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Resumo

Os Veículos Autónomos de Superfície (ASVs) providenciam a plataforma ideal para explorar
ainda mais a fundo as muitas oportunidades provenientes da indústria marítima. Estas embar-
cações podem ser utilizadas para realizar tarefas que hoje em dia se apresentam como monótonas
ou até mesmo perigosas para o ser humano. Contudo, uma vez que a maioria do comércio mundial
utiliza o ambiente marítimo como meio de transporte de carga, esta mostra-se como a maior opor-
tunidade para a aplicação destes navios autónomos.

Atualmente, uma das operações com a maior quantidade de riscos associados é a de atracagem,
uma falha neste processo pode, não só, levar a grandes perdas monetárias, mas também a catástro-
fes ambientais e até mesmo casualidades entre membros da tripulação. Considerando que atual-
mente a maioria dos acidentes marítimos são causados por erro humano, a inclusão de navios
capazes de conduzir esta operação autonomamente permitirá minimizar a probabilidade de ocor-
rência deste tipo de erros, reduzir os custos desnecessários com tripulação excessiva e ainda, au-
mentar a eficiência dos espaços de carga, tornando assim a indústria mais segura, fiável e rentável.

Com este propósito em mente, esta dissertação propõe uma arquitetura auto-guiada para a
atracagem de ASVs, composta por três módulos distintos, capaz de conduzir em segurança esta
operação em múltiplos cenários e condições marítimas. Como parte desta arquitetura, é imple-
mentado um sistema de controlo e supervisão capaz de dirigir a operação, escolhendo qual mó-
dulo deverá operar a cada instante. A aproximação à doca deverá apenas ter início quando todas
as condições que garantem uma navegação segura são atingidas. Para tal, dois dos módulos fun-
cionam como suporte, o primeiro encarregue de conduzir o ASV para uma área predefinida onde
a embarcação pode usar os sensores que tem disponíveis a bordo para identificar e reconhecer a
doca, por sua vez, o segundo módulo é responsável por garantir que o ASV está orientado com
a plataforma, assegurando que informação fiável sobre a mesma possa ser recolhida. O módulo
central desta arquitetura é então composto por um sistema de perceção que visa o reconhecimento
da plataforma, combinando informação proveniente de múltiplos sensores, e por um módulo de
manobra que assegura uma navegação segura para o local de atracagem através de uma heurística
de verificação de viabilidade.

Um cenário simulado de teste que permite ao utilizador configurar parâmetros ambientais,
como vento e ondas, foi utilizado para validar a arquitetura proposta em situações distintas e avaliar
o seu comportamento e desempenho. Os resultados experimentais demonstram a capacidade desta
arquitetura detetar a doca com bons valores de fiabilidade, provando a eficácia da abordagem
tomada para o sistema de perceção. O módulo de manobra demonstra-se funcional, conduzindo
a operação de atracagem de forma segura, atingindo erros de posição e orientação até 0.107 m e
0.007 rad, respetivamente.
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Abstract

Autonomous Surface Vehicles (ASVs) provide the ideal platform to further explore the many
opportunities in the maritime industry. These vessels can be utilized to perform tasks that are cur-
rently monotonous, or even dangerous to human beings. However, as the majority of world’s trade
uses the maritime environment as a means of cargo transport, this proves the biggest opportunity
of application for ASVs.

Nowadays, one of the operations that has the most associated risks is the docking one, a failure
in this process can lead not only to great monetary losses but also, to drastic environmental pollu-
tion and even harm to crew members and alike. Taking into consideration that most of the shipping
insurance losses are caused by human error, the inclusion of ships that are able to autonomously
perform this operation will minimize the likelihood of such errors, reduce unnecessary costs with
excessive crew and, increase the efficiency of cargo spaces, leading to a safer and more reliable
industry.

With this purpose in mind, this dissertation proposes a self-guided architecture for docking
ASVs, composed by three distinct modules, that is capable of safely conducting this operation
in multiple scenarios and maritime conditions. As part of this architecture, a supervisory control
system oversees the operation, choosing which module should operate at each moment in time.
The approach towards the dock should only begin when all the conditions that ensure a safe nav-
igation are met. Two supportive modules were then implemented, the first tasked with navigating
the ASV to a predefined area where it can make use of its suite of on-board sensors to identify the
dock and, the second, responsible for guaranteeing that the vessel is oriented with the platform so
that reliable data can be retrieved from it. The central module of the architecture is then composed
by a Situational Awareness system that aims to identify and recognize the platform by combin-
ing information from multiple sensors, and by a Maneuver module that ensures a safe navigation
towards the dock through a viability check heuristic.

A simulated scenario that allows for user configuration of multiple environmental parameters,
such as waves and wind, was used to validate the proposed architecture in distinct scenarios and
evaluate its behaviour. The experimental results demonstrate the architecture’s ability for detecting
the docking platform with good fidelity values, proving the effectiveness of the taken approach for
the Situational Awareness System. The Maneuver module also proves reliable, conducting a safe
operation towards berth, achieving errors up to 0.107 m in position and 0.007 rad in orientation.
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Chapter 1

Introduction

1.1 Context and Motivation

An ASV – Autonomous Surface Vehicle can be defined as a vehicle capable of moving and orient-

ing itself in multiple environments, relying on sensors to gain understanding of its spatial aware-

ness, as well as using control algorithms that make all the maneuver operations autonomous,

ranging from obstacle avoidance to the docking sequence.

A natural step in the maritime industry would be to adopt the utilization of ASVs since these

provide the ideal platform to substitute human labor in tasks and services with potential associated

danger, such as war mine clearance, environmental monitoring in case of a disaster and off-shore

platform maintenance, dull tasks like coastal patrol and reconnaissance or even in scientific re-

search purposes [1]. In spite of these applications, the most valuable opportunity is the maritime

cargo shipping, according to the International Maritime Organization1 (IMO) around 90% of the

world’s trade is carried by the sea, in a process that is by far the most cost-effective when com-

pared to road transport, yet it still shows an immense room for improvement and optimization via

the use of autonomous ships.

Operation costs relative to the shipping industry differ from ship to ship, depending on var-

ious factors, among them company policies or the ship’s type and age. In a statistical analysis

conducted by Fraunhofer’s Center for Maritime Logistics and Services [2], an average for ships’

operating costs was obtained by taking a large number of panamax bulk carriers as a reference for

structuring these costs.

Table 1.1: Operating Costs of the reference vessel [2].

Cost Type Includes Average Cost per year Share of Operating Costs

Crew Costs Wages, Travel, Provisions, etc. 833.149 e 45%
Stores & Consumables General Stores (e.g. deck, cabin, engine) and lubricants 254.793 e 14%
Maintenance & Repair Routine basic work on-board & more complex work during port calls 236.279 e 13%
Insurance Hull & Machinery, Protection & Idemnity 275.953 e 15%
General Costs Expenses associated with administration &amp; management 237.161 e 13%
Periodic Maintenance Dry dockings 370.288 e -

1https://business.un.org/en/entities/13
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2 Introduction

Taking a closer look at table 1.1, the larger share of the costs related to the operation of a

cargo ship is associated to the crew, accounting to 45% of the costs. Once eliminated the ne-

cessity of human labor aboard the ship, the design of the vessel can be completely revamped to

improve its efficiency and aerodynamics. Systems and compartments once needed to make the

ship livable would become irrelevant and could be completely removed making space for more

cargo aboard the ship, increasing each trip’s efficiency and reducing all monetary costs related to

the crew (833.149 e/year), life supporting systems such as medical and safety equipment (59.000

e/year), representing up to around 900.000 e/year in savings [2], these operating costs portray

20% of the total cost structure, as seen in figure 1.1. The introduction of autonomous shipping

will not only directly impact the operation’s cost structure, but the immense stream of accessible

data will revolutionize the industry, allowing companies to manage their fleet by looking at data

from individual ships as “. . . they will be able to identify the best combination of route, cargo,

maintenance schedule . . . getting the maximum value from a set of very expensive assets” [3].

Figure 1.1: EPV (Expected Present Value) of costs over lifetime for reference bulk carrier [2].

Another key issue to be mitigated is the amount of accidents in the shipping industry, accord-

ing to Allianz Global Corporate & Specialty [4], about 75% to 96% of all accidents related to

the maritime shipping industry could be attributed to human error. The use of a completely au-

tonomous boat would directly impact these numbers, greatly decreasing errors (not eradicating

these, since the monitoring of the ship is still man made therefore being subjected to value judg-

ments and potential errors) would consequently cut liability costs, losses of cargo and the implied

pollution.

One of the biggest challenges faced by Autonomous Shipping is the lack of legislation, these

vessels can’t sail in international waters since the IMO enforces the COLREG (International Reg-

ulations for Preventing Collisions at Sea) [5], which is directed at regular ships. Once proven the

viability and safety of the autonomous ships, the adaptation of these regulations would be rather

straight forward since most of them are applicable to ASVs nonetheless, however, clarification

would be needed for rules that directly imply the existence of a crew aboard the vessel [6]. The

liability insurance related to potential accidents is also a major concern, this topic is still being

vividly discussed within this industry. Subjects linked to AI (Artificial Intelligence) decision mak-

ing in case of a potential crash and who is responsible for these decisions, either the ship’s owner

himself, the control room operator or even the system provider, are still up for debate. The fact
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that no crew is needed aboard the ship also raises some questions as this matter brings some po-

tential risks for the vessel in case of an accident or hardware failure at sea, a particular example

would be a fire aboard the ship that could become catastrophic to the vessel’s structure. Preventive

measures to avoid and mitigate the odds and impact of such specific accidents should be taken,

arising new design and system requirements. In a highly connected Era, the reliability of the com-

munication link to shore is mandatory for autonomous ships.” Such communication will need to

be bidirectional, accurate, scalable and supported by multiple systems creating redundancy and

minimizing risks”[3]. Matters like cybersecurity are also extremely important, if hacked the ship

can be re-routed causing immense losses, such regulatory concerns are expressed in detail by the

Danish Maritime Authority [7].

Ports and harbours are usually located in close proximity to urban centers, posing a very

important factor for a country’s economy. This fact makes accidents related to said facilities

even more alarming as these tend to be associated with water pollution and soil contamination.

According to a historical analysis [8], 56.5% of the accidents in seaports are related to transport

operations (entering or leaving the port). From these, 43.6% are caused by an impact or collision

between ships, or between a ship and the physical infrastructure. The latter, corresponds to 45% of

the impact accidents, making the docking operation one of the most dangerous ones. For ASVs to

secure the aforementioned regulatory approval, these need to be at least as safe as current vessels,

the inclusion of ships that are able to autonomously perform this operation will minimize the

likelihood of such errors, reduce unnecessary costs with excessive crew, and increase the efficiency

of cargo spaces, leading to a safer and more reliable industry.

1.2 Objectives

The main objective of the present dissertation is to study and propose a new architecture for scene

understanding, composed by complementary perception techniques that combine multiple sensors

to detect a structure that can be used as a mooring facility (whose model is previously known),

as well as, to calculate the relative pose of the ASV to a specific target point within the docking

platform, with high levels of fidelity. Therefore the objectives of this work include:

• Propose an architecture capable of docking the ASV in multiple scenarios and diverse sea-

state conditions. This architecture is composed by three operation modes, namely the Catch-

Zone Approach, the Reorientation module and the Docking Approach;

• Supervise and ensure the safe navigation of the ASV towards the berth through a viability

check heuristic, by evaluating the estimated target’s associated confidence value and check-

ing the surrounding scene representation for possible collisions;

• Combine information from distinct sensors such as LIDAR, Camera, GPS and IMU, in a

complementary and reliable manner that enforces the capability of an ASV to understand

the surrounding environment;
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• Study the impact of the environment (weather conditions, tidal waves, wind) on the archi-

tecture’s performance.

1.3 Structure

Besides the introductory section (chapter 1), the present document contains a chapter dedicated

to the state of the art (chapter 2), which is divided is three main sections. The first, section 2.1,

offers some context about the autonomous shipping industry, section 2.2 presents a rough com-

parison between several sensors used in maritime applications and how the information gathered

by them can be fused to make the ASV aware of its surroundings and section 2.3 documents sev-

eral planning algorithms used in related applications. To provide some closure to the State of

the Art chapter, section 2.4 provides a critical analysis upon the conducted research and its main

withheld thoughts. Chapter 3 describes the proposed architecture, detailing each operating mode.

The results obtained from validating said architecture are presented and discussed in chapter 4.

Finally chapter 5 offers a brief overview over the developed work and how it fulfills the proposed

objectives. Future work is also elaborated upon in this chapter.

1.4 Scientific Contributions

This work originated two articles that were presented at the IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC) 2019:

• Pedro Leite, Renato Silva, Aníbal Matos and Andry Pinto, "An Hierarchical Architecture for

Docking Autonomous Surface Vehicles", IEEE International Conference on Autonomous

Robot Systems and Competitions, 2019 [9].

• Renato Silva, Pedro Leite, Daniel Campos and Andry Pinto, "Hybrid Approach to Estimate a

Collision-Free Velocity for Autonomous Surface Vehicles", IEEE International Conference

on Autonomous Robot Systems and Competitions, 2019 [10].



Chapter 2

State of the Art

2.1 Contextualization

There are currently no fully-scaled autonomous ships travelling the sea, most ASVs are either

proofs of concept or rather small and used for very specific tasks such as the ones stated in Chapter

1, however the "... scope of newly designed autonomous vessels is shifting from small ASVs for

scientific researches to bigger cargo crafts..." [11]. Some of these large scale cargo ships have their

first missions planned for 2020, such as Yara Birkeland from Kongsberg, which will be expanded

upon on this chapter alongside other relevant initiatives. Thematics like the changes needed in

the infrastructures of ports and harbours will also be discussed in chapter 2, ranging from the

construction of control centers to the integration of newly developed technologies that help and

simplify the mooring operation, many are the changes that ports should attend to. The creation

of test areas exclusive for ASVs is also another topic of discussion for this chapter, as these offer

a valuable opportunity for real and thorough testing. Finally, some of the future projects that

involve ASVs are presented in sub-section 2.1.4, giving emphasis to the fact that this is very much

a growing industry, with projects all over the world with the most varied applications.

The input from sensors is heavily relied upon to provide information that allows the robot to

recognize the docking platform. During section 2.2 of the present chapter, a comparison between

the sensors used in maritime environments is provided, as well as multiple approaches on how the

information these gather is combined to make the vessel aware of its surroundings. The comple-

mentary part of the perception system is the maneuvering towards the dock itself, hence section

2.3 presents the conducted research on planning algorithms and how these would fare during a

docking operation.

2.1.1 Current Initiatives for Autonomous Vessels

MARINERTM

Maritime Robotics has developed an Unmanned Surface Vehicle (USV) named the MARINER,

this vehicle is currently being used for applications connected to the military as well as within

geophysical exploration and environmental monitoring. It is a great USV for data acquisition and

5
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patrols in a 24/7 time basis as the vessel has proven to be quite stable, able to transport payloads

up to 1 m3 and has long-range capabilities, making it nearly maintenance free.Along with the

vessel, Maritime Robotics also offers a monitoring system for the remote operator of the Mariner

featuring information about the navigation, engine and electronics status and the ability to inspect

the surroundings of the ship via EO (Electro-Optical) and IR (Infra-Red) cameras.

Volvo Penta’s Self Docking Yatch
This Volvo Penta prototype has its focus on making the docking process as autonomous as

possible, however it requires human supervision and action. The developed system undertakes

three main phases to its process, in a preliminary stage the system identifies the dock and signals

the captain that it is ready to perform the operation. Once the human command has been given, the

boat uses GPS signals to move into a “docking ready position”, the final stage must be initiated via

the ship’s captain as the system uses the GPS and on-board sensors as well as sensors placed on

the dock to berth the boat safely. Although it relies on human interaction, this docking technology

is considered a pioneer on the matter, stating that its sensors and on-board computers can react to

hostile sea conditions like wind and tides in a matter of milliseconds.

Rolls-Royce
One of the cornerstones of the industry and major player on the Advanced Autonomous Wa-

terborne Applications Initiative (AAWA) is Rolls-Royce. The AAWA’s project brings together

companies from a diverse area of operation such as satellite communications, automation and

control, ship design and even partnering up with universities, the latter tasked with research about

technology, legal and business aspects. According to the AAWA, the technology necessary to

build an autonomous ship does exist, it is just a matter of finding the “. . . optimum way to com-

bine them reliably and cost effectively”[3]. Their vision for a future time-line is presented in figure

2.1, in early development the ship will rely on a reduced crew and will only operate certain func-

tions, shifting focus to a fully autonomous vessel as the technology evolves and gets fault proofed,

aiming at sometime in the next decade for a finished product.

