88 research outputs found

    Principal Deformations Modes of Articulated Models for the Analysis of 3D Spine Deformities

    Get PDF
    Articulated models are commonly used for recognition tasks in robotics and in gait analysis, but can also be extremely useful to develop analytical methods targeting spinal deformities studies. The threedimensional analysis of these deformities is critical since they are complex and not restricted to a given plane. Thus, they cannot be assessed as a two-dimensional phenomenon. However, analyzing large databases of 3D spine models is a difficult and time-consuming task. In this context, a method that automatically extracts the most important deformation modes from sets of articulated spine models is proposed. The spine was modeled with two levels of details. In the first level, the global shape of the spine was expressed using a set of rigid transformations that superpose local coordinates systems of neighboring vertebrae. In the second level, anatomical landmarks measured with respect to a vertebra's local coordinate system were used to quantify vertebra shape. These articulated spine models do not naturally belong to a vector space because of the vertebral rotations. The Fréchet mean, which is a generalization of the conventional mean to Riemannian manifolds, was thus used to compute the mean spine shape. Moreover, a generalized covariance computed in the tangent space of the Fréchet mean was used to construct a statistical shape model of the scoliotic spine. The principal deformation modes were then extracted by performing a principal component analysis (PCA) on the generalized covariance matrix. The principal deformations modes were computed for a large database of untreated scoliotic patients. The obtained results indicate that combining rotation, translation and local vertebra shape into a unified framework leads to an effective and meaningful analysis method for articulated anatomical structures. The computed deformation modes also revealed clinically relevant information. For instance, the first mode of deformation is associated with patients' growth, the second is a double thoraco-lumbar curve and the third is a thoracic curve. Other experiments were performed on patients classified by orthopedists with respect to a widely used two-dimensional surgical planning system (the Lenke classification) and patterns relevant to the definition of a new three-dimensional classification were identified. Finally, relationships between local vertebrae shapes and global spine shape (such as vertebra wedging) were demonstrated using a sample of 3D spine reconstructions with 14 anatomical landmarks per vertebra

    Statistical Computing on Non-Linear Spaces for Computational Anatomy

    Get PDF
    International audienceComputational anatomy is an emerging discipline that aims at analyzing and modeling the individual anatomy of organs and their biological variability across a population. However, understanding and modeling the shape of organs is made difficult by the absence of physical models for comparing different subjects, the complexity of shapes, and the high number of degrees of freedom implied. Moreover, the geometric nature of the anatomical features usually extracted raises the need for statistics on objects like curves, surfaces and deformations that do not belong to standard Euclidean spaces. We explain in this chapter how the Riemannian structure can provide a powerful framework to build generic statistical computing tools. We show that few computational tools derive for each Riemannian metric can be used in practice as the basic atoms to build more complex generic algorithms such as interpolation, filtering and anisotropic diffusion on fields of geometric features. This computational framework is illustrated with the analysis of the shape of the scoliotic spine and the modeling of the brain variability from sulcal lines where the results suggest new anatomical findings

    Three-Dimensional Biplanar Reconstruction of the Scoliotic Spine for Standard Clinical Setup

    Get PDF
    Tese de Doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    3D registration of MR and X-ray spine images using an articulated model

    Get PDF
    Présentation: Cet article a été publié dans le journal : Computerised medical imaging and graphics (CMIG). Le but de cet article est de recaler les vertèbres extraites à partir d’images RM avec des vertèbres extraites à partir d’images RX pour des patients scoliotiques, en tenant compte des déformations non-rigides due au changement de posture entre ces deux modalités. À ces fins, une méthode de recalage à l’aide d’un modèle articulé est proposée. Cette méthode a été comparée avec un recalage rigide en calculant l’erreur sur des points de repère, ainsi qu’en calculant la différence entre l’angle de Cobb avant et après recalage. Une validation additionelle de la méthode de recalage présentée ici se trouve dans l’annexe A. Ce travail servira de première étape dans la fusion des images RM, RX et TP du tronc complet. Donc, cet article vérifie l’hypothèse 1 décrite dans la section 3.2.1.Abstract This paper presents a magnetic resonance image (MRI)/X-ray spine registration method that compensates for the change in the curvature of the spine between standing and prone positions for scoliotic patients. MRIs in prone position and X-rays in standing position are acquired for 14 patients with scoliosis. The 3D reconstructions of the spine are then aligned using an articulated model which calculates intervertebral transformations. Results show significant decrease in regis- tration error when the proposed articulated model is compared with rigid registration. The method can be used as a basis for full body MRI/X-ray registration incorporating soft tissues for surgical simulation.Canadian Institute of Health Research (CIHR

