
HAL Id: hal-00798227
https://hal.inria.fr/hal-00798227

Submitted on 8 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pretty-Big-Step Semantics
Arthur Charguéraud

To cite this version:
Arthur Charguéraud. Pretty-Big-Step Semantics. 22nd European Symposium on Programming
(ESOP), Mar 2013, Rome, Italy. �hal-00798227�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49809851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00798227
https://hal.archives-ouvertes.fr

Pretty-Big-Step Semantics

Arthur Charguéraud

Inria Saclay – Île-de-France & LRI, Université Paris Sud, CNRS
arthur.chargueraud@inria.fr

Abstract. In spite of the popularity of small-step semantics, big-step
semantics remain used by many researchers. However, big-step seman-
tics suffer from a serious duplication problem, which appears as soon as
the semantics account for exceptions and/or divergence. In particular,
many premises need to be copy-pasted across several evaluation rules.
This duplication problem, which is particularly visible when scaling up
to full-blown languages, results in formal definitions growing far big-
ger than necessary. Moreover, it leads to unsatisfactory redundancy in
proofs. In this paper, we address the problem by introducing pretty-big-
step semantics. Pretty-big-step semantics preserve the spirit of big-step
semantics, in the sense that terms are directly related to their results,
but they eliminate the duplication associated with big-step semantics.

1 Introduction

There are two traditional approaches to formalizing the operational semantics of
a programming language: small-step semantics [11], and big-step semantics [7]. In
small-step semantics, the subterm in evaluation position is reduced step by step
and these transitions are reflected at the top level. In big-step semantics, a term
is directly related to its result, and the behavior of a term is expressed in terms
of the behavior of its subterms. While provably equivalent, these two approaches
are fundamentally different in terms of how evaluation rules are stated and how
proofs are conducted.

This paper describes and proposes a solution to a severe limitation of big-step
semantics: the fact that a number of rules and premises need to be duplicated in
order to handle exceptions and divergence. In particular, this limitation typically
discourages the use of big-step semantics in mechanized definitions of large-scale
languages. Before trying to address this limitation of the big-step semantics, we
may ask ourselves: Why should we care about big-step semantics? Why not just
use small-step semantics all the time?

To find out whether big-step semantics are still being used, we opened up
proceedings from recent programming language conferences. We counted the
number of research papers making use of a big-step semantics. In ICFP’11, 5
papers were describing results based on a big-step semantics, out of 8 papers that
had an operational semantics. In POPL’11, there were 7 out of 23. In ICFP’12,
there were 5 out of 9. An immediate conclusion that we can draw from these
rough statistics is that big-step is not dead.

2 Arthur Charguéraud

A closer look at the papers involved reveals that the choice of the opera-
tional semantics usually depends on the topic covered by the paper. Papers on
type systems nearly always use a small-step semantics to conduct a soundness
proof in Wright and Felleisen’s style [12]. Papers describing a machine-level lan-
guage typically use a small-step relation to describe transitions between pairs
of machine configurations. Papers concerned with concurrent languages are also
almost exclusively described using small-step semantics. Furthermore, a major-
ity of the mechanized definitions of full-blown programming languages that have
been developed in recent years were based on small-step semantics.

There are, however, topics for which the use of a big-step semantics appears
to prevail. Cost semantics, which associate a cost to the evaluation of every ex-
pression, are mainly presented as big-step relations. Program logics often have
soundness and completeness proofs that are easier to conduct with respect to a
big-step relation. In particular, there are cases of completeness proofs, such as
that developed in the author’s thesis [1], that need to be conducted by induction
over a big-step derivation; any attempt to build the completeness proof with re-
spect to a small-step semantics amounts to re-proving on-the-fly the equivalence
between small-step and big-step semantics. Moreover, there are compiler trans-
formations that are easier to prove correct with respect to big-step semantics,
in particular for transformations introducing so-called “administrative redexes”,
which typically clutter simulation diagrams based on small-step semantics.

Big-step semantics are also widely used in informal descriptions. For example,
the reference manual of a programming language typically contain sentences of
the form “to evaluate if e1 then e2 else e3, first evaluate e1; if the result is true, then
evaluate e2; otherwise, evaluate e3.” None of the many reference manuals that we
have looked at contains a sentence of the form “if e1 takes a step to expression e1′
then if e1 then e2 else e3 takes a step to if e1′ then e2 else e3.” Thus, we speculate
that it would be easier to convince the standards committee in charge of a
given programming language of the adequacy of a big-step formalization than
to convince them of the adequacy of a small-step formalization.

