14 research outputs found

    Path planning and collision avoidance for autonomous surface vehicles II: a comparative study of algorithms

    Get PDF
    Artificial intelligence is an enabling technology for autonomous surface vehicles, with methods such as evolutionary algorithms, artificial potential fields, fast marching methods, and many others becoming increasingly popular for solving problems such as path planning and collision avoidance. However, there currently is no unified way to evaluate the performance of different algorithms, for example with regard to safety or risk. This paper is a step in that direction and offers a comparative study of current state-of-the art path planning and collision avoidance algorithms for autonomous surface vehicles. Across 45 selected papers, we compare important performance properties of the proposed algorithms related to the vessel and the environment it is operating in. We also analyse how safety is incorporated, and what components constitute the objective function in these algorithms. Finally, we focus on comparing advantages and limitations of the 45 analysed papers. A key finding is the need for a unified platform for evaluating and comparing the performance of algorithms under a large set of possible real-world scenarios

    Implementasi Algoritma RVO sebagai Sistem Kendali Gerombolan NPC pada Permainan Action RPG

    Get PDF
    The development of the gaming industry has entered a new phase, the game that was previously used as a means of entertainment, is now widely used as a simulation of a condition in the industry and research. more natural. Especially for a crowd management, much modeling is needed so that the crowd agent can move flexibly without reducing the essence of the crowd's natural movement. In this case, the crowd management case will try to be solved using the RVO algorithm, which with the algorithm, the researcher wants to provide a group of NPCs that can move without crashing the object or other NPCs

