12 research outputs found

    Interesting Examples of IBGP Configuration

    Get PDF
    In this paper we give examples to show that if an Internal Border Gateway Protocol (IBGP) configuration using route reflections violates even one of the four conditions mentioned in the theorem given in a previous work, then there may be persistent oscillations or forwarding loops

    The Scope of the IBGP Routing Anomaly Problem

    Get PDF
    Correctness problems in the iBGP routing, the de-facto standard to spread global routing information in Autonomous Systems, are a well-known issue. Configurations may route cost-suboptimal, inconsistent, or even behave non-convergent and -deterministic. However, even if a lot of studies have shown many exemplary problematic configurations, the exact scope of the problem is largely unknown: Up to now, it is not clear which problems may appear under which iBGP architectures. The exact scope of the iBGP correctness problem is of high theoretical and practical interest. Knowledge on the resistance of specific architecture schemes against certain anomaly classes and the reasons may help to improve other iBGP schemes. Knowledge on the specific problems of the different schemes helps to identify the right scheme for an AS and develop workarounds

    Proactive techniques for correct and predictable Internet routing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 185-193).The Internet is composed of thousands of autonomous, competing networks that exchange reachability information using an interdomain routing protocol. Network operators must continually reconfigure the routing protocols to realize various economic and performance goals. Unfortunately, there is no systematic way to predict how the configuration will affect the behavior of the routing protocol or to determine whether the routing protocol will operate correctly at all. This dissertation develops techniques to reason about the dynamic behavior of Internet routing, based on static analysis of the router configurations, before the protocol ever runs on a live network. Interdomain routing offers each independent network tremendous flexibility in configuring the routing protocols to accomplish various economic and performance tasks. Routing configurations are complex, and writing them is similar to writing a distributed program; the (unavoidable) consequence of configuration complexity is the potential for incorrect and unpredictable behavior. These mistakes and unintended interactions lead to routing faults, which disrupt end-to-end connectivity. Network operators writing configurations make mistakes; they may also specify policies that interact in unexpected ways with policies in other networks.(cont.) To avoid disrupting network connectivity and degrading performance, operators would benefit from being able to determine the effects of configuration changes before deploying them on a live network; unfortunately, the status quo provides them no opportunity to do so. This dissertation develops the techniques to achieve this goal of proactively ensuring correct and predictable Internet routing. The first challenge in guaranteeing correct and predictable behavior from a routing protocol is defining a specification for correct behavior. We identify three important aspects of correctness-path visibility, route validity, and safety-and develop proactive techniques for guaranteeing that these properties hold. Path visibility states that the protocol disseminates information about paths in the topology; route validity says that this information actually corresponds to those paths; safety says that the protocol ultimately converges to a stable outcome, implying that routing updates actually correspond to topological changes. Armed with this correctness specification, we tackle the second challenge: analyzing routing protocol configurations that may be distributed across hundreds of routers.(cont.) We develop techniques to check whether a routing protocol satisfies the correctness specification within a single independently operated network. We find that much of the specification can be checked with static configuration analysis alone. We present examples of real-world routing faults and propose a systematic framework to classify, detect, correct, and prevent them. We describe the design and implementation of rcc ("router configuration checker"), a tool that uses static configuration analysis to enable network operators to debug configurations before deploying them in an operational network. We have used rcc to detect faults in 17 different networks, including several nationwide Internet service providers (ISPs). To date, rcc has been downloaded by over seventy network operators. A critical aspect of guaranteeing correct and predictable Internet routing is ensuring that the interactions of the configurations across multiple networks do not violate the correctness specification. Guaranteeing safety is challenging because each network sets its policies independently, and these policies may conflict. Using a formal model of today's Internet routing protocol, we derive conditions to guarantee that unintended policy interactions will never cause the routing protocol to oscillate.(cont.) This dissertation also takes steps to make Internet routing more predictable. We present algorithms that help network operators predict how a set of distributed router configurations within a single network will affect the flow of traffic through that network. We describe a tool based on these algorithms that exploits the unique characteristics of routing data to reduce computational overhead. Using data from a large ISP, we show that this tool correctly computes BGP routing decisions and has a running time that is acceptable for many tasks, such as traffic engineering and capacity planning.by Nicholas Greer Feamster.Ph.D

