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One Step at a Time
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Abstract. Big-step and small-step are two popular flavors of opera-
tional semantics. Big-step is often seen as a more natural transcription
of informal descriptions, as well as being more convenient for some appli-
cations such as interpreter generation or optimization verification. Small-
step allows reasoning about non-terminating computations, concurrency
and interactions. It is also generally preferred for reasoning about type
systems. Instead of having to manually specify equivalent semantics in
both styles for different applications, it would be useful to choose one
and derive the other in a systematic or, preferably, automatic way.

Transformations of small-step semantics into big-step have been inves-
tigated in various forms by Danvy and others. However, it appears that a
corresponding transformation from big-step to small-step semantics has
not had the same attention. We present a fully automated transformation
that maps big-step evaluators written in direct style to their small-step
counterparts. Many of the steps in the transformation, which include
CPS-conversion, defunctionalisation, and various continuation manipu-
lations, mirror those used by Danvy and his co-authors. For many stan-
dard languages, including those with either call-by-value or call-by-need
and those with state, the transformation produces small-step semantics
that are close in style to handwritten ones. We evaluate the applicability
and correctness of the approach on 20 languages with a range of features.

Keywords: Structural operational semantics · Big-step semantics ·
Small-step semantics · Interpreters · Transformation ·
Continuation-passing style · Functional programming

1 Introduction

Operational semantics allow language designers to precisely and concisely spec-
ify the meaning of programs. Such semantics support formal type soundness
proofs [29], give rise (sometimes automatically) to simple interpreters [15,27]
and debuggers [14], and document the correct behavior for compilers. There are
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two popular approaches for defining operational semantics: big-step and small-
step. Big-step semantics (also referred to as natural or evaluation semantics)
relate initial program configurations directly to final results in one “big” evalu-
ation step. In contrast, small-step semantics relate intermediate configurations
consisting of the term currently being evaluated and auxiliary information. The
initial configuration corresponds to the entire program, and the final result, if
there is one, can be obtained by taking the transitive-reflexive closure of the
small-step relation. Thus, computation progresses as a series of “small steps.”

The two styles have different strengths and weaknesses, making them suitable
for different purposes. For example, big-step semantics naturally correspond to
definitional interpreters [23], meaning many big-step semantics can essentially
be transliterated into a reasonably efficient interpreter in a functional language.
Big-step semantics are also more convenient for verifying program optimizations
and compilation – using big-step, semantic preservation can be verified (for ter-
minating programs) by induction on the derivation [20,22].

In contrast, small-step semantics are often better suited for stepping through
the evaluation of an example program, and for devising a type system and prov-
ing its soundness via the classic syntactic method using progress and preservation
proofs [29]. As a result, researchers sometimes develop multiple semantic spec-
ifications and then argue for their equivalence [3,20,21]. In an ideal situation,
the specifier writes down a single specification and then derives the others.

Approaches to deriving big-step semantics from a small-step variant have
been investigated on multiple occasions, starting from semantics specified as
either interpreters or rules [4,7,10,12,13]. An obvious question is: what about
the reverse direction?

This paper presents a systematic, mechanised transformation from a big-step
interpreter into its small-step counterpart. The overall transformation consists
of multiple stages performed on an interpreter written in a functional program-
ming language. For the most part, the individual transformations are well known.
The key steps in this transformation are to explicitly represent control flow as
continuations, to defunctionalise these continuations to obtain a datatype of rei-
fied continuations, to “tear off” recursive calls to the interpreter, and then to
return the reified continuations, which represent the rest of the computation.
This process effectively produces a stepping function. The remaining work con-
sists of finding translations from the reified continuations to equivalent terms in
the source language. If such a term cannot be found, we introduce a new term
constructor. These new constructors correspond to the intermediate auxiliary
forms commonly found in handwritten small-step definitions.

We define the transformations on our evaluator definition language – an
extension of λ-calculus with call-by-value semantics. The language is untyped
and, crucially, includes tagged values (variants) and a case analysis construct for
building and analysing object language terms. Our algorithm takes as input a
big-step interpreter written in this language in the usual style: a main function
performing case analysis on a top-level term constructor and recursively call-
ing itself or auxiliary functions. As output, we return the resulting small-step
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interpreter which we can “pretty-print” as a set of small-step rules in the usual
style. Hence our algorithm provides a fully automated path from a restricted
class of big-step semantic specifications written as interpreters to corresponding
small-step versions.

To evaluate our algorithm, we have applied it to 20 different languages with
various features, including languages based on call-by-name and call-by-value
λ-calculi, as well as a core imperative language. We extend these base languages
with conditionals, loops, and exceptions.

We make the following contributions:

– We present a multi-stage, automated transformation that maps any deter-
ministic big-step evaluator into a small-step counterpart. Section 2 gives an
overview of this process. Each stage in the transformation is performed on
our evaluator definition language – an extended call-by-value λ-calculus.
Each stage in the transformation is familiar and principled. Section 4 gives a
detailed description.

– We have implemented the transformation process in Haskell and evaluate
it on a suite of 20 representative languages in Section 5. We argue that the
resulting small-step evaluation rules closely mirror what one would expect
from a manually written small-step specification.

– We observe that the same process with minimal modifications can be used to
transform a big-step semantics into its pretty-big-step [6] counterpart.

2 Overview

In this section, we provide an overview of the transformation steps on a simple
example language. The diagram in Fig. 1 shows the transformation pipeline. As
the initial step, we first convert the input big-step evaluator into continuation-
passing style (CPS). We limit the conversion to the eval function itself and leave all
other functions in direct style. The resulting continuations take a value as input
and advance the computation. In the generalization step, we modify these con-
tinuations so that they take an arbitrary term and evaluate it to a value before
continuing as before. With this modification, each continuation handles both the
general non-value case and the value case itself. The next stage lifts a carefully cho-
sen set of free variables as arguments to continuations, which allows us to define all
of them at the same scope level. After generalization and argument lifting, we can
invoke continuations directly to switch control, instead of passing them as argu-
ments to the eval function. Next we defunctionalize the continuations, converting
them into a set of tagged values together with an apply function capturing their
meaning. This transformation enables the next step, in which we remove recursive
tail-calls to apply. This allows us to interrupt the interpreter and make it return
a continuation or a term: effectively, it yields a stepping function, which is the
essence of a small-step semantics. The remainder of the pipeline converts contin-
uations to terms, performs simplifications, and then converts the CPS evaluator
back to direct style to obtain the final small-step interpreter. This interpreter can
be pretty-printed as a set of small-step rules.
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Fig. 1. Transformation overview

Our example language is a λ-calculus with call-by-value semantics. Fig. 2
gives its syntax and big-step rules. We use environments to give meaning to
variables. The only values in this language are closures, formed by packaging a
λ-abstraction with an environment.

x ∈ Var ρ ∈ Env = Var Val

v ::= clo(x, e, ρ)
e ::= var(x)

| val(v)
| lam(x, e)
| app(e1, e2)

ρ � val(v) ⇓ v

ρ(x) = v

ρ � var(x) ⇓ v

ρ � lam(x, e) ⇓ clo(x, e, ρ)

ρ � e1 ⇓ clo(x, e, ρ′) ρ � e2 ⇓ v2 ρ′[x v2] � e ⇓ v

ρ � app(e1, e2) ⇓ v

Fig. 2. Example: Call-by-value λ-calculus, abstract syntax and big-step semantics

We will now give a series of interpreters to illustrate the transformation pro-
cess. We formally define the syntax of the meta-language in which we write these
interpreters in Section 3, but we believe for readers familiar with functional pro-
gramming the language is intuitive enough to not require a full explanation at this
point. Shaded text highlights (often small) changes to subsequent interpreters.

