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Continuous rolling production process of seamless tube has many characteristics, including multiperiod and strong nonlinearity,
and quickly changing dynamic characteristics. It is difficult to build its mechanism model. In this paper we divide production
data into several subperiods by 𝐾-means clustering algorithm combined with production process; then we establish a continuous
rolling production monitoring and fault diagnosis model based on multistage MPCA method. Simulation experiments show that
the rolling production process monitoring and fault diagnosis model based on multistage MPCA method is effective, and it has a
good real-time performance, high reliability, and precision.

1. Introduction

The deformation process of seamless tube production can
be summarized into three stages: perforation, extension, and
finish rolling. The main purpose of the perforation process
is to perforate a solid round billet into a hollow shell. The
main purpose of Elongator is to further reduce the cross
section and to make the shell improve on dimensional
accuracy, surface quality, and organizational performance.
After elongator rolling, steel tube is called shell, which
requires further molding in the finishing mill, in order to
achieve the requirements of he finished tube [1]. Continuous
rolling mill is an elongator which has the highest production
efficiency and superior product quality. So it has been widely
applied to the big steel mills. Online monitoring of oper-
ating parameters can effectively avoid accidents, eliminate
equipment damage, save a lot of maintenance costs, increase
running time, improve set utilization, and reduce spare parts
inventory and time. Process monitoring and fault diagnosis
has a very important practical significance for safe production
and scientific maintenance [2].

Reference [3] analyzed the causes of roll sticking steel and
gave several methods to avoid sticking steel but did not give a
sticking steel monitoring method. Reference [4] introduced
the rolling steel tube transverse wall and longitudinal wall
thickness error monitoring method, but it needs to introduce
expensive measuring instrument. Reference [5] introduced
the fault diagnosis methods for DC motor of rolling roll.
Reference [6] introduced a continuous rolling mill online
monitoring system based on virtual instrument technology,
but it monitored the variables separately and did not consider
correlation between the variables, which made some deep-
seated faults difficult to bemonitored. In the area of industrial
process, significant researches have been done for online
process monitoring and fault diagnosis [7–12]. Multivariate
statistical analysis techniques, such as principal component
analysis (PCA) [13–15] and partial least squares (PLS) [16–18],
have long been used for detection and diagnosis of abnormal
operating situations in many industrial processes.

Continuous rolling process is a batch process which has
typical multi-period and dynamic multivariate characteris-
tics. According to multi-period characteristics of continuous
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Figure 1: Time and displacement of rolling tube process.

rolling process, it can be divided into bite stage, stable rolling
stage and steel leaving stage. The production data has the
following characteristics:

(1) Large Amount of Data, High Dimension and Strong Cou-
pling. Seamless tube rolling process is a computer supervisory
and computer control industrial process. It need regularly
acquire system state variables and equipment status to be used
for display and control. Each cycle of seamless tube rolling
production process will produce tens of thousands of process
data. After accumulating, the amount of data is enormous.
At the same time the behavior of the rolling process is the
outcome of combining action of many variable factors which
have a strong coupling relationship.

(2) Industrial Noise andUncertainty. Because systemworks in
complex environments, the output signal of electronic sens-
ing devices is susceptible to noise. And it is also vulnerable to
the uncertainties.

(3) Multimode. Data is a reflection of the system state
changing. The data are not only in normal working state
but also in various kinds of abnormal state and fault state.
The former is the main part. The latter has a relatively small
amount of data, but it is indispensable in the knowledge
discovery and data mining.

(4) Staircase Distribution. In the biting stage the tube enters
rolls from the first to the eighth, and in the steel leaving stage
the situation is in turn. So the data is staircase distribution.

