of

manufacturing robots and is achievable via instructable or adaptable robots. To model the perfor-

mance of a human worker of doing a repetitive kinesthetic task, which is typical in manufacturing

tasks, we adopt the muscle fatigue and recovery model [59, 60, 55, 19]. This model shows how the

performance of the human worker changes as his/her muscles gradually get tired or recovered.

Artificial neural networks (ANNs) are powerful tools that can be used for realizing artifi-

cial intelligence [122]. They have been widely applied in the aviation industry, business, financial

forecasting, control systems, security systems, etc. [123]. Neural networks are capable of function

approximation, pattern recognition, and nonlinear mapping [69]. Their learning ability and adapt-

ability also introduce robustness to a tool [15]. In this chapter, we are interested in the applications

of neural networks in intelligent control such as black box model identification, adaptive inverse

control, and model predictive control [29]. More specifically, we will use neural networks to learn

the desired pattern of robot speeds in order to collaborate with a specific human worker and to use

the result for autonomous adjustments of the robot’s speed.

Next, we design control allocation schemes to switch between manual and autonomous

modes in order to increase the human-robot trust. To do so, three approaches are designed. One

way is to increase or decrease the robot performance exclusively based on manual inputs. Another

way is to predict the human requests and autonomously adjust the robot performance using the

neural network-based intelligent control. The last way is to use a collaborative control scheme to

adjust the robot performance using both autonomous and manual inputs.

To study the trust evolution and human working pattern during HRC manufacturing, we

present both a numerical example and a set of experimental validations. The numerical example

is simulated for a typical 9-hour workday starting at 8 AM. The exclusively manual, exclusively

autonomous, and collaborative control modes are compared. The experiments are designed as HRC

assembly tasks where the robot picks the parts and places them in front of the participant and

the participant assembles these parts. Such collaborations require the robot to keep pace with the

human and can be applied in many manufacturing processes to partially automate the assembly
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tasks.

The rest of the chapter is organized as follows. Section 2.2 introduces the time-series trust

model, and robot and human performance models. Sections 2.3 develops the neural network based

robust intelligence control algorithm for learning the human working pattern in controlling the robot

speed. Section 2.4 discusses three control allocation schemes, i.e. exclusively manual, exclusively

autonomous, and collaborative control of the robot speed. We simulate the proposed trust model

and an intelligent control scheme using a numerical example of a typical work day in a manufacturing

plant in Sect. 2.5. A set of experimental validations on assembly tasks are performed and major

results analyzed in Sect. 2.6. We conclude the chapter in Sect. 3.7.

2.2 Trust Model

2.2.1 Time-Series Trust Model for Dynamic HRC Manufacturing

Based on Lee and Moray’s (1992) time-series trust model and the more recent meta-

analysis [30] and survey [33], a human’s trust in the robot depends on the robot performance,

human performance, and fault occurrences. In this section, we introduce a time-series dynamic

model of human-robot trust for HRC manufacturing based on these results from human factors

research. To clarify the manufacturing application, let us start with an example. Consider the

case when a skilled human worker collaborates with a flexible robot on a product, such as inserting

screws into parts or welding, in a hybrid cell. The robot picks up a part and then holds it still in

specific positions and orientations near the human worker so that he/she can focus on the assembly

operations. As the working speed of the human worker varies during the working hours, a constant

speed of the robot will cause trust degradation of the human worker when he/she feels that the robot

is working faster or slower than what he/she expects, i.e. the robot lacks the flexibility to keep the

same pace as the human worker. This discrepancy indicates the robot’s inflexibility. To recover

trust, the robot speed should be adjustable so that the human worker feels more comfortable in the

collaboration. Moreover, the human worker’s performance has an influence on his/her trust in the

robot. For example, due to physical and/or mental fatigue resulting from continuous work during

a day, the human worker may tend to rely more on the automation and thus his/her trust in the

robot increases. With this mindset, we propose the following time-series model for the dynamics of
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human-robot trust

T (k) = AT (k − 1) + B1PR(k) +B2PR(k − 1) + C1PH(k) + C2PH(k − 1)

+ D1F (k) +D2F (k − 1), (2.1)

where PR, PH , and F are robot performance, human performance, and fault, respectively. We use

k to indicate the time step. The coefficients A, B1, B2, C1, C2, D1, and D2 are constants to be

determined through experiments. Note that we seek to obtain a computational model of a human’s

trust for HRC in assembly lines in general. In practice, these parameters of the trust model can be

tuned for different individuals to fit their subjective trust to some extent. Moreover, similar to [49]

we assume that the trust dynamics follow a lag model and there are some delays before changes of

trust. As long as there is a considerable difference between the human and robot working speeds, the

robot performance (PR, flexibility) will decrease regardless of which speed is greater than the other.

Therefore, the trust value decreases accordingly. In contrast, if there is no considerable decrease in

robot flexibility over time, the trust will increase. We design robust intelligent control schemes to

increase human trust in a robot as described in Sect. 2.3. To obtain the trust model (2.1), we need

to develop the robot and human performance models as discussed in the subsequent sections.

2.2.2 Robot Performance Model

In manufacturing, machine reliability is almost always guaranteed in order to avoid huge

loss under even small malfunctions. Meanwhile, for the new type of flexible manufacturing tasks,

the robot needs to seamlessly collaborate with the human coworker. Hence, robot performance, in

this case, can be evaluated by its flexibility in accommodating a human’s work behavior. In our

study, we consider especially the robot capability in adjusting its speed so as to keep the same pace

as the human worker. Hence, the difference between human and robot speed will determine the

robot flexibility. We denote robot working speed, VR ∈ [0, 1], as the normalized speed of the robot

for doing a specific task where “0” represents the situation when the robot stops working, and “1”

represents the situation when the robot works at its maximum speed. We denote the human working

speed, VH , correspondingly. Note that both VH and VR are defined as normalized non-dimensional
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numbers in [0, 1]. Based on our definition of the robot flexibility, PR, we can write:

PR(k) = PR,max − |VH(k)− VR(k)| . (2.2)

Since we use the normalized values of VH and VR, we have PR,max = 1 and hence PR is always

bounded between [0, 1]. In the ideal case when the robot works at its highest flexibility in adapting

to the human worker’s speed, the speed difference is minimum and PR = 1. In the worst case

when the robot is fully incapable of adjusting to the human worker’s speed, the speed difference is

maximum and PR = 0.

2.2.3 Human Performance Model

A human’s performance in physical tasks such as assembly manufacturing depends on

his/her state of muscle fatigue or recovery. In such scenarios, a human worker usually performs

repetitive kinesthetic tasks. We adopt the muscle fatigue and recovery model proposed in [60]

and [19] for our human performance model. This model explains how a muscle or group of muscles

get fatigued or recovered during performing physical tasks and shows how the performance of a hu-

man worker changes as his/her muscles gradually get tired or recovered. We assume that the higher

the fatigue level is, the lower the performance would be. The maximum human performance occurs

at the situation when he/she is not subjected to any fatigue, and the minimum value when he/she is

experiencing the maximum level of fatigue. We first present the muscle fatigue and recovery model

and then develop the human performance model based on the muscle fatigue and recovery model.

For the modeling of muscle fatigue and recovery, we introduce a model for isometric force

generation, i.e. when the muscles do not move but they apply force. When a muscle applies

some force for an amount of time, the maximum isometric force that one can produce, Fmax,iso(k),

decreases. The dynamic model of fatigue for Fmax,iso(k) is a function of time, the initial maximum

isometric force one can generate at rest, called Maximum Voluntary Contraction (MV C), and real-

time applied force F (k) [59]. On the other hand, when the muscle does not apply any force, it gets

recovered. The recovery process is also a function of the time and MVC [60]. Based on [55], when

the muscle fibers work, some of them become fatigued and some recover. That is to say, fatigue and

recovery occur simultaneously [60]. We develop the discretized version of the combined fatigue and

11



recovery model in [19] using the first-order Euler approximation

Fmax,iso(k) = Fmax,iso(k − 1)− CfFmax,iso(k − 1)
F (k − 1)

MV C
+ Cr(MV C − Fmax,iso(k − 1)), (2.3)

where Cf is the fatigue constant and Cr is the recovery constant. Both Cf and Cr are individual-

specific. Equation (2.3) is for isometric muscle contraction and has an equilibrium point at which

the fatigue and recovery balance out. This point is the lowest limit (threshold) of the Fmax,iso(k).

This threshold force, Fth, can be calculated by assuming that Fmax,iso(k) = Fmax,iso(k − 1) at the

threshold:

Fth = MVC
Cr

2Cf

(−1 +

√

1 +
4Cf

Cr

). (2.4)

Theoretically, at the threshold force, the fatigue and recovery occur at the same rate and one can

generate this threshold force for a long time. Since the fatigue and recoverymodel predicts the human

muscle status related to workload, this model can be used to measure the physical performance of

a human worker during manufacturing tasks. Hence, we propose the following performance model

for human, PH

PH(k) =
Fmax,iso(k)− Fth

MVC − Fth

. (2.5)

Note that in Equation (2.5), Fmax,iso varies between the minimum value Fth and the maximum

value MVC, therefore it is a normalized value between 0 and 1. The maximum value MVC, is

assumed when the human worker starts the task, i.e. Fiso,max(k = 0) = MV C.

Remark 1. The threshold force, Fth, is the minimum value of Fmax,iso. Hence, the forces below Fth

are not theoretically achievable.

2.3 Neural Network Based Robust Intelligent Controller

The goal of using a neural network in this problem is to design a robust intelligent controller

for adjusting the robot speed autonomously during the work cycle which is a black box model iden-

tification. This controller is designed so that it reduces the human worker’s workload for adjusting

the speed of the robot manually. To do so, a neural network with a proper method of training
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and also some training data are required. One way of training the neural network is to mimic the

behavior of the human worker in adjusting the robot speed manually, which can be regarded as the

desired pattern for the robot flexibility when collaborating with the human worker. We performed

human-in-the-loop experiments to collect the training data. In this data set, the current robot speed,

human speed, and current work-cycle time index is used as the input to the neural network and the

estimation of robot speed at the next cycle is the output.

The structure of the neural network used in this chapter is illustrated in Fig. 2.1. This

network consists of an input layer, a hidden layer, and an output layer of neurons which form a

Perceptron artificial neural network [29]. This type of neural network has the capability of approx-

imating many nonlinear functions. The additional input “1” (as seen in the first and second layers

of Fig. 2.1) represents the effect of bias in the neural network. Using bias increases the learning

capability of a neural network by providing an additional degree of freedom through an adjustable

offset. We utilize two different activation functions for the hidden layer and the output layer, re-

spectively. The activation functions determine the output of the neurons in each layer as a function

of the weighted sum of the inputs to that layer. The activation function of the hidden layer y is a

tangent sigmoid function as follows

tansig(xpy) =
expy − e−xpy

expy + e−xpy
, (2.6)

where xpy is the input for the tangent sigmoid function. In the neural network shown in Fig. 2.1,

this variable is defined as xpy = Wpy × [p 1] where Wpy represents the weights of the neural network

that connect the input layer p (i.e. the current robot speed, human speed, and current work-cycle

time index) to the hidden layer y = tansig(xpy). The output of this function is in (−1, 1) region

which produces the inputs to the next (output) layer. The activation function for the output layer

o is chosen to be the linear function according to the following

purelin(xyo) = xyo, (2.7)

where xyo = Wyo × [y 1] for the output layer are the weights of the neural network that connect the

hidden layer to the output layer. This layer determines the robot speed at the next work cycle. Once

enough data are collected, the Levenberg-Marquardt Backpropagation training algorithm [29] is used
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Figure 2.1: The structure of the neural network used for learning the robot speed.

to train the neural network. This algorithm is a gradient descent based optimization algorithm for

minimizing the mean square estimation error of the neural network. It can be used for training

either single or multi-layer neural networks. A well-trained neural network is able to do a nonlinear

mapping from the input data set to the output data set.

2.4 Control Approaches

We design control allocation schemes to switch between manual and autonomous modes in

order to increase human-robot trust. Since the speed of a human worker changes during the working

shift, his/her expectation from the partner robot changes over time accordingly. Therefore, the

human-robot trust can be increased by adjusting the robot speed according to what the operator

desires. To do so, three approaches are available: (i) Increasing or decreasing the robot speed based

on manual corrective requests that the human worker sends to the robot controller; (ii) Predicting the

human requests at different moments and autonomously adjusting the robot performance without

sending any corrective request; or (iii) Using a collaborative control scheme to adjust the robot

speed using the autonomous control and manual inputs interchangeably. The prediction approach

can be achieved through the robust intelligence algorithm which seeks to learn the pattern of human

requests as he/she collaborates with the robot over time. Here we use the artificial neural networks

as the robust intelligence algorithm as discussed in Sect. 2.3. In the collaborative mode, the robust

intelligence algorithm is used to autonomously control the robot speed by default. However, the

human worker can adjust the robot speed at the times when the robust intelligence fails to mimic
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the human pattern in adjusting the robot performance. We now explain the details of implementation

of the three different approaches for adjusting the robot speed.

2.4.1 Manual Mode

For the manual mode, a human-sensitivity based approach is adopted to predict how the

human coworker adjusts the robot speed. Most of the time, the robot speed does not match the

human working speed exactly. However, it is only when the difference between these two speeds

exceeds a certain threshold, then the human worker would feel the significance and send some

corrective commands to change the robot speed. Let this threshold be human sensitivity, HS . With

this setting, the robot speed at the next time step is adjusted by the human worker as follows

VR(k + 1) = VRH(k), (2.8)

where VRH(k) represents the manual control input whenever the human worker changes the robot

speed. Other than these moments, we have VR(k + 1) = VR(k).

2.4.2 Autonomous Mode

Based on the explanations in Sect. 2.3, to train the artificial neural network, we collect

data on how a human worker sends commands to the robot in the manual mode for some period of

time. There are different ways to construct the neural network based on the inputs and the training

algorithm. For example, we can predict the pattern of the speed commands that the human worker

sends to the robot only based on time parameters or we can include other parameters in the network

as well. Figure 2.1 shows the neural network with the current time, human speed, and robot speed

as inputs. The output is the robot speed at the next time step. After training the neural network,

it will predict the desirable robot speed based on the inputs. With this setting we have

VR(k + 1) = VRI(k), (2.9)

where VRI(k) represents the autonomous control input calculated by the neural network for the next

time step. The neural network is the only source of robot speed adjustment in this mode, and thus

it is used at each time step whether it generates a new command or the similar command as the
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previous step.

2.4.3 Collaborative Mode

The autonomous mode reduces the human workload through the use of robust intelligence

algorithms. However, the manual mode offers more accurate control over the robot speed. In the

collaborative mode, we combine both advantages. The robot speed is controlled autonomously by

the neural network by default and the human worker can change the robot speed whenever he/she

wants to. Therefore, we can describe the process of controlling the robot speed by the following

equation

VR(k + 1) = σ(k)VRH(k) + (1 − σ(k))VRI (k), (2.10)

where VRH(k) and VRI(k) are as in Eqs. (2.8)-(2.9) respectively, and σ(k) is the activation mode

σ(k) =











1 manual control

0 autonomous control

In this setting, the robot speed at the next time step is determined either directly by the human

commands or the predictions of the robust intelligence algorithms. Examples of utilizing this scheme

will be presented in Sects. 2.5 and 2.6.

2.5 Simulation

In this section, we present a numerical example using MATLAB R2014a software for three

different control schemes described in previous sections. This example shows (i) how the human

trust evolves according to the human and the robot performances; and (ii) how the control workload

of the human worker changes. The human performance dynamics (2.5) described in Sect. 2.2.3 are

simulated for a typical 9-hour workday starting at 8 AM. In the simulation we shift the time origin

to 8, i.e. we use k′ = k− 8 instead of k in all of the equations. For a fixed repetitive task we assume

that the external force applied by the human worker is constant. Moreover, the human workers do

not need to apply their full strength (MV C) to finish the manufacturing tasks. Therefore, we use

a constant value for the external force, i.e., F (k) = MV C
4 . The maximum value for both human
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and robot performance is 1, i.e. PH,max = 1 and PR,max = 1. The human worker is assumed to

start with PH between [0.95, 1]. The human worker working speed, VH is set to be half of his/her

performance value, i.e. VH = 1
2PH in the simulation. The robot is set to start with half of the

maximum robot working speed, 1
2VR,max. We also assume that initial trust of the human worker

is the half of its maximum value. In all the simulation modes, we assume that the human worker

works according to the following pattern. He/She starts to work at 8 AM and ends at 5 PM. There

is an approximately one-hour lunch break around noon. There are also two short breaks (15 to

20 minutes) in mid-morning and mid-afternoon (around 10 AM and 3 PM, respectively). During

such a workday, based on the Eq. (2.5) the human performance decreases from the beginning of the

day through the end of the day, except for the break times and the lunch time when the human

performance recovers. We simulate the three control methods in Sect. 2.4.

Based on the explanations in Sect. 2.3, to train the neural network, we simulate and collect

the corresponding data for the human-robot interaction of a particular human worker for a period

of 4 months. According to the data, as in Fig. 2.1, we have 3 inputs to the artificial neural network,

namely month, day and time of the day, and one output which is the performance of the robot. The

number of hidden layer neurons is chosen to be 10 and the Error Backpropagation training algorithm

is used to train the neural network. The results for each of the three control schemes are presented

in the next subsections.

2.5.1 Manual Mode

According to the explanations in Sect. 2.4.1, we set the human sensitivity as HS = 0.05.

The results of this simulation are shown in Fig. 2.2(a). As can be seen in this figure, at the start

of the day both human and robot start fresh with high working speeds and consequently the robot

performance is high. As time passes, the working speed of the human worker decreases but the

robot working speed does not change, so the difference between the human and the robot speed

increases and thus the robot performance decreases. The human performance also decreases during

this time. Although both robot and human performance decrease, since they have high values the

trust increases before 9 AM. The trust value decreases slightly when the human performance declines

after 9 AM. Therefore, when the human speed decreases during the time interval 8 AM to 10 AM,

the human worker sends corrective commands to decrease the robot speed. After that, the human

worker takes a break and his/her speed increases when going back to work again. We use the same
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Figure 2.2: Evolutions of human speed VH , robot speed VRA, human performance PH , robot perfor-
mance PRA, and trust T in (a) manual mode, (b) autonomous mode, and (c) collaborative mode.

trend for the rest of the day with breaks at 12 PM and 3 PM, respectively. The trust value does

not change during the breaks.

2.5.2 Autonomous Mode

According to the explanations in Sect. 2.4.2, we use the neural network for adjusting the

robot performance autonomously. The results of this simulation are shown in Fig. 2.2(b). As shown

in this figure, the autonomous mode can adjust the robot speed properly most of the times. For the

autonomous mode, the trust level has a similar trend as in the manual mode except for the end of

the break times, where the neural network cannot predict the desired robot speed accurately. This

leads to a sudden momentary drop of trust due to a temporary difference between the human and

robot speed.

2.5.3 Collaborative Mode

For simulation of this mode, we use the same configuration of the manual and autonomous

control modes described in this section. We then combine them as described in Sect. 2.4.3 to

simulate the collaborative mode. The results are shown in Fig. 2.2(c). The team starts to work in
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the autonomous mode at the beginning of the workday. After some time, if the robot speed does

not match the human speed, the level of trust decreases. Moreover, if the robot performance is high

and the human performance declines, the level of trust increases. In contrast to the autonomous

mode, except for autonomous adjustment, the human worker can also switch to the manual mode by

sending corrective commands. Note that the human worker sends commands whenever he/she feels

that the autonomous adjustments are not correct. If the system switches back to the autonomous

mode right after the manual correction, the adjustments might not be correct and hence the human

worker needs to adjust the robot speed again. This leads to frequent switches back and forth between

the manual and autonomous mode. To prevent such problems, once the manual mode is activated, it

will be kept for a fixed time period (5 minutes) before it is allowed to switch back to the autonomous

mode. After that, the system switches back to the autonomous mode and remains in the autonomous

mode if no corrective commands are sent.

2.5.4 Comparison of Control Schemes

We can measure the human control workload under the manual, autonomous, and collabora-

tive mode, respectively. The control workload for the manual mode is 100% since the human worker

always changes the robot velocity by him/herself. The control workload under the autonomous

mode is 0% since the human worker does not change the robot speed at all. The amount of control

workload for the collaborative mode depends on the amount of time when the manual mode is ac-

tivated. In our example, this value is 61.4%. We can also compare the average value of trust under

these three modes. In the autonomous mode, the average trust value is 0.8803 which is lower than

this value in manual mode, 0.8825. The average trust value in collaborative mode is 0.8816. This

shows that using the collaborative mode, we can increase the trust compared to the autonomous

mode while the control workload is smaller than the manual mode.

2.6 Experimental Validation

In this section, we provide the detailed description of our experiments to validate the quan-

titative trust model (2.1) and the effectiveness of the proposed control schemes. We will measure

the overall task performance of the collaborative control scheme versus exclusively manual and au-

tonomous control as well as the difference in human workload.
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(a) (b)

Figure 2.3: The experiment setup: (a) collaboration of a participant and Baxter, and (b) PhaseSpace
tracking system for tracking participants’ hand motion.

