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Abstract 

 

Registering shapes is fundamental to many tasks in computing such as fingerprint recognition 

and motion and image analysis and detection. 

Particularly for three dimensional (3-D) shapes, the advantages of visualising data in 3-D such 

as the ability to represent more details enable improved analysis due to this representation.  

For shape matching, the iterative closest point algorithm (ICP) has been the dominant 

algorithm for such purposes. ICP, however, has several limitations such as its expensive 

computational cost and its need for a good initial transformation. 

Molecules have been represented as 3D point clouds in several tasks such as drug discovery 

and exploration of the functions of proteins by allowing the 3D point cloud to overlap another 

molecule fully or partially. Exploring such shapes matching in virtual reality (VR) also provides 

an immersive visualisation and analysis experience and a way to easily use more intuitive 

gestures using hand controllers instead of a mouse and keyboard to interact with the shape 

matching process. This allows a faster-repeated test of the matching as required and 

enhances the efficient exploration of the 3-D shape. 

This thesis aims to develop and evaluate shape matching algorithms based on the standard 

ICP algorithm and a virtual reality visualisation application for visualising and interacting with 

the 3-D molecular protein shapes. It proposes three ICP variants developed to improve the 

registration of 3-D molecular structures. The approaches used in the variants are k-means 

clustering for partitioning the search space for correspondence, the use of metadata 

information to enhance meaningful matching and reduce the search space for 

correspondence, and the use of partial matches to register a subset of the shape and reduce 

the search space.  

The algorithms are evaluated using 3-D molecules under different conditions such as noise 

levels and mutations to compare their computational speed, convergence properties and the 

quality of the matches for the 3-D molecular structures. 

Molecular structures form the basis of all organisms.  Visualisation of molecular structures is 

important because of its applications such as in drug discovery. This research further presents 

a demonstration of an exploratory immersive virtual reality application developed in Unity3D 

for visualising the matching of 3-D molecular structures using the HTC VIVE VR system and 

the ICP algorithms. 
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PART 1:  INTRODUCTION 

1 CHAPTER 1 INTRODUCTION 

 

 

1.1 Background   

 

1.1.1 Data and Visualisation 

 

Data is increasingly being generated by every human or machine activity. These masses of 

data are constantly being mined for insights that can help decision making and improve 

processes by presenting the data through reports and visualisations. 

The exponential growth of this data has resulted in complex, multifaceted data, that poses a 

challenge to storage, acquisition, and processing. This data complex, termed big data 

(Keahey, 2013) can consist of data of several types including streaming data such as Twitter 

posts or high dimensional for instance 3-D molecules.  

McKinsey Global Institute (2011) expound on the exponential growth of big data to stem from 

all fields of life and activity including companies capturing trillions of bytes of information about 

their customers, suppliers, and operations, and millions of networked sensors being 

embedded in the physical world in devices such as mobile phones and automobiles as well 

as multimedia and data from social network websites. This raises the challenge of data 

visualisation, using techniques and methods for optimally presenting data to users in a way 

that maximises their understanding to effectively make meaning out of the data (Kirk, 2012).  

Keahey (2013) explains that the limitation to visualising data using the common visualisation 

techniques such as bar charts and scatter plots on a 2-D display, presents challenges such 

as the need to consider; the complexity of the data in terms of the size and type, the 

specifications of the display device, how the hardware and software can scale the visualisation 

in terms of allowing specific features such as real-time drilling down and enlarging the 

presentation, how the technology used supports collaboration and sharing, and the ability of 

the display layout to support changing visualisation needs. These limitations place virtual 

reality visualisation as a major frontier because these challenges can be overcome by the 

ability to create varied data formats, representations, and collaborative virtual visualisations. 
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Kirk (2012) proposes a methodological approach to data visualisation projects. The research 

identified key stages of a data visualisation project to involve; setting a goal and identifying 

factors affecting the visualisation, having in-depth knowledge about the data to be visualised, 

evaluating visualisation design options, and deploying the data visualization.  

There is no denying the fact that data is important in our current societies and as equally 

important are technologies to manipulate, process, and make meaning out of this data. In the 

scope of this research, 3-D molecules are the data to be visualised in the context of shape 

matching. 

 

1.1.2 Shape Matching 

 

One of the most challenging tasks due to the exponential growth of data discussed in Section  

1.1.1 is shape matching. It is a common task in many problems such as matching MRI 

(magnetic resonance imaging) scans in medical imaging (Nabavi et al., 2000), reconstructing 

3-D shapes from partial scans (Levoy et al., 2000) and protein structure similarity studies in 

chemistry (Axenopoulos et al., 2011). Shape matching aims to compare the extent of similarity 

or dissimilarity between two or more shapes. 3-D shape representations usually show the 

shape of the object as a point cloud in a cartesian coordinate system, which exposes the 

internal structure of the shape and allows algorithms to superimpose them on other objects 

more easily than with a knowledge of only the surface of the object. 

The major approaches to 3-D shape matching are pixel-based matching and feature-based 

matching (Belongie, Malik and Puzicha, 2002). Pixel-based approaches use colours and their 

intensities across regions of the shapes to perform a match based on similarities found in 

these regions whilst feature-based approaches make use of extracted features of the shapes 

such as the spatial positions of points and other metadata to perform the match. A well-known 

shape matching algorithm called the Standard ICP algorithm (ICP) (Besl and McKay, 1992) 

uses the feature-based approach to perform shape matching (Belongie, Malik and Puzicha, 

2002) by representing the shape in the form of a point cloud. The ICP algorithm iteratively 

computes the closest point in the model point cloud for every point in the data point cloud and 

then determines the transformation that aligns the two shapes. This iterative process results 

in minimising the distance between the shapes and aligning the two shapes in a partial or full 

overlap. 

There are several other algorithms used for shape matching and these are reviewed in Section 

(2.3). The algorithm of concern to this research is the Iterative Closest Point (Besl and McKay, 
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1992)  (ICP). In the context of rigid shapes, ICP registers or matches a data shape to a model 

or reference shape having a set target rotation and position. As part of the matching process, 

the algorithm finds the closest point in the model shape for each point in the data shape. A 

transformation is then computed that reduces the distance between the two shapes. These 

computations are repeated until the error between the data and model shape are below a set 

threshold. 

 

1.1.3 Virtual Reality 

 

Another challenge from the exponential growth of data discussed in Section 1.1.1 concerns 

how to derive insights from the data using current visualisation techniques and technologies 

such as virtual reality (VR). 

VR consists of a combination of software such as 3-D (3 Dimensional) scenes and hardware 

such as head-mounted displays (e.g. HTC VIVE (HTC, 2020))  working together to give the 

user a feeling of being present in a real environment. Virtual reality can be used to replace the 

user’s sense of their physical environment with an artificial environment of choice (Steptoe, 

Steed and Slater, 2013) by enhancing the user’s experience in the virtual environment using 

the components or affordance of VR such as navigation and interaction (Ankomah and 

Vangorp, 2018).  

Virtual reality is characterised by several metrics or components. They include presence, 

immersion, navigation, interaction, knowledge improvements, performance, and usability 

(Ankomah and Vangorp, 2018). These components relate to the measurable benefits, 

outcomes, affordances or what the VR system allows the user to do. Research has suggested 

that increasing the levels of quality of the individual components of VR have different levels of 

benefit on the user’s ability to feel more present in the virtual environment (Cummings and 

Bailenson, 2016). As compared to ablation studies, the affordances are primary components 

of the virtual reality experience and cannot be replaced but rather lowered or increased for 

further research. For instance, taking away the ability to navigate in some VR systems makes 

them unusable as it prevents the user from moving to different parts of the virtual environment. 

The growth of data and the quest to make increasingly optimised decisions from data has 

fuelled the drive towards analysing data in VR. VR is also seen as an emerging frontier for 

visualisation which can preserve much of the data structure and intricacies compared with a 

2-D screen. VR helps with mimicking an immersive virtual world of the data, allowing enhanced 

ability to discover patterns especially in fields such as medicine (Lau, Gupta and Sun, 2021), 
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geology (Yi et al., 2019), space science (Roberts et al., 2015) and environments where high 

dimensional data are the norm for processing. The difficulties in discovering patterns and 

associations in high dimensional data can be partially overcome through the techniques for 

visualisation. For instance, 2-D visualisation does not present enough details for a user to 

discover as much knowledge as 3-D visualisations. Virtual reality also presents an immersive 

experience that enables the user to discover even more insights because of affordances such 

as immersion. VR provides an effective way to integrate the strengths of human beings who 

are good at abstract inference and modern computing machines that possess the capability 

of computing millions of times per second.     

Foo et al. (2009) explain that the use of virtual reality in medical diagnosis followed paths seen 

by other fields such as engineering, computational chemistry, and military training and 

simulation. This shows the obvious increase in using VR in mainstream visualisation. Virtual 

reality is also touted for its benefits in visualising big data (Olshannikova et al., 2015). 

The quest for better ways of processing and visualising data and the challenges associated 

with understanding and getting meaning from data has steered visualisation research and 

impact into exploring and representing data in an immersive virtual reality environment (IVR), 

with ways of interacting with the data.  The virtual reality environment enhances the user’s 

ability to realise better insights since the user is virtually immersed in the data. The immersion 

provided by VR makes patterns discoverable and reveals more discrete patterns, especially 

within high dimensional data. Aspects of VR such as a higher field of view, higher resolutions 

and 3-D viewing capabilities have been found to aid with the speed and accuracy of 

perceptions and interactions in virtual environments (Toet, Jansen and Delleman, 2007, 

Ragan et al., 2015). 

Immersive virtual environments are technically clearly able to show data in detail compared to 

traditional 2-D displays. Moran et al. (2016) reiterate that utilizing emerging technologies of 

today to create a fully immersive tool that promotes visualisation and interaction can help ease 

the process of understanding and representing big data. For instance, Calvelo, Piñeiro and 

Garcia-Fandino(2020) review existing implementations of VR tools for visualising molecules 

to help with understanding the SARS-CoV-2 (Covid19) molecule. The research show the 

importance of the various desktop, web, and HMD based tools for studying and getting insights 

from molecules. Particularly for Zhavoronkov et al., (2020), a VR tool called Nanome was used 

to provide medicinal chemistry analysis on designing and validating covalent inhibitors (drug 

molecules that can bind to the target part or site of a virus molecule) on a particular structure 

of COVID19 (PDB ID: 6W63). The research used a combination of VR and shape matching to 
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show that VR and shape matching algorithms can also facilitate the registration of drug 

molecules to binding sites. This can potentially help with drug discovery. 

In exploring the integration of visualisation toolkits with immersive virtual environments, 

O’leary et al. (2017) highlight the growing body of evidence that demonstrates the measurable 

benefits that can be attained when exploring scientific data using immersive interfaces. The 

research found that the consumerisation of virtual reality and especially its application to non-

gaming VR provides an opportunity for scientific visualisations to tap into the affordances of 

VR (e.g., immersion, knowledge improvements) to gain better insight. The research developed 

plugin extensions to the Visualisation Toolkit (Schroeder, Martin and Lorensen, 1996) that 

provide functionalities for loading 3-D objects to be rendered in VR.  

This research uses the iterative closest point (ICP) algorithm (Besl and McKay, 1992) and 

three proposed variants (KmeansICP, SubsetICP+, and TaggedICP (Ankomah et al., 2020) ) 

developed to register 3-D molecular shapes. The algorithms are evaluated in a desktop 

computer environment. A virtual reality environment is also presented for simulating and 

visualizing the shape matching. 

 

1.1.4 Molecules and Protein Structures 

 

This research does not primarily focus on the intricacies of molecules, proteins, atoms, and 

their structures. However, knowledge from aspects of protein structures is relevant for this 

research as it forms part of the consideration for the development of the shape matching 

algorithms. This section will attempt to give the reader some basic understanding of how 

important and complex these molecular entities are concerning their identification and 

interaction, functions and structural applicability for education, research, drug discovery and 

disease management and control.  

Berman et al., (2000) explains that cells build many complex molecular structures that perform 

different functions together to ensure the organism they inhabit (multicellular organisms 

including humans) continues to function. For instance, some cells break down food (cells in 

amylase enzyme found in saliva breaks down sugars in carbohydrates to glucose), whilst 

others digest food (pepsin in gastric enzyme, produced in the stomach) used to build new cells 

to replace dying ones. Other cells help against diseases (cells in blood platelets produced in 

the bone marrow). Most of these cells form molecular structures that are made up of proteins 

and nucleic acids and the 3-D structure of the protein molecule shows how these structures 

are built and how they fold into molecular machines for performing their tasks (fighting 
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diseases and building new cells) (Berman et al. 2000). For purposes of this work, the internal 

structure of the atom was not considered, but rather the structure of the molecule formed by 

multiple atoms. 

Each molecule is made up of a group of atoms forming a chain and the structure of that chain 

determines the function of that molecule. A molecular biologist studies the structure of proteins 

in 3-D to get a deeper insight into structural changes in the molecule caused by mutations, 

evolutions, or even binding sites of a protein. The knowledge from such a study helps to 

understand occurrences such as viral mutations (viruses changing their molecular structure to 

form new variants e.g. variants of the COVID-19 ), drug resistance (bacterial and viral disease 

cells helps develop the ability to defeat drugs designed to kill them e.g. resistance of some 

antibiotics and malarial drugs (Hemlata and Tiwari, 2015)) and disease control at the 

molecular level. 

1.2 Research Problem 

  

The iterative closest point algorithm (Besl and McKay, 1992) has far-reaching uses which has 

seen interest from researchers to analyse and explore its strengths and limitations (Wang and 

Zhao, 2017). The limitations of ICP include the requirement for a good initial transformation to 

ensure the algorithm converges optimally, the high cost of the correspondence search method 

using a brute force approach to finding the closest point, and the algorithm not converging at 

large rotation angles (Besl and McKay, 1992).   

Specifically for 3D protein shapes, partial or full registration are necessary to study similarities 

between two molecules, e.g two viruses or part of a vaccine bonding to a viral protein shape. 

This requires fast and efficient algorithms to match the often thousands of 3D points.  

 

 

 

1.3 Motivation   

 

The choice of protein molecules as the dataset for this research was due to its complex high 

dimensional nature posing inherent visualisation challenges especially with visualising the 

development, mutations, and interactions of protein molecules. For instance, in the study of 

the interaction of COVID19, virtual reality has been used to gain more insight into the 



19 
 

behaviour of the viral protein which can aid in drug discovery (Calvelo, Piñeiro and Garcia-

Fandino, 2020). The 3D shapes of molecules are registered to study their similarity and help 

with tasks such as development of medicines and vaccines. 

For instance, a typical red blood cell contains 280 million molecules (Berman, et al., 2000). In 

perspective, each molecule is made up of several numbers of atoms forming a chain group. 

The researcher also has some foundation and interests in computational biology. Even though 

this research was primarily interested in matching 3-D molecules with a few hundred atoms, 

the challenges realised will be more prevalent in 3-D datasets with thousands or millions of 

atoms or points. 

Several approaches have been used to detect structural and functional relationships amongst 

proteins. The earliest algorithms were based on sequence information (Schmitt, Kuhn and 

Klebe, 2002) such as comparing pairs of amino acids (molecules) in a protein structure 

(Needleman and Wunsch, 1970). 3-D protein structural comparisons require more 

sophisticated algorithms to capture, visualise and match the structures based on spatial 

coordinates of the atoms. 3-D proteins can be represented as rigid objects where the interpoint 

distances will not change from one view to another. A rigid transformation can be found to 

align them; however, more reliable matches would be attained if the coordinates are 

associated with some predefined properties (Schmitt, Kuhn and Klebe, 2002) such as the 

atom types or sequences. 

The presence of outliers (non-uniform points) can also affect alignment with ICP (Chen and 

Belaton, 2014). Another notable problem is that ICP performs better in some datasets and 

contexts and worse in others. For instance, in registering terrain map data, Donoso et al. 

(2017) finds that shape matching algorithms can better make use of the metadata of the 

shapes to improve the match. Other features could also be extracted to aid in the matching. 

These suggestions require research and experimentation in shape matching algorithms to 

evaluate and validate the use of additional features.  

No matter what algorithms are used, it is always likely for them to fail due to different 

complexities of geometry, magnitudes of transformation, sizes of overlap and distributions of 

outliers. In this case, a human intervention must be involved in one way or another using 

techniques such as virtual reality to visualise and interact with the data. 

Virtual reality, as a new visualisation frontier presents opportunities for new research in 3-D 

User Interface (3-DUI) developments that help judge whether the registration of given 

overlapping shapes is a success and provide intervention if necessary. Further research 

informs the evolution of the technology whilst considering different domains, tasks, and kinds 
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of data for visualisation in virtual reality to be realised. VR can allow humans to intervene in 

by adjusting the initial transformation and shapes to make sure that the shapes can be brought 

into high-quality alignment aided by the affordances of virtual reality such as immersion, 

presence, and navigation.  

 

 

 

 

1.4 Aims and Objectives 

 

The research aims to develop, evaluate and visualise shape matching algorithms based 

on the Standard ICP algorithm (Besl and McKay, 1992) that explores different techniques 

for matching 3-D molecules and visualising the matching in virtual reality.  

 

The objectives of the research are: 

 

1. Gain a critical understanding of similarities, differences, and potential areas for 

improvement in existing shape matching techniques by performing a thorough 

literature review. 

 

2. Gain a critical understanding of the history, current state, and challenges of virtual 

reality through a literature review. 

 

 

3. Develop and evaluate shape matching algorithms based on the Standard ICP 

algorithm. 

 

 

4. Develop a virtual reality visualisation software for visualising and interacting with 3-D 

molecular protein data, allowing exploration of the molecule in immersive virtual reality 

environments.  
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1.5 Original Contribution 

 

The research has reviewed shape matching algorithms and virtual reality. The review has 

shown that data visualisation gains better insight with immersive virtual reality. The novel 

nature of VR for data visualisation means that applications such as Iterative Closest Point 

Virtual Reality Application (ICPVR) contributes to advancing data visualisation in virtual reality. 

This is achieved with the development of an application that allows details of a shape matching 

process to be observed and interacted with. The research has also developed and evaluated 

three variants of the ICP algorithm using different techniques to improve the matching process.   

 

 

Contribution 1: Literature 

 

The research has contributed to existing knowledge on virtual reality by reviewing, 

identifying, and classifying virtual reality according to identified metrics in “Virtual Reality: A 

literature review and metrics-based classification” (Ankomah and Vangorp, 2018)”. The 

publication is a good knowledge base for virtual reality researchers to understand the core 

affordances of virtual reality. The article combines applications and use-cases of virtual 

reality with research agenda for progressing the technology. The reviewed limitations of 

virtual reality also show researchers what areas of the technology need to be addressed. 

The research has also contributed to 3-D shape matching literature and particularly research 

on ICP algorithms, with an extensive review on shape matching algorithms and the 

development and publication of a variant of ICP algorithm for matching the 3-D structure of 

proteins in “TaggedICP: An Iterative Closest Point Algorithm with Metadata Knowledge for 

Improved Matching of 3-D Protein Structures” (Ankomah et al., 2020)”.  
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Contribution 2: Algorithms 

The research has developed and evaluated 3 variants of the iterative closest point algorithm.  

 

KmeansICP : An ICP algorithm variant, implementing k-means (Krishna and Narasimha Murty, 

1999) partitioning to reduce the correspondence search space and improve its computational 

efficiency. 

 

SubsetICP+ : An extension of SubsetICP (Chen, Belaton and Pan, 2013) using atom types for 

partitioning and improving the match quality by selectively skipping some transformations for 

improved performance and efficiency. 

 

TaggedICP (Ankomah et al., 2020): A variant of the ICP algorithm that uses metadata 

information or tag information (atom type and neighbourhood information of the point) for 

partitioning the correspondence search space. This can be used to improve shape registration 

when considering the use of some metadata. TaggedICP demonstrates how to use metadata 

information to aid in the matching of 3-D structures for improved robustness. 

 

 

Contribution 3: Shape Matching Virtual Reality Application 

 

The research has also developed a virtual reality application using Unity3D (Unity 

Technologies, 2019) and Microsoft C# that allows immersive visualisation, comparison, and 

evaluation of 3-D shape matching algorithms. The Unity application, Iterative Closest Point 

Virtual Reality Application (ICPVR), allows a user to use compatible VR headset and hand 

controllers to easily interact with the 3-D shapes (setting initial transformation) before 

performing a shape match. ICPVR also allows any shape matching algorithm or 3-D shape 

to be loaded and visualised in Unity3D with some level of configuration. 

ICPVR can help visualise the whole registration process and intervene, when necessary, by 

providing more accurate initial transformation and adjusting the registration results, so that the 
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algorithm finally converges to the global optimal solution through both qualitative judgement 

and quantitative measurements. This process has the advantage of combining the strengths 

of both humans and computers in cognitive judgement and powerful computation.     

The development of the virtual reality shape matching environment provides an application 

that enables other researchers to do further user experimentation on the three-dimensional 

(3-D) user interface as well as improve the base application with several other features.  

 

1.6 Methodology 

 

1.6.1 Introduction 

 

This research developed three (3) variants of the ICP algorithm using techniques such as k-

means clustering which uses the k-means technique to partition the model search space and 

reduce the computational cost, the subset technique for registering corresponding pairs of 

subsets from the shapes to be matched and using known information to add a constraint to 

make the matching more meaningful.  

A virtual reality application, called ICPVR was also developed to allow the shape matching 

process to be visualised, allowing the user to be immersed in viewing the overlaps between 

the shapes. 

Details of the research methodology consisting of the domain analysis, selection of methods 

and tools, solution development, and evaluation are discussed in the next sections. 

 

1.6.2 Domain Analysis 

 

The research was placed in the right context by highlighting the problem of ICP and 

extensively reviewing relevant literature on shape matching and virtual reality. This stage was 

very important as it ensured a better understanding of the related research work, scope, 

challenges, and limitations. This understanding was very important in achieving the project 

objectives. 

The focus of the research was on shape matching with the Iterative Closest Point Algorithm 

(Besl and McKay, 1992), variants of ICP, and visualisation in virtual reality. The research was 
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interested in developing different variants of the ICP algorithm that improves the performance 

and quality of a match over standard-ICP on 3-D molecular structures as well as an application 

to visualise the matching in immersive virtual reality. 

Data visualisation is an important aspect of this research. Particularly, the research was 

interested in the advanced frontiers of visualisation which has virtual reality as an important 

platform for creating and presenting visuals that overcome the barriers of traditional 

visualisations such as display size and interactivity.   

3-D user interfaces are constantly being evaluated for their effectiveness in different 

visualisations, as such, this research’s focus on a VR application to match 3-D shapes 

embodies the core objectives of the research and aligns the analysis in a way to achieve the 

objectives. 

 

 

 

 

 

1.6.3 Methods and Tools 

 

An extensive literature review on 3-D shape matching and virtual reality was performed. 

Several implementations of ICP were reviewed. Early stages of the research found that 

enhancements had to be made to the ICP algorithm to improve some steps of the algorithm 

and to solve the identified problems of shape matching with ICP and achieve the aims and 

objectives of the research. The options available were to review and adapt an existing 

implementation of ICP suitable for matching shapes of 3-D protein structures or build an 

implementation from scratch using the original ICP algorithm (Besl and McKay, 1992).   

The research reviewed some ICP implementations developed using C# and C++ so that they 

can easily be modified and visualised in the Unity3D environment. The approach was largely 

interested in implementations that can be modified to include changes to different steps of the 

algorithm. Libpointmatcher (Pomerleau et al., 2013) is an implementation of ICP used in 

robotics, developed in C++. Libpointmatcher was initially reviewed and tested. It was able to 

successfully match shapes. The source codes were available, and the research needed to 

modify the Libpointmatcher source codes and recompile them. Recompiling in C++ always 
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showed errors with multiple dependencies. The codebase was deemed high risk to use, as it 

was not clear whether it would work properly. 

Pointmatcher.net was also reviewed. Pointmatcher.net is an implementation of ICP using the 

Libpointmatcher binaries but developed in C#. It had a minimal set of filters available and was 

less extensively tested and optimised. This implementation was also deemed less ideal. 

Other smaller libraries were reviewed in quick succession and the best course of action was 

found to be developing an implementation of ICP from scratch using the original ICP algorithm 

(Besl and McKay, 1992). This approach meant that the evaluation of the developed algorithms 

will otherwise not be affected by existing changes which will maintain its simplicity. 

Another condition that existing implementation had to meet was to be able to work in Unity3D 

(Unity Technologies, 2019). Unity3D was selected as the implementation and visualisation 

environment because amongst other things, it supported the target programming language 

(C#). Unity3D is a popular game engine. It presents a development environment with a 

coordinate system and several primitive shapes. The Unity3D application allows scripts to be 

written in C# to connect to inbuilt APIs that enable interaction with objects by applying 

transformations to rotate, translate, scale, and reflect objects. The environment also provides 

a rich toolset for creating 3-D virtual environments with interactable objects. 

 

 

Figure 1.1  Visual Studio 2019 Community code view of the Unity3D project. (1) Code editor showing the currently opened 
script. (2) Solution view showing the hierarchy of scripts and their folders. 
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Figure 1.1 shows the Visual Studio 2019 code editor used for developing and debugging the 

shape matching algorithms, and visualisation and animation scripts. It presents an interface 

for writing code elements and debugging errors amongst other features. 

 

Based on the limitations identified from the research and testing done with some existing 

implementations of ICP, the research developed the code from scratch using the original ICP 

algorithm (Besl and McKay, 1992) publication. The rationale was to allow complete flexibility 

in experimenting and enhancing different parts of the algorithm. It was also to give an in-depth 

experience to the researcher compared to the experience realised in implementing an existing 

codebase. This method was also a better way of objectively measuring the proposed 

enhancements to be made to the ICP algorithm compared with implementations that would 

have already enhanced the algorithm in different areas. The idea was not to pick the fastest 

ICP algorithm out there and improve it, but rather to understand the algorithm and develop 

several enhancements to the most time-consuming methods for matching and visualising 3-D 

proteins. 

The research also aimed at designing and developing a utility virtual reality application that 

can be used to visualise a shape matching process using the ICP variant algorithms in virtual 

reality. This aspect of the research was meant to improve 3-D user interface research and 

enable the user to interact with the 3-D objects whilst being immersed in the virtual 

environment as well as investigate how the overall shape matching can be improved with 

virtual reality visualisation. 

  

1.6.4 Solution Development 

 

The solution development phase considered the domain analysis and methods and tools to 

come up with an approach to the research objectives and the identified gaps from the literature 

review.  

Three (3) variants of the ICP algorithm were developed that primarily focused on techniques 

such as reducing the number of corresponding searches by optimising the partitioning and 

making use of additional metadata available to aid in the matching. These changes were 

aimed at improving the overall performance of the ICP algorithm in both accuracy and 

efficiency. 
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The search for correspondence method of the ICP algorithm (Besl and McKay, 1992)  was 

targeted as a part of the algorithm to improve because it has a high computational cost 

(𝑂(𝑁𝑥𝑁𝑝)  for 𝑁𝑝 points in the data shape and 𝑁𝑥 points in the model shape). This cost 

increases with the increasing number of points. This is because, for each point in the data 

shape, the corresponding closest point in the model shape must be found. The high 

computational cost slows down the algorithm with the increasing number of points in the 

shapes. This slowdown can largely affect the performance and applicability of the algorithm 

and especially the real-time interaction in VR when the number of points in the shape 

increases. This means that optimisations made to the search for correspondence will have a 

critical impact on the overall performance of the algorithm by reducing the computational cost. 

The limitations of ICP motivates the development of its variants. For instance, TaggedICP 

(Ankomah et al., 2020) uses the metadata (tag) information of the point to improve the 

matching by finding corresponding points based on matching tag information. This makes the 

matching meaningful as well as reduces the corresponding search space by limiting the search 

space using atom type partitions. 

The limitations of ICP also motivated the focus on partitioning strategies for the developed 

variants of the algorithm. All the algorithms made use of some sort of partitioning because it 

reduces the number of points processed in the corresponding search method. Using only a 

subset of points in the corresponding search space improves the performance of the algorithm 

by reducing the time taken for the correspondence search method to complete for each 

iteration. SubsetICP+, KmeansICP and TaggedICP (Ankomah et al., 2020) partition the points 

differently to reduce the correspondence search space. 

 

1.6.5 Evaluation 

 

A virtual reality application, Iterative Closest Point Virtual Reality (ICPVR) was developed 

using Unity3D (Unity Technologies, 2019) and Microsoft C#. The application allows the 

different ICP algorithms developed as part of the research to be evaluated for a comparison 

of their improvements over the standard ICP. The visualisation in VR also allows the qualitative 

evaluation of 3-D user interfaces using the software for testing shape matching algorithms.  

The desktop version of ICPVR was used to evaluate the performance of the algorithms and 

generate performance data on the algorithm such as the details of convergence and the match 

quality of the shape matching. The data was then used to plot the analysis graphs. The 

research was particularly interested in the number of iterations each algorithm took to 
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converge at different initial rotation angles as well as the quality of the match in terms of the 

final distances between corresponding points. It was also interested in the animation of the 

shape matching process showing the evolution of the shape over the iterations. The 

registration process was real-time meaning the user instantly gets to see the updated data 

point cloud after a computed transformation has been applied to it on both desktop and VR. 

The user is then able to see the shapes transformed after each iteration is complete in a 

seamless animation. 

The research was interested in showing how the convergence and match quality data were 

able to show whether algorithmic changes made to the developed variants show performance 

improvements in terms of faster convergence or a better quality of the match. This was done 

with a combination of convergence graphs, match quality graphs and final matched shapes of 

the point clouds. 

The research was also interested in how the shape matching visualisation will perform in 

virtual reality and particularly what tweaks or adjustments needed to be done to ensure a 

smooth visualisation and registration of the structure of 3-D proteins. The VR application 

provided an environment where interaction with the 3-D protein structures was enhanced 

compared to the use of a traditional mouse and keyboard. The use of natural hand gestures 

using the VR hand controllers provided a seamless way of interacting with the 3-D proteins 

that mimicked the use of natural hands. The research was interested in understanding how 

the affordances of VR such as immersion provided by the VR application benefits the task of 

shape matching as well as how the 3-D UI helped with the quick intervention, evaluation, and 

comparison of the shape matching algorithms. 

 

 

1.7 Thesis Structure 

 

Each chapter of the thesis was written to focus on its core discussion, remaining as 

independent as possible from other chapters but still showing a gradual link between them.  

 

Chapter 1: Introduction 
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The introduction chapter gives the reader the background of the research. It introduces key 

terminologies and concepts that are central to the research. It explains the research 

motivation, aims, objectives, methodology, and how the research objectives have been met. 

 

 

Chapter 2 – Literature Review on Shape matching 

 

The shape matching chapter discusses the concept of shape matching. It discusses, 

compares and contrasts the different shape matching algorithms before delving into the 

algorithm of interest to this research, the standard ICP algorithm (Besl and McKay, 1992). 

 

Chapter 3 – Literature review on virtual reality (VR) 

 

The virtual reality chapter evaluates virtual reality. It discusses the history of virtual reality as 

well as the latest advances in virtual reality technology. The chapter exposes the reader to 

several applications and use-cases of virtual reality. The research also further explains the 

metrics or affordance of virtual reality. 

Chapter 4 - Proposed ICP Variant - KmeansICP  

 

This chapter discusses KmeansICP. It highlights the design and computational steps involved 

in the algorithm as well as the computational complexity. 

 

Chapter 5 - Proposed ICP Variant - SubsetICP+ 

 

This chapter discusses Subset-ICP+. It highlights the design and its computational steps 

involved in the algorithm as well as the computational complexity. 

 

Chapter 6 - Proposed ICP Variant - TaggedICP  
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This chapter discusses TaggedICP. It highlights the computational steps involved in the 

algorithm as well as the computational complexity. 

 

Chapter 7 - Experimental results and analysis 

   

This chapter details the tests done to compare the ICP algorithm variants. It shows the 

different match quality and convergence graphs and provides a detailed interpretation of the 

graphs. It compares whilst providing a critical discussion on the effects of the techniques used 

in the algorithms. 

 

Chapter 8 -   Iterative Closest Point Virtual Reality Application (ICPVR) 

 

This chapter discusses a virtual reality application, ICPVR that allows the developed variants 

of the ICP algorithms to be visualised in registering 3-D protein datasets. 

 

 

Chapter 9 - Conclusion and future work 

 

This chapter concludes the thesis by summarising the work done and contrasting it with the 

aims and objectives of the research. Suggestions for future work are also detailed in this 

chapter.  

 

1.8 Publication List 

 

The research has published 2 outputs on virtual reality and ICP algorithm respectively. 

 

Virtual reality: 
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                ANKOMAH, P. and VANGORP, P., 2018. Virtual Reality: A literature review and 

metrics-based classification. Proceedings of EG UK Computer Graphics & Visual Computing, 

pp. 173-181, 2018      

 

 

ICP Algorithms and 3-D Shape Matching: 

 

ANKOMAH, P., VANGORP, P., BEHERA, A., and LIU, Y., 2020. TaggedICP: An Iterative 

Closest Point Algorithm with Metadata Knowledge for Improved Matching of 3-D Protein 

Structures. Proceedings of the Irish Machine Vision and Image Processing Conference, pp. 

37-44, 2020 

 

 

1.9 Summary 

 

The introduction chapter has detailed the scope of the research. It has highlighted the 

research’s focus on 3-D shape matching and visualisation in immersive virtual reality. The 

research has developed and evaluated shape matching algorithms based on the Iterative 

Closest Point Algorithm (Besl and McKay, 1992). It has also developed a virtual reality 

application for shape matching that can be used for quickly interacting and matching 3-D 

shapes. 
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PART 2: LITERATURE REVIEW 

2 CHAPTER 2 SHAPE MATCHING 

 

2.1 Introduction 

 

This chapter presents a review of shape matching to advance the user’s knowledge in this 

area. It discusses shape matching especially in the context of matching 3-D shapes. It details 

some techniques used in shape matching algorithms such as the use of neural networks and 

additional metadata. It also highlights challenges and possible solutions for the reviewed 

algorithms. It then focuses on the Iterative closest point algorithm (Besl and McKay, 1992). 

The strengths and limitations of different variants of the ICP algorithm are also discussed as 

well as its use in different industries such as Medicine for medical image analysis (Sinko et 

al., 2018), Education, and other fields. This chapter forms the base knowledge for exploring 

different techniques in the variants of ICP developed and it attempts to achieve objective two 

(2), “Gain a critical understanding of similarities, differences, and potential areas for 

improvement in existing shape matching techniques by performing a thorough literature 

review”. 

 

 

2.2 Background 

 

In the area of 3-D protein structural comparison, Bender et al., (2004) proposed an Atom 

Environment based approach to molecule similarity searching that combines using atom 

descriptors such as volume and 3-D geometrical information with a selection of atom features 

such as fingerprints (e.g. signature of the molecule based on the count of a particular atom), 

using a distance function (e.g. Manhattan distance), and a Naïve Bayesian Classifier. The 

approach was evaluated on the MDDR (MDL Drug Report) dataset on a series of similarity 

search tests, and it showed strong performance in terms of fast retrieval of molecules from the 

MDDR database.  

Similarly, Eckert and Bajorath (2007) reviewed the performance of molecule similarity search-

based algorithms. The research discussed approaches such as fingerprints (representing 

molecular structures and properties using a sequence of bits), 3-D similarity methods (e.g., 
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shape matching algorithms), and descriptor-independent similarity methods (e.g., Histogram 

comparisons). The research found that molecular similarity searches are important in many 

forms of designing or identifying compounds and there is a need for novel algorithms to be 

designed especially for navigating high-dimensional molecules and detecting relationships 

between them. This is also necessary for drug design.  

Zhou, Jiang and Zheng, (2009)  explained that similarity matching on the structure of protein 

molecules is important because the structure preserves more information than the sequence 

and investigating the structures can help discover insights into the functions of the proteins. 

The research proposed an angular invariant (not affected by the angle of rotation) feature for 

the registration of 3-D protein structures. The angular invariant feature vector is composed of 

the normal of a data point and its k-nearest neighbour. This approach is invariant to translation, 

rotation, scale, and affine transformations presenting some strengths over the standard ICP 

algorithm, however, the limitations are not clearly tested, for instance, how the algorithm 

performs in the presence of outliers and noise. 

Another approach to 3-D protein structural comparison involves modelling the structure using 

a technique called Triangular Spatial Relationship (TSR) (Kondra et al., 2021). TSR uses 

triangles to represent substructures of the protein shape by selecting a representative atom, 

computing all possible triangles that can be formed out of the atom, and calculating a key for 

each triangle. This approach allows shape comparison without superimposing the two shapes 

but rather comparing the computed keys to detect similarities in substructures between 

shapes. TSR has advantages over approaches that use atom types, their coordinates, and 

atomic distances to find similarities between regions of the protein structure by allowing 

flexibility in the comparisons, for instance, structural changes can alter certain regions of a 

protein shape. In the atomic distances approach, this will result in a comparison returning 

dissimilarity between these regions, however, using TSR, these regions (similar but not 

identical) can be assigned identical keys which goes a long way to show some inherent 

similarity. 

Other similarity tests for 3-D protein structures include the Jaccard/Tanimoto coefficient or 

statistical significance measuring similarity between two organisms by comparing the ratio of 

their intersection to their union to identify the presence or absence of biological data (Chung 

et al., 2019) and (Tabei and Puglisi, 2017). 

Registration (matching two shapes) involves matching two shapes so that they can be overlaid 

on each other. The aim of registration is also to best align a shape or multiple instances of 

shapes to have them in a partial or fully overlapped position. This can also be seen as finding 

an optimal transformation that can align two views of an object (Chen and Medioni, 1992). 
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Usually, registration involves attempts at matching the data shape (reference) and the model 

shape (template or target). In this project, only rigid 3-D protein shapes were considered. In 

this case, the underlying transformation that aligns one shape with the other can be modelled 

as rigid, consisting of a rigid rotation matrix and a translation vector. The interpoint distances 

between atoms in the overlapping area will not change from one dataset to another. The 

registration process usually involves processes of computing and applying optimal translation 

and rotation operations on the data shape repeatedly until it aligns well with the model shape.  

Agarwal and Bhowmick (2017) proposed an approach to shape registration that improves on 

the existing Gravitational Approach (GA) to point cloud registration (Golyanik, Ali and Stricker, 

2016). GA assumes that each point in the data point cloud attracts each point in the model 

point cloud using a gravitational force based on properties of the point and its parent point 

cloud, for instance, the centre of mass, the mass of the point cloud, and velocity of the previous 

iteration. The performance of GA was found to decrease with increasing rotation of more than 

45 degrees since the main principle of the GA is to minimise the distance between the centre 

of mass of the shapes. Agarwal and Bhowmick (2017) focused on unifying two approaches 

(GA approach and the usual objective of registration) by combining the minimisation of the 

distance between the centre of mass of the two shapes and aligning the two objects in an 

overlap position. The research found that the improvements to GA were robust against the 

mass of outliers so that the registration process becomes more dependent on the shape than 

on the mass of the shape. 

 

2.3 Shape Matching Algorithms  

 

One of the earliest accounts of shape matching was by Fischler and Bolles (1981). The 

research focused on object location and recognition in 3-D space for robotics and navigation. 

The research further developed a method called the Random Sample Consensus (RANSAC) 

for matching a template to experimental data. This method is based on the maximum 

consensus registration method that solves the minimisation problem by finding the largest set 

of correspondence that match a generative model (a model of the conditional probability of 

one model from another model). The method is noted to work well with data containing some 

errors and thus suited for processes such as automated image analysis with images having 

some errors. RANSAC works by comparing one model to a small subset of the data at a time 

whilst increasing this subset to cover large portions of the model or scene.  
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RANSAC has been applied to the shape registration problem in several pieces of research. 

Hossein-nejad and Nasri, (2016) explored the use of an improved RANSAC algorithm in the 

object registration process to eliminate mismatches between corresponding features. The 

research used the Scale-invariant feature transform (SIFT) method to match features in two 

images. SIFT can effectively identify features in images with noise, varying light intensities, 

rotations, and scale changes. SIFT is also known to suffer from large numbers of mismatches 

in the image registration process and RANSAC had been identified as one of the most 

applicable methods for removing the mismatches (Fischler and Bolles, 1981). Hossein-nejatd 

and Nasri (2016) identified that changing the threshold value (the number of matching points 

needed to assume data and model are a match) of the original RANSAC algorithm resulted in 

different and often worse matching rates and mismatches. The research showed that setting 

RANSAC to a threshold of 1 (meaning images are a match when there is a match between 

one feature in both images) resulted in the algorithm eliminating mismatches as well as some 

correct matches. An improved RANSAC algorithm (Adaptive RANSAC) is treated as a 

classification problem by considering the mismatches and correct matches in determining an 

adaptive threshold value. The research found that the adaptive RANSAC algorithm eliminated 

a small number of matches alongside the mismatches which is an improvement in using the 

original RANSAC algorithm for removing mismatches. 

RANSAC has also been applied to registering partially overlapping 3-D range images (Chen, 

Hung, and Cheng, 1999). Chen et al. (1999) extended the RANSAC algorithm by suggesting 

the data-aligned rigidity-constraint exhaustive search (DARCES). DARCES improves on 

RANSAC by not requiring any pre-processing nor initial estimates for registering 3-D shapes. 

It begins the registration process by randomly selecting a primary control point, then the 

secondary and auxiliary points are selected in such a way that three (3) control points form an 

acceptable minimal triangle. Other control points are also selected such that they form a bigger 

triangle around the acceptable minimal triangle. The researchers experimented with capturing 

four range images (Images from a sensor device that usually represents the distance from a 

point to a particular scene using pixels) having a total of 4200 points each and belonging to 

two (2) separate images and registering into a 3D object. The RANSAC-based DARCES was 

able to register both images in a process that checked all possible data alignments of the 

datasets without requiring any additional features nor consideration of a good initial estimate. 