    Study On Collision Avoidance Performance of a Ship in Waves

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์กฐ์„ ํ•ด์–‘๊ณตํ•™๊ณผ, 2022. 8. ๋‚จ๋ณด์šฐ.์ตœ๊ทผ ์ž์œจ ์‹œ์Šคํ…œ ๊ด€๋ จ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „ ๋ฐ ์„ผ์„œ ์ •ํ™•๋„ ํ–ฅ์ƒ์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ์ ์šฉ์„ฑ์ด ์ฆ๋Œ€๋˜์—ˆ๊ณ , ์ด์— ๋”ฐ๋ผ ์‹ ๋ขฐ์„ฑ ๋†’์€ ๋ฌด์ธํ™” ๊ธฐ์ˆ ๊ฐœ๋ฐœ์˜ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์กฐ์„ /ํ•ญํ•ด ๋ถ„์•ผ์—์„œ๋„ ์„ ๋ฐ•์˜ ์šดํ•ญ ๊ณผ์ •์—์„œ ์ธ์  ์š”์ธ์— ์˜ํ•œ ํ•ด์ƒ์‚ฌ๊ณ ์˜ ์ตœ ์†Œํ™”, ์žฅ๊ธฐ๊ฐ„ ํ•ด์ƒ ๋ฐ์ดํ„ฐ์˜ ์ˆ˜์ง‘, ํ•ด์ƒ ์šด์†ก์˜ ํšจ์œจ์„ฑ ์ฆ๋Œ€ ๋“ฑ์„ ๋ชฉ์ ์œผ๋กœ ์ž์œจ ์šดํ•ญ ์‹œ์Šคํ…œ์„ ๋„์ž…ํ•œ ์„ ๋ฐ•์˜ ๊ฐœ๋ฐœ ๋ฐ ์šด์šฉ ์„ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž์œจ์ ์ธ ์žฅ์• ๋ฌผ ์ถฉ๋ŒํšŒํ”ผ ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”์–ด์•ผ ํ•˜๋ฉฐ, ์ด์— ๋”ฐ๋ผ ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์‹œ์Šคํ…œ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋˜ํ•œ ์ค‘์•™ํ•ด์–‘์•ˆ์ „์‹ฌํŒ์› ์—์„œ ์ง‘๊ณ„ํ•œ ์ตœ๊ทผ 5๋…„๊ฐ„์˜ ์šดํ•ญ์‚ฌ๊ณ  ํ†ต๊ณ„๋Š” ์šดํ•ญ์ž์˜ ๊ณผ์‹ค์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ์„ ๋ฐ• ์‚ฌ๊ณ  ์ค‘ 66%๊ฐ€๋Ÿ‰์ด ์ถฉ๋Œ์‚ฌ๊ณ ๋กœ ์ด์–ด์ง„๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์–ด, ๋ฌด์ธ์„  ๊ฐœ๋ฐœ๋ฟ๋งŒ ์•„๋‹ˆ ๋ผ ์šดํ•ญ์ž์˜ ๊ณผ์‹ค์— ์˜ํ•œ ์ถฉ๋Œ์‚ฌ๊ณ  ์˜ˆ๋ฐฉ์„ ์œ„ํ•˜์—ฌ ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์‹œ์Šคํ…œ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์— ์ˆ˜ํ–‰๋˜์—ˆ๋˜ ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ์˜ ํ•œ ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๊ณ ์ž ๋‘ ๊ฐ€์ง€ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์„ค์ •ํ•˜์˜€๋‹ค. ์ฒซ์งธ, ์ •ํ™•ํ•œ ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ •๊ตํ•œ ์„ ๋ฐ• ์กฐ์ข… ๋™์—ญํ•™ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์กฐ์ข… ์‹œ๋ฎฌ๋ ˆ์ด ์…˜ ํ”„๋กœ๊ทธ๋žจ์„ ๊ตฌ์ถ•ํ•˜๊ณ  ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์„ ๋ฐ•์˜ ๋™์—ญํ•™์„ ์ •๊ตํ•˜๊ฒŒ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ตฌ์†๋ชจํ˜•์‹คํ—˜ ๋ฐ ์ž์œ ํ•ญ์ฃผ ์‹œํ—˜์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ฒ€์ฆ๋œ ๋™์—ญํ•™ ๋ชจ๋ธ์„ ์ด์šฉํ•˜ ๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•˜๋ฉฐ, ์œ ์ฒด๋ ฅ ๋ฏธ๊ณ„์ˆ˜ ๋ฐ ์ž์œ ํ•ญ์ฃผ ์‹œํ—˜ ๊ฒฐ๊ณผ๊ฐ€ ์ œ์‹œ๋˜์–ด์žˆ๋Š” ์„ ๋ฐ•์„ ์ด์šฉํ•˜์—ฌ ์ถฉ๋ŒํšŒํ”ผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋‘˜์งธ, ํŒŒ๋ž‘์— ์˜ํ•œ ์ถฉ๋ŒํšŒํ”ผ ์„ฑ๋Šฅ์˜ ๋ณ€ํ™” ํŠน์„ฑ์„ ๊ณ ์ฐฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์กฐ์ข… ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์— ํŒŒ๋ž‘ํ‘œ๋ฅ˜๋ ฅ์„ ํ™˜๊ฒฝ์™ธ๋ž€์œผ๋กœ ์ถ”๊ฐ€๋กœ ๊ณ ๋ คํ•˜์—ฌ ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์„ฑ๋Šฅ์„ ๋น„๊ต ๋ถ„์„ ํ•˜์˜€๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€๋ถ€ ๋ถ„ ํ™˜๊ฒฝ์™ธ๋ž€์„ ๊ณ ๋ คํ•˜์ง€ ์•Š์€ ์ฑ„๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘์‹ฌ์˜ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๊ฑฐ๋‚˜, ๋ฐ”๋žŒ ๋˜๋Š” ์กฐ๋ฅ˜๋งŒ์„ ๋ฐ˜์˜ํ•˜์—ฌ ์ถฉ๋ŒํšŒํ”ผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์˜ ์šดํ•ญ ์กฐ๊ฑด ์—์„œ ํŒŒ๋ž‘ ํ‘œ๋ฅ˜๋ ฅ์ด ์ง€๋ฐฐ์ ์ด๋ฉฐ, ์ด๋ฅผ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์„ ๋ฐ•์˜ ๋‚ดํ•ญ์„ฑ๋Šฅ ํ‰๊ฐ€๊ฐ€ ์„ ํ–‰๋˜์–ด์•ผ ํ•œ๋‹ค. ํŒŒ๋ž‘์˜ ํŒŒ๊ณ , ํŒŒ์žฅ, ๊ทธ๋ฆฌ๊ณ  ํŒŒํ–ฅ์— ๋”ฐ๋ฅธ ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์ˆ˜์น˜ ์‹œ ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ถฉ๋ŒํšŒํ”ผ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์„ ๋ฐ•์˜ ์ œ์–ด๊ธฐ ์„ฑ๋Šฅ์ด ์ œํ•œ๋œ ์ƒํ™ฉ์—์„œ์˜ ์ถฉ๋ŒํšŒํ”ผ ์„ฑ๋Šฅ์— ๊ด€ํ•ด ์‚ดํŽด๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ํŒŒ๋ž‘ ํ‘œ๋ฅ˜๋ ฅ์— ์˜ํ•ด ์„ ๋ฐ•์˜ ์ถ”์ง„๊ธฐ ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ์ผ์–ด๋‚  