2.6.1 Experimental Test Bed

As shown in Fig. 2.3(a), we employ a humanoid manufacturing research robot Baxter made

by Rethink Robotics [27] to collaborate with the participant. The robot has two arms. Each arm

provides 7 degrees of freedom. The arm joints are compliant as they are built with back-drivable

motors and compliant actuators. The robot has a rotary screen at its head where informative

messages or affective expressions can be displayed. It has a moveable base. The robot control

program is coded in Python language and is interfaced with the robot hardware through ROS

software. Baxter is very suitable for light-weight material handling and intelligent assembly, testing

and sorting, and especially for small batch productions. We use the Impulse X2 motion tracking

system from PhaseSpace to track the human hand for speed measurement (as shown in Fig. 2.3(b)).

The tracking system includes 8 cameras, a set of active markers and a workstation for tracking rigid

bodies in a 3D environment. The workstation combines the data from the cameras, which track the

active markers mounted on an object (for example, a participant’s hand in this study), to calculate

its 3D position. The resulting position and timing information is sent to a client machine to calculate

the hand motion speed.
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2.6.2 Experimental Design

The experiment resembles the task that a human worker performs in the manufacturing

assembly lines. In such an environment, human workers are required to perform a series of assembly

tasks within a fixed period of time. For making a final product, different components need to be

assembled together. Each of these components needs to be assembled by different parts as well.

This procedure of component assembly is called subassembly, which is common in the airplane and

automobile assembly and usually done by the human workers manually. We will consider such

a subassembly task in our experiments. In such tasks, the parts need to be assembled are usually

stacked near the workbench of the human worker. The human worker picks these parts and assembles

them. If the component is customized, there will be a variation of choice for some of the parts. These

customized parts can be delivered to the human worker by means of automatic delivery systems such

as belt feeders. Once the component is assembled, it needs to be mounted on the final product. The

experimental setup of this study is very similar to these tasks in a real assembly line except that

there is a humanoid robot (Rethink Robotics Baxter) that collaborates with the participant. Within

this collaboration, the robot helps the participant by picking up and placing the customized parts

needed for the assembly task while the human worker performs tasks that robots are not capable

of, e.g. assembling these parts together. The details of the experiment scenario are as follows.

2.6.2.1 Experiment Scenario

The participant is asked to perform a cooperative assembly task with Baxter within a fixed

period of time. For each experiment condition, the task is assembling 10 components within 17

minutes (102 seconds per task cycle). Figure 2.3(a) shows the collaboration of a participant and

Baxter. The task is to assemble a customized component (e.g. component G in Fig. 2.4) made

from different parts (Lego bricks, e.g. bricks A, B, C, D, E, F in Fig. 2.4) and mount it to another

component (here is another larger Lego brick, e.g. component I in Fig .2.4). The example assembly

task we consider here can be found commonly in automobile and airplane assembly, e.g. center

console subassembly and airplane wing spar assembly. There are 10 trials in total in each trial.

The participant and Baxter share meme workspace on a table and the assembly parts are placed

at different regions on the table as shown in Fig. 2.4. In this figure, the Lego bricks that need to

be assembled together are A, B, C, and D. At the beginning of each task cycle, Baxter picks up a
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Figure 2.4: Different assembly parts and regions on the experiment table.

required part (brick A) and places it in front of the participant (region H) and displays a picture of

the assembled part via its head screen (Fig. 2.3(a)). The participant is required to look at Baxter’s

screen and assemble the part exactly as appeared on it. The participant is also required to add fitting

parts (bricks E and F in Figure 2.4) on top of the assembled Lego bricks similar to tightening screws

or bolts in real manufacturing. When the participant finishes assembling the last part, he/she is

required to pick and mount the whole component to another Lego brick located at the other side of

the table (component I in Figure 2.4). Meanwhile, Baxter picks and places the next part in front of

the participant and displays the next picture of the assembled part. The similar process is repeated

until Baxter picks and places the last required part in front of the participant. Figure 2.5 shows

the instruction pictures that Baxter shows to the participant in each cycle. Each of these pictures

shows the correct assembly of current Lego bricks and corresponding fitting parts (needed to be

mounted on the top of the Lego bricks). F and E are the fitting parts for assembling and mounting,

respectively. Figure 2.6 provides a flowchart to summarize the required actions for both Baxter and

the participant and their collaboration in every task cycle.

2.6.2.2 Controlled Behavioral Study

To understand the impact of the robot and human performance on the trust evolution, a 2

(robot performance - low flexibility, high flexibility) × 2 (human performance - non-fatigue, fatigue)
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Figure 2.5: Sequence of assembly parts that Baxter shows to the participant as instruction via its
head screen.

Figure 2.6: Task flowchart of one cycle of the human-robot collaborative assembly task.
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mixed experimental design is employed under each control mode. In the high robot performance

condition, the robot speed changes in accordance with participant’s hand speed without any delay

while in the low robot performance condition, the robot speed changes with some random delay

plus some sudden stops of the robot. Note that the sudden stops of the robots are the faults of

the robot while the random delays are the inflexibility of the robot. Here human fatigue refers to

the psychically caused fatigue that commonly occurs in an assembly human worker as discussed in

Sect. 2.2.3.

2.6.2.3 Imposing Fatigue

Assembly tasks usually require prolonged low-level repetitive work of the human workers

which causes psychical fatigue. However, in the laboratory setting, it is difficult for a participant to

perform a long 9-hour experiment to study the fatigue condition. It has been shown in [36] that the

greatest effort level of shoulder muscle is required when the human worker holds a typical hand tool

weighting around 15−20N in abducted shoulder posture (90 o vertical). A similar method as in [36]

is used to impose fatigue in the experiments. In the fatigue condition, the participant is asked to

warm up and then perform 10 minutes of exercises. Before doing the exercises, we need to measure

the MVC as shown in Equation (2.3) in Sect. 2.2.3. The MVC level for 90 houlder posture for the

dominant hand shoulder muscle of each participant is measured using a hand dynamometer. In

order to measure the MVC level, the participant is asked to sit down on a chair and extend his arm

fully and put his hand in the hand dynamometer (fixed under the table in front of the participant)

and push it up as much as possible. The hand dynamometer value shows the maximal force which is

the MVC value at the start of the experiment. We collect the data three times and use the average

value. We then ask the participant to hold a weight around 30 percent of their MVC during the

exercises. The exercises consist of five 2-minute intermittent static arm abduction cycles. For each

cycle, the contraction duration is 90 seconds followed by 30 seconds rest. We used 166 seconds cycle

time similar to the high cycle condition in [36] in our pilot study but the participants complained

that it was very hard and we reduced the cycle time to 120 seconds in the final study. Note that

the abduction cycle is different from the experiment cycle discussed in Sect. 2.6.2.1. The maximum

isometric force of the participant’s shoulder is also measured after every 10 trials.
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2.6.2.4 Experiment Procedure

A participant is asked to read a written instruction on how to complete the assembly task.

Verbal instructions are also given and the participant is instructed that no data will be collected

during the training session. The training session consisted of 10 trials of an assembly task different

from the actual experiment task. During the training session, the participant is able to change the

speed of the robot using the up or down arrow keys of the keyboard at any time. In the experiment,

the robot speed can be adjusted manually as well as autonomously. The adjustment of the robot

speed in the manual mode during the experiment task is similar to the training session. In the

autonomous control mode, the robot adjusts its speed and the participant cannot change it. In the

collaborative control mode, the robot adjusts its speed autonomously while the participant is also

able to change the robot speed whenever he/she wants.

The experiments were conducted over three days. In the first day, after the training, the

participant performed the experiments in manual mode. The non-fatigue high robot flexible and

non-fatigue low flexible conditions are the first and second experiments, respectively. Next, in order

to run the experiments in the fatigue condition, the participant was asked to do the fatigue exercise as

described in Sect. 2.6.2.3. The participant is then asked to perform the experiments under the fatigue

high flexible and fatigue low flexible conditions in the third and fourth experiment, respectively. The

data obtained in the manual mode is used to train the neural network based on the explanations in

Sect. 2.3. We train the artificial neural network for all of the conditions in manual mode. The trained

networks are used for the corresponding condition in the autonomous and collaborative modes. The

experiments conducted in the second and third days are for the autonomous and collaborative modes,

respectively.

2.6.2.5 Measurements and Scales

At the start of the first day of the experiment, the participant was asked to fill out a

subjective demographic questionnaire. Moreover, at the beginning of each day, the participant was

asked to rate his/her trust to Baxter. A 7-point Likert scale is used for measuring real-time subjective

trust of the participant in the robot. The participant is instructed that extreme values of the trust

scale—‘1’ and ‘7’— mean that they do not trust robot at all or they trust the robot completely. The

real-time trust value is measured during the experiment using a separate laptop screen other than
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Baxter head screen. A message on Baxter head screen pops out and asks the participant to evaluate

his/her trust at the end of each trial. Moreover, the participant is informed that he can increase

or decrease the trust value anytime during the experiment using the right or left arrow keys of the

keyboard on the laptop. Once a participant finishes all 10 trials, we ask him to fill out a survey.

The survey measures the overall workload based on the NASA TLX [31] scale.

2.6.3 Experimental Results

2.6.3.1 Trust Model Identification Procedure

We use the Autoregressive Moving Average (ARMA) Model in the MATLAB System Iden-

tification Toolbox [56] to identify the parameters of time-series trust model based on the experiment

data (i.e. A, B1, B2, C1, C2, D1, and D2 in Eq. (2.1)). The tracking system shown in Fig. 2.3(b)

is used to measure working speed of the human worker, VH for calculating the robot flexibility in

Eq. (2.2). Robot speed is the command that is sent to the robot by the computer. The real-time

trust measurements are collected during the experiment.

2.6.3.2 Manual Mode

The results of the experiments are shown in Fig. 2.7. Note that we have normalized the

trust level for the sake of comparison but the 7-point Likert scale can be used for analysis without

difficulty. As can be seen in this figure, for the first (non-fatigue high robot flexibility) and second

(non-fatigue low robot flexibility) sets of experiments, the human is not fatigued so his performance

is maximum, i.e. PH = 1. However, after imposing fatigue during the third (fatigue high robot

flexibility) and fourth (fatigue low robot flexibility) sets of experiments, his performance decreases.

In the first experiment when there is no fault, the participant’s trust increases but it drops after the

occurrence of faults in the second experiment. In the absence of the faults within the third experiment

the trust recovers. Note that the level of trust increases with the higher rate as compared to the

first experiment with the same robot flexibility condition. In the fourth experiment with low-flexible

robot performance, the trust decreases but it decreases with lower pace as compared to the case with
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higher human performance (non-fatigue condition). The quantified trust model in manual mode is

T (k) = 0.991T (k− 1) + 0.014PR(k) + 0.127PR(k − 1) + 0.046PH(k)

− 0.143PH(k − 1)− 0.075F (k) + 0.003F (k − 1), (2.11)

For this mode, the fit value for the ARMA model is 70.61% which shows that the model fits the data

well. Equation (2.11) indicates that with low values of PR or high values of PH trust declines and

vice versa. We also observe that since A = 0.991, almost 7 times the weight of the second largest

parameter, the current trust is mainly dependent on the previous trust if no dramatic performance

change occurs. This is consistent with the intuition that trust is highly related to prior trust and

only changes when there is a large performance variation.

2.6.3.3 Autonomous Mode

The results of the experiments are shown in Fig. 2.8. As can be seen in this figure, the

human and robot performance as well as the changes in the trust value are similar to that of in

manual mode. For this mode, the fit value for the ARMA model is 62.34%. The time-series trust

model for this mode is

T (k) = 0.959T (k− 1) + 0.021PR(k) + 0.015PR(k − 1) + 0.078PH(k)

− 0.064PH(k − 1)− 0.045F (k)− 0.013F (k − 1), (2.12)

2.6.3.4 Collaborative Mode

The results of the experiments are shown in Fig. 2.9. The fit value for the ARMA model is

45.65%. As it can be seen in Fig. 2.9, the trust value increases slowly at the start of the experiment

from 0.5 to around 0.75. Fault occurrences cause a rapid trust degradation to the level of less than

0.1. Next, the participant’s trust to the robot increases sharply after eliminating the faults and it

decreases again after the faults occur toward the end of the experiment. Note that for the first and

second half phase of the experiment, although the increasing trend of trust without faults and the

decreasing trend of trust with faults are consistent, the intensity of these variations within these two

phases is very different. In the former phase, trust increases very slowly but drops very fast; While
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Figure 2.7: Evolution of human working speed VH , human performance PH , robot speed VR, robot
performance PR, fault, trust T , and trust estimation T ′ using (2.11) under the manual mode.

in the latter phase, trust recovers very sharply and declines gradually. This can justify why the

fit value is smaller in the collaborative mode compared to the other modes. Future work will seek

models with better fitness based on validated human factor research. The time-series trust model

for this mode is

T (k) = 0.991T (k− 1) + 0.099PR(k) + 0.033PR(k − 1)− 0.039PH(k)

− 0.033PH(k − 1)− 0.062F (k)− 0.022F (k − 1), (2.13)

28



Figure 2.8: Evolution of human working speed VH , human performance PH , robot speed VR, robot
performance PR, fault, trust T , and trust estimation T ′ using Equation (2.12) under autonomous
mode.

2.6.4 Comparison and Conclusion

We measure the participant workload with NASA TLX index after each experiment. More-

over, we calculate the average values of robot speed, human speed, robot performance, human

performance and trust in all of these conditions. Table 2.1 shows the comparison of these values

for different experiment conditions. As can be seen in this table, for the fresh (non-fatigue) flexible

condition, the overall workload of the participant is similar in all of the three control modes and it

is lower as compared to the fresh inflexible condition for every control mode. Moreover, this value is

lower for the fatigue flexible condition as compared to fatigue inflexible in all modes. In this table,

for each experiment with a certain condition under a specific mode, ∆Trust shows the difference be-
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Figure 2.9: Evolution of human working speed VH , human performance PH , robot speed VR, robot
performance PR, fault, trust T , and trust estimation T ′ using Equation (2.13) under the collaborative
mode.

tween the initial and final trust. The general trend of changes of this value for all the control modes

are similar: it goes up in the flexible mode and goes down in the inflexible mode. However, it can be

seen that the influences of robot and human performances on trust vary for different control modes.

For the fresh flexible and inflexible conditions, although the robot performances in the manual mode

are higher than those in the autonomous and collaborative modes, the trust increments are lower as

compared to the corespondent values in other modes.
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Mode Manual (mean values) Autonomous (mean values) Collaborative (mean values)

Condition
Fresh

Flexible
Fresh

Inflexible
Fatigue
Flexible

Fatigue
Inflexible

Fresh
Flexible

Fresh
Inflexible

Fatigue
Flexible

Fatigue
Inflexible

Fresh
Flexible

Fresh
Inflexible

Fatigue
Flexible

Fatigue
Inflexible

Workload 47 67.7 46 63.3 47 53.67 38.67 59 48.3 57.7 52.7 59.7
VH 0.32 0.42 0.32 0.43 0.32 0.32 0.32 0.24 0.37 0.30 0.26 0.36
VR 0.48 0.49 0.54 0.64 0.51 0.37 0.59 0.55 0.51 0.47 0.53 0.52
PR 0.84 0.92 0.78 0.80 0.81 0.88 0.73 0.69 0.77 0.82 0.73 0.82
Trust 4.24 2.88 3.01 3.64 4.59 3.41 3.48 2.32 4.75 3.19 3.80 5.08
∆ Trust 0.9 -3.5 4.4 -2.6 1.2 -2.7 3.1 -4.0 1.5 -4.3 4.9 -3.4

Table 2.1: Comparison between workload, average human and robot working velocity and perfor-
mance, and trust for different experiment conditions and modes

2.7 Conclusion

In this chapter, we proposed a time-series trust model for a human worker and his/her

robot coworker in a collaborative manufacturing task. We developed a performance model for

robot flexibility based on the difference between the human and robot working speed. Since the

tasks in manufacturing usually are repetitive kinesthetic tasks, we used the muscle fatigue and

recovery model to capture the human performance. We used three methods to control the robot

performance. These methods are manually by the human, autonomously by a neural network based

robust intelligence controller, or collaboratively using both manual and autonomous inputs. We

provided both numerical simulations and experiment validations to demonstrate the effectiveness of

the proposed trust model and robust intelligent control scheme. Based on the well-known human

factors result we adopted a linear trust model in this chapter. In the next chapters, we will investigate

the applicability of the trust model in general HRC manufacturing and modify accordingly for specific

scenarios to increase the model fitness.
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Chapter 3

An Integrated Framework for

Collaborative Assembly

3.1 Introduction

In this chapter, a novel framework for integrating HRI factors into the robot motion con-

troller for human-robot collaborative assembly tasks in a manufacturing hybrid cell is proposed. To

meet human physical demands in such assembly tasks, an optimal control problem is formulated for

pHRI based robot motion control to keep pace with human motion progress. sHRI is also augmented

into the framework by considering a computational model of the human worker’s trust in robot as

well as robot facial expressions. The human worker’s trust in robot is computed and used as a metric

for path selection as well as a constraint in the optimal control problem. Robot facial expression is

displayed for increasing the situational awareness of the human worker. The proposed framework is

evaluated by designing a robotic experimental testbed and conducting a comprehensive study with

a human-in-the-loop. Results of this study show that compared to the manual adjustments of robot

velocity, an autonomous controller based on pHRI, pHRI and sHRI with trust, or pHRI and sHRI

with trust and emotion result in 34%, 39%, and 44% decrease in human workload and 21%, 32%,

and 60% increase in robot’s usability, respectively. Compared to the manual framework, human

trust in robot increases by 38% and 42%, respectively, in the latter two autonomous frameworks.

Moreover, the overall efficiency in terms of assembly time remains the same.
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The assembly task chosen in this paper is usually accomplished by human workers and

includes some repetitive physical movements for pick-and-place. Fig. 3.1(a) shows an example of

a conventional manufacturing cell in which the human worker first brings the required parts from

the bin of main parts and puts them together, then grabs some fitting parts such as screws or

bolts from the bin of fitting parts and finally assembles the product. A flexible robot can assist the

human worker in doing such a task by bringing the required parts to the human worker [93]. The

goal of the human-robot team is to assemble a product in a hybrid manufacturing cell. This cell is

equipped with sensory devices for safety reasons and enables the human and the robot to perform

tasks collaboratively while some parts of their workspaces are shared with each other [12]. Fig. 3.1(b)

shows an example of a typical hybrid manufacturing cell, where the bins of different assembly parts

are assigned to the robot and human worker, respectively. The human workspace includes the shared

workspace, the designated bin for the human, and the area covered by paths between them. The

robot workspace is defined similarly but contains the bin of the robot. The robot picks the main

parts from the robot bin and places them in the shared workspace with the human worker. The

human picks the fitting parts from the human bin to the shared workspace and assembles the final

product. Our proposed framework allows the robot arm to select paths between the robot bin and

the shared human-robot workspace based on trust evaluation and then move along the selected path

while its translational velocity along the path is adjustable. More specifically, a set of pre-planned

paths are stored and the appropriate path is selected based on HRI criteria. This will be discussed

in Section 3.3.1. The pHRI-based control condition will involve prediction of human motion and

synchronization of the robot motion progress with that of the human. This will be discussed in

Section 3.4.1. Human trust in robot and robot emotional expressions will be considered as two

main aspects of sHRI and devised in two integrated control conditions. These will be discussed in

Section 3.4.4 and Section 3.4.5, respectively. In Section 3.5, four control conditions are considered,

i.e. the pure manual condition, the pHRI-based condition (Section 3.4.1), the integrated pHRI and

sHRI condition considering collision avoidance and trust (Section 3.4.4), and the more comprehensive

integrated condition considering collision avoidance, trust and emotion displays (Section 3.4.5). In

the manual condition, minimal interaction is considered in the design of the robot controller. The

human worker manually adjusts the robot work pattern (i.e. path and speed).

In Chapter 2 and [91], we investigate how human trust in robot can be measured during the

HRC manufacturing and construct a trust model for assembly tasks. In [72], we demonstrate how the
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Figure 3.1: A conventional manual vs. a hybrid HRC manufacturing cell.

integration of dynamic emotion in a human-computer interface (HCI) can benefit sHRI in assembly

tasks in manufacturing. In [88], we explore the robot redundancy and alter its configuration in

handover operations during assembly based on artificial robot-to-human trust. More recently, we

propose in [93] a framework for augmenting both the pHRI and sHRI factors into the robot controller

in which a trust model was considered for sHRI. This work is extended based on the HRI framework

in [93].

Fig. 3.2 shows our proposed framework and the experimental setup. Section 3.3 explains the

detailed derivations of the robot motion controller (the Robot Controller and Path Selection blocks in

Fig. 3.2). The HRC system (the Human Motion Estimation, Trust Simulator, and Facial Expressions

blocks) and control laws (the NMPC Solver block) are presented in Section 3.4. The experimental

study (with PhaseSpace for tracking human motion and Baxter robot in Fig. 3.2) conducted for the

evaluation of our proposed framework is presented in Section 3.5. Thorough statistical analysis of

the results of the experiments is presented in Section 3.6. The chapter is concluded in Section 3.7.

