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General introduction

In the last decade, small and medium-sized companies are evolving towards Industry 4.0,
which is an evolution from automatic to cyber-physical systems (CPS), fully integrated,
automated, and optimized. This evolution offers promising perspectives to enhance the
reliability, availability, maintainability, and safety systems but also poses many challenges
in system health management. Indeed, due to ultra-connection properties, when a sim-
ple anomaly occurs in a component of the system, it will impact the quality product line
and leads to serious faults in subsystem operation, and therefore causes a series of reper-
cussions such as system failure, downtime, high maintenance costs, and even casualties.
For instance, one can cite the refinery explosion disaster that occurred in Philadelphia on
June 21%%, 2019 (Coglianese, 2019). During the production activity, a failing pipe (faulty
elbow joint) due to the corrosion from the hydrofluoric acid, which was in the process fluid,
caused disastrous refinery fire and explosions. The incident led the release of thousands of
pounds of potentially deadly chemicals into the air, including hydrofluoric acid as shown
in Figure 1.

e

Ejection of three large
fragments of refinery
equipment

failing pipe line

Explosion and
propagation of
acids in the air

Figure 1: Refinery explosion disaster.



2 Introduction

In this regard, it is crucial to continuously monitor and evaluate the equipment’s health
state to detect anomalies at the earliest possible stage, to diagnose their origin and predict
the failure time and thus act in advance to avoid disaster events in human, environmental
and economic terms.

For these reasons, predictive maintenance policy has been developed and has shown its
superiority over other traditional ones. It aims to project the system’s health state into
the future to predict the failure event and therefore to schedule, in advance, a maintenance
activity. This latter action allows avoiding downtime and significantly reducing the main-
tenance cost, especially for big-size companies that should have a large quantity and more
important industrial systems. For illustration, according to the synthesis of some literature
works (Zhang, 2018, Deloux, 2008), Figure 2 shows an overview of the maintenance costs
comparison between the corrective, preventive, and predictive maintenance strategies.

Impact of predictive maintenance over long-time horizon
—> Predictive action without system downtime

Impact of corrective maintenance over long-time horizon
—> System downtime with corrective action

Impact of preventive maintenance over long-time horizon
—> Preventive action without system downtime

Costs

?
Accumulation of maintenance costs over time

Time

Figure 2: Corrective vs. preventive vs. predictive maintenance costs.

To improve the performance of a predictive maintenance strategy, it is necessary to
obtain the actual and future information about the system, which is done through Prog-
nostics and Health Management (PHM) algorithms. On one hand, PHM allows effectively
monitoring the system behavior and facilitate the detection and diagnostics of its faults as
well as the prognostics of failures. On the other hand, it allows system health management
to minimize the overall maintenance cost and to enhance the availability, reliability and
security of the system.

In literature, the PHM techniques are classified into three groups, model-based, data-
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driven, and hybrid. Model-based approaches use mathematical equations to represent
system behavior. As this latter behavior can be represented by a set of physical laws, this
approach gains in terms of precision and allows to interpret well the different phenomena
that occur in the system. The second group is based on the analysis of data collected
from different types of sensors. It uses sensors placed on the system parts needed to be
monitored and then exploits the recorded data from these sensors and transforms them
into another form of information that allows the assessment of the system. The hybrid
approach aims to use both of the system model and its sensor measurements to interpret
global behavior.

In the context of industry 4.0, the systems are more complex and therefore the construc-
tion of their physical model becomes infeasible. Besides, with the development of sensing
technologies, the data-driven approaches and their hybrid models are gaining more and
more attention making them the most appropriate for monitoring. Within this framework,
our research work is oriented towards the development of data-driven PHM approaches.
This work is part of a European project, namely “SMART”, whose main objective is to
enhance the manufacturing toward industry 4.0. In this project, we focus on developing
intelligent and innovative monitoring algorithms for fault detection, diagnostics, prognos-
tics, and dynamic production and maintenance planning. Figure 3 gives an overview on
the SMART project and its main objectives.