Given that there are a number of important applications for which big-step
semantics seem to have an edge on small-step semantics, any significant improve-
ment to big-step semantics should be considered as a valuable contribution.

In this paper, we focus on a critical issue associated with big-step seman-
tics: the amount of duplication involved in the statement of the evaluation rules.
To illustrate the extent of the problem, consider a C-style for-loop of the form
“for (; t1 ; t2) { t3 }”, that is, a for-loop where the initialization expression has
already been executed. We use the notation “for t1 t2 t3” to describe such a loop.
We next formalize its big-step semantics. For terminating executions, the evalu-
ation judgment takes the form t/m1

⇒ v/m2
, asserting that, in a store m1, the

evaluation of t terminates on the value v in a store m2. The two rules at the top
of Figure 1 describe the regular execution of a loop. When the loop condition t1
evaluates to false, the loop terminates. Otherwise, if t1 evaluates to true, we
evaluate the body t3 of the loop, and obtain the unit value, written tt . We then
evaluate the stepping expression t2, and start over.

Pretty-Big-Step Semantics 3

t1/m1
⇒ false/m2

for t1 t2 t3/m1
⇒ tt/m2

t1/m1
⇒ true/m2

t3/m2
⇒ tt/m3

t2/m3
⇒ tt/m4

for t1 t2 t3/m4
⇒ tt/m5

for t1 t2 t3/m1
⇒ tt/m5

t1/m1
⇒exn

/m2

for t1 t2 t3/m1
⇒exn

/m2

t1/m1
⇒ true/m2

t3/m2
⇒exn

/m3

for t1 t2 t3/m1
⇒exn

/m3

t1/m1
⇒ true/m2

t3/m2
⇒ tt/m3

t2/m3
⇒exn

/m4

for t1 t2 t3/m1
⇒exn

/m4

t1/m1
⇒ true/m2

t3/m2
⇒ tt/m3

t2/m3
⇒ tt/m4

for t1 t2 t3/m4
⇒exn

/m5

for t1 t2 t3/m1
⇒exn

/m5

t1/m1
⇒∞

for t1 t2 t3/m1
⇒∞ co

t1/m1
⇒ true/m2

t3/m2
⇒∞

for t1 t2 t3/m1
⇒∞ co

t1/m1
⇒ true/m2

t3/m2
⇒ tt/m3

t2/m3
⇒∞

for t1 t2 t3/m1
⇒∞ co

t1/m1
⇒ true/m2

t3/m2
⇒ tt/m3

t2/m3
⇒ tt/m4

for t1 t2 t3/m4
⇒∞

for t1 t2 t3/m1
⇒∞ co

Fig. 1. Big-step rules for C loops of the form “for (; t1 ; t2) { t3 }”, written “for t1 t2 t3”.

The four rules at the bottom-left of Figure 1 describe the case of an excep-
tion being raised during the execution of the loop. These rules are expressed
using another inductive judgment, written t/m1

⇒exn
/m2

. They capture the fact
that the exception may be triggered during the evaluation of any of the subex-
pressions, or during the subsequent iterations of the loop. The four rules at the
bottom-right of Figure 1 describe the case of the loop diverging. These rules rely
on a coinductive big-step judgment, written t/m ⇒∞ [2, 8]. “Coinductive” means
that a derivation tree for a judgment of the form t/m ⇒∞ may be infinite.

The amount of duplication in Figure 1 is overwhelming. There are two distinct
sources of duplication. First, the rules for exceptions and the rules for divergence
are extremely similar. Second, a number of evaluation premises are repeated
across many of the rules. For example, even if we ignore the rules for divergence,
the premise t1/m1

⇒ true/m2
appears 4 times. Similarly, t3/m2

⇒ tt/m3
appears

3 times and t2/m3
⇒ tt/m4

appears 2 times. This pattern is quite typical in big-
step semantics for constructs with several subterms.