3.2 Related Work

HRC in assembly lines can be viewed as a twofold problem: the task scheduling problem

and the task execution problem. The solution to the scheduling problem identifies when different

tasks should be assigned to the human and the robot while the solution to the execution problem

is robot controllers and motion planners. Both problems aim to improve safety, efficiency, cost, and

productivity. In [39], a pHRI framework is proposed for task allocation and planning in HRC assem-
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Figure 3.2: The architecture of the integrated framework and illustration of the experiment setup.

bly. It consists of a two-layer planner for the high-level abstraction and atomic level of allocation.

The higher layer planner generates a coordinated skill sequence for the human-robot team. On the

atomic layer, different hierarchical and concurrent state machines describe the skills of the robot.

A summary of the EU project ROBO-PARTNER for the integration of automation and human ca-

pabilities in assembly operations is presented in [71] where efficient methods for task planning and

execution are developed.

In [114], the human and robot agents coexist in a same cell and share tasks such as pick,

place, release, and move. The task assignment is sequential and based on capability, availability,

and operation time needed by either agent to perform a job. In the framework, the human and

robot do not work simultaneously and their interaction is restricted by the safety consideration. A

contact-based pHRI framework for assembly tasks is proposed in [13]. The task is to assemble a

car joint which includes insertion of six balls in a joint’s case. The robot behaves actively to reduce

the load on the human and passively to comply to his/her demands. Through both risk analysis

and experiment validations, it is shown that the framework is compatible with safety standards and

reduces human workload. Another framework for pHRI is proposed in [80] where the robot controller

adapts behavior according to the human fatigue level during the task. The task is co-manipulation

and the initial interaction is a leader-follower relationship where human is the leader and robot

learns skills by feedbacks from the human. When the human fatigue reaches a predetermined level,

the interaction alters from collaboration to supervision. The robot takes over the task to reduce

the human load and the human controls the high-level interaction behavior. A pHRI framework for

hybrid manufacturing cell of cable harness assembly is proposed in [112] for ensuring safety in task

execution. Task planning is performed based on a hierarchical task decomposition approach adopted
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from ergonomics. Different hardware and control strategies such as designated and safe workspaces

for the human and robot, safe design of the robot, and human monitoring are proposed for safety

implementation. The impacts of robot motion speed and distance from the human are evaluated on

system performance and human mental workload. Another HRC assembly cell for task execution

is presented in [74]. The system has three key elements: a mobile robot with two manipulators for

feeding the parts, production process information interface for the human, and safety management

for HRC.

In sum, planning and execution are two major problems in HRC assembly in manufacturing.

Some of the related works address both problems while others only consider one aspect. In this

paper, we also assume that the solution to the planning problem is given and focus on the execution

problem. Moreover, most existing works consider pHRI and more specifically safety. Their ultimate

goal is to find safe and efficient control policies for robots to accomplish the required task (assigned

by the planner) in the presence of a human worker without collision. The main contribution of our

work is to integrate both pHRI and sHRI into the robot path planning and speed control for safety,

efficiency, as well as balanced human experience.

3.3 Robot Motion Controllers

In this section, the design of robot motion controller including path planning and the cal-

culation of the robot joint velocity based on the optimal velocity of the robot end-effector along the

planned path will be introduced in sequence.

3.3.1 Robot Path Planning

Robot motion planning is an active research topic and a considerable amount of literature

is dedicated to this field. Motion planning includes (i) path planning for searching a (possibly

optimized) collision-free path in the configuration space (i.e. the set of all robot configurations) re-

gardless of the dynamics of the robot, and (ii) trajectory planning which considers the time evolution

of robot dynamics (sometimes along a planned path) for satisfying certain optimization requirements

as well as differential constraints. Sampling-based planners are widely employed to construct a data

structure (roadmap or tree) for representing collision-free paths [48]. Other approaches for path plan-

ning include potential field based techniques and combinatorial methods which also make roadmaps,
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such as cell decompositions [48]. Trajectory planning addresses optimization criteria such as time,

energy, force, effort, or the jerk minimization and differential constraints, i.e. limits on velocities,

and possibly accelerations due to kinematic and dynamic considerations of the robot. Trajectory

planning can be addressed either by direct methods which implement sampling-based algorithms

through considering differential constraints or by decoupled approaches which first plan a path and

then compute a timing function along the path [48]. In this work, our focus is on constructing a

motion trajectory to improve HRI rather than other well-known optimization criteria. Hence, the

decoupled approach is adopted and we formulate the problem as obtaining the motion velocity along

a predefined path based on the consideration of HRI factors. The Baxter robot we use has some

safety constraints that prevent solving the problem in the acceleration level. Moreover, identification

of robot dynamics can be a challenging task [124]. To make the framework independent of knowledge

of the robot dynamics model, this problem is solved in the velocity level.

Path planning can be done either on-line as the robot is executing the task or off-line before

the task starts [48]. On-line path planning is more desirable if there are uncertainties; however;

it requires more computational resources. In the manufacturing setting, since the initial and final

positions of the robot end-effector, as well as the shared human-robot workspace, are given (see

Fig. 3.3), the uncertainty is negligible. Thus, the problem is simplified by considering off-line obstacle

avoidance and polynomial curves defined in the task-space. However, the proposed framework can

be extended to consider more advanced motion planning techniques in future work.

For accomplishing the pick-and-place task, the robot end-effector is desired to pass through

Robot Bin

Human Rack(Bin)

Shared
Workspace Active Marker

Figure 3.3: Robot (green) and human (red) sample paths.
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Robot Bin

Human BinShared Workspace

efficient path
safe path

Figure 3.4: Illustration of sample data of human movements in the workspace: an efficient robot
path versus a safe robot path.

a set of points of interest (POIs) defined in the task-space. This set includes the fixed initial and

final POIs, and the intermediate POIs which are chosen via the high-level path-planing. Thus, given

a set of np data points {di = [xi, yi, zi]
T ∈ R

3, 1 ≤ i ≤ np}, we choose a path in the three-

dimensional Euclidean space, R3, that goes through these points, i.e. p : s ∈ [0, l] → R
3, where

the path parameter s is the arc length of the distance traveled along the path. Each point on this

path is given by p(s) = [x(s), y(s), z(s)]T , s ∈ [0, l]. We use a simple cubic polynomial to construct

p(s). Moreover, based on the HRI criteria, a high-level path planning approach can be adopted

for choosing a candidate path from a set of predefined paths. Fig. 3.4 shows two of the candidate

paths. The dots in the figure represent some sample data of a human worker’s hand position while

performing a task. By fitting appropriate probability distributions to these data points, regions with

different safety levels can be identified. The red contours represent three examples of data points

falling within the same density distributions. We utilize the trust of the human to robot as an HRI

factor in the path selection strategy. A similar approach was used in [88] by developing an artificial

robot-to-human trust model and implementing trust-based arm configuration and motion planning

of a collaborative robot in handover tasks. Experiment results with a human-in-the-loop in [88]

show that trust-based handover strategy statistically outperforms non-trust based strategy in both

pHRI and sHRI criteria. In this paper, we adopt a similar concept for selecting the robot path with

differences in the detailed trust model and path planning strategy. More specifically, in [88] the robot

transitional path in the task-space is fixed and it performs the motion as planned unless the trust

of robot to human drops below some threshold value. In that case, the robot alters its end-effector

orientation to minimize the impact force between the human and the robot. In this work, the robot

end-effector orientation is fixed but we change the robot transitional path in the task-space based on

the dynamic evaluation of human-to-robot trust. In the following, we justify the choice between a
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conservative (safe) and an aggressive (efficient) robot path based on the analysis of human-to-robot

trust. Both human and robot can cause a collision. Most works in the literature deal with collision

avoidance from the robot perspective. For example, in [65], the collision probability is defined as

a function of the measurement error and relative velocity between the human and the robot. As

the uncertainty in robot measurement data increases, the likelihood of the collision increases. Thus,

low performance of the robot increases the probability of the collision. On the other hand, with the

increase of physical workload and hence performance decline, the situational awareness of human

worker decreases [79] and the probability of interfering and colliding with the robot increases. Here,

we consider both cases and assume that either low performance of the robot or the human increases

the likelihood of the collision. According to performance-centered metrics [51], low performance of

robot leads to low human trust in robot. Note that due to the close interaction of the human and

the robot, the changes in the performance of the robot impacts the human’s performance as well. In

Section 3.4.4, we will define a computational model of human’s trust in the robot (Eqn. (3.20)) which

will be considered in our HRI-based motion planning. According to this model, human trust in robot

depends on prior trust, robot performance, and human performance. That is, poor performances

of the human and robot result in a low trust value. In turn, the computational trust level can be

used to indicate both human and robot performance and hence is a criterion for choosing between

safe and efficient paths. If only considering efficiency, a path with shorter length would be chosen.

However, if the trust level is low, choosing a short path might result in higher probability of collision.

Hence, for safety consideration, a more conservative but longer path should be chosen. If trust is

high, selecting a short path might still be safe. Therefore, there are trade-offs between efficiency and

safety for choosing the path. Since different levels of human trust in the robot reflect the variation

of both the human and robot performances, we can adopt a trust-based path planning method.

We use a look-up table to specify a corresponding pre-planned path for every range of trust values.

In general, low values of trust are associated with low performances of human or the robot which

suggests a more conservative path, while a more efficient path can be chosen for high values of trust.

Remark 2. The computational model of trust in this paper reflects the dynamic and temporary trust

of the human worker in the robot during the interaction in terms of flexibility and efficiency as well

as human’s own performance. This is more specific than the general notation of trust in robot which

determines the human’s acceptance and hence utilization of the robot (automation) [30, 51]. •

The human arm movement data were collected in the pilot study and used for the construc-
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Parameter Description

φ End-effector orientation in task-space
p End-effector position in task-space
s Arc length of the distance traveled along a path
ṡ Derivative of arc length (s) with respect to time
x End-effector pose including position and orientation
q Joint positions of the robotic arm
ft Direct kinematics function
J Task Jacobian matrix
q̇0 An arbitrary joint-space initial velocity
tp(s) Tangent to the path p(s) at s
t(s) Change of end-effector desired pose x with respect to s
τp(s) Vector from the actual pose of the end-effector at s to its desired pose along the path
τ (s) Change of end-effector actual pose x with respect to s
v Translational velocity along the path

Table 3.1: Description of the parameters in motion controller

tion of paths with lower probability of collision of the human and the robot.

3.3.2 Robot Joint Velocity Control

The problem of controlling a robot manipulator along a predefined path is widely studied

in the literature. It mainly focuses on determining the robot joint velocities for moving along a

path in a task-space such that it satisfies certain constraints. Most efforts made in this area solve

this problem in the acceleration level [81]. However, due to the safety constraints of Baxter and

lack of knowledge of robot dynamics, we solve this problem in the velocity level. The details of

the robot joint controller for the proposed HRI framework is discussed in [93]. In the following,

we briefly restate the solution, describe an adjustment we made for increasing the control accuracy,

and finally present Algorithm 1 for the robot controller. Table 3.1 summarizes the parameters used

in this section. It is desired to manipulate the robot end-effector along a given path such that its

speed along the path can be dynamically adjusted. Let the configuration of the end-effector of the

robot arm in the task-space be denoted by the reference point position, p ∈ R
3, and the orientation

vector, φ ∈ R
3 (such as Euler angles or the roll-pitch-yaw representation). More specifically, we

define x = [p,φ]T ∈ R
6 as the vector of the pose (position and orientation) of the end-effector,

where T denotes transpose. We define q ∈ R
n as a vector of the joint positions of the robotic arm

in the joint-space. The relation between the task-space and the joint-space is expressed by direct
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Figure 3.5: The reference vs. the compensated trajectories. pa(t) is the actual position of the
end-effector at current time and p(s(t+ Ts)) is the reference position at time t+ Ts.

kinematics equation

x = ft(q), m < n, (3.1)

where m and n are degrees-of-freedom (DoFs) in the task-space and joint-space, respectively. In our

problem m = 6 and n = 7. The function ft represents direct (forward) kinematics. The first-order

differential kinematics are

ẋ = J(q)q̇, (3.2)

where J(q) = ∂ft/∂q is the m× n task Jacobian matrix. The general solution to Eqn. (3.2) is

q̇ = J†(q)ẋ+
(

I − J†(q)J(q)
)

q̇0, (3.3)

where J†(q) is the Moore-Penrose pseudoinverse of J(q), q̇0 is an arbitrary joint-space initial ve-

locity, and I is an identity matrix.

Remark 3. We assume that in addition to the Cartesian position coordinates and Euler angles

representations introduced above, the desired positions and orientations of the end-effector can also

be given for all admissible values on the curve parameterized by s ∈ [0, l], i.e. p(s) and φ(s). As the

robot end-effector follows the given path, since s(t) is a function of time, p and φ become implicit

functions of time and the pose of the robot at the time t would be x(s(t)). However, note that

x(s(t)) 6= x(t). If the end-effector deviates from the reference path, the actual pose is not on the
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reference path and it can not be presented by using s anymore. We first solve the problem for the

ideal case where the robot exactly follows the given path and then provide a solution for the deviated

case.

Now, we show the relation between the end-effector velocity in the task-space ẋ and the

robot velocity along the path ṡ. Let us denote the following operators for derivatives with respect to

s and t, respectively, as ( )′ = d/ds and ˙( ) = d/dt. A tangent to the curve can be calculated as the

vector tp(s) = p′(s). Define the unit vector of this tangent as t̂p(s) =
1

||tp(s)||tp(s), where ||tp(s)|| is

the 2-norm of tp(s). Fig. 3.5(a) shows a demonstration of these definitions. If the robot arm follows

p(s), its translational velocity can be written as ṗ(s(t)) = ṡ(t)p′(s) = ṡ(t) tp(s). Since ṡ is a scalar

variable, this can be rewritten as ṗ = v t̂p(s), where v = ṡ||tp(s)|| is a scalar number representing the

velocity at which robot is moving on p(s). We call v as the path velocity along p(s). Similar to p(s),

we can define the minimal description of the end-effector orientation as φ(s) = [α(s), β(s), γ(s)]T .

Since in pick-and-place applications, the robot orientation along the path can remain unchanged,

and the pose direction vector t(s) can be written as

t(s) =

[

t̂p(s), 0

]T

. (3.4)

Note that the vector t(s) represents the change of end-effector pose with respect to s. Therefore,

due to the fixed-orientation of the end-effector, the change of orientation vector is set to 0, i.e. the

given orientations for all values of s are equal. Since x = [p, φ]T , the robot end-effector velocity

in task-space can be written as ẋ(s) = vt(s). Together with (3.3), the joint velocities for the robot

end-effector to move along p(s) can be computed as

q̇ = vJ†(q)t(s(t)) +
(

I − J†(q)J(q)
)

q̇0. (3.5)

To account for the deviations of the robot end-effector from the reference path, we define xa(t) =

[pa(t), φa(t)]
T as the actual pose vector of the end-effector. Let τp(t) be a vector connecting the

actual position of the end-effector pa(t) at time t to the next point on the reference path p(s(t+Ts)),

where Ts is the controller sampling time (see Fig. 3.5(b)). Define the drifted trajectory direction as

τ (t) =

[

τ̂p(t), 0

]T

, (3.6)
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where τ̂p(t) is the unit vector of τp(t). Now, the compensated task velocity can be defined as ẋc(t) =

v (ρ1t(s(t))) + ρ2τ (t)), where ρ1 and ρ2 are the weighting factors with ρ1+ρ2 = 1, ρi ∈ [0, 1], i = 1, 2.

Here, choices of the values of ρ1 and ρ2 are trade-offs between accuracy and speed of robot end-

effector, respectively. For the closest distance between the robot end-effector and reference trajectory,

we can set ρ1 = 0 and ρ2 = 1. For the fastest forwarding speed in the direction of the reference we can

set ρ1 = 1 and ρ2 = 0. In this work, since both accuracy in reaching the goal and forwarding speed

are important, we choose ρ1 = ρ2 = .5. By replacing ẋ with ẋc in (3.5), the compensated equation

for joint velocity vector can be computed as q̇ = vJ†(q) (ρ1t(s(t)) + ρ2τ (t)) +
(

I − J†(q)J(q)
)

q̇0.

Furthermore, to avoid singularities, we use the damped least-squares technique [17] by letting

JT (q)ẋ =
(

JT (q)J(q) + λ2I
)

q̇ (3.7)

instead of (3.2) where λ ∈ R is the damping factor. Assuming zero initial joint velocities, i.e. q̇0 = 0,

the solution of (3.7) is

q̇ = J∗(q)ẋ, (3.8)

J∗(q) =
(

J(q)JT (q) + λ2I
)−1

JT (q). (3.9)

The details of this approach are described in [17]. The solution is a trade-off between accuracy and

feasibility for choosing the joint-space velocity needed to achieve ẋ. Considering the compensated

task velocity ẋc, (3.8) can be written as

q̇ = vJ∗(q) (ρ1t(s(t)) + ρ2τ (t)) . (3.10)

Eqn. (3.10) is the equivalent of (11) in [93]. To further increase the accuracy of the robot end-effector

motion along the path, we implement the closed-loop inverse kinematics (CLIK) approach [14].

Thus, (3.10) can be written as

q̇ = J∗(q){v[ρ1t(s(t)) + ρ2τ (t)] +K[x(t)− ft(q)]}, (3.11)

where K is a constant positive-definite gain matrix. In our experiment (Section 3.5), we choose

K = .01In×n. Algorithm 1 provides a brief summary of the motion control procedure of the robot.

43



Algorithm 1 Moving Robot Along a Given Path

1: procedure Move Robot(p) ⊲ Moves along p

2: s← 0
3: Subscribe(v) ⊲ Update path velocity from solver
4: Read(q) ⊲ Get joint positions
5: while s ≤ l do ⊲ Check if the robot reaches the end
6: Calculate(t(s)) ⊲ Eqn. (3.4)
7: Calculate(τ (s)) ⊲ Eqn. (3.6)
8: Calculate(J∗) ⊲ Eqn. (3.9)
9: Calculate(ft(q))

10: Calculate(q̇) ⊲ Eqn. (3.11)
11: Publish(q̇) ⊲ Send joint velocity commands
12: Read(q) ⊲ Get joint positions
13: Calculate(x(t)) ⊲ Eqn. (3.1)
14: Calculate(s)
15: end while

16: end procedure

3.3.3 Robot Path Velocity Controller

So far, we discuss the control of the robot end-effector along a reference path with a given

translational velocity. Next, the controller for adjusting the transitional velocity along the path will

be discussed. In HRC assembly scenarios, this velocity can be either fixed or varying depending on

criteria such as HRI and productivity. On one hand, faster movement of the robot results in higher

efficiency. On the other hand, the robot should keep pace with human for better HRI. The robot

path velocity can be set manually by the human worker based on his/her preference or automatically

based on objective performance measures. The manual adjustment of the robot speed can be realized

through some human-machine interface (HMI). Baxter has a wheel button on both of its wrists and

can be used for manual adjustment of the robot velocity. For automatic speed control, we model

HRC systems based on pHRI and the integration of pHRI and sHRI, respectively. For each HRC

system, we utilize the nonlinear model predictive control (NMPC) approach to solve for the optimal

path velocity v. We incorporate the NMPC toolbox [24] into ROS for this purpose. The details of

the HRC systems and the optimal control are described in the next section.

3.4 Human-Robot Collaboration (HRC) System

In this section, we develop robot velocity control along the path based on the pHRI and

sHRI factors for the HRC system. For the pHRI system, it is desired to control robot motion so
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that its motion progress can follow that of the human. For the sHRI system, the robot motion may

be altered such that human trust in robot during the interaction is always higher than a threshold

for effective HRC. Furthermore, robot emotion displays will be augmented in the framework for

providing visual feedbacks regarding safety and performance.

3.4.1 Physical Human-Robot Interaction (pHRI) System

For assembling a product, the robot and human are required to bring r and h parts, respec-

tively, to the shared workspace and human assembles them together. In the real factory environment,

this process is continuously repeated in the assembly line. Here in the laboratory setting, we as-

sume that the total number of finished products to be assembled is Np (each with r and h parts

from the robot and human, respectively). For each part, the robot moves along a path between

the bin of parts and the shared workspace back and forth (Fig. 3.3). The sequence of the reference

paths, {pi}, i = 1, 2, ..., is determined by the high-level trust-based path planning discussed in

Section 3.3.1. We denote the robot’s path progress, SR ∈ R
+, as follows:

SR =
s

2rli
+

cr
2r

, (3.12)

where s is the arc length of distance traveled along the chosen reference path pi with length li and

cr is the number of times that the robot completely traveled a path from the shared workspace

and the robot bin or vice versa (see illustration in Fig. 3.6). The term s
2li

gives the ratio of the

distance traveled by the robot end-effector along a reference path with respect to the total round

trip length of the chosen reference path for picking one part. The robot starts the task of moving

along a path with length l1 from the shared workspace where initially both cr and SR are 0. Just

before the robot reaches the bin of the required parts for the first time, we have s = l1, cr = 0, and

SR = 1
2r + 0

2r = 1
2r . After the robot reaches the bin of required parts, it picks up a part and moves

back towards the shared workspace on a path with length l2. Note that at the start of this motion,

the value of SR is still the same since s = 0 and cr = 1. When the end-effector reaches the shared

workspace, s = l2, cr = 1, and SR = 1
2r + 1

2r = 1
r
. The value of SR increases by 1

r
each time the

robot returns to the shared workspace and increases by 1 unit every time the robot finishes bringing

all r parts to the shared workspace.