In this paper, by using 𝐾-means clustering algorithm
combinedwith production process, we establish a continuous
rolling production process monitoring and fault diagnosis
model based onmultistageMPCAmethod. Firstly, according
to the production process, we divide production data into
three subperiods including bite stage, stable rolling stage, and
steel leaving stage. Secondly, we use clustering algorithm to
further divide those larger changing stages. A satisfactory

effect is difficult to be obtained if using clustering algorithm
to classify the production data alone. We classify it combined
with production process. Finally we get a satisfactory moni-
toring result. Online monitoring and fault diagnosis system
not only can online monitor equipment but also can carry
out fault alarm and diagnosis timely. During the monitoring
process, it does not require the dedicated testers and does
not need professional and technical personnel to make an
analysis and judgment.

2. Analysis of Factors Affecting the Continuous
Rolling Production

In order to build the monitoring and fault diagnosis model,
we analyze the influencing factors for continuous rolling
production firstly.

As shown in Figure 1, the continuous rolling process can
be divided into three stages.

(1) Bite Stage.As shown in Figure 1, the head of steel tube
moves from point a to point b, and the tail moves
from point A to point B.

(2) Stable Rolling Stage. As shown in Figure 1, the head of
steel tube moves from point b to point c, and the tail
moves from point B to point C.

(3) Steel Leaving Stage. As shown in Figure 1, the head of
steel tube moves from point c to point d, and the tail
moves from point C to point D.

Factors affecting seamless steel rolling production process
are mainly the following: roller rotational speed, roller input
current, and roller torque.

(1) Roller Rotational Speed. In continuous rolling process, the
roller rotational speed is very important. If the speed is too
fast, the surface of shell cannot be completely eliminated.
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Figure 2: Arrangement and decomposition of a three-way array by
MPCA.

In addition, if the speed is too slow, the consumption of
electricity and other energy will increase.

(2) Roller Torque. The roller torque is one of the controlled
variables. It is controlled by the input current. The torque
directly affects the quality of steel tube. If torque is too small, it
cannot completely remove the blank of tube surface. If torque
is too large, shell will deform under the pressure. Reasonably
controlled torque of the rolling process is an important factor
which cannot be ignored. In order to save energy resources,
during the wait state, the torque will be reduced. When the
tube is rolled, the torque increases. When the tube leaves the
roll, the torque decreases.

(3) Roller Input Current. Roller current is one of the most
important control variables in the process of rolling. It is
an important factor to control torque and rotational speed.
Because the sensitivity of the current is higher, when the
pierced tube enters the stand mill, current increases quickly.
Then the roller rotational speed and roller torque increase in
order to roll smoothly. Current and torque are proportional
to the relationship. The current increases when the steel tube
gets into the roll.Then it tends to a stable state.When the tube
leaves the roll, current drops rapidly. So correctly controlling
the size and direction of current is an important part of the
process of rolling, and the current is themain control variable
in the rolling process.

3. Multiway Principal Component Analysis

Batch processes are repetitive production process. Their
data sets have one more dimension than the continuous
production process data set. We can use three-dimensional
data matrix 𝑋 = (𝐼 × 𝐽 × 𝐾), instead of the batch process
data collection, where the three dimensions 𝐼, 𝐽, and 𝐾,
respectively, represent the batch number of samples, number
of process variables, and the number of measuring points in
each operation [19, 20]. MPCA will unfold𝑋 = (𝐼 × 𝐽 ×𝐾) in

such a way as to put each of its vertical slices (𝐼 × 𝐽) side by
side to the right, which start with the one corresponding to
the first time interval. The resulting two-dimensional matrix
has dimensions𝑋(𝐼 × 𝐽𝐾) [21, 22] (Figure 2).

After three-dimensional data matrix 𝑋 is expanded into
two-dimensional data, it will be decomposed into a series
of principal components consisting of score vectors 𝑡

𝑗
and

loading matrices 𝑃
𝑗
, together with a residual matrix 𝐸 by the

principles of PCA. The MPCA model can be written as

𝑋 =

𝑘

∑

𝑗=1

𝑡
𝑗
⊗ 𝑝
𝑗
+ 𝐸, (1)

where the score vectors 𝑡
𝑗
is related only to batches and the

loading matrices 𝑃
𝑗
is related to variables and their time

variation. The noise or residual part 𝐸 is as small as possible
in a least squares sense.