One may wonder whether the rules from Figure 1 can be factorized. The
only obvious factorization consists of merging the regular evaluation judgment
(t/m1

⇒ v/m2
) with the judgment for exceptions (t/m1

⇒exn
/m2

), using a single
evaluation judgment that relates a term to a behavior, which consists of either a
value or an exception. This factorization, quite standard in big-step semantics,
here only saves one evaluation rule: the second rule from the top of Figure 1 would
be merged with the rule at the bottom-left corner. It is, however, not easy to
factorize the evaluation judgment with the divergence judgment, because one is
inductive while the other is coinductive. Another trick sometimes used to reduce

4 Arthur Charguéraud

the amount of duplication is to define the semantics of a for-loop in terms of other
language constructs, using the encoding “ if t1 then (t3 ; t2 ; for t1 t2 t3) else tt”. Yet,
this approach does not support break and continue instructions, so it cannot be
applied in general. In summary, just to define the semantics of for-loops, even if
we merge the two inductive judgments, we need at least 9 evaluation rules with
a total number of 21 evaluation premises. We will show how to achieve a much
more concise definition, using only 6 rules with 7 evaluation premises.

With the pretty-big-step semantics introduced in this paper, we are able to
eliminate the two sources of duplication associated with big-step definitions.
First, we eliminate the duplication of premises. To that end, we break down
evaluation rules into simpler rules, each of them evaluating at most one subterm.
This transformation introduces a number of intermediate terms and increases the
number of evaluation rules, but it eliminates the need for duplicating premises
across several rules. Overall, the size of the formal definitions usually decreases.

Second, we set up the set of evaluation rules in such a way that it characterizes
either terminating executions or diverging executions, depending on whether we
consider an inductive or a coinductive interpretation for this set of rules. In
contrast to Cousot and Cousot’s bi-inductive semantics [3, 4], which are based
on the construction of a least fixed point of the set of evaluation rules with
respect to a non-standard ordering that corresponds neither to induction nor
coinduction, our definitions are based on the standard notions of induction and
coinduction (as provided, e.g., by Coq).

Furthermore, we show that, when adding traces to the pretty-big-semantics,
the coinductive judgment suffices to describe both terminating and diverging
executions. Our definitions syntactically distinguish finite traces from infinite
traces. This approach leads to rules that are, in our opinion, simpler to under-
stand and easier to reason about than rules involving possibly-infinite traces
(coinductive lists), as used by Nakata and Uustalu [10] and Danielsson [5].

In theory, the fact that we are able to capture the semantics through a
single judgment means that we should be able to establish, through a single
proof, that a program transformation correctly preserves both terminating and
diverging behaviors. Unfortunately, the guard condition implemented in existing
proof assistants such as Coq or Agda prevents us from conducting such reasoning.
Workarounds are possible, but the encodings involved are so tedious that it would
not be realistic to use them in practice. For this reason, we have to postpone the
construction of proofs based on pretty-big-step trace semantics.

In this paper, we also investigate the formalization of type soundness proofs.
Interestingly, the pretty-big-step semantics allows for a generic error rule that
replaces all the error rules that are typically added manually to the semantics.
This generic error rule is based on a progress judgment, whose definition can be
derived in a simple and very systematic way from the set of evaluation rules.

To demonstrate the ability of the pretty-big-step to accommodate realistic
languages, we formalized a large fragment of Caml Light. Compared with the big-
step semantics, the pretty-big-step semantics has a size reduced by about 40%.

Pretty-Big-Step Semantics 5

This paper is organized as follows. In §2, we explain how to turn a big-step
semantics into its pretty-big-step counterpart. In §3, we discuss error rules and
type soundness proofs. In §4, we show how to extend the semantics with traces. In
§5, we explain how to handle more advanced language constructs and report on
the formalization of core-Caml. We then discuss related work (§6), and conclude
(§7). All the definitions and proofs from this paper have been formalized in Coq
and put online at: http://arthur.chargueraud.org/research/2012/pretty.

