174 research outputs found

    Transient-Based Rotor Cage Assessment in Induction Motors Operating With Soft Starters

    Full text link
    [EN] The reliable assessment of the rotor condition in induction motors is a matter of increasing concern in the industry. Although rotor damages are more likely in line-started motors operating under high inertias, some cases of broken rotor bars in motors supplied via soft starters have been also reported in the industry. Motor current signature analysis (MCSA) is the most widely spread approach to diagnose such failures. However, its serious drawbacks in many real industrial applications have encouraged investigation on alternative methods enhancing the reliability of the diagnosis. This paper extends a recently introduced diagnosis methodology relying on the startup current analysis to the case of soft-starter-operated motors. The approach has proven to provide very satisfactory results, even in cases where the classical MCSA does not lead to correct diagnosis conclusions. However, its extension to operation under soft starters was still a pending issue. The experimental results shown in this paper ratify the validity of the proposed diagnosis approach in soft-starteroperated induction motors.This work was supported by the Spanish “Ministerio de Economía y Competitividad” (MINECO) in the framework of the “Proyectos I+D del Subprograma de Generación de Conocimiento, Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia” under Grant DPI2014-52842-PCorral Hernández, JÁ.; Antonino-Daviu, J.; Pons Llinares, J.; Climente Alarcón, V.; Francés-Galiana, V. (2015). Transient-Based Rotor Cage Assessment in Induction Motors Operating With Soft Starters. IEEE Transactions on Industry Applications. 51(5):3734-3742. https://doi.org/10.1109/TIA.2015.2427271S3734374251

    The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient

    Full text link
    [EN] In this article a data driven approach for the classification of simultaneously occurring faults in an induction motor is presented. The problem is treated as a multi-label classification problem with each label corresponding to one specific fault. The faulty conditions examined, include the existence of a broken bar fault and the presence of mixed eccentricity with various degrees of static and dynamic eccentricity, while three "problem transformation" methods are tested and compared. For the feature extraction stage, the startup current is exploited using two well-known time-frequency (scale) transformations. This is the first time that a multi-label framework is used for the diagnosis of co-occurring fault conditions using information coming from the start-up current of induction motors. The efficiency of the proposed approach is validated using simulation data with promising results irrespective of the selected time-frequency transformation.This work was supported in part by the Spanish MINECO and FEDER program in the framework of the "Proyectos I + D del Subprograma de Generacion de Conocimiento, Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia" under Grant DPI2014-52842-P and in part by the Horizon 2020 Framework program DISIRE under the Grant Agreement 636834.Georgoulas, G.; Climente Alarcón, V.; Antonino-Daviu, J.; Tsoumas, IP.; Stylios, CD.; Arkkio, A.; Nikolakopoulos, G. (2016). The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient. IEEE Transactions on Industrial Informatics. 13(2):625-634. https://doi.org/10.1109/TII.2016.2637169S62563413

    Robust detection of incipient faults in VSI-fed induction motors using quality control charts.

    Get PDF
    A considerable amount of papers have been published in recent years proposing supervised classifiers to diagnose the health of a machine. The usual procedure with these classifiers is to train them using data acquired through controlled experiments, expecting them to perform well on new data, classifying correctly the condition of a motor. But, obviously, the new motor to be diagnosed cannot be the same that has been used during the training process; it may be a motor with different characteristics and fed from a completely different source. These different conditions between the training process and the testing one can deeply influence the diagnosis. To avoid these drawbacks, in this paper a new method is proposed which is based on robust statistical techniques applied in Quality Control applications. The proposed method is based on the online diagnosis of the operating motor and can detect deviations from the normal operational conditions. A robust approach has been implemented using high-breakdown statistical techniques which can reliably detect anomalous data that often cause an unexpected overestimation of the data variability, reducing the ability of standard procedures to detect faulty conditions in earlier stages. A case study is presented to prove the validity of the proposed approach. Motors of different characteristics, fed from the power line and several different inverters, are tested. Three different fault conditions are provoked, broken bar, a faulty bearing and mixed eccentricity. Experimental results prove that the proposed approach can detect incipient faults

    Fault diagnosis of rolling element bearing based on wavelet kernel principle component analysis-coupled hidden Markov model

    Get PDF
    Different description results will be obtained when apply hidden Markov model (HMM) to the two different channel signals from the same data collection point respectively. Besides, wrong fault diagnosis result might be obtained because fault feature information would not be described comprehensively by using only one single channel signal. In theory, two channel signals collected form the same data collection point will contain much more fault information than the single channel signal contain, but the coupled phenomenon might occur between the two channel signals. Coupled hidden Markov model (CHMM) is the improved method of HMM and it can fuse the information of two channel signals from the same data collection point efficiently, so much more reliable diagnosis result could be obtained by using CHMM than by using HMM. Stated thus, the fault diagnosis method of rolling element bearing based on wavelet kernel component analysis (WKPCA)-CHMM is proposed: Firstly, use WKPCA as fault feature vectors extraction method to increase the efficiency of the proposed method. Then apply CHMM to the extracted fault feature vectors and satisfactory fault diagnosis result is obtained at last. The feasibility and advantages of the proposed method are verified through experiment

    Principal Component Analysis of the start-up transient and Hidden Markov Modeling for broken rotor bar fault diagnosis in asynchronous machines