Improvement of innovation, production and competitiveness of industries

N &Nt ALGR
Development of smart monitoring and analysis methods

N\ETALLICADOUR

miterres [E

POCTEFA

Reduction of corrective and time-planned maintenances

[A]
ITAINNOVA T2

iCelera  inGENIA
UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Improvement of reliability, availability and security of industrial systems

Optimization of quality processes and means of production

Figure 3: SMART project presentation.

The value of our work is further enhanced by a real demonstrator (industry) during an
international mobility support (IMS) in Canada. This collaboration context is summarized
and presented in Figure 4.
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Figure 4: Collaboration context of the thesis.

International Mobility

Research questions and main contributions

One of the challenges for PHM posed by the revolution of Industry 4.0 is the increase
of interconnections at multiple levels: components, sub-systems, and systems. Hence, the
systems become more complex, more dynamic, and more autonomous. Thus, it requires
a more intelligent system health management methodology that allows handling different
anomalies of numerous connected equipment. It also enables us to deal with dynamic
system behaviors in various operation conditions and even more adaptive with the effects
of automatic control processes. In that perspective, it is necessary to address the following
research questions.

1. Construction of a robust health indicator for fault detection

To meet the above-mentioned challenges, it is essential in the first step to build a robust
health indicator (HI) that allows effectively characterizing the different system states. This
HI should handle uncertain, heterogeneous, and incomplete data. Furthermore, it should
be reliable for a wide range of fault types, different measurements, and operating condition
variations.

2. Development of an online diagnostic method for dynamic systems with
unknown fault types

Once the HI is built, it allows separating different health states of the system and can
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be used as the pattern information for an automatic diagnostic procedure. Technically,
the diagnostic methods based on pattern recognition techniques aim to learn, in an offline
phase, the system health states represented by the constructed health indicators (HIs) and
then use the model to identify the membership class of new observations. However, these
methods have a critical drawback, that is their performance strictly depends on the prior
knowledge of fault types labels.

In the context of Industry 4.0, as systems become more complex and more dynamic, it
becomes difficult to recognize all eventual faults that will occur during the process. One
can cite a multi-axis robot, it is composed of multiple arms that collaborate in series and
can perform complicated motions during the machining process. Considering a six-axes
robot, there exist a large number of cases, in which the movement drifts can come from
the deviation of any axis or any combination of axes. Therefore, it is necessary to develop
a new diagnostics method that allows effectively diagnosing online the origin of unknown
drifts whose patterns have not been recognized before in the offline phase.

3. Development of an effective hybrid adaptive approach for failure prognostics
of controlled processes in long-term horizon

After detecting and diagnosing an anomaly, the current system state can be projected in
future operation conditions to estimate its remaining useful life. However, under controller
activities, the future operation parameters will be not fixed but depend on the system state
at that moment. For instance, when detecting the anomaly, the controller can attempt to
fix it by updating the operation setting points. Consequently, this poses multiple challenges
on the prediction of the system residual lifetime (SRUL) in long-term horizon. Hence, it
is essential to develop an adaptive prognostics method that allows precisely predicting the
SRUL in long-term horizon by taking into account the instantaneous changes in the system
caused by the controllers’ activities.

Thesis outlines

The previously mentioned contributions will be positioned with regard to the state of the
art in Chapter 1. Then, Chapters 2, 3, and 4 present in details each contribution starting
with an introduction and concluding by an application(s) and discussions on the obtained
results.

o Chapter -1- Literature review and problem statement: The first chapter of
this manuscript covers a global overview on data-driven approaches for condition
monitoring in PHM framework. In details, this chapter reports three main parts:
fault detection, fault diagnostics, and failure prognostics. The first part aims to
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discuss the literature works on data processing algorithms used to build HIs to detect
faults. Here we introduce different techniques and strategies used to transform raw
data into another form of information (HIs) that represent the system health state
and then discuss the advantage(s) and the limitation(s) of each technique. The
second part relies on addressing fault diagnostics methods. In this case, we report
the literature works on pattern recognition methods due to their large application for
isolating, localizing, and identifying the origin of faults. Also, we discuss the benefits
and what should be taken into account to further improve these methods. Next, we
move to the prognostics concept, which has only emerged since the 2000s, through a
synthesis of the developed works in this research field. Finally, the analysis of major
limitations in the literature allows us to position our research work and highlight the
methodology undertaken to contribute and overcome them.