2 Pretty-big-step semantics
2.1 Decomposition of big-step rules

We present the pretty-big-step semantics using the call-by-value λ-calculus. The
grammar of values and terms are as follows.

v := intn | absx t t := val v | varx | app t t

Thereafter, we leave the constructor val implicit, writing simply v instead of val v
whenever a term is expected. (In Coq, we register val as a coercion.) We recall
the definition of the standard big-step judgment, which is written t ⇒ v.

v ⇒ v

t1 ⇒ absx t t2 ⇒ v [x→ v] t ⇒ v′

app t1 t2 ⇒ v′

The rules of the pretty-big-step semantics are obtained by decomposing the
rules above into more atomic rules that consider the evaluation of at most one
subterm at a time. A first attempt at such a decomposition consists of replacing
the evaluation rule for applications with the following three rules.

t1 ⇒ v1 app v1 t2 ⇒ v′

app t1 t2 ⇒ v′
t2 ⇒ v2 app v1 v2 ⇒ v′

app v1 t2 ⇒ v′
[x→ v] t ⇒ v′

app (absx t) v ⇒ v′

These rules, without further constraints, suffer from an overlapping problem.
For example, consider the term app v1 t2. This term is subject to the application
of the second rule, which evaluates t2. However, it is also subject to application
of the first rule, whose first premise would reduce v1 to itself and whose second
premise would be identical to the conclusion of the rule. The fact that two dif-
ferent rules can be applied to a same term means that the evaluation judgment
is not syntax-directed and thus not very convenient to work with. Even worse,
the fact that an evaluation rule can be applied without making progress is prob-
lematic when considering a coinductive interpretation of the evaluation rules;
typically, one could prove, by applying the first reduction rule infinitely many
times, that any term of the form app v1 t2 diverges.

Cousot and Cousot [3, 4], who use a similar decomposition of the big-step
rules as shown above, prevent the overlapping of the rules by adding side-
conditions. For example, the evaluation rule that reduces app t1 t2 has a side-
condition enforcing t1 to not be already a value. However, such side-conditions
are numerous and they need to be discharged in formal proofs.

6 Arthur Charguéraud

Instead of using side-conditions, we ensure that the three evaluation rules
introduced above are always applied one after the other by introducing interme-
diate terms, whose grammar is shown below. Observe that intermediate terms
are not defined as an extension of the grammar of regular terms, but as a new
grammar that embeds that of regular terms. This presentation avoids polluting
the syntax of source terms with purely-semantical entities.

e := trm t | app1 v t | app2 v v

We extend the evaluation judgment to intermediate terms, defining an in-
ductive judgment of the form e ⇓ v. In the particular case where e describes
a regular term, the judgment takes the form (trm t) ⇓ v. Thereafter, we leave
the constructor trm implicit and thus simply write t ⇓ v. The predicate e ⇓ v
is defined inductively by the rules shown below. The evaluation of an applica-
tion app t1 t2 takes three step. First, we reduce t1 into v1 and obtain the term
app1 v1 t2. Second, we reduce t2 into v2 and obtain the term app2 v1 v2. Third,
assuming v1 to be of the form absx t, we proceed to the β-reduction and evaluate
[x→ v] t in order to obtain some final result v′.

v ⇓ v
t1 ⇓ v1 app1 v1 t2 ⇓ v′

app t1 t2 ⇓ v′

t2 ⇓ v2 app2 v1 v2 ⇓ v′

app1 v1 t2 ⇓ v′
[x→ v] t ⇓ v′

app2 (absx t) v ⇓ v′

The definitions above provide an adequate reformulation of the big-step
semantics by which complex rules have been decomposed into a larger num-
ber of more elementary rules. This decomposition avoids the duplication of
premises when adding support for exceptions and divergence. Observe that the
intermediate terms introduced in the process correspond to the intermediate
states of an interpreter. For example, the form app1 v1 t2 corresponds to the
state of the interpreter after the evaluation of the first let-binding in the code
“ let v1 = eval t1 in let v2 = eval t2 in let (absx t) = v1 in eval ([x→ v2] t)”.

2.2 Treatment of exceptions

We now extend the source language with value-carrying exceptions and exception
handlers. The term raise t builds an exception and throws it. The term try t1 t2
is an exception handler with body t1 and handler t2. Its semantics is as follows.
If t1 produces a regular value, then try t1 t2 returns this value. However, if t1
raises an exception carrying a value v1, then try t1 t2 reduces to app t2 v1.