In Section 3.3.2, from v = ṡ||tp(s)|| it follows that ṡ(t) = v(t)
‖tp(s(t))‖ , 0 6 v(t) 6 vR, where
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Figure 3.6: Demonstration of robot progress, SR, for assembling the first product. This process is
repeated Np times.

v(t) and vR are the control input and its maximal value, respectively. Without loss of generality,

we set vR = 1 representing the highest speed achievable by the robot. The kinematics of robot path

progress, SR, is then given by

ṠR(t) =
ṡ(t)

2rli
=

v(t)

2rli‖tp(s(t))‖
, 0 6 v(t) 6 vR.

Since digital controllers and sensors work in the discrete-time settings, we next consider and imple-

ment our system kinematics in discrete-time:

SR(k + 1) =
v(k)Ts

2rli‖tp(s(k))‖
+ SR(k), 0 6 v(k) 6 vR, (3.13)

where Ts and k are the sampling time and time step, respectively. Here, SR((k+1)Ts) and SR(kTs)

are written as SR(k + 1) and SR(k), respectively, for the sake of simplicity.

Similarly, the path progress made by human, denoted as SH , can be defined according to

(3.13) but with a slight modification. Human hand motion has uncertainties and does not follow a

specific path in general. However, the start and end points of the motion are fixed and located at

the shared workspace and the human bin. We denote the length between these fixed points as lh

and consider the line that connects these two points as the human reference line. The human hand

position can be measured by the PhaseSpace motion capture system as shown in Fig. 3.2. Let us

denote the position of the human hand as ph(k) = [xh(k), yh(k), zh(k)]
T , the position of the start

point of the reference line as p0(k) = [xo(k), yo(k), zo(k)]
T , and the position of the end point as
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pf (k) = [xf (k), yf (k), zf (k)]
T . Denote the vector that connects the start and end points of the

reference line and its unit vector as ih(k) = pf (k)−p0(k) and îh(k), respectively. The position of the

human hand along the reference line at time step k can then be computed as îh(k)(ph(k)− p0(k)).

Human path progress, SH ∈ R
+, is defined as

SH(k + 1) =
îh(k)(ph(k)− p0(k))

2hlh
+

ch
2h

, (3.14)

where ch is the number of previously traveled paths by human between the shared workspace and

the human bin. The first term in (3.14) is the ratio that the human hand has moved along the

current reference line so far with respect to the total length that his/her hand is required to travel

for bringing h parts to the shared workspace. Similar to cr, ch increases by 1 after each time the

human reaches the shared workspace or the human bin. The details for estimating ph are explained

in the next section.

In the pHRI system, it is desired that the robot path progress follows the human path

progress efficiently. This can be formulated as the following NMPC problem:

min
v(0),...,v(N−1)

N
∑

k=1

{||SR(k)− SH(k)||Q + ||v(k)− vR||R}, (3.15)

subject to (3.13) and (3.14), where N is the prediction horizon and || · ||Q (|| · ||R) represents the

weighted norm with respect to the positive number Q (R). The first term in (3.15) addresses the

human-robot synchronization of motion progress, i.e. it is desired that SR = SH during the pick-

and-place operations so that the robot brings the required assembly parts to the human in time.

The second term seeks to maximize robot efficiency. Minimizing the cost has the effect of pushing

SR to SH and v to vR. Since v(k) ≥ 0, SR is non-decreasing according to (3.13). If the value of

Q is considerably higher than R, then the robot velocity will decrease and eventually stop when

the robot progress gets ahead of human progress, i.e. SR(k) > SH(k). These stops make the robot

motion non-smooth and annoying for the participant, and thus will impact the experiments in a

negative way. If the value of Q is considerably lower than R, then the robot velocity is always close

to vR. This also impacts the experiments in a negative way since the robot does not adapt to the

human. Hence, equal weighting of Q and R should be chosen to ensure that the robot adaptability

with human motion progress and efficiency impose equal effects on the cost evaluation.

47



Remark 4. Here, the assembly of car center console is considered as a task that human and robot

accomplish together. Nonetheless, this framework can be applied to other human-robot collaborative

tasks such as hose assembly and car door assembly where the progress synchronization for pick-and-

place is important. •

3.4.2 Human Kinematics Learning

We now provide details of the estimation of human hand kinematics. It should be noted that

the human kinematics are required in order to predict the motion of human worker over a specified

time horizon which will be used to design robot motion controller accordingly. Human hand position

at the next time step can be predicted using its current velocity and position. Thus, to estimate

the future values of human hand position over the horizon N in (3.15) and (3.23), the value of vh is

required. In this paper, a recursive least-square (RLS) based black-box approach is exerted in order

to obviate the problem of considering the human kinematics directly and through a model-based

perspective. As reported in [113], there exist many advantages for this learning algorithm including

low computational burden, fast convergence to the solution, and unbiasedness when it is subject to

the white noise. Our goal is to estimate the value of the human worker’s hand velocity, vh based on

vh(k + 1) = θTΦ(k), (3.16)

where θ is the vector with real coefficients and Φ(k) is the matrix with the input and past output

values of the system [113]. At each time step, we consider Φ(k) as:

Φ(k) =









[

−vh(k) . . . −vh(k + 1− i)

]T

[

ph(k) . . . ph(k − j)

]T









, (3.17)

where i ≥ 1 and j ≥ 1 are arbitrary numbers, k indicates the present time step, and k− o represents

o time steps before the present. The input and output data are the position and velocity of the

human hand, respectively. Obviously, the elements of Φ consist of the previous outputs and inputs

data as well as the present input value. The estimated value of human hand velocity, v̂h(k + 1)

can be found by v̂h(k + 1) = θ̂T (k)Φ(k), where θ̂(k) is the estimated value of the filter at time

step k. Based on the least square method, the following cost function should be minimized for
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estimating vh(k + 1): J(k) =
∑k

i=1

[

vh(i)− θ̂T (k)Φ(i − 1)
]2

. Instead of solving this equation, to

reduce the computational burden, the RLS method can be used to find the filter recursively through

the following equations [113]:

θ̂(k + 1) = θ̂(k) +K(k)(vh(k + 1)− θ̂T (k)Φ(k))

K(k) = F (k)Φ(k)
[

1 +ΦT (k)F (k)Φ(k)
]−1

(3.18)

F (k + 1) = (I −K(k)ΦT (k))F (k),

where I is the identity matrix. The above process is repeated until the termination condition

‖θ̂(k) − θ̂(k − 1)‖ ≤ ǫ is satisfied, where ǫ is a sufficiently small positive value. For estimating

the value of ph at the future time steps which is needed for solving (3.15) over the horizon N , the

following equations are used to recursively update the output values over the look-ahead horizon for

time step k +m, m = 1, 2, · · · , N :

p̂h(k +m) = v̂h(k +m− 1)Ts + p̂h(k +m− 1)

v̂h(k +m) = θ̂T (k)Φ̂(k +m− 1) (3.19)

Φ̂(k +m) =









[

−v̂h(k +m) . . . −v̂h(k +m+ 1− i)

]T

[

p̂h(k +m) . . . p̂h(k +m− j)

]T









.

3.4.3 Human Trust in Robot

We now extend the optimal control formulation (3.15) by further considering human trust in

robot to assure smooth and effective HRC while the assembly is efficient. Based on previous studies

in human factors [49, 30], human trust in robot depends on prior trust, robot performance, human

performance, and fault occurrences. In this paper, we utilize our previous results [91] of a time-

series dynamic model of human-to-robot trust in HRC manufacturing. Note that in manufacturing

environments, the required tasks of the robot and the environment itself are fixed, and thus it

is reasonable to assume that the robot performs the tasks as planned and the main performance

metric is the robot flexibility. With that mindset, we use the following computational model for
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human-to-robot trust, denoted as T (k):

T (k) = aT (k − 1) + bPR(k − 1) + cPH(k − 1), (3.20)

where PR and PH represent robot and human performance, respectively. The coefficients a, b, and

c are constants to be determined for a specific application and individual. As we described in [91],

a common method for determining these parameters is to use the Autoregressive Moving Average

(ARMA) Model for the data collected during the training of the experiments. First, human and

robot performances and human trust in robot are collected. The performances can be measured

objectively but the human trust can only be realized subjectively. Since it is difficult to ask for

subjective human trust to the robot with a high sampling frequency, this value is asked from the

human worker after he/she finishes each task trial, i.e. assembles one product. Next, the trust

value at each trial and the average value of performances during that trial are stored. Finally, Using

ARMA in MATLAB System Identification Toolbox, the coefficients a, b, and c are fitted to (3.20)

using the stored data for each individual participant in the given task. In this paper, we consider

human working speed and his/her coordination with the robot coworker as the two main measures

of performance, PH . We asked two human workers who are experts in performing assembly tasks

to perform the same set of operations and collected their data as the reference human working

speed. This ideal speed is a function of the path progress and we denote it as vref (S) ∈ [0, 1], where

S ∈ R
+ is the path progress (of the human, SH , or the robot, SR). Any difference between the

human working speed and this reference value along the path indicates low human performance.

Moreover, if the human path progress, SH , is less than that of robot, SR, the human is considered

to not do a good job compared to his/her robot coworker. We define PH as

PH(k + 1) = PH − w1(SR(k)− SH(k))H(SR(k)− SH(k))− w2

∣

∣

∣

∣

∣

îhvh(k)

vH
− vref (SH(k))

∣

∣

∣

∣

∣

, (3.21)

where PH = 1 and vH are the maximal values of human performance and human hand velocity, with

w1 + w2 = 1, wi ∈ [0, 1], i = 1, 2, and H(.) is the Heaviside step function. The robot is desired to

follow the human progress during the interaction. Thus, we define PH such that it does not decrease

if the human progress leads, i.e. if SH > SR. The robot performance is defined in a fashion similar

to the human performance by including both robot working speed and its flexibility in keeping up
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with the human co-worker. Here, any difference between SR and SH results in low PR since the

robot is required to follow the human worker’s progress. The definition of PR is hence

PR(k + 1) = PR − w3|SR(k)− SH(k)| − w4

∣

∣

∣

∣

v(k)

vR
− vref (SR(k))

∣

∣

∣

∣

, (3.22)

where PR = 1 is the maximal value of robot performance with w3 + w4 = 1, wi ∈ [0, 1], i = 3, 4.

Remark 5. In both human and robot performance models, the first measure depicts the quality

harmony between the two agents. Lack of coordination of the progress of the agents results in frus-

tration, higher error failure rate, and a decline of overall performance of the human-robot team [10].

However, the coordination between the agents are not sufficient. If both agents perform the task

with harmony but slowly, the overall progress would be slow. Hence, the second measure depicts

each agent’s individual progress rate towards finishing the task. In summary, the agent performance

is high only if it performs the task with a fast pace and in accordance with the other agent. •

3.4.4 Integrated Human-Robot Collaboration (HRC) System

In the integrated HRC system, the robot is required to meet the human expectations and

preferences. Thus, it is desired to control the robot speed such that it follows the human path

progress while human trust in robot is higher than a threshold value. This can be formulated as the

following NMPC problem:

min
v(0),...,v(N−1)

N
∑

i=1

{||SR(i)− SH(i)||Q + ||v(i)− v||R + ||T (i)− T ||W }, (3.23)

subject to (3.13), (3.14), (3.20), (3.21), (3.22), and T (i) > T , where T and T are the minimal

threshold and maximal values of trust determined based on task specifications and individual pref-

erences [91]. Here, minimizing cost has similar effects as of (3.15) and also pushes T to T . As

explained in Section 3.3.1, a high-level path planning approach is developed based on trust of hu-

man in robot. We define a look up table for selecting the robot path based on the average trust of

human in robot, Tavg. This table specifies a path corresponding to each range of trust values. At

the end of each travel (i.e. at the initial and final positions), the high-level path planner matches

Tavg with the ranges in the table and selects the corresponding path.
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3.4.5 Integrated Human-Robot Collaboration (HRC) System with Emo-

tional Expressions

Emotions help people to interact with each other more naturally and intuitively. Many

studies showed that cognition and emotion play interrelated roles in intelligent decision-making,

planning, communication, social interaction, etc. [9]. For example, emotion helps to prioritize differ-

ent concerns by guiding the attention towards important matters and away from distractions [83].

The possible benefits of integrating emotion into the robots resulted in the design of emotion-inspired

mechanisms such as Kimset, ERWIN, Kobian, NAO, Flobi, iCAT, Robokinds, and Geminoids [7, 72].

While these robots are mostly utilized for social services [21], their applications can be effectively

extended to other HRI scenarios. Thus, we borrow this idea to design an emotion-inspired robot in

a hybrid manufacturing cell. In this setting, the robot emotion plays a role of non-verbal communi-

cation, informing the human about a possible safety or efficiency concern, and thus increases safety

and performance.

The robot emotion is added to the integrated HRC system to make the interaction more

intuitive and to alert safety or efficiency concerns to the human worker by displaying a facial ex-

pression (see Figs 3.7 and 3.9) both on the robot head screen and a computer information screen.

To make the interaction more human-like, we also add eye motion to the robot facial expression and

let it follow the human hand all the time. Under the nominal condition when there is no chance of

immediate collision and the human performance is relatively coordinated with the robot, the robot

expresses a happy face. However, the robot end-effector might collide with the human hand if the

distance between them is small. We call this distance the safety index and define it as IS = |x−ph|,

where x and ph are the position of the robot’s end-effector and human worker’s hand, respectively.

We define LS as the threshold value of IS for the safe interaction of the human and the robot. When

IS > LS , the robot and information screens display a happy or bored face depending on the human

and robot progress. If there is a possible collision between the human and the robot, i.e. IS ≤ LS ,

the robot stops working and a worried face will be displayed on the robot and information screens.

As soon as the human worker moves his/her hand away from the robot and IS > LS, the robot facial

expression changes from worried to either happy or bored emotion and the robot will continue to

move on the planned path. We also denote the difference between the robot and human progress as

the efficiency index IE = SR −SH . Let LE = .5 be the threshold value of IE for efficient interaction
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(a) Happy Face (b) Worried Face (c) Bored Face

Figure 3.7: Robot emotions (facial expressions).

of the human and the robot. If IE > LE and the robot’s relative distance to human is in the safe

region, the robot progress is remarkably higher than human and Baxter displays a bored face to

the human expressing that his/her progress is too slow. This emotion contributes to efficiency by

encouraging the participant to keep pace with the robot.

3.4.6 The Control Framework Diagram

Fig. 3.8 shows the block diagram connecting different HRC system components. All of the

programs communicate through ROS. The robot controller is coded in Python. It receives the robot

joint positions, q, and path position velocity, v, from Baxter and the NMPC solver, respectively.

It calculates the robot path progress, SR, and corresponding joint velocities, q̇, using v. These

joint velocity commands are sent to Baxter. The human kinematics estimator is coded in C++

and receives the time and 3D position data from the PhaseSpace tracking system workstation. It

calculates human path progress, SH , the regressand vector, Φ, and estimates the filter vector, θ.

Computational trust simulator is used for the integrated experiment. The input is the human

progress data SH from the estimator, robot translational velocity v from the NMPC solver, and

robot progress SR from the robot controller. The trust simulator uses the input data and returns

the human performance, PH , robot performance, PR, and estimated computational trust, T as the

output. We add ROS interface to the NMPC toolbox written in C++ [24]. It receives all of the

data and calculates the next control input, v. The facial expressions block uses values of robot

end-effector position x, human’s hand position ph, robot progress SR, and human progress SH , for

calculating the safety and efficiency indexes.
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Figure 3.8: Block diagram of the HRC control framework.

3.4.7 Transparency

To keep the human aware about the robot actions and reduce confusion, we improve trans-

parency by showing different states of the HRC systems (Section 3.4) used for controlling the robot,

speed of the robot v, and computational trust of human to the robot T , through an information

screen. If the speed of the robot is adjusted manually, only the robot velocity v, human progress

SH , and robot progress SR, will be shown on the screen. Fig. 3.9(b) shows this interface for the

integrated HRC system with emotional expressions.

3.5 Experiments with a Human-in-the-Loop

3.5.1 Experimental Design and Participants

We evaluated the effects of implementation of the proposed control conditions through an

experimental case study. A within-subject test with Latin square design test order was performed

under four different control conditions: (1) manual control condition (C1), (2) pHRI-based control

condition (C2), (3) integrated pHRI- and trust-based control condition (C3 or integrated in short),

and (4) integrated pHRI- and sHRI-based control condition considering both trust and emotion

display (C4 or emotion-integrated in short). Twenty participants (6 female and 14 male) with an

age ranging from 25 to 36 (average 29.9) years, participated in the experiments. Similar sample size

has been used in prior works on experimental studies of human-robot interaction [110, 35, 64]. Half of

the participants had no experience in working with a robot before. Based on the preliminary results

of our previous work [93] and the discussed literature in Sections 3.1 and 3.2 for the collaboration
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of a human and a robot under these control conditions, we hypothesize that

1. H1. As we move from C1 to C4, the human perceived workload decreases.

2. H2. As we move from C1 to C4, the human perceives higher trust towards the robot.

3. H3. As we move from C1 to C4, the human perceives a higher usability of the robot.

4. H4. The robot average velocity and the assembly time do not change significantly in all

conditions.

3.5.2 Measurements and Scales

The independent variable of this study is the control condition (C1-C4) utilized based on

the level of the interaction. The dependent variables are the following subjective and objective

measures:

• Workload: At the end of each experiment, the subjective overall workload was measured using

the NASA Task Load Index (TLX) method [31]. This measure can vary from 5 to 100.

• Subjective Trust: At the end of each experiment, the subjective trust of the participant in

robot were measured using a human trust in automation questionnaire [38]. The questionnaire

was adjusted to be suitable for assessments of robots.

• User Satisfaction: At the end of each experiment, the subjective satisfaction with the usability

of the robot was measured using the IBM usability satisfaction questionnaire [54].

• Robot Velocity: The average robot velocity (vavg) is a measure of the efficiency of the human-

robot team in accomplishing the task and was calculated after the experiment was finished.

• Assembly Time: This is the time spent to assemble Np = 3 products, used as another measure

of efficiency.

3.5.3 Apparatus

Fig. 3.2 shows the equipment and framework architecture used for the experiment. We used

a humanoid manufacturing research robot, Baxter, made by Rethink Robotics for our experiment.

The robot is suitable for light-weight material handling and intelligent assembly, especially for small
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batch productions. It has a removable base and two redundant arms with 7 Degrees-of-Freedom

(DoFs) on each arm. There is a rotary screen attached to the top of the robot as its head. We use

the PhaseSpace motion tracking system to capture the human hand motion. The tracking system

includes a set of cameras, a set of active markers, and a workstation for tracking rigid bodies in a

3D environment. The other nodes of the framework were set up on a local computer as described

in Section 3.4.6.

3.5.4 Task Scenario

The selected task in the experiment is from the automotive assembly industry and the goal is

to assemble three parts together to form a BMW center console. This task is similar to the assembly

task that a human worker performs in the manufacturing assembly lines and requires a high level

of HRC in which a human and a robot work together in a hybrid-cell [105] as shown in Fig. 3.1(b).

The assembly parts include face plate, I-drive, and switch row (Fig. 3.9(a)). Each participant was

asked to continuously assemble these parts together. The current and next assembly parts required

to be assembled, together with some other task information, are shown to the participant via the

information screen (see Fig. 3.9(b)). In the current settings, it is difficult for the robot to grab the

face plate and bring it to the human due to its geometry. Therefore, the participant was required

to fetch the face plate from the human bin and place it in the shared workspace. At the same

time, the robot fetched the I-drive and switch row from the robot bin to the shared workspace. The

participant assembled these two parts on the face plate using a screwdriver to form the final car

center console. This process was repeated 3 times (Np = 3, h = 1, r = 2) for each of the 4 control

conditions of the experiment. Fig. 3.10 shows the collaboration of a participant and the robot during

an experiment under the emotion-integrated control condition (C4). A brief summary of the task

procedure for the integrated control condition is provided in Algorithm 2.

3.5.5 Experiment Procedure

Each participant was asked to fill out the consent form and demographic questionnaire. The

information regarding the task scenario and the roles of the participant and the robot were explained

in details to the participant. For training purpose, the participant was asked to collaborate with the

robot until he/she feels comfortable and familiar with the task and the robot. After the training,
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switch rowI-drive

(a) Assembly parts (b) Information Screen

Figure 3.9: The completed assembly and information screen

Robot Bin

Human Rack/Bin

Information Screen

Active Marker

Baxter Robot

Shared Workspace

Figure 3.10: The experiment scenario.

the participant performed all four conditions of the experiment based on Latin square order. Upon

completion of each condition, the participant was asked to fill out NASA-TLX, trust, and IBM

usability questionnaires.