However, DARCES was not found to always be suitable for registering partially overlapping 

images with more than three (3) control points because of the potential of using control points 

found outside the overlap region due to the complexities and sizes of a shape.  
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RANSAC has been extended to other shape registration such as 3-D point cloud plane 

segmentation using Normal Distribution Transformation of Cells (NDT - assigning a normal 

distribution to a cell which models the probability of measuring a point). This technique divides 

a point cloud into planar and non-planar grids for registration (Li et al., 2017). More recently, 

RANSAC has been improved with a technique that reduces the randomisation of the 

hypothesis set (Rahman, Li and Yin, 2019). 

Faugeras and Hebert (1986) focused on recognising and locating 3-D objects from range data 

and other 3-D models. The research identified rigid shapes to be best represented with linear 

primitives and recognition and locating objects in 3-D space to be a major useful task. 

Mora et al. (2016) explained that registration methods can be applied to both rigid and non-

rigid shapes. Rigid shapes are shapes that do not change their structure or scale in the 

presence of transformations because the whole shape is affected by the same transformation. 

Rigid shapes can only be translated to a different place or a different orientation. Non-rigid 

shapes are however flexible, and their structures and scale can be changed with the 

application of different transformations. 

Rigid transformations such as rotations and translations are applied to rigid shapes with 

invariant interpoint distances in the overlapping areas of the given shapes whilst non-rigid 

transformations such as scaling are applied to non-rigid shapes. Non-rigid transformations 

usually change the structure of the shape applied. For instance, scaling transformations 

change the size of the objects, making them bigger or smaller. Shear transformations also 

push objects towards one side.  Non-rigid transformations usually consider a larger solution 

space because of the possibility of deformations due to their non-uniform transformations.   

Shape matching algorithms can be classified into coarse and fine-grained. Coarse-grained 

registration is used to provide a rough and quick estimate of the matching whilst fine-grained 

is used to iteratively register shapes more accurately (Mora et al., 2016). 

It is also noted that different types of registration methods may work in different domains. For 

instance, when dealing with image data registration, it is suggested that multiple algorithms 

can be integrated into a system that can decisively adopt a particular mixture of techniques to 

register them (Guan et al., 2020).  

Brown (1992) explained that all registration methods consist of varying implementations of 

four (4) basic components, feature space, search space, search strategy and a similarity 

measure.  The feature space consists of implementations for extracting information that will 

be used for the matching. This information (features) includes spatial coordinates of points, 

orientation features and other available metadata.  
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The search space is the group of transformations that can be used to align the shapes. For 

instance, rigid transformations such as translation and rotation can be used to align rigid 

shapes whilst non-rigid transformations such as scaling can be used to align non-rigid shapes. 

The search strategy refers to how the next transformation is to be chosen from the applicable 

space (rigid or non-rigid transformation) including the considerations to be made in choosing 

the transformation to be tested for the optimal transformation before applying to the shape. 

The similarity measure evaluates each test (each series of applying transformations) and 

determines the extent of the match based on the value of the next transformation. For 

instance, if the next optimal transformation to align the two shapes is the zero transformation, 

the results will be deemed to be in a fully overlap position. Another similarity measure is the 

error metric that computes the misalignment error between the two shapes and deems them 

a match when that error metric is appropriately small. 

Myronenko and Song (2010) also explained that certain qualities are necessary for a workable 

registration algorithm including the ability to compute the transformation to align the shapes 

flexibly and easily, the ability to work with high dimensional data sets, and the ability to 

effectively handle noise and unwanted points. In today’s multifaceted data, the ability of 

registration algorithms to register partial shapes is an added strength. 

The ability to compute the transformation is basic to all registration algorithms as 

transformations are the property required to progressively align the two shapes. Aligning these 

shapes flexibly and easily allows this process to be easily modified based on changing 

conditions and often complex requirements. The ability to handle noise and unwanted points 

makes the shape matching algorithms more robust. 

A registration algorithm’s ability to work with high dimensional datasets allows it to be used in 

current registration challenges, often involving complex data such as 3-D medical objects. 

Also, effectively handling noise, outliers and deformations are common in today’s shape 

registration because of the increasing complexity of the available data, applications and in 

some instances presence of noise. 

With a focus on fine-grained registration algorithms that register shapes more accurately and 

depending on the transformations required and the complexity and structure of the data, 

different algorithms are usually considered (Temerinac-Ott, Keuper and Burkhardt, 2010). 

These algorithms may include robust point matching (Gold et al., 1998), thin plate spline robust 

point matching(TPS-RPM) (Chui and Rangarajan, 2003), kernel correlation (Tsin and Kanade, 

2004), Gaussian mixture model (Jian and Vemuri, 2011), sorting the correspondence space 

(Assalih, 2013),  Bayesian coherent point drift (Hirose, 2020), probability density estimation 
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based Coherent Point Drift (CPD) (Myronenko and Song, 2010) and the Iterative Closest Point 

(Besl and McKay, 1992). 

The robust point matching method (Gold et al., 1998)  was designed to work effectively on 2-

D or 3-D point sets, rigid or non-rigid shapes, with noise. It is a fast, robust, and flexible 

algorithm that makes use of a combination of different optimisation techniques such as 

softassign (Kosowsky and Yuille, 1994, Rangarajan, Chui and Bookstein, 1997) also referred 

to as “soft correspondence” (each point in one point cloud corresponds somehow to every 

point in the other set by some weight ) which has emerged from neural networks. Robust point 

matching works by minimizing an analogue objective function (cost function) describing the 

registration problem. The cost function is constructed for 2-D and 3-D registration problems, 

and it is structured in a way that uses match matrices to represent correspondence of one set 

of points to another. Softassign is noted to be slow and complex especially for registering 

thousands of overlapping 3-D points (Parekh et al., 2015). This limitation was improved for 

efficiently registering sparse and dense points in a free form shape by using one-way or two-

way closest points constraint in conjunction with mean field annealing (Liu, 2006). The one-

way refers to the traditional mapping of one point in the data shape to another point in the 

model shape, whilst two-way constraint correctly assumes that the point in the model point 

cloud is also a correspondent in the data point cloud. If both sides of the point clouds are 

considered this way, it results in a complex two-way constraint. The mean field annealing was 

found to be more computationally effective than the rigid constraints for evaluating possible 

point matches. One-way constraint matching is often less computationally expensive than two-

way constraint matching.  

Chui and Rangarajan (2003) proposed a feature-based general-purpose non-rigid registration 

method, thin-plate spline robust point matching for non-rigid shape registration that can 

successfully register features whilst rejecting outliers (non-uniform) points appropriately. This 

method was based on robust point matching (RPM) (Gold et al., 1998)  and spline-based 

deformations (Bookstein, 1989, Wahba and Pennsylvania, 1990). The research developed the 

thin-plate spline robust point matching algorithm because it can be considered as a natural 

non-rigid extension of the affine transformation. 

Kernel correlation (KC) (Tsin and Kanade, 2004) was an extension of using correlation to 

match point sets. Correlation involves using some appearance information of the shape to 

align objects (2 or more shapes with different colour intensities, usually, same shapes taken 

from different cameras or sensors). The research found that correlation is not very good at 

matching shapes given only the point sets. Attempts to do this involves treating the structure 

as binary intensity images which are limited to representing them as 1 (structure present) or 0 
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(structure absent). This technique means that when noise is present, the images would not 

match, as such kernel correlation, as a similarity measure seeks to solve this problem by 

finding the maximum kernel correlation configuration of the two point sets. KC was evaluated 

and found to easily enable easy convergence of a shape in noisy or noiseless environments 

compared to standard ICP. This was because of the smoothness provided by weighting the 

contributions of multiple links between a point and its neighbours. 

Jian and Vemuri (2011) proposed an approach to registering point sets with huge amounts of 

noise and outliers (non-homogeneous points) using the Gaussian mixture (probabilistic way 

of grouping data points based on their similarities). The approach represents both point sets 

as a gaussian mixture and the registration was aimed at aligning the mixtures. The approach 

works by measuring the similarity of two point sets by considering their continuous 

approximations. Since this approach is based on Gaussians, the computational complexity for 

rigid transformations is usually O (𝑚𝑛) with n Gaussians and m control points. For non-rigid 

transformations, this is largely dependent on the number of control points. A dense spacing of 

control points allows flexible non-rigid deformations to be registered than the sparse spacing 

of control points.  

Shape registration algorithms that represent the shapes as point clouds can be classified into 

spectral, Iterative, and probabilistic methods (Assalih, 2013). Assalih (2013) developed an 

approach to matching 2-D sonar images using their 3-D representation called Sorting the 

Correspondence Space (SCS). The approach involved sorting the correspondence search 

space and attempting to solve the registration problem for registering SONAR images (using 

sound waves to measure the distance of objects). The research designed and evaluated a 

real-time 3-D reconstruction system that used multiple sonar views to get different 

perspectives of the object. The approach was able to register rigid and non-rigid shapes with 

large amounts of outliers. The algorithm was also found to be intelligible, robust against 

outliers, and fast towards issues with estimating 3-D motion from 2-D sonar images such as 

limited number of detectable features to match, representation in the 3-D motion sequence, 

and the low signal-to-noise ratio (SNR) of 2-D sonar imagery. The computational complexity 

of the SCS algorithm was found to be 𝑂 (𝑁 log  (𝑁)). 

Myronenko and Song (2010) developed a registration method based on a probabilistic 

approach (Assalih, 2013) called the Coherent Point Drift (CPD). It considers the matching as 

a probability estimation problem. One shape represents the Gaussian Mixture Model (GMM) 

(a complex probability distribution that is a combination or mixture of 3-D Gaussian 

distributions centred on each point) and another shape represents the data point cloud. The 
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first point cloud is iteratively transformed to maximise the probability that the other point cloud 

was randomly generated from the GMM.  

The GMM is iteratively fit to the data model by maximising the likelihood and this allows the 

probability of a point being part of any Gaussian to be determined. Every data point in 

Gaussian has a degree of uncertainty, which is the probability that a point could be generated 

by the Gaussian cluster. Each Gaussian in the mixture of Gaussians is made up of; 

1. The centre or mean of the Gaussian  

2. A covariance matrix that represents the width or size of the Gaussian 

3. Weight of the Gaussian function  

 

In Point Cloud Registration, the correspondence between point clouds is not explicitly known. 

This means that the closeness can be found for one point based on the correspondence of a 

point to another through a probability, with spatially closer points, having a higher 

correspondence probability than farther points. 

Assume two-point clouds, X, with points x1, x2, x3, coloured in red and Y, with points y1, y2, 

y3, coloured in green. Figure 2.1 shows the known correspondence between the points where 

we indicate this with dashed lines, however, the algorithm has no prior knowledge of this 

correspondence and only assumes that spatially closer points are corresponding points. 
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Figure 2.1 A point cloud (x1, x2, x3, x4, and x5 points) and corresponding point cloud with points (y1, y2, y3, 

y4, and y5 points) showing their point pairs with dotted lines depicting correspondence based on proximity 
of points. Points y4 and y5 find the same correspondence, x5 and point y3 map to x4 due to the shortest 
distance between the points and not necessarily the true matches. 

 

Figure 2.1 shows two point clouds, X and Y with points in red and green, showing 

correspondence between points. Since correspondence is not explicitly known but rather 

implied in the algorithm based on the spatial distances or proximity between the points, an 

approximate match can be assigned to a point based on their proximity. This means that there 

is the possibility of wrong matches (x4 and y3) and multiple points with the same match (y4 

and y5) 
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Figure 2.2 The red point cloud represents the data point cloud and also the centroids. The green point cloud represents the 
model point cloud as well as the data points in the gaussian mixture model. The blue points represent a particular gaussian 
centroid in focus and all the green points (data points in that gaussian). An Expectation Maximisation process calculates the 
mean vectors and covariance of each distribution (Gaussian) to update the Gaussian mixture (data point cloud). By 
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iteratively updating the position of the centroids based on the mean vector and covariance of the data points (data point 
cloud), the centroid positons in the data point cloud (LHS) move towards the model point cloud (RHS) by applying the 
computed transformation to all the points in the data point cloud (centroids).  

 

From Figure 2.2, the Gaussian mixture model’s centroids are represented as points in the red 

point cloud (the data point cloud) and the data points in the Gaussian distribution are the points 

in the model point cloud (green point cloud). Using an expectation maximisation technique to 

compute the mean vector and covariance matrix of each gaussian and re-updating the 

centroid locations results in the centroids (data points) to get closer to the model point cloud 

(Gaussian distribution data points). This process attempts to find the likelihood that the data 

points (model point cloud) were generated from the data point cloud. CPD uses this process 

to end up registering the two shapes. 

 

Using the approach of correspondence probability, the coherent point drift treats one point 

cloud say X, as the GMM and the other point cloud, Y as the point cloud obtained from the 

GMM. The coherent point drift algorithm uses expectation maximization (EM) to solve the 

problem of computing correspondences between the moving or changing GMM point cloud 

(moving because of recalculation of centroids locations) and the fixed-point cloud observed 

from the GMM. The Expectation maximization enhances the probability that the fixed-point 

cloud Y was obtained from the GMM by enhancing the probability of points and their 

correspondence. 

 

Figure 2.3. Image registration with some level of noise using the Gaussian Mixture Model. a) Image series shows sub-sampled 
data by cutting off parts of the red and blue bunnies. b) Image series shows the addition of random unwanted points. shapes 
are registered correctly in the presence of the noise and missing data.  Myronenko and Song (2010). 

The image registration using the Gaussian Mixture Model in Figure 2.3  Is an extract from 

Myronenko and Song, (2010). It shows the data shape in the red point cloud with noise and 

missing points in all instances and the Gaussian mixture model in blue point clouds. Figure 
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2.3a shows points that were sub-sampled from the bunny data set. This also has the front and 

back parts of the bunny deleted. Figure 2.3b adds random unwanted points to the point cloud, 

and this shows as a residue in the point matching as those points were rejected. 

The matching attempts to iteratively align the Gaussian Mixture Model to the data shape by 

transforming the Gaussian Mixture Model in a way that preserves its structure. This is done 

by moving all the centroids of the Gaussian Mixture Model using the same computed 

transformation. This process of preserving the structure is based on motion coherence (Yuille 

and Grzywacz, 1988) that infers that closely related points move in coherence. Using motion 

coherence implies that rigid and non-rigid transformations should be implemented differently. 

For rigid shapes, CPD re-calculates the Gaussian Mixture Model centroid locations with a rigid 

transform to arrive at a closed-form solution (well known or fixed solutions) and for non-rigid 

shapes, the algorithm regularizes (smoothens the rate of change by adding a displacement 

function to the positions to ensure uniform movement or change in points according to the 

motion coherent theory) the displacement field (distance of the centroid movement).  

CPD suffers issues such as no proof that the algorithm always converges, certain aspects of 

the algorithm such as motion coherence (points close to one another tend to move coherently) 

is not very clear, and the algorithm is sensitive to the rotation of the target shape (Hirose, 

2020). To counter these issues, Hirose (2020) extended the Coherent Point Drift method to 

be based on Bayes (Joyce, 2003) (Bayesian) theorem (the probability of an event occurring 

based on prior knowledge of conditions associated with that event and not simply a 

consideration of the population as a whole). The motion coherence aspect of the CPD is 

replaced with Bayesian inference meaning that it is based on a prior distribution of 

displacement vectors. The Bayesian CPD enhances the CPD with a guarantee of 

convergence, ability to perform rigid and non-rigid matching in a single algorithm and flexibility 

for extension with other concepts such as non-gaussian functions. The CPD achieves a 

computational complexity of 𝑂 (𝑀𝑁) for rigid point cloud registration and 𝑂 (𝑀3) for non-rigid 

point cloud registration where M is the number of points in the gaussian centroids and N is the 

number of points in the second point cloud.  

Many learning based methods have been proposed for the task of shape matching. Litany et 

al., (2017) proposed an approach called SURFMNet that involves supervised learning of an 

input set of descriptors to derive a combination of weights based on a type of flexible 

representation of mapping between shapes (Ovsjanikov et al., 2012). SURFMNet extends 

FMNet (Litany et al., 2017) using an unsupervised learning model that works best for non-

linear transformations of descriptors in order to obtain high-quality mapping between the 

shapes. The approach does not require knowledge of the shapes and it uses the learning-
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based approach to transform the given input descriptors whilst improving the properties for 

mapping the structure of the shapes.  

Groueix et al., (2018) proposed a deep-learning approach to shape matching which involves 

parameterising the surface of the shape into a template and then using a learnt global feature 

vector to map the transformation into the input surface. The proposed approach, called Shape 

Deformation Networks, uses a shape deformation network that learns to map a deformed 

shape to an input shape. The approach works by predicting the transformation that aligns the 

derived template to the shape. The method was found to be robust.  

Another learning-based approach to the shape matching task is the learnable elementary 

structures (Deprelle et al., 2019). This approach works on the principle of training a network 

to learn the shapes of elementrary 3D structures which can be used to predict whole or parts 

of a shape. The approach uses two techniques for learning elementary structures – patch 

deformation and point translation. Patch deformation starts with a full object and deforms it 

into a learned structure whilst point translation learning starts from a set of points and an 

optimisation technique attempts to reconstructer the points into the target object. The limitation 

of this approach is that it does not generate a continuous surface, but rather a set of points. 

However, the research identified this approach to be more flexible as the topology of the 

objects can be changed. The approach was found to improve upon 3D shape generation and 

matching. 

One popular point matching algorithm based on an Iterative approach (Assalih, 2013) is the 

Iterative Closest Point algorithm (ICP) (Besl and McKay, 1992). It is a well-known shape 

matching algorithm for registering 3-D shapes including free-forms and curved surfaces. It is 

based on an iterative process of minimising the distance between two shapes. It is also 

independent of shape representation as it represents all shapes as point clouds. The algorithm 

is designed to not require any pre-processing nor make use of features of the points in the 

cloud except their spatial positions. ICP is fast and modular, allowing aspects of the algorithm 

to be replaced or improved. For instance, the correspondence search space can be 

implemented in a way to allow the use of metadata of the points in the matching. Despite 

these, ICP suffers some limitations such as slowness to converge when registering many 

thousands of points. This is due to the computational cost of the point-to-point distance 

calculation that finds the closest point in the model point cloud for every point in the data point 

cloud.  ICP is noted to perform poorly in the presence of outliers. 

An ICP-based approach to shape registration that was found to be robust against outliers was 

the fractional ICP(FICP) (Phillips, Liu and Tomasi, 2007). FICP provides an optimal 

registration by robustly rejecting likely outliers. Fractional ICP uses the fractional root mean 
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square distance metric to align points that are likely to be inliers than outliers. In an experiment 

comparing fractional ICP, ICP and TrimmedICP (Chetverikov et al., 2002), using random initial 

rotation angles 5, 10, 25, and 50 degrees on a random axis, fractional ICP was found to be 

six(6) to eleven (11) times faster in certain scenarios. Other techniques for outlier detection 

include rejecting correspondences that have distances above a threshold, points with 

dissimilar normals or points on the boundary of the geometry, and modelling outliers using 

sparsity-inducing penalties (Rusinkiewicz and Levoy, 2001). An extensive review of 

registration methods is outlined in (Brown, 1992, Fonseca and Manjunath, 1996, Zitová and 

Flusser, 2003, Díez et al., 2015). 

For this thesis and the rest of this chapter, the research focuses on the Iterative closest point 

algorithm by Besl and Mckay (1992). This algorithm is widely known for its simplicity and 

effectiveness (Mora et al., 2016). It is also the most popular method for fine-grained 

registration (matching shapes by refining an iterative process from an initial or rough estimated 

transformation).  

 

 

 

2.4 3-D Shape Descriptors and Signatures 

 

Generally, 3-D shape descriptors and signatures are representations used to capture 

information about the shape of an object to help with registration. They capture the geometrical 

structure of a 3-D object (Gal, Shamir and Cohen-Or, 2007) and can classify it as a member 

of a particular category using informative descriptors about the shape (Fang et al., 2015). One 

of the ways of estimating a good initial transformation for the ICP algorithm is the use of 3-D 

feature descriptors to capture some knowledge about the shape. Salti, Tombari and Di 

Stefano, (2014) explain that these approaches can be grouped into Signatures and 

Histograms. Signatures describe the 3-D surface of the shape considering the neighbourhood 

of a reference point by defining an invariant local reference frame, whilst Histogram-based 

methods describe a given point by their structural features that are projected into 2-D 

histograms.  Signatures describe the shape much better than histograms because of their use 

of spatial representations. 

Different techniques have been used to provide a good initial guess or estimate. Attia and 

Slama, (2017) proposed a “points projection on the plane” (PPP) approach. This 3-step 
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approach involves projecting a 3-D shape onto a 2-D plane defined by the Principal 

Component Analysis (PCA) (Wold, Esbensen and Geladi, 1987). PCA is a technique used to 

extract major patterns in a matrix defined by, for instance, a group of eigenvectors. PPP allows 

features or components of the point cloud such as points dispersion to be maintained in the 

2-D projection. The second step of PPP computes the projected point cloud by computing the 

projection of each point using the Euclidean distance between each point and the plane. 

Finally, the projected point cloud is then used to estimate the transformation and then the point 

clouds are aligned using ICP. The computational complexity of this approach is 𝑂 (𝑛𝑙𝑜𝑔(𝑛)). 

This method was found to be robust against large initial transformations in the ICP algorithm. 

Rusu et al., (2008) proposed a histogram and signature-based point feature representation 

that is based on the local neighbourhood information. The approach works by computing the 

local point feature histograms for all points in the point cloud by encoding the local 

neighbourhood’s geometrical properties using the mean of the curvature at that point. The 

neighbouring points were identified based on their 𝑘 closest neighbours.  The geometrical 

properties of the surface result in a unique signature in the feature histograms space. The 

information was then trained using a machine learning algorithm to derive the classifier. The 

classifier was used to enable points to be identified based on the surface feature space they 

belong to so that points belonging to or having similar surface properties will be classed under 

the same feature space. The research found that the density of points on the surface did not 

have a major impact on the feature histograms. 

A 3-D local feature descriptor known as the Density Curvature Angle (DCA) (He et al., 2021) 

was proposed to minimise the need for a good initial transformation in 3-D point cloud 

registration. DCA works by extracting the density of the point cloud using the average 

distances between 𝑘 neighbouring points, the curvature of the point cloud, and the normals of 

the point cloud into a three-feature 3D DCA. DCA was found to be faster when compared with 

Fast Point Feature Histograms (FPFH)(Rusu et al., 2008), which makes use of the 3-D 

coordinates of the point and the surface normals to form the feature descriptor, Signature of 

Histogram of Orientation (SHOT) (Tombari, Salti and Stefano, 2010) which uses both 

signatures and histograms to create a 3-D descriptor, and Rotational Projection Statistics 

(RoPS) (Guo et al., 2013) based on rotational projection statistics of the surface, However, 

DCA was found to take more time to complete when the specified 𝑘 neighbours are large. 

 Gal, Shamir and Cohen-Or, (2007) proposed a signature-based pose-oblivious (not sensitive 

to changes in pose of the objects) shape signature that was invariant to uniform scaling and 

rotations of the points. The approach works by creating a similarity of the probability density 

function of values of a point on the boundary of the shape which is aimed at finding the local 
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diameter on a sample point on the boundary. This is achieved by random sampling of some 

point measures such as the distance of a point to the centroid of the shape, which is then used 

to build the histogram of the values using 64 bins (histogram bars of equal width with height 

corresponding to measures of data points). The approach was found to be fast for 3-D model 

comparisons, however, performance was reduced when the models include internal parts 

instead of just the mesh because the calculation of the diameter function was inaccurate in 

such instances. 

In recent times, deep learning-based methods have been proposed to improve the robustness, 

efficiency, and performance of shape registration (Huang et al., 2021).  The methods have 

been based on feature learning methods that combine learning-based registration with 

optimisation-based methods and end-to-end learning-based methods that aim to transform 

the registration problem into a regression problem. Recent end-to-end based methods are 

effective in typical registration cases, however, they have also been found to be limited in their 

accuracy and applicability. (Choy, Dong and Koltun, 2020). 

A fast feature-metric point cloud registration framework (Huang, Mei and Zhang, 2020) was 

proposed that registers shapes based on extracted features. The approach works by iteratively 

minimising the error between the projected features of the two shapes. It avoids the use of 

geometry points of the shapes as such there is no correspondence point search involved. The 

approach consists of an encoder that extracts features from the data and model point cloud. 

A decoder function is also used to decode features of the point clouds and to obtain the 

feature-metric projection error which is used to train a neural network in an unsupervised way 

(The machine learning algorithm discovers patterns in the unlabelled data for its internal 

classification). Finally, a semi-supervised neural network registers the images without finding 

some correspondence for each point.  

A learning-based local volumetric patch descriptor called 3DMatch (Zeng et al., 2017) was 

proposed for establishing correspondence between partial 3-D data. The approach works by 

using a self-supervised (using no labelled data in the training) 3-D convolutional neural 

network (A type of neural network for learning images that can take an input image and assign 

importance based on the trained dataset) to learn the mapping from volumetric 3-D patch to a 

512-dimensional feature descriptor for the region of the shape. The method was evaluated 

using the descriptor and RANSAC (Fischler and Bolles, 1981) and results showed improved 

performance for matching local geometry in new scenes. 

The scope of this research involves matching shapes using information about the point such 

as the coordinates, so it doesn’t develop 3-D descriptors nor use them directly in the 

developed ICP variants. 
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Shape Matching Method Summary  Comparison 

Point correspondence Point matching algorithms that 

represent the shape as a point 

cloud and find correspondence 

between points 

Mapping of points, 

transformations, 

details of known information 

used in the matching, 

efficiency and robustness 

Machine learning-based Uses supervised or unsupervised 

learning-based methods and a 

combination of other techniques 

such as feature extractors  

Details and complexity of the 

learned features. 

3-D Shape Descriptors Various methods for extracting 

shape representation for use in 

shape matching to aid with a good 

initial transformation 

Efficiency and robustness of 

the 3-D shape descriptor. 

Table 2.1 Summary classification of the methods reviewed and details on comparison. 

 

2.5 3-D Protein Structure Matching 

 

Schmitt, Kuhn and Klebe, (2002) explained that recent methods of detecting the structural and 

functional relationships of proteins consider the overall 3-D structure. This is because older 

methods that just consider the sequence information (similarity-based on positions of 

consecutive chains of atoms) are lacking because highly similar proteins based on a structure 

usually have a high similarity based on sequence, however highly similar proteins based on 

sequence information do not necessarily have high structural similarity. This is because 

changes such as mutations distort more of the sequence information than the structural 

information and this has also resulted in recent similarity methods shifting towards 

comparisons based on the spatial coordinates.   

Schmitt, Kuhn and Klebe, (2002) further explained that finding the similarity between 3-D 

proteins requires a translation and rotation matrix to be found that superimposes one 3-D 

protein onto another.  It was noted that protein matching can be computed purely using the 

spatial positions of the atoms, however, it is more challenging because of the huge number of 

atoms available in many proteins. There are also challenges with spatial representation and 

transformation of the 3-D structures of proteins such as speed of processing, and accuracy of 
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the resulting matching. More reliable solutions in terms of their speed, efficiency and accuracy 

can be found using methods that associate coordinates with some predefined properties. For 

instance, the implementation of TaggedICP (Ankomah et al., 2020) uses a similar concept of 

tag information (a combination of atom type and information of 3 neighbouring atoms of a 

point) as a property to aid in the registration of 3-D proteins. Schmitt, Kuhn and Klebe, (2002) 

further developed an algorithm to score 3-D protein shapes based on descriptors developed 

from the 3-D structure of pockets of protein binding sites (the part of the protein structure 

where a drug or virus will bind or be attached to). This study noted how the protein binding 

site’s similarity score can help in the design of drugs especially preventing side effects of drugs 

which are usually caused by the drug binding to a similar protein but not its target. 

Similarly, Angaran et al.,(2009) developed a web-based application, called Molecular Local 

(MolLoc) for recognising similar regions on a molecular surface. The regions for comparison 

were cavities, binding sites, and functionally relevant residues. The application allows a user 

to import two PDB files or IDs of two PDBs to be compared.  The comparison used two 

approaches (geometry with atom type, and only geometry). Whilst the geometry and atom 

type approach iteratively match the atom types in both molecules by considering pairs of 

atoms with the same atom type, specifically for matching proteins, the geometry only approach 

matched structures based only on the spatial coordinates and did not consider atom types. 

Whilst MolLoc compares the surface information of the proteins by allowing the user to select 

chains in the structure to compare, Schmitt, Kuhn and Klebe, (2002) algorithm use a 

predefined similarity score based on a descriptor to find the similarity between the structures. 

MolLoc also allows a better comparison of chains in two proteins whilst Schmitt, Kuhn and 

Klebe, (2002) algorithm provides a global score that is used to compare parts of proteins. Both 

algorithms recognise the importance of a geometric comparison of protein structures that 

considers the spatial positions of the atoms. 

Another approach to comparing the regions of protein structural surfaces without using the 

sequence nor 3-D structural information as part of the comparison was the use of hashed 

triangles of physicochemical properties (Shulman-Peleg, Nussinov and Wolfson, 2004) (e.g. 

triangles formed from 3 atom types in the 3-D structure). The hash encodes certain properties 

of the triangle such as the corresponding atom types and the distances between the atoms. A 

hash table containing a hash key for each molecule was then created that allowed all triangles 

for a molecule to be retrieved using the hash key. The triangle information was used to 

superimpose the triangle on a similar site on the matching protein through an iterative process 

of calculating all possible transformations to align the triangle nodes with triangle nodes of the 

matching protein.  
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Ellingson and Zhang (2012) proposed an Iterative closest point-based algorithm called 

Triangulation-based Iterative closest point (TIPSA) for protein surface alignment. The 

research focused TIPSA on the binding sites of proteins (parts of the protein where other 

proteins in a molecule such as medicines can attach themselves to) and used a combination 

of nearest neighbour classification of the atoms, information from the 3-D structure of the 

molecule, and the radius of gyration of the atoms (Lobanov, Bogatyreva and Galzitskaya, 

2008) to help predict which molecule can bind to a particular surface. TIPSA avoided the need 

for initial alignments by finding correspondence between atoms based on their atom types. A 

set of atoms with their correspondence were then matched to align their surfaces. This atom 

type-based approach is implemented in TaggedICP and SubsetICP+. 

Kirys et al., (2007) proposed an approach to 3-D protein shape matching that first finds 

correspondence between groups of atoms (subsets)  and then match the correspondence 

based on Fractional ICP (Phillips, Liu and Tomasi, 2007). 

In Biomedicine, ICP has been used in several tasks such as registering skulls in medical image 

analysis (Sinko et al., 2018). Sinko et al. (2018) used ICP, and 3-D SIFT in a process involving 

the conversion of MRI scans of skulls to 3-D point clouds and an ICP registration. The MRI 

scans were imported, segmented into features of interest, and then converted to point clouds. 

The differences in the visualised point clouds were then studied for possible deformities. The 

research found that using ICP and 3-D SIFT was fast and robust and that new challenging 

scenarios can be addressed using computer vision technologies, inspired by the latest 

computer animation technologies. Such technologies include virtual reality. 

 

 

 

2.6 Iterative Closest Point 

 

Three of the earliest most popular registration methods were proposed by Besl and McKay ( 

1992), Chen and Medioni (1992), and Zhang (1992). These researches modelled a complete 

3-D object acquired through a scanner from different angles and minimised the distance 

between the shapes using an iterative process of computing transformations. The approach 

of Chen and Medioni (1992) minimized the distance of the two points along their normal 

vectors, while Besl and McKay (1992) minimized the point to point distance and has a closed 

form solution. This approach usually requires some approximation that must be used to get a 
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least squares solution. Zhang (1992) approach minimised the distance between frames in free 

form. 

Using only the geometric information of the points, the ICP algorithm repeatedly computes the 

distances between each point in the data point cloud to each point in the model point cloud to 

establish the correspondence between the points. A set of transformations are then computed 

to best align the two point clouds. This iterative process continues until the specified number 

of iterations is exhausted or the change in mean squared error over two consecutive iterations 

is below a set threshold (Donoso, Austin and McAree, 2017, Du et al., 2017). 

Chen and Medioni (1992) acquired several range images (3-D images acquired through 

special sensors that use pixels to indicate depth) from an object in an attempt to register and 

align these views into one complete object model. The research outlined that a good initial 

transformation is important as the algorithm works to perform finer matching as compared to 

coarse matching. Also, because convergence is not always guaranteed, a good starting 

transformation can ensure convergence.  

The ICP algorithm (Besl and McKay, 1992) is designed to always converge at a given level of 

complexity (reasonable initial transformation and noise). It is designed not to require any 

additional features of the points to aid in the matching process (Besl and McKay, 1992). For 

instance, it does not require metadata such as colour or label information for matching similar 

points. However, other registration methods based on ICP, that make use of feature points 

have been proposed, including using light and depth information (Weik, 1997), pair-wise 

registration constraints (Pulli, 1999), surface features (Lee et al., 2011), and feature points 

(Kang and Park, 2015). 

Besl and McKay (1992) used a point to point distance method to find the correspondence 

between points. This computationally expensive process involves computing the closest point 

(Euclidean distance) in the model point cloud for each point in the data shape. Assuming 

shapes P, and Q are to be matched using the point-to-point representation, 

Where. 

𝒕 = Translation vector derived from the computed transformation 

𝑅 = Rotation matrix derived from the transformation 

𝑞𝑖   = Point in Q shape that is closest to  𝑝𝑖 given the current transformation specified by R & t 

 𝑝𝑖 = Point in the transformed P (Rp+t) shape  
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Figure 2.4 Point-to-point distance metric method for finding the distance between two points p and q. The method represents 
the distance along a straight line joining the two points, transformed point p, ( 𝑅𝑝+1) and q. 

 

The point-to-point method in Figure 2.4 shows the distance from point 𝑝 to point 𝑞 in the 

direction of the arrow. The arrow represents where we would like p to end up after applying 

the next transformation, (R, t). When we have many points, we have many different arrows 

from which we can estimate that next transformation in the least squares sense. The error for 

one point-to-point correspondence search after an iteration, 𝜀𝑝𝑜𝑖𝑛𝑡  is given by. 

𝜀𝑝𝑜𝑖𝑛𝑡 = ∑‖𝑅𝑝𝑖 + 𝑡 − 𝑞𝑖‖
2

𝑖

 

This objective function can be minimized for the re-estimation/update of (R, t) with a closed 

form solution using the quaternion method (Besl and McKay (1992) ). 

                                

On the other hand, Chen and Medioni (1992) used the point-to-plane method to compute the 

distance between corresponding points by computing the distance between each point and 

the plane defined by the corresponding point and its normal vector. The shortest distance from 

a point to a plane is along a line perpendicular to the plane. Therefore, the shortest distance 

from point p to the plane is along a line parallel to the normal vector, which is shown as a red 

arrow line segment. The point to plane method is illustrated below. 
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Figure 2.5 Point-to-Plane distance metric method aims at finding the distance from point p to q, in a perpendicular direction 
that ends up on the plane (yellow surface). np is the direction of p’s normal vector. The distance in red is also the projection of 
the vector from p to q. Assume r is the point where the red line touches the plane, then the shortest distance from p to the 
plane is the distance between r and p,  

 

In the point-to-plane method, depicted in Figure 2.5, point p (red point) ends up on the plane 

(yellow surface) but not necessarily at q (blue point). np shows the direction of q’s normal 

vector (perpendicular to the plane). The closest point on the plane to point q is the distance 

between the point where the original point normal vector touches the plane (r) and the point 

on the plane (q). The error is given as. 

𝜀𝑝𝑙𝑎𝑛𝑒 =  ∑[(𝑅𝑝𝑖 + 𝑡 − 𝑞𝑖). 𝑛𝑞,𝑖]
2

𝑖

  

The objective function is minimised by selecting control points and computing their surface 

normals. An iterative process is then repeated that transforms each control point and their 

normal, finds the intersection between the model surface and the normal line of the 

transformed control point, computes the tangent plane of the model surface at the transformed 

control point and then computes the transformation that minimises the error. The objective 

function is minimized for the re-estimation/update of (R, t) using the least squares method if 

the transformation change from one iteration to another is relatively small and thus the rotation 

matrix can be linearized about such changes. 

A new symmetrised objective function that achieves the simplicity and computational 

efficiency of the point to plane method was proposed by Rusinkiewicz (2019). It considers a 
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point and both normals by adding the normals together to create a symmetry, instead of 

considering one normal in the point to plane method. 

 

 

 

Figure 2.6  Symmetric error metric shows nearby points p and q along a circular arc (dotted lines). The vector between the 
points p, and q is perpendicular to the sum of their normals (𝑛𝑝+ 𝑛𝑞). Red arrow represents the direction of point p’s normal 

vector. The Blue arrow represents the direction of point q’s normal vector. 

 

In Figure 2.6, the symmetric error metric (Rusinkiewicz, 2019) considers the normals of points 

p and q. It explains that for any 2 sampled points p and q on a circular arc represented by the 

dotted lines, the vector between them (p-q) is perpendicular to the sum (𝑛𝑝+𝑛𝑞) of their normal 

vectors.  

 

𝜀𝑠𝑦𝑚𝑚 = ∑[(𝑅𝑝𝑖  −  𝑅−1𝑞𝑖 + 𝑡). (𝑛𝑝,𝑖 + 𝑛 𝑞,𝑖)]
2

𝑖

 

                   

The Iterative closest point algorithm has been applied to several fields. In molecular biology, 

ICP has been used to compare the 3-D structures of molecules to study the functions and 

interactions (Angaran et al., 2009) by representing the molecules as 3-D point clouds 

(Wallace, Borkakoti and Thornton, 1997, Schmitt, Kuhn and Klebe, 2002, Shulman-Peleg, 

Nussinov and Wolfson, 2004, Weskamp et al., 2004, Shulman-Peleg et al., 2008), with each 

point representing an atom.   
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2.6.1 Algorithm Structure 

 

According to Besl and McKay (1992), assume a data shape P with a number 𝑁𝑝 of points  and 

a model shape X with a number 𝑁𝑥  of points. Then the ICP algorithm can be described as 

below. 

 

1. Initialise Iteration to 0, maximum number k_{max} of iterations, set change in MSE 

threshold, transformation (R, t) 

2. Apply the transformation (R, t) to the data point cloud 

3. Compute the closest points in the model cloud for each point in the data cloud 

(Computational cost: 𝑂(𝑁𝑥𝑁𝑝) ) 

4. Compute/update the registration transformation (Computational cost: O (𝑁𝑝)) 

5. Apply the registration to the data point cloud (Computational cost: O (𝑁𝑝)) 

6. Terminate the iteration when the iteration count or MSE threshold is reached. 

 

 

 

 

 

1. P𝑜 ⟵ 𝑃 

2. 𝑓𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑘  ≔  0 𝑡𝑜 𝑘𝑚𝑎𝑥 𝑑𝑜 

3.         𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑌𝑘  ←   𝐶𝐿𝑂𝑆𝐸𝑆𝑇 𝑃𝑂𝐼𝑁𝑇 𝑆𝐸𝐴𝑅𝐶𝐻 (𝑃𝑘 , 𝑋)      

4.        𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑀𝑘 ,𝑀𝑆𝐸 𝑑𝑘  ←   𝑅𝐸𝐺𝐼𝑆𝑇𝑅𝐴𝑇𝐼𝑂𝑁 ( 𝑃𝑜, 𝑌𝑘) 

5.       𝑖𝑓  

6.              𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑀𝑆𝐸   𝑑𝑘−1 − 𝑑𝑘 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

7.      𝑡ℎ𝑒𝑛 

8.           terminate 

9. 𝑟𝑒𝑡𝑢𝑟𝑛   𝑃𝑘+1,𝑀𝑘 , 𝑑𝑘 

 
Algorithm 1. Iterative Closest Point Algorithm (Besl and McKay, 1992). 
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Assume the data point set P, with 𝑁𝑝 points and the model shape X, with 𝑁𝑥 points. The closest 

point set from P to X is computed as 𝑌𝑘 = 𝐶( 𝑃𝑘 , 𝑋). The mean square error (MSE) of this 

correspondence, 𝑒𝑘 is computed as below. 

1

𝑁𝑝
∑‖𝑦𝑖𝑘 − 𝑝𝑖𝑘‖

2

𝑁𝑝

𝑖=1

 

 

2.6.2 Strengths  

 

Besl and McKay (1992) identified advantages of the ICP matching algorithm to include being 

independent of shape representation where shapes can be represented in any form such as 

point sets, line segment sets, curves, and surfaces. Pre-processing of the 3-D data is not 

required, and the algorithm is designed to only use the objects global features (the entire 

surface geometry) to perform the match. 

ICP is popular for 3-D rigid registration because of its simplicity and effectiveness (Mora et al., 

2016). The algorithm can also handle reasonable amounts of evenly distributed noise and its 

simplicity and extensibility allow it to be used together with other algorithms. 

 

 

 

2.6.3 Limitations 

 

This section helps to formulate the research problem. It highlights the specific limitations of 

the ICP algorithm from Section (2.3)  that were of interest to the research and were improved. 

It also introduces the developed algorithms and their techniques. It helps define the scope of 

the research and gives the reader a clear understanding of what the research focuses on. This 

also helps set the stage for the remaining chapters in achieving their objectives. 

ICP suffers from some limitations. Besl and McKay (1992) outlined some limitations of the 

algorithm such as the high-performance cost of the closest point operation (This can be 

improved with K-d trees or parallel processing).  Chen and Belaton (2014) also found out that 

unwanted points and outliers (points that have significantly worse closest matching points than 
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the others) can affect the convergence to a less accurate solution because ICP considers all 

points in the correspondence search. ICP also suffers from slow convergence and partial 

overlaps (Zhang, Yao and Deng, 2021).  

It has also been noted that ICP performs well in some contexts and datasets (such as 

structured and feature-rich datasets) and worse in others (natural, unstructured and 

information-deprived environments e.g. terrain data)  (Donoso, Austin and McAree, 2017).  

ICP also performs much better when all points in the data shape have true corresponding 

points in the model shape (full shape matching) than partial overlapping point clouds. 

Ning et al. (2018) argued that the three (3) types of outliers in point clouds are sparse outliers 

(e.g., erroneous measurement points with low local point density in scanned data), isolated 

outliers (e.g., high point density points in a scanned data) and non-isolated outliers (e.g., 

outliers attached to the surface of a scanned object).  