    Virtualization and Distribution of the BGP Control Plane

    Get PDF
    L'Internet est organisé sous la forme d'une multitude de réseaux appelés Systèmes Autonomes (AS). Le Border Gateway Protocol (BGP) est le langage commun qui permet à ces domaines administratifs de s'interconnecter. Grâce à BGP, deux utilisateurs situés n'importe où dans le monde peuvent communiquer, car ce protocole est responsable de la propagation des messages de routage entre tous les réseaux voisins. Afin de répondre aux nouvelles exigences, BGP a dû s'améliorer et évoluer à travers des extensions fréquentes et de nouvelles architectures. Dans la version d'origine, il était indispensable que chaque routeur maintienne une session avec tous les autres routeurs du réseau. Cette contrainte a soulevé des problèmes de scalabilité, puisque le maillage complet des sessions BGP internes (iBGP) était devenu difficile à réaliser dans les grands réseaux. Pour couvrir ce besoin de connectivité, les opérateurs de réseaux font appel à la réflection de routes (RR) et aux confédérations. Mais si elles résolvent un problème de scalabilité, ces deux solutions ont soulevé des nouveaux défis car elles sont accompagnées de multiples défauts; la perte de diversité des routes candidates au processus de sélection BGP ou des anomalies comme par exemple des oscillations de routage, des déflections et des boucles en font partie. Les travaux menés dans cette thèse se concentrent sur oBGP, une nouvelle architecture pour redistribuer les routes externes à l'intérieur d'un AS. `A la place des classiques sessions iBGP, un réseau de type overlay est responsable (I) de l'´echange d'informations de routage avec les autres AS, (II) du stockage distribué des routes internes et externes, (III) de l'application de la politique de routage au niveau de l'AS et (IV) du calcul et de la redistribution des meilleures routes vers les destinations de l'Internet pour tous les routeurs clients présents dans l'AS. ABSTRACT : The Internet is organized as a collection of networks called Autonomous Systems (ASes). The Border Gateway Protocol (BGP) is the glue that connects these administrative domains. Communication is thus possible between users worldwide and each network is responsible of sharing reachability information to peers through BGP. Protocol extensions are periodically added because the intended use and design of BGP no longer fit the current demands. Scalability concerns make the required internal BGP (iBGP) full mesh difficult to achieve in today's large networks and therefore network operators resort to confederations or Route Reflectors (RRs) to achieve full connectivity. These two options come with a set of flaws of their own such as route diversity loss, persistent routing oscillations, deflections, forwarding loops etc. In this dissertation we present oBGP, a new architecture for the redistribution of external routes inside an AS. Instead of relying on the usual statically configured set of iBGP sessions, we propose to use an overlay of routing instances that are collectively responsible for (I) the exchange of routes with other ASes, (II) the storage of internal and external routes, (III) the storage of the entire routing policy configuration of the AS and (IV) the computation and redistribution of the best routes towards Internet destinations to each client router in the AS

    Optimal route reflection topology design

    Get PDF
    An Autonomous System (AS) is a group of Internet Protocol-based networks with a single and clearly defined external routing policy, usually under single ownership, trust or administrative control. The AS represents a connected group of one or more blocks of IP addresses, called IP prefixes, that have been assigned to that organization and provides a single routing policy to systems outside the AS. The Internet is composed of the interconnection of several thousands of ASes, which use the Border Gateway Protocol (BGP) to exchange network prefixes (aggregations of IP addresses) reachability advertisements. BGP advertisements (or updates) are sent over BGP sessions administratively set between pairs of routers. BGP is a path vector routing protocol and is used to span different ASes. A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination. Interior Border Gateway Protocol (iBGP) refers to the BGP neighbor relationship within the same AS. When BGP neighbor relationship are formed between two peers belonging to different AS are called Exterior Border Gateway Protocol (eBGP). In the last case, BGP routers are called Autonomous System Border Routers (ASBRs), while those running only iBGP sessions are referred to as Internal Routers (IRs). Traditional iBGP implementations require a full-mesh of sessions among routers of each AS