Big-Step Evaluator. We start with an interpreter corresponding directly to the
big-step semantics given in Fig. 2. We represent environments as functions –
the empty environment returns an error for any variable. The body of the eval
function consists of a pattern match on the top-level language term. Function
abstractions are evaluated to closures by packaging them with the current envi-
ronment. The only term that requires recursive calls to eval is application: both
its arguments are evaluated in the current environment, and then its first argu-
ment is pattern-matched against a closure, the body of which is then evaluated
to a value in an extended environment using a third recursive call to eval.
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let empty = λx. error() in
let update x v ρ = λx′. let xx′ = (== x x′) in if xx′ then v else (ρ x′) in
let rec eval e ρ =
case e of {
val(v) → v |
var(x ) → let v = (ρ x ) in v |
lam(x , e ′) → clo(x , e ′, ρ) |
app(e1 , e2 ) →

let v1 = (eval e1 ρ) in
let v2 = (eval e2 ρ) in
case v1 of {
clo(x , e ′, ρ′) →

let ρ′′ = (update x v2 ρ′) in
let v = (eval e ′ ρ′′) in
v

}
}

CPS Conversion. Our first transformation introduces a continuation argument
to eval, capturing the “rest of the computation” [9,26,28]. Instead of returning
the resulting value directly, eval will pass it to the continuation. For our example
we need to introduce three continuations – all of them in the case for app. The
continuation kapp1 captures what remains to be done after evaluating the first
argument of app, kapp2 captures the computation remaining after evaluating the
second argument, and kclo1 the computation remaining after the closure body is
fully evaluated. This final continuation simply applies the top-level continuation
to the resulting value and might seem redundant; however, its utility will become
apparent in the following step. Note that the CPS conversion is limited to the
eval function, leaving any other functions in the program intact.

let rec eval e ρ k =

case e of {
val(v) → (k v) |
var(x ) → let v = (ρ x ) in (k v) |
lam(x , e ′) → (k clo(x , e ′, ρ)) |
app(e1 , e2 ) →

letcont kapp1 v1 =

letcont kapp2 v2 =

case v1 of {
clo(x , e ′, ρ′) →

let ρ′′ = (update x v2 ρ′) in

letcont kclo1 v = (k v) in

(eval e ′ ρ′′ (λv . (kclo1 v)) )

} in

(eval e2 ρ (λv2 . (kapp2 v2 )) ) in

(eval e1 ρ (λv1 . (kapp1 v1 )) )

}
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Generalization. Next, we modify the continuation definitions so that they handle
both the case when the term is a value (the original case) and the case where it is
still a term that needs to be evaluated. To achieve this goal, we introduce a case
analysis on the input. If the continuation’s argument is a value, the evaluation
will proceed as before. Otherwise it will call eval with itself as the continuation
argument. Intuitively, the latter case will correspond to a congruence rule in the
resulting small-step semantics and we refer to these as congruence cases in the
rest of this paper.

let rec eval e ρ k = case e of {
val(v) → (k val(v) ) |
var(x ) → let v = (ρ x ) in (k val(v) ) |
lam(x , e ′) → (k val(clo(x , e ′, ρ)) ) |
app(e1 , e2 ) →

letcont kapp1 e1 =

case e1 of {
val(v1 ) →

. . .
case v1 of {
clo(x , e ′, ρ′) →

let ρ′′ = (update x v2 ρ′) in
letcont kclo1 e =

case e of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′′ (λe ′. (kclo1 e ′)))

} in

(eval e ′ ρ′′ (λv . (kclo1 v)))
. . .

ELSE(e1 ) → (eval e1 ρ (λe ′
1 . (kapp1 e ′

1 )))

} in

(eval e1 ρ (λv1 . (kapp1 v1 )))
}

Argument Lifting. The free variables inside each continuation can be divided
into those that depend on the top-level term and those that parameterize the
evaluation. The former category contains variables dependent on subterms of
the top-level term, either by standing for a subterm itself, or by being derived
from it. In our example, for kapp1, it is the variable e2, i.e., the right argu-
ment of app, for kapp2, the variable v1 as the value resulting from evaluating
the left argument, and for kclo1 it is the environment obtained by extending
the closure’s environment by binding the closure variable to the operand value
(ρ′′ derived from v2). We lift variables that fall into the first category, that is,
variables derived from the input term. We leave variables that parametrize the
evaluation, such as the input environment or the store, unlifted. The rationale
is that, eventually, we want the continuations to act as term constructors and
they need to carry information not contained in arguments passed to eval.
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let rec eval e ρ k = case e of {
. . .
app(e1 , e2 ) →

letcont kapp1 e2 e1 =

. . .

letcont kapp2 v1 e2 =

. . .

letcont kclo1 ρ′ e =

case e of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′ (λe ′. (kclo1 ρ′ e ′)))

} in

(eval e ′ ρ′′ (λv . (kclo1 ρ′′ v)))

} |
ELSE(e2 ) → (eval e2 ρ (λe ′

2 . (kapp2 v1 e ′
2 )))

} in

(eval e2 ρ (λv2 . (kapp2 v1 v2 ))) |
ELSE(e1 ) → (eval e1 ρ (λe ′

1 . (kapp1 e2 e ′
1 )))

} in

(eval e1 ρ (λv1 . (kapp1 e2 v1 )))

}
Continuations Switch Control. Since continuations now handle the full evalu-
ation of their argument themselves, they can be used to switch stages in the
evaluation of a term. Observe how in the resulting evaluator below, the evalu-
ation of an app term progresses through stages initiated by kapp1, kapp2, and
finally kclo1.

let rec eval e ρ k = case e of {
. . .
app(e1 , e2 ) →

letcont kapp1 e2 e1 =
. . .

letcont kapp2 v1 e2 =
. . .
letcont kclo1 ρ′ e =

. . .

in (kclo1 ρ′′ e ′)
. . .

in (kapp2 v1 e2 ) |
. . .

in (kapp1 e2 e1 )