 

2.6.3.1 Requirement for a Good Initial Transformation 

 

ICP requires a good initial transformation to converge at a small mean square error (Besl and 

McKay, 1992). The algorithm may not even converge in certain situations such as large 

rotations (Besl and McKay, 1992). Larger transformations have been found to decrease the 

quality and efficiency of the match (Attia and Slama, 2017).   

 

 

2.6.3.2 High Cost of the Correspondence Search 

 

The correspondence search can be a slow process. With the increasing number of points, the 

performance of the algorithm can degrade since it involves many such distance calculations. 

With this process occurring at every iteration, the performance can be greatly affected. In 

instances of high-density data, it might provide unacceptable performance results (Mora et al., 

2016). Besl and McKay (1992) also noted how the performance can be enhanced by using K-

d trees (Bentley, 1975, 1990) in the correspondence search method. 

Because the search for correspondence does a naive shortest geometric distance calculation 

(distance of cartesian point coordinates), the matching may not necessarily be meaningful 

especially point clouds having unwanted points, even though this is how the ICP algorithm is 

designed. This is because the algorithm computes the closest point in the model point cloud 
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for every point in the data point cloud, meaning that this process ignores true matching points 

and the error increases with large noise and unwanted points.    

The ICP algorithm is computationally expensive, and this cost increases with the increasing 

number of points in the point clouds. The algorithm computes the spatial distance between 

each point in the data shape to each point in the model shape in a way to establish the 

correspondence for each point. The cost of this brute force computation is 𝑂(𝑁𝑥𝑁𝑝) for a 

number 𝑁𝑥  of points in point cloud X and the number 𝑁𝑝 of points in the point cloud P. Besl 

and McKay (1992), however, suggested the use of binary search data structures such as kd-

tree to reduce the computational complexity O (log 𝑁𝑥). Parallel processing can also be used 

to improve the speed of the correspondence search, otherwise, a shape with millions of points 

becomes slow to complete this distance calculation.  

      The processing power (number of Central Processing Units (CPU) cores) available in 

today’s CPUs coupled with Graphical Processing Units (GPUs) also provides an advantage 

in some regard in terms of parallel processing. Parallel processing can enhance the speed of 

the distance calculation since the task of computing the distance between two points will not 

be done sequentially, one point at a time, but rather as many simultaneous calculations in the 

form of tasks will be processed by the available CPU cores. 

 

2.6.3.3 Convergence at Larger Transformations 

 

The ICP algorithm converges to a less optimal solution when the transformation (rotation and 

translation) of the data shape is considerably large. It may not even converge with large 

rotations (Besl and McKay, 1992).  This implies that the ICP algorithm requires a good initial 

transformation to converge at an acceptable solution.  

The techniques implemented in the developed ICP variants considered the effects of large 

transformation angles on the convergence. Techniques using metadata of the points such as 

colours and labels aid in the matching and the implementation of different partition sizes were 

expected to help the algorithm converge at an expected minimum even with a large rotation 

angle.  

2.6.3.4 Visualising the Shape Matches in 2-D and Virtual Reality 

     

Visualising the shape match allows the user to not only employ an analysis graph to 

understand the details and process of matching but also to be able to quickly view and 
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understand shape matching overlaps and quality as well as quickly and interactively adjust 

initial transformations as required. 

Matching shapes in virtual reality extends the usability of the PC based visualisation system 

with a 3-D user interface providing an immersive user experience. The hand controllers enable 

the user to use both hands to mimic natural gestures when interacting with 3-D shapes. This 

allows the transformation to be repeated by changing the initial transformation each time. 

The immersion provided by the virtual reality system allows the user to discover more detailed 

information from the animation of the shape matching process. The user can see and analyse 

how far the data shape moves away from the model object in an iteration to visually study the 

error at that iteration. 

 

 

 

2.6.4 ICP Variants 

 

The modular nature of the ICP algorithm enables some steps to be improved whilst others are 

unaffected. This has easily led to the rise in different variants being developed over the years. 

Many of these variants have focused on improving some steps of the algorithm such as the 

closest point search or developing specific features for related applications such as improving 

matching using metadata knowledge of the shapes (Mora et al., 2016).  

Rusinkiewicz and Levoy (2001) classified variants of the ICP algorithm according to the stages 

of the algorithm; Selection,  Matching, Weighting, Rejecting, Assigning an error metric, and 

Minimizing the error metric, and based on the point pairs. This research particularly evaluated 

how the selection of point pairs affects the convergence speed of the matching. This was done 

by comparing a baseline ICP variant, Multiview registration method for matching shapes (Puli, 

1999) with other methods that handle the selection of points in varying ways (Besl and McKay, 

1992, Turk and Levoy, 1994, Masuda, Sakaue and Yokoya, 1996, Weik, 1997).  

The other stages of the ICP algorithm and related variants include,  

1. Point matching by finding the closest point (Besl and McKay, 1992) which was  

accelerated using k-d tree, caching, and fast surface point computation (Simon, 1996), 

some compatibility metric such as metadata colour or tag information(Godin, Rioux 

and Baribeau, 1994, Ankomah et al., 2020) 
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2. Weighting based on normals (Chen, Hung, and Cheng, 1999), Gaussian mixture 

model (Myronenko and Song, 2010) 

3. Rejecting pairs (Turk and Levoy, 1994) 

4. Assigning an error metric by squared distance from a point to point (Besl and McKay, 

1992), point-to-plane (Chen and Medioni, 1992), symmetric error (Rusinkiewicz, 2019) 

5. Minimising the error metric. 

The Multiview registration method (Pulli, 1999) enhances Chen and Medioni (1992) approach 

to registering multiple views of an object. Chen and Medioni (1992) proposed registering 

multiple views of an object by first registering two views into a single base view and then 

incrementally adding new views to the base view. Pulli (1999) identified issues with Chen and 

Medioni (1992) approach such as adding new views might end up at the outer or inner layer 

instead of the middle layer of the view thereby not distributing the errors evenly across. Chen 

and Medioni (1999) also indicated a limitation of the algorithm not being able to handle 

complex datasets. Improvements made in the Multiview registration method enable registering 

datasets that are too large to fit into memory at the same time.  The algorithm also obtains a 

uniform registration for all views to spread the registration errors on all views instead of 

accumulating them. Also, the pairwise registration is performed once and that is used as a 

constraint to align the views in the iterative process. The Multiview registration method by Pulli 

(1999) was found to be robust for scanned data with many surfaces and has been extensively 

used in production environments (Levoy et al., 2000). The method integrates these features. 

1. It uses random sampling for selecting point pairs for matching. 

2. Points are matched based on their closeness to the other view that has a normal within 

45 degrees of the source normal. 

3. The weighting of points is done uniformly 

4. The algorithm rejects point pairs containing edge vertices (points on the boundary of 

one point cloud, found by extending a points normal vector until it intersects with the 

other point cloud) and the percentage of point pairs with the largest point-to-point 

distances 

5. Uses point to plane error metric 

6. Uses the “select-match-minimize” iteration 

Comparing the selection of points of the ICP algorithm (Besl and McKay, 1992), Besl and 

McKay (1992) differ with Pulli (1999) by always using all available points in the dataset for the 

correspondence search. Points are matched based on the shortest Euclidean distance to a 

point in the other dataset. Besl and McKay (1992) however suggested that this distance 
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calculation can be improved using K-d trees (Bentley, 1990) as well as closest point caching 

(Simon, 1996).  

Turk and Levoy (1994) employed uniform sub-sampling in their point selection for matching. 

This method discards pairs of points that are too far apart and eliminates pairs with either point 

on the mesh boundary to create a sample for selection and matching. This does not require 

using all the points in the cloud as such the reference point cloud is not required to be a subset 

of the model data point cloud. This characteristic of the point cloud is normal of range images 

since the views represent different sides or angles of the object to be registered.  

Masuda et al. (1996) proposed a new method for the registration and integration of range 

images to model the object as a geometric surface. Their point selection method differs in a 

way that involves random sampling with a different set of points at each iteration. The method 

works by iterating the randomly sampled points, estimating the motion parameters, and 

determining the best estimation.  

Weik (1997) proposed a registration method for aligning partial surfaces that uses the light 

intensity (and its variations) and depth information (from the camera) as additional constraints 

in the form of metadata, for finding the correspondence between point pairs for their improved 

reliability. 

Rusinkiewicz and Levoy (2001) also introduced the normal-space-sampling strategy. This 

strategy is based on the selected aspects of the reviewed methods (Besl and McKay, 1992, 

Turk and Levoy, 1994, Masuda, Sakaue and Yokoya, 1996, Weik, 1997). It ensures that the 

distribution of normals amongst selected points is as large as possible. This method works by 

grouping points according to the position of the normals in angular space to ensure enough 

constraints (surface features) are considered in determining the transformation. Uniform 

sample points are then taken across these groups. This method is noted to have lower 

computational cost and lower robustness compared to other feature-based methods. Even 

though both Pulli (1999) and Rusinkiewicz and Levoy (2001) make use of some sort of 

sampling strategy, the latter differs in that it attempts to group the points and select uniform 

samples from all groups.  

Rusinkiewicz and Levoy’s (2001) classification was augmented with another stage of the ICP 

algorithm, neighbourhood selection (Donoso, Austin and McAree, 2017). Donoso et al. (2017) 

evaluated 20,736 ICP variants against their metrics; accuracy, precision, and computational 

cost. The 20,736 variants were computed from a combination and permutation of 25 methods 

used in (Donoso, Austin and McAree, 2017) to analyse matching of scanned mining terrain 

data with 3 new methods analysed by Rusinkiewicz and Levoy, (2001) for matching the same 
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dataset. The research found out that none of the algorithms was simultaneously accurate, 

precise, and fast to compute. Donoso et al. (2017) had an extensive detail of several ICP 

methods and their implementation strategy.  

Mora et al.(2016) evaluated Chebyshev distance (The greatest of the differences between two 

points along any coordinate dimension) and Manhattan distance (The distance between two 

points measured along axes at right angles.) as an alternative to the Euclidean distance. Mora 

et al.(2016) proposed two distance metrics that reduce the computational cost and increases 

the average speed by fourteen (14)% using the Manhattan distance metric without negatively 

impacting the match quality and convergence of the algorithm.  

Sparse ICP (Bouaziz, Tagliasacchi and Pauly, 2013) is another variant of the ICP algorithm 

that uses a technique called sparsity inducing norms to reduce significant amounts of noise 

and outliers. The technique automatically learns the separation between data and outliers. 

The approach involves formulating the local alignment problem as maximising the number of 

zero distances between correspondences. The approach also meant that the least probability 

norm ℓ𝑝 is used instead of a least squares approach, ℓ2. This provides a choice between 0 

and 1 as a trade-off between efficiency and robustness. SparseICP was extended for facial 

recognition by using resampling and denoising techniques that improved the registration 

accuracy (Yu, Da and Guo, 2019).  

 

2.6.5 Use of Additional Metadata 

 

Additional metadata of points in a point cloud can be used in the correspondence search to 

enhance the algorithm by making the closest point meaningful. For instance, colours, point 

normals and labels can be introduced in the search for correspondence to make the matching 

of points more meaningful. Features such as the global orientation of a point in a point cloud 

can change when transformations are applied to the point cloud and as such, there is the need 

to factor such features in calculating the mean square error (Schutz, Jost and Hugli, 1998). 

Invariant features such as local colours and labels of the point will not change with rigid 

shapes.  These invariant features can be used to improve the registration (Godin, Rioux and 

Baribeau, 1994, Combes and Prima, 2009) by reducing the search space for correspondence 

(Sharp, Lee and Wehe, 2002). 

Schutz et al. (1998) proposed a multi-feature improvement to the traditional ICP algorithm 

making use of surface colour, geometry, and local shape orientation. Results showed that this 
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improved the range of successful convergence as the multi-feature improvement helped with 

the matching of corresponding points. 

 

2.6.6 ICP Based on Neural Networks 

 

Advances in machine learning and artificial intelligence systems have seen the application of 

neural networks to the shape matching problem. 

Qi et al. (2017) proposed a hierarchical neural network called PointNet++ as an extension and 

improvement upon PointNet (Qi, Su, et al., 2017). PointNet++ explores the representation of 

point clouds as a neural network. The researchers trained a 3-D geometric neural network to 

perform tasks such as shape matching, shape segmentation, and semantic scene labelling 

(predicting or naming the shape from a given point cloud) task. The approach taps into the 

benefits of PointNet such as its ability to abstract sets of local features into higher-level 

descriptors used to iteratively register a shape through a process of grouping sets of points 

into overlapping regions, extracting the local features such as geometric and neighbourhood 

information, grouping these local features into larger units for the processing which results in 

higher-level features use that describes the whole point cloud. PointNet++ was evaluated on  

ModelNet CAD model dataset (Wu et al., 2015) and results showed a lower error rate (0.51%) 

compared to PointNet (0.78%) (Qi, Su, et al., 2017), Multi-layer perception (1.60%) (Simard, 

Steinkraus and Platt, 2003), Gradient-based learning (Lecun et al., 1998) and comparable with 

Network in Network (Lin, Chen and Yan, 2014) which uses micro neural networks to extract 

features  (0.47).   

Wang and Solomon (2019) used a deep learning approach to develop a learning-based 

method (Deep Closest Point) for registering two rigid point clouds. The method consists of 

three (3) parts, a part to map the input cloud to invariant embeddings (A mapping of points in 

the point cloud to vectors in the neural network) which helps with the matching of pairs of point 

clouds, and an attention-based (ability to focus on a subset of the inputs) module for predicting 

soft matching (coarse or rough matching) of pairs of points, and a singular value 

decomposition part to predict the transformation. The deep closest point was found to 

outperform ICP (Besl and McKay, 1992) and some ICP variants (Yang et al., 2016).  The 

learned features of Deep Closest Point were found to improve rigid alignment algorithms. 

Aoki et al. (2019) developed PointNetLK which is based on PointNet (Qi, Su, et al., 2017). The 

research explored the idea of interpreting point clouds as an imaging function (producing a 

fixed dimensional output regardless of samples or ordering of points) to apply image alignment 
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approaches to the point cloud strategy. Their implementation also improved on PointNet (Qi, 

Su, et al., 2017) to accommodate gradient (dependencies such as similarities and changes 

between nearby points) estimates through convolution. The convolution involves detecting 

feature changes between neighbour points and computing a weighted average to represent 

spatially close points. 

Similarly, Qi et al. (2017) improved on PointNet (Qi, Su, et al., 2017) to recognise fine-grained 

patterns by exploring a hierarchical neural network (PointNet++) that applies PointNet 

recursively on a nested partition. The partitioning of the points is done by the FPS-Farthest 

Point algorithm and each partition includes a centroid and a scale. The results showed 

significant improvements in the accuracy of the match when compared to DeepGM (Luciano 

and Ben Hamza, 2018).  

Yew and Lee (2020) proposed a deep learning-based ICP variant (RPM-Net) whose optimal 

performance is not based on a good initialization. The research designed a deep learning-

based feature extraction network that uses several layers, with different layers extracting 

different features. This network is then used to compute hybrid features (different types of 

features such as local geometric information) of each point from its geometric (shape and size) 

and spatial (location coordinates of the points in Euclidean space) properties. The fusion of 

these properties was found to improve correspondence for RPM-Net. 

 

2.7 Problem Formulation 
 

The problem is formulated based on the discussed limitations of the ICP algorithm. The 

limitations of the ICP have shown opportunities to improve the convergence speed, match 

quality, and present intuitive visualisation. 

Three (3) variants of the ICP algorithm were developed to register 3-D protein structures, 

TaggedICP (Ankomah et al., 2020), KmeansICP, and SubsetICP+. These algorithms have 

been developed for matching the 3-D structure of protein molecule datasets from the protein 

data bank (RCSB Protein Data, 2020). TaggedICP makes use of known information of the 

points (tag information) for matching the point clouds and it partitions the correspondence 

search space using the atom type. KmeansICP makes use of the popular K-means algorithm 

for partitioning the search space for correspondence. SubsetICP+ implements a modified 

version of SubsetICP (Chen, Belaton and Pan, 2013) that creates subsets based on atom type 

information and rejects some transformations based on their effect on the data point cloud.  
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The variants discussed in this chapter are all based on the standard ICP algorithm (Besl and 

McKay, 1992). These algorithms focus on the selection and matching stages of the standard 

ICP algorithm because of the high computational complexity of that method. Enhancements 

made to the correspondence search to reduce the computational cost and improve the 

matching quality goes a long way to reduce the overall computational cost of the algorithm. 

The ICP algorithm (Besl and McKay, 1992)  is a well-known shape matching algorithm. The 

limitations of the algorithm have fuelled a desire for researchers to improve it along all of its 

aspects; Selection, Matching, Weighting, Rejecting, Minimizing the error metric, and Assigning 

an error metric based on the point pairs (Rusinkiewicz and Levoy, 2001), however, the 

strengths of the algorithm such as its simplicity (Mora et al., 2016) and extensibility (as a result 

of its modular design) have equally ensured the ability for researchers to easily implement 

alternative enhancements for its improved performance. For instance, different distance 

metrics (point to point, point to plane, and symmetric) can be used in the objective function 

optimisation. The search for correspondence can also be improved using k-d trees, parallel 

processing of the search sequence, partitioning of the search space, or caching of points. 

The 3-D protein structures are represented as point clouds with atoms representing the points 

and they are used to match full shapes and partial shapes in the form of mutations of the same 

molecules. Since the shapes are rigid objects, a rigid transformation is computed that 

iteratively aligns the shapes using the ICP method. 

The improvements in the designed variants can be used to match different 3-D protein 

structures to compare the speed of the registration, the quality of the match, and to determine 

the similarity between protein structures. Particularly for TaggedICP, the matching on tag 

information presents meaningful corresponding point matches that helps the match quality by 

matching true correspondence because of the constraint presented using the metadata tag 

information. 

 

 

 

2.8 Summary  

 

This chapter has introduced shape matching and its related algorithms. Early uses of shape 

matching have been discussed. It has provided a critical discussion on the similarities, 
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differences, and potential areas for improvement for some existing shape matching 

algorithms.  

The Standard ICP algorithm has been detailed along with many of its variants.  Implementation 

of several variants of ICP has seen ICP being used to register shapes using different 

techniques over diverse datasets such as facial recognition (Yu, Da and Guo, 2019), and more 

recently, techniques based on neural networks (Wang and Solomon, 2019). The chapter has 

expanded the researcher and the reader’s knowledge on many of the techniques of ICP. This 

has also helped provide a foundation for understanding the developed variants as part of this 

research. 

This chapter has also discussed the main limitations of ICP-based algorithms. The high cost 

of the correspondence search method, the convergence at larger angles and, shape 

visualisation and interaction. This has set the stage for the research’s focus. These limitations 

were particularly considered in the design and development of the algorithms by informing 

which computationally expensive parts of the algorithm needs to be improved. The strategy 

was to ensure the new ICP variants focused on aspects of the ICP algorithm that benefits 

optimisation by making use of different approaches such as using metadata for matching 

(Ankomah et al., 2020), using k-means (Krishna and Narasimha Murty, 1999) for partitioning, 

and using subsets (Chen, Belaton and Pan, 2013). 

The literature review presented an understanding of the high computational cost of the 

different parts of the ICP algorithm. The knowledge gained helped to reduce the 

correspondence search space by partitioning the molecules in 3 different ways: by position 

using a k-means cluster for the KmeansICP algorithm, by atom type for SubsetICP+ and by 

atom type and neighbourhood information (TaggedICP). 

The literature review also helped identify the limitations of visualising 3-D point clouds in virtual 

reality especially with optimising the number of points rendered per frame.  The virtual reality 

application has a simple interface that allows the user to see important transformation details 

of the data shape and the model shape. The application allows the user to interact with the 

shapes and set an initial transformation. The user is also able to visually analyse the overlaps 

of the shape matches as well as visualise the animation of the shape matching process.  

This chapter has achieved objective one (1), “Gain a critical understanding of similarities, 

differences, and potential areas for improvement in existing shape matching techniques by 

performing a thorough literature review”. The thorough literature review and critical discussion 

presented in the chapter has expanded the reader’s knowledge in understanding the 

similarities, differences, and existing challenges in shape matching algorithms. 
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3 CHAPTER 3 VIRTUAL REALITY  
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3.1 Introduction 

The research was interested in a way that allows a user to intuitively interact with the shape 

matching process. This means pausing the visualisation, adjusting the positions of a shape, 

and continuing with the process, allowing the user to be immered in the shape matching 

animation and investigate the shape matching overlap using advantages provided by the 

affordances of virtual reality.  

This chapter introduces the reader to virtual reality (VR). It discusses the history of VR and 

provides a critical discussion on the affordances of virtual reality such as immersion, presence, 

and navigation.The knowledge gained from this chapter was necessary for the development 

of the Iterative Closest Point Virtual Reality (ICPVR) application for matching shapes in virtual 

reality and to achieve objective three (3), “Gain a critical understanding of the history, current 

state, and challenges of virtual reality through a literature review”. For instance, the review 

found that the use of teleportation can increase the overall experience of the user by providing 

the ability to move in the virtual world within a limited physical space. 

 

3.2 History of Virtual Reality 

 

Virtual reality can be described as a man-made environment presented to the user that makes 

the user experience a sense of being in the environment. This feeling of realism or being 

present in a virtual environment is provided by a combination of the 3-D content presented 

through stereoscopic display devices such as head-mounted displays (HMD) and intuitive 

navigation such as using hand controllers to interact with the presented content. 

VR aims to allow a user to perform an action believing that the action is performed in the real 

world and this is achieved by mimicking real-world scenarios through the provided virtual 

environment (Arnaldi, Guitton and Moreau, 2018). Vivid reactions (interaction and feedback 

from presented content) can create a sense of realism and presence making the user feel that 

they are inside the presented environment (Shu et al., 2019).    

 Arnaldi, Guitton and Moreau (2018) explained that the objective of VR is to allow a user to 

execute tasks virtually as if being executed in the real world and this is achieved by the VR 

technology mimicking a realistic environment by providing virtually, the same information in 

the real world. For instance, providing a virtual walk path to the user in VR will allow the user 

to walk on the path virtually because the brain assimilates the virtual information provided as 

real. 
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Virtual reality was noted to have begun by Morton Heilig’s multi-sensory simulator that 

supported VR functionalities such as 3-D display, binaural sound, and interaction. The very 

first idea of an implementation of VR that included all aspects (components) that we currently 

associate with VR, except interactivity was credited to Ivan Sutherland in 1965 (Sutherland, 

1965, Watson and Luebke, 2005, Kour, 2015). This concept was developed further, gaining a 

lot of media attention (Marcus and van Dam, 1991) and then this propelled later research and 

development until presently. 

The 1960s through to the 1990s saw this gradual virtual reality development gaining 

momentum and going through notable developmental phases (Mazuryk and Gervautz, 1996, 

HTC, 2020, Microsoft, 2020, Oculus, 2020) such as; 

 

The term virtual reality was coined by Jaron Lanier in 1989 (Slater and Sanchez-Vives, 2016). 

Lanier’s description of the possibilities of the virtual world compared to the physical world in 

its ability to bring imagination to view, creates excitement and potential which is being explored 

today. Some studies even note the first appearance of the term in the 1960s (Freina and Ott, 

2015) which was the era where VR had a lot of media attention (van Dam, Laidlaw and 

Simpson, 2002). However, the first recognised mechanical device to engage the senses was 

the Sensorama (Figure 9.1) which did not support interaction (Mazuryk and Gervautz, 1996). 

in recent times, virtual reality has been used in new areas of mainstream society which has 

further pushed its adoption and commercialisation. Increasingly diverse industries are 

adopting virtual reality and showing its advantages. In the entertainment industry, specifically, 

live concerts, the Epic Game’s Fortnite environment (Marlatt, 2020) hosted a virtual live 

concert by musician Travis Scott that saw more than twelve (12) million virtual audiences (BBC 

News, 2020). Although these many virtual audiences are partly a result of the global COVID19 

pandemic and restrictions in place in many countries (Buckley, 2020). Similar adoption in other 

industries proves this trend has come to stay. Price cuts on VR headsets, although not in all 

categories has helped its adoption, for instance, Facebook cut the price of the Oculus Rift 

twice in 2017 bringing the price down to $399 from $799 before launching other newer 

versions of the product.  

Other applications of virtual reality include its use in physical education and sports training (Li 

and Li, 2020) for simulating real life scenarios in improving the user’s skills and physical 

qualities and, improving physical therapy through virtual therapy sessions (Camporesi, 

Kallmann and Han, 2013).  
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The proliferation of virtual reality devices and their applications have advanced research into 

the components or metrics of virtual reality that gives the user the perceived immersion, 

interaction and navigation, task performance, feeling of presence, knowledge improvements, 

and usability of the virtual environment (Ankomah and Vangorp, 2018). 

 

3.3 Related Works 

 

Kim et al., (2017) developed a 3-D virtual reality interface for automating the task of matching 

3-D and 2-D shapes. The research was aimed at developing a generalised user interface, 

where any shape matching algorithm can make use of the UI for matching 3-D shapes, 

however, its design was made specifically for matching biological 3-D shapes such as bone 

models as compared to ICPVR’s UI for selecting different algorithms.  As a result, the user 

interface could only allow users to match 3-D models of human shoulder bone structures by 

manually rotating and moving the structures. Feedback from participants indicated that the 

virtual reality interface was more productive than using the 2-D desktop. 

Bruder, Steinicke and Nüchter (2014) explored further attempts at 3-D user interfaces. The 

research developed a point cloud virtual environment by reconstructing a 3-D point cloud of 

buildings from 2-D range images captured in real-time by a moving robot. The research used 

an Intelligent Robot for Mapping Applications in 3-D (Irma3D) (Nüchter, Elseberg and 

Borrmann, 2013) which is a battery-powered lightweight robot capable of taking 2-D and 3-D 

images of an environment. Irma3D (Nüchter, Elseberg and Borrmann, 2013) also can be 

controlled remotely to direct its path around the buildings. It can also move autonomously and 

explore within a set limited area as well as being controlled wirelessly by a user. 

As the robot passed around buildings, pairs of 2-D range images captured in real-time from 

the mobile robot are transmitted over a wireless network connection to the point cloud virtual 

environment (PCVE). These images were registered with the ICP algorithm implementation 

found in the 3-D toolkit (3DTK) (The 3-D Toolkit, 2020) and visualised in virtual reality using 

an Oculus Rift head-mounted display  (Oculus, 2020). 

Bruder, Steinicke and Nüchter (2014) found several challenges in the point cloud virtual 

environment. These included the poor performance of rendering millions of 3-D points in virtual 

reality because the number of points rendered caused the frame rate to drop. The research 

proposed locking the frame rate to the display’s refresh rate and limiting the number of points 

displayed.   
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Point clouds have been explored for novel areas such as simulating an unmanned aerial 

vehicle (UAV) using data from a Ladar (Sensors using light waves to generate topographical 

data) sensor for validating the selection of a target (Bergé et al., 2016). 

The research also found that viewing objects represented as scattered points pose a challenge 

when users get close to the object as the points tend to appear too far apart to give the 

impression of a solid object. This is because of the point sampling density of the virtual objects. 

For instance, a molecule point cloud with atoms representing points as visible atoms 

composed of a sphere primitive in virtual reality will allow the user to walk through the point 

cloud and as such the points dissolve into the users' view. However, ICPVR does not suffer 

from this problem due to the atoms’ textures. 

The research also suggested a good interaction design that considers the concentration of 

points at an area the user selects. This is because, unlike actual 3-D objects where a user can 

hold a solid but virtual part of the 3-D object, point clouds present gaps or spaces between 

parts of the 3-D object and an interaction design that considers these gaps might benefit 3-D 

User interfaces and user interaction with point clouds in virtual reality. The approach of ICPVR 

allowed the user to interact with the 3-D protein molecules and virtually be able to walk through 

the molecules because the overlaps of the atoms are points of interest for the user as it 

provides some visual analysis. 

Tredinnick, Broecker and Ponto (2016) pointed out some challenges of point cloud 

visualisation in virtual reality to include slow rendering performance and lags in interactivity 

when visualising massive point clouds.  The research developed an algorithm to render points 

in a point cloud over many frames to ensure lag-free interactivity when visualising massive 

point clouds in VR. The research used a technique that reduces the number of points rendered 

by a frame by constantly re-projecting a previous frame with the rendered point clouds whilst 

incorporating some new points. This method ensures that points are rendered seamlessly over 

many frames allowing large amounts of point cloud data to be rendered with no adverse effects 

on the user experience such as slow performance or lags in interactivity. However, there is a 

possibility that, if the viewpoint or the orientation of the point cloud changes significantly from 

one frame to the next, parts of the point cloud that were previously occluded need to become 

visible, but the re-projected previous frame will have gaps in those parts causing visual 

artefacts. This research shows the benefits of rendering large point clouds across multiple 

frames to reduce the trade-off between interactivity and quality of the virtual experience. 

Alexiou, Yang and Ebrahimi (2020) investigated point cloud visualisation in virtual reality. Their 

research focused on the subjective analysis of the quality of the contents of point clouds such 

as colour, as well as the user’s experience of interacting with the point clouds in virtual reality. 
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The research aimed to compare the subjective quality of the environment and 3-D models 

between passive and interactive evaluation experiments. A Unity3D (Unity Technologies, 

2019) based application was developed called PointXR (Alexiou, Yang and Ebrahimi, 2020) 

that enabled subjective analysis of the quality of the user experience including colour quality 

and performance. PointXR works by loading and converting the point clouds to 3-D models 

using the Pcx Point Cloud Importer (Takahashi, 2020). Participants were presented with two 

versions of the 3-D models for the experiment, original quality and distorted version and results 

showed that participants preferred close-range and frontal view examination.  

ProteinVR (Cassidy et al., 2020) is a web-based molecular visualisation program for 

visualising 3-D proteins. ProteinVR enables users to interactively visualise 3-D protein 

structures in virtual reality headsets, mobile devices, and desktop computers. It supports 

several modes that allow visualisation and interactivity on supported screens and interaction 

mechanisms. In desktop mode, ProteinVR allows the use of a mouse and keyboard for 

interaction with the 3-D protein visualisation. In VR mode, ProteinVR can visualise the 3-D 

structure of proteins in virtual reality using mobile or desktop computers connected with 

supported VR headsets such as HTC VIVE (HTC, 2020), Oculus Rift (Oculus, 2020), and 

Google Cardboard (Google, 2016). VR mode also enables a user to navigate around the 

scene by moving in their physical space or using teleportation to adjust their view of the virtual 

3-D protein structure.  

Doutreligne et al., (2014) developed a Unity3D based molecular visualisation software called 

UnityMol. UnityMol enables interactive visualisation of molecular structures in VR, allowing 

users to investigate and explore a structure represented as hyperballs and helix (Figure 3.3 

and Figure 3.4). The application allows the visualisation of molecular events such as molecular 

bond formation and interactions. This visualisation allows the user to understand the behaviour 

of molecules and to gather insights leading to a better understanding of the relationships 

between molecules and how molecular properties influence these relations. 

The knowledge gained from the discussed related works informed how ICPVR was designed. 

It was understood that providing the ability for the user to move freely in the virtual environment 

especially in a limited physical space required the teleportation feature. The usability of ICPVR 

was also considered in ensuring the users could interact with the protein molecules. Because 

there is no limit on the size of the protein molecule (in terms of the number of atoms), large 

molecules could cause lags during the shape match animation. To address this challenge, the 

closest point search method, which is a time-consuming method of the ICP algorithm was 

enhanced inside VR by refreshing the VR display after every set number of correspondence 

searches which attempts to spread the rendering of the points across multiple frames. 
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Figure 3.1 3-D representation of a molecule, Unity3D. The image shows the original size with no scaling applied. The 3-D 
protein was imported from a PDB file. The colours represent different atom types (Red=Oxygen, blue=Nitrogen, 
yellow=Sulphur, grey=Carbon). 

 

Figure 3.1 shows a 3-D structure of a molecule, represented using the space-filled model 

(Corey and Pauling, 1953) which consists of using spheres to represent the 3-D structure of 

the molecule. The space-filled model shows molecules and their associated atoms using the 

same scale. Atoms are usually represented with different colours, and this allows easy 

identification of the atoms in the 3-D environment. The bonds are not visible in Figure 3.1 nor 

used in the research because the research was not concerned with the bonds and none of the 

algorithms developed specifically utilise the bond structure. 
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Figure 3.2 Illustration of Ball and Stick model showing atoms and their bonds in a molecule. The atoms are held by bonds to 
form a sequence. Molecules are made up of many small sequences of atoms and bonds. 

The ball-and-stick model (Figure 3.2) can be used to represent the 3-D structure of the 

molecule, showing atoms represented as balls (sphere primitive), the spatial positions of the 

atoms as well as the bonds between the atoms represented as sticks (cylinder primitive). 

 

Even though this model hides the bonds between atoms of the molecules as shown in Figure 

3.1, the research is not concerned with that because each atom is treated as a point in the 

point cloud and as such, the bond is not particularly important for this research. Also, the scale 

of the atoms was uniformly reduced to easily see the overlap of two molecules during a shape 

match in virtual reality especially when they have been super-imposed. Based on the above, 

the research represented all 3-D structures with the ball and stick model without the 

connecting sticks. Molecules and their associated atoms can also be represented using other 

structures such as the van der Waals (Bondi, 1964), and helix models (Boyle, 2018) shown in 

Figure 3.3. 

 

Figure 3.3 Sample helix structure representation of a molecule (LHS) Molecular view of helix structure (RHS) Carton view of 
a helix structure (Boyle, 2018) 

 

 



76 
 

Technological improvements in graphic processing units (GPUs) have provided the necessary 

advancements in processing capabilities for complex 3-D tasks that otherwise would have 

suffered poor performance from running on a traditional CPU. GPUs have thousands of 

processing cores that allows these complex tasks such as molecular visualisations to be 

efficiently run (Chavent, Vanel, et al., 2011).  

The opportunities provided by the advancements in GPU technology have also enabled 

research and experimentations with complex forms of molecular structural representation 

such as protein docking (interaction of protein molecules with other molecules), molecular 

structure evolution (structural changes on a molecule over time due to changes such as 

mutations) and real-time molecular interaction (modelling the visual changes in the 3-D 

structures of protein interactions). These new capabilities and visual representations have 

enhanced user impressions and their subjective analysis of atoms and molecules (Chavent, 

Lévy, et al., 2011). 

 

Chavent, Vanel, et al. (2011) employed the technical advancements (processing power from 

thousands of cores of GPUs) in GPUs to research different representations for molecules.  

The research proposed and demonstrated a molecule successfully rendered with hyper balls 

(Figure 3.2) and licorice structures (Chavent, Vanel, et al., 2011) in Figure 3.3. 

 

 

Figure 3.4 Hyperballs representation of a molecule (Chavent, Lévy, et al., 2011) was derived from the ball-and-stick model 
modified to show atoms bonds as elliptic hyperboloids connecting atoms. 

Hyper balls (Chavent, Vanel, et al., 2011) enabled the use of a combination of balls, sticks 

and hyperboloids (Figure 3.4), which are cone-shaped objects with one or two surfaces 

(Weisstein, 2020). The use of a mixture of these shapes allows extending the molecular 
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visualisation to visualise complex phenomena such as the rate of changes of molecules due 

to mutation or protein docking activities over time (Chavent, Vanel, et al., 2011). 

 

 

 

 

3.4 Virtual Reality Metrics 

 

Virtual reality systems can be evaluated and appreciated from different aspects in different 

metrics as follows: immersion, presence, interaction, knowledge improvement, navigation, 

performance, and usability.  Presence and immersion are the core affordances of VR because 

they are responsible for blurring the lines between the virtual and the physical world. 

Navigation and interaction are the actions that can be performed in the virtual world, 

knowledge improvement is an outcome of a user experiencing the virtual world and 

performance and usability are evaluation metrics. 

The metrics are reviewed using research that evaluated them. Detailed discussions are 

provided on the aim of the evaluation, the specific VR platforms and tools used, and the results 

and findings of the research. 

 

3.4.1 Immersion 

Lee et al. (2017)  explained ‘transparent immediacy’ as a property of virtual reality which allows 

users to forget the existence of media and believe that they are immersed in the virtual world. 

The research further noted how metrics such as interaction can affect the overall measure of 

immersion, for instance, the poor interaction in a game can affect the overall immersion the 

user experiences. The research also hypothesised on participating users preferring to use the 

data gloves as a hand gesture interface more than to use the available HTC VIVE controller 

in the game experiment. This can be explained by the fact that hand gestures afforded by the 

hand gloves feel more natural than using controllers. 

The term 'immersion' refers to the measurable outputs of VR technology. The more stimuli the 

system presents to the user’s senses to mimic the real world, the more the system is 

immersive (Slater, 2003). This definition agrees with Cummings and Bailenson (2016) view of 

immersion being the quality of the virtual environment in terms of its technical provisions such 
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as higher field of regard and supported natural gesture types. This view also supports states 

of immersion such as full or partial (Kjeldskov, 2001, Marks, Estevez and Connor, 2016) and 

this view pointed later research to suggest the need for further experimentation on aspects of 

immersion such as perception and interaction for acceptance (Laha and Bowman, 2012). This 

is because several other aspects of VR such as interaction, navigation, and usability are the 

focus of immersion (da Costa and Nedel, 2017). Increasing any of these aspects in terms of 

making them feel like the real world as much as possible also increases the overall immersion 

experienced by a user in the VR as such VR experiments prioritise making VR selection, 

manipulation, and navigation around objects as close to the real-world as possible. Whilst 

Slater (2003) argued of the separation between immersion and presence (Slater et al., 1996, 

Spagnolli and Gamberini, 2002) this is rather commonly seen to be loosely used 

interchangeably in other research (McMahan, 2003).  

Research attempting to understand the process of immersion found that as a user interacts 

with a virtual environment, their perception that the entire environment is within their grip 

causes the user to enter a flow state (Choi, Kim and Kim, 2007, Zhou and Deng, 2009, 

Animesh et al., 2011, Cheng, Chieng and Chieng, 2014). Jennett et al. (2008) also described 

it as extreme immersion, however, some differences exist in the degree of realism. Brown and 

Cairns (2004) describing the flow state put it as a realisation “When you stop thinking about 

the fact that you’re playing a computer game and you’re just in a computer”. 

Stated preference (SP) experiments (experiments that involve using individual respondents’ 

statements about their preference) which in some cases, lacked a sense of realism (because 

users would be choosing preferences without having experienced their choices) were studied 

to gain a sense of realism using virtual reality (Farooq, Cherchi and Sobhani, 2018). In a 

comparative analysis of the choice scenario using virtual reality, Farooq and Cherchi (2018) 

evaluated the introduction of realism, immersion, and interactivity into the stated preference 

experiments using HMDs (Head Mounted Displays) and found out that the scenario was more 

real to the users because of the immersion and interactivity afforded by the HMD (Farooq, 

Cherchi and Sobhani, 2018). In their experiment, the preference for autonomous vehicle 

scenarios was increased from forty (40%) to seventy (70%) in their VIRE (Virtual Immersive 

Reality Environment) setup. Positive results from SP experiments include tenant-mix for 

shopping centres (Borgers et al., 2010). 

Similarly, natural body motions were also employed in the study of overall immersion in 

medical imaging visualising DT-MRI (Diffusion Tensor Magnetic Resonance Imaging – the 

process of acquiring information about organic tissues based on their types and the diffusion 

of water molecules along with them). The research showed that immersion and interactivity 
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realised from using an HMD aided the users understanding of complex geometric models 

depicting neural structures like neurons (Zhang et al., 2001)  

Laha and Bowman (2012) discussed the importance of VR research measuring immersion to 

compare individual components of immersion rather than evaluating the whole user interface 

display and this problem may have hindered certain tasks such as analysing volume data 

visualisation. Their research proposed the need for controlled experiments to address this 

problem, reiterating that traditional VR experiments lack generality because of confounds 

involving multiple components of immersion and as such empirical results are needed to back 

these claims. Laha and Bowman (2012) claims were supported by Cummings and Bailenson 

(2016). 

Cummings and Bailenson (2016) explained that advancing the technology in an immersive 

environment such as using natural body gestures, using HMDs with a larger field of view, and 

larger field of regard of the virtual environment results in an increased presence felt by the 

user because these technological enhancements increased the immersion the user feels. 

Increased immersions result in a higher feeling of being present in a virtual environment.  It is 

realised that manipulating individual components of immersion has been suggested to be a 

good way of measuring immersion as these could provide empirical results.  

Laha, Bowman and Socha (2014) researched VR analysis of volume data by studying the 

effects of system fidelity (field of regard, stereoscopy, and head tracking) on tasks in the 

scientific domain. The research concluded that tasks involving manipulation of spatial objects 

with isosurface (a 2-D surface that represents points of a constant value in a 3-D scalar field 

where each position has a value) visualisation using a head-mounted display provided better 

performance, however, tasks involving 3-D texture-based rendering required a higher field of 

regard when the levels of other components (stereoscopy and head tracking) were unchanged 

(Laha and Bowman, 2012). The field of regard refers to the observable space around the user 

that is filled with VR content whilst the field of view indicates the visible area for the user at an 

instance without turning their head. 3-D texture-based rendering creates rich, detailed, and 

often spatially complex graphics and the higher field of regard allows a larger viewing space 

for the complex object. This controlled experiment was done to evaluate individual 

components of VR immersion.  

HMD based VR systems that have a very high sense of realism face several issues including 

latency between the movement of the user’s head and the resulting change in the image seen 

in the HMD which is commonly called “Cue conflict” (Marks, Estevez and Connor, 2016). Cue 

conflict is a mismatch (conflict) between information from our senses that tells us where we 

are and how we’re moving in the world). Cue Conflicts can be caused by latency caused by 

https://en.wikipedia.org/wiki/Surface_(mathematics)
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stalled experiments (Zhang et al., 2001) and this can sometimes cause physiological effects 

such as motion sickness (Lackner, 1992). 