3.6 Results, Analysis, and Discussion

3.6.1 Sample HRC System Evolution

Fig. 3.11 shows a sample HRC system evolution for participant number 15 under emotion-

integrated condition (C4). The robot performance PR and robot path progress SR do not change
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Algorithm 2 implementation of the integrated control condition in the hybrid cell

1: Move to the shared workspace ⊲ Initial point
2: cr ← 0 ⊲ Reset the number of traveled paths
3: Subscribe(T ) ⊲ Subscribe to the trust simulator
4: Tavg ← T ⊲ Initialize the average trust value
5: p← choose path fwd(Tavg) ⊲ Select forward path
6: repeat

7: Move Robot(p) ⊲ Move to the robot bin
8: Pick up ⊲ Pick up a part from the robot bin
9: cr ← cr + 1 ⊲ Increase number of traveled paths

10: Update(Tavg)
11: p← choose path bwd(Tavg) ⊲ Select backward path
12: Move Robot(p) ⊲ Move to the shared workspace
13: P lace ⊲ Place the part near the worker
14: Update(Tavg)
15: p← choose path fwd(Tavg) ⊲ Select forward path
16: cr ← cr + 1 ⊲ Increase number of traveled paths
17: until cr == 2r ×Np

at the pick-and-place locations where the robot end-effector only moves vertically. At the start of

the first task (Region A), both human and robot performances are high. The human moves toward

the human bin to bring the face plate (SH = .5) while the robot moves toward the robot bin to

bring the next part (SR = .25) to the shared workspace. As the human progress reaches SH = .5,

the difference in human and robot motion progress results in decrease of the robot performance

PR, which results in lower trust value as well. When the robot reaches the robot bin (Region B),

it picks up a part (an I-drive). At the same time, human reaches the shared workspace and since

SH is greater than SR, PH does not change significantly. However, as the human velocity deviates

from the reference velocity, PH decreases slightly. The trust of human in robot has the same trend.

Next, the robot starts to move back to the shared workspace (Region C). At this point, the robot

performance gets updated. Since there is a major difference between human and robot progress,

the robot performance PR drops significantly at first and then recovers when the robot reaches the

shared workspace where SR = .5. As the robot places the object (Region D), human path progress

is greater than robot progress. Moreover, human velocity matches the reference velocity and hence

the human performance PH is high and trust increases. When the robot starts to moves back for the

next part (a switch row) (Region E), the discrepancy between the human and robot path progress

is high at first but decreases and robot performance recovers. Similar trends repeat until the task is

accomplished completely.
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Figure 3.11: Sample HRC system.
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Figure 3.12: Results with statistical significant changes (*).

3.6.2 Statistical Analysis

For each dependent variable explained in Section 3.5.2, a one-way repeated measure analysis

of variance (ANOVA) was conducted to determine whether there were statistically significant differ-

ences in dependent variables over the interaction type. Mauchly’s test of sphericity shows that the

assumption of sphericity was violated for human trust in robot ( χ2(2) = 26.626, p < .001), robot

usability (χ2(2) = 16.317, p = .006), and perceived workload index ( χ2(2) = 31.523), p < .001, but

it is valid for robot average velocity (χ2(2) = 6.744, p = .241), and assembly time (χ2(2) = 10.846),

p = .055. Therefore, Greenhouse-Geisser correction was applied (ǫ = .567, ǫ = .634, ǫ = .509 for

human trust-in robot, robot usability, and perceived workload index, respectively). The results with

upper and lower bounds for the 95% confidence interval are presented in Fig. 3.12 and described as

follows.

3.6.2.1 Perceived Workload

The manipulation of the interaction type elicited statistically significant changes in workload

between the different conditions, F (1.526, 29.002) = 8.930, p < .005, η2p = .320. Post-hoc analysis
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with a Bonferreoni adjustment showed that the workload under the manual condition (M = 36.367,

SD = 3.686) is significantly higher compared to the other conditions (pHRI (M = 23.917, SD =

2.915), integrated (M = 22.117, SD = 2.879), and emotion-integrated (M = 20.383, SD = 2.700)).

3.6.2.2 Human Trust in Robot

The manipulation of the interaction type elicited statistically significant changes in trust,

F (1.702, 32.338) = 17.839, p < .001, η2p = .484. Post-hoc analysis with a Bonferreoni adjustment

showed that trust both under the integrated (M = 5.783, SD = .137) and emotion-integrated

(M = 5.946, SD = .136) conditions are significantly higher compared to the trust under the manual

(M = 4.196, SD = .296) and pHRI (M = 4.874, SD = .225) conditions.

3.6.2.3 Usability

The manipulation of the interaction type elicited statistically significant changes in usability,

F (1.901, 36.116) = 28.671, p < .001, η2p = .601. Post-hoc analysis with a Bonferreoni adjustment

showed that usability under the manual condition (M = 3.930, SD = .325) is significantly lower

compared to the usability under the other conditions including pHRI (M = 4.770, SD = .263),

integrated (M = 5.175, SD = .248), and emotion-integrated (M = 6.280, SD = .096). Moreover, it

shows that usability under the emotion-integrated conditions is significantly higher compared to all

of the other conditions.

3.6.2.4 Robot Average Velocity and Assembly Time

The manipulation of the interaction type elicited statistically significant changes in robot

average velocity, F (3, 57) = 7.299, p < .001, η2p = .278. Post-hoc analysis with a Bonferreoni

adjustment showed that the robot average velocity under the manual condition (M = .731, SD =

.036) is significantly higher compared to the pHRI (M = .505, SD = .041), and integrated-emotion

(M = .520, SD = .046) conditions. The interaction type did not elicit statistically significant

changes in assembly time, F (3, 57) = 2.091, p > .05, η2p = .099.

3.6.3 Discussion

It can be seen from the results that in general, as we augment physical and social capabilities

into the framework and change the control condition from C1 to C4, HRI improves and at least one
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of the subjective measures (i.e. human perceived workload, human trust in robot, robot usability)

improves. More specifically, although none of the hypotheses are completely true, they are partially

correct. In H1, the human perceived workload does not constantly drop from C1 to C4. However,

compared to the manual adjustment of robot speed (C1), using any autonomous controllers (C2 to

C4) decreases the human perceived workload significantly. Two main reasons for this could be that

under C1 a participant has to either adapt his/her work pattern to that of the robot or pay more

attention to the robot velocity and adjust it accordingly. Both of these result in more perceived

workload of the participant.

Regarding H2, considering merely pHRI for controlling the robot velocity does not impact

the human trust in the robot. However, compared to C1 and C2 frameworks, as we augment more

social capabilities to C3 and C4, trust of human in robot significantly improves. The main reason

for this significant change might be that the participant becomes more confident in robot since the

human and robot performances are shown to them in both C3 and C4. The trust-based controller

and path selection improves the trust by clarifying robot’s intent and behaving more predictably

and human-like.

The impact on robot usability is more obvious relative to the other subjective measures.

Compared to C1, in any framework with autonomous controller (C2 to C4), the usability increases.

This, together with H1, suggests that an autonomous controller results in higher usability and lower

perceived workload. Moreover, the utilization of emotions in C4 results in higher robot usability

compared to the rest of the conditions (C1 to C3). This is probably because adding emotions makes

the interaction more human-like and appealing.

In terms of efficiency, the results indicate that H4 is not completely true. The robot average

velocity is significantly higher in C1 compared to C2 and C4. We observed two major trends in C1:

(i) some of the participants felt competitive towards the robot and intentionally tried to challenge

themselves and the robot by setting the robot velocity at a high value rather than adjusting it

based on their speed, and (ii) some of them simply were too engaged in the experiment and forgot

to adjust the robot speed. These observations also justify the high value of human workload in

C1. Note that the rest of the participants paid more attention to the robot velocity to determine

the speed adjustments, so they also perceived high workload. The variation of assembly time in

different conditions match H4 and does not change significantly. This is probably because although

participants used higher robot velocities in C1, they could not keep up with the robot progress and
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had to spend some time at the end of the experiment to finish the assembly tasks.

3.7 Conclusion

We proposed a novel framework for HRC in manufacturing assembly lines. We described

the kinematics of such HRC system and demonstrated how this framework includes both pHRI

and sHRI for finding the optimal velocity of the robot. We also demonstrated the problem of

moving the robot end-effector with an arbitrary velocity along a given path and implemented the

control method for the HRC system. We experimentally evaluated this framework by designing an

HRC testbed. The results show that the pHRI- and sHRI-based autonomous controllers can reduce

human workload while maintaining the overall performance of the human-robot team compared to

the manual adjustments of the robot velocity. Moreover, it is shown in our experiments that human

trust in robot can be remarkably increased if sHRI factors are integrated into the pHRI-based

framework. Furthermore, the robot usability can be significantly increased if emotion is added to

the integrated framework while the objective measures do not show statistical significance among

the automated conditions.
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Chapter 4

Trust-Triggered Robot-Human

Handover for Collaborative

Assembly

4.1 Introduction

In this chapter, we present an experimental study based on the trust-based handover strat-

egy. Studies on human-human handover show that during a handover people adjust their approach-

ing posture based on their level of trust in their partners [3] to minimize the effects of impact forces

in the direction of the handover [34]. A similar approach can be applied to the robot to human

handover through minimizing the effects of impact forces exploiting robot’s kinematics redundancy.

We hypothesize that if the robot trust to the human reduces due to the human fault or low perfor-

mance, the human may not be prepared for the handover and may develop error in motion planning

for receiving the payload from the robot [88]. Section 4.2 explains the task scenario and hand over

the task for the experimental setup shown in Fig. 4.1. Section 4.3 presents the robot to human

trust model and measurement. The trust-based handover strategy is explained in Section 4.4. The

experimental evaluation of the handover strategy is presented in 4.6. The chapter is concluded in

Section 4.7.
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4.2 The Task Description and The Handover

We focus on HRC in assembly tasks in small-scale flexible manufacturing processes that may

be unstructured and requirements of materials, resources and equipment may be less predictable due

to frequent changes in assembly processes and product requirements. Here, we consider the hose

assembly as an example for HRC. Currently, the human manually fetches the hoses and the fitting

parts (end hoses) as shown in Fig. 4.1, and assembles these together. The human adjusts the length

of the hoses cutting these with a cutter if the length is found larger than the reference length. We

propose that this task can be performed by a human in collaboration with a collaborative robot. We

develop another hybrid cell to illustrate how the hose assembly task can be performed in collaboration

between a human and a robot.

4.2.1 Task Scenario

We assume that the assembly task can be segmented into several subtasks that can be

assigned to the human, the robot or both. The agents (human, robot) are to perform the subtasks

assigned to them sequentially keeping pace with each other. The human uses his/her dexterous skills

to perform the assigned subtasks. However, the robot must be equipped with appropriate sensing

and planning strategies to perform the subtasks assigned to it. As shown in Fig. 4.1, the hose and

hose ends are initially placed in the specified sections on the table. The hoses are in near the human.

The hose ends are out of reach of the human but within reach of the robot. The robot is placed

in front of the human on the other side of the table. A pipe with reference length is also placed

within the reach of the human on the table. We divide assembly subtasks in such a way that the

robot brings (picks and places) a hose end to the reach of the human. The human picks a hose and

compares its length with the reference pipe. If the length of the hose is equal to the reference, the

human fits the end hose to the hose and dispatches the assembled product to another section of the

table. The procedure may be repeated to produce many of the hose assembly products.

4.2.2 The Handover

If the length of a hose is longer than the reference, the robot is required to hand over

a cutter to the human. The cutter is initially placed out and within the reach of human and

robot, respectively. When the human needs the cutter it pushes a button on the other hand of the
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robot. Then, the robot finishes the current manipulation task and goes to the cutter and picks it

up, then moves toward the human reach for handing over the cutter to the human based on the

handover strategy. The human wears a wristband that has two mounted active markers (Fig. 4.1).

The active markers can measure human hands linear and rotational speeds when the human picks

the hoses and fits the parts (end hoses) respectively. We use the experimental system shown in

Fig. 4.1 to investigate and justify a few novel concepts on pilot-basis including robot trust modeling

and measurement, and, trust-triggered handover motion planning using kinematic redundancy, etc.

Nonetheless, the setups may be scaled to realistic industrial settings in several ways:

• Realistic positioning of assembly components in the workspace layout may be ensured con-

sidering specific requirements of the task, operators health and safety, workspace ergonomics,

and production flow.

• Some laboratory instruments may be replaced by more practical industrial facilities such as the

keyboard command for payload handover may be replaced by voice or gesture-based commands,

active markers worn in the wrist of the human may be replaced by laser position sensors, etc.

• The assembly cell may also take the advantages of the facilities of the existing factory au-

tomation system such as the assembly parts may deliver to the human and the robot through

belt conveyors just-in-time (JIT), finished products may be dispatched through another belt

conveyor, etc.

• The investigations can be made with assembly tasks performed in actual industrial settings

Cutter

Fitting Parts
Hoses

Reference Pipe

Figure 4.1: Handover task.
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where multiple tools are used, and so forth.

4.3 The Trust Model and Real-Time Measurement of Trust

4.3.1 The Computational Robot-to-Human Trust Model

Most state-of-the-art trust models focus on human trust in robots, machines, automation,

systems, or in humans, e.g. [30, 51], instead of on robot trust in humans except a few preliminary

initiatives, e.g. [117, 86, 2]. Human trust in robot is discussed in Chapter 3, Section 3.4.4. It may

be influenced by factors of robot, task, working environment and human [30]. Lee and Moray [50]

proposed a time-series trust model as a function of prior trust, robot performance, and faults, and

used a regression model to identify the factors of human trust in robot (automation). The time-series

model is suitable for real-time quantitative trust computation [50]. We assume that manufacturing

environment is well-structured, and thus uncertainty is little, and therefore such deterministic model

may be suitable to capture trust, which motivates us to use the time-series model as a computational

model of robot trust in human. A general computational model of human trust in robot/automation

may be expressed in (4.1), where k is time step, T is human trust in robot/automation, a, b0, b1,

c0, c1 are real-valued constants relevant to specific human-robot system, and q is a random noise

perturbation (if any). It may be an ordinary deterministic regression model and an error-based

learning algorithm, but we treat it as the computed trust [50].

Trust(k) = a Trust(k − 1) + b0 Robot Performance(k) + b1 Robot Performance(k − 1)

+ c0 Robot Fault(k) + c1 Robot Fault(k − 1) + q(k), (4.1)

Trust is a perceptual issue and the human has actual perception of trust in the robot, but it is not

possible to give the robot the similar perception of its trust in the human. However, we can derive

a model to compute robots artificially perceived trust in human that can express the robots mental

states to the human, increase transparency, reduce uncertainty in the HRC, and thus increase the

effectiveness of the HRC [86]. Based on (4.1), we propose a time-series model to compute robot

trust in human (denoted as TR2H ) as in (4.2), where PH and FH are reward scores for human

performance and fault status respectively, and a, b0, b1, c0, c1 are real-valued constants. TR2H may
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be updated based on measures of PH and FH at every time step k.

TR2H(k) = aTR2H(k − 1) + b0PH(K) + b1PH(k − 1) + c0FH(k) + c1FH(k − 1) + q(k), (4.2)

We normalize TR2H value between 0 (no trust) and 1 (maximum trust) by letting a+b0+b1+c0+c1 =

1 and define PH ∈ [0, 1], FH [0, 1]. We assume that trust is calibrated and thus do not consider under

or over trust of the robot as the trust measures between 0 and 1 may be proved sufficient to trigger

the proposed adjustments in handover configuration and motion.

4.3.2 Real-Time Trust Measurement and Display

As observed in (4.2), we need to have real-time measurements of PH and FH to obtain the

real-time estimates of TR2H as discussed in the following sections.

4.3.2.1 Modeling and Measurement of Human Performance

Human performance, PH , is modelled in (4.3), where VHmn is the normalized value of human

hand speed for part manipulation, VHm, and VHan is the normalized value of human hand speed for

part gripping and releasing for manual manipulation and part attachment during assembly ,VHa,

and VHrn is the normalized and absolute value of human hand angular velocity for fitting an end

hose in a hose, VHr , and W1, W2, and W3 are weights between 0 and 1 with W1 +W2 +W3 = 1.

The linear and rotational speeds are measured by two active markers mounted on a wristband worn

by the human hand.

PH(k) = W1VHmn(k) +W2VHan(k) +W3VHrn(k) (4.3)

We select human hand speed during assembly as a human performance measure because achieving

high assembly efficiency largely depends on human speed (robots speed for part manipulation is

kept fixed, but it can vary for handover). One of the active markers worn by the human during

the assembly is used to measure hand speed (VH) as illustrated in Fig. 4.2. VHm is identified

when VH > VHth, where VHth is a threshold of VH , otherwise VHa is identified. VHm and VHa

are normalized between 0 and 1 to obtain VHmn and VHan, respectively, which give the measure of

PH(k) according to(4.3). W1 and VHth are determined based on the experience. PH varies between
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0 (least performance) and 1 (best performance). Effects of human fatigue and idle time are reflected

in the model through hand speed measurements (performance is low if fatigue and idle time are

high, and vice versa).

4.3.2.2 Modeling and Measurement of Human Fault

For the hose assembly task, a fault is considered if (i) the fitting parts are not fitted and

tightened properly, and (ii) the length of the hose is not adjusted correctly, etc. If the part is correct,

FH = 1 is considered. The experimenter observes the assembly and assesses FH(k) subjectively using

a Likert scale between 0 and 1 with a 0.1 gap between two adjacent values, and inputs the score

immediately to the computer system to update trust estimation.

4.3.2.3 Real-Time Trust Measurement, Display and Update

Once PH and FH are measured in real-time, TR2H can be measured in real-time follow-

ing (4.2). However, constants of (4.2) need to be determined. The computed TR2H is displayed

graphically on the computer screen (Fig 4.3) placed in front of the human as in Fig. 4.1, with up-

dates at every time step k. The trust values of five recent time steps are displayed in the graph so

that the human can easily know and understand the trend of robot trust in the human. The green,

yellow and red lines of trust display (Fig 4.3) indicate different warning levels to the human based

on the values of robot trust in the human.

Figure 4.2: Illustration of human performance measurement during assembly.
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4.4 Trust-Triggered Handover Strategy

4.4.1 The Underlying Handover Motion Planning Strategy

Given a real-time (or near real-time) measure of TR2H , a key question is how to usefully

exploit the trust information in modifying the robot behavior (robots handover configuration and

motion). We adopt the qualitative hypothesis given in [87] for this purpose which states that if

TR2H reduces due to human fault and/or low speed during the collaborative assembly, the human

may be unprepared for the handover and consequently may develop error in his/her own motion

planning (premature and unplanned hand motion) for receiving payloads from the robot and such

human error may be proportional to the amount of reduction in TR2H , and vice versa.

The hypothesis means that when TR2H is high, the human is mentally calm and well-

prepared for the potential high impulse force between the human hand and robot end-effector through

payload, and can avoid collision and thus the robot may follow the default preplanned task-optimal

trajectory, which we call “normal or default handover motion”. However, if the trust levels drop

to below the pre-specified thresholds, the human may be uncertain about how to deal with his/her

partner who has reduced trust on him/her, be unprepared for the handover, generate unplanned

motion for receiving the payload from the robot, and all these human limitations may result in

collision between human hand and robot end-effector that may generate impulse forces and reduce

safety. To address this, a trust-triggered handover strategy is adopted for the robot so that the

robot can be programmed to produce different handover configurations and motions based on TR2H

levels, which may reduce the effects of potential impulse forces.

Figure 4.3: Human-computer interface for real time trust display and trust-based warnings.
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4.4.2 Underlying Robot Kinematics Models

We select robot joint rates (hence robot posture as a function of time) via the manipulator

Jacobian with the innovation of using robot trust to resolve kinematic redundancy [103, 118, 45].

The relation between velocities in the task-space and joint-space [106] is calculated using J ∈ R
m×n

given by (4.4), where x(t) ∈ R
m is the end-effector pose in the task-space and q(t) ∈ R

n is the

corresponding joint space configuration. x(t) and q(t) may be expressed by (4.5), where x, y, z are

the end-effector position and φx, φy , φz are minimal representation of the end-effector orientation

and q1, q2, . . . , qn are the manipulator joint angles. We assume that the manipulator has n(=

7 for Baxter) independently controlled axes. However, the algorithm below may be easily modified

for industrial robots with fewer (4 or 5) axes. A full specification of manipulator position and

orientation defined by x as above is 6-dimensional. However, in the following motion planning

algorithm, we impose constraints on the specification of x by removing variables from it so that in

general x is m-dimensional, where generally m < 6 and also m < n. Note that it is not necessary

for n > 6 to have kinematic redundancy. This may occur whenever m < n (the case in our analysis

and experiments), providing a choice of robot configurations in the given task, which we exploit

herein [103, 118, 45].

ẋ(t) = J(q(t))q̇(t), (4.4)
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(4.5)

We exploit the relationship between robot posture and the magnitude and direction of impulsive

forces due to the collision at the end-effector during handover taking advantages of an existing body

of understanding in robotics literature [103, 118, 45]. This understanding is based on the synthesis

in end-effector space of an m-dimensional ellipsoid, which is a function of robot configuration via
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the Jacobian. The directions and relative magnitudes of the ellipsoid axes illustrate the relative

vulnerability of the robot to end-effector impact in these directions. In more detail, the impact

ellipsoids for rigid-link robot manipulators are introduced in [118]. These dynamic impact ellipsoids

are obtained by considering an impulse force acting at the tip of the robot for an infinitesimally

small period of time (the time period modeling the impact of interest) in the manipulator dynamics

model. Since the joint velocities and positions remain finite in such small time periods, the Jacobian

and the joint torques vanish and an expression relating impulse force and change in joint velocity

is obtained as in (4.6) (see [118] for the detailed derivation). In (4.6), M(q) ∈ R
n×n is the inertia

matrix of the manipulator, F ∈ R
m is the contact impulse force and ∆q̇ ∈ R

n is the vector of

instantaneous changes in joint velocities caused by the potential impact.