Figure 2.1: Rolls-Royce’s remote and autonomous operations time-line1.

1https://www.rolls-royce.com/products-and-services/marine/ship-intelligence
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Yara Birkeland
Yara provides the perfect example of how this technology will be implemented in the near

future. As a leading force in the fertilizer market, Yara pretends to transport their goods utilizing

the first ever fully electric autonomous ship, with zero emissions. The vessel, named YARA Birke-

land, will utilize Kongsberg’s integrated control and monitoring systems featuring an automatic

mooring system that requires no special preparations on the port’s physical infrastructure to to en-

able an autonomous docking operation which makes use of the on-board proximity sensors (radar,

camera, etc) and communication systems such as the Maritime Broadband Radio (MRB) and the

Global Positioning System (GPS) to gain perception of the docking platform and to guarantee

a smooth maneuver. Operations will begin as a manned vessel around 2018, moving to remote

operation in 2019 within a fixed route between the Brevik, Herøya and Larvik ports alongside

the Norwegian coast, as shown in figure 2.2. Finally, in 2020, the vessel is expected to perform

fully autonomous operations [12]. Shore control centers will be responsible for the handling of all

aspects of operations, such as monitoring, decision support and surveillance. An interface towards

Yara’s logistical operation will also be implemented at the Herøya’s center.

Figure 2.2: Yara Birkeland’s defined route2.

Folgefonn
A fully autonomous operation of a full-sized vessel such as the ferry Folgefonn has been con-

ducted by Wärtsilä on one of Norway’s maritime routes. Human intervention was only needed

to define the destination of said route and once given the order, the ferry autonomously left the

harbor, sailed towards the next port, maneuvered through the harbor and docked alongside the ter-

minal. The navigation throughout the route was controlled via the use of multiple way points, and

Wärtsilä’s Dynamic Positioning system is used to assess and supervise the vessel’s velocity and

position within the predefined trajectory, using the Global Navigation Satellite System (GNSS) as

its primary sensory tool. Its auto-docking prototype system has also been successfully tested both

2https://www.kongsberg.com/maritime/solutions/ship-types/autonomous-ships/
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on a simulated platform and on a real harbour, to assure that this maneuver is conducted as safely

and as efficiently as possible the system is provided with all the necessary inputs such as wind and

wave conditions, the vessel’s size and weight and finally its current orientation. Folgefonn is also

capable of operating fully electric as it is equipped with and hybrid powering system that resorts

to Wärtsilä’s own technology for wireless inductive charging of the batteries.

2.1.2 Port Side Infrastructure

While the maritime industry waits further development of these autonomous ships, ports around

the world are starting to become more intelligent, focusing on operational efficiency, interaction

between stakeholders and even environmental concerns. A prime example of this, is the Port of

Rotterdam as it started developing a centralized dashboard application to compile real-time infor-

mation about water, weather conditions and communication data. This data is used to determine

optimal times for ships to dock, load and unload, reducing wait times and upping the profitability.

Still on the subject of obtaining information about the port’s operation, the Port of Valencia in-

stalled a network of sensors on its cranes and carrier vehicles, collecting useful data about power

consumption that can be used to compute better ways to schedule them, reducing idle times.

With these new autonomous ships, ports and harbours will need to adapt their physical and

digital infrastructures so that ASVs can safely conduct all the necessary operations. As the port

environment grows more complex, considerations for safe and successful autonomous operations

start to arise, SmartPort, a venture between the Port of Rotterdam Authority and several knowledge

institutes is one of the main forces in fomenting scientific research on this area, also providing

financial help for these studies. Some of the key aspects for smart and autonomous shipping

operations inside a port include a shore control center for monitoring and navigation control of

the ASVs, a well defined role for the port authorities (would these be responsible for all the port

operation or just provide the resources) and finally the need for investment in infrastructure [13].

Physical Infrastructure

A vital aspect to consider is the need to adapt the port’s physical infrastructures to ensure the

safe mooring and unmooring of autonomous ships. This operation can often be rather dangerous,

possibly causing harm to the vessel, port infrastructure and even the mooring crew, a great in-

novative technology to solve these problems is automated berthing, allowing the ships’ mooring

without the use of ropes, it consists in attaching vacuum pads to the vessel which pull it closer to

its berth [14]. Currently on the market, there are two main companies providing these solutions,

being Cavotec and Trelleborg. The first product, from Cavotec, MoorMaster aims to optimize the

interface between the vessel and the control unit on shore, allowing ports to economize in infras-

tructure costs. The company states3 that berthing can be completed in 30 seconds, and that any

ship can be berthed, even the ships larger that the berth itself. This system also offers real-time

3http://www.cavotec.com/en/your-applications/ports-maritime/automated-mooring
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monitoring of the process. The latter solution, AutoMoor from Trelleborg, makes use of vacuum-

based technology to secure the vessel at berth, being suitable for a wide range of environmental

conditions. Operation can be supervised by using SmartPort technology to monitor the process.

As a rather new technology there are associated risks. These systems require a constant source of

power available at shore, even if operation is secured by a UPS (Uninterruptible Power Supply),

there is no back-up plan that accommodates a supply failure. Another pertinent concern is the

fact that vessels will most likely not have a smooth surface to attach to, fruit of wear and tear or

corrosion, creating quite a challenge for a "... safe and continuous vacuum connection" [14].

A final aspect that ports need to take into consideration, is that future ships aim to be fully

electric (e.g. Yara Birkeland, section 2.1.1), therefore, ports must be prepared to handle these

ASVs. Cargotec also offers a solution, the Automatic Plug-in System (APS), that helps charging

the ship at the port, "... it can be done without any human intervention with a few added advantages

namely, short charging time, minimal infrastructure cost and minimal maintenance costs" [15].

Digital Infrastructure
As stated before, a shore control center is a must at port side, as it would "... ensure com-

plete monitoring of the vessels, including, efficient path-planning operations to achieve maximum

efficiency" [15]. When it comes to the digital infrastructure, ports will need to improve their

communications systems to provide better connectivity between the ASV and the onshore control

center [16], to achieve this, the Inmarsat technology is taken as the best bet [15], as it provides

a global coverage in satellite communications and has a long history of maritime applications.

Some other relevant maritime communication systems have been developed at INESC TEC, the

BLUECOM+ solution, for instance, "... enables cost-effective broadband Internet access at re-

mote ocean areas using standard wireless access technologies..." [17]. In 2018, André Coelho et.

al [18] experimented on multiple Wi-Fi bands for communications between a base station placed

on shore and an USV, evaluating the influence of factors such as distance and orientation on the

Wi-Fi’s quality link. From this work’s experimentation, 5 GHz bands prove more suitable than the

2.4 Ghz for shore-to-USV Wi-Fi communications [18].

2.1.3 Test Areas

Autonomous vessels are rapidly growing and aim to take maritime operations by storm in the

near future. For this to happen, exhaustive testing in real sea conditions is critical to ensure the

functionality and durability of systems and technology. With this purpose in mind, two large

testing sites are currently under construction.

One of them has started construction in 2018, in the South China Sea coast of Guangdon, it

extends over roughly 772 km2 and it is the first in Asia. This large area will allow the testing of

navigation and colision avoidance technologies [19]. The other test area is located in the coastal

area of Finland and it is hosted by DIMECC (Digital, Internet, Materials & Engineering Co-

Creation) as part of the ONE-SEA collaboration project, that will be expanded upon in section

2.1.4. The Jaakonmeri Test Area, as it is named, is open to all companies or research institutes
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that wish to test their technologies in this open water area. It is to be noted that ice conditions may

also be tested during the winter, making this quite a valuable perk for this testing area.

2.1.4 Industry’s Next Steps

Until the end of the decade autonomous boats will be travelling the coasts in small fixed routes,

with a smaller crew 4. As the technology is fault proofed these routes can become bigger and

more autonomy can be given to the vessel until a fully autonomous ship can be achieved. The long

term implications imposed by the lower cost of cargo transportation would affect a large array

of industries, creating new opportunities for businesses that once were not viable, such as some

food types, clothing and other lower value items that were not worth shipping to certain locations,

could become profitable [12]. As stated above, some fully scaled cargo ships are planned to set

sail in the near future, being perfected and fully autonomous during the next decade like the ones

discussed in section 2.1.1, however as discussion on this matter progresses, new projects arise and

join the race to rule the sea. In the beginning of 2017, Japan’s Minister of Land, Infrastructure,

Transportation and Tourism unveiled a joint project between some of the biggest ship building

companies in Japan like MOL (Mitsui O.S.K. Lines), Mitsui Engineering and Shipbuilding and

many others. The project aims for the year 2025 and is set to “. . . develop the technological

concept for autonomous vessels, drawing upon the strengths of each participating company and

organization, setting a course toward development of the technology needed to realize autonomous

vessels that can provide reliable, safe, and efficient ocean transport” [20].

China is ranked as the top three largest marine shipping countries, having the chance to be

the most dominant by 2030 [19]. This may be supported by the fact that the country is currently

developing a fleet of autonomous ships and a testing area (section 2.1.3). Once proven ready to

operate autonomously, these ships will not only be used in the shipping industry, cementing even

more China’s position as a big player, but also in maritime patrolling tasks.

Another big force behind the growth in the autonomous shipping area is the ONE-SEA5

Finnish collaboration, joining the efforts from maritime related technology suppliers, shipyards

and ship owners as well as research organizations. It aims to introduce a new industrial standard

for maritime traffic autonomous ships by 2025, as well as lead the way to the commercial viability

of these ships. Some other smaller scale projects are also in motion, e.g. in Amsterdam researchers

from the AMS Institute (Amsterdam’s Advanced Metropolitan Solutions Institute) and the MIT

(Massachusetts Institute of Technology) have joined forces in the Roboat Project that aims to re-

duce the traffic in the streets by utilizing the city’s canals and populating them with autonomous

vessels for transportation, food delivering and even garbage collection.

4https://www.ship-technology.com/projects/yara-birkeland-autonomous-container-vessel/
5https://www.oneseaecosystem.net/
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2.2 Situational Awareness

The autonomous docking process can be divided in two distinct stages: Perception and Maneuver.

The first stage ensures that the ship is aware of its surroundings, highlighting possible hazards for

the vessel and recognizing the harbor or possible docking location, the latter stage of the operation

is tasked with guaranteeing that the vessel follows the correct trajectory from its current position

into the goal location, the previously identified dock.

During the current section some of the most relevant technologies used for Situational Aware-

ness (SA) will be presented and briefly compared, as sensor fusion is the key aspect of the this

stage of operation to provide real-time perception of the vessel’s surroundings, some approaches

used to process the information retrieved by the sensors will also be discussed.

2.2.1 Sensor Technology

Studies conducted for the autonomous driving sector combine information from multiple sensors,

such cameras, LIDARs (Light Detection And Ranging) and radars [21, 22]. Accurate measure-

ments of ranges and velocities can be obtained from a LIDAR, on the other hand cameras provide

a cheap and easy way to capture visual information that allows for object classification. However,

night time and weather conditions such as rain and fog do pose a harsh challenge. Different types

of cameras can be used to mitigate these conditions and, combining their information with radar

based sensors allows for the system to keep operating in most of these conditions. Such can be

extrapolated to the maritime sector whose environment can be considered even more challenging

for the SA technology, due to the constant bobbing of the ASV caused by the waves that leads to

more unstable and unreliable sensor information.

An obvious choice to provide input about the ship’s surroundings would be a camera. A nor-

mal visual spectrum HD (High Definition) camera is small, durable, relatively cheap and able to

provide a very high spatial resolution that allows for object recognition and segmentation. How-

ever, these have some limitations when it comes to bad weather conditions, such as fog and heavy

rain. Night time also presents a challenge being that its seeing distance, obviously, drops very

quickly. This is the reason why these cameras are seen as an important asset to be fused with other

sensor’s data because by themselves they show far too many limitations [3]. Considering these

conditions, better performances can be achieved using IR cameras. Long-Wave IR (LWIR) cam-

eras can be used for situational awareness in total darkness, these are sensitive to an IR wavelength

of 8-14 µm, being that thermal IR radiation is passively emitted by every object at a wavelength

of around 10 µm, LWIR sensors are suitable independently of light conditions. Another option is

a Short-Wave IR (SWIR) camera, its sensors operate in the 1-3 µm spectrum, forming images that

are easy to interpret by using the light reflected by the objects. As stated by J. Wallace in [23],

LWIR reconnaissance has some drawbacks, one being that reflecting objects are not easily recog-

nized and depicted, complicating the interpretation of the produced images. Another drawback is

the substantial attenuation in hot weather and high humidity, in these conditions SWIR provides
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the better performance, however, it can be advantageous to fuse the information from both sensors

in order to operate in both wavelength ranges.

Further comparison can be made between the presented technologies by looking at N. Pin-

chon’s et al. [24] project AWARE (All Weather All Roads Enhanced vision), whose aim is to

enable vision in all poor visibility conditions such as night, fog, rain and snow. As most of these

conditions are very relevant to the ship’s SA, the presented inferences are rather interesting. The

conducted experiments, presented in figure 2.3, show that LWIR cameras have a better capability

to see through fog than the SWIR ones and, as stated before, the normal visual spectrum camera

has the lowest fog piercing capability. The presented NIR (Near-IR) camera requires an active il-

lumination font in order to be effective, this wouldn’t be practical for an autonomous ship, for this

very reason it was discarded as a relevant technology. When it comes to strong glares the LWIR

camera provided the better output image, however for detecting these the SWIR camera shows the

better solution as it is very sensitive to the glare in foggy conditions.

Figure 2.3: Project AWARE’s conducted experiments for different cameras, in foggy conditions
[24].

To improve a system’s reliability and accuracy, it is necessary to add some redundancy and

complementary characteristics, radars are the perfect complement to cameras, as they are more

robust to weather effects and provide the depth analysis required to extract a 3D map of the visual

scene. A combination of two monocular cameras can be used to implement stereo imaging to

generate a 3D map, however it requires extensive processing performance and high-bandwidth

transmission in order to solve the matching algorithm. A much better performance can be obtained

by using radars or LIDARs. Radar technology has been used in maritime operations for a long

time, typically using S- or X- bands, which are proven to be more robust in different weather

conditions by S. Heuel (2013) [25]. However, its operating frequency resolution may not be

good enough when it comes to reactive collision avoidance [3], take for instance an approach to

the docking platform, the radar resolution must be accurate in short range. Bands developed for
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automotive applications like Ka and W- could be very useful as they offer a much better angular

and distance resolution, at cost of reduced range.

A LIDAR is a sensing device that measures distances between itself and its targets by the

means of a laser. By analyzing the reflected light, sampling the returning signal and measuring

its travel time it generates a point cloud that can be utilized for mapping and localization. One

of its advantages is being independent from ambient light, however as it typically relies on a IR

laser beam, it is affected by adverse weather conditions. LIDARs have proven themselves worth

it in multiple areas of application, obviously in autonomous vehicles for obstacle detection and

safe navigation, prime examples of these are the the Waymo (formerly knows as Google Self-

Driving Car Project) and the Singapore MIT Alliance (SMART) as the latter actively developing

technologies for autonomous LIDAR vehicles. As these sensors are normaly used for 3D Laser

Scanning, applications in areas such as geography, geology and forestry are very common [26, 27].

As previously stated, the usage of 3D LIDARs for high-resolution mapping is rather common,

therefore this sensor is quite the perfect fit to detect the geometric features of the dock and generate

a 3D point cloud, take this cloud as a matrix with three dimensions X, Y and Z. Figure 2.4 presents

an example of a point cloud returned by the LIDAR sensor, taken from the simulation used for this

project. The dock geometry is quite recognizable for the human eye, however there is a lot of noise

involved in a maritime scenery, such as waves and weather conditions, which makes processing

more difficult. For this very reason it is recommended to process the point cloud by means of

filtering the unintended data [28].

Figure 2.4: Example of a point cloud generated by the 3D LIDAR in a simulation environment.