Chapter -2- New health indicator construction for fault detection: This
chapter presents the first contribution of our work that presents a generic method-
ology of data processing to build an effective and robust HI. This new HI is easy
for implementation and can be applied to detect various faults of most of rotating
and electrical machines. Its robustness relies on the capacity on detecting major of
the fault types that exist in a rotating machine such as bearing, gear, rotor bar, and
also tool wears in machining systems. Moreover, this indicator is also able to pro-
ceed with heterogeneous measurements used for monitoring, such as current, voltage,
vibration, force, and torque signals. Finally, another benefit of this indicator is its
capability of detecting faults in different systems operating conditions. To highlight
the performance of the proposed HI, we investigate different case studies and evaluate
the relevant robustness metrics.

Chapter -3- Information fusion for online diagnostics of unknown fault
types: Chapter 3 aims to address the online diagnostics of unknown fault types in
dynamic systems, particularly machining robots. In detail, we develop a new method
based on information fusion of two monitoring techniques. The first one aims to
build the diagnostics model for the identification of the robot axes drifts origin in
the offline phase using the previously proposed HI. The second one relies on a new
processing technique that allows locating the origin of unknown drifts and therefore
update online the diagnostics model. The effectiveness of the proposed method is
highlighted by investigating a real manufacturing system and a part of industry 4.0
framework, i.e. machining multi-axis robot.

Chapter -4- Adaptive prognostics approach in a controlled process: The
last contribution of our work focuses on handling the challenges posed by fault prog-
nostics of controlled processes. Particularly, we develop an adaptive method based
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on information fusion of multiple machine learning predictions in different horizon
times. The proposed method allows capturing the degradation trend in long-term
while taking into account the state changes in short-term caused by controller ac-
tivities, to improve the accuracy of prognostics results. We apply this method to a
real case study where we attempt to predict the time-to-clean of the heat exchanger
tubes in the pulp and mill industry.

Finally, a general conclusions, as well as perspectives considered for future work is given
in the last part of the thesis.

Figure 5 presents a synoptic scheme of the thesis, illustrating the overall work presented
in each chapter.

Data processing

O
_/

Feature extraction "
Multi-system Chapter

Fault detection application n
o Hls construction / L

Fault detection

/ SMART Project \

Data-driven
PHM algorithms

—
7 N

Offline diagnostics
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Chalpter State of the art Fault diagnostics M la.XIS .robot 75 er
} <= Information fusion / doBlication
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Limitations

v

\\ Positioning /
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N

Pulp and mill industry Chapter
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Long-term prediction
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Information fusion :
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Figure 5: Overall synoptic scheme of the thesis.
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10 Chapter 1. Literature review and problem statements

1.1 Introduction

As mentioned in the general introduction, this thesis aims to deploy intelligent monitoring
algorithms for fault detection, diagnostics, and failure prognostics of complex and dy-
namic systems in the context of Industry 4.0. Regarding the difficulties when constructing
exploitable physical models, and the availability of multiple data sources (e.g. sensor mea-
surements, and expert knowledge), data-driven PHM approaches are the most appropriate
to address the complexity of this kind of modern industry. Hence, this chapter of the
manuscript presents a comprehensive overview of data-driven PHM approaches. It offers
a systematic review of existing works in the literature in order to position our contribu-
tions. To do this, in Section 1.1, a brief overview of PHM and its constituent elements
are presented. Next, the three principal modules (fault detection, fault diagnostics, and
failure prognostics) are deeply discussed. Specifically, Section 1.3 provides an overall view
on data processing techniques to construct health indicators for fault detection. Section
1.4 is dedicated to present fault diagnostics methods using pattern recognition techniques
while in Section 1.5 a general summary of the latest developments in prognostics methods
is presented. Finally, based on these syntheses, a scientific positioning with regard to each
of the above sections within the SMART project demands is discussed in Section 1.6.