∆q̇ = M−1(q)JT (q)F , (4.6)

Based on (4.6), the contact impulse force acting at the tip of the manipulator can be expressed

as (4.7), where J+ ∈ R
n×m is pseudoinverse of J .

F = J+T

(q)M(q)∆q̇ (4.7)

Equation (4.7) specifically the Singular Value Decomposition (SVD) UΣV T of matrix J+T

(q)M(q)

is the basis for the dynamic impact ellipsoid, where the columns of U give the directions of the prin-

cipal axes of the ellipsoid. Relative magnitudes of the principal axes of the dynamic manipulability

ellipsoid given by singular values of J+T

(q)M(q) in Σ depict relative amount of impulse forces that

the tip of the manipulator may experience in the corresponding directions (column vectors in U) for

changes in joint velocities (∆q). Thus, the ellipsoid is defined using (4.8) in the task space, where

vector ui defines an m-dimensional ellipse with m = 3 [118] as

{ui ∈ R
m : uT

i JM
−2JTui ≤ 1}. (4.8)

Studies of impact ellipsoids have revealed a strong correlation between the long axis of the ellipsoids

(direction of largest impulse forces on impact) and the orientation of the last robot link (typically

wrist/hand) [118]. This implies that to mitigate against high collision forces, the robot wrist should

be bent as close to orthogonal to the approach vector (the direction collision forces are most likely
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to arise in) as possible. This may be analogous to the way humans when tracing their way in dark,

tend to bend their wrists to put hands up in a cautious posture with an intention to prevent them

from jarring their wrists in the event on unexpected impact with something [117].

4.4.3 Trust-Based Handover Motion Planning Approach

To synthesize the cautious robot behavior in the event of low TR2H , we adopt a two-step

process to produce handover motions. First, we suitably modify the end-effector trajectory from the

original task-optimal one. Here, the key innovation is to generate a reduced dimensional end-effector

trajectory in a subset of the original task space to allow subsequent tailoring of the robot handover

configuration corresponding to new end-effector motion. We retain the original geometric position

of the end-effector but leave the orientation unspecified. Hence, the task-space trajectory is reduced

from six to three dimensions keeping the position (but, not the pose) of the end-effector unchanged

along the path. This allows generating braced configurations. A strategy is tailored to use in a new,

modified (reduced dimensional) trajectory in the task space is defined as xM , which modifies and

relaxes the constraints on the robot end-effector path allowing its geometric path to deviate from

a direct or the most task-efficient course. The net effect may produce a cautious movement for the

robot wrist/hand. We then utilize the fact that the reduced dimensionality of the modified task

space causes the robot to be kinematically redundant [103, 118, 45]. This allows the robot some

freedom in configurations when following the end-effector trajectory via the newly created kinematic

redundancy. One approach to directly exploit the redundancy may be to solve (at velocity level)

the inverse kinematics via iterative pseudoinverse-based algorithm given by

q̇ = J+(q)ẋM + α[I − J+(q)J(q)](∇F )T , (4.9)

where (∇F )T is the gradient of the magnitude of F . It was proved in [118] that this motion

planning algorithm follows the modified end-effector trajectory via the first term in (4.9) and exploits

kinematic redundancy using the second term in (4.9) to instantaneously minimize the impulse forces.

The parameter α in (4.9) may be either taken from a fixed set of values (e.g., discrete values of

TR2H ) or continuously varied values (e.g., continuously varying values of TR2H). In (4.9), α = 0

indicates no configuration compensation for TR2H (i.e., TR2H is high), and only the first term is used

to generate handover motions solely concerned with following the modified end-effector trajectory.
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However, increasingly higher values of α correspond to increasingly lower TR2H that may produce

greater weight on the second term and may result in changes in handover configurations to braced

configurations against potential impact forces. Here, the trust-based robot motion trajectory for

handover is planned using (4.9) where α is based on the trust value as:

α =











Tmax−TR2H

TR2H−Tmin
: TR2H > Tmax+Tmin

2

1 : otherwise
, (4.10)

where Tmax = 1 and Tmin = 0.5. If trust is high, then TR2H = Tmax and α = 0. If trust is low, then

TR2H <= Tmax+Tmin

2 and thus α = 1.

Note that (4.9) can be solved without finding the exact value of ∇F using the kinematic

redundancy equation given in [126] as:

q̇ = J+(q)ẋM − k1[I − J+(q)J(q)]H(q − qr), (4.11)

where H is a diagonal matrix with positive items, k1 is a positive constant, and qr is the reference

configuration of the manipulator. Comparing (4.9) and (4.11) we realize that the term (∇F )T can

be replaced by −k1H(q − qr). Here, we consider H = I (the identity matrix), k1 = 1. The

reference configuration (qr) is the final configuration of the manipulator where the collision force

(∇F ) is minimum, i.e. the cautious pose where trust is minimum. Thus the final trust-base handover

motion can be formulated as:

q̇ = J+(q)ẋM + α[I − J+(q)J(q)](qr − q). (4.12)

4.4.4 Explanation of the Handover Approach through Examples

Fig 4.4 shows different hypothetical handover configurations of the robot based on its trust

in human for the assembly. As it illustrates, more reduction in robot trust in human causes more

braced (curved) configuration and more cautious (slower) handover motion. The potential impact

force Fy in the contact between human hand and robot end-effector during handover is modeled

as [118]

Fy = (µn(q)ny)F , (4.13)
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φy = 0

(a)

φy = 45

(b)

φy = 90

(c)

φy = 120

(d)

Figure 4.4: Different configuration of the manipulator for trust-based handover.

where n(q) is a unit vector aligned with the final link (a function of robot configuration reflecting

the geometry of the potential impact), ny is a constant unit vector in the y-axis direction and µ is

a constant reflecting the material quantities of the impacting bodies. The unit vector is the aspect

the robot can influence with the impulsive force taking its maximum and minimum values at µ (last

link aligned with y-axis) and 0 (last ink vertically aligned with respect to y-axis) respectively.

Minimizing Fy via its gradient will minimize impact forces. According to (4.13), the poten-

tial impact forces may be maximum for the handover configuration in Fig. 4.4(a) as the final link is

aligned with the y-axis with a very small φy. In this case, as we hypothesize, the human may move

his/her arm towards the robot in the y-axis direction with a preplanned hand trajectory to receive

the payload and there is almost no possibility of any impact on human hand by the end-effector
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(a) High trust (effiecent) configuration (b) Low trust (braced) configuration

Figure 4.5: The efficient and braced configuration of the manipulator for trust-based handover.

and thus the impulse forces can be avoided. However, if TR2H is increasingly low, the end-effector

position is kept unchanged so that the robot can reach the payload to the human properly, but

the orientation of the end-effector is left free, i.e. the modified end-effector trajectory, xM , may

be simply the position trajectory xM = [x, y, z]T . In this case, the robot may deviate its final

link from y-axis so that impact between human and robot along y-axis either does not take place

or reduces. Based on the varying amount of reduction in TR2H , the value of φy may increase as

shown in Figs. 4.4(b)-(d). In Figs.4.4(b)-(c), the handover takes place as the final link is still aligned

towards the human (y-axis) with an angle φy , but the handover does not take place for Fig. 4.4(d) as

the final end-effector direction totally deviates from the direction of the human (y-axis), i.e. φy ≥ 90

due to the least amount of TR2H . This configuration may produce minimal impact forces. We see

in (4.9) that q (joint space configuration for last link) and TR2H are inversely proportional through

the relationship with α, and q is related to task space configuration (φy with respect to y-axis) via

manipulator Jacobian. Hence, an inverse relationship between measured φy and computed TR2H in

real assembly task with cautious handover motion may justify the proposed strategy. The braced

configuration with minimal impact forces can be defined when φy ≥ 90. Here we pick the braced

configuration as Fig. 4.4(d) as the reference braced configuration, i.e. qr in (4.12). Fig. 4.5 shows the

robot’s handover configurations for the extremely high and low values of trust during an experiment.
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4.5 Experimental Evaluation

4.5.1 Objectives

The objectives are to evaluate the effects of consideration of robot trust in human in the

collaborative assembly and handover configuration and motion planning on overall HRI, handover

and assembly performance, and task safety.

4.5.2 Experiment Design and Evaluation Scheme

We evaluated the effects of implementation of the proposed handover strategy. The inde-

pendent variable is applying robot trust (TR2H). A within-subject test with Latin Square design

test order was performed under two different test conditions: (1) trust triggered handover (TTH),

and, (2) trust un-triggered handover (TUH). The dependent variables are: (i) robot handover con-

figuration and motion, (ii) human hand trajectory for receiving payloads during handover, (iii) HRI,

(iv) handover success rate, (v) handover and assembly efficiency, (vi) impact force, and (vii) safety.

Robot handover motion (position, orientation, and velocity of robot end-effector/last link) and im-

pact force are measured by the position and force sensors embedded in the robot arm respectively.

Human hand trajectory for receiving the payload is captured by the two active markers worn by

the human (Fig. 4.1). The pHRI (physical HRI) for the assembly task (including handover) are

expressed in a few terms as given in Table 4.1. The subject subjectively assesses the pHRI against

the criteria in Table 4.1 (except the team fluency) using a Likert scale [86] (score 1 for extremely

low and score 5 for very high pHRI). The experimenter records the time data using stopwatches for

calculating team fluency. The cHRI (cognitive HRI) is expressed in terms of (i) human trust in the

robot, and (ii) humans cognitive workload. Human trust in the robot is assessed using the Likert

scale. The workload is assessed following standard NASA TLX procedures [31].

The handover success rate, ǫhsr, is expressed as in (4.14), where hf is the total number of

failed handover trials and ht is the total number of handover trials. The safety in the handover,

ǫs, is expressed as in (4.15), where hc is the total number of handover trials when the human co-

worker experiences collisions or large impact forces. Safety is also reflected through the magnitude

of impact forces due to the collision. The handover efficiency, λh, is expressed in (4.16), where Ttth

is the targeted time for a handover trial and Trth is the recorded time for a handover trial. The

assembly efficiency, λa, is expressed in (4.17), where Ttta is the targeted time and Trta is the recorded
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pHRI criterion Description

Transparency Physical display of contextual information (warning, messages, status)
regarding human’s physical performance and fault, and the resulting
robot trust in the human

Naturalness Normalcy and intuitiveness perceived by the human while physically
collaborating with the robot for the assembly

Engagement Amount/extent of humans physical involvement with the robot during
the assembly

Cooperation Extent of the sense of working together, partnership, and teamwork per-
ceived by the human while collaborating with the robot for the assembly

Team fluency Coordinated meshing of joint efforts and synchronization between human
and robot during the collaborative assembly and handover. Four criteria
(human and robot idle time, non-concurrent activity time and functional
delay time) are used to objectively measure the team fluency

Table 4.1: Description of the pHRI criteria

time for an assembly (including handover) trial.

ǫhsr = (1 −
hf

ht

)× 100 (4.14)

ǫs = (1−
hc

ht

)× 100 (4.15)

λh =
Ttth

Trth

× 100 (4.16)

λa =
Ttta

Trta

× 100 (4.17)

4.5.3 Subjects

Ten students (7 males and 3 females) with average age of 29.3 (and standard deviation of

SD = 3.0) were recruited to participate in the experiments. They were performed all two conditions

of the experiment. The subjects gave informed consent. The study was approved by the Institutional

Review Board (IRB).

4.5.4 Experimental Procedures

In the first round practice trials, each subject was instructed about the experiment proce-

dures and practiced the subtasks assigned to the human (Section 4.2.1). The robot performed the

subtasks assigned to it. The practice trials were intended to remove learning effects of the subjects.

Completion times of the entire assembly by each subject with and without robot handover were
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Parameter Value

b0 0.472
b1 0.066
c0 0.419
c1 0.043
k 10s

Table 4.2: Parameters for estimating the trust

recorded and their mean values were determined, which were used as the targeted times for the

assembly task including and excluding handover respectively assuming that the robot would per-

form the assigned subtasks in parallel with the human. Difference between target times including

and excluding the handover was the target time for the handover only. Robot manipulation speed

was adjusted to keep idle time zero at the beginning (ideal case). Based on the practice trials, we

determined the reward scores for human performance and fault status to use for PH and FH for com-

puting TR2H initially following (4.2). The information on agent performance and faults in practice

trials was also used to compute the constants of the trust model in (4.2) using the Autoregressive

Moving Average Model (ARMAV), and to decide the time step k, as given in Table 4.2. Again,

unlike the human trust, we here did not consider the prior robot trust (i.e., a = 0) in (4.2) as we

assumed no memory of the robot. In TTH condition, the robot motion trajectory for handover

is planned using (4.12). For both of the experiment conditions, the human subject and the robot

performed the collaborative assembly. Each subject was asked separately to continue the assembly

with the robot for 10 minutes (the finished assembled products were quickly disassembled and input

again to keep the assembly continuing). TR2H was measured and updated with a time step k and

regularly displayed in the screen (Fig. 4.3) for the whole assembly period. For assembly in TTH

condition, the robot manipulator moves based on (4.9) while the values of α updates based on the

trust value, TR2H . In TUH condition, the robot manipulator moves with regular inverse kinematic

without considering the impact force, i.e. α = 0. After each trial in each experiment condition, the

collaborative assembly with handover was evaluated following the evaluation scheme, and the data

were recorded separately.
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4.6 Results and Evaluation

Fig. 4.6 shows the angular and linear positions of the robot end-effector for a typical trial

under TTH condition. The results show that the linear positions along the x, y, and z axis directions

were almost unchanged with trust levels, but the angular position (absolute values) along the y-axis

(direction of the handover) significantly changed to produced the braced configuration. The results

show that along the y-axis, there exists an inverse relationship between φy and the trust, where φy

is related to qy (joint space configuration for the last link for the y-axis) via manipulator Jacobian.

The trends in φy indicate the trends in the potential impact forces between robot end-effector and

human hand during handover via (4.9), which justifies the proposed handover strategy because the

potential impact forces may reduce for decreasing trust values by increasing φy or qy, i.e. through

more deviation of end-effector from handover direction or more braced configurations. Fig. 4.7,

(a) Angular positions (b) Linear positions

Figure 4.6: Angular and linear positions with respect to (along) different axes for the robot’s end-
effector for different trust levels for assembly under TTH condition.

compares the absolute measured velocity of the robots last link during handovers for high trust and

low trust conditions. The results show that the robots last link velocity reduced as the robots trust

in human decreased. The reduction in peak velocity provides compliance to the human in lower

trust conditions as high handover velocity may generate high impact forces. Fig. 4.8 compares the

(a) High trust (b) Low trust

Figure 4.7: Typical absolute velocity profiles of the manipulator’s end-effector during handovers for
high and low trust values.
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Evaluation Criterion Result for TTH Result for TUH

Transparency 3.82(0.65) 3.89(0.53)
Naturalness 3.80(0.62) 3.47(0.41)
Engagement 3.61(0.68) 3.48(0.45)
Cooperation 3.41(0.45) 3.34(0.61)

Table 4.3: Results of physical HRI between assembly with TTH and TUH

mean impact forces between assembly with TTH and TUH. We believe that the effectiveness of the

handover strategy produced lower impact forces for TTH. The results thus justify Hypothesis I.

The unplanned hand motion may cause violent contact between human hand and robot end-effector

that may create impulse forces. Hence, for reduced trusts, the robot saves the human by reducing

impulse forces through generating braced configurations and cautious motions.

We also found that pHRI and cHRI for TTH were satisfactory, and better than that for

TTH. Tabel 4.3 compares the pHRI perceived by subjects between assembly with TTH and TUH.

Results show that on average the naturalness and engagement for assembly with TTH were slightly

better than that for assembly with TUH. However, the transparency and cooperation were similar

for both TTH and TUH. The real-time TR2H display, trust-based warnings, and cautious config-

urations and motion of the robot made the contextual information transparent to the human and

helped the human feel natural for both TTH and TUH conditions. Tabel 4.4 compares the cHRI

perceived by subjects between assembly with TTH and TUH. Results show that on average the

human trust in robot and cognitive workload for assembly with TTH were slightly better than that

for assembly with TUH. Table 4.5 shows that handover safety, handover success rate and overall

assembly efficiency for the TTH are better than that for the TUH. However, the handover efficiency

reduced slightly for TUH.

Figure 4.8: The mean impact(collision) forces between assembly with TTH and TUH conditions.
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Evaluation Criterion Result for TTH Result for TUH

Human trust in robot 3.83(0.64) 3.56(0.59)
Cognitive workload(%) 32.1(13.64) 36.46(14.83)

Table 4.4: Results of cognitive HRI between assembly with TTH and TUH

Evaluation Criterion Result for TTH Result for TUH

Handover safety (%) 100 80
Handover success rate (%) 100 100
Handover efficiency (%) 96.44(0.05) 97.16(0.06)
Assembly safety (%) 96.51(0.03) 95.56(0.04)

Table 4.5: Results of objective evaluation between assembly with TTH and TUH

4.7 Conclusion

Robot trust-based human-robot collaborative assembly was proposed. A novel robot to

human handover motion planning strategy was proposed so that the robot can adjust its handover

configuration and motion through kinematic redundancy based on the current status of the robot-

to-human trust. Such adjustments in handover configuration and motion were designed to reduce

the potential impact forces between the robot end-effector and the human hand during handover

and to ensure reliability and safety. Computational models of robot trust in human were derived

and real-time trust measurement methods were developed. The proposed trust-based collaborative

assembly including handover was evaluated using a comprehensive evaluation scheme for two types

of representative assembly tasks with two different robotic platforms. In the first type setup, the

handover configurations and motions with different trust levels were present. However, for the second

type of assembly, the handover configurations and motions were determined in real-time with trust

levels. The handover configurations were determined using kinematic redundancy. The evaluation

results showed that perceived HRI, handover success rate, safety, efficiency and humans own trust in

the robot increased for the trust-based assembly task with a small sacrifice in handover efficiency for

both assembly tasks. The key novelties are modeling and measurement of robot trust in human and

trust-triggered motion planning exploiting kinematic redundancy for handovers of parts between the

robot and human for enhancement of HRI and safety in the flexible assembly in manufacturing.

The results including trust estimation are somewhat subjective in nature. However, the

subjective results should be reliable as we used standard subjective methods such as the ARMAV,

Likert scale, NASA TLX, etc. Statistical analyses showed nonsignificant variations in results among
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the subjects, which show reliability and generality of the results. We will develop speed control

algorithms for robot-human assembly and handovers to maximize human-robot bilateral trust and

productivity in the near future.
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Chapter 5

Trust-Based Human-Robot

Cooperative Manipulation

5.1 Introduction

Cooperative manipulation refers to joint coordination of two or more robots handling a

common object. This concept can address the typical limitations of single-arm robots in terms of

dexterity and payload and open up new applications in flexible manufacturing systems and ser-

vice robotics. In human-robot cooperative manipulation, a team of humans and robots coordinate

together to handle a common object. Some research on human-robot cooperative manipulation

considered a passive behavior for the robot. They presented control strategies considering human

input as an exogenous input to the system [32, 101]. In contrast, a more helpful robot behaves in a

proactive manner by predicting human intent [102] and minimizing human effort by ideally applying

all the required forces [68]. However, the mismatch in estimating human intent may be counter

effective and even harmful to the human. Thus a robot is also desired to be self-aware and has an

ability for detecting and compensating for its own faults.

A collaborative robot requires its own decision-making capabilities that make seamless tran-

sitions between the different interaction paradigms. In this work, we propose a switching-based con-

trol strategy for human-robot collaborative manipulation that benefits from both of the proactive

and reactive behaviors of the robot. Based on this strategy the robot starts the collaboration in
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a proactive manner but it is also capable of switching to the reactive/complaint mode in case of a

mismatch.

We leverage trust of human in robot for decision-making in cooperative manipulation. Trust

is a key factor in any interaction [51]. It can be used as a basis of the robot decision-making strat-

egy. As discussed in Chapter 2, human trust in robot depends on human-related, robot-related,

and environmental related factors. As discussed in previous chapters, we modeled human trust in

HRC in manufacturing based on prior trust and current and prior automation performance and

fault occurrences [91, 94]. For the supervisory control of robots in surveillance scenario [125] and

for motion planning with a human-in-the-loop [120], probabilistic trust models were developed con-

sidering causality relation between human trust and robot performance. In this chapter, we use

a similar approach as in [120, 125] for developing a Dynamic Bayesian Network (DBN) model of

human-to-robot trust in cooperative manipulation tasks. The probabilistic approach accommodates

the uncertainties in predicting the human trust by treating it as a random variable at each time

step.

The organization of this chapter is as follows. Section 5.2 summarizes a background review in

role allocation problem in human-robot cooperative manipulation. An introduction to the dynamics

and control problem of the cooperative manipulation systems is presented in Section 5.3. The human-

robot cooperative manipulation system with the description of the reactive and proactive behaviors

of the robot and model of trust of human in robot is presented in Section 5.4. A simulation study

is presented in Section 5.5 and the chapter concludes in Section 5.6.