Once established a solid input point cloud, one of the possible approaches is to project this 3D

information into a plane, this information can then be processed as an image with computer vision

algorithms, such as Harris Corner Detection [29], this method would allow for a clear identification

of the dock’s geometry and by computing the distance between corners, obtain a good target point

for the final berth location. One other possible method is to use Hough’s Transform to reconstruct

the 2D shape of the dock [30], identify it’s vertices and finally generate a target point. These 2D

based algorithms are quite more efficient than processing a 3D point cloud, presenting itself as

a great solution if the available technology has low processing power, however, completely rely

on the sensors’ resolution, and as seen before during the current section, LIDARs and other laser
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based technologies suffer from weather conditions such as fog, and also the limited range affects

the quality of the generated data. Figure 2.5 is representative of a projection of the data into a 2D

plane, both scenarios are given context with figure 2.6 a) and 2.6 c). The data collected within

range of the docking platform with minimal waves and perfect weather conditions is depicted in

figure 2.6 b), while 2.6 d) represents the constraints but with a variation on the distance from the

dock. The quality of the data is affected in quite a degree, making the recognition process rather

more complicated. We can then conclude that this method is capable of producing good results in

close range applications, having the upside of needing a low end processing system.

Figure 2.5: Comparison between two frames taken at different distances, obtained from a 2D per-
ception algorithm. a), c) Context of the presented example for both close and further distance. b),
d) Frames generated from the presented method, for close range and further distance, respectively.

A solution to bypass these resolution problems is the method proposed in 2014 by Joel M. Es-

posito et al. [28] that uses as input the 3D point cloud returned by the LIDAR sensor and a target

cloud generated a priori. This target, is representative of a known dock model created from a 3D

modeling software, or obtained via the LIDAR itself, under perfect conditions preferably, from

a real environment. If the latter option is used, the density of the cloud might not be sufficient,

leading to the need to concatenate multiple clouds generated in identical conditions [28]. The next

step is to use the Iterative Closest Point (ICP) algorithm, it aims to determine correspondent pairs

between the input cloud and the target one and estimate a transformation that aligns the corre-

spondences, returning a homogeneous matrix that represents the rotation and translation between

clouds that can later be used to estimate an optimal target point for the docking maneuver. The

ICP has several criteria to terminate its iteration and return a final solution, these can be adjusted

by the user to obtain a better and more faithful transformation. These criteria are the maximum

number of iterations run by the ICP, a given convergence target (sum of the differences between

the current and the last transformation) and finally a given fitness score (sum of the squared errors

is smaller than a threshold) 6. Figure 2.6, presents an example of the result from applying the

presented method within the studied scenario. Represented in black is the target cloud, generated

from a 3D model, the green color represents the input cloud, as we can see it is not aligned at all

6http://www.pointclouds.org/assets/icra2013/registration.pdf
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with the target. On the right, presented in red is the output cloud from the ICP, already perfectly

aligned with the target.

Figure 2.6: Example of the computed result from the ICP algorithm. On the left, the loaded
template (black) and the input point cloud (green); On the right, the cloud is aligned with the
target (red), after the ICP iteration.

The repeating geometry of the docks may lead to false correspondences from the ICP algo-

rithm, for this reason Esposito et. al [28] propose using the Sample Consensus Initial Alignment

(SAC-IA) method in order to "... compute a rough estimate of the spatial transformation between

the datasets" [28], and feeding this result to the ICP algorithm. This method of processing the 3D

LIDAR data is clearly more processing power demanding, however its results are quite impressive

as it provides an easy way to calculate an optimal target point for the docking, combining this

method with a camera in order to mitigate the laser’s weaknesses would be a great solution for the

current problematic.

2.2.2 Sensor Fusion

As stated before, the key to achieve an optimal perception of the robot’s surroundings is sensor

data fusion, each sensor has its flaws and weaker points. By adding sensory redundancy individual

errors and weaknesses can be averaged out and better overall performance can be achieved, false

positives and negatives can also be prevented this way. This section will present a rough com-

parison between multiple sensors that are used commonly in maritime applications and expose

some of the approaches and algorithms that aim to recognize the docking platform and extract its

important features by fusing information from some of the discussed sensors.

Table 2.1 presents a rough comparison between the technologies discussed in section 2.2.1,

“. . . based on the review of existing solutions reported in various fields of autonomy and the

testing of sensor technologies already done in AAWA”[3]. It is important to note the uncertainty of

some of the presented parameters, mostly when the marine robustness is referred, as some of these

technologies are still rather new and untested in maritime applications. A complete and reliable

Situational Awareness system can be built around the data gathered from multiple sensors, radars

are tolerant to harsh weather conditions and can easily provide tracking of a target’s distance and its

short-range version can be trusted for object detection in short ranges. The detected object data can
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be augmented by the visual HD cameras, these can provide detailed information and help identify

the object through image processing such as segmentation and separation from the background.

As discussed before, IR cameras are very useful in total darkness and foggy conditions providing

valuable data, furthermore the fusion of all the camera and radar data in bound to increase detection

robustness.

Table 2.1: Comparison of the presented SA sensors [3].

HD camera IR camera Radar Short-Range Radar LIDAR

Spatial Accuracy ++ + – - ++
Field of View + - ++ - +
Distance of Measurement - - ++ ++ ++
Object Identification ++ + – – +
All Weather Operation – + ++ ++ +?
Computational Load – - ++ ++ –
Marine Robustness ++ ++ ++ +? ?

Situational Awareness systems usually fuse information from multiple on-board sensors such

as cameras and LIDARs, assuring the needed redundancy in data that makes a perception system

robust and reliable. Diverse configurations have been experimented on, using multiple cameras

and even more than one LIDAR to guarantee that the gathered data is dense enough. However,

some approaches rely only on LIDARs to obtain real-time information about the surroundings,

matching it with templates built based on known information about the platform’s geometry such

as the ones presented in section 2.2.1. A completely different approach to detect the platform is

based on off-board sensors, such as Synthetic-Aperture Radar (SAR) images obtained via satellite

which are then compared with knowledge based models of the dock/harbor.

One of the more common approaches when it comes to the design of ASVs’ perception sys-

tems is the fusion of information from cameras and LIDAR sensors, this aims to negate some of

the weaker points of each sensor by adding redundancy. The work developed by J. Lee et al. [31]

in 2017, utilizes a 2D LIDAR in order to locate the dock, and the camera to locate its features,

in his work the considered dock for testing is that of the RobotX Challenge, therefore it consists

of a combination of three docking bays with colored symbols associated with them. After the

initial approach to the dock, when it is close enough to carry out image processing, the algorithm

starts by identifying the correct target dock, a color thresholding method is used and the image

is then down-sampled by using LIDAR-camera calibration data, this is done to improve the per-

formance of the image processing and mitigate noises caused by glare and other environmental

disturbances [31]. A region of interest (ROI) for the symbol is then calculated using this same

data, once processed, shape identification is achieved by template matching and the color is clas-

sified by comparing the Euclidean distance between hue and saturation values of the ROI with

those of the thresholds for the predefined colors. Once the correct docking platform is identified

the ASV performs another scan of the area, calculating its desired position and carrying out the

needed lateral position alignment.
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Andrew Webb et al. [32] in 2016, utilizes a 3D LIDAR and five different cameras to identify

the docking platform. The perception system presented by Webb runs two different nodes, one

responsible for mapping and segmenting objects of interest from the point cloud, and other for

shape and color classification. Given an input point cloud, the unwanted data is removed, for this

a polygon is defined around the working area of the ASV and then a point-in-polygon algorithm

is run, discarding any points that fall outside [33]. The remaining points are then filtered out

based on a minimum intensity threshold in order to remove the water surface. Once filtered, the

point cloud is separated in clusters based on distance thresholding, then a bounding box is defined

around each cluster and used to update the current map. The ICP algorithm presented before is

then iterated for each cluster looking for the best fit for the templates previously defined. After the

object identification, the bounding box defined by the first node is transformed into the camera’s

frame, using this data to define a region of interest. From this region, the blob area, enclosing

circle area and convex hull area are deduced, the relationship between these three attributes is then

used to identify its shape. Segmentation of the image in the Hue Saturation and Variance (HSV)

color space is then applied leading to a final shape and color.

A different approach for the same problematic was also presented in 2016, by Christopher M.

Ash et al. [34], using four LIDARs and two wide-angled cameras equipped with IR and polarized

filters, this configuration provides the sense of depth since they are angled differently from each

other. The first step taken by Christopher and his team is to filter the data from the LIDAR that

corresponds to the water surface, this is done by using an intensity threshold "... as water is an IR

black body absorbing most of the laser light" [34]. All the data is then converted into a fixed frame,

fused together and then used to fill a occupancy grid, this grid is then flattened into a 2D plane

and used as a binary image from which contours can be extracted, resulting in a list of polygons

from which multiple features can be computed (such as length, width, perimeter, etc...). Once the

object has been detected and identified, its information is passed to the cameras for identification

of visual properties such as color, the LIDAR information is transformed into the camera’s frame

and a ROI is defined, afterwards a color threshold is applied resulting in a binary image which is

then compared with a shape classifier to generate a score for that color and shape combination.

A slightly different method is proposed by Joohyun Woo et al. in [35], as his work utilizes

learning based recognition algorithms. The ASV used for testing is equipped with a single 2D

LIDAR and a camera, the data provided by the LIDAR is saved into a grid map, representing

the detected objects. To extract the dominant features of each shape, Woo utilizes Hu invariant

moment for interpretation of the image’s properties and the Principal Component Analysis (PCA)

in order to convert this set of observations of possibly correlated variables into a smaller set that

still contains most of the information in the larger one [36]. For shape classification, a Support

Vector Machine (VSM) classifier was used, generating a hyper-plane used for classification of each

shape. Once the shape is computed, the ASV must estimate the location of the dock. The data

from both the camera and the LIDAR are used for this purpose, knowing the X, Y and Z position

of each pixel of the designated shape and by using the lateral distance between the ASV and the

dock, the bearing angle can be estimated, once determined, the corresponding distance to the dock
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can be measured by the LIDAR and a target point can be easily calculated. The fusion of these two

sensors shows great results in all the presented approaches, even if most of these algorithms have

only been tested for makeshift versions of the RobotX Challenge docks, the application in real life

docking bays is only a step away with only minor adjustments needing to be made. The detection

phase of the algorithms could be applied right away, although the templates for comparison would

need to be reworked, using a method like the one discussed before (generating a target point cloud

a priori with the LIDAR, in perfect weather conditions) proposed by [28]. The utilization of the

cameras would have to be adjusted, since the features it would have to recognize wouldn’t be as

linear and straight forward, however the logic behind the system could still be utilized in a real

environment.

An alternative approach for the problematic is the one present by Qi Chen et al. [37] in

2010, this work is based on detailed research about the harbor as an object to establish a harbor

model and a general knowledge basis used for the detection algorithm. As harbors vary in shapes,

numbers and types of docking platforms, establishing a uniform model would be a key point [37].

It is common knowledge that a harbor must be located in a coastline and, to protect it from the

impact of the waves, a breakwater is normally constructed in front of the docking platforms. Qi

Chen formulated the model presented in figure 2.7 as groundwork for analysis, with it a knowledge

basis that serves an input for harbor detection algorithm was established.

Figure 2.7: Formulated harbor model [37].

This algorithm is suitable for an ASV that has access to SAR images, or similar, as it needs an

image of the sort as input along side the knowledge basis previously defined. Firstly the image is

segmented, removing both the land and sea based on the knowledge that a "... gray value of water

is often lower and has better uniformity, while gray value of land is higher relatively and has worse

uniformity"[37], the result of an outline extraction of this newly segmented image is taken as the

coastline. Next, candidates for the breakwater and dock regions are extracted based on the idea

that these structures would have water on both sides, these are then discriminated recurring to the

object features previously defined (length-width-ratio, for the matter). Afterwards, the structures

that belong to the same harbor are merged together and enlarged and discriminated. An approach

based on the same principle was presented by Zhu Bing et al. [38] in 2005, a knowledge basis is
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also established by studying the harbor’s physical features and its common geographic placement.

The proposed algorithm takes into consideration the possible difference in sizes between harbors,

for that matter, two methods for extracting a candidate region from the input images are utilized.

For a big harbor, it is assumed that the whole input image can be a candidate region, to make

the recognition process less demanding, down-sampling is applied to the high-resolution image,

the result is then segmented for land and sea removal based on thresholding. The resulting image

is then used for identification of the harbor, the knowledge basis previously compiled is now

used for feature detection on the semi-closed region. On the other hand, the image resulting

from the big harbor segmentation serves as input for the medium and small harbor detection,

as it is taken as a rough segmentation for later use. The method used for medium and small

harbor detection, segmentation is achieved by using a block based approach, the input image is

down-sampled and partitioned into blocks, from these, only the ones that represent the coastline

are kept while the rest are filtered out. A candidate region is then defined by clustering these

blocks using the nearest neighbor clustering algorithm, at the same time using the information

provided by the image resulting from the big harbor segmentation to combine the segmentation

results and filter out scattered clusters. In 2011, a slightly different algorithm is proposed by Y.

Sui et al. in [39], Sui proposes a template-based detection method for harbors. This algorithm

makes use of a previously assembled database, to generate these template maps, optical, multi-

spectral or SAR images are selected and a ROI is defined. Important features from this region

are then computed and binarized, and saved in the database. When a detected image arrives, a

corresponding template is loaded (according to the harbor information), then a ROI is extracted

by calculating the spatial transformation between the template and the input image. Segmentation

is then carried out by fusing different input images, giving these different weights, and comparing

them with the template information. The Constant False Alarm Rate (CFAR) algorithm is then

used for extraction of the harbor targets, this was the chosen algorithm due to its proven worth in

maritime applications [39]. Despite its great performance in extracting targets in sea backgrounds,

some robust geometrical features were identified and fed to the CFAR algorithm, such as "...

length-width ratio, area and shape complexity etc, together with the center coordinates of targets

to do change analysis"[39], this was done to avoid some of its known difficulties in processing

SAR images, e.g. the speckles present in these images. An ASV with access to satellite type

images, could use the presented methods in this section to gain a general perception of where the

docking bay or harbor is and direct itself towards it. However, these algorithms are obviously not

intended for close range operation, for this matter, a combined use of these methods while the

ASV is far away from the coast and plans to start a rough first approximation to the harbor, and

one of the situational awareness algorithms that relies on on-board sensors in order to operate in

closer proximity, could prove quite effective.
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2.3 Planning Algorithms

The guidance subsystem is a key part of the autonomous ship, it takes into consideration several

elements such as nearby obstacles, route from origin to destination and other navigational as-

pects (global path planner), as well as information provident from other vessels. This data is then

combined to generate the ship’s path, this can be achieved via a enormous number of algorithms,

therefore only the most relevant for the problematic are going to be introduced in this section.

A-star
The A* algorithm was first introduced by Nilsson N. et al. [40] in 1982, it consists in comput-

ing the shortest path in a graph between the starting node and the final one. A heuristic function,

f(n), is utilized to choose which nodes are searched through first, to obtain the least costly path.

This function is given by the following equation:

f (n) = g(n)+h(n) (2.1)

Take g(n) as a function representative of the cost associated from the selected node until the nth

node, and h(n) is the heuristic function that is used to estimate the cost to reach the final node. The

algorithm works by expanding the initial node and compiling a pile of all the neighbours, ordering

these for the value of their f(n) function (leaving the lowest score on top). The correspondent

node of the value on top of the pile is then taken as the current node and expanded upon, iterating

the process until a final solution if achieved [41]. The A* algorithm searches the most promising

nodes first, based on the information of the closest ones and also of how much it’s still left to reach

the final goal, it is a complete and optimal algorithm and its complexity depends intrinsically of

the quality of the chosen heuristic function [42]. However, the way it is firstly presented, it does

not have a good efficiency, being that it visits the same node multiple times [42]. This leads to

multiple modified versions of the A* algorithm presented in 2014 by Duchoň F. et al. [43] as

well as by Costa [42] in 2011. Campos [44] also presents a modified heuristic for the A* in 2014,

applying it towards the trajectory planning of autonomous robots. One can then conclude that the

A* algorithm is rather flexible, allowing for modifications by adjusting its heuristic function, some

other aspect that can be constraints to its efficiency are obviously hardware limitations such as a

low computational speed or even limited memory.