    Strategies for internet route control: past, present and future

    Get PDF
    Uno de los problemas más complejos en redes de computadores es el de proporcionar garantías de calidad y confiabilidad a las comunicaciones de datos entre entidades que se encuentran en dominios distintos. Esto se debe a un amplio conjunto de razones -- las cuales serán analizadas en detalle en esta tesis -- pero de manera muy breve podemos destacar: i) la limitada flexibilidad que presenta el modelo actual de encaminamiento inter-dominio en materia de ingeniería de tráfico; ii) la naturaleza distribuida y potencialmente antagónica de las políticas de encaminamiento, las cuales son administradas individualmente y sin coordinación por cada dominio en Internet; y iii) las carencias del protocolo de encaminamiento inter-dominio utilizado en Internet, denominado BGP (Border Gateway Protocol).El objetivo de esta tesis, es precisamente el estudio y propuesta de soluciones que permitan mejorar drásticamente la calidad y confiabilidad de las comunicaciones de datos en redes conformadas por múltiples dominios.Una de las principales herramientas para lograr este fin, es tomar el control de las decisiones de encaminamiento y las posibles acciones de ingeniería de tráfico llevadas a cabo en cada dominio. Por este motivo, esta tesis explora distintas estrategias de como controlar en forma precisa y eficiente, tanto el encaminamiento como las decisiones de ingeniería de tráfico en Internet. En la actualidad este control reside principalmente en BGP, el cual como indicamos anteriormente, es uno de los principales responsables de las limitantes existentes. El paso natural sería reemplazar a BGP, pero su despliegue actual y su reconocida operatividad en muchos otros aspectos, resultan claros indicadores de que su sustitución (ó su posible evolución) será probablemente gradual. En este escenario, esta tesis propone analizar y contribuir con nuevas estrategias en materia de control de encaminamiento e ingeniería de tráfico inter-dominio en tres marcos temporales distintos: i) en la actualidad en redes IP; ii) en un futuro cercano en redes IP/MPLS (MultiProtocol Label Switching); y iii) a largo plazo en redes ópticas, modelando así una evolución progresiva y realista, facilitando el reemplazo gradual de BGP.Más concretamente, este trabajo analiza y contribuye mediante: - La propuesta de estrategias incrementales basadas en el Control Inteligente de Rutas (Intelligent Route Control, IRC) para redes IP en la actualidad. Las estrategias propuestas en este caso son de carácter incremental en el sentido de que interaccionan con BGP, solucionando varias de las carencias que éste presenta sin llegar a proponer aún su reemplazo. - La propuesta de estrategias concurrentes basadas en extender el concepto del PCE (Path Computation Element) proveniente del IETF (Internet Engineering Task Force) para redes IP/MPLS en un futuro cercano. Las estrategias propuestas en este caso son de carácter concurrente en el sentido de que no interaccionan con BGP y pueden ser desplegadas en forma paralela. En este caso, BGP continúa controlando el encaminamiento y las acciones de ingeniería de tráfico inter-dominio del tráfico IP, pero el control del tráfico IP/MPLS se efectúa en forma independiente de BGP mediante los PCEs.- La propuesta de estrategias que reemplazan completamente a BGP basadas en la incorporación de un nuevo agente de control, al cual denominamos IDRA (Inter-Domain Routing Agent). Estos agentes proporcionan un plano de control dedicado, físicamente independiente del plano de datos, y con gran capacidad computacional para las futuras redes ópticas multi-dominio.Los resultados expuestos aquí validan la efectividad de las estrategias propuestas, las cuales mejoran significativamente tanto la concepción como la performance de las actuales soluciones en el área de Control Inteligente de Rutas, del esperado PCE en un futuro cercano, y de las propuestas existentes para extender BGP al área de redes ópticas.One of the most complex problems in computer networks is how to provide guaranteed performance and reliability to the communications carried out between nodes located in different domains. This is due to several reasons -- which will be analyzed in detail in this thesis -- but in brief, this is mostly due to: i) the limited capabilities of the current inter-domain routing model in terms of Traffic Engineering (TE); ii) the distributed and potentially conflicting nature of policy-based routing, where routing policies are managed independently and without coordination among domains; and iii) the clear limitations of the inter-domain routing protocol, namely, the Border Gateway Protocol (BGP). The goal of this thesis is precisely to study and propose solutions allowing to drastically improve the performance and reliability of inter-domain communications. One of the most important tools to achieve this goal, is to control the routing and TE decisions performed by routing domains. Therefore, this thesis explores different strategies on how to control such decisions in a highly efficient and accurate way. At present, this control mostly resides in BGP, but as mentioned above, BGP is in fact one of the main causes of the existing limitations. The natural next-step would be to replace BGP, but the large installed base at present together with its recognized effectiveness in other aspects, are clear indicators that its replacement (or its possible evolution) will probably be gradually put into practice.In this framework, this thesis proposes to to study and contribute with novel strategies to control the routing and TE decisions of domains in three different time frames: i) at present in IP multi-domain networks; ii) in the near-future in IP/MPLS (MultiProtocol Label Switching) multi- domain networks; and iii) in the future optical Internet, modeling in this way a realistic and progressive evolution, facilitating the gradual replacement of BGP.More specifically, the contributions in this thesis can be summarized as follows. - We start by proposing incremental strategies based on Intelligent Route Control (IRC) solutions for IP networks. The strategies proposed in this case are incremental in the sense that they interact with BGP, and tackle several of its well-known limitations. - Then, we propose a set of concurrent route control strategies for MPLS networks, based on broadening the concept of the Path Computation Element (PCE) coming from the IETF (Internet Engineering Task Force). Our strategies are concurrent in the sense that they do not interact directly with BGP, and they can be deployed in parallel. In this case, BGP still controlls the routing and TE actions concerning regular IP-based traffic, but not how IP/MPLS paths are routed and controlled. These are handled independently by the PCEs.- We end with the proposal of a set of route control strategies for multi-domain optical networks, where BGP has been completely replaced. These strategies are supported by the introduction of a new route control element, which we named Inter-Domain Routing Agent (IDRA). These IDRAs provide a dedicated control plane, i.e., physically independent from the data plane, and with high computational capacity for future optical networks.The results obtained validate the effectiveness of the strategies proposed here, and confirm that our proposals significantly improve both the conception and performance of the current IRC solutions, the expected PCE in the near-future, as well as the existing proposals about the optical extension of BGP.Postprint (published version