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ํ”„๋กœํŽ ๋Ÿฌ์˜ ํšŒ์ „์ˆ˜๋ฅผ ๋ณ€ํ™”์‹œ์ผœ๊ฐ€ ๋ฉฐ ์ถฉ๋Œ ํšŒํ”ผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์ตœ์†Œ์ถ”์ง„์ถœ๋ ฅ ์‚ฌ๋ก€ ์—ฐ๊ตฌ(case study)๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ตœ์†Œ์ถ”์ง„์ถœ๋ ฅ๋ณด๋‹ค ์ถ”๋ ฅ์ด ์ž‘์€ ๊ฒฝ์šฐ ์ถฉ๋ŒํšŒํ”ผ ์„ฑ๋Šฅ์— ๊ด€ํ•ด ์‚ดํŽด ๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ตœ๊ทผ์ ‘์  ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ถฉ๋ŒํšŒํ”ผ ์‹œ์ ์„ ๊ฒฐ์ •ํ•˜์˜€์œผ๋ฉฐ, ์†๋„ ์žฅ์• ๋ฌผ(Velocity obstacle, VO)์—์„œ ํ™•์žฅ๋œ ํ˜•ํƒœ์ธ WVO ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ถฉ๋ŒํšŒ ํ”ผ ๊ฒฝ๋กœ๊ณ„ํš์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ฒฝ๋กœ ์ถ”์ข… ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ๋Š” Line-of-Sight(LOS) guidance ๋ฅผ ์ด์šฉํ•˜์˜€์œผ๋ฉฐ, ํ”„๋กœํŽ ๋Ÿฌ ํšŒ์ „์ˆ˜์™€ ํƒ€๊ฐ์„ ์ด์šฉํ•˜์—ฌ ์„ ์†๊ณผ ์„ ์ˆ˜๊ฐ์„ ์ œ์–ดํ•˜์˜€ ๋‹ค. ๊ตญ์ œํ•ด์ƒ์ถฉ๋Œ์˜ˆ๋ฐฉ๊ทœ์น™(International Regulation for Preventing Collisions at Sea, COLREGs)์—์„œ ๊ถŒ๊ณ ํ•˜๋Š” ์กฐ์šฐ์ƒํ™ฉ ๋ณ„ ์š”๊ตฌ ์กฐ๊ฑด์„ ์ค€์ˆ˜ํ•˜๋„๋ก ์ถฉ๋ŒํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์„ฑ๋Šฅ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ง€ํ‘œ๋กœ ํšก๋ฐฉํ–ฅ ์ดํƒˆ ๊ฑฐ๋ฆฌ(Cross track error, XTE)์™€ ์žฅ์• ๋ฌผ๊ณผ์˜ ์ƒ๋Œ€ ๊ฑฐ๋ฆฌ(Relative distance)๋ฅผ ์ด ์šฉํ•˜์˜€๋‹ค. ๊ตฌ์„ฑ๋œ ์„ ๋ฐ•์˜ ์กฐ์ข… ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์ถฉ๋ŒํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์šฐ์„ , ์ •์ˆ˜ ์ค‘ ๋‹ค์–‘ํ•œ ์ถฉ๋ŒํšŒํ”ผ ์ƒํ™ฉ์„ ํ†ตํ•ด ์ถฉ ๋ŒํšŒํ”ผ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์˜ ์œ ํšจ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ดํ›„ ๋‹ค์–‘ํ•œ ํŒŒ๋ž‘ ์กฐ๊ฑด์—์„œ ์ถฉ๋ŒํšŒํ”ผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ํŒŒ๋ž‘์„ ๊ตฌ์„ฑํ•˜๋Š” ํŒŒ๊ณ , ํŒŒ์žฅ, ๊ทธ๋ฆฌ๊ณ  ํŒŒํ–ฅ์˜ ์˜ํ–ฅ์— ๋Œ€ํ•ด ํ‰ ๊ฐ€ํ•˜์˜€๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํŒŒ๋ž‘์˜ ์˜ํ–ฅ์— ๋”ฐ๋ฅธ ์ถฉ๋ŒํšŒํ”ผ ์„ฑ๋Šฅ ๋ณ€ํ™”๋ฅผ ์„ ๋ฐ•์˜ ๋™์—ญํ•™ ์ธก๋ฉด์—์„œ ๋ถ„์„ํ•˜์˜€๋‹ค.1 ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ์‚ฌ๋ก€ 2 1.2.1 ์„ ๋ฐ•์˜ ์กฐ์ข…์šด๋™๋ฐฉ์ •์‹ . 