In the medical field, specifically neurosurgery, Pelargos et al.(2017) highlighted the barriers to 

commercial adoption of VR being the challenge of integrating mobility, vision, immersion, 

usability, flexibility, and wearability into the medical practice. The research also explained that 

VR systems should meet a threshold for depth of field, depth of focus, field of view, and image 

resolution for an immersive experience. Notwithstanding, there have been many pieces of 

research highlighting the potential of VR’s immersion in the medical field due to positive results 

during tests and experimentation including immersive therapy for treating psychological, 

psychiatric, medical educational, and self-help problems (Lamson, 2011), simulating medical 

procedures (Jacobus and Griffin, 1998), and learning performance in VR simulation for robotic 

laparoscopy (Fiedler et al., 2007). 

A study focused on immersive manipulation of molecules using HMD (da Costa and Nedel, 

2017) in the field of Chemistry. This research studied the speed at which participants 

performed tasks concerning dragging movement, selecting, and rotating 3-D molecules in the 

HMD environment and on desktop screens. The research was aimed at finding the benefits of 

molecular visualisation and interaction in immersive virtual reality over a desktop screen. 

Interaction in the VR environment was found to have advantages over interaction using the 

desktop interface, such as shorter time for users to complete their tasks and with fewer errors. 

The research was particularly interested in comparing the performance of the desktop and the 

VR environment in interactions with molecules using as many natural gestures as possible. 

The research concluded that visualisation using the virtual environment through the HMD 

increased the user’s understanding of the data and structure which would have required more 

effort using a desktop. 

A review of selected research in immersion has highlighted contrasting usage and meanings 

of the terms immersion and presence. It has also highlighted that a key point of immersion is 

achieved by the optimal functioning of other VR metrics such as interaction and navigation. 

This could mean that immersion directly depends on the optimised functioning of these 

metrics. Research work has also shown an opportunity for immersive environments to 

enhance the performance and simulation of tasks in many industries. 
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3.4.2 Presence 

 

Cummings and Bailenson (2016) defined presence as the “psychological experience” of being 

in a particular virtual environment. Presence describes a user’s sense of being in a VR 

environment (Zielasko, Weyers, Bellgardt, Pick, Meibner, et al., 2017)  and this relies on the 

adequate selection of specific perceptual cues to activate emotions (Diemer et al., 2015).  

Passig (2009) argued that the presence provided by VR’s 3-D immersive experience motivates 

the user to become much more engaged and active in the tasks delivered in a 3-D 

environment. This conclusion was made in a study of 2-D and 3-D intervention programs for 

children with learning disabilities. In the experiment, participants could use an HMD with a 

head tracking sensor and a mouse to navigate, manipulate and interact with animated pictorial 

scenarios, children using the 3-D environment required less mediation due to the presence 

experienced as they were immersed in the environment.  

In an experiment to measure the presence felt by users in a 3-D immersive environment, the 

open simulator environment was used with Moodle learning management system to provide 

virtual cybersecurity training in the form of games such as phishing, identity theft, and 

password protection scenarios (Xenos et al., 2017). It was concluded that the presence 

perception of the participants was high. This indicates that the implemented system was 

performing well. Similarly, the potential of VR in virtual simulated stores (Schnack, Wright and 

Holdershaw, 2018) was explored through an experiment to compare virtual shopping in 

immersive 3-D and 2-D desktop displays. The 3-D environment was made up of a stereoscopic 

HMD and motion-tracked hand controllers. The experiment allowed users to walk through a 

virtual shopping centre. Their motion was also being tracked whilst interacting with the virtual 

products. Findings indicated that interactive virtual reality (IVR) technology has the potential 

to outperform conventional desktop applications concerning telepresence. This finding agrees 

with previous research that investigated influences of control devices, display type and audio 

cues on telepresence (Seibert and Shafer, 2017)    

With a focus on maximising presence amongst other aspects of VR in the virtual environment,  

Zielasko et al. (2017) described a deskVR scenario allowing an analyst or researcher to be 

fully immersed at their desk which can benefit in the gain in productivity when immersed in 

their data spaces. This finding also agrees with virtual environments increasing task 

performance (Barfield and Hendrix, 1995, Slater et al., 1996). 

Cummings and Bailenson (2016) found out that users felt more present in a virtual 

environment when there are increased levels of tracking e.g., from joysticks to natural hand 
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gestures, 2-D to 3-D, and lower to wider fields of view. These improvements significantly 

increase the feeling of immersion as compared to improvements in visual and audio content. 

 

3.4.3 Interaction 

 

Kjeldskov (2001) noted the central issue with human-computer interaction to be the creation 

of better ways of interacting with computers and explained that, the potential of HCI (Human-

Computer Interaction) within VR can spring up interesting insights and new ideas that 

complement research in the HCI field. This argument is valid because VR has emerged as the 

current and next frontier of display and interaction technologies as well as agrees with 

Bowman and Hodges (1999), although this is specifically concerned with VEs (Virtual 

environments), it highlights interaction design problems due to no consideration or 

understanding of 3-D interaction tasks and techniques. This was also proven by  Ren and 

O’Neill (2013) further explaining that different input devices have varying impacts on the 

performance of a task even by the same user. Different devices might have different properties 

due to intrinsic technicalities such as manufacturer specifics. Also, the design of the input 

device affects its suitability for certain tasks. Good VR interaction design requires the design 

process to consider the user's perceptions, capabilities, and anticipated behaviours in the 

virtual environment (Ren and O’Neill, 2013). 

Kjeldskov (2001) argued that the terms ‘interaction’ and ‘interactivity’ have become buzzwords 

and as such have become very vague terms for computer applications. The research found 

out that, using the word interaction to describe all aspects of interactivity in a virtual 

environment provided little help in explaining interaction related issues encountered in the 

experiment. Kjeldskov (2001) proposed 3 terms, moving (ability and constraints of moving 

around in the virtual world), orientating (the process of a user obtaining a sense of realism in 

the virtual world), and acting (performing tasks in the VR environment) to better explain 

interaction. This is because each of the proposed terms (moving, orientating, and acting) are 

experienced differently based on factors that directly affect them. For instance, using an HMD 

allows the user to move around the physical world easily whilst the virtual object remains in 

focus in a fixed position. This also ensures greater flexibility of movement and the field of 

regard afforded by the HMD allows the user to go around the virtual object creating a higher 

sense of realism. The ability to rotate the virtual object also increases the sense of realism, 

however, HMDs can also be constrained with any data cable to a computer and in some cases, 

their weight can be a distraction, and these can affect moving around in the physical space. 

CAVEs present a unique consideration for interaction design. Fully immersive CAVEs provide 
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a similar benefit to the HMD without the added constraint of a connecting data cable. Kjeldskov 

(2001) further proposed the consideration of display type and the design of interaction in virtual 

environments as this will enhance the quality of interaction methods. 

Similar to the earlier discussion on the effects of other features of VR when evaluating a single 

feature, Wloka (1995) argued that the three features that make up virtual reality interaction 

are immersion, rich interaction, and presence. Enriching of interaction in a virtual environment 

can be enhanced using direct manipulation with interaction with objects using multiple input 

devices with higher degrees of freedom. 

Muhanna (2015) explained interactivity as the virtual world giving participants the ability to 

interact and modify virtual objects. This study proposed a taxonomy of virtual reality to aid 

researchers alike.   

 

Figure 3.5 Virtual reality taxonomy based on technologies used and immersion levels 

(Muhunna, 2015).  

 

Figure 3.5 depicts a classification of virtual reality based on the technology and the immersion 

levels. The enhanced VR is composed of a semi-immersive and a fully immersive experience 

comprising.  

Ciftci, Zhang and Tin (2017)  proposed a depth-based recognition framework that recognises 

mouth gestures to overcome the occlusion (Wu and Popescu, 2017) of the upper half of the 

display when using HMDs. The framework improved interactive virtual reality applications by 
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providing information-rich facial actions as a way of interaction in VR. This novel approach to 

VR interaction was tested using a game and results showed the evaluation system correctly 

classifying 85.9% of the gestures.  Wu and Popescu (2017) similarly identified the opportunity 

of improving VR navigation due to occlusion of parts of scenes by large HMDs by proposing 

a secondary view that provides multi-perspective to the scene to achieve the dis-occlusion 

effect. This experiment utilised the Microsoft HoloLens and found out that participants found 

that secondary perspectives are useful and help efficiently navigate in the virtual environment.  

Ni et al. (2011) evaluated the use of freehand menu selection interfaces using tilt and pinch 

gestures. In their evaluation, they designed a novel menu selection interface called the 

rapMenu (Ni, McMahan and Bowman, 2008) which is controlled by wrist tilt and several pinch 

gestures. The rapMenu was found to perform better than a tilt menu (Rahman et al., 2009) in 

terms of speed and accuracy when the menu had a breadth of 12 or more items, and a 

rapMenu with better placement of menu items was found to be more usable. A similar 

technique was proposed earlier for VR (Dachselt and Hübner, 2007).  

Coldham and Cook (2017) researched the usability of VR in the context of technology rejection 

amongst elderly persons. The aim was to understand the factors affecting technology rejection 

from the perspectives of the elderly. Most of the elderly are not exposed to VR or its related 

gaming and so the selection of first time VR users, over the age of 65 as participants also 

provided an opportunity for the experiment to yield accurate results. The setup featured a 

virtual Google Earth environment allowing the participants to experience the virtual earth using 

the HTC VIVE (HTC, 2020) and its controllers. The main task involved participants navigating 

to a known address in the virtual earth environment. The results indicated that many of the 

participants had little hope for VR, indicating that it did not have many benefits and others 

expressed the view that VR was for younger people, however, others also saw the potential 

uses of VR. The research concluded that certain physical aspects of the design of VR 

components such as data cables from HMDs can limit the experience of the elderly. In recent 

times, VR devices with no cables have started going mainstream such as the HTC VIVE Pro 

2 (HTC, 2021) and The Oculus Quest 2 (Facebook, 2020). 

In the field of architecture, VR does not only help in the planning and design of architecture by 

reducing the cost of the process using virtual prototypes, but it also enhances the user-

customer relationship by enabling a new form of visualisation and interaction with the product. 

By allowing a user to visualise their design prototypes, it further enhances the engagement 

between user and customer through immersive demonstration of project prototypes (Calado 

et al., 2013). 
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Virtual reality has also been found to improve big data analytics. In a study visualising the 

Twitter feed on MIT campus with a gamepad for interaction, it was concluded that virtual reality 

can also be used as a data visualisation platform and that a more immersive environment 

enables interaction (Moran et al., 2015). The research further suggested that the use of 3-D 

interactions such as hand inputs rather than a gamepad could potentially improve the overall 

interaction experience. Like many other experiments, the application was built with Unity 3-D 

and the Oculus Rift DK1 was used as the VR device. 

 

 

 

 

3.4.4 Knowledge Improvement  

 

Eden and Bezer (2011) explored the use of an HMD with a head tracking sensor and a mouse 

for navigation and tracking. In their study comparing three-dimensions and two-dimensional 

intervention programs, the research investigated the behavioural aspects of children with 

intellectual disability. The study used animated 2-D scenarios (Eden and Passig, 2007)  and 

the same scenarios were converted to 3-D and results indicated less mediation (They required 

less help from the coordinators) involved for users in the 3-D IVR (Interactive virtual 

environment). This means the users experimenting with the 3-D environment could learn and 

understand needing less help. 

Eden and Bezer (2011)  researched interventions needed by children with intellectual disability 

(ID) in 3-D virtual reality environments and 2-D alternatives (presentation of pictorial images 

to the students). Intellectual disability refers to a condition that makes it difficult for sufferers 

to learn and especially understand abstract concepts. Children aged between nine and 21 

were grouped based on their levels of ID and were given a means of asking for help during 

the experiment. The experiment itself was composed of levels of scenarios that the children 

were expected to re-arrange, and the level of help they requested or received from the 

instructors to complete the scenarios determined the level of help offered by their instructors. 

The research concluded that the experiment using the virtual environment required less 

instructor help compared to the 2-D desktop-based experiment. 

Xenos et al. (2017) evaluated knowledge improvements in virtual reality using a virtual 

environment showing several information security threat scenarios (phishing, identity theft, 
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password security, and social networking-based security). These scenarios were presented 

to participants and allowed the participants to navigate around the environment while learning 

about these threats. The environment was designed in a way to evaluate the effectiveness of 

using virtual reality to learn from previous experience.  As such, users were presented with 

questions as they learned about different security threat scenarios. Based on participant 

responses, the researchers concluded that virtual reality can be a useful tool for teaching and 

learning.    

  Coogan and He (2018) evaluated learning in brain-computer interfaces by testing the 

performance and learning rates using a VR setup with HTC VIVE (HTC, 2020) and a desktop 

interface and found no knowledge improvements for users using VR compared to the desktop 

screen. The research rather found out that users with prior experience of VR performed better 

in the VR environment. This observation can be due to first-time user adjustments to the HMD 

and the use of the controllers. The subtle difference here with other experiments include the 

brain control interface (BIC2000) device that was placed directly on top of the head together 

with the HTC VIVE. This device was also noted to sometimes interfere with the HTC VIVE. It 

can fairly be assumed that this might have added extra weight to the already heavy HTC VIVE 

HMD. Latency issues may have also affected the experience of users as brain control interface 

signals are routed to the game engine and accepting physical input into a complex mix of 

interactions. 

Several other researchers have found some evidence of knowledge improvements using VR 

include learning for elderly cohorts (Coldham and Cook, 2018), geography education using a 

collaborative and immersive environment (Doležal, Chmelik and Liarokapis, 2017), and 

learning in cell biology for undergraduate students  (Johnston et al., 2018).   

 

3.4.5 Navigation 

 

Navigation is one of the core tasks that people perform in virtual environments and spatial 

knowledge gained in the environment is used to navigate successfully  (Sousa Santos et al., 

2009). However, contrary conclusions were drawn in Sousa Santos et al. (2009) where it was 

observed that users performed better in their navigational task on 2-D desktop screens than 

using an HMD. This could be because of several complaints of users concerning the virtual 

environment setup including distractions by cables which might have affected their experience 

and overall performance on the task as well as the weight of the HMD and the brain control 

interfaces.  
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Ard et al. (2017) illustrated the superior navigation and conceptual advantages of viewing 

complex neuroscientific data in an immersive and stereoscopic context. They developed a 

virtual reality prototype environment called NIVR (Neuro Imaging in Virtual Reality) built with 

Unity3D (Unity Technologies, 2019). The experiment used the HTC VIVE and allowed users 

to manipulate MRI scans as well as perform volumetric tasks in the immersive environment. 

The immersive tractography experience, as well as the neuroscientific near-field experience, 

were particularly noted to be a first of a kind by encompassing all sorts of neurological data 

into a single VR viewing program and this was achieved by pre-rendering data to overcome 

the length of time needed to render the huge frames in neurological data. The exceptional 

navigation experienced allowed users to manipulate brain segments offering a compelling 

neuroanatomical experience, or ‘digital dissection’ of an actual brain. Similar positive results 

for navigation were concluded in Johnston et al(2018) where 2 virtual reality environments 

were used to visualise the internals and surface of a cell allowing the user to navigate 

seamlessly between both environments. 

Virtual navigation in 3-D environments was found to be challenging with the standard mouse 

and keyboard interface  (Cockburn and McKenzie, 2002)  and thus a recommendation for a 

new approach that facilitates more intuitive exploration of 3-D visualization to unlock the full 

potential of areas such as scientific analysis (Steed et al., 2017). Steed et al. (2017) focused 

on navigation in immersive analytics using neutron scattering and the Oculus Rift HMD. They 

concluded that using HMD represents a viable path toward unlocking the full potential of large 

and complex scientific data because the HMD provided a more immersive and enhanced way 

of interacting with the data and this enhanced the discovery of knowledge in a short time.   

Similarly, a mix of results in the study of the usability of virtual reality was identified in Coldham 

and Cook (2018). The research explored how elderly cohorts could learn navigation of tasks 

in the virtual environment. Making use of Google Earth-based navigational tasks, it was 

concluded that users generally expressed their view of the tool being exploratory however 

many more indicated their frustrations that include difficulties with using triggers and buttons 

on the hand wands, headset, and tethering issues such as problems with the weight of the 

headset. This group of users could potentially benefit from wireless HMD displays and full 

body tracking devices which might have improved their experience. 

 

 

3.4.6 Performance  
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The measure of the performance of a virtual reality system was noted to be more beneficial 

when this is done together with usability studies of the same environment being tested (Toma, 

Gîrbacia and Antonya, 2012). This approach would have improved research evaluating 

immersive environments (Cockburn and McKenzie, 2002b, Wang and Li, 2004, Demiralp et 

al., 2006, Chang et al., 2016). 

The performance of a virtual reality system in Computer-Aided Design (CAD) was evaluated 

using an experiment allowing participants to model and assemble interfaces using a 2-D 

desktop display and an immersive HMD interface with a Holo-CAVE (Toma, Gîrbacia and 

Antonya, 2012). Results showed that the immersive environment provided a better awareness 

of the bounds of the object since the user was immersed in an environment containing the 

data. The overall immersion was also enhanced with natural interaction using speech. The 

results indicated that the environment was not more efficient compared to the 2-D desktop 

environment because it involved physical hand motions using the controllers (Toma, Gîrbacia 

and Antonya, 2012). 

 A more conclusive result showing a VR interface outperforming traditional tasks on a 2-D 

display was detailed in an experiment assessing performance for navigational tasks in a game 

scenario (Sousa Santos et al., 2009). On the other hand, Coogan and He (2018) found out 

that user performance did not increase compared to traditional 2-D desktop displays in an 

experiment using brain control signals to manipulate objects in 3-D and 2-D. Both experiments 

made use of a VR application built with the Unity game engine and whilst Sousa Santos et 

al.(2000) used a game-based scenario approach with a mobile-based VR device, and Google 

Cardboard, Toma, Gîrbacia and Antonya (2012) used a CAVE (Cruz-Neira et al., 1992) for 

their VR demonstration. 

The performance assessment of carotid angiography (The study of the health of veins and 

blood flow using x-rays and diagnostic imaging tools) was simulated in VR to measure 

reliability amongst others (Patel et al., 2006). The experiment was to ascertain whether virtual 

reality could be a valid means of proficiency assessment and improvement in procedural-

based medical skills. It was also an opportunity for using VR to explore this complex and high-

risk procedure as the demand for learning had risen amongst medical professionals (Gallagher 

and Cates, 2004). Using a VIST simulator (Vascular Interventional System Trainer – VR 

simulator system for training in the diagnosis and treatment of diseases related to the blood 

vessels). Patel et al. (2006) employed the use of seven measures of the participant’s operative 

performance with repeated tests, and it was concluded that the VR simulation procedure 

enhances the reliability of the assessments during virtual operations on carotid angiography. 

This result also agrees with similar studies for autism spectrum disorder where the results 
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revealed that virtual environments have the potential to foster improved performance during 

social communication tasks among the participants (Raj and Lahiri, 2017). 

 

3.4.7 Usability 

 

Toma, Gîrbacia and Antonya (2012) argued that usability is the ability to carry out tasks 

effectively, efficiently and with satisfaction and that evaluation is the way to measure that 

usability. Previous research (Bowman, Gabbard and Hix, 2002) had identified issues with 

usability studies including issues with the reliance on one method such as the difficulty of 

usability studies based on heuristics (user guidelines) because of no existence of published 

work on virtual environment user interface design guidelines. Laha and Bowman (2012) had 

also argued that limitations with current usability studies for VR environments lacked 

generalizability of results to other VR systems and domains, meaning that in most cases, 

experiments are designed from the ground up due to the often different datasets required in 

these environments. 

Depth and gestalt cues (How the brain perceives and interprets images) in text label layouts 

were identified to affect the usability of the immersive environment. Polys, Bowman and North 

(2011) presented an evaluation methodology for usability that seeks to test proximity and 

connectedness cues in viewport space layouts. It was concluded that the consistent 

performance of continuous scaling across tasks suggests that legibility is more important than 

relative size. 

Toma, Gîrbacia and Antonya (2012) designed an experiment to evaluate a VR-CAD system 

compared to a traditional CAD system that runs on a 2-D display, for modelling as well as 

assembly user case scenarios. The virtual environment was in a Holo-Cave complete with 

voice commands and hand motions for a specific task and in each scenario, users could model 

objects as a measure of task performance to measure the usability of the VR-CAD system. It 

was concluded that VR presented a physical stress factor because the distance for hand 

movement in VR was bigger than in desktop. 

The system usability standardized questionnaire was used to measure the usability of a virtual 

3-D learning environment using the Opensimular tool and augmented with the Moodle learning 

management environment (Xenos et al., 2017). The focus was on usability aspects such as 

efficiency, perspicuity, and dependability. Game-based scenarios were presented to student 

participants revolving around computer security and all students were able to successfully 

conduct their learning activities within the 3-D virtual environment scenarios. The usability 
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evaluation results, SUS (System Usability Scale) score of 67.3/100 is acceptable and 

comparable with usability scores achieved at similar systems.  

A more complex usability study was performed on a similar game based scenario for practising 

urinary catheterization (Butt, Kardong-Edgren and Ellertson, 2018) and the evaluation 

performed using the system usability survey showed results with an overall rating of system 

usability at a mean of 72.5%. This positive result also agrees with a study into the potential of 

VR for autism spectrum disorder (Pradeep Raj, Oza and Lahiri, 2017) where a virtual 

environment was created that allowed autism patients to practise communication with others 

in a virtual world. The setup allowed the participants to interact with virtual characters 

Hou, Dong and Yang (2017) noted the popularity of using eye-tracking to measure usability 

but hinted at the difficulties in having accurate data because of the combination of wearing a 

head-mounted display. Research has also pointed out certain issues with measuring the 

usability of virtual environments such as whether the user experience realised are because of 

VR or the product being studied. The approach by Hou, Dong and Yang, (2017) made use of 

electrical signals to measure the usability of game UX by recording the electrical signals 

emanating from the brain and studying the frequency band and functional connectivity as good 

indicators to VR game UX. 

Bowman, Gabbard and Hix, (2002) evaluated virtual reality research along lines of the usability 

method evaluated. The research‘s classification of VR usability research (Summative, 

interview, evaluation, user task analysis, heuristics, and questionnaire) helps broaden 

adoption, however, Bowman et al. (2002) also identified many issues with current usability 

studies for the virtual environment including issues with the reliance on one method such as 

the difficulty of usability studies based on heuristics (user guidelines) because of no existence 

of published work on virtual environment user interface design guidelines. 

More recent usability studies using immersive virtual reality include using game-based 

learning in education (Ketelhut et al., 2013). This research focused on enhancing science-

based assessments by assessing students’ learning using a virtual environment. The general 

view was that using virtual environments makes the learning of science more practical and 

meaningful and virtual environments can give a realistic view of the student’s learning and 

understanding on a particular topic. The research identified four (4) characteristics of good 

quality science assessments; (1) assessments with questions integrated with real-world 

scenarios such as giving a user a sprinkler with a tree and a house, expecting the user to 

sprinkle on or at the root of the tree instead of the house, (2) situating questions in the right 

context to help the student apply their learning, (3) providing efficient ways of grading, and (4) 

providing reliable and valid assessments that can help the student’s learning.   
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Integrating the assessments with such real-world scenario content places the assessments in 

their right context, allowing the student to apply knowledge of the content for practising. This 

method of VR learning and assessments also provides valid and reliable grading schemes 

and assessments. The research used characters that were incorporated into the design of a 

virtual assessment tool called, the “Sheep Trouble”. “Sheep Trouble” allows students posing 

as scientists to interact in a virtual world of farmers and their sheep in a local community. The 

students help the farmers by investigating and solving some scientific problems such as 

recommendations for sick sheep. An evaluation of the virtual environment found that students 

actively engaged with the content and assessments, however, a recognised challenge was to 

ensure that students understood the environment as an assessment and therefore carry on 

with taking the test than spending time exploring the virtual environment. This challenge can 

be mitigated by allowing participants to experience similar virtual environments to satisfy their 

excitement before using the assessment-based VR. Similarly, Özgen, Afacan and Sürer 

(2021) explained that the challenge with usability in virtual education environments lies in 

exploring new ways of design learning. The research proposed a design for architectural 

students that involves using virtual reality to design simple shapes. 

Using a combination of user task analysis and heuristics, Toma, Gîrbacia and Antonya, (2012) 

studied the performance and usability of an immersive VR-Computer Aided Design (CAD) 

system. Users performed tasks involving modelling and assembling CAD parts. The time users 

spent performing these tasks were analysed as well as a subjective questionnaire to ascertain 

users’ overall experience. Results showed that even though the immersive virtual reality 

environment provided a better sense of the depth of the virtual CAD objects, the performance 

of the tasks in the virtual environment did not convincingly show improvements over the 

traditional 2-D desktop-based workspace. Users may have been very used to perform these 

tasks on a 2-D display. However, this finding points to other usability research into developing 

experiments that make use of other ways to gesture such as using natural interactions like 

sight and voice.  

Another usability study in the automotive industry is work done by Langley et al.(2016) which 

found virtual training to be effective in reducing error during task performance when compared 

to traditional training involving the use of 2-D desktops and other materials. This study also 

used a subjective method using a questionnaire and an objective-based approach which was 

expected to make the results more rigorous. The research found that fewer errors were 

encountered in the virtual training environment compared to the 2-D desktop. 

Xenos et al. (2017) employed both an objective and subjective approach to usability studies 

of their VR application using a game-based virtual environment built with tasks in the 
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information security domain for educational purposes. Participants generally gave positive 

feedback that the tool helped them gain knowledge whilst a small percentage responded 

negatively. 

Steed et al. (2017) visualised neutron scattering in a 3-D collaborative VR environment. This 

experiment was to evaluate the efficiency of using the virtual environment. One stage of their 

usability testing used several material science researchers at scientific workshops, group 

meetings, and one-on-one demonstration with users less proficient in 3-D visualisation tools 

and the feedback was generally positive. This approach was specifically aimed at enhancing 

their prototype 3-D visualisation tool for material sciences. 

It can be noticed that there exists the possibility of the user’s excitement or otherwise of using 

the virtual environment for the first time skewing objective and subjective results. A user who 

has no experience of immersion might generate usability data that contains logs for 

adjustment. The researcher was very excited during the first time using the CAVE and HMDs 

that his focus kept hallucinating between controlling the hand devices to adjusting to the weight 

of the head mount and he had to use them for a while to get used to and focus on analysing 

the virtual world. This problem can equally be solved by ensuring that participants have 

experience using any HMDs at least two (2) times before the experiment. This will make them 

feel familiar with the displays which will then ensure their focus is on the virtual world other 

than familiarising themselves with the displays during the experiment affecting the data 

generated. This can be done with a pre-experiment phase where the same experiment is done 

3 times by each participant with the aim of the first two logs being adjustment logs. 

Some limitations with usability experiments in virtual environments have been identified. 

Bowman, Gabbard and Hix (2002) identified usability studies that do not involve users but 

rather modelling of user’s interaction such as Goals, Operators, Methods, and Selection 

(GOMS) and indicated the nonexistence of such models, as well as the low cost of heuristics 

and performance model evaluation, makes these methods attractive. Further to this, Bowman 

et al. (2002) indicated the importance of automated analysis which could reduce the need for 

multiple evaluators during usability studies and allow the automatic collection and possibly 

analysis of data from many users. It was also suggested that, due to the rapid changing of 

VEs, using different VEs for the same experiments are encouraged where possible. 

 

3.5 Classification of VR Research Experiments 
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Table 3.1 classifies VR usability experiments into domains, the metrics being evaluated, the 

devices used, summary, and findings Sousa Santos et al. (2009). The classification allows an 

easier and faster overview or summary of advances made in VR research as discussed in this 

thesis. The table shows the most common devices used for VR experiments. It also shows 

findings of each experiment, allowing an analysis into how a particular affordance of VR was 

experienced.  Results show there is a relation between the performance of users in immersive 

VRs using HMDs and desktop-based VR. 

 

Dom

ain 

Reference Metrics Devices Experiment Findings 

E-

com

merc

e 

(Animesh et 

al., 2011) 

Interactivit

y, 

presence 

PC, 

stereoscopic 

display 

Virtual 

shopping in 

Second Life 

application 

Presence is affected by 

the density & stability of 

the experience 

(Cheng, 

Chieng and 

Chieng, 

2014) 

Immersion Six-axis 

simulator 

Measure virtual 

experience in 

the VR 

environment 

Vividness improves 

experiences  

(Martínez-

Navarro et 

al., 2019) 

Presence HTC Vive Evaluate a 

virtual 

consumer 

experience 

Positive consumer 

responses were 

experienced in the virtual 

e-commerce 

environment. 

(Morotti, 

Donatiello 

and Marfia, 

2020) 

Usability HTC Vive Evaluate a 

virtual clothing 

store with vocal 

commands 

(Amazon Alexa 

Voice 

Assistance) 

Most participants rated 

the experience as very 

natural. 

 

 (Alzayat and 

Lee, 2021) 

Presence, 

Interaction

, Usability 

Oculus Rift Explore how 

VR 

engagement 

with products 

Products such as tools 

(hammer and pencil) are 

more for VR 

environments than others 
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affects 

perception of 

fun and 

usability 

such as clothing and 

shoes. 

Educ

ation 

(Barfield and 

Hendrix, 

1995) 

Presence Stereoscopic 

display 

Navigate a 

virtual 

representation 

of Stonehenge 

and search for 

a rune, 

inscribed upon 

the wall of one 

of 

Stonehenge’s 

Edifices 

Subjective presence was 

less using an update rate 

of 5 and 10 Hz when 

compared to update 

rates of 20 and 25 Hz. 

(Cockburn 

and 

McKenzie, 

2002b) 

Performan

ce 

Desktop Repeat storage 

and retrieval 

exercises for 

different 

conditions to 

access 2-D/3-D 

cards using 

spatial memory 

The spatial arrangement 

of information can affect 

the user’s memory of the 

location of information. 

(Spagnolli 

and 

Gamberini, 

2002) 

Immersion

, presence 

Unknown Immersion, 

Interaction, and 

movement in 

the virtual 

library. 

Immersion is determined 

by both subjective and 

physical environments.  

(Eden and 

Passig, 

2007) 

Knowledg

e 

improvem

ent 

Generic HMD Children 

between the 

ages of 9 and 

12 re-ordered 

images of 

3-D VR enhances the 

understanding of 

concepts and should be 

explored for teaching 

children. 
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events in 

sequence to 

understand 

how sequential 

time is 

perceived by 

them in 3-D VR 

and 2-D 

(da Costa 

and Nedel, 

2017) 

Immersion

, 

interaction 

HMD, desktop Interact with 

molecules in 

the 

HMD 

VR is faster and more 

suitable for molecular 

interaction tasks. 

(Ciftci, 

Zhang and 

Tin, 2017) 

Interaction Samsung Gear 

VR 

Mouth gestures 

were evaluated 

as a form of 

interaction in 

virtual reality to 

compensate for 

the hiding of the 

upper part of a 

user’s face 

when using an 

HMD. 

Participants 

controlled a 

virtual avatar 

with head and 

mouth motions 

in a game 

scenario. 

The mouth gesture 

recognition system 

performed well with fewer 

errors. 

 (Coldham 

and Cook, 

2018) 

Usability, 

navigation 

HTC VIVE Senior citizens 

were made to 

navigate to an 

Acceptance of virtual 

reality is increased with 
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address on the 

google virtual 

earth 

application. 

the elderly when the task 

to be performed is useful  

 (McFaul and 

FitzGerald, 

2020) 

Knowledg

e 

improvem

ents and 

Usability 

Google 

Cardboard 

Version 2 

 

Law students 

evaluated a VR 

environment to 

practice their 

presentation 

skills 

There was a mixture of 

positive and negative 

responses on the 

usability and content of 

the practice application.  

 (Marks and 

Thomas, 

2021) 

Knowledg

e 

improvem

ents 

Oculus Rift and 

HTC Vive 

Evaluate the 

use of VR 

devices for 

teaching and 

learning in a 

university 

VR learning enhanced 

student’s learning 

outcomes 

Gam

es 

(Jennett et 

al., 2008) 

Immersion 2-D desktop  

based VR 

Users 

performed 

various VR and 

2-D tasks from 

playing games 

in the Second 

Life application 

to clicking 

randomly 

appearing 

square boxes. 

Users were 

then presented 

with a 

questionnaire 

to measure how 

immersed they 

Individual-based factors 

affect how immersed a 

user feels in a VR 

environment.   
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felt undertaking 

the various 

tasks 

(Hou, Dong 

and Yang, 

2017) 

Usability HTC VIVE Gamers were 

employed to 

play several VR 

games and 

their 

electroencepha

logram (EEG – 

brain signals) 

was measured 

to find a 

correlation 

between the 

subjective 

ratings of the 

game to the 

signals read 

from the brains 

whilst the users 

are playing the 

games.  

The user’s subjective 

perspectives of a game 

are correlated with the 

brain signals read when 

the user is playing the 

game.  

Medical (Zhang et al., 

2001) 

Immersion CAVE 3-D models of 

brains were put in 

a VR environment 

and users could 

view and interact 

with the virtual 

objects 

 

immersion and interaction 

can help a user understand 

complex neural structures 

of the brain. 
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(Demiralp et 

al., 2006) 

Performance CAVE, 

2-D desktop VR 

Users performed 

several tasks in 

Fishtank VR and 

the CAVE.  

Users performed tasks 

much faster on the fishtank 

VR than in the CAVE 

(Eden and 

Bezer, 2011) 

Knowledge 

improvemen

t 

Generic HMD Children with ID 

(intelligent 

disability) 

performed tasks 

in 2-D and VR 

Children who performed  

their task in VR 

encountered fewer errors 

and needed little help from 

the instructors 

 

 

 

 

(Ard et al., 

2017) 

Navigation, 

immersion 

HTC VIVE Users were 

presented with a 

less complex 

array-based 

representation of 

MRI scans.  Users 

could then place 

the representation 

in labelled 

sockets 

corresponding to 

predefined 

visualisations of 

the brain. Users 

also could interact 

with the 

visualisation. 

VR can enhance the 

understanding of 

neuroimaging data through 

the immersion and 

navigation provided. 

(Butt, 

Kardong-

Edgren and 

Usability Oculus Rift, 

desktop 

 A game-based 

learning approach 

was adopted to 

User survey feedback 

indicated a general 

appreciation and 
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Ellertson, 

2018) 

 

 

train nurses on 

urinary 

catheterization in 

virtual reality.  

acceptance of the virtual 

training   

(Coogan and 

He, 2018) 

Knowledge 

improvemen

t, 

performance 

HTC VIVE The experiment 

evaluated VR-

based BCI (brain-

computer 

interface) for 

performing tasks 

BCI based tasks in virtual 

reality are not hampered by 

the feeling of immersion. 

Scienc

e 

(Demiralp et 

al., 2006) 

Performance CAVE, 2-D 

desktop-based 

VR 

Users performed 

various tasks in a 

CAVE and a 

desktop-based 

VR system 

Tasks performed in the 

desktop-based VR system 

(Fishtank VR) were 

noticeably faster than in the 

CAVE 

 (Johnston et 

al., 2018) 

Navigation, 

knowledge 

improvemen

t 

Google 

Cardboard 

Some biology 

students explored 

the structure of 

cells in virtual 

reality before 

taking an exam 

VR exploration of biological 

cells improved knowledge  

(Nagao et al., 

2017) 

Interaction 

and 

Immersion 

Tiled Wall 

Display, HMD 

Users were 

immersed in a 

dataset where 

they could use 

hand gestures to 

interact with the 

virtual objects to 

understand the 

effects of virtual 

reality on 

analytics. 

 

Hand gestures provide 

seamless navigation and 

integration around virtual 

objects  
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Genera

l 

(Kjeldskov, 

2001) 

Interaction 8-sided cube with 

a cylindrical 

panoramic 

display 

Full and partial  

Immersive 

displays were 

studied to 

understand their 

effects on 

immersion and 

presence in the 

virtual 

environment 

 

 

Same interaction 

techniques such as 

freehand gestures and 

voice control have different 

effects in CAVEs and 

panoramic displays. 

 (Wang and Li, 

2004) 

Interaction Desktop VR 

System 

Users were 

trained in a virtual 

application for the 

maintenance of a 

refinery pump. 

Users were able 

to interact with the 

pump by fixing 

and unfixing 

parts. 

 

Virtual reality-based 

training can enhance the 

training of maintenance 

staff. 

(Sousa Santos 

et al., 2009) 

Usability, 

navigation 

HMD and 

Desktop display 

Users explored a 

maze game, 

collecting virtual 

objects. The 

experiment 

allowed users to 

navigate the 

virtual 

environment 

Usability on the desktop VR 

was better than on the HMD 

system. 
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using an HMD as 

well as on 

Desktop VR 

 

 

 

(Steptoe, 

Steed and 

Slater, 2013b) 

Interaction, 

Knowledge 

improvemen

t 

CAVE Users explored 

interacting and 

controlling avatar-

like virtual object 

and their tail  

 

 

Humans can adjust their 

sense of positioning in the 

virtual to control virtual 

human-like objects. 

(Chang et al., 

2016) 

Performance Google

 Cardboar

d, Samsung 

Gear VR, 

3Glasses

 D2, 

Oculus Rift 

DK2 

Comparative 

analysis with the 

physical and 

virtual world on 

timing and 

positioning 

Accuracy 

 

 

There exists a trade-off 

between position and 

accuracy of VR systems 

and a combination  

(Wu and 

Popescu, 

2017) 

Navigation Generic VR HMD 

and Microsoft 

HoloLens. 

Users evaluated 

using AR and VR 

to provide multiple 

perspectives for 

visualisation  

 

 

The multi-perspective 

approach showed different 

aspects of a view to 

improving navigation 

around the virtual 

environment. 
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(Zielasko, 

Weyers, 

Bellgardt, Pick, 

Meibner, et al., 

2017) 

Presence Generic HMD Users performed 

normal desktop-

based tasks in 

virtual reality to 

study to what 

extent users’ 

desktop-based 

tasks can be 

performed in 

virtual reality 

Immersion helped with 

performance in virtual 

reality. 

 

     Table 3.1 Virtual reality experiment classification (Sousa Santos et al., 2009, Ankomah and Vangorp, 2018). 

The classification presents findings based on the domain of the experiment, the metrics and devices tested, and 
the findings of the experiment.  

 

 

3.6 Summary 

 

This chapter has discussed virtual reality in detail. It has reviewed virtual reality research in 

different industries and has shown the benefit of visualisation in scenarios such as health 

rehabilitation and education. 

The metrics discussed were ‘presence’ and ‘immersion’ which are the core VR affordances, 

‘navigation’ and ‘interaction’ being the actions that can be done in the environment, ‘knowledge 

improvement’ which is an outcome and ‘performance’ and ‘usability’ as evaluation metrics 

(Ankomah and Vangorp, 2018). 

This chapter has achieved objective one (1), “Gain a critical understanding of the history, 

current state, and challenges of virtual reality through a literature review”. The knowledge 

gained from the discussion of the metrics has highlighted the most important metrics to focus 

on in the ICPVR application (CHAPTER 8 ICP Virtual Reaility Application (ICPVR)). For instance, the 

knowledge gained helped develop an approach for ICPVR that considered how each metric 

will impact the user in terms of enhancing the user’s experience specifically with matching the 

3-D protein shapes and interacting with the virtual world. Similarly, the literature review 



103 
 

informed the provision of features such as teleportation and the use of natural gestures such 

as grabbing and rotating molecules in ICPVR which were aimed at contributing towards 

enhancing the overall usability and immersion of ICPVR. 

Despite various difficulties, issues, and experiences, VR continues to remain one of the major 

technological topics in entertainment, education, and advertisement, especially with the latest 

development of computer graphics, image processing, computer vision, machine learning, and 

advanced GPU hardware. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART 3: PROPOSED ICP VARIANTS 
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4 CHAPTER 4 KMEANSICP 

 

 

4.1 Introduction 

 

This research was interested in improving aspects of the ICP algorithm that can degrade the 

overall performance of the algorithm in the presence of larger datasets.  For instance, the 

closest point search method of the ICP algorithm does a naïve closest point computation for 

each point. This will usually impact on the performance when there are millions of points in 

the shape. One of the approaches to reduce the impact on performance and speed up the 

matching is to partition the search space in smaller clusters. KMeansICP does this 

partitioning using the kmeans algorithm (Krishna and Narasimha Murty, 1999). The benefits 

of the kmeans partitioning over other types of partitioning such as partitioning by atom type 

is that, kmeans algorithm attempts to provide equal-sized partitions even though this is very 

much affected by the complexities of the shape such as how evenly distributed the points 

are. 

This chapter discusses the KmeansICP algorithm. It explains the k-means algorithm, the 

steps in the KmeansICP algorithm, the computational complexity, and the limitations of the 

algorithm. This chapter and chapters (CHAPTER  5 SUBSETICP+ and CHAPTER 6 TAGGEDICP) aim 

to achieve objective three (3) of this research, “Develop shape matching algorithms based 

on the Standard ICP”.  

 

The k-means algorithm (MacQueen, 1967) partitions a dataset into a specified number 𝑘 of 

clusters. The aim is to have each data belonging to the cluster with the closest mean (centroid). 

The algorithm initialises by randomly creating positions for the centroids. Each iteration 

involves, assigning all the points to the clusters with the smallest distances and re-locating the 

centroids of these clusters. The iteration stops when there is no considerable change between 

the previous cluster means and the next calculated means for all points. This also means that 

all points would have been in their final cluster and wouldn’t be re-assigned to a different 

cluster. 

KmeansICP implements the k-means algorithm (MacQueen, 1967) in the ICP registration as 

a technique for partitioning. The rationale for using k-means lies in the use of the centroids 

since the centroids provide a pointer to the closest cluster for each data point cloud.  
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KmeansICP performs a standard k-means clustering to group the model point clouds. The 

search for some correspondence then starts by finding the closest centroid to the data point 

(point-to-centroid). The correspondence search space is then reduced to the clusters of the 

selected centroids.  The correspondence search method of KmeansICP is the same method 

used in the standard ICP algorithm. The difference is in the reduction of the search space by 

the k-means clusters. 

 

 

 

4.2 Algorithm  

 

          According to Saboori, Parsazad and Sadeghi (2010),  the k-means algorithm performs 

the following steps; 

1. Select k points at random as cluster centres or centroids 

2. Assign data points to their closest clusters according to the Euclidean 

distance function. 