1.2 Data-driven system health management in PHM
framework

The British standards (BS), updated in 2017, defines predictive maintenance (PdM) as
“condition-based maintenance carried out following a forecast derived from repeated analy-
sis or known characteristics and evaluation of the significant parameters of the degradation
of the item” (EN, 2017). In other words, it can be simply defined as “The set of actions
that maintain systems in good operational conditions based their current health states to
anticipate failures and enhance the reliability, availability, maintainability and safety sys-
tems”. To reach all of these requirements, the PHM provides the necessary tools, methods
and algorithms that allow to reach these requirements.

PHM was developed in the early 2000s and constitutes a full monitoring process with a
compilation of eight modules: system analysis, data acquisition, data processing, fault de-
tection, fault diagnostics, failure prognostics, decision making, and maintenance scheduling
(Jouin et al., 2013). On one hand, it allows fault detection diagnostics and failure prognos-
tics. On the other hand, based on the results of the latter activities, PHM facilitates system
health management to anticipate failures and downtimes. The general structure of PHM
is shown in Figure 1.1. From this figure, one can group the overall process into four main
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activities consisting of two interdependent parts. These activities are system characteristic
study, condition monitoring, degradation modeling, and system health management. The
following subsections give an overview of each part.
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Figure 1.1: Overview of the PHM system.

1.2.1 System characteristic study

The first task in system health management is to analyze the studied system to identify
the appropriate physical parameters leading to sensors placement and data acquisition to
monitor the system degradation process. Figure 1.2 presents a simplified overview of a
system analysis procedure for condition monitoring.

In the beginning, this step aims to explore the architecture, structure, and functionality
of the system in order to isolate its failure mechanisms. This latter action, also known
as critical component identification, can be performed using many approaches such as
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Figure 1.2: Hlustration of system analysis for identification of critical components.

experience feedback, failure tree, event tree, cause, and effect tree, or through operator
knowledge in case of insufficient information about the system (Gouriveau et al., 2016).
Next, once the critical components are localized, the appropriate physical parameters are
chosen to be the parameters that reveal the failure modes. Technically, these parameters
allow reflecting the degradation phenomena of the components to identify their health
states and track the degradation evolution. Finally, the last task of this step consists of
collecting, and this, by exploiting the already installed sensors in the system or by choosing
new proper sensors and installing them in the appropriate places.

1.2.2 Condition monitoring

In this second step, it is recommended for industrial companies to install a reliable acqui-
sition system for an optimal data quality and consequently a more accurate and efficient
monitoring.

After collecting and storing the raw data, these measurements are injected into pro-
cessing algorithms, one of the most important steps in PHM (see Figure 1.3).
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Figure 1.3: Data processing and HI construction for system monitoring.

System fault detection

The data processing starts by checking the observations (pre-processing) to verify if
there are missing values, noises, or outliers. If true, it is necessary to apply filtering
techniques to remove outliers and reduce noises, and also imputation techniques to handle
missing values. Then, if the quality of the data is good, they are processed to extract
useful features and build health indicators that detect the different health states of the
system. For fault detection and diagnostics (FDD) purposes, these health indicators aim
at identifying, localizing, and interpreting the system states (i.e. healthy state, faulty state
1, faulty state 2, etc.) (Lee et al., 2014). In general, the FDD health indicators take a form
of separated patterns making it easy to assign each pattern to the corresponding health
state of the system. Besides, for prognostics, the constructed health indicators represent
the system’s degradation trend over time. These indicators are an ensemble of observations
that represent the system behavior from its nominal condition (healthy state) to its critical
state (failure) (Goebel et al., 2008). The effectiveness of the constructed health indicators
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in both diagnostics and prognostics depends on the processing algorithms, that at least,
provide efficient results for the modeling step.