4. Establish a Multiperiod Continuous
Rolling Production Process Monitoring
Model Based on 𝐾-Means and MPCA

4.1. Collecting the Production Data. Based on actual produc-
tion data characteristics of seamless steel rolling process, in
this paper we use ibaAnalyzer software to collect 20 data
under normal production condition. As shown in Table 1, we
select 24 production process indicator variables to establish a
monitoring model. In this paper, the three-dimensional data
matrix is 𝑋(𝐼 × 𝐽 × 𝐾). The three dimensions, respectively,
represent the batch number of samples, number of process
variables, and the number of measuring points in each
operation (𝐼 = 20, 𝐽 = 24, 𝐾 = 400). In order to obtain
vertical data slice 𝑋

𝑘
(𝐼 × 𝐽), we cut the three-dimensional

matrix along the direction of the third dimension. Thus
during a period we can get 400 time slice matrixes. By using
PCA for the 400 two-dimensional time slice matrix, we got
400 load matrixes and got the whole model load matrix by
taking an average.

4.2. Online Monitoring Based on PCA Method. The whole
PCA model can be defined as follows:

𝑃
∗
=
1

400

400

∑

𝑘=1

𝑃
𝑘
, (2)

where 𝑘 is the number of load matrix.
The number of principal components 𝐴∗ can be calcu-

lated by the cumulative contribution rate. In this paper, we
set 𝐴∗ = 6,

The cumulative contribution rate =
∑
𝐴
∗

𝑗=1
𝜆
∗

𝑗

trace (𝑆∗)
≥ 90%, (3)

where 𝑆∗ = diag(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝐽
) is an eigenvalues diagonal

matrix of the matrix𝑋.
The whole PCA load matrix 𝑃∗ is divided into two parts:

the main component space 𝑃∗(24 × 6) and the residual
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Figure 3: Seamless tube rolling process 𝑇2 control limits and SPE control limits.

Table 1: Measured variables for seamless steel rolling production
process.

Symbol Variables Unit
1 1st roller speed r/s
2 1st roller current A
3 1st roller torque N∗m
4 2nd roller speed r/s
5 2nd roller current A
6 2nd roller torque N∗m
7 3rd roller speed r/s
8 3rd roller current A
9 3rd roller torque N∗m
10 4th roller speed r/s
11 4th roller current A
12 4th roller torque N∗m
13 5th roller speed r/s
14 5th roller current A
15 5th roller torque N∗m
16 6th roller speed r/s
17 6th roller current A
18 6th roller torque N∗m
19 7th roller speed r/s
20 7th roller current A
21 7th roller torque N∗m
22 8th roller speed r/s
23 8th roller current A
24 8th roller torque N∗m

space ̃𝑃
∗

(24 × 18). Similarly, eigenvalue diagonal matrix 𝑆∗

is correspondingly divided into two parts 𝑆∗ and ̃𝑆
∗

�̃� = 𝑋 (𝑃
∗

)
𝑇

,

̂̃
𝑋 = �̃� (𝑃

∗

)
𝑇

,

𝐸 = 𝑋 −
̂̃
𝑋.