}
Defunctionalization. In the next step, we defunctionalize continuations. For each
continuation, we introduce a constructor with the corresponding number of
arguments. The apply function gives the meaning of each defunctionalized
continuation.
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let rec apply eval ek ρ k = case ek of {
kapp1(e2 , e1 ) →

case e1 of {
val(v1 ) → (apply eval kapp2(v1 , e2 ) ρ k) |
ELSE(e1 ) → (eval e1 ρ (λe ′

1 . (apply eval kapp1(e2 , e ′
1 ) ρ k) ))

} |
kapp2(v1 , e2 ) →

case e2 of {
val(v2 ) →

case v1 of {
clo(x , e ′, ρ′) →

let ρ′′ = (update x v2 ρ′)
in (apply eval kclo1(ρ′′, e ′) ρ k)

} |
ELSE(e2 ) → (eval e2 ρ (λe ′

2 . (apply eval kapp2(v1 , e ′
2 ) ρ k) ))

} |
kclo1(ρ′, e) →

case e of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′ (λe ′. (apply eval kclo1(ρ′, e ′) ρ k) ))

}
} in

let rec eval e ρ k = case e of {
val(v) → (k val(v)) |
var(x ) → let v = (ρ x ) in (k val(v)) |
lam(x , e ′) → (k val(clo(x , e ′, ρ))) |
app(e1 , e2 ) → (apply eval kapp1(e2 , e1 ) ρ k)

}
Remove Tail-Calls. We can now move from a recursive evaluator to a stepping
function by modifying the continuation arguments passed to eval in congruence
cases. Instead of calling apply on the defunctionalized continuation, we return
the defunctionalized continuation itself. Note, that we leave intact those calls to
apply that switch control between different continuations (e.g., in the definition
of eval).

let rec apply eval ek ρ k = case ek of {
kapp1(e2 , e1 ) →

case e1 of {
val(v1 ) → (apply eval kapp2(v1 , e2 ) ρ k) |
ELSE(e1 ) → (eval e1 ρ (λe ′

1 . (k kapp1(e2 , e ′
1 )) ))

} |
kapp2(v1 , e2 ) →

case e2 of {
val(v2 ) → . . . (apply eval kclo1(ρ′′, e ′) ρ k) |
ELSE(e2 ) → (eval e2 ρ (λe ′

2 . (k kapp2(v1 , e ′
2 )) ))

} |
kclo1(ρ′, e) →
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case e of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′ (λe ′. (k kclo1(ρ′, e ′)) ))

}
} in . . .

Convert Continuations into Terms. At this point, we have a stepping func-
tion that returns either a term or a continuation, but we want a function
returning only terms. The most straightforward approach to achieving this goal
would be to introduce a term constructor for each defunctionalized continuation
constructor. However, many of these continuation constructors can be trivially
expressed using constructors already present in the object language. We want to
avoid introducing redundant terms, so we aim to reuse existing constructors as
much as possible. In our example we observe that kapp1(e2, e1) corresponds to
app(e1, e2), while kapp2(v1, e2) to app(val(v1), e2). We might also observe that
kclo1(ρ′, e) would correspond to app(clo(x, e, ρ), val(v2)) if ρ′ = update x v2 ρ.
Our current implementation doesn’t handle such cases, however, and so we intro-
duce kclo1 as a new term constructor.

let rec apply eval ek ρ k = case ek of {
kapp1(e2 , e1 ) →

case e1 of {
val(v1 ) → (apply eval kapp2(v1 , e2 ) ρ k) |
ELSE(e1 ) → (eval e1 ρ (λe ′

1 . (k app(e ′
1 , e2 ) )))

} |
kapp2(v1 , e2 ) →

case e2 of {
val(v2 ) →

case v1 of {
clo(x , e ′, ρ′) → let ρ′′ = (update x v2 ρ′) in kclo1(ρ′′, e ′)

} |
ELSE(e2 ) → (eval e2 ρ (λe ′

2 . (k app(val(v1 ), e ′
2 ) )))

} |
kclo1(ρ′, e) →

case e of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′ (λe ′. (k kclo1(ρ′, e ′) )))

}
} in
let rec eval e ρ k = case e of {

. . .

kclo1(ρ′, e ′) → (apply eval kclo1(ρ′, e ′) ρ k)
}

Inlining and Simplification. Next, we eliminate the apply function by inlining
its applications and simplifying the result. At this point we have obtained a
small-step interpreter in continuation-passing style.
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let rec eval e ρ k = case e of {
. . .
app(e1 , e2 ) →

case e1 of {
val(v1 ) →

case e2 of {
val(v2 ) →

case v1 of {
clo(x , e ′, ρ′) → let ρ′′ = (update x v2 ρ′) in kclo1(ρ′′, e ′)

} |
ELSE(e2 ) → (eval e2 ρ (λe ′

2 . (k app(val(v1 ), e ′
2 ))))

} |
ELSE(e1 ) → (eval e1 ρ (λe ′

1 . (k app(e ′
1 , e2 ))))

} |
kclo1(ρ′, e ′) →

case e ′ of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′ (λe ′. (k kclo1(ρ′, e ′))))

}
}
Convert to Direct Style and Remove the Value Case. The final transformation
is to convert our small-step interpreter back to direct style. Moreover, we also
remove the value case val(v) → val(v) as we, usually, do not want values to step.

let rec eval e ρ = case e of {
var(x ) → let v = (ρ x ) in val(v) |
lam(x , e ′) → val(clo(x , e ′, ρ)) |
app(e1 , e2 ) →

case e1 of {
val(v1 ) →

case e2 of {
val(v2 ) →

case v1 of {
clo(x , e ′, ρ′) → let ρ′′ = (update x v2 ρ′) in kclo1(ρ′′, e ′)

} |
ELSE(e2 ) → let e ′

2 = (eval e2 ρ) in app(val(v1 ), e ′
2 )

} |
ELSE(e1 ) → let e ′

1 = (eval e1 ρ) in app(e ′
1 , e2 )

} |
kclo1(ρ′, e ′) →

case e ′ of {
val(v) → val(v) |
ELSE(e) → let e ′ = (eval e ρ′) in kclo1(ρ′, e ′)

}
}
Small-Step Evaluator. Fig. 3 shows the small-step rules corresponding to our
last interpreter. Barring the introduction of the kclo1 constructor, the resulting
semantics is essentially identical to one we would write manually.
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1
v = ρ x

ρ � var(x ) val(v)
2

ρ � lam(x , e ′) val(clo(x , e ′, ρ))

3
ρ′′ = update x v2 ρ′

ρ � app(val(clo(x , e ′, ρ′)), val(v2 )) kclo1(ρ′′, e ′)

4
ρ � e2 e′

2

ρ � app(val(v1 ), e2) app(val(v1 ), e′
2)

5
ρ � e1 e′

1

ρ � app(e1, e2 ) app(e′
1, e2 )

6
ρ � kclo1(ρ′ , val(v)) val(v)

7
ρ′ � e e′

ρ � kclo1(ρ′ , e) kclo1(ρ′ , e′)

Fig. 3. Resulting small-step semantics

3 Big-Step Specifications

We define our transformations on an untyped extended λ-calculus with call-by-
value semantics that allows the straightforward definition of big- and small-step
interpreters. We call this language an evaluator definition language (EDL).