1.2.3 Degradation modeling

After the data are successfully processed, an analytical model is constructed based on the
health indicators to automatically provide information about the system’s health state
and generate alarms or alerts when this system has a fault or reaches a critical issue. This
model is a tool of diagnostics or of prognostics that represents the system’s behavior by
using only the already processed data. Because, in data-driven approaches, the obtained
results from the processing step need to be approximated in an automatic model that will
be used, on one hand, as a predictor of the system health state, on the other hand, as a
model that reflects the system behavior (Medjaher et al., 2012). Hence, in diagnostics, this
model can be a classifier algorithm that indicates the actual system health state, while it
can be a regression predictor that estimates the RUL for prognostics purposes as shown in
Figure 1.4.
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Figure 1.4: System health states modeling.
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1.2.4 Health management

In general, obtaining the output information of constructed diagnostics and prognostics
models is not sufficient to maintain the system in good operational condition. Indeed, be-
sides generating alarms when detecting anomalies, it is necessary to decide on system health
management, such as scheduling maintenance actions or production planning. Hence, in
addition to the current system states, one needs to acquire complementary information,
e.g. production plan and inventory management, for making proper decisions in unex-
pected new situations (Mobley, 2002).
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Figure 1.5: System health management overview.

Figure 1.5 shows an overview of a system health management steps based on the system
modeling report. Mainly, these steps are in form of questions, e.g. Where is the location
of the fault? What to do in this case?” Whose engineers are available for the maintenance
task? etc. For example, let assume that the constructed model indicates that the system
has a defect in a specified component or this component will fail after a specified time.
This information is automatically associated, on one hand, with the time of the availability
of the component, on the other hand, with operators’ agenda for fast maintenance action



16 Chapter 1. Literature review and problem statements

scheduling. Thanks to this complete information, the time that company managers spend
on these tasks can be reduced, and therefore the emergency management costs will be
saved.

Within the data-driven PHM framework presented above, and according to the SMART
project’s objectives, this thesis focuses on three principal tasks: fault detection, diagnostics,
and failure prognostics. The following sections aim to report the literature works related
to these contributions.

1.3 Health indicators construction

As previously mentioned, the data processing step is one of the most important pillars in the
PHM process. In general, the data processing techniques aim to extract meaningful features
from the recorded raw data that, at least, provide enough information on the system’s
health state. Then, these features are directly used as health indicators or combined
to be then projected on a graphical space to reveal the system health states (Nguyen and
Medjaher, 2020). This health state projection step relies on what is called system signature
analysis which allows us to isolate the healthy state of the system from its faulty states
(Benbouzid, 2000).
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Figure 1.6: Signal processing techniques.

From the literature reviews (Benbouzid, 2000, Gouriveau et al., 2016, Atamuradov
et al., 2017, Aggarwal and Chugh, 2019), the already existing methods of data processing
can be classified into three groups: time domain, frequency domain and time frequency
domain (Figure 1.6).
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1.3.1 Time domain

The time-domain techniques aim to extract statistical features from raw data. These
features are developed on the basis of mathematical laws aiming to provide accurate results
(Sait and Sharaf-Eldeen, 2011, Medjaher et al., 2013, Soualhi et al., 2016, Chen and Li,
2017, Khlaief et al., 2019). Table 1.1 shows mathematical expressions of the most common
features that are used as health indicators for fault detection of industrial systems.
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Table 1.1: Proposed temporal features for HI construction in literature.

Among them, the peak value is the simplest feature developed in statistics. It calculates
the absolute of the max value of an ensemble of observations to evaluate their high tendency.
This latter tendency varies from a state to another (i.e. normal, abnormal) according to
observation values (low, high).

The mean (AVG) value aims to evaluate the average of the signal’s tendency and

generally is used to smooth data that present noises or for normalizing all observations as
presented in StD, SKW, KUR, etc.

The root mean square (RMS), also known as quadratic mean, mathematically, it calcu-
lates the square of all observations (positive and negative) of a signal and then estimates
the average of these values under the square root to finally obtain the RMS. In practice,
this calculation defines the energy of a signal, it allows evaluating variations in a system by
observing the changes in the signal amplitudes. In the case of a healthy state of the system,
the averaged amplitudes of the recorded signal are supposed to be constant. Otherwise,
in case of anomaly appearance, the instantaneous amplitudes will vary and consequently
indicates a disturbance in the system.