3. Calculate the mean positions of points in each cluster and update its centroids  

4. Repeat steps 2, 3 and 4 until the points don’t get re-assigned to different clusters. 
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Figure 4.1 Clustering of a 3-D Point cloud into 4 groups (red, green, blue, yellow partitions) using k-means 

algorithm and Unity3D. KmeansICP uses the k-means algorithm to derive a set number of partitions from the 
point cloud to reduce the correspondence search space. 

 

KmeansICP uses this method to partition the model point cloud into clusters. The search for 

correspondence is performed by first finding the closest centroid to the point in the data shape 

(point-to-cluster), then the cluster belonging to that centroid is searched for the 

correspondence (point-to-point). KmeansICP uses a point-to-point objective function to 

minimise the error between the two point clouds. The minimisation is done through an iterative 

process of computing the least squares quarternion rotation and a translation vector that is 

applied to the data point cloud. 

Assume the search for correspondence for a point 𝒑 in a point cloud 𝑃𝑥   clustered into a 

number 𝑐 of clusters, where 𝑐 = 1. . . 𝐶𝑛.  The algorithm finds point p’s closest cluster based on 

the distance between p and  its closest centroid of 𝑃𝑥  , 𝑃𝑥𝑐,  the closest point of point 𝒑 in 𝑃𝑥   

is the closest point of point 𝒑 in 𝑃𝑥𝑐, because the algorithm does a naïve closest point search 

in the closest cluster by comparing the distance d, of every point in 𝑃𝑥𝑐 and finding the minimum 

distance 𝑑𝑚𝑖𝑛 . This distance is then appended to the list of closest points, 𝑌𝑘 and this is 

repeated for every other point in the data shape. 

 

The algorithm statement is 

1. Cluster the model point cloudusing the k-means algorithm into a number 𝑘 of clusters. 

2. Initialise Iteration to 0, the maximum number of iterations, set change in MSE 

threshold, transformation (R, t) 

3. Apply the transformation (R, t) to the data point cloud 

4. Compute the closest points in the model point cloud for each point in the data cloud  
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5. Find the closest cluster to the data point by calculating the distance to each centroid 

(point-to-centroid) 

6. Find the closest point for the data point by searching the cluster space (point-to-point) 

(Computational cost: 𝑂(𝑁𝑥𝑁𝑝) )  

7. Compute/update the registration transformation (Computational cost: (O (𝑁𝑝))) 

8. Apply the registration to the data point cloud (Computational cost: O (𝑁𝑝)) 

9. Terminate the iteration when the iteration count or MSE threshold is reached. 

The computational complexity of the closest point search method of KmeansICP is O 

(𝑁𝑥(𝐶𝑛+𝑁𝑚)), where 𝐶𝑛 is the number of the clusters in the model point cloud and 𝑁𝑚 is the 

average number of points in each cluster. Since 𝐶𝑛+𝑁𝑚 is usually smaller than 𝐶𝑛𝑁𝑚, it is more 

efficient than the closest point search method for the standard ICP Closest Point Search. 

 

  1:  function CLOSEST POINT SEARCH (𝑃𝑘  𝑋)  

  2:            closest points 𝑌𝑘  ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 

  3:            Cluster X into 𝐶𝑛 clusters with centroids 𝑋𝑐 

  4:            for all points p in 𝑃𝑘 do 

  5:                closest cluster C ⟵ CLOSESTCLUSTER (p, 𝑋𝑐) 

  6:                closest point distance 𝑑𝑚𝑖𝑛  ←  ∞    

  7:                closest point y ⟵null 

  8:                for all points x in C do 

  9:                      distance d ⟵ DISTANCE (p, C)   

10:                      if d < 𝑑𝑚𝑖𝑛 then 

11:                              closest point ⟵ x 

12:                              closest point distance 𝑑𝑚𝑖𝑛  ←  𝑑 

13:                              append closest point x to closest points 𝑌𝑘  

14:         return 𝑌𝑘 
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4.3 Computational Complexity 

 

Assume a data point cloud, P with 𝑁𝑝 points and model point cloud X with 𝑁𝑥  points, with X 

clustered into a number 𝐶𝑛 of clusters and an average number 𝑁𝑚 of points per cluster, the 

computational complexity will be O (𝑁𝑥( 𝐶𝑛+ 𝑁𝑚)). This is based on each point in the data point 

cloud making a point-to-cluster distance to find the nearest cluster (𝑁𝑥𝐶𝑛) and then a point-to-

point distance to find the corresponding point within the selected cluster (𝑁𝑥  𝑁𝑚). 

KmeansICP reduces the search space by a factor (fractional size of the clusters, assuming 

that all clusters are fractions of the whole point cloud) depending on the number of clusters 

and the complexities (uniformity in cluster sizes) of the shape.  

Consider the fractional partition sizes explained in TaggedICP’s complexity in Section 6.3. If 

k-means creates 𝑘 = 5 equal sized partitions in the model point cloud, then the fractional 

partition sizes will each be 1 𝑘⁄ = 2 and the correspondence search space will be reduced by 

a factor, F= (k+1/𝑘𝑁𝑥)/𝑁𝑥=0.2, while k is usually much smaller than 𝑁𝑥. 

TaggedICP partitions the search space by the abundance of different atoms in the molecule, 

whilst KmeansICP partitions the search space by the mean distances of the points. 

If the points in the shape are non-uniformly distributed, the efficiency of the clustering for the 

shape matching is reduced because evenly distributed points will result in equal-size clusters 

that will evenly reduce the complexity of the point cloud in terms of finding the right 

correspondence.  

Since the points are clustered based on the closest centroid, the resulting correspondence will 

not always be a true match but an approximated match in some cases. For each cluster, the 

higher the number of points farther away from the centroid the lower the accuracy of the 

matches. This is because the mean of the cluster points represented by the centroid is an 

approximation as such this approximation will be less accurate for points lying close to the 

boundary of the cluster. 
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 Figure 4.2 k-means clustering of two-point clouds into 4 groups (red, yellow, green, blue clusters with black centroid). (LHS) 
Clusters show uneven distribution which is based on the shape of the point cloud. (RHS) Clusters show an improved but still 
uneven distribution of points. KmeansICP depends on the k-means clusters which could result in uneven clusters depending 
on the shape of the point cloud. 

 

Considering the k-means clustering of two point clouds in Figure 4.2, the uneven shape of the 

point cloud resulted in the uneven clusters. A similar but improved cluster distribution is seen 

in the (RHS) image.  A detailed visual analysis of the shapes shows overlaps of the points in 

some regions.  

The search for correspondence for a point in the data point cloud starts in the model point 

cloud with a point-to-cluster match to select the closest (cluster) to the data point. Then a 

point-to-point correspondence is used to establish the closest point in the established point-

to-cluster search space. 

There is always the likelihood of much better matches in other clusters in the model point 

cloud than in the closest cluster to the data point. This is especially likely for points whose 

matches are farther away from the centroid in the model cloud cluster and of a non-uniformly 

distributed model point cloud because the centroid itself is a mean based on neighbouring 

points which is an approximation. The match is first established as a point-to-centroid to select 

the cluster or partition with the likelihood of a good match and then a point-to-point is used to 

establish the matched point with computational efficiency. 

 

4.4 Limitations  

 

The clusters created by k-means for KmeansICP can be unevenly distributed based on the 

shape of the point cloud. This can result in large differences in the number of distance 

calculations for each selected cluster based on the points in the cluster. The equal-sized 
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partitions give the best distance calculations for the algorithm, meaning that unequal sized 

partitions with especially large numbers of points will result in many distance calculations 

rather than an even distribution of distance calculations across all partitions. 

 

Results of this algorithm and a comparison to the other algorithms will be presented in Chapter 

7. 
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5 CHAPTER  5 SUBSETICP+ 

 

 

5.1 Introduction 

 

Another approach to reducing the size of the correspondence search space in an ICP 

iteration is by using corresponding subsets. For rigid shapes, equal sized corresponding 

subsets are created based on the unique atom types in the point cloud and the ICP 

operation registers corresponding subsets in sucession instead of the whole point cloud. The 

transformation computed from the registration of each subset is then applied to the whole point 

cloud.  

This chapter discusses the SubsetICP+ algorithm. It provides a critical analysis of the 

design, computational complexity, and limitations. This chapter and chapters (CHAPTER 4 

KMEANSICP and CHAPTER 6 TAGGEDICP) aim to achieve objective three (3) of this research, 

“Develop shape matching algorithms based on the Standard ICP”. 

SubsetICP+ is based on the idea of SubsetICP (Chen, Belaton and Pan, 2013). SubsetICP 

partitions the model point cloud and data point cloud into an equal number of corresponding 

subsets. SubsetICP requires that more than one corresponding subset (cardinality) exists 

otherwise the whole point cloud is considered as one set which will be the same as standard 

ICP with no benefit. The number of points in each subset must be of sufficient size to do a 

well-defined ICP. For each iteration, a subset in the data point cloud is registered to a 

corresponding subset in the model point cloud. The resulting transformation is applied to the 

data point cloud and the process repeats for all other subsequent subsets until the set 

maximum iteration is reached. As described above, SubsetICP (Chen, Belaton and Pan, 2013) 

partitions the point clouds into subsets. SubsetICP+ is simply a SubsetICP where the point 

clouds are partitioned by atom types.  

Consider a dataset of molecules with atom names as metadata. Such a set will have subsets 

made up of the unique atom names, with each subset storing all atoms of the molecule of the 

same type (e.g., H, N, O, C and S). Partitioning the model cloud this way enables a faster 
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search for correspondence since the first partitioning serves as a direct pointer to the location 

of the partition storing the correspondence being sought. Partitioning and caching in a pre-

processing stage also ensures this task is not repeated too many times as it is computationally 

expensive. 

 

 

Figure 5.1 SubsetICP+ partitions the search space based on atom types. This technique allows the 
correspondence search method to only search within atoms of its type, further reducing the time 
taken to complete the search task. 

 

 

Figure 5.1 shows the partitioning of SubsetICP+ with unique atom names serving as a pointer 

to the position of related partition of atoms. SubsetICP+ algorithm performs registration on 

one partition (e.g., “N” only or “H” only etc) in the data point cloud to its corresponding partition 

in the model cloud based on the metadata (atom type) knowledge available. TaggedICP’ s 

partitioning is different because it makes use of neighbouring information as part of the 

correspondence search process whilst SubsetICP+ does not. 

Since SubsetICP+ partitions the subsets by atom types, there is the possibility of having 

corresponding subsets of different sizes (number of atoms in a subset) because the number 

of atoms is given by their abundance in the 3-D protein dataset. To ensure that corresponding 

subsets have the same number of atoms during registration, SubsetICP+ could set the size of 

a subset pair to the size of the smallest corresponding subset. However, this would not be 

efficient for matching partial shapes and mutations where different counts of the atoms exist, 

and it would be more efficient to match all available corresponding atom types.  

Chen, Belaton and Pan (2013) found out that, one of the limitations of SubsetICP was the 

unknown optimal cardinality (number of subsets in the point cloud). In the development of 
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SubsetICP+, it was found that shapes will have one or more optimal cardinalities at which to 

achieve the best match quality and convergence. The research explained a correlation 

between low MSE and small cardinality, with a higher cardinality contrasting this observation 

with a low MSE. This, therefore, shows that cardinality has varying effects on the MSE.  

The algorithm’s create partition method assumes a point cloud X, with unique atom types U. 

For each atom type in U, the algorithm resets an empy list 𝐿𝑚 and copies all points of type m. 

The closest point search works in the same was the closest point search for KmeansICP+, by 

performing a naïve closest point search in the corresponding subset (subset in the model point 

cloud with same atom type) 

 

5.2 Algorithm 

 

The algorithm statement is  

 

1. Partition the model point cloud into corresponding subsets according to atom types  

2. Initialise Iteration to 0, the maximum number of iterations, set change in (R)MSE 

threshold, set cardinality, transformation (R, t) 

3. Apply the transformation (R, t) to the data point cloud 

4. Perform a standard ICP operation, registering corresponding subsets in sequence, one 

subset per iteration and returning a transformation that aligns that subset.  

5. Update the registration transformation (Computational cost: (O (𝑁𝑝))) 

6. Apply the registration transformation to the data point cloud (Computational cost: O 

(𝑁𝑝)) 

7. Terminate the iteration when the iteration count or RMSE threshold is reached. 

 

 

                 1:   function CREATEPARTITIONS (X) 

                 2:           List of Unique atom types  U ⟵ DISTINCTMETADATA (X) 

                 3:           for all atom types m in U    

                 4:                  List 𝐿𝑚  ⟵  empty list 
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                 5:                 for all points p in X with atom type m 

                 6:                        append p to  LM  

                 7:   return List of 𝐿𝑚,  

                             

 

 

 

 

  1:   function CLOSEST POINT SEARCH (𝑃𝑘 , 𝑋𝑘 )  

  2:         closest points 𝑌𝑘  ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡     

  3:                                   𝑡 ←   𝑎𝑡𝑜𝑚 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡                                     

  4:         for all points p in 𝑃𝑘   do 

  5:                closest point distance 𝑑𝑚𝑖𝑛  ←  ∞    

  6:                closest point y ⟵null 

  7:              

  8:                for all points x in 𝑋𝑘   do 

  9:                      distance d ⟵ DISTANCE (p, x)   

10:                      if d < 𝑑𝑚𝑖𝑛 then 

11:                              closest point ⟵ x 

12:                              closest point distance 𝑑𝑚𝑖𝑛  ←  𝑑 

13:               append closest point y to closest points Yk  

14:   return 𝑌𝑘 

 

 

Full SubsetICP+ algorithms  
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     1:  Inputs: point cloud X with cardinality m and Y with cardinality n based on atom types on 

point cloud 

     2:  Initialise  𝑅𝑂  ← 𝐼, 𝑇𝑜 ← 0, 𝑖 ← 1 

     3:  X is partitioned into k subsets, 𝑿 = 𝑋1 + 𝑋2 + 𝑋3 + ⋯+ 𝑋𝑘  

     4:  Y is partitioned into k subsets, 𝒀 = 𝑌1 + 𝑌2 + 𝑌3 + ⋯+ 𝑌𝑘    

     5:  While i<k and MSE (X, Y)> threshold 

     6:              For all points in subset 𝑋𝑖 𝑎𝑛𝑑 𝑌𝑖  

     7:                    Calculate the correspondences of all points in the subsets 

     8:                    Compute the transformation 𝑅𝑖 𝑎𝑛𝑑 𝑇𝑖 

   10:                          Then Apply 𝑅𝑖 𝑎𝑛𝑑 𝑇𝑖 to point cloud X  

   11:                     End ICP Iteration 

   12:                End Subset Iteration  

 

 

 

 

 

5.3 Computational Complexity 

 

SubsetICP+ partitions the data point cloud and model point cloud into subsets based on the 

atom types as shown in Figure 5.1. Due to the unequal sizes of the subsets when partitioning 

by the atom type, the algorithm can choose the cardinality of the subsets for the iteration in 

two ways; first (1) is to set a global fixed cardinality parameter and then filter the subsets based 

on a criterion such as spatial distances to a point and second (2) is to dynamically set the 

subset size to the lowest subset between the corresponding subsets. SubsetICP+ does not 

implement any of these 2 methods but rather allows the corresponding subsets to retain the 

sizes based on the abundance of the atom types in the molecule.  



116 
 

Assume a SubsetICP+ with subsets 𝑋 and 𝑌 and cardinality (size) of the subsets  𝑁1 , and 𝑁2 

respectively. The complexity of the computation (subsets are registered in sequence, one per 

iteration instead of the whole point cloud per iteration) will be. 

 Ο (𝑇𝑁1𝑁2) for each iteration, where  Τ = 
𝑁𝑥

𝑁1
=

𝑁𝑦

𝑁2
, and 𝑁1 ≤ 𝑁𝑥 , 𝑁2  ≤  𝑁𝑦  (𝑁1 and 𝑁2 are the 

cardinals of subsets X and Y respectively) representing a distance calculation over a fraction 

of the point clouds based on the subsets. 

SubsetICP+ has the same computational complexity as SubsetICP because it reduces the 

the number of distance calculations to a factor depending on the partitioning:  
𝑁𝑥𝑁𝑦

(𝑁1𝑁2)
⁄  . 

SubsetICP+ uses a point-to-point objective function to minimise the error between the two 

subsets. The minimisation is done through an iterative process of computing the least squares 

quarternion rotation and a translation vector from the subsets that is applied to the whole data 

point cloud. 

 

Unlike KmeansICP, SubsetICP+ ensures that the cardinality of the partitions is the same. 

However, like KmeansICP, the number of distance calculations in SubsetICP+ is reduced by 

a factor. This factor depends on the number of partitions. A larger number of partitions means 

smaller distance calculations.  

The advantages of SubsetICP+ are that finding the closest points in the subset provides a 

better estimate of the transformation than using the whole point cloud. Shape information is 

also preserved because each subset is matched in an iteration, sequentially. 

 

5.4 Limitations  

 

The limitations of Standard ICP applies to SubsetICP+. Even though the search space is 

reduced to subsets to iteratively match corresponding parts of the point cloud. It is not known 

how the algorithm will perform with different domain datasets. 

Since the optimal cardinality is not known, the algorithm may not always perform as efficiently 

as it could and determining the optimal cardinality as a pre-processing step can increase the 

overall time taken to run a match. 
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Results of this algorithm and a comparison to the other algorithms will be presented in Chapter 

7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 CHAPTER 6 TAGGEDICP 

 

 

6.1 Introduction 

 

The research explored another approach to reducing the size of the corresponding search space by 

making use of known information about the point cloud. This adds a constraint to finding the closest 

point search and helps make the matching meaningful.  Particularly for this research, the concept of 
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Tagged-ICP involves finding the closest point in the point cloud with the same atom type and 3-

nearest neighbours sorted alphabetically. This constraint on the search space reduces the search 

items to points with the same atom type (metadata tag) and allows probable matches to be 

searched and found. 

This chapter discusses the TaggedICP algorithm. It provides a critical analysis of the design, 

computational complexity, and limitations. This chapter and chapters (CHAPTER 4 KMEANSICP 

and CHAPTER  5 SUBSETICP+) aim to achieve objective three (3) of this research, “Develop 

shape matching algorithms based on the Standard ICP”.  

TaggedICP is based on ICP (Besl and McKay, 1992). It uses metadata information of the 

points, referred here as “tags” to aid in the matching. The tag information is made up of the 

atom type, and the 3 nearest neighbours with their atom types ordered alphabetically. 

When matching molecules, TaggedICP searches for correspondence by considering a point 

in the model point cloud with the same ‘tag’ (atom type and 3 nearest neighbours ordered 

alphabetically by atom) as the point in the data point cloud, ignoring all other points with 

different tags. This strategy effectively reduces the correspondence search space by a fraction 

of the partition count or unique tags available in the dataset. Consider the partitions illustrated 

in Table 7.1, 2M5T is made up of 5 partitions, though unequal, they all represent smaller 

subsets or clusters with a unique atom type. This means that TaggedICP reduces the time 

spent searching for correspondence because the search space is reduced to only atoms of 

the same type. A similar representation of this partitioning is also illustrated in SubsetICP+ 

partitions Figure 5.1. 

TaggedICP also makes use of neighbourhood information in the correspondence search 

method by considering a match between the specified number of neighbours when all their 

metadata under consideration are also a match.  
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Figure 6.1 Description of colour-coded atoms in a molecule (grey sphere) on an x-y plane. The tag information used in 
the TaggedICP algorithm is explained for atom C (with an arrow pointing to).    

 

Matching shapes by considering the tag information of a specified number of neighbours 

further enhances the algorithm by making the matching more meaningful and further reducing 

the search space. A point in the data shape is considered the closest point of another in the 

model shape when the tag information of the point matches. This includes a match for the 

atom types for the specified closest neighbours of the data point in alphabetical order of atom 

type. 

The tag information illustration (Figure 6.1) shows a sample molecule represented as a point 

cloud of atoms and their tag information made up of the atom type (S=Sulphur, O=Oxygen, 

N=Nitrogen, C=Carbon) and the 3 closest neighbours of each atom type sorted alphabetically 

(C, C, S). 
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Figure 6.2 Two molecules representing point clouds, grey and brown 
molecule, showing their tag information for atoms (with arrowhead). The tag 
information consists of the atom type, atom types of three (3) nearest 
neighbours and the atoms relative position within the point cloud 

 

Tag information of H (with 

arrowhead) in Grey molecule 

Atom type: H 

3 Nearest neighbours sorted 

alphabetically:  

H, H, S 

Atom’s XYZ coordinates 

 

Tag information of matching 

H (with arrowhead) in Brown 

molecule 

Atom type: H 

3 Nearest neighbours sorted 

alphabetically: 

H, H, S 

Atom’s XYZ coordinates 

 

 

 

Assuming we want to find the correspondence for atom H in the data shape (tag H in red with 

arrowhead) in Figure 6.2, in the model point cloud (brown atom). The algorithm first finds the 

closest 3 neighbours of atom H in the data point cloud and then finds all atoms in the model 

shape with atom type, H, that have the closest 3 neighbours with the same atom types as the 

atom types of the 3 nearest neighbours of atom H in the data point cloud ordered 

alphabetically. If there is more than one atom found as the closest neighbour, the 

correspondence search returns the model point closest to the data point. If no match is found, 

the correspondence search returns the closest atom in the search partition (which will be the 

closest atom of the same type because the search is within the atom type of the data point). 

 In Figure 6.2, the grey molecule represents the data shape with atom name H (arrowhead) 

whilst the brown molecule represents a matching atom with name H (with arrowhead) based 

on neighbourhood information. The atom with the arrowhead (H) in the Grey molecule has 3 
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closest neighbours (H, H, S) which matches the atom in the brown molecule (H, H, S) based 

on the tag information of the closest 3 neighbouring atoms.  

 

6.2 Algorithm 

 

The algorithm is similar to the standard ICP algorithm (Besl and McKay, 1992) in Section 2.6.1. 

However, TaggedICP reduces the correspondence search space by partitioning the model 

point cloud by atom types. The algorithm searches for correspondence by matching the atom 

type and the atom types of the 3-nearest neighbouring atoms ordered alphabetically.  The 

matched points must have the same atom types. Thus, for the points that do not have the 

same atom types, the algorithm returns the closest point in the same atom type partition. It is 

also possible for these points to have been excluded during the search by filtering, but this is 

not how the current version of the algorithm is implemented. TaggedICP uses a point-to-point 

objective function to minimise the error between the two point clouds. 

 

The algorithm statement is. 

Pre-processing: partition the model point cloud according to atom types e.g., H, C, S partitions  

1. Initialise Iteration to 0, the maximum number of iterations, set change in MSE 

threshold, transformation (R, t) 

2. Apply the transformation (R, t) to the data point cloud 

a. Compute the closest points in the model point cloud for each point in the data 

cloud by considering the matching of tag information (data point’s atom type, 

its 3-nearest neighbours).  

b. If there is no match for a data point, return the closest atom in the search space 

(model point atom type partition) (Computational cost: 𝑂(𝑁𝑥𝑁𝑝) )  

3. Compute/update the registration transformation (Computational cost: (O (𝑁𝑝))) 

4. Apply the registration to the data point cloud (Computational cost: O (𝑁𝑝)) 

5. Terminate the iteration when the iteration count or RMSE threshold is reached. 

      

The metadata of the point is used to speed up the search for correspondence and improve 

the registration accuracy. The model point cloud X has been partitioned by the tag and only 

the partition corresponding to the atom type of p is then further searched and disambiguated. 
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The specified number of neighbouring points are also searched to match their metadata to the 

neighbouring points in the data point cloud. If a match based on the tag information is not 

found, the closest point in the alphabetically sorted atom type partition is returned ignoring the 

neighbourhood information. TaggedICP might return non-optimal correspondences based on 

the closest atom with the same type in the partition when there is no match using the neighbour 

information. This closest point might not be ideal as it doesn’t represent the exact match as 

would have been achieved using the neighbourhood information. This might present less than 

ideal results in such instances.                                                                                    

The pseudocode presented in Algorithm 2 modifies the original ICP algorithm’s 

correspondence search method to include the use of metadata to represent TaggedICP’ s 

closest point search method. The partitioning based on the atom type was also done in an 

initialisation stage before the registration process started. This partitioning could be different 

for specific metadata being used in an implementation of TaggedICP. For instance, registering 

a point cloud based on colour gradient could partition the point clouds based on a set boundary 

of RGB values. All other methods of TaggedICP implement ICP’s methods directly.  

Assume two point clouds P and X. The algorithm finds the three nearest neighbours of each 

point. Three closest neighbours, 𝑝𝑁   for point p in P and three closest neighbours 𝑥𝑁 for point 

x in X. The algorithm then does a naïve closest point search for the correspondence of point 

p within the points in X with same tag as p and matching three neighbours sorted 

alphabetically by atom type. 

 

 

  1:  function CLOSEST POINT SEARCH (𝑃𝑘  𝑋)  

  2:         closest points 𝑌𝑘  ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 

  3:         For each point p in P, find its three neighbours 𝑝𝑁 with sorted tags 𝑡𝑁  

  4:          For each point x in X, find its three neighbours 𝑥𝑁 sorted tags 𝑡′𝑁  

  5:         for each point p in 𝑃𝑘 do 

  6:                closest point distance 𝑑𝑚𝑖𝑛  ←  ∞    

  7:                closest point y ⟵null 

  8:                Find the tag 𝑡𝑝 of p 
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  9:                for all points x in X with a tag of 𝑡𝑝 and the sorted tags 𝑡′𝑁 of 𝑡𝑁 being the same 

as 𝑡𝑁  do 

10:                      distance d ⟵ DISTANCE (p, x)   

11:                      if d < 𝑑𝑚𝑖𝑛 then 

12:                              closest point y ⟵ x 

13:                              closest point distance 𝑑𝑚𝑖𝑛  ←  𝑑 

14:               append closest point y to closest points 𝑌𝑘  

15:         return 𝑌𝑘 

 

Algorithm 2 TaggedICP. The point clouds are partitioned according to atom types and sorted alphabetically, and a standard 

ICP operation is performed whilst using the metadata tag information as a constraint in the correspondence search method. 

6.3 Computational Complexity 

Based on the standard ICP algorithm (Besl and McKay, 1992), the cost of the correspondence 

search increases with the increasing number of distance calculations. Given a data point cloud 

P with 𝑁𝑝 points and a model point cloud X with 𝑁𝑥 points, the computational complexity of a 

naive Closest Point Search algorithm is  𝑂(𝑁𝑃𝑁𝑥).  However, it reduces the number of distance 

calculations by a factor depending on the partitioning. The reduction in the number of distance 

calculations, reduces the cost of the correspondence search. The objective function uses a 

point-to-point error metric to minimise the distance between the two point clouds. The 

minimisation is done through an iterative process of computing the least squares quaternion 

rotation and a translation vector that is applied to the data point cloud. 

Assume a data point cloud with a number 𝑁𝑝 of points and a model point cloud with a number 

𝑁𝑥 of points partitioned by tag, 𝑡. The computational cost of the correspondence search is 

reduced to O (𝑁𝑝𝑡𝑁𝑥𝑡 ). 

Given fractional partition sizes  𝑓𝑝,𝑡 and 𝑓𝑥,𝑡 for each point cloud, P and X and each tag t such 

that ∑ 𝑓𝑝,𝑡𝑡 = 1 and ∑ 𝑓𝑥,𝑡𝑡  =1, the number of distance calculations is reduced to a factor F = 

∑ 𝑓𝑝,𝑡  𝑡 𝑓𝑥,𝑡 ≤ 1 because the distance calculations are within a fraction of the whole point cloud. 

The distance calculations are reduced because the correspondence search space is within a 

fraction of the point clouds defined by the number of distinct tags. Factor F is 1 when matching 

the whole shape. 
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The factor F would be smallest for a larger number of equal-size partitions because the larger 

the number of partitions, the smaller the number of points per partition until the tipping point. 

Consider a point cloud with two equal-sized partitions (fractional sizes 0.5 each) and a second 

point cloud with 4 partitions (fractional sizes 0.3 for 3 partitions and 0.1 for 1 partition). The 

distance calculations are reduced to a factor F = 2 (0.5*0.5) = 0.50 when matching the first 

point cloud with 0.5 fractional partition sizes, whilst the distance calculations will be reduced 

to F=3(0.3*0.3) + (0.1*0.1) = 0.37 for the second partition when matching using one of the 

fractional sizes 0.3. Thus, the factor F is smaller (0.37) for larger numbers (3) of equal-sized 

partitions (second point cloud). 

 For instance, if 80% of the atoms in a molecule have the same tag information, that partition 

has a fractional size of 0.8. If the remaining 20% of atoms all have the same other tag, that 

partition has fractional size of 0.2. This means the distance calculations are reduced to a factor 

F= (0.8*0.8+0.2*0.2) =0.68. 

Consider Table 7.1. When performing a full shape 2M5T matching, the fractional partition sizes 

of the atoms are C (0.32), N (0.086), O (0.1), S (0.0033), and H (0.48). if partition H is matched, 

the distance calculation is reduced to F= 

(0.32*0.32+0.086*0.086+0.1*0.1+0.0033*0.0033+0.48*0.48) =0.35 However, the fractional 

partition sizes in this research’s dataset are given by the abundances of the atoms and their 

neighbourhoods. 96.5% of the atoms in an organic molecule are made up of only 4 types 

(Hydrogen (H), Carbon (C), Oxygen (O), and Nitrogen (N)) (Alberts et al., 2002). Roughly 60% 

of these atoms are hydrogen, 25% are oxygen, 10% are carbon, and the other elements each 

represent negligible fractions of a molecule (Audesirk, Byers and Audesirk, 2016). The 

distribution of atoms in a molecule is different in the case of inorganic molecules, for instance, 

a sample molecule from the earth’s crust contains about 1% each of Hydrogen (H), Nitrogen 

(N), and carbon (C), 55% Oxygen (O), 28% Silicon (Si) and a sizeable fraction for Calcium 

(Ca), Magnesium (Mg), Sodium (Na), and other atoms (Alberts et al., 2002). 

 From the percentages of atoms in organic molecules, it can be deduced that if the tag 

information consisted only of the point’s atom type and omitted the neighbourhood information, 

the computation time would only be reduced by a factor of F= 

0.1*0.1+0.55*0.55+0.28*0.28=0.38 in practice, however, TaggedICP uses neighbourhood 

information when searching for correspondence and this further reduces the factor F.  None 

of the implemented algorithm’s computation time is reduced by a factor F=0.38 because the 

distribution of atoms in the molecular datasets used is not the same as the illustration by 

Alberts et al. (2002). 
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The partitions can be made increasingly smaller, however, if corresponding small partitions 

ignore true or exact matches, it reduces the quality of the correspondence. For instance, 

consider the same atom type partition. For full shape matching, there exists true 

correspondences for each data point and reducing the partition size further increases the 

probability of having fewer true matches because it eliminates some existing matches. 

However, evenly reducing the atom type partition size can decrease the computational time 

further if enough points are adhering to the standard ICP principles. 

TaggedICP uses the neighbourhood information of atoms in the correspondence search by 

comparing the tag information of the three (3) nearest neighbouring atoms to both the model 

point and the data point. Number 3 was selected based on the match quality and convergence 

tests done in the TaggedICP convergence experiment (Figure 7.5) and the TaggedICP match 

quality experiment (Figure 7.6). This additional process makes the correspondence search 

meaningful by increasing the probability that correspondence is a true match.  

The cost of the correspondence search in TaggedICP increases with the increasing number 

of distance calculations inside the individual shape, but not between the shapes. The number 

of distance calculations is increased with the increasing number of neighbourhood atoms 

being considered.  

 

 

 

6.4 Limitations  

 

Even though TaggedICP uses partitions to reduce the correspondence search space, the use 

of the k-nearest neighbour constraint increases the time taken for the algorithm to complete 

the closest point search. This can be mitigated with the help of using k-means clusters to find 

the k-nearest neighbours when considering the atom as the centroid. 

More than one (1) atom cannot be at the same position, however, when more than one 

neighbouring atom is at the same distance from the reference point but are of a different atom 

type than what is sought, the correspondence does not return the data point as a match 

because there is no match between the atom types of the 3-closest neighbours. Instead, the 

correspondence returns the closest atom in the search space without considering its atom 

type. In rigid shape matching, such a situation cannot happen in full shape matching, but rather 
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in partial shape matching because full shape matching inherently has true matches for all 

points.  

 

 

 

6.5 Summary 

 

The chapters (CHAPTER 4 KMEANSICP, CHAPTER  5 SUBSETICP+, and CHAPTER 6 TAGGEDICP) have 

discussed the ICP algorithm variants, their computational complexity, and their limitations. 

This critical discussion achieves objective three (3), “Develop shape matching algorithms 

based on the Standard ICP”. 

All the algorithms described above implement some sort of partitioning. KmeansICP partitions 

the data point cloud by considering only the spatial distance between the points. This 

partitioning is useful when searching for neighbourhood points because it shows points closer 

to others.  

The KmeansICP clusters can be used to efficiently limit the search space when neighbourhood 

points are being considered and searched, however, it is not as effective as the partitions in 

TaggedICP because the latter partitions are according to known information that is directly 

used in the correspondence search method. TaggedICP uses the metadata, called tag to 

reduce the search space and make the search meaningful whilst KmeansICP uses the k-

means cluster to reduce the search space. SubsetICP+ also partitions its search space by 

atom types so the partitions supplied for a closest point search operation are of the same atom 

type. 

The algorithms also differ in how their partitioning is implemented. SubsetICP+ partitions the 

search space by atom type but using equal-sized partitions for the iterations, TaggedICP 

partitions by atom type and can match using unequal sized partitions. TaggedICP also uses 

neighbourhood information to aid in the matching. KmeansICP partitions the search space 

using K-means clusters. These clusters are approximately equal based on the complexity of 

the shape (in terms of how evenly distributed the atoms occur in the point cloud). 

Partitioning by known information or tag (metadata), as compared to using spatial distance, 

enables the algorithm to reduce the search space and make the correspondence meaningful 

by allowing the search to find correspondence from a partition with a higher probability of 
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finding a meaningful match. This partitioning can result in meaningful matches because the 

search space will only contain points with the same metadata. k-means clusters can be used 

to further partition the search space in TaggedICP and SubsetICP+ so that in the search space 

of points with known information, the search method will also use the Euclidean distance 

function to search in a closer sub-partition to the data point. This will reduce the search even 

further. Particularly for TaggedICP, k-means can be used to cluster each atom type partition 

in the model point cloud and then the search for correspondence will search within the cluster 

(sub-partition) having the closest centroid to the data point. Some of KmeansICP’ s 

disadvantages, such as points farther away from the centroid having less reliable matches, 

will still apply to this technique, however, it would still reduce the search space from the atom 

type partition to several clusters in that atom type partition. 

 

 

 

Criteria ICP TaggedICP SubsetICP+ KmeansICP 

Use of 

metadata 

 No Tag 

information, 

(atom type and 

neighbourhood 

information) 

into unequal 

partitions 

atom types into 

unequal 

partitions  

No 

Partitioning 

Technique 

No Partitioning by 

atom type. 

Different size 

partitions are 

allowed. 

Partitioning by 

atom type.  

Points in 

corresponding 

subsets are not 

the same, 

especially for 

partial shape 

matching.  

Partitioning by k-

means clusters  
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Transformation 

filtering 

No No No No 

Iteration 

criteria 

Iteration 

registers 

whole 

point 

cloud  

Iteration 

registers whole 

point cloud  

Iteration 

registers a 

subset   

Iteration registers 

whole point cloud  

 

Table 6.1 Summary of algorithms. Details of the algorithms with some criteria (use of metadata, partitioning technique, 
transformation filtering, and iteration criteria) describing their implementation.   

 

Table 6.1 gives a tabular comparison of the algorithms. This allows the reader to understand 

the algorithms designed. It uses criteria such as “use of metadata” and “partitioning technique” 

to provide an overview of the discussed algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

Part 4: EXPERIMENT RESULTS AND CONCLUSION 

7 CHAPTER 7 ICP ALGORITHM EVALUATIONS & ANALYSIS 

 

 

7.1 Introduction 

 

Three experiments were designed to measure the quality or accuracy of the match in terms of 

the euclidean distances between final matching points and number of iterations to 

convergence. The experiments used different levels of simulated noise (0.001, 0.003, 0.005, 

0.01, 0.03, 0.05) and initial rotation angles (15, 30, 60, 90, 120, and 150 degrees) to mimic 

complexities in datasets for a shape match. match the  3D protein structures to evaluate the 

performance of each algorithm in the presence of the mentioned factors. The datasets used 

were 2M5T, 2HAX, 2JKG and 2JKF from Protein Data Bank (RCSB Protein Data, 2020). 

Dataset 2HAX and 2M5T were used for the rotation and noise experiments and 2JKF and 

2JKG were used for the noise only experiments. Each dataset (Protein Data Bank file) consists 

of a flat file with information such as the 3D coordinates of the atoms (points). This file was 

then loaded in Unity3D to create the 3D representation of the protein shape. 

For each experiment, two datasets were matched using a specified criteria (levels of noise 

and rotation angles). The convergence data was generated after each iteration. This allowed 

an analysis of the error after each iteration. The data for the quality of the match is obtained 

after the matching is fully complete. This allowed an analysis of the accuracy of the algorithm 

because it measures the euclidean distances between each final matching point. Smaller 

distances between points represents a better match than larger distances between final 

matching points. Similarly, larger counts of iterations to convergence represents slower 

algorithms in terms of iterations but not in terms of time in seconds.   

The match quality data are presented as a series of cumulative histograms that represents 

the quality of the match for each algorithm. Graphs with a sharp vertical rise indicates a better 

quality of match than graphs with a slower vertical rise across many units on the horizontal 

axis. The convergence graphs represent the error for each algorithm at every iteration.  

The two graphs compare the iteration count at convergence and the distance between final 

matched shapes in each experiment.  
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This chapter discusses the experiments performed to evaluate the performance of the ICP 

variants. It details the setup of the environment, the performance (convergence and match 

quality) data gathered during the evaluation, and the interpretation and conclusions drawn 

from the results. This chapter, together with chapters (CHAPTER 4 KMEANSICP, CHAPTER  5 

SUBSETICP+, and CHAPTER 6 TAGGEDICP) helps to achieve the overall aim of the research. 

 

7.2 Resources 

 

The ICP algorithms were developed using Microsoft C# (Microsoft, 2020) and the Visual 

Studio 2019 tool. The graphs were created using Python (Van Rossum and Drake, 2009). The 

3-D protein structures were imported from the Protein Data Bank (PBD) file and the desktop 

visualisations were created with Unity3D (Unity Technologies, 2019). These tools were used 

to develop the algorithm, visualise the animation, capture the images of the registered shapes, 

and inspect the shape matching result, and generate the graphs. 

 

   

 Figure 7.1  Cell Unity (Gehrer, 2015). A unity package for converting Protein Data Bank flat files into 3-D molecule objects. 
Cell Unity package is added to the Unity project which exposes its PDB Import functionality. (LHS) Inspector view shows the 
cell unity application for converting PDB files to 3-D structures. (M) Cell Unity Window provides an option for selecting a 
PDB file from disk or Download a PDB file (from rcsb.org). (RHS) A sample PDB code, 2M5T entered the PDB import window 
to be download from rcsb.org. 

As shown in the Cell Unity package inspector windows (Figure 7.1), to generate the 3-D 

structure of each protein dataset, the PDB file (Berman et al., 2000) identification was entered 
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into Cell Unity (Gehrer, 2015) and the PDB flat-file was retrieved and automatically generated 

a 3-D rigid object representation of the protein molecule. The PDB file is a flat file containing 

information on the 3-D structure of protein molecules such as atom types, sequence 

information (A group of atoms with a trend in their positions that can repeat in other parts of 

the molecule), and spatial coordinates of the atoms. This information can be extracted and 

used to create its 3-D protein structure on a coordinate system in Unity3D with the atoms 

adhering to the van der Waals radius (Bondi, 1964). The atoms were represented as spheres 

as required in this research although it can represent the atoms as any primitive type or custom 

3D object shape. 

7.3 Design 

 

The atoms were represented as spheres with different colours showing their atom types, 

however, for purposes of showing overlap of points during a visual inspection of the final 

matches, red colour was used for all atoms in the model point cloud (molecule representing 

the model point cloud) and blue colour was used for all atoms in the data point cloud (molecule 

representing the data point cloud). The atoms were also scaled down to 0.034f on all axes to 

be able to see the overlap of the atoms. The spheres can show the 3-D position of the atoms 

in the protein molecule. The whole 3-D object represents the molecule whilst the points 

represent the atoms in the molecule. The generated data and model 3-D shape objects were 

then assigned to data and model point cloud placeholders in the script as intended for the 

matching in the Unity application as shown in Figure 7.2. 
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Figure 7.2 (LHS) Unity project Inspector with the ICP algorithms added as components (Scripts) and [RHS] details of “Run 
Algorithms” script showing the model and data point clouds set into their respective placeholders (Data Game Object and 
Model Game Object). 

The Unity project inspector window (Figure 7.2) shows the Unity3D project inspector showing 

some C# scripts used in the project (LHS). It also shows the Run Algorithms C# script with 

placeholders for the model and data game object representing the data and model point cloud 

3-D protein molecule. 

  

Figure 7.3  2HAX in Unity3D ready for registration with itself (full shape) at (LHS) 60 degrees and (RHS) 90 degrees on the x-
axis. Blue represents the data shape and red represents the model shape at the origin.  Each point in the point cloud is 
scaled down to 0.034f on all axes. 

 

2HAX point cloud representation in Unity3D (Figure 7.3) shows 2HAX imported into Unity3D 

and each point scaled down to 0.034f on all axes. This was done to allow the overlap of the 
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points to be easily observed as scaling down the points makes them sparser and provides 

some spaces between the points for easier visualisation of the extent of overlap. 

 

Four (4) experiments were designed to. 

1. Find the optimal neighbour count for TaggedICP by matching two identical molecules 

and taking 1-5 neighbours into account in the tag information. (Section 7.5) 

2. Test how the initial rotation and partition sizes affect the matching of two identical 

molecules. (Section 7.6.1) 

3. Simulate matching with measurement noise in the 3-D positions of atoms in two 

otherwise identical molecules and test how the initial rotation affects the matching. 