2 1.2.2 ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 4 1.3 ์—ฐ๊ตฌ ๋ชฉํ‘œ 7 2. ์„ ๋ฐ•์˜ ์กฐ์ข…์šด๋™ ์ˆ˜ํ•™ ๋ชจ๋ธ 9 2.1 MMG (Mathematical Modular Group) ๋ชจ๋ธ 11 2.1.1 ์„ ์ฒด์— ์˜ํ•œ ์œ ์ฒด๋™์—ญํ•™์  ํž˜ 11 2.1.2 ํ”„๋กœํŽ ๋Ÿฌ์— ์˜ํ•œ ์œ ์ฒด๋™์—ญํ•™์  ํž˜ 12 2.1.3 ํƒ€์— ์˜ํ•œ ์œ ์ฒด๋™์—ญํ•™์  ํž˜ 13 2.1.4 ํŒŒ๋ž‘ ํ‘œ๋ฅ˜๋ ฅ ๊ณ„์‚ฐ 14 3 ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 17 3.1 ์ถฉ๋Œ ํšŒํ”ผ ์‹œ์  ํŒ๋‹จ 18 3.1.1 ์ตœ๊ทผ์ ‘์  (Closest Point of Approach) 18 3.2 ๊ตญ์ œํ•ด์ƒ์ถฉ๋Œ์˜ˆ๋ฐฉ๊ทœ์น™ (COLREGs) ๋ฐ ์กฐ์šฐ์ƒํ™ฉ ๋ถ„๋ฅ˜ 19 3.2.1 ๊ตญ์ œํ•ด์ƒ์ถฉ๋Œ์˜ˆ๋ฐฉ๊ทœ์น™ 19 3.2.2 ์กฐ์šฐ์ƒํ™ฉ ๋ถ„๋ฅ˜ 21 3.3 ์ถฉ๋ŒํšŒํ”ผ ๊ฒฝ๋กœ๊ณ„ํš ์•Œ๊ณ ๋ฆฌ์ฆ˜ 24 3.3.1 ์†๋„ ์žฅ์• ๋ฌผ (Velocity obstacle, VO) 24 3.3.2 COLREGs๋ฅผ ๊ณ ๋ คํ•œ VO 26 3.3.3 Worst-case velocity obstacle (WVO) 27 3.4 ๊ฐ€์šฉ ์†๋„ ๋ฐ ํšŒํ”ผ ์†๋„ ๊ฒฐ์ • 29 3.4.1 ๊ฐ€์šฉ ์†๋„ 29 3.4.2 ํšŒํ”ผ ์†๋„ ๊ฒฐ์ • 31 3.5 ๊ฒฝ๋กœ ์ถ”์ข… ์•Œ๊ณ ๋ฆฌ์ฆ˜ 31 3.5.1 Line-of-Sight guidance (LOS guidance) 31 3.5.2 PD ์ œ์–ด๊ธฐ 32 4 ํŒŒ๋ž‘ ์ค‘ ์กฐ์ข… ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 35 4.1 ์ •์ˆ˜ ์ค‘ ์„ ๋ฐ•์˜ ์กฐ์ข… ์‹œํ—˜ 35 4.1.1 ์„ ํšŒ ์‹œํ—˜ 36 4.1.2 ์ง€๊ทธ์žฌ๊ทธ ์‹œํ—˜ 39 4.2 ํŒŒ๋ž‘ ์ค‘ ์„ ๋ฐ•์˜ ์กฐ์ข… ์‹œํ—˜ 43 4.2.1 ํŒŒ๋ž‘ ํ‘œ๋ฅ˜๋ ฅ ๊ฒ€์ฆ 43 4.2.2 ํŒŒ๋ž‘ ์ค‘ ์„ ํšŒ ์‹œํ—˜ 50 5 ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 55 5.1 ์ •์ˆ˜ ์ค‘ ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ 55 5.1.1 ๋‹จ์ผ ์žฅ์• ๋ฌผ ํšŒํ”ผ 56 5.1.2 ๋‹ค์ค‘ ์žฅ์• ๋ฌผ ํšŒํ”ผ 68 5.2 ํŒŒ๋ž‘ ์ค‘ ์„ ๋ฐ•์˜ ์ถฉ๋ŒํšŒํ”ผ 70 5.2.1 ํŒŒ๊ณ ์˜ ์˜ํ–ฅ 70 5.2.2 ํŒŒ์žฅ์˜ ์˜ํ–ฅ 73 5.2.3 ํŒŒํ–ฅ์˜ ์˜ํ–ฅ 81 5.2.4 ์ถ”์ง„๊ธฐ ์„ฑ๋Šฅ์— ๋Œ€ํ•œ ์ถฉ๋ŒํšŒํ”ผ 82 6 ๊ฒฐ๋ก  89์„