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Asclepios: a Research Project-Team at INRIA for the Analysis and Simulation of Biomedical Images

    Get PDF
    International audienceAsclepios1 is the name of a research project-team o cially launched on November 1st, 2005 at INRIA Sophia-Antipolis, to study the Analysis and Simulation of Biological and Medical Images. This research project-team follows a previous one, called Epidaure, initially dedicated to Medical Imaging and Robotics research. These two project teams were strongly supported by Gilles Kahn, who used to have regular scienti c in- teractions with their members. More generally, Gilles Kahn had a unique vision of the growing importance of the interaction of the Information Technologies and Sciences with the Biological and Medical world. He was one of the originators of the creation of a speci c BIO theme among the main INRIA research directions, which now regroups 16 di fferent research teams including Asclepios, whose research objectives are described and illustrated in this article

    Towards a framework for multi class statistical modelling of shape, intensity, and kinematics in medical images

    Get PDF
    Statistical modelling has become a ubiquitous tool for analysing of morphological variation of bone structures in medical images. For radiological images, the shape, relative pose between the bone structures and the intensity distribution are key features often modelled separately. A wide range of research has reported methods that incorporate these features as priors for machine learning purposes. Statistical shape, appearance (intensity profile in images) and pose models are popular priors to explain variability across a sample population of rigid structures. However, a principled and robust way to combine shape, pose and intensity features has been elusive for four main reasons: 1) heterogeneity of the data (data with linear and non-linear natural variation across features); 2) sub-optimal representation of three-dimensional Euclidean motion; 3) artificial discretization of the models; and 4) lack of an efficient transfer learning process to project observations into the latent space. This work proposes a novel statistical modelling framework for multiple bone structures. The framework provides a latent space embedding shape, pose and intensity in a continuous domain allowing for new approaches to skeletal joint analysis from medical images. First, a robust registration method for multi-volumetric shapes is described. Both sampling and parametric based registration algorithms are proposed, which allow the establishment of dense correspondence across volumetric shapes (such as tetrahedral meshes) while preserving the spatial relationship between them. Next, the framework for developing statistical shape-kinematics models from in-correspondence multi-volumetric shapes embedding image intensity distribution, is presented. The framework incorporates principal geodesic analysis and a non-linear metric for modelling the spatial orientation of the structures. More importantly, as all the features are in a joint statistical space and in a continuous domain; this permits on-demand marginalisation to a region or feature of interest without training separate models. Thereafter, an automated prediction of the structures in images is facilitated by a model-fitting method leveraging the models as priors in a Markov chain Monte Carlo approach. The framework is validated using controlled experimental data and the results demonstrate superior performance in comparison with state-of-the-art methods. Finally, the application of the framework for analysing computed tomography images is presented. The analyses include estimation of shape, kinematic and intensity profiles of bone structures in the shoulder and hip joints. For both these datasets, the framework is demonstrated for segmentation, registration and reconstruction, including the recovery of patient-specific intensity profile. The presented framework realises a new paradigm in modelling multi-object shape structures, allowing for probabilistic modelling of not only shape, but also relative pose and intensity as well as the correlations that exist between them. Future work will aim to optimise the framework for clinical use in medical image analysis

    Statistical anatomical modelling for efficient and personalised spine biomechanical models

    Get PDF
    Personalised medicine is redefining the present and future of healthcare by increasing treatment efficacy and predicting diseases before they actually manifest. This innovative approach takes into consideration patient’s unique genes, environment, and lifestyle. An essential component is physics-based simulations, which allows the outcome of a treatment or a disease to be replicated and visualised using a computer. The main requirement to perform this type of simulation is to build patient-specific models. These models require the extraction of realistic object geometries from images, as well as the detection of diseases or deformities to improve the estimation of the material properties of the studied object. The aim of this thesis was the design of a general framework for creating patient- specific models for biomechanical simulations using a framework based on statistical shape models. The proposed methodology was tested on the construction of spine models, including vertebrae and intervertebral discs (IVD). The proposed framework is divided into three well-defined components: The paramount and first step is the extraction of the organ or anatomical structure from medical images. In the case of the spine, IVDs and vertebrae were extracted from Magnetic Resonance images (MRI) and Computed Tomography (CT), respectively. The second step is the classification of objects according to different factors, for instance, bones by its type and grade of fracture or IVDs by its degree of degeneration. This process is essential to properly model material properties, which depends on the possible pathologies of the tissue. The last component of the framework is the creation of the patient-specific model itself by combining the information from previous steps. The behaviour of the developed algorithms was tested using different datasets of spine images from both computed tomography (CT) and Magnetic resonance (MR) images from different institutions, type of population and image resolution
    • …
    corecore