3.1 Evaluator Definition Language

Table 1 gives the syntax of EDL. We choose to restrict ourselves to A-normal
form, which greatly simplifies our partial CPS conversion without compromising
readability. Our language has the usual call-by-value semantics, with arguments
being evaluated left-to-right. All of the examples of the previous section were
written in this language.

Our language has 3 forms of let-binding constructs: the usual (optionally
recursive) let, a let-construct for evaluator definition, and a let-construct for
defining continuations. The behavior of all three constructs is the same, however,
we treat them differently during the transformations. The leteval construct also
comes with the additional static restriction that it may appear only once (i.e.,
there can be only one evaluator). The leteval and letcont forms are recursive
by default, while let has an optional rec specifier to create a recursive binding.
For simplicity, our language does not offer implicit mutual recursion, so mutual
recursion has to be made explicit by inserting additional arguments. We do this
when we generate the apply function during defunctionalization.

Notation and Presentation. We use vector notation to denote syntactic lists
belonging to a particular sort. For example, �e and �ae are lists of elements of,
respectively, Expr and AExpr , while �x is a list of variables. Separators can be
spaces (e.g., function arguments) or commas (e.g., constructor arguments or
configuration components). We expect the actual separator to be clear from the
context. Similarly for lists of expressions: �e, �ae, etc. In let bindings, f x1 . . . xn =
e and f = λx1 . . . xn. e are both syntactic sugar for f = λx1. . . . λxn. e.
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Table 1. Syntax of the evaluator definition language.

Expr � e ::= let bn = ce in e (let-binding)
| let rec bn = ce in e (recursive let-binding)
| leteval x = ce in e (evaluator definition)
| letcont k = ce in e (continuation definition)
| ce

CExpr � ce ::= (ae ae . . .) (application)
| case ae of { cas | . . . | cas } (pattern matching)
| if ae then e else e (conditional)
| ae

AExpr � ae ::= v | op (value, operator)
| x | k (variable, continuation variable)
| λbn. e (λ-abstraction)
| c(ae, . . ., ae) (constructor application)
| 〈 ae, . . ., ae 〉 (configuration expression)

Binder � bn ::= x | 〈 x, . . ., x 〉 (variable, configuration)

Case � cas ::= c(x, . . ., x) → e (constructor pattern)
| ELSE(x) → e (default pattern)

Value � v ::= n | b | c(v,. . .,v) | 〈 v,. . .,v 〉 | abs(λx.e, ρ)

4 Transformation Steps

In this section, we formally define each of the transformation steps informally
described in Section 2. For each transformation function, we list only the most
relevant cases; the remaining cases trivially recurse on the A-normal form (ANF)
abstract syntax. We annotate functions with E,CE , andAE to indicate the corre-
sponding ANF syntactic classes. We omit annotations when a function only oper-
ates on a single syntactic class. For readability, we annotate meta-variables to hint
at their intended use – ρ stands for read-only entities (such as environments),
whereas σ stands for read-write or “state-like” entities of a configuration (e.g.,
stores or exception states). These can be mixed with our notation for syntactic
lists, so, for example, �xσ is a sequence of variables referring to state-like entities,
while �aeρ is a sequence of a-expressions corresponding to read-only entities.

4.1 CPS Conversion

The first stage of the process is a partial CPS conversion [8,25] to make control
flow in the evaluator explicit. We limit this transformation to the main evalu-
ator function, i.e., only the function eval will take an additional continuation
argument and will pass results to it. Because our input language is already in
ANF, the conversion is relatively easy to express. In particular, applications of
the evaluator are always let-bound to a variable (or appear in a tail position),
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which makes constructing the current continuation straightforward. Below are
the relevant clauses of the conversion. For this transformation we assume the
following easily checkable properties:

– The evaluator name is globally unique.
– The evaluator is never applied partially.
– All bound variables are distinct.

The conversion is defined as three mutually recursive functions with the following
signatures:

cpsE : Expr → (CExpr → Expr) → Expr
cpsCE : CExpr → (CExpr → Expr) → Expr
cpsAE : AExpr → AExpr

In the equations, K, I, Ak : CExpr → Expr are meta-continuations; I injects a
CExpr into Expr .

cpsE
[
leteval eval �bn = e1 in e2

] K =

leteval eval �bn k =
(
cpsE

[
e1

] Ak

)
in

(
cpsE

[
e2

] K)

where k is a fresh continuation variable

cpsE
[
let bn = (eval ae1 �ae) in e

] K =

letcont k bn =
(
cpsE

[
e
] K)

in cpsCE

[
(eval ae1 �ae)

] Ak

where k is a fresh continuation variable

cpsE
[
let bn = ce in e

] K =

renorm
[
let’ bn =

(
cpsCE

[
ce

] I)
in

(
cpsE

[
e
] K)]

cpsCE

[
(eval ae1 �ae)

] K = (eval
(
cpsAE

[
ae1

]) (
cpsAE

[
�ae

])
(λx. K[

x
]
))

where x is a fresh variable

cpsCE

[
ae

] K = K(
cpsAE

[
ae

])

cpsAE

[
λx.e

]
= λx.

(
cpsE

[
e
] I)

cpsAE

[
ae

]
= ae

where for any k, Ak is defined as

Ak

[
ae

]
= k ae

Ak

[
ce

]
= let x = ce in k x where x is fresh

and

renorm
[
let’ x = ce in e

]
= let x = ce in e

renorm
[
let’ x = (let x′ = ce in e′) in e

]
=

let x′ = ce in renorm
[
let’ x = e′ in e

]
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In the above equations, let’ is a pseudo-construct used to make renormal-
ization more readable. In essence, it is a non-ANF version of let where the
bound expression is generalized to Expr . Note that renorm only works correctly
if x′ �∈ fv(e), which is implied by our assumption that all bound variables are
distinct.

4.2 Generalization of Continuations

The continuations resulting from the above CPS conversion expect to be applied
to value terms. The next step is to generalize (or “lift”) the continuations so that
they recursively call the evaluator to evaluate non-value arguments. In other
words, assuming the term type can be factored into values and computations
V +C, we convert each continuation k with the type V → V into a continuation
k′ : V + C → V using the following schema:

let rec k′ t = case t of inl v → k v | inr c → eval c k′

The recursive clauses will correspond to congruence rules in the resulting small-
step semantics.