(4)

In current online monitoring and fault diagnosis, judging
whether statistics𝑇2 and SPE are over the limit is usually used
to determine whether faults happen. The control limits of 𝑇2
approximately obey 𝐹 distribution:

𝐷 ∼

𝐴
∗
(𝑛
2
− 1)

𝑛 (𝑛 − 𝐴
∗
)
𝐹
𝐴
∗
,𝑛−𝐴
∗
,𝛼
, (5)

where 𝐾 = 400 and 𝑛 is the number of samples data for
modeling. The control limits of 𝑇2 is shown in Figure 3(a).
For residual subspace, SPE

𝑘
of the PCAmodel approximately

obey 𝜒2 distribution [23, 24] at time 𝑘:

SPE
𝑘,𝛼
= 𝑔
𝑘
𝜒
2

ℎ
𝑘,𝛼

,

𝑔
𝑘
=

V
𝑘

2𝑚
𝑘

,

ℎ
𝑘
=
2 (𝑚
𝑘
)
2

V
𝑘

,

(6)

where 𝑔 is a constant, ℎ is the freedom degree of the 𝜒2
distribution, and V

𝑘
and 𝑚

𝑘
are, respectively, the mean and

variance of the square prediction error at time 𝑘. SPE control
limits are shown in Figure 3(b).

In order to monitor the rolling process, first we need
to obtain the measured data of new production period,
standardize the new data, calculate the main component and
the prediction error of the data by formula (7) and check
whether the 𝑇2 and SPE are beyond their own control limit.
If the statistic exceeds the control limit, it indicates that a
fault may occur at the time. We now should analyze possible
causes of the failure by variable 𝑇2 and SPE time-varying
contribution plots and exclude or isolate the faults. Consider

𝑡 = 𝑥𝑃
∗

,

𝑒 = 𝑥 (𝐼 − 𝑃
∗

(𝑃
∗

)
𝑇

) ,

𝑇
2
= 𝑡
𝑇
(𝑆
∗

)
−1

𝑡,

SPE = 𝑒𝑒𝑇.

(7)
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Figure 4: 𝑇2 and SPE plot for MPCA monitoring results of the normal rolling process.

As shown in Figure 4, under normal conditions, moni-
toring plot of SPE has an obvious alarm phenomenon during
the first 50 sampling times and the last 50 sampling times.We
can explain the reason for alarm in the process of monitoring
combining with the rolling process. The first 50 samples are
in the bite stage, where current, speed, and torque suddenly
change due to steel tube enter. The last 50 samples are in
the steel leaving stage, where speed, current, and torque
decrease sharply because of tube leaving. Because of sudden
changes of variables, standardized data still remain large
deviations. Therefore, PCA monitoring model appears alarm
phenomenon. So it is necessary to establish a multistage
MPCA monitoring model.

4.3. Build a Multistage MPCA Monitoring Model according
to Production Process. According to the process, rolling
production process can be divided into three stages: bite
stage, stable rolling stage, and steel leaving stage. Then this
paper established a multistage MPCA monitoring model
according to the three stages.

As shown in Figure 5, the situation of the steel leaving
stage has improved. But alarm phenomenon still exists and
the monitoring effect still needs to be improved. So the
bite stage and steel leaving stage should be further divided.
𝐾-means and Fuzzy 𝐶-means (FCM) clustering algorithm
are commonly used. FCM algorithm does not consider any
information related to the image space continuity, so it is
highly sensitive to noise. However, 𝐾-means algorithm is
simple and fast. Particularly when dealing with the large data
sets, it has a very high efficiency. So this paper chooses 𝐾-
means clustering algorithm as a segmentation method.

4.4. 𝐾-Means and Multistage MPCA Combined to Build a
Monitoring Model. 𝐾-means algorithm is to cluster 𝑛 objects
based on attributes into 𝐾(𝐾 < 𝑛) partitions. It assigns each
object to the cluster which has the nearest center. The center
is defined as the average of all the objects in the cluster, which
starts from a set of random initial centers. The main steps of
𝐾-means clustering algorithm is as follows.

(1) Set up the cluster number 𝐾.
(2) Directly generate𝐾 random points as cluster centers.
(3) Assign each other points to the nearest cluster center.
(4) Recalculate the new cluster centers after new points

are clustered into the clusters.
(5) Repeat 3 and 4 until cluster centers do not change.