The crest factor (CF) is a combined characteristic between the RMS and MAX features.
It is used to identify the impulse amplitudes of a signal by comparing these impulses to a
defined threshold. If the majority of the calculated impulses are greater than the defined
threshold, it is therefore related to a system anomaly.
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The standard deviation (StD) is used to evaluate the dispersion of a signal using the
RMS equation and by normalizing each observation to the mean value of the signal. It
can be used as an indicator to evaluate the system health state by calculating the disper-
sion of the observations in a specified given time and, based on it, interpret the system
functionality i.e. if it could be considered as a healthy state or not.

The skewness (SKW) is the cubed ratio between the distance of each observation and the
standard deviation of the overall signal, its principal function is to evaluate the symmetry
and asymmetry of signal distribution. This distribution will be symmetric in the case
where the skewness is equal to 0, otherwise, the distribution will be asymmetric with a
positive or negative rate and can be interpreted as a faulty state in monitoring systems.

The feature Zero-order figure of merit (FMj) is a temporal feature extracted in the
frequency domain. It calculates the ratio of the peak-to-peak amplitude of a signal and
the sum of its spectrum values.

The kurtosis (KUR) represents the fourth moment normalized by the square of the
variance, it allows calculating the peakedness of signals. It is a good feature to be used for
detecting faults and also evaluating their severity.

The energy ratio (ER) is the ratio between the RMS of the raw signal and the RMS of
the difference signal which is the difference between the raw signal and its AVG value. Its
interpretation is that when the difference is regular, that means the system operates under
good conditions, otherwise it means that an anomaly occurs. Also, this feature is good for
the detection of heavy faults.

The fourth-order figure of merit (FM,) indicator is constructed by calculating the differ-
ence signal and then apply the KUR feature on the obtained new signal. Its functionality
is to evaluate the severity degree of the detected heavy fault.

Table 1.2 presents the relevant literature works that use temporal health indicators and
techniques to detect faults in different industrial systems using different measurement types
and system operating conditions. From this table, it can be seen that the temporal features
are widely used to detect faults in different components (gears, bearings, machining tools,
etc.). Their advantages and disadvantages are summarized in Table 1.3.

1.3.2 Frequency domain

The frequency-domain allows analyzing the raw data through frequency transform meth-
ods, such as fast Fourier transform (FFT), Hilbert transform (HT), cepstrum transform
(CP), spectral kurtosis (SK), etc. These techniques aim to convert each time-series obser-
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Table 1.2: Synthesis on time features application for fault detection.

Advantages

Disadvantages

Easy implementation

Fast computation time

Difficult to detect faults in different conditions
Cannot identify the origin of the faults

Can reflect physical characteristics Sensitive to data types

Table 1.3: Advantages and disadvantages of existing temporal features.

vation into a frequency value that is sensitive to the anomaly appearance. This frequency
is called characteristic frequency and can be considered as health indicators of the system.

Technically, the frequency values obtained by these methods are compared to the ones
calculated theoretically to verify whether or not there is an anomaly in the system. If
the spectrum extracted by the frequency transform techniques does not correspond to the
theoretically calculated one, that means that the system presents an anomaly, otherwise,
the system is in a good health. In fact, some defects can be represented by their char-
acteristic frequencies. For example, in electrical machines, bearing, gear, rotor bar, rotor
shaft and other components in these engines has their own frequency of defect and which
are evaluated mathematically by their equations. These defects are successfully detected

with spectral analyzes. Multiple studies have shown their effectiveness in detecting and
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localizing these defects.

One can cite the authors in (Cheng et al., 2010), they extracted fault characteristic
frequency to detect the broken teeth of a gearbox using envelope analysis, while in (Mehala
and Dahiya, 2008), the authors used the FF'T transform to detect and localize multiple gear
fault types such as a worn tooth, broken tooth and gear unbalance (Wu et al., 2012). The
presented work in (Rai and Mohanty, 2007) used the HT to detect the different bearing
element faults (inner race, outer race, and rolling ball). Another work was proposed in
(Saidi et al., 2017) which used the peaks of SK as a health indicator for detecting the
evolution of the fault severity of wind-turbine bearing.