Timed-Elastic-Band
Take the Elastic-Band approach as a way to deform a generated path, treating it as a rubber

band that does not break, this band is then subjected to internal and external forces that shape

up the path, keeping a distance from the obstacles and taking into consideration the shortest path

towards the target point. The main problem with this algorithm is that it does not take into consid-

eration the dynamic constraints of the robot, and, the fact that the band is not breakable may lead

to local minima solutions [45]. To solve this problem surges the Timed-Elastic-Band (TEB) as an
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augment to the original Elastic-Band, this is an online method, meaning that the path is is opti-

mized during run time, that takes into consideration the "...temporal aspects of the motion in terms

of dynamic constraints such as limited robot velocities and accelerations" [45]. The generated

path is resultant of a multi-objective optimization problem, computing a trajectory that satisfies

the maximum velocities and accelerations possible by the vehicle and minimizes the execution

time [46]. Figure 2.8 is representative of an example of how the algorithm works bending the said

rubber band around the obstacles and generating an optimal path.

Figure 2.8: Example of a trajectory generated by the TEB algorithm [45].

A few years later in 2017, after proposing the TEB approach, C. Rösmann et al. [47, 48] also

proposed an extension for the algorithm. This optimization takes care of the local minima issue,

as the algorithm is now able to transit between different trajectories, "breaking" the rubber-band.

This is done by optimizing a set of possible trajectories in parallel and switching between them

in order to not get stuck in a local optimal solution, said is presented in figure 2.9 where multiple

trajectories are computed and the algorithm chooses an optimal one.

Figure 2.9: Example of the parallel trajectories computed by the TEB algorithm [48].

In its current state, the TEB algorithm presents itself as a great solution for the problematic as

it computes in real-time a path between the given way-points and is able to adjust itself, bending

around obstacles. The fact that it also respects the given kinematic constraints of the ASV is also

a key factor.
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Probabilistic Roadmap
A roadmap algorithm consists in nodes and the connections between them, these types of

algorithms represent the robot’s free space as a network of uni-dimensional curves [44]. The

Probabilistic Roadmap (PRM) is constructed in two separated phases, the Learning Phase, where

the actual map is built and the Query Phase where the the path is computed, from the initial node

to the destination.

The Learning Phase can be sub-divided in three different stages, the first one is the construction

of the map, starting with an empty one, a random configuration is loaded as a node, afterwards

its neighbour nodes are iteratively selected, within a maximum distance, to each verifying the

connection between nodes. This stage is done repeatedly until the graph is occupied with enough

nodes. During the second stage, the map is expanded in the regions where there are rather few

free spaces, this is done to improve the roadmap, since few spaces means very few nodes and

connections [42]. The last stage is optional, and aims to simplify the roadmap by removing the

redundant nodes. The latter phase, the Query Phase can also be parted in three stages. Firstly, a

free path between the starting node and a node from the roadmap is created, then the same is done

for the target point and finally a path that connects the starting point to the final one is computed

[44]. The PRM algorithm is a proven one in multiple areas of application, such as path planning

[49] for car-like robots and also Unmanned Aerial Vehicles (UAV) [50]. Good practical results

can be achieved with this algorithm, however this method is not a complete one, as a probabilistic

method, it may only converge and find a trajectory if the given time tends to infinite. If there is no

possible trajectory, the algorithm may get stuck in a loop [42].

Potential Field
The potential field approach in trajectory planning is based on the physics of electric potentials

as an heuristic to find a trajectory. The ASV is represented by a point in a space where there are

obstacles, this very point is considered a positive charge in the field. For the artificial electric

camp to be repulsive with the obstacles, these also behave as positive charges. The goal target,

will obviously have a negative charge creating a attractive force towards the ASV. The artificial

potential field can then be defined as the sum of all these electric camps, and the forces created

by the attractions and repulsions will, in a ideal scenario, generate the path between the vehicle

and the goal, avoiding obstacles in between. Figure 2.10 is representative of a path generated by

the potential field method, as discussed, the obstacle creates a repulsive force driving the path

to avoiding it, the closer the robot is to point, the stronger the repulsive force is, decreasing its

influence on the robot as the distance to it increases. The path directs itself towards the goal point,

the force generated by this point is greater with distance, being null when the robot reaches this

point.

Both the mathematical model representative of the U(q) and the F(q) can be found in [42].

One of the most discussed issues with this algorithm is the fact that it is prone to being stuck

in local minimum, [42, 44]. Figure 2.11 is representative of said situation, depending on the

obstacle’s shape (if concave) and size, this is situation is more susceptible to happen. Some other
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Figure 2.10: Example of a path generated by the Potential Field algorithm [51].

issues have been documented by Koren Y. et al. [52]. These include the one already presented, and

also the fact that the algorithm can’t compute a solution that passes through two close obstacles.

Some fluctuations are also to be noted in the presence of obstacles that may lead to an unstable

solution.

Figure 2.11: Local minimum in the Potential Field algorithm [53].

However, for the current problematic the local minima may not be an issue since the objective

is to dock the ASV inside an object that is very similar to the ones that cause this very problem.

For this reason the Potential Field algorithm is considered a valid option for implementation.

Velocity Obstacles

This algorithm has been quite utilized and expanded upon during the years, even being im-

plemented in actual real environments by Kufoalor et al. [54] in 2018. The first step is to define

the obstacles and an associated collision cone for each one, taking into consideration their rela-

tive velocity towards the ASV. Once the obstacles are represented, a set of admissible velocities

is defined taking into considerations the vessel’s dynamic constraints, within a preset temporal

space. Figure 2.12 is representative of the described representation of the collision cones and the

admissible set. The following step is then to use an heuristic to obtain the velocity that best suits

the application and that belongs to the admissible set.

In 1993, Fiorini et al.[55] proposes some heuristics that can be applied to obtain a suitable

velocity, among them:
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Figure 2.12: Representation of the collision cones and the set of admissible velocities [55].

• Choose the highest velocity that stays out of the collision zone and maintains alignment

with the goal;

• Choose the highest velocity, outside the collision zone, with an associated maximum angle

relative to the goal line;

• Choose the highest velocity that avoids obstacles according to their associated risk.

As the algorithm is rather flexible, allowing for any heuristic that satisfies the purpose, different

applications are also possible such as the work presented in 2008 by van der Berg et al.[56] scaling

the concept to multi-agent navigation.

2.4 Critical Analysis

The current section aims to bring some closure to the State of the Art chapter, presenting the main

withheld thoughts from the conducted research. As perception systems rely heavily on aspects

such as fidelity, accuracy and robustness, the use of a single sensor might seems like a great risk

as the lack of redundancy can leave the ASV lost and unaware of its surroundings. However, solo

LIDAR based systems do exist and prove themselves reliable enough to be used in a maritime

environment. The data retrieved by this sensor can then be processed in 2D, which is more effi-

cient and a good solution for low computational power systems but completely dependent on the

sensors’ resolution, or 3D which is the more usual solution and the one that provides better results

even if it requires heavier computational resources and the effort to model the platform’s geometry

since the registration process requires a target template. The vast majority of perception systems

use cameras to further improve the robustness of the algorithm, as both sensors compensate each

other’s weaknesses. From the conducted research this is the most viable solution, therefore the

Situational Awareness System developed as integrating part of the Self-Guided Docking Architec-

ture will be based on these two sensors, combining information from both in order to recognize
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the platform and detect its features. A third possible approach is the usage of satellite images and

knowledge based models, however such technology is not available hence these approaches are

not considered viable for the present application.

As planning algorithms go, the ones most fit for the docking operation are those that take into

consideration time instants and the ASV’s dynamic constraints, as well as the obvious geometrical

constraints of the trajectory. From the studied approaches, the Velocity Obstacles concept is the

one that stands out the most as it is very flexible and tested in multiple applications, being easily

adaptable to the maritime environment by the means of any heuristic. From the remaining studied

algorithms, the Potential Field could be considered useful as its main downside, to get stuck in a

local minima, could actually be used as a positive for the docking operation. On the other hand,

the PRM algorithm proves to be unreliable for this application since it might get stuck in an infinite

loop, leaving the ASV without a planned trajectory to follow.
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Chapter 3

A Self-Guided Docking Architecture

3.1 Problem Characterization

To secure the previously discussed regulatory approval, as well as industry support and public

acceptance, ASVs need to be at least as safe as the existing vessels. One of the operations that

has the most associated risks is certainly the docking one. A failure in this process can lead to

monetary losses, by damaging the vessel or the physical infrastructure of the port, fatalities or even

environmental disasters such as water pollution or soil contamination [57]. Making this operation

autonomous would translate into a significant contribution for an autonomous ship safety, greatly

reduce these risks.

Sea-state constraints, such as tidal waves and wind, are prone to hinder the docking operation

and, therefore, the development of an architecture that is viable and applicable in a real environ-

ment must take these conditions into consideration. Same can be said for the vessel’s inertia and

kinematics. To accurately simulate these values, a model of the Zarco1 ASV, developed at INESC

TEC [58], is used within a Gazebo simulated scenario, which makes it possible to configure rel-

evant environmental parameters like the ones presented above. Figure 3.1 presents both the real

ASV, on the left, and the simulated model, on the right. This vessel is 1.5 m by 1 m and has ap-

proximately 1.5 m of height, these dimentions are to be used for analyzing if the docking platform

is a suitable one or if the vessel would not fit inside the berth. Since the vehicle weights 50 kg

(up to 75 kg with payload), the associated inertia is considerable, for this matter, its predictive ca-

pability must be high to guarantee that the response time of the systems is low, avoiding possible

collisions with the platform.

Kinematic constraints are also to be considered, the vessel utilizes a differential drive that con-

sists of two electrical thrusters mounted on a common axis, working independently. Its nominal

velocity is 1 ms−1 granting it an autonomy of 4 to 6 hours at this speed, however the vessel is ca-

pable of achieving 2 ms−1 at maximum velocity. The Zarco ASV is equipped with a 3D LIDAR,

a pair of stereo cameras, an Inertial Measurement Unit (IMU) and a GPS. The developed Situa-

tional Awareness System will then rely upon these sensors to provide data about the surroundings

1 https://oceansys.fe.up.pt/?section=tech
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Figure 3.1: Zarco ASV, vessel used in simulation.

of the ASV, as well as pint-point its location relative to the dock. The spatial configuration of the

described sensors is illustrated in figure 3.2 and the most relevant specifications from each of the

sensors are as follows [59]:

• IMU - MTi-30 Xsens - Frame Rate: 200 Hz, Angular Accuracy: 0.2o/0.5o;

• GPS - Swift Navigation - Frame Rate: 20 Hz, L1/L2 RTK, Accuracy: 0.01 m horizontal

and 0.015 m vertical;

• Stereo Cameras - Mako G-125 - Frame Rate: 30 Hz, Resolution: 1292 x 964, Field of

View: 80o horizontal;

• LIDAR - VLP-16 - Frame Rate: 4 Hz, Range: 100 m, Range Accuracy: 0.03 m, Field

of View: 360o horizontal and 30o vertical.

Figure 3.2: Sensor configuration used for the Zarco ASV.

The docking platform used as subject for testing is the one provided by the RobotX Challenge2,

a competition that supports innovation for autonomous surface vehicles. Figure 3.3 presents the

Gazebo simulated version of said platform, as it is noticeable from the geometry of the dock itself,

2https://bitbucket.org/osrf/vmrc
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the operation must be conducted frontwards. For this reason, the developed architecture is aimed

at this kind of platform and type of approach.

Figure 3.3: Docking platform model used in simulation.

3.2 Supervisory Control System

To accomplish a fully autonomous docking operation, the proposed architecture must be able to

conduct this procedure in diverse scenarios, as to overcome the challenges induced by the harsh

weather and environmental conditions. The diagram presented in figure 3.4 represents an overview

of the developed architecture, depicting its main integrating modules.

Figure 3.4: General overview of the self-guided docking architecture.



30 A Self-Guided Docking Architecture

The docking operation should only begin when the necessary conditions (position and orien-

tation of the ASV) are met, which contribute to a safe maneuver. Two main modules are then

designed to guarantee these conditions:

• the Catch-Zone Approach - responsible for navigating the ASV towards a predefined area

where the vessel can make use of its suite of on-board sensors to identify and recognize the

dock - the catch-zone;

• the Reorientation module - that guarantees that the vessel is orientated towards the dock,

improving visibility and consequently the quality of the retrieved data.

Once all the conditions are full-filled the Docking Approach may be initiated, this module is

the most important one as it conducts the approximation towards the platform. To avoid damages

to both the vessel and the physical infrastructure, the vessel needs a robust perception system that

makes it aware of the surrounding scenario, by identifying the docking platform and even possible

hazards. When in close proximity to the mooring facilities, the ship follows a given path that leads

to a safe docking maneuver. To supervise these modules and actively choose which one should be

enabled at each moment, a Supervisory Control System has been designed, operating within a

closed loop. Each main module ends its iteration by generating linear and angular velocities. As

specified in section 3.1 of the present chapter, the vessel used for testing has a differential drive, as

so, the speed affected to each thruster (V1,V2) can be determined from equations 3.1 and 3.2 [60].

V1 = α · v+β ·w (3.1)

V2 = α · v−β ·w (3.2)

where α and β are constants representative of thruster placement and configuration, v is the

linear velocity and the angular velocity (w) is considered to be proportional to the deviation from

the docking platform (w ∝ θ ).

By observing the interactions between modules provided by figure 3.4, the importance of the

existing Supervisory Control System is noticeable as it manages the whole operation by deciding

which system should be active at each moment. To do so, the controller must first obtain a rough

map of the scenery where it will then represent the catch-zone, figure 3.5 serves as example of

this representation. The first step to obtain this catch-zone is projecting the centroid point that

represents the dock (D) forward (along the positive X axis), as a safety measure, gaining some

more room to operate without the danger of collision. This projection distance is user-defined,

and by applying it to D, the point D’ can be obtained. From the latter point, the first vertex of the

zone can be obtained by adding the working distance of the LIDAR sensor, this value represents

the maximum distance from where the sensor can operate. This vertex is marked as VTop in figure

3.5. The camera’s FOV is used as the angle from which the remaining coordinates of the vertexes

are calculated from. By defining the region based on these parameters, one is able to ensure that

within this region and these orientation values, the ASV can obtain valid data that can be used
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for the docking operation. To obtain said vertexes, VLe f t and VRight , equations 3.3, 3.4 and 3.5 are

used.

VLe f tD
y
= D′y−WDist · tan(

FOVCam

2
) (3.3)

VRightD
y
= D′y +WDist · tan(

FOVCam

2
) (3.4)

VLe f tD
x
=VRightD

x
= D′x (3.5)

where VLe f t and VRight represent two of the three vertexes of the catch-zone, WDist is the maxi-

mum range from the LIDAR sensor, FOVCam is the maximum angle where the camera can retrieve

information and D’ is the projection of the dock’s centroid point.

These vertexes are obtained in reference to the Dock (D), they must now be transformed

to World (W) coordinates. Such is done by applying to said vertexes a homogeneous matrix

([R(θ ),T]) that represents the rotation (R3x3(θ )) and translation (T3x1) between both sets of coor-

dinate axis. Equations 3.6 and 3.7 are used in said transformation.

VLe f tW =VLe f tD · [R3x3(θ)|T3x1]
W
D (3.6)

VRightW =VRightD · [R3x3(θ)|T3x1]
W
D (3.7)

where VLe f t and VRight represent two of the three vertexes of the catch-zone referenced in two

different coordinate spaces, the Dock’s (D) and the World’s (W), both the rotation and translation

between both sets of coordinate axis are represented by R3x3(θ ) and translation (T3x1), respectively.

Figure 3.5: Example of the map representation within the Supervisory Control System.
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Once the zone has been defined, the Supervisory Control System’s decision making process

resorts to the state machine presented in figure 3.6 to choose which operating mode should be

active. If the vessel is outside the Catch-Zone, the controller must then enable the Catch-Zone

Approach module, conducting navigation towards this area. This condition is depicted in situation

a) of figure 3.5 where the ASV is clearly outside the white region outlined by the triangle.

To calculate this area, the docking platform’s position and orientation are previously known,

with a certain uncertainty. So that one is able to determine if the ASV is in fact within the estab-

lished region, a radius check is performed at the ASV’s current location. Such approach is taken

in order to compensate the error associated with the coordinates obtained from the GPS, therefore

this radius is user-defined, taking into consideration both the dimensions of the vessel and this

error associated to each measure.