5.2 Related Work

Early works on human-robot cooperative manipulation was based on the reaction of the

robot to the human operation mostly using impedance control [101, 41] and later extended by

adding desired virtual constraints [111].

Another body of work has been focused on proactive behavior of the robot by means of

modeling human behavior in cooperative manipulation tasks. Some works [16, 62] tried to tackle

this problem analytically by following the minimum jerk principle for the human motion introduced

by Flash and Hogan [20]. Some works characterized the human behavior using data from human-

human experiments. In [85] trajectories for human-human cooperative manipulation were recorded
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to generate human-like motion trajectories by the robot in human-robot cooperation. Later, hybrid

control schemes were developed for switching between different admittance parameters based on the

identification of predefined sets of motion and haptic patterns [107, 121]. A multi-class support

vector machine (SVM) classification of the interaction patterns for based on force, velocity, and

power related information feature sets and summary of the research on the proactive behavior of

robot is provided in [61].

Another set of research has focused on effort sharing and role allocation in HRI. Namely,

a switching between leader and follower roles was explored in by using a homotopy for transition

between the robot control input in the leader and follower mode [18]. A similar idea [11] was

proposed to switch between standalone (with solely the robot performing the task), leader and

follower modes. These mentioned works did not consider when the switching should occur. Another

work [44], considering a haptic board game scenario, deployed a dynamic role allocation model for

transitioning to leader versus follower behavior for the computer by inferring human’s intention based

the applied forces by the human. In this scheme, the computer adjusts its role whenever the human

applied force is out of a defined average range more than eighty percent of the last 500 milliseconds.

Another dynamic role allocation and effort sharing in human-robot- cooperative manipulation was

presented in [75]. The role allocation for a planar translational motion of the object was realized by

adjusting a single policy parameter. The authors compared the results of experiments for three role

allocation strategies including a constant uniform load distribution, dynamic scheme based on the

human applied force and a binary agreement indicator, and dynamic scheme based on the agreement

indicator with discretized values of the policy parameter. The role allocation problem addressed by

adjusting the proactive behavior of the robot in [67, 66]. This work solved a risk-sensitive stochastic

optimal control problem minimizing a cost function of a weighted sum of the disagreement between

the agents, uncertainty in the estimation of the human desired trajectory and human effort.

Trust of human in robot was shown to be beneficial in dynamic role allocation and human-

robot mixed-initiative haptic teleoperation scenarios of mobile robots [97, 99, 100] This chapter

follows the research on the role allocation problem in human robot interaction by considering a

probabilistic model of human trust in robot. Internal force, disagreement between the agents,

estimation accuracy and robot effort are considered in the robot performance of the trust model.

Compared to the previous works, the trust model is able to identify a faulty prediction of human

intention in the proactive mode more effectively by constructing the probabilistic trust model.
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5.3 Cooperative Manipulation System

In this section, we first introduce the general kinematics of cooperative manipulation in

Section 5.3.1. Next, we explain the dynamics and load distribution of human multi-robot cooperative

manipulation in Section 5.3.2.

5.3.1 Kinematics and Statics

Consider a human-robot cooperative manipulation system consisting of M arms – i.e. a

human arm andM−1 robotic manipulators – that tightly grasp a rigid object. Let xi = [pi φi]
T∈ R

q

with q 6 6 be the generalized position (pose) of the i-th arm coordinate frame, Ti, with respect to a

common base frame, T . In the general case, pi ∈ R
3 and φi ∈ R

3 are the vectors of the position and

the minimal representation of the orientation of Ti with respect to T , respectively. The transpose

of (·) is denoted as (·)T .

Let TC be a coordinate frame attached to a fixed point C of the object (e.g. the mass

center). The generalized position of the object coordinate frame, TC , with respect to the base frame

T is given by x = [p φ]T∈ R
q, where the vector p gives its position in the base frame and φ is

the minimal representation of the orientation. The relation of the object coordinate frame, TC ,

with respect to the i-th arm coordinate frame, Ti, is expressed by a vector ri that is denoted as

the virtual stick [115]. Note for an object that is rigid and tightly grasped, each virtual stick is a

constant vector and thus pi + ri = p. Fig. 5.1 shows these definitions for the case of two arms. Let

hi = [fi ni]
T∈ R

q be the generalized forces (wrench) acting at the i-th arm, where fi and ni are

the force and moment, respectively. The relation between the generalized forces acting at the tip of

the i-th virtual stick (located at C), hS,i, with respect to the generalized forces acting at the tip of

the i-th arm, hi, is given by

hS,i = Gihi, (5.1)

where Gi is the Jacobian of the kinematics constraints of i-th arm denoted as the partial grasp

matrix. It is defined as

Gi ,







I3 O3

S(ri) I3






,
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Figure 5.1: Grasp geometry for two arm (one human and one robot) cooperative manipulation.

where Il and Ol denote the identity matrix and null matrix of (l × l) dimensions, respectively, and

S(ri) is the skew-symmetric cross product matrix operator [76]. For an arbitrary vector v = [a b c]T

the cross product matrix operator S(v) is defined as

S(v) =













0 −c b

c 0 −a

−b a 0













.

Let us denote the external force and moment applied to the object as the vector of generalized force,

he, given by

he =

M
∑

i=1

hS,i = WShS , (5.2)
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where

WS =

[

Iq Iq . . . Iq

]

, hS =



















hS,1

hS,2

. . .

hS,M



















qM×1

.

5.3.2 Dynamics and Load Distribution

The object’s motion with respect to the inertia frame T is described by

Mo(x)ẍ+Co(x, ẋ) = he + hext, (5.3)

where Mo ∈ R
q×q is the inertia matrix of the object and Co ∈ R

q is the sum of friction and

gravitation and hext ∈ R
q is the vector of the external generalized force applied to the object (not

by the arms). Equation (5.2) calculates the object generalized force he given the arm generalized

forces hS acting at the tip of virtual sticks. In the cooperative manipulation, the inverse problem

is usually of more interest, i.e. given the desired object generalized force, hd
e , what would be the

generalized forces of the arms, hd
S? Since the number of unknown parameters, i.e. hd

S ∈ R
qM , is

greater than that of known parameters, i.e. hd
e ∈ R

q, the solution of this problem is not unique.

The general inverse solution of (5.2) is given by [4]

hd
S = W+

S hd
e + [IqM −W+

S WS ]h
∗
I , (5.4)

where W+
S ∈ R

qM×q is the generalized inverse (or pseudo-inverse) of WS . The columns of the

matrix IqM −W+
S WS are a basis of the null space of WS and h∗

I represents the internal loading of

the object. Therefore, the term [I(qM) −W+
S WS ]h

∗
I do not contribute to external forces acting on

the object. The load distribution of the generalized forces among the arms depends on the choice

of W+
S . In HRC scenarios, a nonuniform distribution with minimal load assigned to the human is

usually desired. Let us consider the design of load sharing matrix A such that

hd
S = Ahd

e , hd
e = WSh

d
S = WSAhd

e . (5.5)
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In cooperative manipulation, internal forces that squeeze the object are often undesirable. It is shown

in [68] that the family of solutions that satisfies (5.5) and without resulting in any counteracting

(squeezing) generalized forces is given by

A =

[

A1 A2 . . . AM

]T

, (5.6)

where

Ai = diag

[

αf,i αf,i αf,i αn,i αn,i αn,i

]

,

αf,i, αn,i ≥ 0 ∀i = 1 . . .M

M
∑

i=1

αf,i = 1
M
∑

i=1

αn,i = 1.

Note that the generalized Moore-Penrose pseudoinverse solution results in the uniform distribution

of load among arms as {αf,i =
1
M
, ατ,i =

1
M
}.

5.4 Human-Robot Cooperative Manipulation

The objective of cooperative manipulation includes the control of both motion of the held

object and the internal loading of the object [68]. The motion objective is given as a desired

trajectory of the object, xd(t) ∈ R
q, such that

lim
t→∞

x(t) → xd(t), (5.7)

and the force objective is given as desired arms generalized force trajectories, hd(t) ∈ R
(qM) that

are needed to avoid undesired squeeze or internal object forces such that

lim
t→∞

h(t) → hd(t). (5.8)

We use impedance control approach for tracking a desired trajectory of the object motion

in cooperative manipulation [101, 6]. The desired apparent object impedance renders the system as

a mass-damper system given by

Mvẍ+Dvẋ = himp + hext, (5.9)
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where Mv, Dv ∈ R
q×q are the desired virtual inertia and damping matrices and himp ∈ R

q is the

controller input that renders the object desired impedance behavior and hext is the same generalized

vector of the external force applied to the object as given in (5.3). The desired acceleration of the

object is derived by (5.9) as

ẍ = M−1
v [himp + hext −Dvẋ]. (5.10)

From (5.3) together with (5.10), it follows that the generalized force vector applied to the object is

desired to be

hd
e = Co − hext +MoM

−1
v [himp + hext −Dvẋ]. (5.11)

The other control objective, i.e. controlling the generalized forces of the arms such that they are

non-squeezing (free of internal force) is achieved through the realization of the load sharing matrix,

A, given by Equation (5.6) in Section 5.3.2. We now consider the cooperative manipulation problem

with a human-in-the-loop and indicate the superscript h for the human, i.e. the human partial grasp

matrix is denoted as Gh and the human applied generalized force at the tip of his/her hand and

first virtual stick are denoted as hh and hS,h, respectively. With the human-in-the-loop, the control

objectives of (5.7) and (5.8) are not straightforward in general due to the following challenges:

• The human desired object trajectory xd
h is not known by the robot.

• The desired applied load sharing by the human hd
h is unknown to the robot.

There are two general methods for addressing these challenges [68], i.e. the reactive robot

behavior approach and the proactive robot behavior approach. In the reactive setting, the human is

considered as an exogenous input rather than an agent of the multi-agent cooperative system. For

such a system, the desired object behavior is

Mvẍ+Dvẋ = hext = hh, (5.12)

Comparing (5.12) with (5.9), the desired generalized force for the object can be calculated using

Equation (5.11), with hext = hh and himp = 0. The human applied forces can be measured using

force sensors or can be estimated using robot’s joint velocities [28]. The desired generalized force

acting on the manipulators at their tip of the virtual stick is calculated via (5.4)ãnd (5.5). The
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actual generalized forces acting at the tip of manipulators can be calculated from (5.1) as:

hi =







I3 O3

−S(ri) I3






hS,i. (5.13)

Given a robot generalized force in task space, hi, the robot’s control input (joints’ torques),

τi, is calculated as

τi = (J†
i )

Thi (5.14)

where J
†
i represents the Moore-pseudo inverse of the i-th manipulator arm Jacobian. Since the

human is treated as an external force, the robot is the only agent in the reactive cooperative ma-

nipulation and we do not consider the load-sharing matrix.

In the proactive setting, the robot estimates the human desired motion and force and plans

accordingly. In this setting, it follows that himp = hv + hh, where hv is input from the robot.

Assuming there is no external forces applied to the object, i.e. hext = 0, the desired behavior of the

object is given by

Mvẍ+Dvẋ = hv + hh. (5.15)

In ideal case the robot would apply the entire required force and the load sharing distribution

would be as {αf,h = 0, αn,h = 0} and {αf,r = 1, αn,r = 1} where superscripts h and r denote the

human and the robots, respectively. This is not possible since the human desired trajectory can only

be realized when human applies some forces. However, a controller can be designed to minimize

the human effort. For example, in [68] an optimal control problem was defined that finds the robot

generalized forces such that the human effort is minimized. This problem needs a careful attention

and is beyond the scope of this paper. Here, we find the load-sharing matrix, A, at current time first

by calculating the related human share matrix, Ah, by using the desired applied generalized force to

the object, hd
e , calculated as in (5.11) and measurement of the human applied generalized force, hh.

Then the load sharing matrix is calculated using the equality constraints introduced in (5.6). After

finding the load sharing matrix, the generalized forces acting at the arms can be calculated similar

to the reactive mode using (5.11), (5.5) and (5.13). The robot’s joints control input is calculated

using (5.14).
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Given an estimation of the desired trajectory for the object, xd, a common controller for

hv is a proportional derivative as

hv = KDė+KPe, (5.16)

where e = xd − x, and KD, KP ∈ R
q×q are the controller damping and stiffness matrices, respec-

tively.

5.4.1 Human Intent Estimation

Human is proficient in cooperating with others smoothly and proactively. The understanding

of human action and the corresponding intent are critical in efficient human-robot co-manipulation.

Different techniques are available for estimating human’s action and intent. In [119], the authors

point out that simple models for human motion prediction such as hidden Markov model (HMM)

and linear dynamical systems (LDS) can be learned easily and effectively but limited to predict

complex motions. In [57], the authors point out that Dynamic Bayesian Networks can model human

motions as well due to their effectiveness in modeling temporal dynamics of motion patterns but

limited in choosing appropriate model parameters. Support vector machines can also be used for

both classification and regression [95, 96]. A multi-class support vector machine classification of

the interaction patterns for based on force, velocity, and power related information feature sets for

cooperative manipulation is provided in [61].

Gaussian process (GP) models have been proven suitable for modeling human movement

[119] and become increasingly popular for modeling system dynamics [47].

A Gaussian (Normal) distribution for a random variable y is defined as p(y) = N (y;µ, σ) =

1√
2πσ

exp(−(y−µ)2

2σ2 ) with mean value µ and variance σ. A multivariate (joint) Gaussian distribution

of a N-dimensional random vector y = [y1, . . . , yN ]T is denoted as p(y) = N (µ,Σ) with the mean

vector, µ, and the covariance matrix, Σ, as

µ = E [y] = [E[y1], . . . , E[yN ]] , (5.17)

Σ = E
[

(y − µ)(y − µ)T
]

= [Cov[yi, yj]; 1 ≥ i, j ≥ N ] ,

where E[.] represents the expected value. A GP is a statistical distribution of a collection of function

values f(z) : Rn → R with z ∈ R
n where any subset of finite number of samples ({f(z1) . . . f(zN )},
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N ∈ N
+) forms a multivariate Gaussian distribution [40]. A GP function f(z) is denoted with its

mean function m(z) and covariance function k(z, z′) as

f(z) ∼ GP(m(z), k(z, z′)), (5.18)

where

m(z) = E [f(z)] , (5.19)

k(z, z′) = Cov(f(z), f(z′)) = E [(f(z) −m(z))(f(z′)−m(z′))] . (5.20)

For a given noise-free training data, the prior joint distribution of observations f = {f(zi)}Ni=1 at

input points Z = {zi}Ni=1 is written as

f ∼ N (m(Z),K(Z,Z)), (5.21)

where the elements of K(Z,Z) are Kij = k(zi, zj). The joint distribution of a set of observations

f at input points Z with a zero mean normal distribution and variance of σ2
n for the observation

noise and the predictive output f∗ at the test input z∗ is







f

f∗






∼ N













m(Z)

m(z∗)






,







K(Z,Z) + σ2
nI K(Z, z∗)

K(z∗,Z) K(z∗, z∗)












, (5.22)

Conditioning the distribution, the posterior (predictive) distribution, f∗, is given by [40]:

f∗|f ,Z, z∗ ∼ N (µf∗ , Cov(f∗)), where (5.23)

µf∗ = E(f∗|m(f),Z, z∗) = E(f∗) +K(z∗,Z)
[

K(Z,Z) + σ2
n

]−1
f (5.24)

Cov(f∗) = K(z∗, z∗)−K(z∗,Z)
[

K(Z,Z + σ2
nI)

]−1
K(Z, z∗). (5.25)

In our problem, the goal is to estimate the desired motion from the observed data. we use data

form human-human cooperative manipulation to train GP models for each dimension of the motion

trajectory. In training, we ask two people to jointly move an object in a task-specified environment
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and record the motion and force applied to the object. We consider the input of these models as

ξ(k) =



















x(k)

ẋ(k)

he(k)

φ



















, (5.26)

where k is the time index and φ is the task parameter. The outputs of the GP models are {λi}
2q
i=1,

where

λ(ξ(k)) =







x(k + 1)

ẋ(k + 1)






. (5.27)

Using the GP notation we can write

λi(ξ) ∼ GP (µi, ki(ξ, ξ
′)), (5.28)

where µi and ki(ξ, ξ
′) are the mean function and the covariance function chosen based on the prior

(training) data. For a set of N observations Λi = {λi (ξ(j))}Nj=1 at input points Ξ = {ξ(j)}Nj=1

with a prior expected value of µi and a zero mean noise with variance of σ2
n and a test input ξ∗,

the posterior distribution of the desired point on the trajectory is a Gaussian distribution with the

mean and variance as

E(λ∗
i ) = µi +K(ξ∗,Ξ)

[

K(Ξ,Ξ) + σ2
n

]−1
Λi (5.29)

V ar(λ∗
i ) = K(ξ∗, ξ∗)−K(ξ∗,Ξ)

[

K(Ξ,Ξ+ σ2
nI)

]−1
K(Ξ, ξ∗). (5.30)

5.4.2 Trust-Based Cooperative Manipulation

Both reactive and proactive behaviors have some pros and cons. The reactive approach

is intuitive and effective since the motion planning problem is done by the human partner but it

can only serve as a pHRI interface and does not reduce the human effort significantly [68]. The

proactive approach addresses the effort sharing problem by estimating the human desired motion

but it is involved with uncertainty and disagreement challenges. In this work, we integrate the

strengths of these two approaches by proposing a trust-triggered switching control policy. In this
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work, for ease of formulation and demonstration, we consider a team of one human and one robot

(M = 2) but a similar approach can be extended to a team of multiple humans and robots. We

denote the human and robot with the superscript h and r, respectively instead of i as the general

superscript for the agents wherever it is more appropriate. The controller estimates the human trust

in robot using our proposed trust model. The trust model is based on the human performance,

robot performance, and environment features. Trust is a key factor in the collaboration and can

guide the reliance of human on the robot. On one hand, higher trust values reflect higher degree of

collaboration and joint performance of the human-robot team in performing the cooperative tasks.

This means that for higher trust values the robot is more reliable and is able to behave in a proactive

manner well enough. On the other hand, lower trust values reflect the inadequate team coordination

and joint performance. If the robot is not reliable enough to act in a proactive manner, the controller

switches to the reactive mode. In the following sections, we first introduce the trust model and then

we propose our trust-based switch-control strategy.

5.4.2.1 Human-Robot Trust Model

In this work, we use a probabilistic approach similar to [125] for developing a DBN model of

human-to-robot trust in cooperative manipulation tasks. The probabilistic approach accommodates

the uncertainties in predicting the human trust by treating it as a random variable at each time

step. In particular, we propose the DBN model as shown in the Fig. 5.2. The human trust-

to-robot, T ∈ [0, 1], is related to the prior trust and current and previous robot performance,

PR ∈ [0, 1] [50, 91]. The actual realization of trust value is a hidden state. Thus we maintain a belief

distribution of human-to-robot trust and update it using an observation related to it. We consider

a normalized magnitude of the internal force as the disagreement between human and the robot,

D. The conditional probability distribution (CPD) for the relation between human-to-robot trust

at time step k, T (k), to previous trust, T (k− 1) given the current and previous robot performance,

PR(k) and PR(k − 1) is expressed by a Gaussian CPD with mean value µT and variance σT as:

p(T (k), T (k − 1), PR(k), PR(k − 1)) =

p(T (k)|T (k − 1), PR(k), PR(k − 1)) = N (T (k);µT (k), σT (k)), (5.31)
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PR(k)

T (k)

D(k)

Figure 5.2: Trust model structure.

where µT is defined based on the causality relation between trust and performance as:

µT (k) = aT (k − 1) + bPR(k) + cPR(k − 1). (5.32)

The coefficients a, b and c are constants where a+ b+ c = 1 and are determined for each individual

in the training session.

Trust is a complex and multidimensional concept and incorporates different characterizations

such as beliefs, attitudes, intentions, or behaviors [46]. In human-robot cooperative manipulation,

the robot behavior can be perceived using the disagreement between the human and the robot. The

internal force does not contribute to object motion and its normalized magnitude with respect to

the total force magnitude can be used as a measure of disagreement. We denote D ∈ [0, 1] as the

disagreement. Low disagreements correspond, e.g. D ≈ 0, to high values of trust, e.g. T ≈ 1, and

vice versa. Moreover, increasing the disagreement yields to decline of trust, i.e. D ∝ (1 − T ). We

relate the observed disagreement and the trust value at time step k with a Gaussian distribution as:

p(D(k), T (k)) = p(D(k)|T (k)) = N (D(k); 1 − T (k), σD), (5.33)

where σD is a zero-mean random variable represents the disagreement uncertainty.