Table 1.4 summarizes the main advantages and disadvantages of frequency analysis
works. They do not require a lot of time to perform and nor much data to extract the
characteristic frequency of faults. Also, the major benefit of this type of analysis is its
ability to locate the origin of the fault as well as to locate several faults in the same signal,

simultaneously.
Advantages Disadvantages
Can localize the origin of faults Cannot detect faults in non-stationary conditions
Do not require a lot of time Loss information in high harmonic levels

Do not require amount of data  Require signal spectrum knowledge

Table 1.4: Advantages and disadvantages of frequency analyzes.

However, regardless of the capacity of frequency-domain analysis, these techniques have
some disadvantages such as the loss of information when transforming the time-series signal
into frequencies due to the non-uniformity of the signals known as non-stationary condi-
tions. Moreover, note that such techniques require signal spectrum knowledge and are
limited to the equipment having fault characteristic frequencies. For example, consider-
ing the machining tool of computer numerical control machine (CNC) and/or multi-axis
machining robots, no existing studies identified their fault characteristic frequencies.

1.3.3 Time-frequency domain

To cope with time and frequency domain limitations, time-frequency methods are devel-
oped. They analyze the raw data in both of the time and frequency domains. Especially,
this combination represents the energy of the signal waves (see Figure 1.6 by using the
temporal and spectral features. It allows building effective health indicators to well reveal
system health states (Jardine et al., 2006). There exists numerous techniques applied for
fault detection such as wavelet transform (WT), Hilbert-Huang transform (HHT), short-
time Fourier transform (STFT), Wigner-Ville distribution (WVD), Choi-Williams distribu-
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tion (CWD), etc. According to the literature works, one can remark that the applications
of these techniques can be classified into two groups.

The first one consists of signal processing in the time domain and then injecting this
output in frequency analysis. For instance, the authors in (Yeap et al., 2018) extracted,
first, the signal envelope and then used the STFT to separate the healthy state from the
faulty state of capacitors. In (Rahman and Uddin, 2017), the authors proposed to extract
KUR feature from the raw data and then used an ensemble of frequency and time-frequency
techniques to evaluate the severity of a motor rotor eccentricity fault. Besides, the authors
in (Li et al., 2018b) selected the most appropriate ones among multiple temporal features
and then used the several time-frequency transforms to identify and specify the different
faults of bearing elements.

The second group is to inject the raw data observations into a time-frequency analyzer
and then use temporal features to extract and to build the health indicators. For instance,
the presented work in (Soualhi et al., 2016) used the HHT to decompose the raw data
and then extracted the RMS to estimate the instantaneous frequencies of bearing defect.
In (Sait and Sharaf-Eldeen, 2011), after performing the STFT of the signal, the authors
calculated the ratio between the maximum peak-to-peak of the signal and the sum of the
frequency amplitudes to detect a gear fault. Besides, the work presented in (Taghizadeh-
Alisaraei and Mahdavian, 2019) used multiple time-frequency methods, STFT, WVD and
CWD to have various resolutions of the signal and then used the KUR function to build
the health indicator. The study in (Wodecki et al., 2016) proposed, instead of using
multiple time-frequency transform methods, to apply principal component analysis (PCA)
technique for the dimensional reduction of multiple data recorded from different places on
the system.

Although the effectiveness of the time-frequency analyzes has been shown through
numerous studies, there also exists several limitations. Omne of the main drawbacks of
these techniques is high resolution and computational time. Furthermore, it is difficult
to implement such techniques for real-time applications and interpret the obtained health
indicators. These weak-points alongside the main advantages are summarized in Table 1.5.

Advantages Disadvantages
Be appropriate for non-stationary data Require high computational resolution
Be effective for numerous applications Take a lot of computation times

Track fault frequency signatures over time Difficult for interpreting results

Table 1.5: Advantages and disadvantages of time-frequency analyzes.
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1.3.4 Multiple feature fusion for health indicator construction

All of the features extracted from the signal processing techniques mentioned in the pre-
vious sections can be used as health indicators. Their effectiveness has been proven in
multiple research areas thanks to their explicit mathematical expressions. However, in
reality, there exists some systems that present complicated degradation phenomena, and
consequently, it is difficult to extract the information using these health indicators sep-
arately. For this purpose, another solution is proposed by the researches. This solution
consists of extracting multiple features from heterogeneous or from the same measure-
ment types and then inject them into a fusion technique to build a representative health
indicator.