(Section 7.6.2) 

4. Match two different mutations of the same molecule to compare whether the rotation 

influences the performance based on the quality of the match from the developed 

variants. (Section 7.6.3) 

The dataset consisted of four different protein structures with PDB (RCSB Protein Data, 2020) 

identifiers 2HAX, 2M5T, 2JKF, and 2JKG. 2HAX and 2M5T were used for performing full 

shape matching (2) and noise simulation tests (3), and the TaggedICP neighbourhood tests 

(1). 2JKF and 2JKG were used in the mutation tests (4). The full shape matching experiment 

was to evaluate the algorithm’s performance with datasets where the data point cloud is the 

same as the model point cloud. For all tests, the model data shape was positioned at the origin 

and the data shape was rotated on the x-axis for the indicated angle (15, 30, 60, 90, 120, 150) 

in degrees of the test.  

The research chose protein molecules because of the challenging task of visualising 3-D 

protein shapes. Many tasks that help save lifes are dependent on protein shape matching 

such as drug discovery. The research could also help understand how the distribution of atom 

types affects the shape matching results. For instance, do many partitions improve the 

matching or otherwise, and how do the different partitioning techniques affect the matching 

results. 

 

Large initial rotation angles are known to cause difficulties for ICP algorithms (Besl and McKay, 

1992). Noise added to the positions of the atoms simulates inaccuracies in protein 

measurement methods and devices. Mutations are also a common use case for matching the 
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identical functional parts of the 3-D protein structure and highlighting the differences caused 

by the mutation.  

 

Noise simulation tests were used to evaluate the performance of the algorithms in the 

presence of different levels of noise. The experiment also studied how the different partitions, 

based on the distribution of atom types, affect the performance of different algorithms in the 

presence of noise, in terms of match quality and convergence. 

 

The protein data bank (RCSB Protein Data, 2020) consists of over 167,518 protein structures 

acquired through various means such as using X-ray crystography and NMR (Nuclear 

Magnetic Resonance). Since the research’s focus is on evaluating the performance of various 

ICP-based algorithms on matching the 3-D protein structures, it is only concerned with protein 

matching from the 3-D structural perspective and not with the intricacies of protein sequence 

matching. Protein sequence matching involves finding the similarity between protein 

molecules based on the similarity of sequences of atoms (similarly placed positional atoms). 

                   

                                                                                                                                                                                                                                                 

Atom 2HAX 2JKF 2JKG 2M5T 

C 848 (52.54) 845(60.14) 860 (59.23) 685 (32.33) 

N 213 (13.2) 214 (15.07) 213 (14.67) 183 (8.64) 

O 540 (33.46) 359 (25.28) 376 (25.89) 216 (10.1) 

P 10 (0.62) 0 0 0 

S 3 (0.19) 2 (0.14) 3 (0.20) 7 (0.33) 

H 0 0 0 1028 (48.61) 

Total 1614 1420 1452 2119 

Table 7.1 This table shows the distribution of atoms in PDB 2M5T, 2HAX, 2JKF, and 2JKG. The count and percentages of 
each atom in the molecule are shown. Atoms have different partition sizes based on their atom types and the algorithms 
show different performance with the different atoms. 
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The distribution of atoms in the research dataset (Table 7.1) shows the distribution of atoms 

and percentages (in parenthesis) in the protein molecules used for the tests. 2HAX contains 

1614 atoms, 2JKF contains 1420, 2JKG has 1452 atoms, and 2M5T contains 2119 atoms. 

Because they each have a different distribution of atoms in their molecule, it is important to 

show this distribution as it affects the matching of TaggedICP and SubsetICP+ and it also 

gives an insight into the discussion of the performance of the algorithms. 

 

The Hydrogen(H) atoms are omitted in the PDB file for some of the molecules (2HAX, 2JKF, 

and 2JKG) because using X-rays for detecting the 3-D structure of the proteins has limitations 

on reliability and accuracy on detecting Hydrogen (H) atoms (Woińska et al., 2016).  PDB 

(protein data bank) files created using X-ray crystallography usually do not contain the H 

atoms because the process is difficult to detect H atoms reliably and accurately, however, 

detecting protein structures with NMR (Nuclear Magnetic Resonance) spectroscopy can 

detect H atoms more easily. A mixture of molecules having different counts of unique atoms 

allows the experiment to find the effect of the number and size of partitions on different 

algorithms and present rigorously. 

 

TaggedICP and SubsetICP+ partition their search space based on atom types. SubsetICP+ 

partitions the point cloud based on atom types in each subset called the cardinality. The 

partitioning allows an unequal sized partition of atoms to be registered iteratively. 

On the other hand, TaggedICP maintains a unique partition size for the registration which is 

based solely on the count of the partition’s atom type. This can potentially affect the quality of 

the match and whether the algorithm encounters and recovers from large errors. The results 

section provides a detailed discussion of the match quality and convergence of the algorithms 

and an interpretation of how the different aspects of the implementation of the algorithms such 

as partition size contribute to the results.  

The tests will answer, amongst other questions, how the distribution of atoms in the molecule 

affects aspects of the shape matching. For instance, 2M5T has the highest total number of 

atoms in our dataset with a Hydrogen atom count at 1028 which is 48.61% of the total number 

and 2HAX having 848 carbon atoms representing 52.54% of the total atom number. The 

experiments can find the effect of the sizes of partitions (which is based on the abundance of 

the individual atom types) on the performance of the shape match. 
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The experiment also aimed to compare the performance of the algorithms; ICP (Besl and 

McKay, 1992), TaggedICP (Ankomah et al., 2020), KmeansICP, and SubsetICP+  in terms of 

their convergence and match quality on the 3-D molecule dataset. For each algorithm, the 

experiment aims to understand how the reduction in the search space affects the number of 

iterations at convergence. The use of known metadata and neighbourhood atom information 

improves the matching for molecules with different atom distributions as it reduces the search 

space for correspondence and how the distribution of these atoms affects the quality of the 

match. The correspondence of the points rather than the quantity increases the quality of the 

match as such reducing the search space by atom types especially in rigid full shape matching 

enhances the match quality. 

The use of neighbourhood information is thought to make the matching meaningful and it will 

be interesting to understand whether the use of neighbourhood information results in slower 

convergence. For complex shapes, especially those with large numbers of atoms and non-

uniform distribution of points, TaggedICP might return non-optimal correspondences based 

on the closest atom with the same type in the partition. This occurs when there is no match 

using the neighbour information. It is noted that TaggedICP partitions the search space 

according to the atom type to speed up the correspondence search. However, when there is 

no match based on tag information for a data point, the TaggedICP algorithm reverts to picking 

the closest point of the same atom type in the model point cloud partition as the 

correspondence. This closest point might not be ideal as it doesn’t represent the exact match 

as would have been achieved using the neighbourhood information. This might present less 

than ideal results in such instances. 

KmeansICP uses the K-means algorithm (MacQueen, 1967) to cluster the model point cloud, 

into a number k of clusters, based on each position’s proximity to the mean of each cluster’s 

points. To establish some correspondence, the closest cluster to the data point is found (point-

to-centroid) and then the cluster is searched for the closest point (point-to-point). The cluster 

size can affect the performance of the algorithm because the larger the number of clusters 

present in the model point cloud, the fewer the number of points in each cluster and the faster 

the search for correspondence. Even though this can make the searches faster due to the 

fewer numbers of points in each cluster. However, a very large number of clusters cannot be 

used to get a faster correspondence search because if the number of clusters gets too large, 

determining the closest cluster starts to take too much time (this tipping point happens at 

k=√N), and the chance of being on the edge of a cluster and getting a worse correspondence 

increase. 
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Another technique to increase the probability of accurate matches using k-means is to assign 

weights to points based on the distance of the points to the centroid and then some points are 

ignored from the correspondence search in the cluster. However, the current version of the 

KmeansICP algorithm does not implement any such weight-based points filtering. 

 

 

 

  
 

 Figure 7.4 (LHS) Data point cloud with atom M (RHS) The correspondence for atom M in the data point cloud is M in the 
model point cloud.  Atom M found its closest correspondence cluster (point-to-centroid to cluster B) and then found the 
closest point M but it can be observed that atom M in cluster B is closest to cluster C though it belongs to cluster B. This is 
because k-means uses the mean of the points closest to the centroid which is an approximation. 

 

7.4 Analysis Graphs 

 

The standard ICP algorithm was chosen as the base algorithm because it is simple and 

modular and allows the measurement of the improvements in these algorithms. The success 

of these improvements means they can be incorporated into other variants for further 

experiments on 3-D proteins. Using other variants of ICP such as triangulation-based iterative-

closest-point for protein surface alignment (Ellingson and Zhang, 2012) and fractional ICP 

(Phillips, Liu and Tomasi, 2007) with matching vector pairs in Iterative Protein Alignment (IPA) 

(Kirys et al., 2007) instead of the standard ICP would have meant that their improvements will 

also affect the convergence and the match quality of the measurements in this research. 
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To compare and analyse the performance of the matching of standard ICP with TaggedICP, 

KmeansICP, and SubsetICP+, the thesis shows two types of graphs: Convergence and Match 

quality graphs. 

The convergence graphs represent the mean squared error of the alignment of the two shapes 

at the end of each iteration (Figure 7.5). It is noted that the ICP algorithm iteratively finds the 

transformation that aligns the data shape to the closest points for each iteration so getting the 

error at the end of each iteration allows a good analysis of the matching process. 

Assume the data point set P, with 𝑁𝑝 points and the model shape X, with 𝑁𝑥 points. The closest 

point set is computed as 𝑌𝑘 = 𝐶( 𝑃𝑘 , 𝑋). The mean squared error of this correspondence, 𝑒𝑘 

is computed as below. 

𝑒𝑘 =
1

𝑁𝑝
∑‖𝑌𝑖𝑘 − 𝑃𝑖𝑘‖

2

𝑁𝑝

𝑖=1

 

The convergence graphs enable an understanding of which algorithms converged faster 

(iterated less to convergence) in terms of the iteration count at convergence and not the time 

in seconds. This is because the different algorithms implement different techniques, especially 

in the closest point search methods so an algorithm matching two shapes in a smaller number 

of iterations is distinguished from an algorithm that takes considerably less time and 

converging in many more iterations. 

 

Figure 7.5 shows a convergence graph for two algorithms TaggedICP and ICP with three (3) 

different angles (30, 60, 90) showing a gradual descent from larger errors to lower errors as 

the iteration increases. 

The convergence graph uses each algorithm’s own closest point search method to find the 

correspondences that are used for the error calculation. The graph shows the real MSE that 

would be used by the termination criterion. Unfortunately, some algorithms’ closest point 

search method imposes additional constraints based on their partitioning, leading to potentially 

more distant correspondences. This means it may not be fair to compare convergence curves 

for different algorithms. However, since these curves need to be calculated after each iteration, 

using a fairer comparison would slow the matching down too much. Each algorithm uses its 

implementation of the closest point search method, which means TaggedICP’ s 

implementation is not fair for direct comparison because it uses the most knowledge of the 

molecule (atom types and neighbourhood information) compared to the other algorithms (ICP, 

SubsetICP+, and KmeansICP).  
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Figure 7.5 The convergence graph shows the number of iterations at which the algorithms converged. It is used in the tests 
to find out the algorithm that converged faster in terms of the number of iterations as well as the mean square error at 
convergence. This is important because the convergence characteristics are part of the measure of the performance of the 
algorithm. The Mean square error is an aggregate of the alignment error across all the points in the cloud. The sudden drop 
in error vrs iteration is because of the algorithm having a big drop in the error at after that iteration. 

 

 

The sample convergence results for matching 2HAX (Figure 7.5) shows the convergence graph 

for ICP and TaggedICP at angle 30, 60, and 90. The graph shows the fastest convergence for 

both algorithms at angle 30, followed by TaggedICP at angle 60, ICP at 60 and then 

TaggedICP and ICP respectively at angle 90. It can be noticed that for all angles, TaggedICP 

converged faster (in terms of fewer iteration counts) than ICP. It can be observed that 

increasing the initial rotation angles results in higher starting mean squared errors and 

therefore a good initial transformation is required or algorithmic techniques to not require that 

for the ICP algorithm to be efficient.  

The match quality graphs represent the cumulative percentage of points with their error 

(distance between final matched points) at or lower than some thresholds on the x-axis 

position when the shape matching is complete. The graphs were implemented with Matplotlib 

(Hunter, 2007)  library package in Python (van Rossum, 1995). Matplotlib’s implementation of 

a cumulative histogram also draws a vertical line from the 100% mark down to 0% at the x-

axis position of the largest error (Figure 7.6) and this appears in some of the match quality 
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graphs. Cumulative histograms cannot decrease like that, but these are correct cumulative 

histograms, and this is just an artefact of Matplotlib’s implementation that the researcher 

decided to keep because visualisation of the largest error may be useful instead of cutting part 

of the graph.  Since the analysis was interested in every aspect of the representation, the x-

axis was set to an appropriate scale to capture relevant parts of the graphs. The larger scales 

capture the end of the algorithms’ line and as such the vertical terminating line.  

 

Figure 7.6 Match quality graph with initial rotation angle, 15 degrees. The graph is a cumulative histogram showing the 
alignment error against percentage of point pairs. It shows how many points have a given alignment error or lower 
alignment The historgram’s terminating line at the largest error is from Python’s matplotlib implementation and this was 
left in the graph to see the full extent of each graph. The cumulative histogram will always end each algorithm’s graph at 
100%, however this does not necessarily mean bigger errors because the percentage of point pairs is cumulative at a 
particular error so around 80% of point pairs for SubsetICP+ show a perfect match, however 20% (100-80) show an 
alignment error that is greater than 0.00.  

 

The sample match quality results for matching 2HAX (Figure 7.6) shows the percentage of 

points against alignment error and this enables an understanding of the effective match quality 

based on what percentage of points have a certain amount of alignment error. It is commonly 

used to evaluate shape matching algorithms (Rusinkiewicz and Levoy, 2001, Du, Xu, et al., 

2017).  It shows a vertical line from each algorithm’s largest error point, the 100% mark, down 

to 0%. This is due to a behaviour in matplotlib python library.  

The alignment error represents the distance between final matching point pairs. A higher 

cumulative percentage of points (sharply rising graphs and graphs close to the top left) with a 

lower error implies a better quality of the match. Graphs show a better quality of match when 

the algorithm rises high up so quickly showing a steep rise. It represents the final positions of 

the point pairs and as such, it is an objective and more precise representation of the quality of 

the final matching shapes. The data for this graph is generated when the shape matching was 
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complete by re-running the algorithms own closest point method once and then generating 

the distance (error) between corresponding matched points.  

The two types of graphs (the match quality and the convergence) provide insights into the 

behaviours of different techniques: how fast and smooth the convergence graphs evolve from 

one iteration to another and how quick the rise in the match quality’s cumulative histogram is 

used to determine the performance of the algorithm whilst analysing the effects of the 

partitioning technique on the performance.  

 

 

7.5 Finding TaggedICP’s Optimal Neighbour Count 

 

TaggedICP considers several neighbouring atoms as a constraint in the closest point search 

to match their atom types for a meaningful match. The research investigated how to arrive at 

the optimal neighbour count by critically analysing the effect of small and large neighbour 

counts on the performance of the algorithms and an experiment was designed to find this 

number.  The experiment considered 2HAX and 2M5T molecules because they were the 

molecules to be used in many of the tests to evaluate the ICP algorithms. 
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Figure 7.7 Match quality results for registering full shape, 2HAX at rotation angle 15 degrees using the TaggedICP algorithm 
with different numbers of neighbouring atoms. This is a test to find the optimal number of neighbour atoms when 
registering 2HAX, as a configuration to be used in the rest of the experiments for 2HAX. The graph shows that using 3 
neighbours achieved the best quality of the match. 

The optimal neighbour match quality results (Figure 7.7) shows the match quality experiment 

using 2HAX on 1 to 5 neighbours. It shows TaggedICP had a perfect match on all neighbour 

counts (1 to 5). This is realised in the scale of the alignment error (e-5). 

The separation on the graph is due to floating-point errors. This trend is seen in Figure 7.8 

where it is also noticed that TaggedICP converged at similar iteration on all neighbour counts. 

However, unlike Figure 7.7, Figure 7.8 shows some small differences in the convergence 

performance for the different neighbour counts. For instance, the neighbour counts seem to 

have converged at different iterations.  
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Figure 7.8 Convergence results for registering 2HAX at initial rotation angle 15 degrees on the x-axis using the TaggedICP 
algorithm with different numbers of neighbouring atoms. This is a test in conjunction with the match quality test above to 
decide the optimal neighbour of atoms when registering 2HAX. The graph shows that 1 to 5 neighbour(s) achieved a perfect 
match because all algorithms converged at 0 mean square error. However, the 5-neighbour test was noticed to have 
converged faster with the 1-neighbour test converging the slowest. 

It can be noticed from the results that the convergence graph in the optimal neighbour 

convergence results (Figure 7.8) shows an inverse relationship with the iteration number at 

the convergence of the algorithm. The 1-neighbour count started with a small error but 

converged much later than 5-neighbour that started with a larger error but converged much 

earlier. In the earlier iterations, this trend looked the opposite of the convergence trend. 

Considering only Figure 7.8, it can be deduced that the higher the neighbour count, the 

faster the convergence. 

It would be easy to assume that selecting a higher number of neighbour atoms is optimal, 

however, the match quality graph in Figure 7.7 shows that, for 2HAX, using 1 to 5 neighbours 

yielded perfect matches. The match quality graphs in Figure 7.7 shows tiny (e-5) alignment 

errors compared to the distances between atoms in a molecule. This difference in the 

alignment errors is a coincidence due to floating-point rounding errors.   
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Figure 7.9 Match quality results for registering full shape, 2M5T at an initial angle 15 degrees on its x-axis using the 
TaggedICP algorithm with different numbers of neighbouring atoms. This is a test to find the optimal number of neighbour 
atoms when registering 2M5T. The graph shows that using 4-neighbours achieved the best quality of match as the 4-
neighbour graph shows more percentage of point pairs at lower alignment errors than the other neighbours. 

The optimal neighbour test for registering 2M5T (Figure 7.9) shows match quality for matching 

2M5T using 1 to 5-neighbours. It is observed that 2-neighbour count followed by 5-neighbour 

count show much better results even though there are no substantial differences with the other 

algorithms considering the scale of the alignment error (e-7). The vertical lines at the end of 

each cumulative curve are a result of Python’s matplotlib library error.  
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Figure 7.10 Convergence results for registering full shape, 2M5T at initial rotation angle 15 degrees on its x-axis using the 
TaggedICP algorithm with different numbers of neighbouring atoms. The graph shows that 1 to 5 neighbour(s) achieved a 
perfect match because all algorithms converged at 0 mean square error. However, the 5-neighbour test was noticed to have 
converged faster with the 1-neighbour test converging the slowest. 

 

The optimal neighbour test for 2M5T (Figure 7.10) shows the convergence results for matching 

2M5T with 1 to 5 neighbours. It can be observed that 5 neighbours converged faster followed 

by 4-neighbour, 3, 2 and finally 1 neighbour converging the slowest in terms of the number of 

iterations at convergence. It can also be noticed that all the algorithms converged between 3 

and 5 iterations. 

The difference between the graphs in Figure 7.9 was too small to regard any as a worse match, 

however, the convergence graph does not reflect a similar scenario. A good shape match 

does not necessarily result in faster convergence so Figure 7.10 shows good results for all the 

neighbour points with a very small difference in the converging values because they all 

converged to the same error even though at different iterations. 

This difference in the two graphs (Figure 7.7 and Figure 7.9) is because of the distribution of 

atoms in the molecules as well as their sizes (Table 7.1). 2HAX contains 1614 atoms of atom 

types, C, N, O, and P (4 atoms) whilst 2M5T contains 2119 atoms with the same types of 

atoms and hydrogen (5 atoms). 2M5T also contains one more partition, Hydrogen (H). 2M5T 

converged at a higher iteration because it has a partition with a larger number of atoms. 

Section 6.3 explained that TaggedICP’ s number of distance calculations is reduced by a 

factor, where the factor will be smallest for a larger number of equal-sized partitions. The 

partitions’ details for 2HAX and 2M5T shown in Table 7.1 show that both shapes do not have 

equal-sized partitions, however, a study of which algorithm is closer to this phenomenon 

reveals that 2M5T’s largest three (3) partitions by percentages are H (48.61), C (32.33), and 

O (10.1), whilst the largest 3 partitions for 2HAX are C(52.24), O (33.46), and N (13.2). 2HAX 

has the largest two partitions between the two shapes, with the third partition close to 50% of 

the second partition whilst 2M5T’s third partition is 30% of the second partition. Overall 2HAX 

has a closer adherence to equal-sized partitions than 2M5T. 

The optimal neighbour count can likely be affected by the distribution of atoms (how evenly 

each atom type is spread in the molecule) in the molecule as well as the size of the molecule. 

However, for purposes of these experiments and the datasets, all the neighbours yielded 

substantial results meaning that the choice of neighbours between 1 to 5 does not matter. 3-

neighbour yielded slightly better results on one graph (Figure 7.7) so the mean value of 3 

neighbours is chosen for the neighbour count in TaggedICP.  
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Comparison to find the optimal search radius and k-nearest neighbour counts that would yield 

the lowest classification error for the similarity between atoms evaluated at 1, 3, 4, and 5-

nearest neighbour counts, found 1 or 3 neighbours to perform much better than 4, 5 

neighbours (Ellingson and Zhang, 2012). The research did not consider 2-nearest neighbours 

because it was guaranteed to produce identical results to the nearest neighbour. The 

Triangulation-based Iterative-closest-point for Protein Surface Alignment algorithm (TIPSA) 

developed for the research, used a combination of radius and atom types to find the maximum 

number of atoms that can be used in the matching of protein binding sites. The approach first 

computed the 3-dimensional Delaunay triangulation (Escobar and Montenegro, 1996) to 

acquire a set of tetrahedra with labelled atoms as vertices. This presented a set of points that 

was used for the initial alignment. To determine the correspondence for each atom in the data 

protein, the same atom type is searched in the reference protein with a distance smaller than 

a set cut off radius value. This approach was to ensure that correspondences do not share 

the same matches. 

This is usually a partial shape match as it matches part of one protein to a binding site (a 

region on the other structure that the reference protein can dock successfully) or part of 

another protein. Whilst TaggedICP considered full shape matching of the complete molecule. 

TIPSA used a fixed threshold distance value that was compared with the distances between 

the atoms to establish an accepted correspondence based on the distance and the atom within 

the radius, whilst this research considered the neighbours based on Euclidean distance of 

closest neighbours to an atom. 

TaggedICP considers three (3) neighbouring atoms to register a point cloud based on the 

results of the tests  (Figure 7.7, Figure 7.8, Figure 7.9, and Figure 7.10). It will not have been ideal 

to set the neighbour count to a small number, e.g., one (1) because the probability of having 

many atoms in a molecule with just one (1) closest neighbour matching the same atom type 

with the closest neighbour of another atom in the same molecule could be high. This will 

reduce the efficiency of finding a meaningful correspondence by relaxing the constraints, 

especially for large molecules. Increasing the neighbour count provides a stricter constraint 

which reduces the probability of finding multiple matches satisfying the same condition, but at 

the same time, this also increases the distance to the found closest matching point and could 

reduce the time taken for the algorithm to converge. If the point clouds are identical, it is easier 

to discover correct correspondences, however, when there is noise or mutations, it can impact 

the performance of the algorithms due to using false matches. Following the experiments, 

TaggedICP will be used with 3 neighbours. 
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7.6 Results of Shape Matching  

 

ICP can fail if the initial transformation is not an optimal estimate. The algorithms all start by 

moving the molecules so their centres of mass coincide, but they can still be rotated. This 

experiment will test specific initial rotation angles to see whether any of the algorithms can 

handle large initial rotations better than the standard ICP. 

Match quality results are presented in the form of graphs showing the cumulative number of 

points against their mean squared error values. The match quality graphs that have their lines 

ending within the visible scale of the graph have a terminating horizontal line. The 

convergence graphs are presented in the form of mean squared error values against the 

iteration number. The final matching shapes are shown to be able to see a pictorial view of 

the complete matches and visually inspect the overlap of the result. With all the visual results, 

the blue shapes represent the data point cloud, and the red shapes represent the model point 

cloud.  

To show related graphs in a single view, smaller sub-graphs are used for algorithms that are 

out of scale with the main graph. This usually happens with huge differences in the scale 

between the main graph and an algorithm’s scale. This makes the representation on the same 

graph inappropriate. The wide differences make details of some algorithms hidden when they 

are all plotted on the same graph. Using multiple graphs ensures that all the details on the 

graphs needed for the analysis are visible in the same space.  

As discussed in Section 7.3 (Design), four tests were conducted. The full shape registration 

tests also called same shape matching were designed to match full shapes for both 2HAX and 

2M5T. This test represents the most basic of the tests because all the points in the data point 

cloud had true matches in the model point cloud.  

The noisy shape (2HAX and 2M5T) registration tests were designed to test full shape 

registration in the presence of different levels of noise. Even though all points in the data point 

cloud had true matches in the model point cloud for the noise tests, the points were displaced 

by a level of noise represented by its vector magnitude as described in Section 7.6.3.   

Another test was the mutation test. Mutation tests were designed to register 2JKF and 2JKG 

and compare the match quality with the similarity score on the PBD website. 2JKF and 2JKG 

are known natural mutations so they have some similarities. The test is not to measure the 

effect of the rotation on the datasets per se, but rather to understand whether the matching 

with the algorithms is a coincidence or the algorithm’s design show advantages or limitations 

is influencing the match result. Comparison with the structural similarity score is to explore the 
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idea that the structural similarity preserves more information than the sequence information. 

Meaning that a cumulative percentage of points at an acceptable MSE error greater than the 

sequence score proves this point.  

The implementation was run for 2HAX instead of 2M5T because 2HAX showed a better quality 

of match using 3 neighbours, so amongst those 2 molecules, we chose the option that we 

assumed to give us the best possible match using TaggedICP’ s closest point search. 

 

 

7.6.1 Matching Full Shapes with Different Rotation Angles 

 

To begin the shape matching process, the algorithm rotated the data shapes at different initial 

rotation angles (15, 30, 60, 90, 120, and 150 degrees) around the x-axis, whilst registering the 

shapes each time. Each algorithm was run for 100 iterations, instead of terminating at 

convergence or a set mean squared error threshold. This is because it was expected that 

algorithms will have different convergence errors and setting a global convergence error value 

might miss some details in the experiment. The choice of 100 iterations was based on past 

experiences and experimentations.  

The size of the point cloud can also be used to estimate the set error threshold however, 

because of the noisy (error) shape matching and the complexities with the partitions of the 

algorithms, a standardised large number of iterations was ideal as it captures the convergence 

and match quality details within the same 100 iteration threshold.  

These tests evaluated the algorithms’ (ICP, SubsetICP+, TaggedICP, and KmeansICP) match 

quality and convergence over different initial rotation angles (15, 30, 60, 90, 120, and 150 

degrees). The rationale was that ICP can fail if the initial transformation is too large. All the 

algorithms start by moving the molecules so their centres of mass coincide, but they can still 

be rotated, so this experiment will test specific initial rotation angles to understand how any of 

the algorithms compare to each other in terms of the convergence and match quality results 

and how their techniques influence their performance. 

The full same shape test performed a full shape registration test for each of 2HAX and 25MT, 

meaning that each point in the data shape had a true match in the model shape. The test 

represents the most basic of all the tests as it does not introduce any level of noise and all the 

points in the data shape have a true match in the model shape. 
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Figure 7.11 Final registration results, with initial rotation angles for matching 2HAX (full shape matching subject to varied 
rotation angles on the x-axis) (blue=data point cloud, red=model point cloud). It can be noticed that ICP at angle 15, 
TaggedICP at angle 15, and SubsetICP+ at all angles visually show a good match, and the worst results are the ones for 
KmeansICP. These images are qualitative and are further analysed together with the match quality and convergence 
graphs. 

  

The results for matching 2HAX (Figure 7.11), visually show shapes with distinctively red points 

or blue points (perfectly registered shapes) and shapes with a mixture of blue and red points 

(fewer quality matches). The perfectly registered shapes are in red or blue because of the 

effect of the small mean square error between corresponding points in the shapes and the 

shapes captured from just one angle of the 3-D shape. This error is seen to be much larger 

when there is a clearer distinction between the colours (red and blue) in those shapes. 

Basically, the larger the error, the clearer it is to identify the individual points visually. 

Interpreting the quality of the match purely from the perspective of our human vision shows 

that shapes with some extent of clearly identified point pairs (point clouds with higher 
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separation of points) such as in KmeansICP at angle 60 or TaggedICP at angle 60 are not as 

accurate as those matches where there is not much colour separation. For instance, ICP at 

angle 15 cannot visually distinguish most of the individual point pairs in the overlapping areas 

representing a much better match than the other algorithms.  Many of the shapes show this 

trend in parts of the point cloud, however KmeansICP and ICP at angle 15 show this trend on 

the whole point cloud. 

 

KmeansICP60 TaggedICP60  SubsetICP+60 

   

 
Figure 7.12 Zoomed in overlaps showing a visual analysis of the shapes with more visible matches of point pairs (KmeansICP 
and TaggedICP) compared to SubsetICP+. This is solely for visual analysis.  

 

The zoomed-in results for matching 2HAX at angle 60 (Figure 7.12) show a zoomed-in version 

of Figure 7.11 with a selection of the algorithms (KmeansICP, TaggedICP, and SubsetICP+ all 

at angle 60). Figure 7.12 shows a clear view of the overlaps of the shapes and this enhances 

the reader’s understanding of how the representation of the matched shapes are meant to 

show the quality of the shape match, however, a more objective analysis is given in the match 

quality and convergence graphs.  
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Figure 7.13 Final registration quality results for registering 2HAX with itself. Graphs show results for the percentage of 
points pairs against alignment error and algorithms that rise quickly are of a better match quality because a higher 
percentage of point pairs will have a smaller alignment error as the graph rises sharply.  

 

The match quality graphs in Figure 7.13 present a more objective and detailed analysis of the 

shape registration visual results in  

Figure 7.11. The quality of the registration is presented in the form of a cumulative percentage 

of point pairs against their alignment error as discussed in Figure 7.6.  
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In Figure 7.13, all algorithms are shown to have accurate matches at angle 15. Even though 

KmeansICP is shown in the sub-graph with increased scale, there were only a few poor 

matching points (24 of them) with the majority (1599) of the points having perfect matches. As 

discussed in Section 4.4, the KmeansICP algorithm decides on the correspondence search 

space by the closest centroid (point-to-centroid), so partitioning is approximate when the 

shape has not converged because corresponding pairs from a k-means cluster are not 

necessarily true pairs. 

The objective representation of the match quality is also supported by the visual analysis in  

Figure 7.11 because it is noticed that KmeansICP and TaggedICP show clearer separation of 

colours at parts of the point cloud, referring to a much lesser quality of match (Figure 7.11) 

compared to the other algorithms at angle 60. This trend is seen for match quality graphs at 

angles 30, 60, 90, and 120 where SubsetICP+ shows a comparatively much better quality of 

the match, with TaggedICP, ICP and KmeansICP following in that order of decreasing quality. 

However, the trend is not noticed for all the angles such as angles 150 where SubsetICP+ 

performed the worst.  

 To understand the performance of SubsetICP+, it is necessary to consider how SubsetICP+ 

performed much better than all the algorithms in all the tests except angles 150 and 15. This 

is due to the design of the algorithm. SubsetICP+ matches corresponding subsets of the same 

atom type. This technique reduces the search space and makes the matching meaningful. 

The use of corresponding subsets provides a better estimate than when the whole point cloud 

is matched. Similarly, registering one corresponding subset per iteration is efficient in matching 

ordered homologous points such as atom types.    

Consider the partitioning technique of TaggedICP, KmeansICP and SubsetICP+. It is 

observed that though TaggedICP uses the 3-neighbour constraint to make the matching 

meaningful, it reverts to a less optimal match (based on the closest atom in the same atom 

type partition with no consideration for the 3-nearest neighbours) when the correspondence 

based on the tag is not found. This reduces the quality of the matches. 

For the angles that show SubsetICP+ with a better match (30, 60, 90, 120) than the others, it 

is noticed that all the other algorithms had approximately similar quality based on the 

alignment error. This points out that, ICP, TaggedICP and KmeansICP are much similar in 

terms of their techniques compared to SubsetICP+. However, all algorithms are based on ICP 

which is the source of their basic similarities. The difference with SubsetICP+ is that it matches 

one corresponding subset per iteration. 
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 KmeansICP also uses k-means to partition the search space and without the use of any 

metadata constraint, it is expected that TaggedICP will perform much better. This was true in 

most of the graphs even though the differences in the quality between kmeansICP and 

TaggedICP at larger angles was not very significant. 

 The validity of Figure 7.13 will further be tested in the convergence analysis discussion which 

will show whether results in the match quality graphs are plausible and find a trend between 

both match quality and convergence graphs. 

In summary, all the algorithms showed a perfect match with a few of them having inaccurate 

matches with just a few points. This is observed for all the algorithms at all the angles in Figure 

7.13. The general observation is that all algorithms had accurate matches at all angles. 

 

  

  

  

Figure 7.14 Convergence results for matching 2HAX with itself. Graphs show how TaggedICP and SubsetICP+ had a larger 
starting error but managed to converge faster than other algorithms. The graphs also show TaggedICP and SubsetICP+ 
converged at almost a constant number of iterations for each angle whilst KmeansICP and ICP show the effect of increasing 
initial rotation angle on the convergence. 
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The convergence graphs in Figure 7.14 show that all algorithms converged within the 100-

iteration mark. TaggedICP and SubsetICP+ converged at a smaller number of iterations 

compared to the other algorithms for most of the angles, even though this does not necessarily 

mean less time in seconds for the convergence. This is because of their use of metadata or 

known information. Their partitioning by atom types enhances the matching and using 

neighbourhood information even enhances this further as seen in TaggedICP converging 

faster for all the angles.  

For TaggedICP and SubsetICP+, the faster convergence is because of the use of metadata 

knowledge to aid with the registration process. Since tag information constraint is constant 

across the angles, the rotation of the shape is found to have a smaller effect on the iteration 

at convergence compared to KmeansICP and ICP. It is noticed that SubsetICP+ and 

TaggedICP+ had all converged within 20 (0 to 20) iterations except at angle 150 for 

TaggedICP. However, ICP and KmeansICP have a convergence between 10 and 90 

iterations. For all angles, it is observed that the iteration at convergence is related to the angle 

as increasing angles results in increased iteration at convergence. 

TaggedICP shows better convergence performance than SubsetICP+ at increasing angles 

because TaggedICP’ s constraint is at an appropriate level of complexity. It is not too rigid 

(using a very tight constraint) nor too loose (using insufficiently fewer constraints) to present 

a lot of false matches. The 3-neighbour tag information allows the matching to be meaningful 

than SubsetICP+ because, SubsetICP+ doesn’t use metadata in the correspondence search 

space, but rather just Euclidean distances. Even though the search space is within the same 

atom type, it is still not as meaningful as TaggedICP because of the use of the 3-neighbour 

constraint.  

In Figure 7.14, KmeansICP and ICP showed a similar convergence trend. It can be observed 

that, for both algorithms, there was an increase in convergence error with increasing initial 

rotation angle. At angles 15, 30, and 90, both algorithms converged at approximately the same 

iteration. This behaviour is expected of the ICP algorithm as large initial rotation angles are 

noted to result in less accurate matches.  

KmeansICP’s correspondence search method is the same as the original ICP implementation 

as compared to the other algorithms and the correct point matches are less likely to be found, 

leading the algorithm to converge to a local minimum. As discussed in the KmeansICP 

algorithm in Section 4.3, although the algorithm partitions the search space to reduce the time 

spent for the correspondence search, the search space (a k-means cluster) is simply decided 

by the closest centroid to the point in the data point cloud. This is like the original ICP algorithm 

that finds the closest point in the model point cloud for each data point although within a limited 
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search space. This limited search space results in kmeansICP converging faster than ICP at 

larger angles (60,120, and 150) even though not in the case at angle 90 where ICP converged 

at slightly lesser error than kmeansICP, however, this is not a significant difference. 

The convergence graphs show that SubsetICP+ had an oscillating line at the earlier iterations. 

This is because of the differences in the errors between subsequent subsets at the beginning 

of the iteration. Since each iteration returns a transformation based on registering an atom 

type-based subset, which is applied to the whole point cloud, this error is applied to the global 

shape, so the shape registration process regularises from a larger error to smaller errors. 

In conclusion, it can be understood from matching full same shape, 2HAX that the partitioning 

technique influences the convergence by reducing the number of iterations. The match quality 

test in Figure 7.13 showed increasingly less quality of match as the initial rotation angles 

increased. However, this was not always the case for SubsetICP+. 

 SubsetICP+ and TaggedICP showed a better convergence than the other algorithms since 

both algorithms partition by known information. It can be concluded that the partitioning 

technique influences the match quality of the algorithm and the convergence in that the more 

known information is used in the matching, the better the match quality and the faster the 

convergence in terms of iterations. 

Like 2HAX, a full shape matching was performed using 2M5T. This was to ascertain whether 

the same results in 2HAX will be found and further critique the influence of partition techniques 

on match quality and convergence. 2M5T contains Hydrogen atoms unlike other shapes in 

our experiment and this will result in one larger partition (H atom count is 1028). SubsetICP+ 

and TaggedICP are indeed only for molecules, or similar 3-D structures but KmeansICP could 

apply to any point clouds. 
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Figure 7.15 Registration results for matching 2M5T with itself at different initial rotation angles (blue = data point cloud, 
red= model point cloud. ICP at angle 15 and SubsetICP+ at all angles visually show a good match, whilst other algorithms 
show a mixture of good and bad registration) 

 

The registration results for matching 2M5T (Figure 7.15), visually show shapes with 

distinctively red points or blue (perfectly registered shapes) and shapes with a mixture of red 

and blue points (comparatively lesser quality match). A detailed description of the visual 

analysis using the colours is already discussed in  

Figure 7.11. 

From Figure 7.15, SubsetICP+ shows a much better quality of match at angles 15, and 60, 

whilst ICP and TaggedICP show a much better quality of match at angles 15 than any other 

angles of their test. For angle 60, SubsetICP+ shows better quality than all the other algorithms 

as shown in the zoomed-in Figure 7.16. Comparing these zoomed-in images with the images 

in Figure 7.15 allows an understanding of the match quality of the other angles. For instance, 

a mapping of the patterns observed in Figure 7.16 can be used to further analyse other images 

in Figure 7.15. 
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Figure 7.16 Sample zoomed-in images of final matches showing the extent of overlaps of point pairs. SubsetICP+, 
TaggedICP, and ICP show a better quality of match because there is a small colour separation due to the overlaps. 

 

In the zoomed-in images for registering 2M5T at angle 60 (Figure 7.16), the patterns show ICP, 

SubsetICP+, and TaggedICP with no large separation of colours except for two points. This 

represents a better quality of match because it shows that the distances between 

corresponding points are minimal. The other algorithms show varying levels of atom colour 

separation. The slight separations represent the level of overlap of the part of the point cloud.  
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Figure 7.17  Match quality results for matching  full shape 2M5T.  Graphs show the percentage of corresponding point pairs 
against the alignment error. SubsetICP+ and TaggedICP are noticed to have a much better match quality compared to the 
other algorithms. 

 

Figure 7.17 represents the test matching full shape 2M5T. This is an objective measure of the 

visual images in Figure 7.15. It is observed that all algorithms performed much better at 

smaller angles especially for SubsetICP+ that showed a better match quality at angle 30. 

It is also noticed how TaggedICP performed consistently better across different initial rotation 

angles especially angles 60 to 150. This was not observed when matching 2HAX (Figure 7.13), 

rather SubsetICP+ performed better at angles 60 to 120. This shows that for matching full 
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shapes, a larger partition size aids matching with TaggedICP because of the fractional partition 

sizes, however, this is not the case for SubsetICP+ since a larger partition will present larger 

errors which will be applied to the whole point cloud.  

it is also observed at angles 60 to 150, that SubsetICP+, KmeansICP and ICP had similar 

performance with a noticeable trend in their curve. For kmeansICP and ICP, their large 

similarities are responsible for this trend, However  with SubsetICP+, it was expected that the 

algorithm will mimic the better match quality shown in matching 2HAX (Figure 7.13), however, 

it was rather seen to perform at par with the other algorithms except at angle 30.  

To consider the partitioning and the distribution of atoms in 2M5T on the effect of the 

performance of SubsetICP+, Table 7.1 is revisited. It is realised that 2M5T’s largest partition 

is H representing close to half the size of the point cloud. Matching smaller subsets prevents 

the algorithm from being trapped in a local minimum and as such a partition of that size is not 

ideal as it presents large errors that are applied to the whole point cloud, however, with 2HAX, 

SubsetICP+ equally matched a partition that was 52.54% of the point cloud as shown in Table 

7.1, therefore the claim about SubsetICP+ performing below expectation due to the size of the 

H partition cannot be sustained. It is not clear about the inter-atom distances between the H 

atoms or how the distribution of each atom affects the matching, however, the complexity (how 

evenly distributed points are in a point cloud) of a shape contributes to the quality of the 

matching process. 

Figure 7.17 shows that KmeansICP and ICP have similar line curve because of the similarities 

of their closest point search method. Both algorithms perform a standard ICP closest point 

search. Although KmeansICP reduces the search space due to the k-means clusters, the 

efficiency with the k-means clusters finding a meaningful match is not as efficient as the 

partitioning in TaggedICP or SubsetICP+. 