According to process and the 𝐾-means algorithm for
segmentation, number of principal components retained in
each substage PCA model is 𝐴∗

𝑐
, which can be obtained by

formula (3). The whole PCA load matrix 𝑃∗
𝑐
is divided into

two parts: the main component space 𝑃∗
𝑐
and the residual

space ̃𝑃
∗

𝑐
, which can be obtained by formula (4). Similarly,

eigenvalue diagonalmatrix 𝑆∗
𝑐
is correspondingly divided into

two parts 𝑆∗
𝑐
and ̃𝑆

∗

𝑐
. SPE control limits can be obtained by

formula (4), 𝑇2 control limits is defined as follows:

𝐷
𝑘
∼

𝐴
∗

𝑐
(𝑛
2

stage 𝑐 − 1)

𝑛stage 𝑐 (𝑛stage 𝑐 − 𝐴
∗

𝑐
)

𝐹
𝐴
∗

𝑐
,𝑛stage 𝑐−𝐴

∗

𝑐
,𝛼
. (8)

As shown in Figure 6, when the number of stages is 7
(bite stage is divided into three stages, no segmentation stable
rolling stage, and steel leaving stage is divided into three
stages.), 𝑇2 and SPE are beyond their own control limits. The
model has a good performance in monitoring.

According to the contrast of the foregoing analysis, we
can easily conclude that seamless tube continuous rolling
production process has too many characteristics, includ-
ing multiperiod, strong nonlinearity, and quickly changing
dynamic characteristics. It is hard tomonitor production pro-
cess by the traditional MPCA method. In this paper, we use
multistage MPCA method, according to production process
and clustering algorithm. This method can solve nonlinear
problem of seamless tube rolling production process and
improve the accuracy of online monitoring. At the same
time the method has a strong guiding significance for the
production.
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(b) SPE monitoring plot

Figure 5: 𝑇2 and SPE plot for multistage MPCA monitoring results of the normal rolling process.
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Figure 6: 𝑇2 and SPE plot for 7 stages monitoring results of the normal rolling process.

Through the experiment, we find that the number of
segments is larger and the precision is higher. But at the
same time it easily causes misjudgment. In this paper, after
several experiments, we finally decided to select 𝐾 = 7,
which both can be very good for rolling production process
monitoring and avoid misjudgment. Compared with the
situation without segmentation, segmentation model can
more accurately judge running state of rolling process, which
has a positive meaning for actual production.

5. Fault Diagnosis

By monitoring, the test method based on statistic can only
monitorwhether faults occur and the approximate time of the
occurrence, but it could not determine the source of the fault.
The method of contribution plot provides possibilities of
determining the fault sources. It can reflect the contribution
to the statistics from variables at each moment.

For the main component and residual subspace, there are
two contribution plots that can be used for fault diagnosis—
𝑇
2 contribution plot and SPE contribution plot.

The contribution to the 𝑎th principal component 𝑡
𝑎
from

𝑗th process variable 𝑥
𝑗
can be defined as follows:

𝐶
𝑡
𝑎
,𝑥
𝑗

=

𝑥
𝑗
𝑝
𝑗,𝑎

𝑡
𝑎

(𝑎 = 1, . . . , 𝐴; 𝑗 = 1, . . . , 𝑚) . (9)

The contribution to the statistic SPE from the 𝑗th process
variables is

𝐶SPE
𝑥
𝑗

=

(𝑥
𝑗
− 𝑥
𝑗
)
2

SPE
.

(10)

In order to verify the performance of the multistage
monitoring model, this paper introduces two typical fault
data for monitoring and fault diagnosis.

Fault 1. 1st roller speed fault, from75th to 125th sampling time,
the roller speed is 0.

Fault 2. 1st roller current fault, from 70th to 130th sampling
time, the roller current is 0.
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Figure 7: 𝑇2 monitoring plots of fault 1.
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Figure 8: SPE monitoring plots of fault 1.