    Resource Management in Broadband Communication Networks

    Get PDF

    A pragmatic approach toward securing inter-domain routing

    Get PDF
    Internet security poses complex challenges at different levels, where even the basic requirement of availability of Internet connectivity becomes a conundrum sometimes. Recent Internet service disruption events have made the vulnerability of the Internet apparent, and exposed the current limitations of Internet security measures as well. Usually, the main cause of such incidents, even in the presence of the security measures proposed so far, is the unintended or intended exploitation of the loop holes in the protocols that govern the Internet. In this thesis, we focus on the security of two different protocols that were conceived with little or no security mechanisms but play a key role both in the present and the future of the Internet, namely the Border Gateway Protocol (BGP) and the Locator Identifier Separation Protocol (LISP). The BGP protocol, being the de-facto inter-domain routing protocol in the Internet, plays a crucial role in current communications. Due to lack of any intrinsic security mechanism, it is prone to a number of vulnerabilities that can result in partial paralysis of the Internet. In light of this, numerous security strategies were proposed but none of them were pragmatic enough to be widely accepted and only minor security tweaks have found the pathway to be adopted. Even the recent IETF Secure Inter-Domain Routing (SIDR) Working Group (WG) efforts including, the Resource Public Key Infrastructure (RPKI), Route Origin authorizations (ROAs), and BGP Security (BGPSEC) do not address the policy related security issues, such as Route Leaks (RL). Route leaks occur due to violation of the export routing policies among the Autonomous Systems (ASes). Route leaks not only have the potential to cause large scale Internet service disruptions but can result in traffic hijacking as well. In this part of the thesis, we examine the route leak problem and propose pragmatic security methodologies which a) require no changes to the BGP protocol, b) are neither dependent on third party information nor on third party security infrastructure, and c) are self-beneficial regardless of their adoption by other players. Our main contributions in this part of the thesis include a) a theoretical framework, which, under realistic assumptions, enables a domain to autonomously determine if a particular received route advertisement corresponds to a route leak, and b) three incremental detection techniques, namely Cross-Path (CP), Benign Fool Back (BFB), and Reverse Benign Fool Back (R-BFB). Our strength resides in the fact that these detection techniques solely require the analytical usage of in-house control-plane, data-plane and direct neighbor relationships information. We evaluate the performance of the three proposed route leak detection techniques both through real-time experiments as well as using simulations at large scale. Our results show that the proposed detection techniques achieve high success rates for countering route leaks in different scenarios. The motivation behind LISP protocol has shifted over time from solving routing scalability issues in the core Internet to a set of vital use cases for which LISP stands as a technology enabler. The IETF's LISP WG has recently started to work toward securing LISP, but the protocol still lacks end-to-end mechanisms for securing the overall registration process on the mapping system ensuring RLOC authorization and EID authorization. As a result LISP is unprotected against different attacks, such as RLOC spoofing, which can cripple even its basic functionality. For that purpose, in this part of the thesis we address the above mentioned issues and propose practical solutions that counter them. Our solutions take advantage of the low technological inertia of the LISP protocol. The changes proposed for the LISP protocol and the utilization of existing security infrastructure in our solutions enable resource authorizations and lay the foundation for the needed end-to-end security
    corecore