From Figure 7.17,  it can be concluded that metadata information helps the match quality of a 

shape matching process. Although this was not a consistent observation throughout the tests, 

e.g., at angle 60, ICP and TaggedICP performed better than the other algorithms instead of 

TaggedICP performing better than the rest, however, the general case at larger angles (90, 

120, 150) shows better performance for TaggedICP because of the use of metadata 

knowledge. 
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Figure 7.18  Convergence results for full shape matching of 2M5T. The graphs show the consistency of KmeansICP and 
TaggedICP algorithms. All algorithms seem to converge at roughly 10 iterations at angle 15 degrees with this figure 
increasing as the initial rotation angle increases. SubsetICP+ and TaggedICP consistently performed much better than the 
other algorithms. At larger angles, SubsetICP+ is seen to not have converged. As discussed in section 2.6.3.3, ICP and 
KmeansICP converged to a less optimal solution because of the large initial rotation angle. The algorithm is seen to oscillate 
because it converged at a non-optimal position. The algorithm detects the diversion and re-enters the point cloud.  

Figure 7.18 shows convergence results for matching full shape 2M5T. All algorithms are shown 

to converge at increasingly larger iterations as the angle increases. However, TaggedICP 

showed convergence at consistently lower iterations even as the angle increased. KmeansICP 

and ICP are shown to have a better convergence at lower angles and then both oscillate later 

at larger angles (90, 120, 150). SubsetICP+ is seen to not have converged at angles 60, 90, 

120, and 150. 

TaggedICP performed much better than the other algorithms due to the use of the metadata 

tag information used for the partitioning. It can be noticed from Figure 7.18  that for angles 120 

and 150, TaggedICP had a similar oscillating trend at one iteration and was able to recover 

due to the enhanced closest point search due to the tag information (atom type and 3-nearest 

neighbour information). The performance of these two algorithms (ICP and KmeansICP) 

agrees with the match quality graphs in Figure 7.17. The performance of the algorithms in 
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registering 2M5T has a convergence and match quality result that validates the shape 

registration visual analysis in Figure 7.15.  

 

Even though 2M5T has one larger atom (1028 H atoms), the algorithms were all seen to have 

performed poorly compared to matching 2HAX at the same larger angles (90, 120, 150). For 

instance, the performance of the algorithms for 2M5T convergence at angle 90 is much worse 

than the same performance for 2HAX at angle 90 in Figure 7.14.  

To establish a relationship between the size and number of partitions of the shape on the 

performance of the shape registration for a particular algorithm. The registration results show 

that larger mean squared errors were encountered in the 2M5T as compared to 2HAX. 

Particularly for angles 120 and 150 degrees. However, these results were more consistent 

than not across all tests and angles to determine that the size and number of partitions affect 

the registration results. 

From these tests, it is concluded that larger rotation angles had a large effect on convergence 

and match quality. The use of atom type partitions imposes a constraint that improves the 

matching by reducing the correspondence search space and makes the correspondence 

meaningful or at least close to that. 

 It is also observed that the match quality shows a relationship with the convergence for 2M5T. 

It is found that where the match has a higher quality, a convergence at lower iteration is usually 

seen. However, for 2HAX, it is rather noticed that the use of neighbourhood information played 

a role in the convergence as the match quality was not always related to the convergence. In 

matching 2HAX, TaggedICP converged at a smaller number of iterations at all angles, 

however, it did not have the better match quality for all angles. 
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7.6.2 Matching Shapes with Levels of Simulated Noise  

 

To simulate noise in the point clouds and study the performance of the shape matching in the 

presence of different levels of noise in the dataset, the iniial rotations for the data shape for 

each test was set to (0, 0, 0, 0). The positions of the atoms in the data point cloud were 

translated by a vector computed from the radius of the point cloud and the noise factor. This 

is given in the equation below; 

 

𝑛𝑜𝑖𝑠𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  = 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐼𝑛𝑠𝑖𝑑𝑒𝑈𝑛𝑖𝑡𝑆𝑝ℎ𝑒𝑟𝑒 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 𝑛𝑜𝑖𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟  

 

Where; 

 

𝑅𝑎𝑛𝑑𝑜𝑚. 𝐼𝑛𝑠𝑖𝑑𝑒𝑈𝑛𝑖𝑡𝑆𝑝ℎ𝑒𝑟𝑒 represents a Unity3D (Unity Technologies, 2019) function that 

returns a random position within the bounds of a  unit sphere (Sphere with centre (0,0,0) and 

radius 1). 

 

𝑟𝑎𝑑𝑖𝑢𝑠 is the radius of the point cloud represented as a Unity3D game object? 

 

𝑛𝑜𝑖𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 is the noise size used to determine the extent to which to move the position of 

the atom (0.001, 0.003, 0.005, 0.01, 0.03, 0.05).  For instance, a noise factor of 0.001 means 

the atoms will be moved (random position return by the noise factor) by a maximum of 0.1% 

of the molecule’s radius and 0.05 will have atoms being moved in the direction of the resulting 

vector by a maximum of 5% of the molecule’s radius. 

The noise experiments simulated measurement noise by changing the positions of the atoms 

slightly to mimic measurement noise added by a position measuring device whilst scanning or 

acquiring the molecule. There are several sources of noise when generating the 3-D structure 

of a molecule. For instance, using X-rays to scan the molecule presents noises such as 

random noises that are almost always part of the data due to the emission, absorption and 

scattering nature of x-rays to and from tissues to acquire the structure of the proteins (Borek, 

Minor and Otwinowski, 2003, Ryan et al., 2019). Other sources of errors include errors based 
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on the methods used in the process to acquire the molecular 3-D structures such as 

assumptions of the parameters of certain measuring devices such as X-ray generation devices 

(e.g. goniometers) and unwanted data caused by interference such as x-ray excitation during 

the scanning or acquiring process (Ryan et al., 2019). 

 

 Amount of noise 
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Figure 7.19  Visual results for registering 2HAX with simulated noise and 0 rotation angle on all axes (Blue = data point 
cloud, Red= model point cloud) for error levels 0.001, 0.03, and 0.05. All images show a level of error. With TaggedICP 0.001 
showing a better quality than the other algorithms. 

 

Results for registering 2HAX with simulated noise at 0-degree rotation angle on all axes 

(Figure 7.19) shows the results of matching by all the algorithms in the presence of different 

levels of noise (0.001, 0.03, and 0.05). The visual analysis of the final registered shapes shows 

a similar colour tint for most shapes except TaggedICP at error 0.001, with a better visual 

match quality than the other shapes. The clearer the separation of colours within a section of 

the point cloud, the larger the distances in the point pairs and the worse the match quality.  
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 Noise level 0.001 

ICP 

 

TaggedICP 

 

KmeansICP 

 

SubsetICP+ 

 

 
Figure 7.20 Zoomed-in upper part of the molecule for matching 2HAX with 0.001 level of noise. TaggedICP shows a slightly 
different colour separation than the other algorithms with more red points to the right section of the image. The red point 
clouds are more vivid but not in a sense of separation from the blue point clouds. Other images show the uniform colour 
distribution of red and blue. 
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Zoomed-in results for registering 2HAX at noise level 0.001 (Figure 7.20) shows zoomed-in 

matching results for 2HAX, noise level 0.001. The level of overlap of some of the points 

reflecting the quality of match at those sections of the shape can be seen. For TaggedICP, 

the distribution of red and blue point clouds is vivid, where red points are denser at the right-

hand side of the image and blue points are denser at the left-hand side of the image. The 

colour separation gives an idea of the quality of match around the region because it helps to 

show the overlaps. Even though the images were taken at just one angle, they help provide a 

good visual analysis of the shape match.  

 

  

  

  

Figure 7.21 Match quality results for matching full shape, 2HAX with simulated noise at 0 initial rotation on both axes. The 
noise levels from 0.001f to 0.05f indicates a measure of how far each point was shifted to simulate the addition of noise.  

 

The match quality results in Figure 7.21 represent results from full shape matching of 2HAX 

with simulated noise at 0-degree initial rotation on both axes. It is observed that all alignment 

errors in Figure 7.21 have relatively larger errors than the results shown in the registration 
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without noise, for instance in matching full shape 2HAX (Figure 7.13). This shift from smaller 

errors is due to the addition of simulated noise as explained in the matching shapes with 

simulated noise section (7.6.2). The level of noise determines the distance displaced by a 

point (atom) in the point cloud (molecule). The noise level changed the relative positions of 

the atoms and their neighbourhood points that are expected to lead to less accurate matching. 

For smaller noise levels (0.001 to 0.005) all algorithms are seen to have a much better quality 

of match than the larger noise levels. TaggedICP is seen to have a much better match quality 

than all the other algorithms for noise levels 0.001, 0.003, and 0.005 and the worse 

performance for noise levels 0.03 and 0.05. This shows that TaggedICP is sensitive to noise 

with increasing noise levels reducing the match quality. SubsetICP+, KmeansICP and ICP 

consistently maintained a similar match quality for all noise levels.  

It is also noted that for larger error levels (0.01, 0.03, 0.05), all algorithms except TaggedICP 

maintained a similar level of match quality. It is also observed that the rise in TaggedICP’ s 

cumulative curve decreased continuously as the error level increased. Horizontal parts of the 

line graph represent alignment errors that were not encountered in the algorithm. For instance, 

consider TaggedICP at error 0.01, it is observed that a vertical line rises to a little above 20% 

and then another horizontal line before another vertical line rising from 20% to just below 60%. 

A higher vertical line represents many points at the same or close error position and a 

horizontal line represents few points at a closer alignment error. This is further depicted in the 

zoomed-in image in Figure 7.22. 

 

Figure 7.22 Sample zoomed in quality of match with noise 0.01 showing a horizontal line representing a small number of 
points at that same alignment error and a vertical line showing many points at similar or close error levels from 
approximately 0.006f to 0.06f error. This graph represents the cumulative histogram with alignment error as such all 
algorithms will eventually get to the 100% mark, however, it can be deduced from the graph what percentage of point pairs 
for each algorithm had a particular alignment error representing the quality of the match. For instance, the graph shows 
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that roughly 23% of point pairs for Tagged-ICP had a better match (less than 0.01 error) compared to the other algorithms. 
This also means that the average error reduces with many matching points. 

 

It can be deduced from the match quality graphs in Figure 7.21 that TaggedICP had a much 

better, but gradually decreasing quality of match on all error levels. This trend was also 

observed in SubsetICP+, KmeansICP, and ICP, however, their error margins were much 

smaller than TaggedICP.  It was expected that all algorithms will decrease in their match 

quality with increased noise levels as shown by the performance of TaggedICP. TaggedICP 

had a much worse performance at larger error levels (0.01, 0.03, and 0.05) compared to the 

other algorithms because of false matches resulting in less ideal correspondence, however, a 

comparison with the noise experiments in 2M5T should confirm whether this behaviour was 

peculiar to 2HAX or not. 

Even though TaggedICP partitions by atom type and uses neighbourhood information to make 

the matching meaningful, the presence of these increasing levels of noise resulted in less 

meaningful matches because TaggedICP reverts to the closest atom in the data point in the 

search partition without considering the neighbourhood information when no match, using the 

tag information is found. These correspondences will be less ideal compared to matches 

based on atom type and neighbourhood information and result in TaggedICP’s less accurate 

performance. 

In most of the graphs, it is noticed that SubsetICP+, ICP, and KmeansICP show a similar trend 

of performance for most noise levels. Their values show a better quality of match than 

TaggedICP for larger errors because their curves rise higher than TaggedICP in most places. 

Even though SubsetICP+ also partitions its search space based on atom type, it was observed 

to have performed at par with KmeansICP and ICP. This is because the presence of noise 

adds a layer of difficulty to the registration process, so after partitioning by atom types 

displaced by levels of noise, SubsetICP+ still performs a standard ICP iteration on each 

subset. This results in the similarity between the algorithms that have the same closest point 

search method.  

 Even though registering subsets per iteration in SubsetICP+ was expected to show smaller 

errors and as such possibly shows a better quality of match than ICP and KmeansICP, every 

transformation computed from a subset iteration is applied to the whole point cloud. Although 

the partitions in SubsetICP+ are based on atom types, the correspondence search method 

does not use this metadata in the matching. This makes the correspondence search method 

of all three algorithms the same (ICP, KmeansICP, and SubsetICP+), though with k-means 

partitions (KmeansICP), atom type-based partitions (SubsetICP+), and no partition (ICP). 
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 It can be deduced from these results that the partitioning technique has a relationship with 

the performance of the algorithms in the presence of noise levels even though this observation 

was not consistent. TaggedICP uses the tag information and showed a better match quality at 

smaller noise levels that gradually decreased at higher error levels. 

It can also be deduced that the closest point search method has a relationship with the match 

quality because KmeansICP and SubsetICP+ use different partitioning techniques, k-means 

clusters and atom type based, however, they both performed at par with ICP. At higher error 

levels, KmeansICP, SubsetICP+ and ICP were found to have a consistent performance. This 

is because, the initial transformations were constant across noise levels, meaning that these 

algorithms would have the same or similar closest point set thus resulting in the same or 

similar error across iterations. 

 

  

  

  

Figure 7.23  Convergence results for full shape matching of 2HAX with simulated noise at 0-degree rotation on all axes. The 
addition of some noise is shown to have increased the convergence error for all algorithms. The convergence error seems to 
increase as the error level increases. However, the algorithms showed different errors across the iterations.  
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Figure 7.23 shows the convergence results for full shape registration, 2HAX with simulated 

noise at 0-degree rotation on all axes.  It can be observed from the graphs that most of the 

algorithms converged at a higher error and iteration when the noise level increased. However, 

this observation is not consistent throughout the experiments. Each algorithm converged at a 

close number of iterations in all error levels and all the algorithms recovered from a higher 

error except SubsetICP+ that converged on the first iteration for all noise levels. SubsetICP+ 

converged with a lower error at smaller noise levels and higher error at higher noise levels. 

The algorithm was also noticed to have oscillated after convergence. This is because matching 

individual subsets per iteration and applying the transformation to that subset affects the whole 

point cloud and a different subset is recomputed and reregistered in the next iteration using a 

different atom type-based partition that also has a different subset size. This irregularity results 

in a seeming distortion and fix phenomena seen as an oscillation in the graph. If the whole 

point cloud was registered in each iteration, it would have a global and consistent error that 

increases or decreases gradually. 

TaggedICP had the worst convergence error which is because of the design of the 

correspondence search method and it also agrees with the match quality in Figure 7.21 as it 

showed the worst match quality for especially large angles (0.01, 0.03, and 0.05).  This also 

shows that too many constraints should not be used for tentative correspondence search when 

the underlying transformation is not accurate enough, which may exclude some good matches 

and help the algorithm to traverse the local minima.   

KmeansICP and ICP had a similar convergence performance with their graphs almost 

identical. This was also observed in the match quality results (Figure 7.21) where both 

algorithms and SubsetICP+ had a similar graph because of similarities in their correspondence 

search space.  

In the 2HAX convergence graph (Figure 7.23), It can be deduced that the match quality has a 

relation with the convergence because it shows less accurate match quality reflecting in larger 

convergence errors. TaggedICP is noticed to have converged at a much larger error than the 

other algorithms with smaller noise levels because the match quality shows some level of 

much better matches. It is noticed that for the smaller noise levels TaggedICP shows better 

matches up to 90% of the points (noise 0.001), 80% (noise 0.003) and with this figure 

decreasing as the noise level increases, whilst the other algorithms hit 100% mark in the 

visible scale of the graph.  
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Figure 7.24 Visual representation of matching full shape, 2M5T with simulated noise at 0-degree rotation on all axes. The 
separation of colours gives an idea of the quality of the match. The clearer the separation of colours, the larger the 
distances between final correspondence points and the worse the match quality. Most images show a similar level of 
quality which can be validated with the match quality and convergence graphs.  
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Figure 7.24 represents the results of full shape matching of 2M5T with simulated levels of 

noise at 0-degree rotation. The results of the final registered shapes show a similar colour tint 

for most images, except KmeansICP at 0.01, which shows a much better level of separation 

between the blue point cloud and the red point cloud. 
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Figure 7.25  Zoomed in visual results for matching 2M5T at error 0.001. The separation of colours shows the extent of the 
match quality. Points farther away from their correspondence shows poorer quality in those regions.  

 

 

  

  

  

Figure 7.26 Match quality results for registering full shape 2M5T with simulated noise. TaggedICP shows a good quality of 
match for smaller noise levels compared to the other algorithms even though this was not for all the points. This 
observation is vice versa for larger noise levels such as 0.03 and 0.05. 

The full shape match quality results of 2M5T with simulated noise at 0-degree initial rotation 

(Figure 7.26)  shows results for a test done to evaluate the algorithms in registering 2M5T with 

levels of noise (0.001, 0.003, 0.005, 0.01, 0.03, 0.05). 

From the match quality results of 2M5T (Figure 7.26), it can be observed that TaggedICP 

showed a better match quality than the other algorithms with this quality decreasing as the 

noise level increased. This effect was seen in the quality of match for noise levels 0.01, 0.03, 

and 0.05 compared to the other algorithms. It can also be observed that KmeansICP and ICP 

showed an almost identical line representing a similar quality of match across the different 

noise levels.  
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It can be observed that the match quality for 2M5T (Figure 7.26) is like the match quality results 

for matching 2HAX with simulated noise in (Figure 7.21). This is also observed and discussed 

in Figure 7.21, along with the poor performance of TaggedICP at larger error levels.  

Compared to the match quality results for 2HAX (Figure 7.21), the match quality for 2M5T 

(Figure 7.26) shows SubsetICP+ performing much worse than KmeansICP and ICP.  

The similarities in the algorithm’s performance with the two different shapes (2HAX and 2M5T) 

validate the consistency of the match quality algorithms and the experiments, however, a 

detailed observation of the graphs reveals the slight differences that also validates the fact 

that the shapes have a different distribution of atom types and total atom numbers as shown 

in Table 7.1 and their partition techniques influence their match quality. 

A detailed observation of the quality of match 0.001 for 2M5T (Figure 7.26) shows KmeansICP’ 

s first rise to be slightly above 40% whilst in the quality of match for 2HAX (Figure 7.21), that 

figure is below 20%. Since both tests were under the same condition and KmeansICP does 

not use atom type-based partitions, the result indicates the influence of the distribution of 

points (how evenly spread the points are in the cloud) and the size of the subset as a factor in 

the match quality of the shape registration.  

It is also observed that the match quality for 2M5T (Figure 7.26) and Figure 7.21 had 

similarities in each of the graphs. TaggedICP showed a better match quality for smaller noise 

levels, but gradually decreasing the quality of match on larger noise levels: 0.01, 0.03, and 

0.05.  
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Figure 7.27  Convergence results for matching 2M5T with simulated noise. TaggedICP and SubsetICP+ showed a faster 
convergence but at a larger error than KmeansICP and ICP. KmeansICP and ICP also show similar performance. 

From the convergence results for full shape matching 2M5T with simulated noise at 0-degree 

rotation (Figure 7.27), it can be observed that, for all error levels, SubsetICP+, ICP, and 

KmeansICP converged at lower errors than TaggedICP. This directly reflects a similar 

performance in the match quality tests in Figure 7.26. It can also be observed that ICP, followed 

by KmeansICP and SubsetICP+ converged at the smallest error. However, SubsetICP+ is 

seen to have converged at constant iteration count, even though at smaller error in small noise 

levels (0.001, 0.003, 0.005, and 0.01) and larger errors at larger noise levels (0.03 and 0.05). 

TaggedICP’ s large error with increasing noise levels in the convergence results (Figure 

7.7Figure 7.27) is because of the TaggedICP algorithm reverting to a less optimal closest point 

when there is none found whilst matching with the tag information. Since the underlying 

algorithm with TaggedICP is still ICP, reverting to this less optimal closest point based on just 

the closest point in the atom-type partition becomes even less optimal than ICP’s closest point 

method because the choice would have been affected by a constraint partition. 

TaggedICP and SubsetICP+ are noticed to have converged faster in all the tests, from lower 

convergence errors at lower noise levels to higher convergence errors with increasing levels 

of noise. This trend is expected as the levels of noise increase, however, TaggedICP also 

converged at the largest errors for all the noise levels. This is because of the tag information 

constraint presenting challenges with registration at these levels of noise.  

The convergence results of 2M5T in Figure 7.27 also shows KmeansICP and ICP having a 

very similar trend of their convergence for noise levels 0.003, 0.005, and 0.01, 0.03, and 0.05 

including converging at almost identical iteration count. This is because both algorithms use 

the same closest point search method. Even though KmeansICP partitions the search space 

based on k-means clusters and as such there was the expectation that KmeansICP might 

converge faster, the similarity of their convergence shows that the KmeansICP’s partitioning 

did not help improve the convergence for 2M5T. In fact, at the smallest error of 0.001, 

KmeansICP showed a larger error at convergence. This is because KmeansICP can return 
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less accurate matches from the boundary of a cluster, especially boundaries that intersect 

other clusters, returning potentially suboptimal correspondences. 

It is noticed that the convergence results for 2HAX at lower noise levels were slightly at lower 

errors than 2M5T (Figure 7.23 and Figure 7.27) and particularly for SubsetICP+,  matching with 

2HAX showed oscillations for five (5) out of the six (6) tests in Figure 7.23, however, no such 

behaviour was seen in the convergence matching for 2M5T (Figure 7.27). This is because the 

distribution of atom types slightly affects the performance of the algorithm. The probability of 

finding a better match in a subset of the same atom type is higher than the probability of finding 

a better match in a large subset of the same atom type. Since SubsetICP+ convergence 

performance is mainly because of the quality of the closest points instead of their quantity, a 

small subset with the same atom type increases the likelihood of finding a close to exact match 

within that limited subset.  

According to Table 7.1, 2M5T has the largest subset size of 1028, for atom H, but not in terms 

of percentages as 2HAX has the largest size in terms of percentage of atom type, C making 

up 52.54% of the atoms, however, if the size of the subset is considered, then 2M5T is the 

likely shape to return the most inaccurate matches especially when matching on the subset 

H. 

 

7.6.3 Matching Shapes with Mutations 2JKF and 2JKG 

 

Protein similarity studies consider the sequence information (the sequence of characters in 

the amino acid chains in the protein), to determine the similarity between proteins and their 

inferred common ancestry (homology) (Pearson, 2013).  Two proteins are homologous when 

their sequence information is similar. This similarity is the number of positional matching 

characters in the amino acid chain or strand (the primary structures of protein).  

Similar proteins based on their amino acid sequence matches do not necessarily mean their 

3-D structures are alike to the same extent. This is because a mutation can distort the 

sequence and the structures. However, since the sequence information is at a more primary 

lower level, comparing proteins using their structures is more important because the structures 

preserve more information than the sequence during changes such as mutations. This means 

that the match quality results from the algorithms should show much better quality than the 

quality of a similar protein comparison that considers only the sequence information and not 
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the 3-D structure. The focus of the research is not on the similarity matching but the 

performance of the developed variants. 

It is often noted that the structure of proteins informs their functions and proteins with similar 

shapes can have common ancestry and similar functions (Kinoshita and Nakamura, 2005). 

However, the similarity of a protein is also based on several factors such as the aspects of the 

protein the algorithm considers, for instance, the sequence of amino acids or the 3-D structure 

of the protein. Even though in many cases, the similarity of the protein sequence can be used 

to find similarly shaped proteins, similarity based on sequence information does not 

necessarily map to the similarity of the protein structures because these are at different 

structural levels of a protein.  Comparing the structure of proteins is more important than 

comparing the sequence information because the sequence information is the primary 

structure at the most basic level, which can change easily with even small mutations whilst 

the structure is resilient to more subtle changes  (Srivastava et al., 2016). 

Even though in many cases, the similarity of the protein sequence can be used to find similarly 

shaped proteins, similarity based on sequence information does not necessarily map to the 

similarity of the protein structures because these are at different structural levels of a protein.  

Also comparing the structure of proteins is more important than comparing the sequence 

information because the sequence information is the primary structure at the most basic level, 

which can change easily with even small mutations whilst the structure is resilient to more 

subtle changes (Srivastava et al., 2016). 

Since 2JKF and 2JKG are mutations, the initial rotations of the data shapes are not to study 

the effect of the angles on the match quality of convergence but are to understand whether a 

result is a coincidence of the initial rotation.  

 

 Rotation Angle 
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Figure 7.28 results of matching 2JKG (red model point cloud) and 2JKF (blue data point cloud).  The separation of colours 
indicates the match quality. For instance, ICP at angle 15 is of a better match quality than ICP at angle 60 because there is a 
clear separation of the colours at angle 60. 

 

The match quality results in Figure 7.28 shows visual results of matching 2JKG and 2JKF. It is 

noted that ICP at angle 15 and SubsetICP+ at angle 15 showed a better visual match quality 

than all the other results. This is seen in how easy it is to see the separation of colours in the 

point clouds. The other results show various levels of colour separation with SubsetICP+ at 

angle 60 having a much worse result. A closer look at some of the results clearly shows partial 

overlaps, for instance, the results for all algorithms at angle 60.  

 Angle 60 

ICP 

 



178 
 

TaggedICP 

 

KmeansICP 

 

SubsetICP+ 

 

 
Figure 7.29.  Zoomed images of the shape matching results. The zoomed-in images were taken at the centre of the shape 
match and as such does not show details such as those captured at the ends of the shape match. The colour separation is 
very similar and does not show large differences for analysis. 

 

The zoomed-in images for registering 2JKF and 2JKG shows a similar colour separation for 

the algorithms. TaggedICP’s points seem to be denser than the other algorithms. 
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Figure 7.30  Match quality results for 2JKG and 2JK showing cumulative percentage of point pairs with alignment error. 
TaggedICP performed the worst in the series of graphs whilst other algorithms had a varying performance.  

 

The match quality results for registering 2JKG and 2JKF (Figure 7.30) represent a test done 

to match 2JKG and 2JKF. The registration of the two shapes represents attempts to match 

naturally occurring mutations. Unlike manually shifting the positions of points to simulate the 

addition of noise for the noise experiments, 2JKF and 2JKG represent the same base 

molecule with some evolution. That means that the positions and types of atoms in the 

molecule had naturally changed. Even though the 3-D shape looks similar in some respects, 

there doesn’t exist a true match for all the atoms because the shapes are not structurally the 

same. 

It can be observed from the match quality results for matching 2JKG and 2JKF (Figure 7.30) 

that the algorithms had a relatively closer match quality except for TaggedICP. KmeansICP, 

ICP, and SubsetICP+ show a similar trend at angles 15, 30, and 90. TaggedICP is also seen 

as having the least quality of match at all the angles.  

KmeansICP, SubsetICP+, and ICP had a similar trend in the graph because both algorithms 

use the same closest point search method that finds the closest point to a data point by doing 

a point-to-point distance calculation. Even though KmeansICP partitions its search space 



180 
 

based on k-means clusters to reduce the distance calculations, its performance with ICP and 

SubsetICP shows no enhancement derived for matching 2JKG and 2JKF. 

In the match quality graph (Figure 7.30), SubsetICP+ and TaggedICP were expected to show 

a higher quality of match than the rest of the algorithms because of the use of atom type-

based subsets and the metadata tag information in the matching. However, though 

SubsetICP+ showed performance at par with KmeansICP and ICP, TaggedICP lagged at a 

much worse quality of the match. 

TaggedICP performed worst because the algorithm reverts to a closest but less optimal 

correspondence when it does not find a match using the tag information and the mutations of 

the molecules make it more challenging to find the true matches. TaggedICP’ s constraint is 

beneficial when matching especially full shapes. ICP and KmeansICP showed a familiar trend 

of having similar performance because of the similarity in their correspondence search 

methods. 

All the algorithms are variants of ICP and share the same weakness in theory. Every point in 

the data shape needs a good match in the model shape because that's how the algorithm is 

structured, so in the presence of noise, the correspondence search returned from TaggedICP 

can sometimes be much worse than would have been returned from the Standard ICP’s 

closest point search method. 

 

  

  

Figure 7.31  Convergence results for 2JKF and 2JKG. The algorithms converged at a higher error and in some instances, there 
was no convergence. The poor performance of the algorithms is because of the dissimilarity between 2JKF and 2JKG. 
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The convergence results for matching 2JKF and 2JKG (Figure 7.31) shows that most of the 

algorithms converged at a higher error and iteration when the noise level increased. However, 

this observation is not consistent with some of the algorithms. For instance, ICP, KmeansICP, 

and TaggedICP show an oscillating behaviour at angles 60 and 90 and SubsetICP+ shows 

the worse convergence with larger errors at all angles. 

KmeansICP and ICP are observed to have similar results based on the similarities of their 

graphs. This has also been observed in many of the previous tests which are because of the 

similarities in their correspondence search method, where correct matches were not 

distinguished from the wrong ones and the wrong matches were not rejected for the underlying 

transformation estimation, which is the essential task for shape registration.  

 

Average errors for sample experiments 

 Noise levels No noise with initial rotation angle 

DataSet 0.001 0.01 0.03 0.05 15 30 60 90 

2HAX 0.018 0.112 0.237 0.304 1.04E-3 0.0053 0.0082 0.0099 

2M5T 0.01 0.119 0.216 0.246 1.13E-03 0.004 0.051 0.122 

2JKF-

2JKG 

(Mutation) 

 

Noise experiment not run 

because datasets are 

naturally occurring mutations 

serving as noises 

1.17E09 0.411 0.967 0.346 

 Figure 7.32 Average convergence error for sample experiments  

The statistic average errors for each dataset (Figure 7.32) across different experiments. The 
final convergence error for each algorithm is considered as an individual case and the 
average error found for each rotation angle in the noise, mutation, and non-noise 
experiments shows the average error increasing with increasing levels of noise and the 
average error increasing with increasing initial rotation angle. The initial rotation angle is the 
angle in degrees on the x-axis. ICP has an inherent limitation on performance with 
increasing noise or initial rotation angle and that is responsible for the large average errors 
with increasing angles and noises. 
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7.7 Summary 

 

This chapter has evaluated the performance of some variants of the ICP algorithm 

(KmeansICP, TaggedICP, and SubsetICP+) with conditions such as different levels of noise, 

and different initial rotation angles.  

Most of the algorithms performed well in the noiseless experiments (section 7.6.1) even 

though their performance in terms of match quality was seen to dwindle and iteration count 

and error at convergence were seen to increase with the initial rotation angle increased. 

Similarly, a trend was observed for all experiments with noise (section 7.6.2). All algorithms 

were observed to show much worse match quality and convergence with the noise 

experiments than the noiseless experiments (section 7.6.1). This is because of the increased 

complexity of the shape registration task when noise is added to data. 

Particularly for the individual algorithms, SubsetICP+ showed a match quality performance 

that was in part with ICP and convergence at fewer iterations in low to medium levels of noise 

in several experiments including matching with different rotation angles (Figure 7.13). However, 

it sometimes converged at larger errors. SubsetICP+ uses the subset technique of matching 

atom type-based subsets, one per iteration. The atom type-based subsets enable the search 

space to be reduced, making the convergence faster in terms of using fewer iterations.  

TaggedICP uses the metadata of the points to aid in the matching. It showed a match quality 

performance that was much better than the other algorithms in smaller noise levels as well as 

faster convergence than all the other algorithms in all noiseless experiments. With the noise 

experiments, TaggedICP sometimes converged the fastest, however, with a larger error. The 

algorithm decreased in performance because it returns a potential sub-optimal closest point 

when a match is not found using the tag information. 

KmeansICP and ICP were noticed to have a similar graph in some of the experiments 

including convergence with 2HAX (Figure 7.14) and convergence with 2M5T (Figure 7.18). This 

is because of the similarities of their correspondence search method. KmeansICP uses ICP’s 

correspondence search method to find a match after determining the search partition using 

the closest k-means cluster. 

In conclusion, this chapter has evaluated the developed algorithms in Chapters  4.CHAPTER 4 

KMEANSICP, 5.CHAPTER  5 SUBSETICP+, and 6.CHAPTER 6 TAGGEDICP, on four (4) protein data 

sets, 2HAX, 2M5T, 2JKG, and 2JKF. The experiments have discussed and tested the 

performance of the algorithms in different scenarios, full shape matching, noise matching, 
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matching mutations and using TaggedICP’ s closest point search method. The match quality 

and convergence graphs have been discussed and critically analysed to provide the reader 

with the details of the performance of the different algorithms. This chapter helps to achieve 

the aim of the research by evaluating the algorithms developed in chapters (CHAPTER 4 

KMEANSICP, CHAPTER  5 SUBSETICP+ and CHAPTER 6 TAGGEDICP).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART  5:  ICP SHAPE MATCHING IN VIRTUAL REALITY 



184 
 

8 CHAPTER 8 ICP Virtual Reaility Application (ICPVR) 

 

 

8.1 Introduction 

 

This chapter discusses, the design, development, and evaluation of the Iterative Closest Point 

Virtual Reality Application (ICPVR). It is aimed at achieving objective four (4), “Develop a 

virtual reality visualisation software for visualising and interacting with molecular protein data, 

allowing exploration of the molecule in immersive virtual reality environments”. It uses the 

knowledge gained from Sections (CHAPTER 3 VIRTUAL REALITY, CHAPTER 4 KMEANSICP, CHAPTER  

5 SUBSETICP+, and CHAPTER 6 TAGGEDICP) to focus on aspects of virtual reality metrics such as 

navigation and usability. The application presents the user with a simple interface of buttons 

representing the ICP algorithms as well as the ability to see a visualisation of the shape 

matches after every iteration in succession as an animation.  

The objective of VR is to allow a user to act virtually, whilst thinking the action is being 

performed in the real world (Arnaldi, Guitton and Moreau, 2018).  The usefulness of VR has 

seen it become very popular and used for many important tasks such as virtual design and 

construction of buildings and vehicles, training with virtual flight simulators and teaching and 

learning. A detailed history, a review of the components of virtual reality, and various VR 

experiments were discussed in CHAPTER 3 VIRTUAL REALITY. 

Shape registration is a challenging task and visualising the shape registration process 

enhances a user’s visual analysis of the shape match. For instance, an immersive visualisation 

of the shape getting trapped and recovering from the local minima problem allows the user to 

gather insights on this problem. ICPVR presents an immersive virtual reality environment that 

enables the user to discover insights about the registration process. It allows the shape 

overlap to be visually inspected for better analysis. For instance, consider a molecule point 

cloud with colour coded atoms and a registration process that is optimised to match using the 

metadata of the points and which continuously show a much worse overlap for a region of the 

molecule. An immersive visual analysis of the final shape match can gather insights into the 

areas of the shape with a worse match based on an immersive visual analysis of the overlap. 

ICPVR visualises the shape using the algorithms; ICP (Besl and McKay, 1992), TaggedICP 

(Ankomah et al., 2020), KmeansICP, and SubsetICP+ algorithms. ICPVR is aimed at being a 

simple virtual reality 3-D utility application that allows a shape matching algorithm to be set up 
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in the application with some configuration. ICPVR is used to visualise the registration and 

serves as a quick prototype for the user to gain insights from the registration process. The 

current version allows the user to add the 3-D point clouds and algorithms from the Unity 

Editor. 

 

8.2 Motivation 

 

The shape registration using ICP is always likely to converge to a local minimum because of 

the local iterative procedure the algorithm implements and especially without a good initial 

transformation. VR can be used to help visualize the resulting shape match by analysing the 

shape overlap and gathering insights into the worse affected areas of the match by the extent 

of the overlap. 

ICPVR helps shape matching by providing visual feedback on the registration quality, allowing 

the user to adjust the shapes or transformations as necessary. This is almost always required 

as the registration quality varies from one shape to another, affected by the complicated 

geometry, large magnitude of the transformation, varied size of overlaps, and simplified 

mechanism in matching points.    

The initial transformation of the data shape can be adjusted whenever necessary and there is 

the possibility of doing this whilst the shape matching process is ongoing, however, it is not 

clear the measurable effects of this real time adjusting on the quality of the match.  

The ICPVR application serves as a system’s research project output that brings out new ideas 

for other systems to be built on top of it. Even though point cloud processing in virtual reality 

is not unique, to the best of the researcher’s knowledge, there is no existing research that 

evaluates shape matching algorithms in an immersive virtual environment. 

 

 

 

 

 

8.3 Hardware and Software Setup 
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The software was developed using C# and the Unity3D game engine (Unity Technologies, 

2019) software. The hardware consisted of the HTC VIVE head-mounted display (HMD) (HTC, 

2020). This was connected to an Intel 64-bit computer with a 2.2 GHz Core i7-8750H 

processor, 16GB RAM (random access memory), and a GeForce GTX 1070 graphics card.  

ICPVR’s 3-D user interface places buttons on a menu in the VR environment. The buttons 

represent the implemented variants of the ICP algorithm. The user can click any of the buttons 

to run the corresponding ICP variant to match the two point clouds. The use of HMD enables 

the user to visualise all angles of the point clouds by moving their head.  

Two (2) point clouds derived from the same protein molecule PDB ID: 2HAX was retrieved 

from the Protein Data Bank (PDB) (Berman et al., 2000) using CellUnity (Gehrer, 2015).   

 

8.4 Design & Development 

 

ICPVR was designed and developed using Unity3D (Unity Technologies, 2019) and C#. 

Unity3D provides an integrated GUI development environment for creating the virtual 

environment. ICPVR is made up of a base plane with the ability for the user to teleport around, 

and a panel object housing buttons that map to the various ICP algorithms.  

Early in the development phase, the metrics of virtual reality were considered, and the 

development was done to ensure maximum immersion, interaction, knowledge improvement, 

navigation, performance, and usability. For instance, the prototype was kept simple with a 

base plane (coloured blue) that is wide enough to fit the view of the user. Disruptive objects 

were not placed in the virtual environment to ensure that the user focuses on the shape 

registration processes, interaction with the 3-D shapes and noticing the wall of 

transformations. The interaction was also enhanced by allowing the user to use a pointing 

device such as a joystick to interact with objects in the virtual world. For instance, the HTC 

VIVE hand controllers could be used to touch, rotate, and move virtual objects. The 

performance of the virtual environment was considered along lines of reducing the click 

response time and reducing lag. The correspondence search method of the ICP algorithms 

which usually takes more time to process was updated by returning control to the display after 

50 correspondence searches. This prevents the long-running task from freezing the display 

with lags but rather continues to render a responsive virtual environment to the user. In 

considering the usability of the virtual environment, the presentation of buttons mapped to 

algorithms was a way to present a simple usable interface for the user. The ability to teleport 
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in the virtual environment was also provided to allow the user to easily move around the virtual 

space whilst considering their limited physical space and enhance usability. 

ICPVR shows the user a real-time animation of the shape matching process in the virtual 

reality environment. The real-time animation was achieved by applying the computed 

transformation to the data shape in each iteration which automatically updates the data point 

through re-rendering in the virtual environment. This repeated process creates visible 

animation. This process can be computationally expensive and can result in a lagged virtual 

environment. 

To improve the performance of the animation and prevent lagging in the VR environment, the 

shape matching process implemented Unity3D (Unity Technologies, 2019) Coroutine feature 

that allows flexibility in returning control to the display. This is achieved by asynchronously 

running the ICP algorithm and returning control to the display (refreshing the display to show 

the latest update of the positions of the atoms) at set intervals.  This process ensures that the 

user sees the point positions from the most recent completed iteration and with the current 

head and hand tracking. This flexibility means that the animation is rendered to the display 

over several frames. The user is then able to see, after each iteration, the data shape rotating 

and moving closer to the model shape as computed transformations are applied to the data 

shape to bring it closer to the model shape. 

The point clouds are represented as sphere primitives and different colours distinguish the 

data point cloud from the model point cloud (yellow data point cloud and red model point 

cloud). This is useful to facilitate visual analysis of the final shape registration as the user looks 

at the extent of the overlap of the atoms based on their distinct colours. The shape matching 

process runs 100 iterations, and the user sees feedback on the final transformation after the 

matching is complete. 

The current representation of the molecules as point clouds also makes the user able to walk 

into the point clouds in the virtual environment. This allows a user to easily visualise points 

that are closer to the centre of the point cloud as the user virtually moves into the molecular 

structure. The ability to walk into the molecule allows the user to study the overlaps on atoms 

that are closer to the centre of the molecules (the molecules are volumetric) to visually see 

wrong matches and decide on how the data point can be moved as well as how to adjust the 

initial transformation. Allowing the point clouds to dissolve when the user gets closer was 

found to be a limitation when viewing point clouds of walls because the expectation would 

have rather been dense point clouds looking like a solid object  (Bruder, Steinicke and Nüchter, 

2014). On the other hand, the opposite of this is needed in ICPVR. 
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Unity3D (Unity Technologies, 2020) also allows the 3-D objects to prevent other objects from 

passing through them by using a Collider object around the 3-D objects to detect collisions 

with other objects such as the user’s virtual character. Detecting collisions can be handled 

with scripts to prevent the moving object from advancing its position or other appropriate 

actions such as pushing the molecule away but that was not the requirement.  

ICPVR did not implement collision detection because the research was interested in allowing 

the user to fully explore all aspects of the molecule and virtual world including walking into the 

molecules and viewing the overlaps of atoms closer to the centre of the molecule (the 

molecules are volumetric). This meant that the atom primitives could overlap with each other. 

Collision detection can also be implemented to give the user some more details on the 

registration including real-time data on points being matched based on the detected collisions 

between the corresponding points. 

 

  

 

Figure 8.1 (LHS) Unity3D Integrated development environment with the base plane and (RHS) panel object hosting the ICP 
algorithm buttons and placeholder texts for the transformations. 

 

The SteamVR Unity3D package by HTC (HTC, 2020) was used to provide the utilities that 

allow configuration and binding the HTC hardware controllers and VIVE headset to the virtual 

environment. For instance, the StreamVR package allows the configuration of the controller 

buttons to specific or generic actions in the virtual environment. This provision allows the input 

to function correctly, such as manipulating objects and teleporting with the hand controllers. 
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Figure 8.2 ICPVR Assets shows the SteamVR packages that allow binding functionalities of the virtual environment to the 
HTC VIVE headset and controllers. 

 

Figure 8.2 shows ICPVR asset folders inside Unity3D. These folders contain class files, 

internal and third-party libraries. For instance, the SteamVR packages are the library files 

from Steam that adds the functionality of teleportation in the virtual environment as well as 

interaction with the molecular structures. 
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Figure 8.3 Visual Studio 2019 with code editing view for (LHS) KmeansICP C# codes and (RHS) Solution wide view showing 
project classes including the shape matching algorithms. 

Figure 8.3 shows the Visual Studio 2019 code editor for developing the shape matching 

algorithms. The LHS shows a view of the KmeansICP algorithm whilst the RHS shows the 

tree folder structure of the whole project. 