5.4.2.2 Trust Inference

The probabilistic belief of the human’s trust, T (k) ∈ [0, 1], at the time step k can be

estimated using the trust model. Both filtering and smoothing problems can be considered using
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the trust model. The filtered belief at the current time step k is defined as

belf (k) = p(T (k)|PR(1 : k), D(1 : k), T (0)). (5.34)

The smoothed belief at any time step k ∈ [0 : K] given the recorded model parameter values is

defined as

bels(k) = p(T (k)|PR(1 : K), D(1 : K), T (0)). (5.35)

Both of the filtered and smoothed believes can be calculated recursively as described in [125] by

bel(T (k), T (k − 1)) = p(T (k), D(k))

·p(T (k), T (k − 1), PR(k), PR(k − 1)) · belf(T (k − 1)) (5.36)

belf(T (k)) =

∫

bel(T (k), T (k − 1))dT (k − 1)
∫∫

bel(T (k), T (k − 1))dT (k − 1)dT (k)
(5.37)

bels(T (k − 1))

=

∫

bel(T (k), T (k − 1))
∫

bel(T (k), T (k − 1))dT (k − 1)
· bels(T (k))dT (k) (5.38)

The initial trust belief, T (0), is assumed to be uniform and maximum, i.e. p(T (0)) = 1. Given the

training data set, the optimized model parameters Θ∗ (e.g. a, b, c, σT , · · · ) for each individual can

be found using hard Expectation Maximization (EM) [125] as follows

Θ∗ = argmax
Θ

max
T (1:K)

p(T (1 : K), PR(1 : K), D(1 : K)|T (0)).

5.4.2.3 Robot Performance

We consider internal force, disagreement, accuaracy of the human motion estimation, and

human effort as metrics for the robot performance, PR. Robot performance is calculated in the

window of τ time steps as

PR(k) =
1

τ

τ−1
∑

i=0

pr(k − i), (5.39)

where robot instantaneous performance, pr(i) is calculated as

pr(k) =

4
∑

i=1

wifi(k) (5.40)
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and the weights are given as
∑4

i=1 wi = 1 and wi > 1. The description of each of the factors

contributing to robot performance are as follows:

1. Internal Force: Control design with the load sharing matrix A in Equation (5.6) results in

no counteracting generalized force in the object frame. The internal force would be zero in case of

multiple robots without a human-in-the-loop. However, in practice, inconsistency between the robot

and human yields internal forces. Given observed generalized forces of the arms, hS , the effective

and internal generalized forces are defined as:

hS = hS,eff + hS,int

s.t. WShS,eff = WShS = hd
e and hS,int = 0. (5.41)

The effective generalized forces only contribute in the motion of the object. From (5.6) they can be

written as [68]

hS,eff = Ahd
e . (5.42)

For a 2-agent system the effective generalized forces, hS,eff,i =







αf,i,f
d

αn,i,n
d






, can be calculated by

Equation (10.25) in [68]. Internal force is calculated as

hS,int = hS − hS,eff (5.43)

The internal force factor, f1, at time step k is calculated as

f1(k) =
||hS,eff (k)||

||hS,eff (k)||+ ||hS,int(k)||
. (5.44)

2. Agreement: The existence of internal generalized forces indicates that the generalized forces

of the agents, hS,i have different directions. This is considered as the disagreement between agents.

We define agreement between agents, f2, at time step k as

f2(k) =















hh(k)·hr(k)
||hh(k)||·||hr(k)|| if hh(k) · hr(k) > 0

0 Otherwise

. (5.45)
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The first case in (5.45) represents the angle between the forces. The value of f2 is one when the

human and robot apply force in the same direction and decreases as the difference between the

direction of the forces of the agents increases. Here we assume if the angle between the forces is

greater than the right angle the agents completely disagree with each other and hence f2 = 0. The

disagreement (defined in Section 5.4.2.1), is calculate as D = 1− f2.

3. Estimation Accuracy: The normalized value of the difference between the estimated ob-

ject motion trajectory with the actual object motion trajectory with respect to three fold of the

standard deviation, i.e.

σλ(k) =













V ar(λ1(ξ(k)))

...

V ar(λq(ξ(k)))













, (5.46)

represents the accuracy of the estimation as

f3(k) =















1− ||x̂(k)−x(k)||
3σλ

if ||x̂(k)− x(k)|| < 3σλ(k)

0 Otherwise

. (5.47)

4. Robot Effort: The normalized robot generalized force acting at the tip of virtual stick, hS,r

with respect to the total force presents the robot effort with respect to the effort required for moving

the object and is calculated by

f4(k) =
||hS,r(k)||

||he(k)||
. (5.48)

5.4.2.4 Switched-Control Strategy

In the trust-based switched control strategy, the desired behavior of the system is given by

Mvẍ(t) +Dvẋ(t) = hσ(t), (5.49)

hσ(t) =











hh(t) σ(t) = 0

hh(t) + hv(t) σ(t) = 1
, (5.50)
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where σ(t) represents the reactive or proactive behavior of the robot. The switching strategy of

these two modes different and is determined as follows:

σ(t) =



































1 E(belf ) > T and σ(t− dt) = 1

0 E(belf ) < T and σ(t− dt) = 1

1 E(belf ) > T and σ(t− dt) = 0

0 E(belf ) < T and σ(t− dt) = 0

, (5.51)

and T and T are threshold values of trust of human in robot in the proactive and reactive modes,

respectively. Initially robot starts at the proactive mode, i.e. σ(0) = 1. In this mode, if the human

trust’s belief decreases to lower than T , then the robot switches to the reactive mode. In the reactive

mode, the robot behaves complaint to the human and there is no disagreement and thus the human

trust in robot increases fast. If the trust is high enough, i.e. greater than T , the robot is switches

back to the proactive mode.

5.4.2.5 Dynamic Role Allocation Control Strategy

In the trust-based dynamic role allocation control strategy, the desired behavior of the

system is given by

Mvẍ(t) +Dvẋ(t) = hh(t) + αhv(t), (5.52)

where α is the role allocation parameter and α ∈ [0, 1]. We chose α to be a function of trust belief

as

α = E(belf ). (5.53)

This allocation policy ensures that the proactive behavior of the robot matches the human’s expec-

tation by adjusting the role of the robot in accordance to human’s trust to the robot.

5.5 Simulation Study

A team of a human and a robot moves an object from the start to the goal position. We

consider a scenario where the robot incorrectly assumes that there is an obstacle between the start

and goal positions due to some perception faults and behaves accordingly. The human is not aware
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start goalobstacle

xr

xh

Figure 5.3: Simulation Scenario

of the misperception of the robot and his/her desired action is a to reach to the goal position via

a direct trajectory from the start to the goal position. Fig. 5.3 shows the task scenario where

Xh and xr show the initial desired trajectory of the human and robot, respectively. The robot

starts the collaboration in the proactive mode described in Section 5.4.1. The human trust in

robot is estimated based on the DBN model for human-to-robot trust specified in Section 5.4.2.2.

Considering the belief of the human’s trust, belf , the robot uses the trust-based switching control

strategy defined in Section 5.4.2.4 to switch between the reactive and proactive modes. Moreover,

it uses the dynamic role allocation strategy defined in 5.4.2.5 for the same task. The goal of the

simulation study is to evaluate the effectiveness of the proposed trust-based switching and dynamic

role allocation control strategies in terms of disagreement between the human and the robot and

human-to-robot trust’s belief during interaction.

The robot controller implements the GP method described in Section 5.4.1 to predict the

human desired trajectory in the proactive mode. We run human-human cooperative manipulation

experiments to record the training data needed for constructing the GP models. We use PhaseSpace

tracking system to track the position and orientation of the manipulated object. Here, we only

consider the planar motion of the object in the x− y plane with the translational components x and

x

y

-1
-1

0

0

1

1 2 3 4 5

Figure 5.4: Motion trajectories from human-human cooperative manipulation
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y and the rotation as θ, i.e.

x =













x

y

θ













and q = 3. (5.54)
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(a) Motion and force trajectories. The horizontal axes represent the time (seconds)
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(b) Planar motion trajectory

Figure 5.5: Simulation of the applied force to the object. The dash-dotted red lines are the reference
trajectories from the tracking system.

Figure 5.4 shows the motion trajectories used as the training data. The arrows depict the

orientation of the object at some sample points on each trajectory and the table represents the
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(b) Planar motion trajectoris for the object, x, and desired trajectories for the human, xh, and the
robot (in the proactive mode), xr .

Figure 5.6: Simulation results for the switching scenario. The solid red, dotted blue, and dashed
magenta lines represent the object, human desired, and robot (desired) trajectories, respectively.

obstacle between the start and the goal positions. In order to construct the input of the GP models,

ξ, we need to have both motion and force trajectories. For the sake of simplicity of the training

session, using the data from the motion trajectories, we simulate the forces applied to the object

rather than measure them. Using a PID controller, we fit forces applied to the object based on

motion data. The equation of motion of the object is considered as

Mo
¨̂x+Co

˙̂x = ĥe, (5.55)
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where x̂ is the simulated position and ĥe is the force applied to the object, respectively. The

controller is chosen as

ĥe = Kpe+Ki

t
∫

0

e(τ)dτ +Kdė, (5.56)

where e = x− x̂, and Kp, Ki, and Kd are the gains of the PID controller. x is the reference motion

of the object, i.e. the data from the tracking system. Fig.5.5 shows the results of force fitted based

on data for a sample human-human training trajectory.

(a) (b)

Figure 5.7: Evolution of robot performance PR, trust belief belf and disagreement D for (a)
switching-based and (b) dynamic role allocation scenarios.

The GP technique is also used for simulating the human desired motion and force during

cooperative manipulation. Based on the scenario, the human desires to follow a straight line towards

the goal. The results of the simulation study are presented in Fig. 5.6 and Fig. 5.7a for the switching

role allocation study and in Fig. 5.8 and Fig. 5.7b. In the switching role allocation, the evolution of

motion and force trajectories are plotted in Fig. 5.6. The human-robot team starts the cooperative

manipulation in proactive mode. As there is no obstacle between the start point and the goal point

in the task scenario, the desired motion predicted by the robot, xr, deviates from the human desired

trajectory xh and the actual motion of the object lies between these two trajectories. Therefore, the

human and the robot have a disagreement during the scenario, since xr and xh are leading towards

different directions.

For switching role allocation, the evolution of trust belief belf based on robot performance

PR and disagreement D, and control mode is plotted in Fig 5.7a. As we can see, there is a period

of disagreement during the first 2 second. The trust belief drops gradually. At time instant 2
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(b) Planar motion trajectoris for the object, x, and desired trajectories for the human, xh, and the
robot (in the proactive mode), xr .

Figure 5.8: Simulation results for the dynamic role allocation scenario. The solid red, dotted blue,
and dashed magenta lines represent the object, human desired, and robot (desired) trajectories,
respectively.

[s], the human-robot team switches to reactive mode, whereat the human takes the lead and the

robot follows him/her. In this mode, the robot is completely compliant to the human and does

not predict any desired trajectory. Since the robot follows the human’s lead completely, there is no

disagreement in this mode. The trust belief is increasing as a result and reaches close to 1 around

the time instant 4 [s], where the team switches back to the proactive mode. The robot performance

is high enough during the rest of the interaction and the robot stays in the proactive mode until the
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goal is reached. The results indicate that the switching policy in case of faulty detection of human

intent or environment, it is able to prevent further disagreements between the robot and human by

being compliant to the human. Moreover, it switches back to the proactive mode once the human’s

trust belief is high.

For dynamic role allocation, the evolution of trust belief belf based on robot performance

PR and disagreement D is plotted in Fig 5.7b. As we can see, Since there is a mismatch between

the feedforward prediction of and actual human desired motion there is an ongoing disagreement in

the entire interaction. The trust belief drops gradually but recovers as the disagreement decreases.

5.6 Conclusion

In this chapter, a trust-based role allocation strategy for proactive behavior of the robot

in human-robot collaborative manipulation was proposed. The human trust in robot was modeled

using a BDN network. The human trust belief depends on previous trust, current and previous robot

performance, and measured disagreement between the human and robot. The robot performance

was defined based on relative internal force, disagreement, accuracy of the predicted human desired

motion trajectory and robot effort. The dynamic and switching role allocation for the robot behavior

was studied. In proactive role allocation, the robot adjusts its behavior from a complete reactive

and follower robot to a proactive robot based on the expected value of human trust belief in robot.

In switching role allocation, the robot switches between the proactive and reactive modes following

the estimation of human trust in robot. A demonstration of the proposed control strategies were

presented via a simulation study. Future work includes more comprehensive simulation scenarios

and experimental studies.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

The main contributions of this dissertation are divided in modeling human trust in robot and

controlling the robot to maintain the trust and overall performance in human-robot collaboration

tasks. For such tasks, human trust in robot was modeled both in deterministic and probabilistic

manner. Trust-based frameworks for a team of a human and a robot performing manipulation,

handover, and cooperative manipulation tasks were presented. Both performance metrics and in-

teraction criteria were considered in the design on trust-based controllers. The results of subjective

questionnaires including trust, usability, and NASA TLX (for workload) showed that integration

of the interaction of the robot improves the human’s overall experience. Moreover, it was shown

that the performance of the trust-based controllers did not change significantly compared to the

performance-based controllers. The detailed contributions of each chapter are as follows.

In Chapter 2, a time-series model for human trust in robot for HRI in performing manipu-

lation and assembly tasks was proposed. This model was evaluated and verified through human-in-

the-loop experiments for manual, autonomous, and collaborative speed control of the robot.

In Chapter 3, a trust-based framework for human-robot collaborative assembly tasks was

presented. Both physical and social interaction considered in the robot controller. The framework

was evaluated by conducting a set of human-in-the-loop robotic experiments.

In Chapter 4, a trust-based framework for human-robot handover tasks was proposed. A

robot-to-human trust model was proposed to evaluate the performance of the human. A trust-based

108



handover strategy that balances safety and performance was presented for handover tasks. The

framework was evaluated by conducting a set of human-in-the-loop robotic experiments.

In Chapter 5, a trust-based framework for human-cooperative manipulation tasks was pro-

posed. Trust of human in robot was modeled using a probabilistic approach. A trust-based role

allocation for the proactive behavior of the robot was proposed.

6.2 Future Work

In this dissertation we implemented the concept of trust in human-robot interaction. For

modeling human trust in robot we mostly relied on motion and force comparisons for human and

robot performance criteria. As a future work vision-based fault detection can be added to the trust

model. Moreover, a similar probabilistic trust model described in Chapter 5, can be deployed for

the manipulation framework described in Chapter 3.

As another future work, a human-in-the-loop robotic study on human-robot cooperative

manipulation can be conducted to experimentally study the role allocation scheme proposed in

Chapter 5. Fig. 6.1 shows a schematic of the manipulation object with design of versatile grippers

with force sensors for the human and robotic arms.

robot side

human side

Figure 6.1: Versatile gripper for force measurement
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Appendix A Subjective Questionnaires

A.1 Demographic Questionnaire

Participant’s Section: Please answer the following 5 questions

1. Are you a male or female?

© Male

© Female

© Decline to answer

2. What year were you born?

3. What is the highest level of school you have completed or the highest degree you have received?

© Less than a high school degree

© High school degree or equivalent (e.g., GED)

© Some college but no degree

© Associate’s degree

© Bachelor’s degree

© Graduate degree

4. Are you White, Black or African-American, American Indian or Alaskan Native, Asian, Native

Hawaiian or other Pacific islander, or some other race?

© White

© Black or African-American

© American Indian or Alaskan Native

© Asian

© Native Hawaiian or other Pacific Islander

© Form multiple races

© Some other race
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5. Do you have experience working with a robot?

© Yes

© No

6. 6) Occupation?

A.2 System Usability Questionnaire

Participant’s Section: Please answer the following 10 questions

Note: The interface includes those items that you use to interact with the system.

1. Overall, I am satisfied with how easy it is to collaborate with this robot.

1 2 3 4 5 6 7

Strongly Disagree © © © © © © © Strongly Agree

2. It is simple to collaborate with this robot.

1 2 3 4 5 6 7

Strongly Disagree © © © © © © © Strongly Agree

3. I can effectively complete my work collaborating with this robot.

1 2 3 4 5 6 7

Strongly Disagree © © © © © © © Strongly Agree

4. I am able to complete my work quickly collaborating with this robot.

1 2 3 4 5 6 7

Strongly Disagree © © © © © © © Strongly Agree

5. I am able to efficiently complete my work collaborating with this robot.

1 2 3 4 5 6 7

Strongly Disagree © © © © © © © Strongly Agree
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6. I feel comfortable collaborating with this robot.

1 2 3 4 5 6 7

Strongly Disagree © © © © © © © Strongly Agree

7. It was easy to learn to collaborate with this robot.

1 2 3 4 5 6 7

Strongly Disagree © © © © © © © Strongly Agree

8. I believe I became productive quickly collaborating with this robot.

1 2 3 4 5 6 7

Strongly Disagree © © © © © © © Strongly Agree

9. The control interface (arm and screen) of this robot is pleasant.

1 2 3 4 5 6 7

Strongly Disagree © © © © © © © Strongly Agree

10. Overall, I am satisfied with this robot.

1 2 3 4 5 6 7

Strongly Disagree © © © © © © © Strongly Agree

A.3 Subjective Trust Questionnaire

Participant’s Section: Please answer the following 12 questions

1. The robot’ motion is deceptive

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

2. The robot moves in an underhanded manner

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

3. I am suspicious of the robot’s intent, action, or outputs

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely
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4. I am wary of the robot’ motion

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

5. The robot’s actions will have a harmful or injurious outcome

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

6. I am confident in the robot

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

7. The robot provides security

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

8. The robot’ motion has integrity

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

9. The robot’ motion is dependable

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

10. The robot’ motion is reliable

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

11. I can trust the robot

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

12. I am familiar with the robot

1 2 3 4 5 6 7

Not at all © © © © © © © Extremely

114



Bibliography

[1] ABB. ABB introduces YuMi, world’s first truly collaborative dual-arm robot, 2015.

[2] Ronald Craig Arkin, Patrick Ulam, and Alan R Wagner. Moral decision making in autonomous
systems: Enforcement, moral emotions, dignity, trust, and deception. Proceedings of the IEEE,
100(3):571–589, 2012.

[3] Patrizia Basili, Markus Huber, Thomas Brandt, Sandra Hirche, and Stefan Glasauer. In-
vestigating human-human approach and hand-over. In Human centered robot systems, pages
151–160. Springer, 2009.

[4] Adi Ben-Israel and Thomas NE Greville. Generalized inverses: theory and applications, vol-
ume 15. Springer Science & Business Media, 2003.

[5] Rainer Bischoff, Johannes Kurth, Günter Schreiber, Ralf Koeppe, Alin Albu-Schäffer, Alexan-
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[24] Lars Grüne and Jürgen Pannek. Nonlinear model predictive control. Springer, 2011.

[25] E Guizzo. Sawyer: Rethink robotics unveils new robot. Spectrum, IEEE, 2015.

[26] Erico Guizzo and Evan Ackerman. How rethink robotics built its new baxter robot worker.
IEEE Spectrum, 2012.

[27] Erico Guizzo and Evan Ackerman. How rethink robotics built its new baxter robot worker.
IEEE Spectrum, http://spectrum. ieee. org/robotics/industrial-robots/rethink-robotics-baxter-
robot-factory-worker (retrieved January 21, 2014), 2012.

[28] PJ Hacksel and SE Salcudean. Estimation of environment forces and rigid-body velocities
using observers. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International
Conference on, pages 931–936. IEEE, 1994.

116



[29] M.T. Hagan and H.B. Demuth. Neural networks for control. In American Control Conference,
1999. Proceedings of the 1999, volume 3, pages 1642–1656 vol.3, 1999.

[30] Peter A Hancock, Deborah R Billings, Kristin E Schaefer, Jessie YC Chen, Ewart J De Visser,
and Raja Parasuraman. A meta-analysis of factors affecting trust in human-robot interaction.
Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(5):517–527,
2011.

[31] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load index): Results
of empirical and theoretical research. Advances in psychology, 52:139–183, 1988.

[32] Yasuhisa Hirata, Youhei Kume, Zhi-Dong Wang, and Kazuhiro Kosuge. Decentralized control
of multiple mobile manipulators based on virtual 3-d caster motion for handling an object in
cooperation with a human. In IEEE International Conference on Robotics and Automation,
2003., volume 1, pages 938–943. IEEE, 2003.

[33] K. A. Hoff and M. Bashir. Trust in automation: Integrating empirical evidence on factors that
influence trust. Human Factors: The Journal of the Human Factors and Ergonomics Society,
2014.

[34] Guy Hoffman and Cynthia Breazeal. Cost-based anticipatory action selection for human–robot
fluency. IEEE transactions on robotics, 23(5):952–961, 2007.

[35] Yanjiang Huang, Yoon Seong Yong, Ryosuke Chiba, Tamio Arai, Tsuyoshi Ueyama, and Jun
Ota. Kinematic control with singularity avoidance for teaching-playback robot manipulator
system. IEEE Transactions on Automation Science and Engineering, 13(2):729–742, 2016.

[36] Hardianto Iridiastadi and Maury A Nussbaum. Muscle fatigue and endurance during repetitive
intermittent static efforts: development of prediction models. Ergonomics, 49(4):344–360,
2006.

[37] Makoto Itoh and Kenji Tanaka. Mathematical modeling of trust in automation: Trust, distrust,
and mistrust. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
volume 44, pages 9–12. SAGE Publications, 2000.

[38] Jiun-Yin Jian, Ann M Bisantz, and Colin G Drury. Foundations for an empirically determined
scale of trust in automated systems. International Journal of Cognitive Ergonomics, 4(1):53–
71, 2000.

[39] Lars Johannsmeier and Sami Haddadin. A hierarchical human-robot interaction-planning
framework for task allocation in collaborative industrial assembly processes. IEEE Robotics
and Automation Letters, 2(1):41–48, 2017.
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