However, being inside the Catch-Zone is not enough to guarantee a safe and accurate dock-

ing maneuver. Situation b) of figure 3.5 represents an example where this is the case. The ASV

is inside the region, yet, its orientation towards the dock is completely incorrect, which means

that the berth infrastructure is out of the FOV of the camera. The Supervisory Control System is

then tasked with enabling the Reorientation Module until it corrects the relative orientation be-

tween robot and dock. Regardless of this adjustment, if a confidence value, associated to the data

captured by the camera, does not meet the defined threshold (Confidence > 70 %), the ASV’s

orientation should keep being corrected until this threshold is achieved. This confidence is associ-

ated to the quality of the segmentation that can be obtained from the camera’s image and will be

expanded upon in later sections.

Finally, if all the conditions are met, situation c) in figure 3.5, the ASV being oriented, in-

side the zone and with a good confidence value from the camera, the Docking Approach can be

initiated, ending the loop when the mission is carried out successfully.

Figure 3.6: State Machine implemented for the Supervisory Control System.
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3.3 Catch-Zone Approach

The importance of starting the docking operation from a certain region where viable and rich

data can be gathered has been previously alluded. When outside this defined catch-zone, the

data retrieved from the sensors is unreliable and may lead to an insecure operation. The current

section aims to expand on the topic by detailing how the Catch-Zone Approach module generates

a trajectory and conducts the navigation by iteratively updating this trajectory and computing

the necessary linear and angular velocities. The interactions within this module are expressed

in figure 3.7, the catch-zone representation is received from the Supervisory Control System and

combined with the data retrieved from the GPS and IMU sensors to map the scenario. This scene

representation is redefined with the restrictions imposed by the trajectory that should be followed

by the vehicle to reach the catch-zone.

Based on the presented kinematics of the vessel (section 3.1), the set of velocities that a vehicle

can reach at a given instant can be visually represented by a polygon that is then projected on top of

the previously obtained acceptable area. The interception of both areas generates a set of reachable

velocities from which the best suited one is chosen, recurring to a heuristic that minimizes the error

in norm and direction, relative to the target point.

Figure 3.7: Diagram representative of the intrinsic interactions within the Catch-Zone Approach
module.

This module should be capable of conducting the navigation of the ASV in different scenarios

and multiple environmental conditions. Four main scenarios were considered while developing

the Catch-Zone Approach module, a couple of scenarios where the ASV is in front of the dock’s

projection centroid (represented as D’ in figure 3.5) and a couple more where the ASV starts

behind said point. Each of these is then split into two approaches: from the left and from the right.

Figure 3.8 offers visual context for the described scenarios. The estimation of the acceptable zone

for the trajectory is based on the calculation of ellipses, each of the presented quadrants defines

different start and end angles for the arc that creates a restriction for this zone.

The position and orientation of the ASV, retrieved from the GPS and IMU sensors, respec-

tively, allows for an easy representation of the robot’s pose within the scenario. By drawing a line

between VLe f tD and VRightD one is able to define the first restriction for the acceptance zone, rep-

resented in figure 3.9. Projecting this line into the ASV’s referential, points VLe f tASV and VRightASV

can be obtained and consequently a new restriction when these are connected. This projection is

achieved by rotating the first restriction around the D’ point with the θASV , which represents the

ASV’s orientation referenced to the world frame, then translating it to the vessel’s current position.
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Figure 3.8: Four different scenarios for the Catch-Zone Approach.

The next step is to define the last two restrictions for the acceptance area, these are calculated

using ellipses. This is the adopted method as it can be quite adaptive to trajectories that require

a certain curvature, allowing the estimation of an area that accommodates such navigation. How-

ever, for straight lined trajectories an ellipse would simply cause an unnecessary curvature to the

navigation, lowering the efficiency of the algorithm. For this reason, a simple heuristic has been

developed to adjust the ratio between the minor and major axis of each ellipse, compensating the

presented problem by narrowing down the area of the corresponding restriction.

To calculate the centers of each ellipse, a line is generated connecting the points from the ASV

to the Dock, VLe f tD to VLe f tASV defining an upper bound restriction, and VRightD to VRightASV defining a

lower bound restriction. The middle point of each line is taken as the center for the corresponding

ellipse and the length of the segment from center to one of the end points defines the major axis

radius of each one. Figure 3.9 presents a visual representation of the described ellipses. As

discussed above, the minor axis for each ellipse is adjusted according to the trajectory’s necessary

curvature, to estimate its length the heuristic presented in equation 3.8 is used:

rmin = tanh(|m|) ·RMAJ (3.8)

where rmin represents the radius of the minor axis, RMAJ is the radius of the major axis and m

is the slope value correspondent to the major axis of each ellipse.

By using a normalized value of each slope and multiplying it by the major axis radius, one

becomes able to adjust the curvature of the restriction. The more the slope becomes becomes

horizontal, the lower is the value given to the minor axis of the ellipse, adjusting the restriction to

allow a straight line trajectory. On the other hand, when a curved trajectory is needed, the slope

will be almost if not completely vertical (infinite slope), after the heuristic the minor axis (rmin)

will then be equal to the major one (RMAJ), drawing out a circle that accommodates the needed
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curvature.

Figure 3.9: Representation of the map computed inside the Catch-Zone Approach module.

The last step to define the remaining restrictions is to choose which part of the ellipse’s arc

is actually part of the restriction. Such is done by defining a starting and ending angle from the

ellipse that corresponds to the pretended arc, figure 3.10 provides context on the notation and

a visual example of how the restriction is computed. These angles are predefined and change

according to which quadrant from figure 3.8 the trajectory’s starting point belongs to.

Figure 3.10: Visual representation of the notation used to calculate each ellipse restriction.

Once a rough estimation of the acceptable zone is generated, its area is filled and the resulting

contours are computed. Depending on the trajectory, multiple contours may obtained. To sort

out which is the the one corresponding to the actual acceptance zone, the one with the biggest

associated area is kept. Figure 3.11 depicts the process step-by-step for a trajectory such as the

one represented by d) in figure 3.8:
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• Step 1 corresponds to the mapping of the scenario where both the ASV’s position and ori-

entation are represented as well as the dock projection. As the trajectory demands a big

curvature, the ellipses are adjusted though the heuristic into becoming circle like;

• Step 2 depicts how the starting and ending angles define the arc of the ellipse that is actually

the wanted restriction;

• Step 3 filters the contours;

• Step 4, the region is filled and taken as the acceptance zone.

Figure 3.11: Step-by-step demonstration of how the acceptance zone is defined.

Now that the acceptance zone for the trajectory is defined, the set of velocities that belong

to this area and also respect the robot’s kinematics must be estimated. This set is calculated by

representing within a polygon all the velocities that the ASV can achieve. As discussed in section

3.1, the Zarco ASV is a differential vessel and as such it cannot move in the direction along the axis

- this is a singularity. This constraint and the maximum linear and angular velocities it can achieve

are used to compute the polygon mentioned above, figure 3.12 a) depicts this set of velocities that

can be met by the vessel.

By performing a bitwise AND operation between the resulting set and the acceptable zone,

figure 3.12 c). The points that do remain from that operation are eligible velocities that respect the

geometric constraints of the trajectory and also the kinematic ones, illustrated in figure 3.12 d).

The most suitable velocity from the established set of reachable velocities is chosen via the

following heuristic that has been adapted from the HyCVEL algorithm [10]. As the Catch-Zone
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Approach is based on the Velocity Obstacles concept, which allows for any heuristic that satisfies

a given purpose, the adaptation is rather straight forward. Its practical result when applied to the

set presented in figure 3.12 d) is illustrated in figure 3.13, where the chosen velocity is represented

by the gray circle.

• Select the velocity that minimizes the error in norm and direction, relative to the target point

D’, belonging to the set of reachable velocities.

Figure 3.12: Step-by-step estimation of the reachable set of velocities.

This point must now be converted into its corresponding linear and angular velocities, such

is done by taking into account the distance and orientation errors between the chosen point and

the actual pose of the robot. The velocities’ references are estimated with equations 3.9, 3.10 and

3.11:

∆DistPoint
ASV =

√
(XPoint −XASV )2 +(YPoint −YASV )2 (3.9)

V = tanh(∆DistPoint
ASV ) ·K1 (3.10)

W = atan(∆DistPoint
ASV )−θASV (3.11)
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where XPoint and YPoint represent the coordinates of the point that represents the suitable veloc-

ity, XASV , YASV and θASV the position and orientation of the robot, respectively, and K1 is a given

gain to adjust the speed value.

Figure 3.13: Result of the heuristic [10] application to the set of reachable velocities.

3.4 Docking Approach

The Docking Approach is obviously the central module of the architecture as it is responsible for

not only recognizing the platform but also conducting safe navigation within close proximity to

it. Its importance is even more evident as the remaining nodes are designed to support it, ensuring

that all the conditions are met so that it can safely operate.

This system can be divided into two stages, as depicted in figure 3.14: a Situational Awareness

(SA) System and a Maneuver module. The first stage combines the data retrieved from a 3D

LIDAR, a camera, an IMU and a GPS to map the vessel’s surroundings and recognize the dock.

As this stage targets the identification of expected geometrical shapes, there is no need to modify

the dock or surrounding waters by adding beacons or transponders.

The maneuver module is the complementary part of the SA system, taking into considera-

tion the reconstruction of the scenario obtained by said Situational Awareness system, the route

from origin to destination and other navigational aspects (e.g. specific actions to perform in each

way point) to generate a suitable path. A key part of this operation is ensuring that the planned

trajectory is a safe one, through a viability check procedure.

Information from the sensors is gathered and used by the SA module, which is responsible for

making use of the information gathered from sensors, to estimate a target point for the docking

operation. Once computed, the target is validated inside the maneuver module, generating linear

and angular velocities that will then be converted into specific velocities (V1,V2) for each thruster

and fed to the vessel’s differential drive.
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From the Camera perception subsystem a confidence value is computed, this value has been

previously discussed as it is a fundamental part of the decision making process within the Su-

pervisory Control System, section 3.2. This confidence represents the fidelity associated to the

reconstruction of the scenario that can be computed from the gathered data at a given instant.

Figure 3.14: Docking Approach internal architecture.

3.4.1 Situational Awareness System

For the docking operation to be successful, making the vessel aware of its surroundings is a vital

part of the process. This fact makes the SA system the most important part of the architecture

presented in 3.14. A division into two subsystems can be noticed in said figure, a Camera and a

LIDAR perception subsystem. Both to be detailed during the present section.

Using a camera together with a LIDAR is a very common option as per the research conducted

during the State of the Art chapter. Both sensors compensate each other’s weaknesses and by fus-

ing data from both, one can obtain a more robust SA system. By taking a look at the interactions

between both perception systems, figure 3.14, the information gathered from the camera is com-

bined with the data retrieved from the LIDAR so that one may estimate the position of the dock

relative to the ASV. This pose is then used for both the pre-processing nodes, and as a seed for

the registration process that integrates the LIDAR perception system, to compute a potential target

point that serves as the final destination for the operation.

Camera Perception
As the docking platform has a known geometry, figure 3.3, the Camera Perception subsystem

takes the image obtained by the camera and segments it to extract its upper structure, since it is the

most reliable part of said platform, being observable from a greater distance. Taking advantage of

the structure’s color, which is red and easily depicted from the remaining maritime background,

image segmentation is conducted by color and then the geometry is computed to obtain a general

region of interest that resembles the upper structure. This information is then used to reconstruct



40 A Self-Guided Docking Architecture

the structure and compute a bounding box around it, then by comparing its area with the one

obtained from the actual extracted geometry, a confidence value is assessed.

At the same time, the 3D point cloud gathered from the LIDAR is projected onto a 2D plane

where the region of interest is then applied, filtering the cloud that corresponds to the dock’s

upper structure. From this information one is able to compute its centroid and project it relative

to the ASV, estimating a pose for the docking platform. Figure 3.15 presents a summary of the

interactions between nodes inside the subsystem.

Figure 3.15: Diagram representative of the camera perception subsystem.

The first step of any perception system is pre-processing the gathered information, filtering out

unwanted data. The raw image obtained from the camera needs to be segmented so that the geom-

etry of the dock can be extracted. However, segmenting the platform from the background isn’t the

only challenge. As mentioned above, the upper structure of the dock has the red color, so, a simple

approach would be to split the raw RGB image into its three channels and keep the information

relative to the red one. Such approach is indeed effective if the light conditions are controlled, as

that is not the case within a maritime environment, this process becomes rather unreliable since

the intensities relative to each pixel vary with different lighting, therefore the RGB color space "...

is not preferred for color based detection and color analysis because of mixing of color (chromi-

nance) and intensity (luminance) information and its non uniform characteristics."[61].

A comparison between indoor and outdoor light conditions for the RGB color space is pre-

sented in figure 3.16, as the raw image is composed by the addition of three different channels

which are affected with the same amount of lighting, the resulting colors are very sensitive to the

scenario’s light conditions. The blue channel is clearly the most influenced by the variation on the

lighting, although visible changes are also present in the red and green channels.
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Figure 3.16: Effects of different light conditions on the RGB color space 3.

To contradict this dependence on the light conditions, a different color space was experimented

on - the YCbCr color space. As it is derived directly from the RGB color space, the conversion

is rather direct. Its three components represent the Luminance component of the RGB image (Y),

and how far the red and blue components are from said Luminance (Cr and Cb, respectively). The

luminance and chrominance components are then represented in different channels, such allows

one to mitigate the effects of the light variances.

A comparison between light conditions for the YCbCr color space is presented in figure 3.17.

The shift in light conditions is quite noticeable in the Y channel as expected but not in the chromi-

nance ones, which proves the advantage of using said color space instead of the basic RGB one.

Figure 3.17: Effects of different light conditions on the YCbCr color space 3.

The equations used to transform the RGB color space to the YCbCr are presented in equations

3.12, 3.13 and 3.14 [62]:

Y = 0.299 ·R+0.587 ·G+0.114 ·B (3.12)

Cb = (B−Y ) ·0.564+δ (3.13)

3https://www.learnopencv.com/ color-spaces-in-opencv-cpp-python/
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Cr = (R−Y ) ·0.713+δ (3.14)

where R,G,B correspond to the red, blue and green components respectively, Y represents the

Luminance and Cb, Cr the Chrominance in the new color space. Finally, δ varies with the number

of bits present in the raw image, as it has 8 bits, δ = 128.

The step-by-step process for the color segmentation is presented in figure 3.18. Once the raw

RGB image is converted to the YCbCr color space, figure 3.18 b), the three channels Y, Cr and Cb

are split and the one correspondent to the Luminance is set to zero, the result of said operation is

depicted in figure 3.18 c). This makes it so that the light conditions have reduced effects on later

stages of the pre-processing. The image is then transformed back to RGB, by manipulating the

equations presented above, figure 3.18 d), and the difference between it and the initial raw image

is quite noticeable as the red color is now easily segmented from the remaining background.

Figure 3.18: Step-by-step demonstration of the color segmentation process.

The final step for the color segmentation is now to separate the new RGB image into three

separate channels and keep the information relative to the red component as it is the one that

represents the upper structure of the docking platform. Figure 3.19 offers a visual comparison

between the described operation applied to the raw image, before the color space transformation

and afterwards. The difference between results is obvious, as the image resultant from the color

space transformation is ready to be segmented, while the other one still has unwanted information

that hinders such segmentation.
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Figure 3.19: Red component extraction for both the raw image and the processed one.

A median filter is then applied to further smooth out some existent noise such as the shoreline

in the background. The image is now ready for the geometry segmentation. As color no longer

serves a purpose said image is converted to grayscale to facilitate the upper structure geometry

extraction.

Figure 3.20 depicts this geometry segmentation process, in step 1, the contours of the stucture

present in the image are extracted, these are then approximated to a polygon and a bounding box

is calculated for this polygon, describing step 2. As observed in the example presented by figure

3.20, multiple objects can be obtained from the geometric segmentation, the last step filters out

the unwanted ones by assuming that the one with the biggest contour area is representative of the

docking platform.

Figure 3.20: Step-by-step demonstration of the geometry segmentation process.