For instance, the presented work in (Chen and Li, 2017) proposed to use the measure-
ments of vibration sensors placed at different parts of the system, and then extract multiple
time and frequency health indicators to inject them into a sparse auto-encoder (SEA) net-
work for the fusion to detect bearing faults. Besides, the authors in (Sun et al., 2016)
used a neuro-fuzzy system for fusing the sensor measurements acquired from two different
types of sensors (velocity, GPS) to build the health indicator that detects faults in bridges.
Another way of fusion approach used to construct the health indicator is pointed out in
(Ng and Srinivasan, 2010). In this latter work, the authors injected heterogeneous data
obtained from the Tennessee Eastman platform into different fusion techniques such as the
PCA, self-organizing maps, and NN. Then, the obtained health indicators from each fusion
model are injected into a Bayesian probability model to build the final health indicator.

As a synthesis, each of these approaches inherits a part of strengths and shortcomings.
Tables 1.6 gives ideas of the main benefits and drawbacks of the fused health indicators.

Advantages Disadvantages
Loss of physical meaning

Do not require priori system knowledge Black-box architecture

Reinforce the understanding system Difficult for interpreting results

Provide more efficient results Risk of loss main information data
Sensitive to model parameters variations

Table 1.6: Advantages and disadvantages of fusion approach for HI construction.

1.4 Fault diagnostics

According to the definition provided by the French national organization for standardiza-
tion (AFNOR) (AFNOR, 2001) NF EN 13306 8.10, fault diagnostics is the “Actions taken
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for fault recognition, fault localization and cause identification”. In the context of industry
4.0 where systems become more complex and ultra-connected, it is difficult to use tra-
ditional diagnostics techniques such as the graph-theoretic approach, expert system, and
qualitative simulation (Wang, 2017). Thus, it is not practical to make proper decisions on
the system of health states.

Besides, modern technologies of sensors and acquisition devices prompt the use of ad-
vanced techniques for fault diagnostics. Among these techniques, pattern recognition (fault
recognition) becomes one of the promising methods used for diagnostics purposes. In fact,
with constructed health indicators that indicate the system health state combined with
sophisticated techniques, the pattern recognition methods can perform all actions of the
definition NF EN 13306 8.10. It uses, in an off-line phase, the health indicators of the
system to learn models and then uses these latter ones, in an online phase, to evaluate
new health states of the system and provide a diagnostics report. The reliability of this
report depends on the quality of the health indicators and on the exploitation of appro-
priate patter recognition techniques. In industrial systems engineering, there exists two
main categories of pattern recognition widely used for fault diagnostics: supervised and
semi-supervised, as shown in Figure 1.7.

Prior learning of known health states

HI3
Healthy Surface damage
- o — Which health state
< }* corresponds to the new
pattern?
LI l ’
\_ HI1 _J
SBT3y | e
?\‘ ﬁ ------ *l:’ New health state r---------------- » l Construction of the state pattern
o L T -
| N
’~ _!‘M@:‘
Monitored system HI3
e I
Healthy Unknown state 1 i
i @
Does this new health
HI2 >—> states corresponds to

Unknown state 2 l nominal state?
HI1 ‘

Clustering new different health states

Figure 1.7: Illustration of supervised and semi-supervised pattern recognition diagnostics.
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1.4.1 Supervised diagnostics

Supervised diagnostics is the most used technique to address a diagnostics problem. This
technique learns the different health states of the monitored system with a priori knowledge
on these states, called labels (healthy =1, faultyl =2, faulty2 = 3, etc.) to build a model
(Berrueta et al., 2007). This model is used to classify the new observations carried out from
the system and determine their pattern by mapping them to the corresponding membership
class defined and learned previously.

Actually, due to the widespread use of pattern recognition concept in various research
fields (i.e. medical, food science, industry, security defense, etc.) (Berrueta et al., 2007,
Gouriveau et al., 2016, Martinez-Luengo et al., 2016, Fusco et al., 2016), there exists a high
number of developed techniques such as artificial neural network (ANN), adaptive neuro-
fuzzy Inference System (ANFIS), Fuzzy s