5.1. Fault Diagnosis for the 1st Roller Speed. As shown in
Figure 7, for fault 1, monitoring plots of SPE have an obvious
alarm phenomenon, which 𝑇2 monitoring plots do not
have. For comparison, 𝑇2 contribution plot are still drawn
together with the SPE contribution plot. In order to diagnose
the cause of the fault, this paper, respectively, drew main
component contribution plots, 𝑇2 contribution plots, and
SPE contribution plots of 60th, 120, and 240th sampling
time. As shown in Figure 8(a), MPCA model does not have
an obvious alarm phenomenon in the fault time. As shown
in Figure 8(b), multistage MPCA model can quickly and
accurately detect the fault.

As shown in Figure 9, the contribution rate of each
principal component is not the same at different time. Near
the fault time, the first principal component contribution
rate was larger. Away from the fault time, the first principal
component contribution rate is less than the second principal
component. This paper analyzes contribution rate to the first
principal component from process variables. According to
contribution rate from each variable to𝑇2 and SPE, this paper

studied and determined the fault sources. They are shown in
Figures 10 and 11.

Because 𝑇2 monitoring plots do not have an obvious
alarm phenomenon, 𝑇2 contribution plot shown in Figure 10
does not detect the fault variable. As shown in Figure 11, in
the fault time, the first variable (1st roller speed) has larger
contribution rate to the first principal component. From the
results we can see that SPE monitoring plots have an obvious
alarm phenomenon. According to the SPE contribution rate,
we can diagnose the fault. So the proposedmethod is correct.

5.2. Fault Diagnosis for the 1st Roller Current. As shown
in Figure 12, for fault 2, monitoring plots of SPE have an
obvious alarm phenomenon, which 𝑇2 monitoring plots do
not have. For comparison, 𝑇2 contribution plots are still
drawn together with the SPE contribution plot. In order to
diagnose the cause of the fault, this paper, respectively, draws
main component contribution plots, 𝑇2 contribution plots,
and SPE contribution plots of 50th, 125, and 250th sampling
time. As shown in Figure 13(a), MPCA model does not have
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Figure 9: Principal component contribution plots of fault 1.
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Figure 10: 𝑇2 contribution plots of fault 1.
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Figure 11: SPE contribution plots of fault 1.
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Figure 12: 𝑇2 monitoring plots of fault 2.

an obvious alarm phenomenon in the fault time. As shown
in Figure 13(b), multistage MPCA model can quickly and
accurately detect the fault.

As shown in Figure 14, the contribution rate of each
principal component is not the same at different time. Near
the fault time, the first principal component contribution
rate was larger. Away from the fault time, the first principal
component contribution rate is less than the second principal
component. This paper analyzes contribution rate to the first

principal component from process variables. According to
contribution rate of each variable, this paper studies and
determines the fault sources. They are shown in Figures 15
and 16.

Because 𝑇2 monitoring plots do not have an obvious
alarm phenomenon, 𝑇2 contribution plot shown in Figure 15
does not detect the fault variable. As shown in Figure 16, in the
fault time, the second variable (1st roller current) has larger
contribution rate to the first principal component. From
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Figure 13: SPE monitoring plots of fault 2.
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Figure 14: Principal component contribution plots of fault 2.

the results we can see that SPEmonitoring plots have an obvi-
ous alarm phenomenon. According to the SPE contribution
rate we can diagnose the fault. So the proposed method is
correct.

6. Conclusions

According to strong nonlinearity and dynamic property of
the seamless tube continuous rolling production process, this

paper divides production data into subperiods by 𝐾-means
clustering algorithm combined with production process.
Then we establish a continuous rolling production process
monitoring and fault diagnosis model based on multistage
MPCAmethod.The results have shown that themodel devel-
oped in this paper has better performances in monitoring
and fault diagnosis. Meanwhile the proposed method can be
extended to the other industry processes.
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Figure 15: 𝑇2 contribution plots of fault 2.
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Figure 16: SPE contribution plots of fault 2.
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