Once the geometry of the platform has been extracted one is able to compute from it a region of

interest that represents the platform’s upper structure, which will later be used to filter out the data

gathered from the LIDAR, as well as reconstruct this structure within an image such as the one

presented in step 3 of figure 3.20. By comparing how accurate this reconstruction is to the actual

contour obtained from segmentation, the previously referred confidence value is calculated. Such

value is obtained by subtracting both the contour area and the area obtained by approximating said
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contour to a polygon, equation 3.15 expresses how to estimate this confidence value, C(%):

C = 1− Abbox−AContour

Abbox
·100 (3.15)

where C is the confidence value, Abbox is the area of the reconstructed upper structure approx-

imated to a bounding box and AContour is the area resultant from the segmentation.

This confidence value is representative of the quality of the observed data from the camera.

As expected this value decreases as the ASV gets further away from the dock. Another possible

scenario that hinders this confidence is if the segmentation is affected by overlapping objects. The

latter is exemplified by figure 3.21 where another dock in the background ends up affecting the

geometry segmentation process, as the structures overlap only one contour is detected, enclosing

both objects, therefore the polygon approximation results in a reconstruction that doesn’t fully

represent the real structure. The median filter previously implemented has been adjusted to smooth

out these types of situations so that one may obtain more viable results.

Figure 3.21: Example of a poor confidence situation.

The last step before the dock’s pose relative to the ASV can be estimated is to project the

3D point cloud gathered from the LIDAR into a 2D plane and then filter from it the data that

corresponds to the upper structure of the platform that has been segmented and reconstructed

above in figure 3.20. This is done by approximating the camera by a projective model - the pinhole

camera model, which expresses how a 3D point P3D = (X ,Y,Z) is projected over an image plane

where said point is discretized into a pixel P2D = (u,v). This model is represented in figure 3.22,

before projecting the cloud’s points, these must first be transformed into the camera’s frame by

using the extrinsic parameters matrix that represents the translation and rotation between this set

of axis and the World frame.

Point C, visible in figure 3.22, is representative of the center of the camera (the pinhole). An

image plane is projected by a distance defined as focal length, f = ( fx, fy), on the line that is perpen-

dicular to said plane and passes trough the pinhole, known as principal axis (Z). The intersection

between this image plane and the principal axis defines the principal point, p = (x0,y0). These pa-

rameters are expressed in the intrinsic matrix, allowing the model to take into consideration optic

components by considering distortions introduced by the lens in the image.

Both these matrices that are alluded to are obtained from the simulated version of the camera

in use, which is already calibrated and considers no lens distortions.
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Figure 3.22: Pinhole camera model representation [63].

By resorting to the similar triangles created by the intersection of the principal axis with the

ray that projects the point onto the image, such as the one represented in figure 3.22, one is able

to compute the transformation from a R3 coordinate space to a R2 space using the equations

presented in 3.16 and 3.17 [63]:

p2D
u =

fx ·P3D
x

P3D
z

+ x0 (3.16)

p2D
v =

fy ·P3D
y

P3D
z

+ y0 (3.17)

where p2D is the projected point in pixels, P3D is the point in X,Y,Z coordinates, fx and fy

represent the focal length and finally x0 and y0 are the distances from origin to principal point.

These pixel values must now be filtered to ensure that these fit inside an image that has the

same size as the ones taken by the camera, 800x800 pixels. Such is necessary so that one may

use the reconstructed image obtained above to define a region of interest on top of this newly

obtained image with the projected points. Before finally representing these pixels within a RGB

image, their intensities are normalized according to the depth of their corresponding 3D points,

using equation 3.18. This is done to correctly display the depth within this image by utilizing each

pixel’s intensity values, allowing for a better and more intuitive representation of the 3D scenario

in the 2D plane.

Iblue = 255 ·
P3D

z −dmin

Dmax−dmin
(3.18)

where Iblue is the value of the intensity given to the blue component of the RGB pixel, P3D

represents the point in X,Y,Z coordinates and Dmax, dmin represent the maximum and minimum

depth values of the points present in the cloud,respectively.

Figure 3.23 presents an example of application, the figure on the left shows the point cloud

with the 3D points, and on the right one can see the said points projected onto the image and

normalized, the brighter the intensity of the pixel, the further away it is from the vessel, on the

contrary the darker it is, the closer. Points from the cloud that exceed the limits of the image are
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filtered out as mentioned above, such is the case for points that exist behind the ASV and outside

the camera’s FOV.

Figure 3.23: 3D point cloud projection onto a 2D plane.

The final step is now to use the reconstructed structure obtained in figure 3.20 3) as a region

of interest, filtering the image resultant of the projection of all the points that exceed the limits

defined by said ROI. The result is illustrated in figure 3.24.

The 3D coordinates corresponding to the remaining pixels are now used to estimate the cen-

troid that represents the docking platform’s position relative to the ASV, for this purpose, equations

3.19 and 3.20 are used.

PDockx =
∑P3D

x

ROISize
−PASVx (3.19)

PDocky =
∑P3D

y

ROISize
−PASVy (3.20)

where the PDock represents the estimated position of the dock relative to the ASV, P3D rep-

resents the point in X,Y,Z coordinates, ROISize is the size of the region of interest to which said

points must belong to, and finally PASV represents the current position of the ASV.

Figure 3.24: Projected image after ROI filtering.
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LIDAR Perception
Now that the docking platform has been identified and its relative pose to the ASV is known,

the target points that compose the mission can be calculated, figure 3.25 depicts this process. The

data gathered by the LIDAR is highly affected by the conditions that the maritime scenarios im-

pose, therefore it needs to be pre-processed before it can be used. Once filtered, a sliding window

is implemented with the objective of providing a more complete and dense input point cloud to

the registration method, by fusing multiple point clouds. Given input and target point clouds, said

registration method estimates a transformation matrix that aligns the correspondences between

both. As the ASV reaches the dock, the information retrieved by the sensors becomes more vi-

able and complete, for this reason multiple templates are used as targets to match the increasingly

more complex input data. The dock pose, estimated by the Camera Perception subsystem, is not

only used for localization but also as an initial seed for the registration, so that one can obtain a

faster convergence and also lower the computational demands of such process. Template points

for the docking operation are defined a priori for each platform model, from these one is able to

compute potential target points relative to the ASV by applying the inverse transformation matrix

obtained from the registration method to said template points. These are later evaluated inside the

Maneuver Module, which decides if the target is valid or not.

Figure 3.25: Diagram representative of the LIDAR perception subsystem.

The data obtained from the LIDAR is susceptible to the environmental conditions, the constant

bobbing of the ASV caused by the tidal waves and wind can result in a very noisy point cloud,

figure 3.26 on the left for instance. For the Situational Awareness System to work properly in a

maritime scenario it must be able to interpret and analyze the reliability of the sensor information

according to different environmental conditions at all moments. A simple but effective approach

is to consider a ROI that can be adapted to the local conditions of the scenario. To mitigate the

effects caused by the environment, this region is adjusted dynamically by using GPS and IMU

data, resulting in a much cleaner point cloud such as the one presented in 3.26 on the right.

To achieve a point cloud filtered from the noise introduced by the environment, the LIDAR’s

FOV is adjusted according to the scenario, figure 3.27 depicts some example situations. The ideal

scenario is presented in a), there are no waves and the platform can easily be detected by the

default configuration of the sensor. Situations b) and c) present the best possible case where the
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Figure 3.26: Comparison between point clouds before and after filtering.

FOV needs to be adjusted. Since there is no deviation of the vessel, induced by the waves, the field

of view is adapted by simply adding or subtracting to it the robot’s height relative to the waves,

situations b and c, respectively. The biggest challenge is posed by situation d) as the LIDAR’s

FOV is not only misadjusted, but the ASV’s orientation is deviated from the platform. To solve

such problem, the IMU data is used so that one may correct the vessel’s orientation by projecting

it on the correct set of axis. Only then the relative height computed from said projection is used to

readjust the field of view.

Figure 3.27: Point cloud filter adjusted for multiple scenarios.

Once the filter is adjusted to the wave conditions, the remaining dimensions can easily be

computed by using the expected width of the docking platform as a parameter to filter horizontally,

and the distance to the dock to filter out in depth. The resulting filter defines box type region that

encloses the platform, discarding non relevant information from the surroundings. However the

density of such information is very much dependent from the relative distance between the vessel

and dock. By fusing together information from multiple data samples a more dense point cloud

can be obtained, which is crucial for a better convergence of the registration method.

A sliding window is then implemented to achieve this purpose, adjusting its memory as the

ASV approaches the platform. The further away the vessel is, more memory is allocated, therefore

more point clouds are stored, increasing the window’s size. Such is done due to the fact that the

gathered data will be very sparse and incomplete and more samples are needed to compute a cloud

dense enough to resemble the platform. As the ASV reaches closer to the platform, progressively
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less point clouds are kept in memory, as information gets more complete processing it becomes

heavier, thus fusing multiple point clouds that are already dense enough would not only aggravate

such computational demands but also provide no additional information. Another reason not to

keep as much old data is the fact once the vessel is in close proximity to the dock, access to real-

time data becomes essential to conduct a safe navigation. Figure 3.28 illustrates how the memory

is allocated, every time a new point cloud is processed by the filter it occupies the first position

of the window, shifting all the remaining clouds by a position. The oldest point cloud is therefore

always stored in the maximum position, equivalent to the size of the window, and removed when

a new cloud is inserted. As described above, as the ASV moves towards the platform, the size of

said window is dynamically adjusted, decreasing its capacity as it reaches the goal. When capacity

is shortened, the oldest data is removed and the new one is concatenated with the remaining stored

point clouds.

Figure 3.28: Memory allocation in the sliding window.

The application of the described sliding window is shown in figure 3.29. On the left is the

point cloud after filtering, and on the right is the result of the sliding window, the density of the

point cloud is clearly improved, providing a much more viable input cloud for the registration

method.

Figure 3.29: Comparison between the filtered point cloud before and after the Sliding Window
implementation.

The distance from the dock affects the information gathered by the LIDAR, as the ASV gets

closer to the floating platform, more reliable and precise data can be collected. Based on this

premise, increasingly more complex templates should be used for matching by the registration

method. This hierarchical approach can be observed in figure 3.30, the degree of detail can be

extended to n levels, each correspondent model more complex than the previous [9]. Each tem-

plate has been developed within a 3D modelling software, Blender, based on data gathered by

the LIDAR so that one may achieve a good match between input and template. The model is then
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exported as a PLY (Polygon File Format) file and loaded as a target point cloud and down-sampled

accordingly to match the density of the input data. The Iterative Closest Point (ICP) algorithm is

used as the registration method. The algorithm iteratively revises the transformation (composed

by a rotation and a translation [R,T ]) needed to minimize an error metric, between a fixed refer-

ence point cloud, one of the models, and the input source cloud computed by the sliding window.

Said error metric is denominated fitness value and corresponds to the sum of squared differences

between matched pairs of points.

Figure 3.30: Representation of the hierarchical approach to template matching [9].

An example of application for the proposed approach, with 3 levels, is presented in figure 3.31

(only the two extremes are shown). Represented in black are the templates, the green and red point

clouds are the input and output, respectively. When the ASV is rather far away from the docking

platform, see figure 3.31 c), the most relevant part of the 3D scenario reconstructed by the SA

module relies upon the upper structure of the dock. Once it gets closer, figure 3.31 a), a much

more complete and reliable point cloud will be gathered, and thus, a template with more detail

will be considered during the registration process. The transformations from the initial stage, see

figures 3.31 a),c), to the final one, represented by figure 3.31 b) and d) respectively, are returned

via the [R,T ] matrices previously presented.

Figure 3.31: Example of application for the proposed hierarchical approach with ICP. a), c) Close
and Far view templates (black), respectively, and input point cloud (green); b), d) Clouds are
aligned with the targets (red) after the iteration [9].
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As an attempt to lower the computational demands required to obtain the presented transforma-

tion, the estimated dock pose processed by the Camera Perception subsystem is taken as an initial

seed for the ICP. Translating the source point cloud by the distance of the ASV to the dock will

result in less necessary iterations for the ICP to obtain a convergence. Having both point clouds

minimally overlapped, but keeping their relative orientations, the registration process only needs

to compute a transformation that adjusts the rotation between both input and template clouds, and

compensate the corresponding needed translation associated to said rotation. Figure 3.32 presents

a visual comparison between both input point clouds before and after the initial seed is used (on

the left and on the right, respectively).

Figure 3.32: Comparison of the ICP input clouds before (left) and after (right) considering an
initial seed.

The estimated translation and rotation obtained from the ICP convergence, [R,T ], is repre-

sentative of necessary transformation to align both clouds, from input to target. The generated

trajectory for the docking operation is based on this information as target points for the ASV are

computed iteratively as the approach to the platform is taking place. To estimate a target point

from this information, with basis on previously gathered knowledge of the platform’s geometrical

features (height and width of the berthing area) and the GPS data, UTM (Universal Transverse

Mercator) coordinates of the dock, an optimal docking point is calculated and used as the refer-

ence for the algorithm. Take this target as a representation of an ideal position and orientation for

the ASV at each iteration. Associated to each of the models used in the hierarchical approach, fig-

ure 3.30, is one of these reference targets. These are represented by the green arrow in figure 3.33,

observing said figure one is able to conclude that as the models get more complex and complete,

these reference points get more accurate and definitive leading up to the final docking location of

the ASV when the nth model is loaded in. Such is done to ensure the safety of the navigation, as

the data retrieved from a far is associated with a certain degree of uncertainty, the reference point

is placed further away from the platform to avoid possible collisions.

As the reference point is known in UTM coordinates and the transformation from input to

template is already computed by the ICP, [R|T ], equations 3.21 and 3.22 are used to obtain these
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coordinates relative to the ASV’s current position. Since the input source cloud has been previ-

ously translated to improve the registration’s method performance, that same compensation must

now be applied to the estimated target point so that an accurate value in obtained.

Ptarget = R(θ)−1 ·Pre f −T −ξ (3.21)
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(3.22)

where Ptarget is the target point after the transformation, Pre f is the point taken as reference

(in UTM coordinates), R(θ ) and T are the Rotation and Translation matrices returned by the ICP,

respectively, and ξ represents the translation needed for compensating the initial seed used for the

source input cloud.

Figure 3.33: Reference target points associated to each template iteration.

The result of said transformation is presented in figure 3.34, where the obtained target is rep-

resented by the blue arrow, while the reference is depicted as the green one. Visible deviations in

both orientation and position are easily perceived between both representations, as the potential

target is now referenced to the ASV’s coordinate space. This potential target point is now to be

processed by the maneuver module, which is responsible for deciding whether this is a valid point

or not.

Figure 3.34: Visual representation of the reference target point (green arrow) and the potential
target point (blue arrow).
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3.4.2 Maneuver Module

The Maneuver Module is designed to act as a complementary system towards the SA algorithm,

making the connecting it to the velocity controller, while ensuring the safe navigation of the vessel.

Once a new potential target point for the docking is received, the heuristic presented in figure

3.35 is used to check if the given target is valid or not, potentially causing harm towards the

vessel and/or mooring facilities. To do such evaluation, this viability check heuristic uses the

quality metric of each convergence, calculated based on the registration process, and the spatial

representation of the scenario. If the received target proves safe, a trajectory is generated from

the ASV’s current position towards the target, on the other hand, if said target is rejected, the

vessel stays in place and rotates towards the platform. A simple control module is implemented to

compute both the adequate linear and angular velocities.

Figure 3.35: Flowchart representative of the target validation heuristic.

Each time the ICP converges, a fitness score is also returned. This score is calculated by

summing the squared distances from source to target, being indicative of the quality of the con-

vergence. For this heuristic, said score is used as the first metric of evaluation. If the target point,

correspondent to the latest convergence of the ICP, has an associated fitness score higher than a

threshold defined a priori it is considered an unsafe target point. When this occurs, the estimated

X and Y coordinates of the target are ignored, the ASV stays on its current location and uses the

target’s orientation to rotate under its own axis. As it aligns with the docking platform, the LIDAR

should be able to provide better data which will consequently generate a more viable target point.

The navigation control is based on the center of mass of the ASV, if the threshold value of the

first metric is respected, the 3D scenario is represented and a safe area around the ASV is defined

with a radius that takes into consideration both the dimensions of the vessel as well as a safe

margin distance towards the platform. A KdTree was then implemented to carry out said radius

check as it proves an efficient and easily adaptable method, allowing for a used-defined radius that

can be configurable for each vessel’s dimensions. This aims to ensure that the given coordinates

of the potential target do not lay inside of the input point cloud. If there are any points within

radius, the target is considered an unsafe point and its position is discarded, following principle

previously described. Otherwise, it is accepted as valid target point and both the position and

orientation are kept and used to generate the adequate path. A visual representation of the radius

check process is presented in figure 3.36. For this example, as there are points from the source



54 A Self-Guided Docking Architecture

point cloud that lay within the circumference computed around the target, there is potential for a

collision and therefore the target is rejected.