The transformation works by finding the unique application site of the con-
tinuation and then inserting the corresponding call to eval in the non-value case.

gencontE
[
letcont k 〈 x, �xσ 〉 = ek in e

]
=

letcont k 〈 x̂, �xσ 〉 =

case x̂ of {
val(x) → ek ;

ELSE(x̂) → eval 〈 x̂, �aeσ 〉 �aeρ aek

}
if findApp k e = eval 〈 , �aeσ 〉 �aeρ aek

where

– findApp k e is the unique use site of the continuation k in expression e, that
is, the CExpr where eval is applied with k as its continuation; and

– x̂ is a fresh variable associated with x – it stands for “a term corresponding
to (the value) x”.

Following the CPS conversion, each named continuation is applied exactly
once in e, so findApp k e is total and returns the continuation’s unique use site.
Moreover, because the continuation was originally defined and let-bound at that
use site, all free variables in findApp k e are also free in the definition of k.

When performing this generalization transformation, we also modify tail posi-
tions in eval that return a value so that they wrap their result in the val con-
structor. That is, if the continuation parameter of eval is k, then we rewrite all
sites applying k to a configuration as follows:

k 〈 ae, �aeσ 〉 ⇒ k 〈 val(ae), �aeσ 〉
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4.3 Argument Lifting in Continuations

In the next phase, we partially lift free variables in continuations to make them
explicit arguments. We perform a selective lifting in that we avoid lifting non-
term arguments to the evaluation function. These arguments represent entities
that parameterize the evaluation of a term. If an entity is modified during evalua-
tion, the modified entity variable gets lifted. In the running example of Section 2,
such a lifting occurred for kclo1.

Function lift specifies the transformation at the continuation definition site:

lift Ξ Δ [letcont k = λx. ek in e] =
letcont k = λ x1 . . . xn x. (lift Ξ ′ Δ′ [ek]) in (lift Ξ ′ Δ′ [e])

where

– Ξ ′ = Ξ ∪ {k}
– {x1, . . . , xn} = fv ek ∪ (

⋃
g∈(domΔ ∩ fv ek)

Δ(g)) − Ξ ′

– Δ′ = Δ[k 	→ (x1, . . . , xn)]

and at the continuation application site – recall that continuations are always
applied fully, but at this point they are only applied to one argument:

lift Ξ Δ
[
k ae

]
= k x1 . . . xn (lift Ξ Δ

[
ae′])

if k ∈ domΔ and Δ(k) = (x1, . . . , xn).
Our lifting function is a restricted version of a standard argument-lifting

algorithm [19]. The first restriction is that we do not lift all free variables, since
we do not aim to float and lift the continuations to the top-level of the program,
only to the top-level of the evaluation function. The other difference is that we
can use a simpler way to compute the set of lifted parameters due to the absence
of mutual recursion between continuations. The correctness of this can be proved
using the approach of Fischbach [16].

4.4 Continuations Switch Control Directly

At this point, continuations handle the full evaluation of a term themselves.
Instead of calling eval with the continuation as an argument, we can call the
continuation directly to switch control between evaluation stages of a term. We
will replace original eval call sites with direct applications of the corresponding
continuations. The recursive call to eval in congruence cases of continuations will
be left untouched, as this is where the continuation’s argument will be evaluated
to a value. Following from the continuation generalization transformation, this
call to eval is with the same arguments as in the original site (which we are now
replacing). In particular, the eval is invoked with the same �aeρ arguments in the
continuation body as in the original call site.

directcontE
[
letcont k = ce in e

]
K =

letcont k = directcontCE

[
ce

]
K in directcontE

[
e
]
(K 
 {k})

directcontCE

[
eval 〈 ae, �aeσ 〉 �aeρ (λy. k �x y)

]
K = k �x 〈 ae, �aeσ 〉 if k ∈ K
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4.5 Defunctionalization

Now we can move towards a first-order representation of continuations which can
be further converted into term constructions. We defunctionalize continuations
by first collecting all continuations in eval, then introducing corresponding con-
structors (the syntax), and finally generating an apply function (the semantics).
The collection function accumulates continuation names and their definitions.
At the same time it removes the definitions.

collectE
[
letcont k = ce in e

]
= ({(k, ce′)} ∪ Kce ∪ Ke, e

′)

where (Kce, ce
′) = collectCE

[
ce

]

(Ke, e
′) = collectE

[
e
]

We reuse continuation names for constructors. The apply function is generated
by simply generating a case analysis on the constructors and reusing the argu-
ment names from the continuation function arguments. In addition to the defunc-
tionalized continuations, the generated apply function will take the same argu-
ments as eval. Because of the absence of mutual recursion in our meta-language,
apply takes eval as an argument.

genApply �xρ �xσ ktop
{
(k1, λp1,1 . . . p1,i. e1), . . . , (kn, λpn,1 . . . pn,j . en)

}
=

λeval 〈 xk, �xσ 〉 �xρ ktop .

case xk of {
k1(p1,1, . . . , p1,i) → e1 ;

. . . ;

kn(pn,1, . . . , pn,j) → en

}
Now we need a way to replace calls to continuations with corresponding calls to
apply. For �aeρ and ktop we use the arguments passed to eval or apply (depending
on where we are replacing).

replaceCE

[
k �aek 〈ae, �aeσ〉](�xρ, ktop) = apply eval 〈 k( �aek, ae), �aeσ 〉 �xρ ktop

Finally, the complete defunctionalization is defined in terms of the above three
functions.

4.6 Remove Self-recursive Tail-Calls

This is the transformation which converts a recursive evaluator into a stepping
function. The transformation itself is very simple: we simply replace the self-
recursive calls to apply in congruence cases.

derecCE

[
eval 〈 ae, �aeσ 〉 �aeρ (λ〈 x′, �xσ′ 〉. apply eval 〈 ck( �ae, x′), �xσ′ 〉 �aeρ′ k)

]
=

eval 〈 ae, �aeσ 〉 �aeρ (λ〈 x′, �xσ′ 〉. k 〈 ck( �ae, x′), �xσ′ 〉)
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Note, that we still leave those invocations of apply that serve to switch control
through the stages of evaluation. Unless a continuation constructor will become
a part of the output language, its application will be inlined in the final phase
of our transformation.