ICPVR was designed to visualise the registration process using the same algorithms used in 

the experiments in Chapter 7. It was aimed that ICPVR will be able to easily plug in a shape 

registration algorithm with very minimal modification and be able to visualise in virtual reality. 

To make the registration process real time and for the user to see the real-time animation, like 

the registration process on the desktop, the algorithm was adjusted to update its state to the 

VR display right after the computed transformation has been applied to the data shape. 

Updating its state to the display results in the user constantly seeing the animation of the 

model shape. ICPVR can also be extended to show other features such as pop-ups of 3-D 

shape descriptions and details of each iteration. These were not in the scope of the initial 

phase of development as the target was a quick working prototype application.  

Another consideration during the development and initial testing was the performance of the 

algorithms in the presence of many thousands of points. In some instances, the display was 

seen to freeze whilst the background processes ongoing operations. Further debugging 

revealed that the correspondence search algorithm takes the most time in running as such the 

correspondence search method was updated to return control to the display after a specified 

number of searches. For instance, returning to the display after every 50 correspondence 

prevents the display from freezing, even though the algorithm will take the same time to 

complete the process.  
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Figure 8.4  PDB ID 2HAX, with 1614 atoms (RHS) Image showing different colour-coded atoms with original scaling as 
imported from the PDB file and (LHS) images with colour coded atoms and scaled-down atom sizes. Red atoms represent 
Oxygen (O), blue atoms are Nitrogen (N), and grey atoms are Carbon (C), yellow represents Sulphur (S) and pink represents 
phosphorus (P). 

 

 

  

Figure 8.5 PDB ID 2JKG with 1452 (LHS) Image showing different colour-coded atoms with original scaling and (RHS) shapes 
with colour coded atoms and scaled-down atom sizes. Red atoms represent Oxygen (O), blue atoms are Nitrogen (N), and 
grey atoms are Carbon (C). 
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Figure 8.6 PDB ID: 2JKF with 1420 atoms  (LHS) shows colour coded atoms and the original scale of the atoms and molecule. 
(RHS) shows molecule scaled down for visualisation. Red atoms represent Oxygen (O), blue atoms are Nitrogen (N), and 
grey atoms are Carbon (C) 

 

 

 

 

 

Figure 8.7 PDB ID: 2M5T for same shape registration. 2M5T is used for testing a very basic registration process by matching 
with itself. (LHS) 2M5T with original scaling and colour coded atoms. (RHS) 2M5T with scaled-down atoms for registration. 
Red atoms represent Oxygen (O), blue atoms are Nitrogen (N), and grey atoms are Carbon (C) 
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8.5 Evaluation 

8.5.1 Overview 
 

As discussed earlier, ICPVR is a virtual reality application that enables shape matching or 

registration and performing visual analysis on the quality of the shape match using the overlap 

of the shapes. ICPVR also allows a comparison of the initial and final transformations of the 

data point cloud. This can be used to ascertain the quality of the shape match when matching 

full same molecule shapes. ICPVR currently presents the user with two protein molecules, 

with their atoms represented as spheres, just like in the desktop version. However, the 

development environment allows the user to place and match any other 3-D shape. 

ICPVR also allows the user to set or modify the initial transformations of the data and model 

point clouds by using the hand controllers to rotate and move the point clouds as desired. 

ICPVR’s interface presents buttons that map to the different ICP algorithms. The interface also 

shows the initial transformation for both point clouds and the final transformation values for 

the data point cloud. The position of the point cloud is represented as a 3-D point (float x, float 

y, float z), whilst the rotation of the point cloud is represented as a quaternion (float x, float y, 

float z, float w).  

The design of the user interface shows placeholders for the relative rotation and relative 

position of the model point cloud as well as the data point clouds before and after matching 

relative positions. This position is usually referred to as the position of the object. The model 

point cloud’s position and rotation on the user interface are necessary because it allows the 

user to compare the position and rotation of the data point cloud after matching with the same 

positions for the static model point cloud.  

 



194 
 

 

Figure 8.8 ICPVR home screen user interface with a button for each ICP variant and placeholders for the initial and final 
relative transformations of the data and model point cloud. The “RESET” button is used to re-initialise the data and model 
point cloud to default positions. The interface also shows red and yellow point clouds. 

Figure 8.8 shows the user interface of ICPVR in virtual reality with sample point clouds red and 

yellow objects. The scaling of the point clouds was done with a consideration of how the user 

will interact with the point clouds. Making the shapes big will result in problems with interaction 

such as the user unselecting an object but because of the large size, the user needs to move 

their hands or pointer farther away for the system to register the unselect action on that virtual 

object.  
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 Figure 8.9 Default virtual hand for touching and interacting with the virtual shapes. The virtual hands provide the user with 
the ability to use the hardware controllers to manipulate objects whilst animating to give the user some sense of using their 
real hands. 

 

Figure 8.9 shows a virtual hand that mimics real hands when the user interacts with objects in 

the virtual world. The black line represents the pointer used for clicking buttons and selecting 

virtual objects. The virtual hand object can also be replaced with any 3-D object. However, 

using a hand-like object contributes to the overall immersion experienced by the user because 

the user’s sense of using their own hands is increased whilst viewing actions of their virtual 

hands. 
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Figure 8.10 ICPVR showing the teleportation feature. The target teleport position is represented by the cylindrical object. 
The light green spaced line connecting the teleport target is the pointer from the position of the user. The black point is the 
default VR pointer for clicking and selecting objects. Teleportation helps the user to move around the virtual environment 
within the limited space of the user’s physical environment. 

 

Figure 8.10 shows the ICPVR user interface with the user ready to teleport to a new location.  

The cylindrical object represents the new location the user wants to virtually move to whilst 

the dashed line shows an animation from the current position of the user to the target location. 
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Figure 8.11 ICPVR showing sample red and yellow point clouds used for the experiment. Any other 3-D rigid object can be 
imported and used for matching and the appropriate metadata can be used in place of the atom types. 

 

Figure 8.11 shows the two (2) default point clouds, red and yellow 3-D objects in ICPVR.  Any 

other 3-D object can be used instead of the default shapes. To start the shape matching 

process, the user points the virtual laser pointer using the hand controller or compatible 

joystick to the desired algorithm button on the interface representing Standard ICP, 

TaggedICP, KmeansICP, and SubsetICP+. The user then selects the algorithm by pressing 

the trigger button. This action updates the VR interface with the initial transformation values 

of the point clouds and starts the shape matching process using the selected algorithm and 

the point clouds in the virtual environment. ICPVR does not allow the user to pause the 

animation or the registration process, however, this is planned for future updates, where the 

user can pause the registration process and change the relative position and rotation of the 

data shape. 

The algorithm is visualised, iteration by iteration. The visualisation is updated with the new 

position and rotation of the data shape once the new computed transformation has been 

applied to it. These periodic updates allow the user to see the molecules getting closer to a 

perfect match.   
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Figure 8.12 ICPVR UI with initial transformation (upper right part of the white text) and the registration process ongoing. As 
discussed earlier, the application shows the initial transformation of the data and model point cloud and then shows the 
final transformation after the registration process is complete 

 

Figure 8.12 shows the user selecting the SubsetICP+ button. The SubsetICP+ button shows 

a hover colour, visible when the point has focused on it. Clicking the button then starts the 

shape matching animation process using the yellow data point cloud and the red model point 

cloud.  
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Figure 8.13 Visual analysis of the shape matching process at different iteration. (LHS) represents an earlier iteration whilst 
(RHS) represents a later iteration. 

 

Figure 8.13 shows various stages of the shape matching animation process. Once the 

animation starts, all the buttons are greyed out to prevent users from initiating new actions. 

The LHS image represents a snapshot earlier in the registration process whilst the RHS image 

represents a snapshot much later in the registration process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.14 ICPVR with details of the initial and final transformation after registering a shape. The image shows a good 
match with the position of the data point cloud, the same as the model point cloud. 
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After the shape matching process is done, the VR menu is updated with the position and 

rotation angle of the data shape. This allows a comparison of the model point clouds angle 

and position with the matched data point clouds angle and position. 

Another way of viewing the resulting match is by studying the overlap of the two shapes closely 

in the VR environment. For complex shapes, the user can detect patterns in the match such 

as the consistent quality of match for certain regions of the point cloud by repeated tests of 

setting different initial transformations and visually checking the point cloud overlaps. The 

interface can provide feedback on the registration quality and allow the user to adjust the 

shapes/transformations as necessary (Figure 8.15 - Figure 8.18).  

 

 

 

Figure 8.15  Two point clouds (Yellow model point cloud and red data point cloud) with their initial transformations and the 
ICP algorithm running. 



201 
 

 

Figure 8.16  The two point clouds in the previous figure complete their matching. A visual analysis of the matched shapes 
and a comparison of the initial and final matching transformations, especially for the rotation shows a poor match that can 
be improved. 
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Figure 8.17  The data point cloud in the previous figure is adjusted as shown in the previous and current data 
transformation after matching and the current initial data transformation. The adjustment is expected to improve the 
matching. 
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Figure 8.18 The matching of the two point clouds in previous figures shows a much better match when the data shape was 
adjusted after failure.   

 

Figure 8.15 shows the registration of two point clouds, the yellow model, and red data point 

clouds. The completed matching in Figure 8.16 shows the relative (x, y, z) positions of the 

point clouds as the same (2.4, 1.8, -2.1) whilst the rotation (x, y, z, w) for the data point cloud 

(-0.7, 0.1, 0.4, 0.6) and model point cloud (0.0, 0.0, 0.0, 0.1) shows some difference resulting 

in some alignment errors.  

In Figure 8.17, the data point cloud’s transformation was adjusted to a relative position of (2.6, 

1.5, -1.9) and rotation of (0.1, 0.1, 0.0, -1.0) and then the matching was restarted with these 

transformations. This resulted in a perfect match shown in Figure 8.18 with the same relative 

position (2.5, 1.5, -1.9) and rotation (0.0, 0.0,0.0, -1.0) values for both data and model point 

cloud .   
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Adjusting the transformation is almost always required as the registration quality varies from 

one angle or position to another, affected by the complicated geometry, large magnitude of 

the transformation, varied size of overlaps, and simplified mechanism in matching points.    

This virtual reality environment for shape matching allows adjusting of transformations by 

enabling the user to use the hand controllers to move and rotate the shapes before matching 

shapes as shown in Figure 8.9 and Figure 8.19. This means that users can quickly and 

repeatedly set different transformations before matching until the desired overlap outcome is 

achieved or the effects of different initial transformations are realised.  

Users are also able to teleport to new locations in the virtual world using the HTC VIVE (HTC, 

2020) controllers. This allows flexibility for the users to adjust the virtual environment to make 

it spacious and easy for navigation considering the users' physical spaces. 

 

8.5.2 Immersive Visualisation 

 

The ICPVR application allows a user to immerse themselves in the shape matching process. 

The user gains a better understanding of the iterative closest point’s process of computing 

and applying a transformation whilst noticing the shape’s translation and rotation animation. It 

also allows the user to have a better visual inspection of the shape overlaps after the matching 

is complete. 

During earlier testing of the application, some lags were experienced in the animation which 

was due to the long-running time for the closest point search algorithm which freezes the 

display. Knowledge gained from the review of related works helped distribute the closest point 

set method across several frames to ensure a smooth animation. Specifically, the display was 

refreshed after every 50 correspondence searches. 

 

The animation is affected by the algorithm and the frame rate. This is based on the frame rate 

of the display. The shape’s translation and rotation animation enable the user to understand 

how the distance between some shapes gets minimised smoothly until convergence whilst 

others have an oscillating nature as observed during testing. 
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8.5.3 Interaction 

 

ICPVR allows users to interact with the 3-D molecules using the HTC VIVE (HTC, 2020) hand 

controllers. The user can move the data and model shape objects as shown in Figure 8.19 to 

the desired relative position and rotation. ICPVR shows the relative position and rotation of 

the data and model shape on the user interface when the algorithm button is clicked to start 

the shape matching process. It is easy to rotate the protein molecule using the HTC VIVE’s 

hand controllers, however, the transformation is not currently shown in real-time, so the user 

can see the current transformation when the algorithm button is clicked. Showing the 

transformation information in real-time together with other updates are planned for a future 

update. User testing with participants for feedback on how to improve the interaction is also 

planned for a future version. 
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Figure 8.19 A user interacting with the data point cloud (in red), using the HTC Vive hand controller and pointing, selecting, 
rotating and moving the data point cloud. 

 

The visibility of the shape’s transformation can also be enhanced with tooltips on top of the 

shape to dynamically show the current rotation and position as the user manipulates the 

object. However, this is not implemented in the current version of ICPVR. 

Several studies have evaluated the use of hand controllers for interacting with 3-D objects in 

virtual reality. One such study evaluated the usability of the HTC VIVE (HTC, 2020) hand 
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controllers and hand gestures using data gloves on task performance (Lee et al., 2017, 2017). 

The researchers experimented with participants running a VR game with an HTC VIVE 

controller and then the data gloves. The participants were then asked to fill a questionnaire 

after each test. The experiment concluded on data gloves as interaction preference by the 

users. The choice of acceptance of a particular interaction medium is affected by the 

responsiveness, understandability, user pre-emptiveness, and accuracy of using that 

interaction medium. It can be deduced that data gloves presented a more natural interaction 

medium than hand controllers. 

 It has also been noted that spatial perception in a virtual reality environment is enhanced by 

how natural the interaction is (Seibert and Shafer, 2017). For instance, using two hands for 

interaction in the virtual environment because of the use of two controllers, mimics human 

natural usage of hands which increases the users feeling of immersion. It can be easier to 

locate and interact with two objects at the same time using hand controllers in both hands 

(Khambadkar and Folmer, 2013), however, other research has shown users prefer using one 

hand in VR interactions (Nanjappan et al., 2018). The differences are because of the specific 

tasks the users performed. For instance, users preferred using only one hand for manipulating 

3-D objects in VR environments (selection, rotation and moving tasks). 

In the case of ICPVR, the two 3-D objects were easier to interact with, using two VR hand 

controllers. The evaluation felt natural to interact with both data shape and model shape with 

both hands using the two (2) VR controllers at the same time. The user interface was easy to 

manipulate. The placement of the model point cloud and the animation of the shape match 

was easily able to be viewed. The teleportation shown in Figure 8.2, allowed an enhanced 

interaction by giving the user the ability to move around the virtual world whilst remaining 

physically static especially useful for users with limited physical space. The user was able to 

successfully place the point clouds at desired positions in the virtual world and clicked an 

algorithm to observe the animated shape match as shown in the matching of two point clouds 

in Figure 8.17 and Figure 8.19. 

 

8.5.4 Usability 

 

ICPVR was found to be useful for evaluating shape matching algorithms with visualisations 

because all the desired tasks were able to be performed in the virtual environment. The 

shapes were interactable, details of the initial transformations were shown even though this 
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can be enhanced with real-time information on the transformation whilst the user interacts with 

the shapes. 

It was easy to teleport around the virtual environment especially going closer or farther to the 

virtual shapes to better see the shape matching animation as required. After the matching, A 

visual inspection of the shape overlap was able to reveal the regions of the shape with a much 

better match than the others. 

 

 

 

 

8.5.5 Knowledge Improvements 

 

The more the system was used to visualise protein structures, the more visual insight was 

realised. For instance, in the desktop version, some instances of the ICP iteration were seen 

to recover from local minima, however, in virtual reality, this was more vivid due to the 

immersion.  

Using the virtual environment increased understanding of the shape matching process and 

allowed new ideas to be envisaged such as showing real time information during the shape 

matching process such as data of worse transformations. 

 

8.5.6 Towards Accurate Initial Transformation  

 

The use of hand controllers in the VR simulation, allows the user to interact with the point 

clouds more easily as it closely mimics natural interaction than using a desktop computer’s 

mouse and keyboard. Using the hand controllers makes the interaction feel more natural and 

accurate because the user is not limited to the 2-D interface from the PC monitor.  

The enhanced interaction and higher field of view (The visible area of the VR content for the 

user at an instance without turning their head) afforded by the virtual environment (ICPVR) 

enables the user to see the point clouds in more detail and as such be able to set a much-

desired transformation based on their visual analysis and perception as shown in (Figure 8.17, 

Figure 8.19, Figure 8.18) 
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8.6 Limitations of ICPVR 

 

ICPVR shows the user a real-time animation of the shape matching process in the virtual 

reality environment. This real time animation was achieved by applying the computed 

transformation to the data shape in each iteration and automatically updating the point cloud 

in the virtual environment. This repeated process creates visible animation. This process can 

be computationally expensive and can result in a lagged virtual environment. 

To improve the performance of the animation and prevent lagging in the VR environment, the 

shape matching process implemented Unity3D (Unity Technologies, 2019) Coroutine feature 

that allows flexibility in returning control to the display. This is achieved by asynchronously 

running the ICP algorithm and returning control to the display (refreshing the display to show 

the latest update of the positions of the atoms) after each computed transformation is applied 

to the data shape.  This process ensures that the user sees the point positions from the most 

recent completed iteration. This flexibility means that the animation is rendered to the display 

over several frames. The user is then able to see, after each iteration, the data shape rotating 

and moving closer to the model shape as computed transformations are applied to the data 

shape bringing it closer to the model shape. The closeness is judged solely by the user’s 

perception. However, ICPVR can be enhanced to show how close the shapes are using real 

time display of the distance between the shapes. 

The current representation of the molecules as point clouds also makes the user able to walk 

into the point clouds in the virtual environment. This allows a user to easily visualise points 

that are closer to the centre of the point cloud as the user virtually moves into the molecular 

structure. The ability to walk into the molecule allows the user to study the overlaps on atoms 

that are closer to the centre of the molecules (the molecule is volumetric) to visually see wrong 

matches and decide on how the data point can be moved as well as how to adjust the initial 

transformation. Bruder, Steinicke and Nüchter, (2014) found sparse point clouds generated 

from the robot unsuitable because they wanted to be able to visualise the 3-D buildings with 

the walls seen as solid objects which are only possible with many dense point clouds. ICPVR 

rather requires the point cloud to be sparse enough so the visual overlaps of the shapes can 

be analysed after the matching is complete. 

Collision detection can be implemented to give the user more details on the registration 

including real time data on the points being matched based on the detected collisions between 

the corresponding points. 
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Even though the focus of ICPVR was to present a simple 3-D UI, many of the parameters in 

the ICP algorithm were not exposed in the UI. For instance, the user cannot set the number 

of iterations nor the different algorithm-specific parameters, such as subset size, k-means 

cluster size.  

Even with the limitations discussed, ICP usually converges to a local minimum and the 

visualization in VR can help traverse the local minimum and thus make sure that it eventually 

converges to the global minimum. This is critical for the detection of the mutations of molecules 

for drug design for example where accurate information is critical. It has the advantage of 

combining the strengths of human abstract inference and the computational power of the 

modern computer and hardware. 

 

8.7 Summary 

 

This chapter has discussed a virtual reality application, ICPVR that can be used for evaluation, 

testing and comparison of 3-D shape matching algorithms. ICPVR allows simulation of the 

performance of 3 ICP variants (KmeansICP, SubsetICP, and TaggedICP) on 3-D protein 

molecules in virtual reality. The chapter further discussed related works, highlighting existing 

virtual reality applications used for matching 3-D structures. Particularly for ICPVR, the chapter 

discussed ways a user can interact with the virtual 3-D protein structures and how easy ICPVR 

can be used for quick comparisons on ICP variants. 

The research evaluated ICPVR in terms of interaction, immersive visualisation, knowledge 

improvements, and usability. The application highlighted the button receiving focus from the 

pointer when the user pointed using the VIVE controller. Even though the algorithm names 

are written on the buttons, this made it easier to distinguish between them and especially for 

the user to see the currently selected button before clicking. The application also allowed the 

pointing, selecting, rotating, and moving of the protein molecules (Figure 8.19). Manipulating 

the protein molecules was necessary for adjusting the initial transformations as shown in 

(Figure 8.15, Figure 8.16, Figure 8.17, and Figure 8.18). The teleportation feature (Figure 8.10) was 

also helpful for the researcher to move in the virtual environment whilst remaining in the limited 

space. This was necessary especially for the visual analysis of the molecules. The background 

was made less distractive with bright colours to ensure maximum immersion by the user in 

focusing fully on the shape matching process. The visual analysis of the shape matching 

animation improved the researcher’s knowledge and resulted in more ideas for future work. 
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This chapter has achieved objective four (4), “Develop a virtual reality visualisation software 

for visualising and interacting with 3-D molecular protein data, allowing exploration of the 

molecule in immersive virtual reality environments”. This has been achieved by developing 

and evaluating ICPVR as well as presenting an analysis of its strengths and limitations. 
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

 

9.1 Introduction 

 

The research sought to achieve the aims and objectives set out in Section 1.4. This chapter 

discusses how the project meets all the objectives. The chapter further discusses the future 

work and how various parts of this research can be improved and extended. A personal 

reflection section also discusses the researcher’s experience and skills gained whilst working 

on this project.  

 

9.2 Summary and Discussion 

 

The research proposed to study the domain of 3-D shape matching in virtual reality.  The 

standard ICP (Besl and McKay, 1992) algorithm was studied as the base algorithm of choice 

to utilise for the shape matching process. It was found that ICP suffers from poor quality of 

match and convergence with large initial rotation angles and computationally expensive 

methods such as the correspondence search method. There is also the need for using novel 

visualisation techniques to understand the shape matching process. 

 These challenges presented opportunities for developing several variants of ICP to improve 

aspects of the algorithm for matching 3-D protein datasets. The research developed, 

evaluated, and critically discussed three (3) variants of the ICP algorithm for matching 3-D 

protein datasets (KmeansICP, SubsetICP+, and TaggedICP). It also developed a virtual reality 

shape matching application, ICPVR for visualisation of the shape matching in virtual reality. 

The prototype application has provided a means of visualising shape matches in virtual reality 

with the ability for the user to see the animation of the process and interacting with the shapes. 

The research has investigated and reviewed virtual reality. It has outlined the history of virtual 

reality in a progressively developing manner. This has allowed an understanding and 

appreciation of the evolution of virtual reality for the reader to understand areas of its 

application and possibly the next phases of its development as well as the current applications 

of virtual reality. The metrics (the affordances) or what the system offers the user of VR have 

also been researched and discussed (immersion, presence, navigation, knowledge 
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improvements, and usability). The approach considered several experiments using virtual 

reality and identified the specific affordances evaluated as well as the findings. Key concepts 

in virtual reality were also discussed such as how all the metrics of VR help to increase the 

user’s feeling of immersion, and this contributes to the overall experience of a user. This 

review has contributed to advancing knowledge with a peer-reviewed publication titled “Virtual 

Reality: A literature review and metrics-based classification”. The virtual reality investigation 

and publication meets objective (2) of this research; “Gain a critical understanding of the 

history, current state, and challenges of virtual reality through a literature review”. 

In chapter 2, the research extensively identified and reviewed existing shape matching 

algorithms. The algorithms were discussed along lines of common properties of shape 

matching algorithms; feature identification, feature matching, transformation model estimation, 

and image transformation (Zitová and Flusser, 2003). It was also noted that all registration 

algorithms consist of varying implementations of some components namely, feature space, 

search space, search strategy, and similarity measure. The discussion highlighted the 

different techniques used in the algorithms, and their advantages and disadvantages. The 

discussion also explained how the various techniques used in shape matching algorithms 

allow a robust registration process in the presence of different levels of noise. It also 

highlighted current novel approaches to shape registration tasks, training and using machine 

learning algorithms to predict transformations and output of some methods of the registration 

process. The discussion meets the objective (1); “Gain a critical understanding of similarities, 

differences, and potential areas for improvement in existing shape matching techniques by 

performing a thorough literature review”. 

A system’s research approach has been used to develop ICPVR (Iterative Closest Point 

Virtual Reality) which is a virtual reality environment for visualising shape matching. ICPVR 

allows a shape matching algorithm to be added to the virtual environment with some 

modifications to allow amongst other things, placeholders for the data and model shapes with 

some amount of modification to the shape matching code. ICPVR enables the user to interact 

with the 3-D objects as well as navigate in the virtual environment. The purpose of enabling 

these metrics for the virtual environment was to increase the levels of the user’s overall 

experience. A user being immersed in the shape matching process from setting initial rotation 

angles of the 3-D objects to visualising the shape matching animation to the final shape 

matching, allows the user to discover patterns in the shape match process. Such insights can 

be used to further improve the shape matching process. Optimising the visualisation in virtual 

reality also advances the study, evaluation, and usability of virtual reality environments for 

performing tasks. This is applicable in environments such as scientific visualisations, learning 
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or task-based health rehabilitation. ICPVR is basic and can be enhanced further to provide 

improvements such as better responsiveness during the VR simulation, improved aesthetics, 

improved automated ways of benchmarking or testing new algorithms and easier integration 

with new shape matching algorithms. The ICPVR development meets the objective; “Develop 

a virtual reality visualisation software for visualising and interacting with 3-D molecular protein 

data, allowing data exploration on a desktop and in immersive virtual reality environments” 

The ICPVR application provided the user with a means of using the hand controllers to interact 

with the virtual proteins. The ICPVR, its background literature and evaluation meet objective 

four (4): “Develop a virtual reality visualisation software for visualising and interacting with 3-

D molecular protein data, allowing exploration of the molecule in immersive virtual reality 

environments”. 

The research further developed and evaluated three (3) variants of the ICP algorithm, 

TaggedICP; An ICP variant that uses metadata knowledge to improve the registration,  

KmeansICP; An ICP based algorithm that partitions the correspondence search space based 

on k-means clustering (Krishna and Narasimha Murty, 1999), and SubsetICP+; An ICP 

algorithm based on SubsetICP (Chen, Belaton and Pan, 2013) that uses atom types for 

partitioning. The research was interested in comparing the developed algorithms and 

understanding how the different partition types and algorithm implementation affects shape 

registration with different levels of error and initial rotation angles. The experiments evaluated 

the different partitioning techniques and considered the effects of the size of the partitions, the 

complexity of the shapes, and the type of partitions (k-means clustering-based or atom types 

based) on the match quality and convergence of the different ICP algorithms.  

TaggedICP uses metadata, called the tag to aid with the registration of the point cloud. The 

tag information consists of the atom type of the data point and its 3 closest neighbouring 

atoms. The tag information provides constraints that allow meaningful matches to be found 

especially for full same shape matching that has existing true correspondences. The algorithm 

was found to have a high match quality and performed well in the presence of small to 

moderate noises. However, the algorithm was found to suffer in the presence of large noises. 

SubsetICP+ performs registration by registering corresponding subsets of the two-point 

clouds. Although SubsetICP+ doesn’t make use of metadata, it was designed to register 

shapes by performing a complete ICP registration on each corresponding. SubsetICP+ was 

found to converge faster in many instances and the rejection of some transformation provided 

a good match quality and convergence in many instances with noise. KmeansICP used the K-

means algorithm to cluster the search space to reduce the time taken for the search of 

correspondence. 
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The research found out that shape matching using metadata or some known information about 

the point improves the quality of the match. However, this was not found to be true in all cases. 

Additionally, considering the neighbouring information of the points in the search for 

correspondence can further help increase the match quality further at a cost of the number of 

neighbours. This means that many neighbourhood points being considered provides a higher 

level of constraint and can make the algorithm slow to converge and less accurate in the 

presence of noise. A very small number of neighbourhood points being considered can also 

make the results less accurate. This required the use of 3 neighbour points as a trade-off 

between the quality of the match and the speed of convergence. The development and 

evaluation of the developed variants achieve the objective (3); “Develop and evaluate shape 

matching algorithms based on the Standard ICP algorithm” 

The development and evaluation of the algorithms along with their discussions achieves the 

research objective; “Develop, evaluate and visualise shape matching algorithms based on the 

Standard ICP algorithm (Besl and McKay, 1992) that explores different techniques for 

matching 3-D molecules and visualising the matching in virtual reality”. 

 

8.8 Future Work 

 

Future work on ICPVR can improve the UI design of ICPVR and implement other 3-D shape 

matching algorithms. A comparison framework can be built to automatically test all algorithms 

and visualise the results in VR. ICPVR can also be enhanced to gather objective user 

experience feedback through the implementation of task scenarios. This feedback can help 

improve the visualisation and interaction in ICPVR. The search for correspondence methods 

in the ICP variants can utilise CPU parallel processing and GPU to speed up the process.  

The algorithms can also be improved by implementing certain techniques such as rejection of 

false matches, weighing of the reliability of matches, using symmetric ICP to establish point 

matches in two directions, instead of one direction from data shape to model shape, global 

optimization of various parameters inside the proposed ICP variants, enhanced visualization 

of molecules in complex shapes, instead of point primitives, and the ability for ICPVR to 

provide immediate feedback on the quality of the shape matching in VR and help the user to 

decide when to stop.   

Other interesting extensions of the ICP algorithm that can be pursued include registration of 

partial overlapping shapes, using point-to-plane distance-based objective functions, and 

extraction of local features to help refine the matches.  
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Non-ICP based shape registration methods such as Multi-scale Sparse Voxel Convolution (MS-

SVConv) (Horache, Deschaud and Goulette, 2021), end-to-end learning local multi-view descriptors for 

3D point clouds (Li et al., 2020), deep learning based two-stage method for computing local 

descriptors for point cloud registration (Poiesi and Boscaini, 2021), and spinNet (Ao et al., 

2021) have demonstrated state-of-the-art results on datasets such as 3DMatch benchmark 

and (Zeng et al., 2017) ETH (Pomerleau et al., 2012) for 3D point cloud registration. These 

methods show a great potential for the use of machine learning models in real world 3D point 

registration problems. 

MS-SVConv (Horache, Deschaud and Goulette, 2021) is developed for registering challenging 

datasets that are largely different. The approach combines MS-SVConv which doesn’t require 

all points in the point cloud to be considered in the registration process and Unsupervised 

transfer learning with data generation (UDGE) that creates two partial point clouds from a 

single point cloud. These two techniques combine to create an unsupervised deep learning 

model that works on unknown datasets to achieve a model that generalises for registering 

dissimilar datasets such as points clouds from different sensors or different environments.  

SpinNet (Ao et al., 2021) also generalises for unseen scenarios to aid with matching point 

clouds from different sensors, however unlike MS-SVConv (Horache, Deschaud and Goulette, 

2021) spinNet leverages point-based and 3D cylindrical convolutional natural layers to provide 

a rotation invariant neural feature learner model for 3D surface matching. The local multi-view 

approach to shape descriptors (Li et al., 2020) differs from the voxel based approach 

(Horache, Deschaud and Goulette, 2021) in a way that allows it to present more information 

of the 3D geometry. Poiesi and Boscaini,(2021) presents a deep learning-based model to 

compute the generalisable and distinctive (GeDi) local descriptors for point cloud registration. 

The approach transforms sets of neighbouring points into a feature descriptor that helps the 

registration process achieve rotation-invariance.  

Future work on non-ICP based methods can investigate registering deformable objects using 

deep learning approaches as well as creating new 3D feature descriptor and extractor models. 

 

 

 

8.9 Reflections on my Research Journey 
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My PhD journey has been a great experience. Gradually adding to my knowledge in the 

domain of this thesis has been exciting and challenging at the same time. I have been fortunate 

to have supervisors who have systemically helped and encourage me to learn and do the right 

thing. 

Through the journey, I have accepted decisions that were sometimes challenging, and in some 

instances, past understandings questioned, and newer insights explored. At the start of this 

journey, I was not fully aware of the magnitude of knowledge that I was going to develop and 

the amount of hard work that gaining such knowledge would entail. From the onset of my 

research, my supervisor will gently prompt me to read texts that I would not have naturally 

read or referred to. My supervisory team did point me to many helpful resources, and I could 

observe that care was taken not to overly guide me too much, but to try to make me decide 

on the path to follow as a way of developing my independent thinking further. 

I have developed my writing, critical thinking, and presentation skills, whilst writing articles and 

presenting at conferences. I have also learnt the formal processes of research that are 

systematic to manage risks and result in maximum knowledge gain for the researcher as well 

as the validity of the output. I have also realised how critical these skills are for my further 

research and further growth. 
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9 Appendix 

 

Sensorama – In the years 1960 - 1962, Morton Heilig created a virtual reality system (Figure 

9.1) that played a pre-recorded film in colour. The user’s senses were stimulated appropriately 

when they encountered virtual environments with sound generated by the connected 

stereophonic sound system, smell generated by odour emitters, wind generated by a fan and 

vibration by the motion chair the user sits on. This was the first approach to creating a VR 

system even though it was not interactive. (Mazuryk and Gervautz, 1996).  
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Figure 9.1 Morton Heilig's Sensorama. (Heilig, 1992). The early virtual reality machine allowed 
users to experience some interaction with the movie that was being watched. The aim was to add 
a sense of taste, smell, and feel to the hearing and vision  (USC School of Cinematic Arts, 2021) 

 

The Ultimate Display – in 1965, Ivan Sutherland proposed a concept of a virtual world that 

included interaction, force-feedback, sound, smell, and taste (Figure 9.2) (Mazuryk and 

Gervautz, 1996).  Ivan Sutherland then created the first hardware-based VR device, which 
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was a heavy head-mounted display that hanged from the ceiling whilst in use. As a result of 

its looks and weight, It derived its name, 'The Sword of Damocles' from the sword above the 

throne of the Greek character Damocles. (Mazuryk and Gervautz, 1996). The Sword of 

Damocles featured head tracking and a stereo view (presenting two horizontally shifted views 

of a scene to the users’ eyes) that was updated correctly according to the user’s head position 

and orientation. (Mazuryk and Gervautz, 1996).  

 

 

Figure 9.2 The Sword of Damocles (Sutherland, 1968). The heavy mounted setup from the ceiling connecting the 
Head Mounted Display (Black part facing the eyes) featured head tracking and stereo views that adjusted based 
on the user’s head and orientation. 

 GROPE – the prototype of a force-feedback system (Figure 9.3) (using motorised components 

such as a hand controller to simulate reactions to the user such as vibrations from touching 

virtual objects) built at the University of North Carolina (UNC) in 1971.  (Mazuryk and Gervautz, 

1996). 
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Figure 9.3 prototype force-feedback system (Brooks et al., 1990). Motorised components are used to simulate feedback 
such as vibrations. It was developed to provide a means for interaction with protein molecules and the discovery of drugs. 

 

 VIDEOPLACE (Figure 9.4) – This was originally designed and developed as an environment 

enabling persons in different geographical locations to experience the same video as an 

advancement to human-computer interactions. It allowed the silhouettes of users to be 

captured from a camera and projected onto a large screen by a projector in real time.  Users 

could see their images on the large screen and could move to see the projected silhouettes 

update.   

Other graphic objects were added to the screen and this enabled interaction between the 

users, using their silhouettes to interact with the other objects on the screen or amongst other 

user's silhouettes. (Krueger, Gionfriddo and Hinrichsen, 1985, Mazuryk and Gervautz, 1996)  
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Figure 9.4 VIDEOPLACE.    (Krueger, Gionfriddo and Hinrichsen, 1985). The setup captures the silhouettes of users from 
mounted cameras and displays them as avatars on the screen. Other objects can be captured and placed on the screen as 
well, allowing the users to use their avatar to control those objects. 

 

VCASS –  The Visually Coupled Air-borne System (Figure 3.5) was a flight simulator 

developed by Thomas Furness that featured a head-mounted display that enhanced the 

outside view of the fighter pilot view with optimal flight path information. (Kocian, 1977, 

Mazuryk and Gervautz, 1996). 

 

Figure 9.5 The Visually Coupled Airborne Systems Simulator (VCASS). (Kocian, 1977). The simulator was developed for the 
United States Airforce to present augmented information about the flight in the head-mounted display. This was to visually 
couple multiple information into a single view that is easily seen by the pilot in different head rotations. 
 

VIVED – Virtual environment visual display (Figure 9.6) was built in 1984 at NASA Ames 

Research Centre. The system consisted of a stereoscopic HMD and other components built 

from customising commercially available components. (Fisher et al., 1987, Mazuryk and 
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Gervautz, 1996). 

 

Figure 9.6  Virtual Environment Display System. The system consisted of a head-mounted display that allowed the user to 
interact with their complex tasks and increase their situational awareness with the ability to see such statuses in the head-
mounted display. 

 

 

VPL DataGlove– VPL developed the DataGlove and the first commercially available VR 

device, the Eyephone (Figure 9.7). (Clark et al., 1989, Mazuryk and Gervautz, 1996) 

 

 

Figure 9.7 The Eyephone HMD and the DataGlove hand tracking (Clark et al., 1989). The system was composed of an HMD 
and a DataGlove hand tracking device that was original designed to control the Utah and MIT dextrous hand using a VPL 
DataGlove. 
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BOOM (Binocular Omni Oriented Monitors) (Figure 9.8) – This consisted of a small box that 

had two CRT monitors inside and holes for the user to look through. The setup allowed the 

user to keep the box by the eyes and navigate the virtual world whilst a mechanical arm 

provided the position and orientation of the box. The Boom was commercialised in 1989 by 

Fake Space Labs.  

 

Figure 9.8 The Binocular Omni Oriented Monitors (BOOM) is a head display device developed by FakeSpace Labs. The 
optical part of the device is in a box that is connected to a multi-link arm. The user can see the virtual world by looking 
through the box. The user can also adjust the box to see other parts of the virtual world. (University of Michigan, 2021) 

 

UNC Walkthrough project (Figure 9.9) – In the later part of the 1980s, the University of North 

Carolina developed a virtual architecture allowing users to experience it by walking through. 

The system was enhanced using VR devices such as several HMDs, optical trackers and the 

Pixel-Plane graphics engine. (Brooks, 1987, Mazuryk and Gervautz, 1996).  

 

Figure 9.9 The Walkthrough Project (Brooks, 1987) was a virtual environment for architects and their clients to virtually 
explore and refine design specifications before the physical building is developed. It allowed quick prototypes for building 
designs to be made. [Image source: http://www.cs.unc.edu/~walk/ ] [Accessed: 16/06/2020] 

 

http://www.cs.unc.edu/~walk/
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Virtual Wind Tunnel –The Virtual Wind Tunnel (Figure 9.10) was an application that allowed the 

study of flow fields (the spread of the density and velocity of fluid over space and time). The 

virtual wind tunnel used the BOOM display and the DataGloves for interaction. (Bryson and 

Levit, 1992, Mazuryk and Gervautz, 1996).   

 

 

Figure 9.10. The Virtual wind tunnel (Bryson and Levit, 1992) enables the exploration of numerically generated 3-D 

unsteady velocity vector fields using techniques such as tufts, streamlines, and particle paths. The user views the 
visualisation by looking through the holes in the BOOM device and manipulates the objects using the hand 
controllers to generate some motion around different objects to study the flow field. 

 

CAVE – The CAVE Automated Virtual Reality Environment (Figure 9.11) is a virtual reality 

system, presented in 1992. It projects stereoscopic images onto multiple walls to create a 3-

D environment. The user views the environment through the required 3-D shutter glasses. The 

multiple walls provide a wider field of regard to the user. 
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Figure 9.11. CAVE Automatic Virtual Environment (Febretti et al., 2013) provides a virtual reality experience in 

room-sized hardware. CAVE consists of several cameras that project different angles of the virtual 3-D scene 
onto walls that allows the user to experience a room-sized viewing space using special wearable glasses. 

 

Current Generation of VR HMDs -   The current generation of VR HMDs are advanced in terms 

of their tracking such as combining natural hand gesture recognition with the traditional 

controllers. They include the HTC VIVE (HTC, 2020), Facebook’s Oculus Rift (Desai et al., 

2014, Oculus, 2020), and Samsung Gear VR (Hillmann, 2019, Samsung, 2020). 

Wireless HMDs which eliminate the need for cables connecting the HMDs to a PC are going 

mainstream with manufacturers, for instance, the untethered HTC VIVE Pro 2 (HTC, 2021). 

The HTC VIVE consists of a wearable head-mounted display and hand controllers (Figure 

9.12). It has 2 base station mounts that help to calibrate or map the physical environment for 

use in the virtual space. The controller buttons allow mapping to various functions such as 

teleporting, grabbing, and throwing.  

 

  

 

Figure 9.12 (LHS) HTC VIVE Head-mounted display together with its hand controllers. The setup utilises two base stations 
that help calibrate the physical environment and provide the space for the virtual environment. (RHS) Samsung Gear VR. 

 

Augmented and Mixed Reality (AR/MR) – A technology that presents a virtual world that 

enriches, rather than replaces the real world. It can also be defined as a real-time direct or 

indirect view of the physical environment that has been enhanced by adding virtual objects 

(Carmigniani et al., 2011). AR & MR are characterised by immersing a user in an interactive 

3-D scene that combines the real world with the virtual world (Azuma, 1997). The augmented 

reality experience allows a user to view an environment consisting of the real world with virtual 
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objects superimposed on it. This is usually viewed through a compatible AR or MR device, for 

instance, Microsoft HoloLens, and smartphones (Mazuryk and Gervautz, 1996). 

An early example of mixed reality was the VCASS which augmented and enriched a fighter 

pilot’s view with added information e.g., optimal flight path and other details from the flight 

dashboard. This enrichment of the real world with virtual information advanced research in 

augmented reality (Mazuryk and Gervautz, 1996). 

 Mixed reality also engages the user in a 3-D world that combines the real world and the virtual 

world, however, whilst augmented reality overlays the virtual objects on top of the real-world 

object as can be seen in Figure 9.13, mixed reality anchors virtual objects to the objects in the 

real world.  

In recent times, some of the most used augmented reality applications include Google lens 

(Lucia, Vetter and Moroz, 2021) for searching the internet using images directly captured from 

a device camera and the Google Maps Street View (Tokusho and Feiner, 2009) feature in 

Google maps that overlays information content such as directions on the maps. 

Dey et al. (2018) undertook an extensive review of augmented reality research between 2005 

and 2014.  
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  Figure 9.13.  (LHS) A mobile-based Augmented reality with an environment enriched with a 3-D character (source: 
https://arvr.google.com/ar/)  (RHS) users interacting with virtual objects in mixed reality using a mixed reality HMD (Azuma et al., 
2001). The mixed reality environments allow users to collaboratively work on a task such as building 3-D prototypes. 
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