Figure 3.36: Representation of the radius check performed by the evaluation heuristic.

To navigate the vehicle towards its desired berthing location, a control module was imple-

mented by taking into consideration the direction and distance to the desired target point. This

path is discretized into small (free) sections and, once it is reached, the final orientation is cor-

rected. The position error, utilized as an euclidean norm of the X and Y coordinates, was given

a tolerance of |0.1| m, while the final θ error was given |0.1| rad, both these tolerances are user-

defined and can be adjusted according to the needed precision. This module is also responsible for

computing linear and angular velocities, feeding them to the ASV’s velocity controller.

By enforcing trajectories towards target points whose viability has been checked via the heuris-

tic presented in figure 3.35, while taking into consideration the kinematic constraints of the vessel

when generating the necessary velocities, one is able to ensure the safe navigation of the ASV and

consequently a secure and reliable docking operation.
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Results

The current chapter aims to present and discuss the results obtained from testing the described

self-docking architecture. These tests are conducted to verify if the the proposed architecture is

functional and how multiple environmental conditions affect its behavior and reliability. Both the

Catch-Zone and Docking Approach modules will be analyzed, separately, in different conditions,

the first will be tested for each of the scenarios presented in figure 3.8 of chapter 3, to ensure that

the system is able to navigate the ASV towards the catch-zone, considering different orientations

and positions. The latter will be tested within different trajectories, that start inside the predefined

catch-zone, so that one can determine if a safe docking operation can be conducted. The ability of

SA system to recognize the platform and detect its features will also be studied in different light

conditions and for multiple wave scenarios. Finally, all the integrating modules of the architecture

will be tested working simultaneously, so that one can assess if the developed Supervisory Control

System is capable of choosing the correct operation mode for each moment in time and therefore

conduct a successful mission.

As previously discussed in section 3.1, tests will be performed within a Gazebo simulation

that resembles a maritime scenario, the models used for both the ASV and the docking platform

are the ones presented in section 3.1. Visual context of the described world is offered in figure 4.1.

Testing within a simulation allows for a reproducible scenario where elements such as the me-

chanical wear and battery autonomy of the vessel are non-factors, leading to a stable and constant

environment from which reliable results and conclusions can be obtained. To accurately simulate

such a scenario, the Open Dynamics Engine (ODE1) is used to model the physics of the world and

its interactions with the robot, such as inertial forces which pose an important aspect to consider

on a docking operation. Environmental constraints are perhaps the most important variable to take

into consideration, therefore these must be introduced. Such is done via a plugin that allows for

multiple parameter configuration.

To test the proposed architecture within various conditions, two test beds were defined. The

first one with Minimal Environmental Constraints, in which no wind is considered and waves are

1https://www.ode.org/

55
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Figure 4.1: Simulated environment used in testing.

divided into three components that have configurable parameters such as amplitude, period and

direction. The configuration of each wave component used for this test bed is as follows:

1. An amplitude of 0.06 m, a period of 12.6 s and a direction of (~x,~y) = (-1,0);

2. An amplitude of 0.04 m, a period of 3.7 s and a direction of (~x,~y) = (-0.7,0.7);

3. An amplitude of 0.03 m, a period of 6.3 s and a direction of (~x,~y) = (0.7,0.7);

The second test bed - Harsh Environmental Conditions, aims to simulate stronger weather

constraints so that one is able to assess the robustness of the perception system when hindered by

the effects that these pose. For said purpose, the amplitude of all the wave components presented

above are scaled three times composing a wave of about a meter high, when all these add up.

Wind was introduced with (~Vx,~Vy) = (0.7,0.7) m/s and (Roll,Pitch,Yaw) = (2,0.5,0.33) rad. These

test beds can be adapted to each vessel in testing so that one is able to accurately simulate the

wanted effects on the ASV. For a small vessel such as the Zarco these are considered to be strong

enough waves to hinder the system’s functionality, however, a cargo ship would obviously need

larger scaled environmental conditions for the simulation to produce the same effects on the vessel.

4.1 Catch-Zone Approach

To ensure that the ASV is within an area where its sensors can retrieve complete and viable in-

formation about the platform, the Catch-Zone Approach module is tasked with generating an ac-

ceptable zone upon which a viable trajectory can be computed. Said trajectory is enforced by

estimating linear and angular velocities that lay within a reachable set that respects both the ves-

sel’s dynamics as well as the zone’s spatial constraints. The viability of the presented approach is

evaluated by having the ASV start its course within each of the four quadrants presented in figure

3.8. The first objective is to validate if an acceptable zone for each trajectory can be generated and

how this zone is updated during navigation to accommodate the vessel’s dynamics as well as the

trajectory’s geometrical constraints.

The first iteration of the algorithm for each of the situations is presented in figure 4.2. The

areas represented in white are the ones correspondent to the acceptable zones and define the spa-

tial limitations of the trajectory, the Catch-Zone Approach module is then capable of generating
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constraints for the trajectory within any of the quadrants. As it is noticeable the areas correspon-

dent to scenarios a)-b) and c)-d), have mirrored acceptable zones, which is to be expected as these

represent the same starting conditions having only one of the axis inverted. To reduce redundancy,

scenarios a) and d) are used to study the evolution of the trajectories resultant from this module

since these cover all the starting conditions and the remaining ones would have a similar behavior.

Figure 4.2: Computed acceptable zones for each of the scenarios.

The evolution of the acceptable zone obtained by the algorithm during the execution of tra-

jectory a) is illustrated by figure 4.3. The black cross marks the target location which is resultant

from the projection of the dock forward, the green zone represents the reachable set of veloci-

ties that the algorithm may choose from to conduct navigation and the red point is representative

of the velocity being enforced at each moment. As described in section 3.3 the chosen velocity

is estimated from the point that minimizes the distance to the target location that lays inside the

reachable zone, as the ASV reaches the goal, both the point representative of the velocity and

the target point overlap enforcing the vessel to stay in place, ending the trajectory. Such can be

observed in figure 4.3 d).

A harsher challenge is posed by scenario d), since not only does it have its initial starting

point close to the platform but also behind it. This is one of the reasons why the target location

is projected forward and not directly next to the dock, allowing for a wider area to work with,

leading to a safer trajectory. Figure 4.4 depicts the evolution of the acceptable and reachable zones

for trajectory d), as expected a large curvature is necessary to conduct the navigation towards the

catch-zone.

To prevent the fact that these zones are calculated based on ellipses from hindering the effi-

ciency of the generated trajectory, an heuristic was proposed in section 3.3, that aims to adjust the

minor to major axis ratio of said ellipses to mold the acceptable zone, allowing for straight lined

trajectories and not adding to them unnecessary curvature. This heuristic is proven to work since,
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by looking at figure 4.3 and figure 4.4, one can see that the first follows a simple line trajectory

towards goal and the latter is adjusted to the necessary curvature of the navigation.

Figure 4.3: Evolution of the acceptable and reachable zones during trajectory a).

Figure 4.4: Evolution of the acceptable and reachable zones during trajectory d).
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Both the Catch-Zone and Reorientation modules serve the purpose of guaranteeing that the sit-

uational awareness system is able to retrieve quality data from the platform. A noticeable deviation

in orientation can be observed in both trajectories when the ASV reaches the goal, as expected,

a trajectory such as scenario d) imposes would lead to a greater disorientation when compared to

trajectory a), since the latter starts facing the platform. When the Catch-Zone Approach ends its

mission, delivering the ASV into the catch-zone, the Reorientation module will be tested so that

one can assess the evolution of the orientation error towards the dock during the trajectory and

how it poses when said module is activated. As the information captured by the camera is highly

dependent on the ASV’s orientation towards the dock, the confidence value of the information

reconstructed with basis on camera data is also studied as the ASV re-orientates.

The conclusions presented above about the evolution of both zones are independent of envi-

ronmental conditions since these representations are updated iteratively and based on predefined

geometry and vessel’s kinematics, however the study of the performances of the planning and situ-

ational awareness algorithms are highly impacted by these constraints, being by shifting the vessel

out of its planned path or even by hindering the ability of the sensors to function properly. For this

reason, the remaining tests will be performed within the described test beds.

Minimal Environmental Constraints
The navigation of both trajectories towards the target within the catch-zone was conducted

successfully, figure 4.5 presents an overview of said trajectories with minimal effects from the

waves. Both are depicted in red, the trajectory from scenario a) is presented on the left, while

the trajectory from scenario d) is presented on the right. The green area is representative of the

catch-zone towards which the ASV navigates.

Figure 4.5: Trajectories generated for the approach towards the catch-zone with Minimal Environ-
mental Conditions, scenario a) on the right and scenario d) on the left.

On average, the trajectory depicted in figure 4.5 on the left terminated with the ASV having an

absolute deviation from the dock of 0.595 rad, while trajectory d)’s orientation is far worse when it

reaches goal, averaging 1.797 rad. Such is expected from the nature of the starting points imposed

on each trajectory.

Figure 4.6 presents the evolution of the deviation of the ASV relative to the platform during

trajectory a), as well as the confidence associated with the data captured by the camera. These

confidence values are always above 80% since the ASV is facing the platform and its deviation

from it never hinders the ability of the camera to capture information from it. The variability of
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these values during course is due to the constant bobbing of the vessel which hinders the ability of

the camera to obtain quality information, but not enough to generate bad results. The ASV reaches

its goal, around the 330th point, at this moment the Reorientation module is activated to reduce the

observed deviation in orientation. As it does so, the confidence value rises slightly as it stabilizes

when the vessel stops moving.

Figure 4.6: Evolution of both the orientation error and confidence value during trajectory a) with
Minimal Environmental Conditions.

The trajectory associated with scenario d) ends its course completely deviated from the dock,

in fact during navigation it is never facing the platform. Such is confirmed by the confidence

values that are obtained and displayed in figure 4.7. This value is obviously zero as there is no

visual information about the dock during the trajectory, however, as the goal is reached and the

Reorientation module starts to actuate, the camera is able to capture information just about when it

enters the defined working FOV (about 0.6 rad). As the deviation towards the dock is compensated,

confidence values increases and stabilizes when the operation ends, around the 90% mark.

Figure 4.7: Evolution of both the orientation error and confidence value during trajectory d) with
Minimal Environmental Conditions.

Harsh Environmental Constraints
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The same course was then tested with harsh environmental constraints, trajectories generated

from both scenarios a) and d) were still able to navigate the ASV towards the zone. Trajectory

a) suffers very few effects from the stronger waves, while trajectory d) is slightly more impacted

during course as the trajectory is noticeably not as smooth. When the latter trajectory reaches its

goal, the effects are most obvious, as discussed previously the correction of deviation takes much

longer for this trajectory, and as such, while the ASV aligns itself with the docking platform it

is dragged out of the catch-zone as result of the waves’ impact. Both trajectories are illustrated

in figure 4.8, the trajectory from scenario a) is presented on the left, while the trajectory from

scenario d) is on the right.

Figure 4.8: Trajectories generated for the approach towards the catch-zone with Harsh Environ-
mental Conditions, scenario a) on the right and scenario d) on the left.

The orientation of the ASV relative to the platform when the goal is reached does not differ

much from the values obtained with minimal constraints, trajectory a) ends with an absolute de-

viation of 0.626 rad and trajectory d) has an error of 1.843 rad, on average. By observing the

graphic presented in figure 4.9 one can conclude that the stronger wave conditions directly impact

the quality of the data captured from the camera, the constant shift on the vessel’s roll and pitch

angles will lead to a more unstable confidence value, hence the noticeable variability as the ASV

approaches goal. When it starts to reorient towards the platform, not only does the vessel stay in

place but the visibility of the platform improves, leading towards a much higher and more stable

confidence value.

Figure 4.9: Evolution of both the orientation error and confidence value during trajectory a) with
Harsh Environmental Conditions.
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Figure 4.10: Evolution of both the orientation error and confidence value during trajectory d) with
Harsh Environmental Conditions.

The evolution of this confidence value during the trajectory generated from scenario d) has a

similar behavior independently from the environmental constraints, figure 4.10. When the target

location is reached by the ASV, it starts aligning itself with the dock, as discussed from figure

4.8, the vessel gets pushed by the waves resulting in a greater variability of the confidence values

between the time instants correspondent to the 1200th and 1400th points. As the ASV gets stable

once again, the confidence values improve, reaching approximately 90%.

Conclusions

As conclusion one is able to observe that the course of operation on scenario a) is far shorter

than scenario d), as the number of points in the graphics correspondent to each note so. Such is

justifiable by the larger deviation in orientation correspondent to trajectory d), taking longer to

achieve its desirable orientation. The minimal environmental conditions do not hinder the planned

trajectory and its effects on the camera’s confidence values are also minimal on both trajectories,

averaging values above 88% in both (not taking into account the instants where no information

from the camera is received). When compared to the harsh test bed, the obtained results don’t vary

much. Both trajectories take slightly longer as the waves hinder the vessel’s movement and the

final orientation of the ASV is similar in both cases. The camera confidence is the variable that is

affected the most but even so it still is able to keep confidence above 80%, during both courses. As

discussed, this is due to the fact that the vessel is more unstable as result from the environmental

conditions. A summary of the obtained results is presented in table 4.1.

The Catch-Zone Approach module is then successful in maneuvering the vessel towards the

previously defined catch-zone in all of the tested scenarios. Environmental conditions do affect the

data captured by the camera, however it only slightly hinders navigation as the trajectory is updated

iteratively and so are the reachable set of velocities that the ASV can reach at each moment, which

helps mitigating any possible shift in trajectory caused by the waves.
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Table 4.1: Comparison between the results obtained with both sets of environmental constraints.

Scenario
|Average Deviation from the Dock|

(rads)
Number of Points

Average Confidence
(%)

Minimal Constraints Trajectory a) 0.595 587 90.6
Trajectory d) 1.797 1492 88.5

Harsh Constraints Trajectory a) 0.626 727 86.3
Trajectory d) 1.843 1517 82.7

4.2 Docking Approach

The module responsible for the approach towards the dock is obviously the most important part of

the self-guided architecture as it is not only responsible for detecting the platform and estimate its

relative pose to the ASV, but also conduct navigation towards it. The reliability and precision of

the operation will be tested in different trajectories, within each of the described test beds, using

the position and orientation errors (edist , eθ ) as metrics to evaluate the final docking location,

when compared to the reference goal. These are calculated using equations 4.1 and 4.2. Since

the situational awareness system is key for a successful operation, the evolution of both the ICP’s

fitness score and the accuracy of the targets estimated with basis on the transformation matrix

resultant from the registration method’s convergence will be studied along said trajectories.

edist =
√

(Tx−Rx)2 +(Ty−Ry)2 (4.1)

eθ = |θT −θR| (4.2)

where edist and eθ are the position and orientation errors, respectively, T represents the final

location for the docking operation and R is the reference target point.

As discussed in section 3.4.1, the camera is very sensible to light conditions changes. To assess

if the color space transformation from RGB to YCbCr is in fact able to mitigate the effects caused

by such luminance variations, the experimental setup presented in figure 4.11 was utilized within

the Gazebo simulation. It consists of a light source, that emulates the sun’s effects, projected

onto both the camera and the platform. The first test aims to project the light rays onto the upper

structure of the docking platform so that one can compare the results from the color segmentation

algorithm, for both RGB and YCbCr color spaces. A second test would project the light source

directly into the camera, causing the lens flare effect that would either create artifacts within the

image or make it so that colors are less saturated. However, the latter was not possible to test

since the physics of the simulated world do not reproduce the described effects, therefore no

conclusion could be obtained on how the color segmentation algorithm fares when exposed to

these conditions.

The results of the first test are presented in figure 4.12, on the left is the red component of the

image in the RGB color space, the light conditions obviously affect the image, brightening it up

and making it even harder for the upper structure geometry to be segmented. On the other hand,
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Figure 4.11: Experimental setup used in simulation to test how light conditions affect color seg-
mentation.

the color space transformation does mitigate this light variation as the luminance component of

the YCbCr is removed leading to a result that allows for an easy segmentation of the geometry

from the background.