    Full text link
    This article presents a novel computational method for the diagnosis of broken rotor bars in three phase asynchronous machines. The proposed method is based on Principal Component Analysis (PCA) and is applied to the stator s three phase start-up current. The fault detection is easier in the start-up transient because of the increased current in the rotor circuit, which amplifies the effects of the fault in the stator s current independently of the motor s load. In the proposed fault detection methodology, PCA is initially utilized to extract a characteristic component, which reflects the rotor asymmetry caused by the broken bars. This component can be subsequently processed using Hidden Markov Models (HMMs). Two schemes, a multiclass and a one-class approach are proposed. The efficiency of the novel proposed schemes is evaluated by multiple experimental test cases. The results obtained indicate that the suggested approaches based on the combination of PCA and HMMs, can be successfully utilized not only for identifying the presence of a broken bar but also for estimating the severity (number of broken bars) of the fault.Georgoulas, G.; Mustafa, M.; Tsoumas, I.; Antonino Daviu, JA.; Climente Alarcón, V.; Stylios, C.; Nikolakopoulos, G. (2013). Principal Component Analysis of the start-up transient and Hidden Markov Modeling for broken rotor bar fault diagnosis in asynchronous machines. Expert Systems with Applications. 40(17):7024-7033. doi:10.1016/j.eswa.2013.06.006S70247033401

    Machine Learning based Early Fault Diagnosis of Induction Motor for Electric Vehicle Application

    Get PDF
    Electrified vehicular industry is growing at a rapid pace with a global increase in production of electric vehicles (EVs) along with several new automotive cars companies coming to compete with the big car industries. The technology of EV has evolved rapidly in the last decade. But still the looming fear of low driving range, inability to charge rapidly like filling up gasoline for a conventional gas car, and lack of enough EV charging stations are just a few of the concerns. With the onset of self-driving cars, and its popularity in integrating them into electric vehicles leads to increase in safety both for the passengers inside the vehicle as well as the people outside. Since electric vehicles have not been widely used over an extended period of time to evaluate the failure rate of the powertrain of the EV, a general but definite understanding of motor failures can be developed from the usage of motors in industrial application. Since traction motors are more power dense as compared to industrial motors, the possibilities of a small failure aggravating to catastrophic issue is high. Understanding the challenges faced in EV due to stator fault in motor, with major focus on induction motor stator winding fault, this dissertation presents the following: 1. Different Motor Failures, Causes and Diagnostic Methods Used, With More Importance to Artificial Intelligence Based Motor Fault Diagnosis. 2. Understanding of Incipient Stator Winding Fault of IM and Feature Selection for Fault Diagnosis 3. Model Based Temperature Feature Prediction under Incipient Fault Condition 4. Design of Harmonics Analysis Block for Flux Feature Prediction 5. Flux Feature based On-line Harmonic Compensation for Fault-tolerant Control 6. Intelligent Flux Feature Predictive Control for Fault-Tolerant Control 7. Introduction to Machine Learning and its Application for Flux Reference Prediction 8. Dual Memorization and Generalization Machine Learning based Stator Fault Diagnosi

    Process Monitoring and Fault Diagnosis for Shell Rolling Production of Seamless Tube

    Get PDF
    Continuous rolling production process of seamless tube has many characteristics, including multiperiod and strong nonlinearity, and quickly changing dynamic characteristics. It is difficult to build its mechanism model. In this paper we divide production data into several subperiods by -means clustering algorithm combined with production process; then we establish a continuous rolling production monitoring and fault diagnosis model based on multistage MPCA method. Simulation experiments show that the rolling production process monitoring and fault diagnosis model based on multistage MPCA method is effective, and it has a good real-time performance, high reliability, and precision

    System diagnosis using a bayesian method

    Get PDF
    Today’s engineering systems have become increasingly more complex. This makes fault diagnosis a more challenging task in industry and therefore a significant amount of research has been undertaken on developing fault diagnostic methodologies. So far there already exist a variety of diagnostic methods, from qualitative to quantitative. However, no methods have considered multi-component degradation when diagnosing faults at the system level. For example, from the point a new aircraft takes off for the first time all of its components start to degrade, and yet in previous studies it is presumed that apart from the faulty component, other components in the system are operating in a healthy state. This thesis makes a contribution through the development of an experimental fuel rig to produce high quality data of multi-component degradation and a probabilistic framework based on the Bayesian method to diagnose faults in a system with considering multi-component degradation. The proposed method is implemented on the fuel rig data which illustrates the applicability of the proposed method and the diagnostic results are compared with the neural network method in order to show the capabilities and imperfections of the proposed method

    Contribution to intelligent monitoring and failure prognostics of industrial systems.

    Get PDF
    This thesis was conducted within the framework of SMART project funded by a European program, Interreg POCTEFA. The project aims to support small and medium-sized companies to increase their competitiveness in the context of Industry 4.0 by developing intelligent monitoring tools for autonomous system health management. To do so, in this work, we propose efficient data-driven algorithms for prognostics and health management of industrial systems. The first contribution consists of the construction of a new robust health indicator that allows clearly separating different fault states of a wide range of systems’ critical components. This health indicator is also efficient when considering multiples monitoring parameters under various operating conditions. Next, the second contribution addresses the challenges posed by online diagnostics of unknown fault types in dynamic systems, particularly the detection, localization, and identification of the robot axes drifts origin when these drifts have not been learned before. For this purpose, a new online diagnostics methodology based on information fusion from direct and indirect monitoring techniques is proposed. It uses the direct monitoring way to instantaneously update the indirect monitoring model and diagnose online the origin of new faults. Finally, the last contribution deals with the prognostics issue of systems failure in a controlled industrial process that can lead to negative impacts in long-term predictions. To remedy this problem, we developed a new adaptive prognostics approach based on the combination of multiple machine learning predictions in different time horizons. The proposed approach allows capturing the degradation trend in long-term while considering the state changes in short-term caused by the controller activities, which allows improving the accuracy of prognostics results. The performances of the approaches proposed in this thesis were investigated on different real case studies representing the demonstrators of the thesis partners
    corecore