44 research outputs found

    Pretty-Big-Step Semantics

    Get PDF
    International audienceIn spite of the popularity of small-step semantics, big-step semantics remain used by many researchers. However, big-step semantics suffer from a serious duplication problem, which appears as soon as the semantics account for exceptions and/or divergence. In particular, many premises need to be copy-pasted across several evaluation rules. This duplication problem, which is particularly visible when scaling up to full-blown languages, results in formal definitions growing far bigger than necessary. Moreover, it leads to unsatisfactory redundancy in proofs. In this paper, we address the problem by introducing pretty-big-step semantics. Pretty-big-step semantics preserve the spirit of big-step semantics, in the sense that terms are directly related to their results, but they eliminate the duplication associated with big-step semantics

    Flag-based big-step semantics

    Get PDF
    Structural operational semantic specifications come in different styles: small-step and big-step. A problem with the big-step style is that specifying divergence and abrupt termination gives rise to annoying duplication. We present a novel approach to representing divergence and abrupt termination in big-step semantics using status flags. This avoids the duplication problem, and uses fewer rules and premises for representing divergence than previous approaches in the literature

    Functional Big-step Semantics

    Get PDF
    When doing an interactive proof about a piece of software, it is important that the underlying programming language’s semantics does not make the proof unnecessarily difficult or unwieldy. Both smallstep and big-step semantics are commonly used, and the latter is typically given by an inductively defined relation. In this paper, we consider an alternative: using a recursive function akin to an interpreter for the language. The advantages include a better induction theorem, less duplication, accessibility to ordinary functional programmers, and the ease of doing symbolic simulation in proofs via rewriting. We believe that this style of semantics is well suited for compiler verification, including proofs of divergence preservation. We do not claim the invention of this style of semantics: our contribution here is to clarify its value, and to explain how it supports several language features that might appear to require a relational or small-step approach. We illustrate the technique on a simple imperative language with C-like for-loops and a break statement, and compare it to a variety of other approaches. We also provide ML and lambda-calculus based examples to illustrate its generality

    TreatJS: Higher-Order Contracts for JavaScript

    Get PDF
    TreatJS is a language embedded, higher-order contract system for JavaScript which enforces contracts by run-time monitoring. Beyond providing the standard abstractions for building higher-order contracts (base, function, and object contracts), TreatJS's novel contributions are its guarantee of non-interfering contract execution, its systematic approach to blame assignment, its support for contracts in the style of union and intersection types, and its notion of a parameterized contract scope, which is the building block for composable run-time generated contracts that generalize dependent function contracts. TreatJS is implemented as a library so that all aspects of a contract can be specified using the full JavaScript language. The library relies on JavaScript proxies to guarantee full interposition for contracts. It further exploits JavaScript's reflective features to run contracts in a sandbox environment, which guarantees that the execution of contract code does not modify the application state. No source code transformation or change in the JavaScript run-time system is required. The impact of contracts on execution speed is evaluated using the Google Octane benchmark.Comment: Technical Repor

    A Certified JavaScript Interpreter

    Get PDF
    International audienceThis paper describes the design and implementation of the interpreter. It is organized as follows. Section 1 introduces the semantics of JavaScript and highlights some of its peculiarities. Section 2 describes the interpreter's design and implementation. Section 3 addresses the interpreter's correctness. Finally, Section 4 concludes with future and related work

    Interaction Trees: Representing Recursive and Impure Programs in Coq

    Get PDF
    "Interaction trees" (ITrees) are a general-purpose data structure for representing the behaviors of recursive programs that interact with their environments. A coinductive variant of "free monads," ITrees are built out of uninterpreted events and their continuations. They support compositional construction of interpreters from "event handlers", which give meaning to events by defining their semantics as monadic actions. ITrees are expressive enough to represent impure and potentially nonterminating, mutually recursive computations, while admitting a rich equational theory of equivalence up to weak bisimulation. In contrast to other approaches such as relationally specified operational semantics, ITrees are executable via code extraction, making them suitable for debugging, testing, and implementing software artifacts that are amenable to formal verification. We have implemented ITrees and their associated theory as a Coq library, mechanizing classic domain- and category-theoretic results about program semantics, iteration, monadic structures, and equational reasoning. Although the internals of the library rely heavily on coinductive proofs, the interface hides these details so that clients can use and reason about ITrees without explicit use of Coq's coinduction tactics. To showcase the utility of our theory, we prove the termination-sensitive correctness of a compiler from a simple imperative source language to an assembly-like target whose meanings are given in an ITree-based denotational semantics. Unlike previous results using operational techniques, our bisimulation proof follows straightforwardly by structural induction and elementary rewriting via an equational theory of combinators for control-flow graphs.Comment: 28 pages, 4 pages references, published at POPL 202
    corecore