Figure 4.12: Comparison the color segmentation in both color spaces, for the first test setup.

To test the docking approach, three trajectories were defined, all facing the platform with

different orientations (ψDock
ASV ) and with starting points within the catch-zone. Trajectory 1 starting

from the left with a deviation of ψDock
ASV =−0.35 rad relative to the dock, trajectory 2 in front of the

platform and aligned with it, and finally, starting from the right is trajectory 3 which is deviated

by ψDock
ASV = 0.35 rad. Each metric of evaluation, position and orientation, were given a small

tolerance values which are presented in table 4.2 along with the remaining parameters used for the

maneuver to take place, the nominal linear and angular velocities. Both tolerance parameters are

user-defined for the desired precision and the velocities are set considering the vessels kinematics.

Each trajectory will be conducted within both the test beds previously described, allowing one

to assess the effects of the environmental conditions on the performance of both the maneuver

module and the situational awareness system.

Table 4.2: Maneuver parameters used during testing.

Position Tolerance
(m)

Orientation Tolerance
(rads)

Nominal Linear Velocity
(m/s)

Nominal Angular Velocity
(rad/s)

|0.1| |0.01| 1.2 2.5
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Minimal Environmental Constraints
The evolution of the ASV’s position during the presented trajectories, within the first test bed,

are presented in figure 4.13. Dashed lines are representative of the docking platform’s inner walls

and the circle of the optimal target point that serves as a reference (with the given tolerance). The

final position of the ASV is marked at the end of each trajectory with a cross. Even if minimal, the

effects of the waves can still be noticed in both trajectories 1 and 3, represented with the red and the

blue colors, respectively. The first gets slightly dragged by the waves, right at the start, as the ASV

is adjusting its orientation towards the computed line, while the same happens to the latter while it

adjusts its orientation to enter the dock. As expected, trajectory 2 (in green) shows no deviations

from course, as it is already aligned with the platform and no reorientation is needed. From the set

of tests run in these conditions, an average position error of 0.107 m and a 0.007 rad error in the

orientation were obtained, both within tolerance. If given a tighter tolerance, the positional error

could potentially be reduced even more, since the current induced error is not enough to trigger a

response from the algorithm.

Figure 4.13: Evolution of the ASV’s position in three different trajectories, with minimal environ-
mental constraints.

The performance of the SA system was also tested for these environmental constraints. Figure

4.14 depicts the evolution of the fitness score during a trajectory such as the one presented previ-

ously as Trajectory 2. Take this score as a metric representative of the quality of the convergence

from the registration method, being obtained from the sum of the squared differences between

matched pairs of points. As alluded to in section 3.4.1, three layers are used for the hierarchical

approach towards template matching, as so, each of the models and its correspondent fitness score

are represented in figure 4.14. It is to be expected that when the ASV is further away from the

dock, the retrieved data from the LIDAR would lead to a worse convergence and therefore a higher

score. However such is not noticeable in figure 4.14, the fitness score relative to the far model is

the lowest. This is due to the effects of the sliding window, increasing the density of points and

also to the fact that the template model has considerably less points than the remaining two (far
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model - 7k points; medium model - 80k points; close model - 120k points, before down-sampling)

resulting in the lowest error out of the three models. The increase in fitness score as one transi-

tions from the far model to the medium one, is caused by the gradual change in the amount of

data that is gathered from the geometry of the dock, as the vessel approaches, points belonging to

side pillars of said platform start getting picked up by the LIDAR, since there are no such points

in the model, the error increases. When the medium model is in fact loaded in as the template,

the density of points of said model is far greater than the gathered point cloud, inducing a small

spike in the fitness score. As the ASV reaches goal, the retrieved point cloud gets denser as sliding

window processes information and it gets more complete, leading the fitness score to decrease

until it stabilizes when in close proximity to the dock.

A solution to obtain a more uniform fitness score between model changeovers is obviously to

expand the number of layers used in the template hierarchy, decreasing the point density discrep-

ancy in templates and achieving a smoother transition since the progressively more complete and

complex data would better match the reference models. To further minimize the variability within

each model’s fitness score values, a larger sized sliding window could be utilized leading to a even

more complete input source cloud for the registration method, however, to store such quantity of

information would have direct impact on the algorithms performance. As its current state, the size

of the window has a good cost-effectiveness ratio.

Figure 4.14: Evolution of the fitness score with Minimal Environmental Constraints.

Being able to estimate precise target points relative to each template is a rather important factor

in conducting a safe and smooth navigation towards the berth. To achieve such, the transformation

obtained from each convergence of the ICP is applied to a reference target point which is then

translated into the estimated dock’s position. So, the accuracy of these target points depends not

only of a good convergence, and consequently a low fitness score, but also from the quality of the

data captured from the camera which will produce an estimate for the dock’s pose relative to the

ASV. Figure 4.15 presents the accuracy of said targets relative to the reference ones, for each of

the template models, during the same trajectory aforementioned. The validation check heuristic is

seen in application for the points circled out in red as these are rejected, the ASV stays in place

and rotates towards the platform until it gathers better information.
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Once again, contrary to the expected, the far model has a better performance than the medium

one. The targets generated when afar from the dock are quite accurate, excluding some outliers,

and there doesn’t seem to be any rejected points for the example trajectory. In comparison to the

medium model, the target points are much more scattered from the reference and there is a good

amount of rejected points. The reasoning behind this is the fact that the model used when far away

from the dock does have less points to cause the radius check to reject said target and the reference

is positioned far enough from the dock to account for the risks of the unreliable data being used,

consequently a looser threshold is defined while deciding if a point is valid or not. On the other

hand, the medium model not only has an associated higher fitness score as discussed above, but it

is also loaded as model during the period of time that the ASV reaches the entrance of the dock.

To ensure that the right orientation is achieved by the vessel while entering berth, the threshold

used for rejecting targets within this model is much tighter, combined with the radius check now

having a lot more point to iterate through, the number of rejected points increases. As the ASV is

oriented and close to the platform, the close model generates very accurate target points.

Figure 4.15: Accuracy of the estimated target points for each model, with Minimal Environmental
Constraints.

Harsh Environmental Constraints
The results obtained from testing the same three trajectories on the harsh conditions test bed

are presented in figure 4.16. From the initial instants of each trajectory, a clear influence of the

waves and wind can be observed as these drag the vessel along the negative Y axis. During the

first trajectory (represented in red), the ASV takes advantage of the the momentum generated from

these constraints and reaches the target much faster, this can be seen as this trajectory has a visible

lower number of points. However, the extra momentum ends up causing a small overshoot in the

vessel’s final position. The path that begins aligned with the dock, trajectory 2, suffers a clear

deviation along its route when the ASV stops to rotate and adjust its orientation, as the vessel

reaches its goal and stops to readjust the final orientation, a visible drag starts to occur, pushing

it out of the given tolerance area. Finally, the trajectory represented in blue starts in the worse
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possible scenario, as the waves counter the desired action multiple times. Reflecting the behavior

of the path in green, when the ASV stops to adjust its orientation, a visible drag occurs that leads

to an overshoot on final position.

The tests performed in these conditions had an average position error of 0.427 m and a 0.009 rad

error in the orientation. To achieve such an accurate orientation value, the ASV spends a good

amount of time readjusting its final orientation. During this time period, the waves keep dragging

the vessel out of the desired final position leading up to a considerable positional error. As the

vessel has a differential drive, no possible lateral compensation can be given as the drag occurs.

Figure 4.16: Evolution of the ASV’s position in three different trajectories, with Harsh environ-
mental constraints.

As the SA system heavily relies on the data gathered from the LIDAR and the camera, it is

to be expected that these harsh conditions could hinder its efficiency and precision. The results

obtained from testing how the system responds to these constraints, during a trajectory such as

number 2, are presented in both figures 4.17 and 4.18. The evolution of the fitness score suffers

from the same transition problem between models discussed before, however the higher error

associated to these outliers can be associated to the less reliable data that is retrieved within these

conditions, leading to worse convergences estimated by the registration method. Excluding these,

the overall average fitness score, related to each model, is worse when compared to the previous set

of tests (table 4.4), however only slightly, which confirms the effectiveness of the approach taken

for the point cloud filter on mitigating these conditions and consequently improving the quality

and reliability of the gathered data.

The higher variability of the camera confidence values, will definitely lead to less accurate

target points as these depend on the estimation of the dock’s pose relative to the ASV. Figure

4.18 corroborates this fact, the target points generated for the far and medium models are much

more scattered around the reference, consequently a higher number of points are rejected which

translates into more trajectory readjustments during navigation.
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Figure 4.17: Evolution of the fitness score with Harsh Environmental Constraints.

Figure 4.18: Accuracy of the estimated target points for each model, with Harsh Environmental
Constraints.

Conclusions
The effects induced by the waves and wind are easily noticeable when comparing the results

obtained from each set of tests, table 4.3. For minimal environmental conditions the navigation

is conducted almost flawlessly, achieving very satisfactory distance and orientation errors, both

within tolerance, on the other hand when tested with harsh constraints, the results are obviously

affected. A safe docking is conducted regardless, however, to obtain a very precise final orientation

one must sacrifice the positional accuracy since the ASV cannot move laterally to compensate the

drag from the waves.

Table 4.3: Summarized comparison between trajectory precision, in both scenarios.

Scenario
Position Error Average

(m)
Orientation Error Average

(rads)

Minimal Constraints 0.107 0.007
Harsh Constraints 0.427 0.009
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By observing the SA system’s response to both test beds, one is able to conclude that both

the implemented sliding window and the point cloud filter ensure a good convergence from the

ICP, as its average fitness score does not vary much when tested in different conditions, table 4.4.

The camera confidence values however have direct impact on the estimated target points accuracy,

when the SA system is tested in harsh conditions, the confidence suffers from way more variability,

inducing a more scattered set of target points. As such, a lot more of these points are rejected,

mostly within the medium model as the percentage of rejected targets increases noticeably.

Table 4.4: Summarized comparison of the performance from the Situational Awareness system in
both scenarios.

Scenario Far Model Medium Model Close Model
Minimal Constraints Average Fitness Score 0.04209 0.06031 0.04311

#Rejected Targets (%) 5.56 14.58 2.01
Harsh Constraints Average Fitness Score 0.06349 0.09552 0.04688

#Rejected Targets (%) 16.13 35.60 6.61

4.3 Architecture Integration

The final section of the Results chapter aims to assess if the supervisory control system is able to

oversee a complete docking operation and if its decision making is adequate for each moment in

time. Starting points similar to the ones used to study the Catch-Zone Approach were used within

the aforementioned test beds, starting one operation in front of the dock and another one behind it.

Minimal Environmental Constraints
The tests performed separately on the Catch-Zone and Docking Approach modules have proven

successful within this test bed. Now working as a whole, the self-guided docking architecture is

also capable of conducting a smooth operation. Once the ASV reaches the catch-zone, the super-

visory control system changes the operating mode so that the vessel is reoriented and aligns itself

with the platform. When all the conditions are met, the docking approach is enabled and the ASV

safely reaches the berth. Figure 4.19 presents the vehicle’s trajectory towards the dock (in red), for

each of the starting conditions, and each part of the operation is labelled, providing visual context.

Figure 4.19: Complete docking operation for both scenarios, with Minimal Environmental Condi-
tions.
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Harsh Environmental Constraints
For the second set of tests, the architecture also proves able to conduct the docking operation.

Figure 4.20 depicts the trajectories that lead the vessels towards berth, for both starting conditions.

The effects of the stronger waves and wind are noticeable mostly when the Reorientation module

is active, as the ASV stays in place and rotates towards the platform a visible drag affects both

trajectories. Once the ASV reaches the docking location and adjusts its final orientation these

effects are once again visible, as the vessel is pushed by the waves.

Figure 4.20: Complete docking operation for both scenarios, with Harsh Environmental Condi-
tions.

Conclusions
The Supervisory Control System is proven to choose the correct operating mode at each mo-

ment, leading to a successful docking operation during both scenarios, regardless of the maritime

conditions. Once the ASV reaches the catch-Zone, the Reorientation module is activated to correct

the angular deviation relative to the platform. Finally when both conditions are met, position and

orientation, the vessel begins its approach towards the dock.

Both the trajectories that are conducted with harsh environmental conditions take longer and

have higher traveled distances when compared to the minimal constraints test bed. This is due to

the fact that the Reorientation module takes much more time to readjust the ASV’s orientation,

since it is constantly hindered by the waves and wind, leading to a longer mission. The drag

induced by the waves while this module is active is reflected on the traveled distance, as it is no-

ticeably higher. A summarized comparison between the performance of the full docking operation

for both scenarios, within both test beds, is presented in table 4.5.

Table 4.5: Summarized comparison of both missions’ travel time and distances.

Scenario
Approach

from the Front
Approach

from the Back/Side
Minimal Constraints Average Traveled Distance (m) 26.12 36.90

Average Mission Time (s) 78 198
Harsh Constraints Average Traveled Distance (m) 28.02 39.76

Average Mission Time (s) 142 269



72 Results



Chapter 5

Conclusions and Future Work

This dissertation proposes an architecture for the self-guided docking of ASVs, with the purpose

of contributing towards a safer and more profitable cargo shipping industry, reducing the risk

of impact with the platform and consequently preventing environmental catastrophes and possi-

ble casualties. The architecture is composed by three main modules, the Catch-Zone Approach,

the Reorientation Module and the Docking approach, being supervised by a control system that

oversees the operation and decides which one should be active at each moment in time. The Catch-

Zone Approach and the Reorientation Module are responsible for ensuring that all the conditions

are met so that a safe docking operation may occur, such positioning and orientating the vessel so

that quality information from the platform can be retrieved, only then the Docking Approach may

commence. This module is composed by a situational awareness system that combines informa-

tion from sensors such as the LIDAR, camera, GPS and IMU to identify and recognize the dock

and compute its relative pose to the ASV. A maneuver module is the complementary module to

this system, ensuring a safe navigation through a viability check heuristic.

The proposed architecture has been tested within two sets of simulated experiments, one with

minimal environmental effects, and another with harsh ones. The Catch-Zone approach is able to

conduct the ASV towards the predefined area, where its on-board sensors are able to capture qual-

ity information from the dock, in all the tested scenarios, both in front and behind the platform.

The different environmental constraints’ effects are visible on the data captured by the camera,

however these only slightly hinder navigation. The fact that the generated trajectory is updated

iteratively, as well as the set of reachable velocities, helps mitigate any effects induced by the

harsh environment. Evaluation of the Docking Approach for each set was based on the position

and orientation errors of the final berth location reached by the ASV, when in comparison with the

reference point previously calculated. A safe operation is conducted regardless of the environmen-

tal conditions, however these directly affect the trajectories conducted within the harsh test bed,

as these cause visible drag both during navigation and when the ASV reaches the dock and stops

to adjust its final orientation towards it. The Situational Awareness system was also tested during

each trajectory, as stated before the data captured by the camera is highly dependent on the wave

conditions, since these directly impact the vessel’s stability and the consequently the quality of the
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captured image. On the other hand, both the sliding window and the dynamically adjusted point

cloud filter prove to be a fitting solution, as the registration method shows a great convergence

rate, regardless of the testing conditions.

Concluding, this dissertation contributes with a functional architecture that is viable for multi-

ple environmental conditions, being able to conduct the operation in diverse scenarios, achieving

errors in position and orientation up to 0.107 m and 0.007 rad, respectively. When such is the

case, higher positional errors are obtained since the vessel used in testing has a differential drive

and cannot compensate the drag induced from the waves and wind, as it reaches the desired final

orientation relative to the berth. As future work, the architecture should be tested with the actual

Zarco ASV in real maritime conditions so that one is able to assess its behaviour and performance.

To further develop the proposed work and improve upon it, the following is proposed:

• Use a deep-learning approach to classify the platform’s typology and adjust the docking

approach accordingly;

• Adapt the architecture so that the ASV may be able to perform the docking operation to-

wards a suitable enough platform in a non-structured environment;

• Study the possibility of using Inverse Perspective Mapping to obtain a bird’s-eye view of

the platform and fuse this information with the SA system;

• Implement a motion planning algorithm, for the docking approach module, that takes the

vessel’s kinematic constraints into account;

• Create a registration methodology to replace ICP and further improve its convergence by

minimizing the error between matched points;

• Study the effectiveness of the hierarchical template matching approach on a real dock model,

and its impact on the necessary computational power.
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