3 research outputs found

    Computational Analysis of Distance Operators for the Iterative Closest Point Algorithm

    Get PDF
    The Iterative Closest Point (ICP) algorithm is currently one of the most popular methods for rigid registration so that it has become the standard in the Robotics and Computer Vision communities. Many applications take advantage of it to align 2D/3D surfaces due to its popularity and simplicity. Nevertheless, some of its phases present a high computational cost thus rendering impossible some of its applications. In this work, it is proposed an efficient approach for the matching phase of the Iterative Closest Point algorithm. This stage is the main bottleneck of that method so that any efficiency improvement has a great positive impact on the performance of the algorithm. The proposal consists in using low computational cost point-to-point distance metrics instead of classic Euclidean one. The candidates analysed are the Chebyshev and Manhattan distance metrics due to their simpler formulation. The experiments carried out have validated the performance, robustness and quality of the proposal. Different experimental cases and configurations have been set up including a heterogeneous set of 3D figures, several scenarios with partial data and random noise. The results prove that an average speed up of 14% can be obtained while preserving the convergence properties of the algorithm and the quality of the final results

    Prior affinity measures on matches for ICP-like nonlinear registration of free-form surfaces

    No full text
    International audienceIn this paper, we show that several well-known nonlinear surface registration algorithms can be put in an ICP-like framework, and thus boil down to the successive estimation of point-to-point correspondences and of a transformation between the two surfaces. We propose to enrich the ICP-like criterion with additional constraints and show that it is possible to minimise it in the same way as the original formulation, with only minor modifications in the update formulas and the same convergence properties. These constraints help the algorithm to converge to a more realistic solution and can be encoded in an affinity term between the points of the surfaces to register. This term is able to encode both a priori knowledge and higher order geometrical information in a unified manner. We illustrate the high added value of this new term on synthetic and real dat
    corecore