4.7 Convert Continuations to Terms

After defunctionalization, we effectively have two sorts of terms: those con-
structed using the original constructors and those constructed using continu-
ation constructors. Terms in these two sorts are given their semantics by the
eval and apply functions, respectively. To get only one evaluator function at
the end of our transformation process, we will join these two sorts, adding
extra continuation constructors as new term constructors. We could simply
merge apply to eval, however, this would give us many overlapping construc-
tors. For example, in Section 2, we established that kapp1(e2, e1) ≈ app(e1, e2)
and kapp2(v1, e2) ≈ app(val(v1), e2). The inference of equivalent term construc-
tors is guided by the following simple principle. For each continuation term
ck(ae1, . . . , aen) we are looking for a term c′(ae′

1, . . . , ae′
m), such that, for all

�aeσ, �aeρ and aek

apply eval 〈 ck(ae1, . . . , aen), �aeσ 〉 �aeρ aek

= eval 〈 c′(ae′
1, . . . , ae′

m), �aeσ 〉 �aeρ aek

In our current implementation, we use a conservative approach where, start-
ing from the cases in eval, we search for continuations reachable along a control
flow path. Variables appearing in the original term are instantiated along the
way. Moreover, we collect variables dependent on configuration entities (state).
If control flow is split based on information derived from the state, we auto-
matically include any continuation constructors reachable from that point as
new constructors in the resulting language and interpreter. This, together with
how information flows from the top-level term to subterms in congruence cases,
preserves the coupling between state and corresponding subterms between steps.

If, starting from an input term c(�x), an invocation of apply on a continuation
term ck( �aek) is reached, and if, after instantiating the variables in the input
term c( �ae), the sets of their free variables are equal, then we can introduce a
translation from ck( �aek) into c( �ae). If such a direct path is not found, the ck will
become a new term constructor in the language and a case in eval is introduced
such that the above equation is satisfied.

4.8 Inlining, Simplification and Conversion to Direct Style

To finalize the generation of a small-step interpreter, we inline all invocations
of apply and simplify the final program. After this, the interpreter will con-
sists of only the eval function, still in continuation-passing style. To convert the
interpreter to direct style, we simply substitute eval’s continuation variable for
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(λx.x) and reduce the new redexes. Then we remove the continuation argument
performing rewrites following the scheme:

eval �ae (λbn. e) ⇒ let bn = eval �ae in e

Finally, we remove the reflexive case on values (i.e., val(v) → val(v)). At this
point we have a small-step interpreter in direct form.

4.9 Removing Vacuous Continuations

After performing the above transformation steps, we may end up with some
redundant term constructors, which we call “empty” or vacuous. These are con-
structors which only have one argument and their semantics is equivalent to
the argument itself, save for an extra step which returns the computed value. In
other words, they are unary constructs which only have two rules in the resulting
small-step semantics matching the following pattern.

�ρ � 〈c(val(v)), �σ〉 −→ 〈val(v), �σ〉
�ρ � 〈e, �σ〉 −→ 〈e′, �σ′〉

�ρ � 〈c(e), �σ〉 −→ 〈c(e′), �σ′〉

Such a construct will result from a continuation, which, even after generaliza-
tion and argument lifting, merely evaluates its sole argument and returns the
corresponding value:

letcont rec ki e = case e of {
val(v) → k v |
ELSE(e) → eval e (λe′. ki e′)

}
These continuations can be easily identified and removed once argument lifting
is performed, or at any point in the transformation pipeline, up until apply is
absorbed into eval.

4.10 Detour: Generating Pretty-Big-Step Semantics

It is interesting to see what kind of semantics we get by rearranging or removing
some steps of the above process. If, after CPS conversion, we do not general-
ize the continuations, but instead just lift their arguments and defunctionalize
them,1 we obtain a pretty-big-step [6] interpreter. The distinguishing feature of
pretty-big-step semantics is that constructs which would normally have rules
with multiple premises are factorized into intermediate constructs. As observed
by Charguéraud, each intermediate construct corresponds to an intermediate
state of the interpreter, which is why, in turn, they naturally correspond to
continuations. Here are the pretty-big-step rules generated from the big-step
semantics in Fig. 2 (Section 2).

1 The complete transformation to pretty-big-step style involves these steps: 1. CPS
conversion, 2. argument lifting, 3. removal of vacuous continuations, 4. defunction-
alization, 5. merging of apply and eval, and 6. conversion to direct style.
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ρ � val(v) ⇓P
B v

ρ � e1 ⇓P
B v1 ρ � kapp1(e2 , v1 ) ⇓P

B v

ρ � app(e1 , e2 ) ⇓P
B v

v = ρ x

ρ � var(x ) ⇓P
B v

ρ � e2 ⇓P
B v2 ρ � kapp2(v1 , v2 ) ⇓P

B v

ρ � kapp1(e2 , v1 ) ⇓P
B v

ρ � lam(x , e ′) ⇓P
B clo(x , e ′, ρ)

ρ′′ = update x v2 ρ′ ρ′′ � e ′ ⇓P
B v

ρ � kapp2(clo(x , e ′, ρ′), v2 ) ⇓P
B v

As we can see, the evaluation of app now proceeds through two intermediate
constructs, kapp1 and kapp2, which correspond to continuations introduced in
the CPS conversion. The evaluation of app(e1, e2) starts by evaluating e1 to
v1. Then kapp1 is responsible for evaluating e2 to v2. Finally, kapp2 evaluates
the closure body just as the third premise of the original rule for app. Save
for different order of arguments, the resulting intermediate constructs and their
rules are identical to Charguéraud’s examples.

4.11 Pretty-Printing

For the purpose of presenting and studying the original and transformed seman-
tics, we add a final pretty-printing phase. This amounts to generating inference
rules corresponding to the control flow in the interpreter. This pretty-printing
stage can be applied to both the big-step and small-step interpreters and was
used to generate many of the rules in this paper, as well as for generating the
appendix of the full version of this paper [1].

4.12 Correctness

A correctness proof for the full pipeline is not part of our current work. How-
ever, several of these steps (partial CPS conversion, partial argument lifting,
defunctionalization, conversion to direct style) are instances of well-established
techniques. In other cases, such as generalization of continuations (Section 4.2)
and removal of self-recursive tail-calls (Section 4.6), we have informal proofs using
equational reasoning [1]. The proof for tail-call removal is currently restricted to
compositional interpreters.

5 Evaluation

We have evaluated our approach to deriving small-step interpreters on a range
of example languages. Table 2 presents an overview of example big-step specifi-
cations and their properties, together with their derived small-step counterparts.
A full listing of the input and output specifications for these case studies appears
in the appendix to the full version of the paper, which is available online [1].
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Table 2. Overview of transformed example languages. Input is a given big-step inter-
preter and our transformations produce a small-step counterpart as output automati-
cally. “Prems” columns only list structural premises: those that check for a big or small
step. Unless otherwise stated, environments are used to give meaning to variables and
they are represented as functions.