    Collision Avoidance for Autonomous Surface Vessels using Novel Artificial Potential Fields

    Full text link
    As the demand for transportation through waterways continues to rise, the number of vessels plying the waters has correspondingly increased. This has resulted in a greater number of accidents and collisions between ships, some of which lead to significant loss of life and financial losses. Research has shown that human error is a major factor responsible for such incidents. The maritime industry is constantly exploring newer approaches to autonomy to mitigate this issue. This study presents the use of novel Artificial Potential Fields (APFs) to perform obstacle and collision avoidance in marine environments. This study highlights the advantage of harmonic functions over traditional functions in modeling potential fields. With a modification, the method is extended to effectively avoid dynamic obstacles while adhering to COLREGs. Improved performance is observed as compared to the traditional potential fields and also against the popular velocity obstacle approach. A comprehensive statistical analysis is also performed through Monte Carlo simulations in different congested environments that emulate real traffic conditions to demonstrate robustness of the approach.Comment: 28 pages, 30 figure

    Path Planning and Real-Time Collision Avoidance Based on the Essential Visibility Graph

    Get PDF
    This paper deals with a novel procedure to generate optimum flight paths for multiple unmanned aircraft in the presence of obstacles and/or no-fly zones. A real-time collision avoidance algorithm solving the optimization problem as a minimum cost piecewise linear path search within the so-called Essential Visibility Graph (EVG) is first developed. Then, a re-planning procedure updating the EVG over a selected prediction time interval is proposed, accounting for the presence of multiple flying vehicles or movable obstacles. The use of Dubins curves allows obtaining smooth paths, compliant with flight mechanics constraints. In view of possible future applications in hybrid scenarios where both manned and unmanned aircraft share the airspace, visual flight rules compliant with International Civil Aviation Organization (ICAO) Annex II Right of Way were implemented. An extensive campaign of numerical simulations was carried out to test the effectiveness of the proposed technique by setting different operational scenarios of increasing complexity. Results show that the algorithm is always able to identify trajectories compliant with ICAO rules for avoiding collisions and assuring a minimum safety distance as well. Furthermore, the low computational burden suggests that the proposed procedure can be considered a promising approach for real-time applications

    Planeamento Global de Trajetรณrias com Desvio de Obstรกculos Hรญbrido para Embarcaรงรตes Autรณnomas

    Get PDF
    De modo a tornar o mรฉtodo de transporte marรญtimo mais eficiente, rentรกvel e seguro foi desenvolvido e implementado um algoritmo de planeamento de trajetรณrias com desvio de obstรกculos em tempo real para ser futuramente utilizado pelas embarcaรงรตes.Com mรบltiplos pontos de destino definidos, este algoritmo permite em primeiro lugar o planeamento completo da missรฃo tendo em consideraรงรฃo todos os obstรกculos estรกticos conhecidos no momento e de seguida a execuรงรฃo desta, atuando de forma reativa na ocorrรชncia de obstรกculos dinรขmicos.Considerando a informaรงรฃo obtida por um sistema de perceรงรฃo, principalmente composto por LIDAR, GPS e uma cรขmera estereoscรณpica, este mรฉtodo permite a estimaรงรฃo de uma velocidade livre de colisรฃo ao ser atuada no ASV

    A Self-Guided Docking Architecture for Autonomous Surface Vehicles

    Get PDF
    Autonomous Surface Vehicles (ASVs) provide the ideal platform to further explore the many opportunities in the cargo shipping industry, by making it more profitable and safer. Information retrieved from a 3D LIDAR, IMU, GPS, and Camera is combined to extract the geometric features of the floating platform and to estimate the relative position and orientation of the moor to the ASV. Then, a trajectory is planned to a specific target position, guaranteeing that the ASV will not collide with the mooring facility. To ensure that the sensors are within range of operation, a module has been developed to generate a trajectory that will deliver the ASV to a catch zone where it is able to function properly.A High-Level controler is also implemented, resorting to an heuristic to evaluate if the ASV is within this operating range and also its current orientation relative to the docking platform

    COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle using Deep Reinforcement Learning

    Full text link
    Path Following and Collision Avoidance, be it for unmanned surface vessels or other autonomous vehicles, are two fundamental guidance problems in robotics. For many decades, they have been subject to academic study, leading to a vast number of proposed approaches. However, they have mostly been treated as separate problems, and have typically relied on non-linear first-principles models with parameters that can only be determined experimentally. The rise of Deep Reinforcement Learning (DRL) in recent years suggests an alternative approach: end-to-end learning of the optimal guidance policy from scratch by means of a trial-and-error based approach. In this article, we explore the potential of Proximal Policy Optimization (PPO), a DRL algorithm with demonstrated state-of-the-art performance on Continuous Control tasks, when applied to the dual-objective problem of controlling an underactuated Autonomous Surface Vehicle in a COLREGs compliant manner such that it follows an a priori known desired path while avoiding collisions with other vessels along the way. Based on high-fidelity elevation and AIS tracking data from the Trondheim Fjord, an inlet of the Norwegian sea, we evaluate the trained agent's performance in challenging, dynamic real-world scenarios where the ultimate success of the agent rests upon its ability to navigate non-uniform marine terrain while handling challenging, but realistic vessel encounters
    corecore