Big-step Small-step
Example Rules Prems Rules Prems New Features

Call-by-value 4 3 7 3 1
Call-by-value, substitution 4 5 7 4 0 addition
Call-by-value, booleans 13 20 24 11 1 add., conditional, equality
Call-by-value, pairs 7 7 14 7 1 pairs, left/right projection
Call-by-value, dynamic
scopes

5 5 10 5 1 add., defunctionalized
environments (DEs)

Call-by-value, recursion &
iteration

26 44 57 26 6 fixpoint operator, add.,
sub., let-expressions,
applicative for and while
loops, cond., strict and
“lazy” conjunction, eq.,
pairs

Call-by-name 5 5 11 5 2 add., DEs
Call-by-name, substitution 4 4 6 3 0 add., DEs
Call-by-name, booleans 13 20 25 11 2 add., cond., eq., DEs
Call-by-name, pairs 7 7 15 7 2 pairs, left/right proj., DEs
Minimal imperative 4 4 6 3 0 add., store without

indirection, combined
assignment with
sequencing

While 7 9 14 6 2 add., store w/o indir.,
assign., seq., while

While, environments 8 10 17 7 3 add., store w/ indir.,
scoped var. declaration,
assign., seq., while

Extended While 17 26 33 15 2 add., subt., mult., seq.,
store w/o indir., while,
cond., “ints as bools”,
equality, “lazy conj.”

Exceptions as state 8 7 11 3 1 add.
Exceptions as values 8 7 10 3 0 add.
Call-by-value, exceptions 21 29 34 12 2 add., div., try block
CBV, exceptions as state 20 26 39 11 8 add., div., handle & try

blocks
CBV, non-determinism 7 7 13 5 2 add., choice operator
Store rewinding 8 10 19 8 4 assign., rewinding of the

store
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For our case studies, we have used call-by-value and call-by-name λ-calculi,
and a simple imperative language as base languages and extended them with
some common features. Overall, the small-step specifications (as well as the cor-
responding interpreters) resulting from our transformation are very similar to
ones we could find in the literature. The differences are either well justified—for
example, by different handling of value terms—or they are due to new term con-
structors which could be potentially eliminated by a more powerful translation.

We evaluated the correctness of our transformation experimentally, by com-
paring runs of the original big-step and the transformed small-step interpreters,
as well as by inspecting the interpreters themselves. In a few cases, we proved
the transformation correct by transcribing the input and output interpreters in
Coq (as an evaluation relation coupled with a proof of determinism) and proving
them equivalent. From the examples in Table 2, we have done so for “Call-by-
value”, “Exceptions as state”, and a simplified version of “CBV, exceptions as
state”.

We make a few observations about the resulting semantics here.

New Auxiliary Constructs. In languages that use an environment to look up
values bound to variables, new constructs are introduced to keep the updated
environment as context. These constructs are simple: they have two arguments –
one for the environment (context) and one for the term to be evaluated in that
environment. A congruence rule will ensure steps of the term argument in the
given context and another rule will return the result. The construct kclo1 from
the λ-calculus based examples is a typical example.

ρ � kclo1(ρ′, val(v)) −→ val(v)

ρ′ � t −→ t′

ρ � kclo1(ρ′, t) −→ kclo1(ρ′, t′)

As observed in Section 2, if the environment ρ′′ is a result of updating an envi-
ronment ρ′ with a binding of x to v, then the app rule

ρ′′ = update x v ρ′

ρ � app(clo(ρ′, x, e), v) −→ kclo1(ρ′′, e)

and the above two rules can be replaced with the following rules for app:

ρ � app(clo(x, v, ρ′), v2) −→ v

ρ′′ = update x v2 ρ′ ρ′′ � e −→ e′

ρ � app(clo(x, e, ρ′), v2) −→ app(clo(x, e′, ρ′), v2)

Another common type of constructs resulting in a recurring pattern of extra
auxiliary constructs are loops. For example, the “While” language listed in
Table 2 contains a while-loop with the following big-step rules:

〈eb, σ〉 ⇓ 〈false, σ′〉
〈while(eb, c), σ〉 ⇓ 〈skip, σ′〉

〈eb, σ〉 ⇓ 〈true, σ′〉 〈c, σ′〉 ⇓ 〈skip, σ′′〉 〈while(eb, c), σ
′′〉 ⇓ 〈v, σ′′′〉

〈while(eb, c), σ〉 ⇓ 〈v, σ′′′〉
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The automatic transformation of these rules introduces two extra constructs,
kwhile1 and ktrue1. The former ensures the full evaluation of the condition
expression, keeping a copy of it together with the while’s body. The latter con-
struct ensures the full evaluation of while’s body, keeping a copy of the body
together with the condition expression.

〈while(eb, c), σ〉 −→ 〈kwhile1(c, eb, eb), σ〉

〈kwhile1(c, eb, true), σ〉 −→ 〈ktrue1(eb, c, c), σ〉

〈kwhile1(c, eb, false), σ〉 −→ 〈skip, σ〉
〈t, σ〉 −→ 〈t′, σ′〉

〈kwhile1(c, eb, t), σ〉 −→ 〈kwhile1(c, eb, t
′), σ′〉

〈ktrue1(eb, c, skip), σ〉 −→ 〈while(eb, c), σ〉
〈t, σ〉 −→ 〈t′, σ′〉

〈ktrue1(eb, c, t), σ〉 −→ 〈ktrue1(eb, c, t
′), σ′〉

We observe that in a language with a conditional and a sequencing construct
we can find terms corresponding to kwhile1 and ktrue1:

kwhile1(c, eb, e
′
b) ≈ if(e′

b, seq(c,while(eb, c)), skip)

ktrue1(eb, c, c
′) ≈ seq(c′,while(eb, c))

The small-step semantics of while could then be simplified to a single rule.

〈while(eb, c), σ〉 −→ 〈if(eb, seq(c,while(eb, c)), skip), σ〉

Our current, straightforward way of deriving term–continuation equivalents
is not capable of finding these equivalences. In future work, we want to explore
external tools, such as SMT solvers, to facilitate searching for translations from
continuations to terms. This search could be possibly limited to a specific term
depth.

Exceptions as Values. We tested our transformations with two ways of represent-
ing exceptions in big-step semantics currently supported by our input language:
as values and as state. Representing exceptions as values appears to be more
common and is used, for example, in the big-step specification of Standard ML
[24], or in [6] in connection with pretty big-step semantics. Given a big-step spec-
ification (or interpreter) in this style, the generated small-step semantics handles
exceptions correctly (based on our experiments). However, since exceptions are
just values, propagation to top-level is spread out across multiple steps – depend-
ing on the depth of the term which raised the exception. The following example
illustrates this behavior.

add(1, add(2, add(raise(3), raise(4)))) −→ add(1, add(2, add(exc(3), raise(4))))

−→ add(1, add(2, exc(3))) −→ add(1, exc(3)) −→ exc(3)
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Since we expect the input semantics to be deterministic and the propagation
of exceptions in the resulting small-step follows the original big-step semantics,
this “slow” propagation is not a problem, even if it does not take advantage of
“fast” propagation via labels or state. A possible solution we are considering for
future work is to let the user flag values in the big-step semantics and translate
such values as labels on arrows or a state change to allow propagating them in
a single step.

Exceptions as State. Another approach to specifying exceptions is to use a flag
in the configuration. Rules may be specified so that they only apply if the incom-
ing state has no exception indicated. As with the exceptions-as-values approach,
propagation rules have to be written to terminate a computation early if a com-
putation of a subterm indicates an exception. Observe the exception propagation
rule for add and the exception handling rule for try.

〈e1, σ, ok〉 ⇓ 〈v1, σ′, ex〉
〈app(e1, e2), σ, ok〉 ⇓ 〈skip, σ′, ex〉

〈e1, σ, ok〉 ⇓ 〈v1, σ′, ex〉 〈e2, σ′, ok〉 ⇓ 〈v2, σ′′, ok〉
〈try(e1, e2), σ, ok〉 ⇓ 〈v2, σ′′, ok〉

Using state to propagate exceptions is mentioned in connection with small-
step SOS in [4]. While this approach has the potential advantage of manifesting
the currently raised exception immediately at the top-level, it also poses a prob-
lem of locality. If an exception is reinserted into the configuration, it might
become decoupled from the original site. This can result, for example, in the
wrong handler catching the exception in a following step. Our transformation
deals with this style of exceptions naturally by preserving more continuations
in the final interpreter. After being raised, an exception is inserted into the
state and propagated to top-level by congruence rules. However, it will only be
caught after the corresponding subterm has been evaluated, or rather, a value
has been propagated upwards to signal a completed computation. This behavior
corresponds to exception handling in big-step rules, only it is spread out over
multiple steps. Continuations are kept in the final language to correspond to
stages of computation and thus, to preserve the locality of a raised exception.
A handler will only handle an exception once the raising subterm has become a
value. Hence, the exception will be intercepted by the innermost handler – even
if the exception is visible at the top-level of a step.

Based on our experiments, the exception-as-state handling in the generated
small-step interpreters is a truthful unfolding of the big-step evaluation process.
This is further supported by our ad-hoc proofs of equivalence between input and
output interpreters. However, the generated semantics suffers from a blowup in
the number of rules and moves away from the usual small-step propagation and
exception handling in congruence rules. We see this as a shortcoming of the trans-
formation. To overcome this, we briefly experimented with a case-floating stage,



228 F. Vesely and K. Fisher

which would result in catching exceptions in the congruence cases of continu-
ations. Using such transformation, the resulting interpreter would more closely
mirror the standard small-step treatment of exceptions as signals. However, the
conditions when this transformations should be triggered need to be considered
carefully and we leave this for future work.

Limited Non-determinism. In the present work, our aim was to only consider
deterministic semantics implemented as an interpreter in a functional program-
ming language. However, since cases of the interpreter are considered indepen-
dently in the transformation, some forms of non-determinism in the input seman-
tics get translated correctly. For example, the following internal choice construct
(cf. CSP’s � operator [5,17]) gets transformed correctly. The straightforward
big-step rules are transformed into small-step rules as expected. Of course, one
has to keep in mind that these rules are interpreted as ordered, that is, the first
rule in both styles will always apply.

e1 ⇓ v1

choose(e1, e2) ⇓ v1 choose(e1, e2) −→ e1

e2 ⇓ v2

choose(e1, e2) ⇓ v2 choose(e1, e2) −→ e2

6 Related Work

In their short paper [18], the authors propose a direct syntactic way of deriving
small-step rules from big-step ones. Unlike our approach, based on manipulating
control flow in an interpreter, their transformation applies to a set of inference
rules. While axioms are copied over directly, for conditional rules a stack is
added to the configuration to keep track of evaluation. For each conditional big-
step rule, an auxiliary construct and 4 small-step rules are generated. Results of
“premise computations” are accumulated and side-conditions are only discharged
at the end of such a computation sequence. For this reason, we can view the
resulting semantics more as a “leap” semantics, which makes it less suitable for
a semantics-based interpreter or debugger. A further disadvantage is that the
resulting semantics is far removed from a typical small-step specification with a
higher potential for blow-up as 4 rules are introduced for each conditional rule.
On the other hand, the delayed unification of meta-variables and discharging of
side-conditions potentially makes the transformation applicable to a wider array
of languages, including those where control flow is not as explicit.

In [2], the author explores an approach to constructing abstract machines
from big-step (natural) specifications. It applies to a class of big-step specifica-
tions called L-attributed big-step semantics, which allows for sufficiently inter-
esting languages. The extracted abstract machines use a stack of evaluation
contexts to keep track of the stages of computations. In contrast, our trans-
formed interpreters rebuild the context via congruence rules in each step. While
this is less efficient as a computation strategy, the intermediate results of the
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computation are visible in the context of the original program, in line with usual
SOS specifications.

A significant body of work has been developed on transformations that take
a form of small-step semantics (usually an interpreter) and produce a big-step-
style interpreter. The relation between semantic specifications, interpreters and
abstract machines has been thoroughly investigated, mainly in the context of
reduction semantics [10–13,26]. In particular, our work was inspired by and is
based on Danvy’s work on refocusing in reduction semantics [13] and on use of
CPS conversion and defunctionalization to convert between representations of
control in interpreters [11].

A more direct approach to deriving big-step semantics from small-step is
taken by authors of [4], where a small-step Modular SOS specification is trans-
formed into a pretty-big-step one. This is done by introducing reflexivity and
transitivity rules into a specification, along with a “refocus” rule which effectively
compresses a transition sequence into a single step. The original small-step rules
are then specialized with respect to these new rules, yielding refocused rules in
the style of pretty-big-step semantics [6]. A related approach is by Ciobâcă [7],
where big-step rules are generated for a small-step semantics. The big-step rules
are, again, close to a pretty-big-step style.

7 Conclusion and Future Work

We have presented a stepwise functional derivation of a small-step interpreter
from a big-step one. This derivation proceeds through a sequence of, mostly
basic, transformation steps. First, the big-step evaluation function is converted
into continuation-passing style to make control-flow explicit. Then, the contin-
uations are generalized (or lifted) to handle non-value inputs. The non-value
cases correspond to congruence rules in small-step semantics. After defunction-
alization, we remove self-recursive calls, effectively converting the recursive inter-
preter into a stepping function. The final major step of the transformation is to
decide which continuations will have to be introduced as new auxiliary terms
into the language. We have evaluated our approach on several languages cov-
ering different features. For most of these, the transformation yields small-step
semantics which are close to ones we would normally write by hand.

We see this work as an initial exploration of automatic transformations of big-
step semantics into small-step counterparts. We identified a few areas where the
current process could be significantly improved. These include applying better
equational reasoning to identify terms equivalent to continuations, or transform-
ing exceptions as state in a way that would avoid introducing many intermediate
terms and would better correspond to usual signal handling in small-step SOS.
Another research avenue is to fully verify the transformations in an interactive
theorem prover, with the possibility of extracting a correct transformer from the
proofs.
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6. Charguéraud, A.: Pretty-big-step semantics. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 41–60. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37036-6 3
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