To describe the fact that a term can produce either a regular value or an
exception carrying a value, the evaluation judgment is generalized to the form
e ⇓ b, where b denotes a behavior, built according to the grammar below.

b := ret v | exn v

Pretty-Big-Step Semantics 7

Because we generalize the form of the judgment, we also need to generalize
the form of the intermediate terms. For example, consider the evaluation of an
application app t1 t2. First, we evaluate t1 into a behavior b1. We then obtain the
intermediate term app1 b1 t2. To evaluate this later term, we need to distinguish
two cases. On the one hand, if b1 is of the form ret v1, then we should evaluate
the second branch t2. On the other hand, if b1 is of the form exn v, then we
should directly propagate exn v. The updated grammar of intermediate terms,
augmented with intermediate forms for raise and try, is as follows.

e := trm t | app1 b t | app2 v b | raise1 b | try1 b t

The definition of e ⇓ b follows a similar pattern as previously. It now also
includes rules for propagating exceptions. For example, app1 (exn v) t evaluates
to exn v. Moreover, the definition includes rules for evaluating raise and try. For
example, to evaluate try t1 t2, we first evaluate t1 into a behavior b1, and then
we evaluate the term try1 b1 t2. In the rules shown below, the constructor ret is
left implicit.

v ⇓ v
t1 ⇓ b1 app1 b1 t2 ⇓ b

app t1 t2 ⇓ b app1 (exn v) t ⇓ exn v

t2 ⇓ b2 app2 v1 b2 ⇓ b
app1 v1 t2 ⇓ b app2 v (exn v) ⇓ exn v

[x→ v] t ⇓ b
app2 (absx t) v ⇓ b

t ⇓ b1 raise1 b1 ⇓ b
raise t ⇓ b raise1 v ⇓ exn v raise1 (exn v) ⇓ exn v

t1 ⇓ b1 try1 b1 t2 ⇓ b
try t1 t2 ⇓ b try1 v t ⇓ v

app t v ⇓ b
try1 (exn v) t ⇓ b

2.3 Treatment of divergence

The above set of rules only describes terminating evaluations. To specify diverg-
ing evaluations, we are going to generalize the grammar of behaviors and to
consider a coinductive interpretation of the same set of rules as that describing
terminating evaluations.

First, we introduce the notion of outcome: the outcome of an execution is
either to terminate on a behavior b (i.e., to return a value or an exception), or
to diverge. We explicitly materialize the divergence outcome with a constant,
called div. An outcome, written o, is thus described as follows: o := ter b | div.

We update accordingly the grammar of intermediate terms. For example,
consider the evaluation of an application app t1 t2. First, we evaluate t1 into
some outcome o1 (a value, an exception, or divergence). We then consider the
term app1 o1 t2, whose evaluation depends on o1. If o1 describes a value v1, we
can continue as usual by evaluating t2. However, if o1 describes an exception or
the constant div, then the term app1 o1 t2 directly propagates the outcome o1.

8 Arthur Charguéraud

b := ret v | exn v o := ter b | div e := trm t | app1 o t | app2 v o | raise1 o | try1 o t

abort (exn v) abort div v ⇓ v
t1 ⇓ o1 app1 o1 t2 ⇓ o

app t1 t2 ⇓ o

abort o
app1 o t ⇓ o

t2 ⇓ o2 app2 v1 o2 ⇓ o
app1 v1 t2 ⇓ o

abort o
app2 v o ⇓ o

[x→ v] t ⇓ o
app2 (absx t) v ⇓ o

t ⇓ o1 raise1 o1 ⇓ o
raise t ⇓ o

abort o
raise1 o ⇓ o raise1 v ⇓ exn v

t1 ⇓ o1 try1 o1 t2 ⇓ o
try t1 t2 ⇓ o

try1 v t ⇓ v
app t v ⇓ o

try1 (exn v) t ⇓ o
abort o ∀v. o 6= exn v

try1 o t ⇓ o

Fig. 2. Pretty-big-step semantics: e ⇓ o (inductive) and e ⇓co div (coinductive), with
the constructors val, trm, ret and ter left implicit in the rules.

To capture the fact that app1 o1 t2 returns o1 both when o1 describes diver-
gence or an exception, we use an auxiliary predicate, called abort. The predicate
abort o1 asserts that o1 “breaks the normal control flow” in the sense that o1 is
either of the form exn v or is equal to div. We are then able to factorize the rules
propagating exceptions and divergence into a single abort rule, as shown below.

abort o1
app1 o1 t2 ⇓ o1

For describing terminating evaluations, we use an inductive judgment of the
form e ⇓ o. The particular form e ⇓ ter b, simply written e ⇓ b, corresponds to
the same evaluation judgment as that defined previously. For describing diverging
evaluations, we use a coevaluation judgment, written e ⇓co o, which is defined
by taking a coinductive interpretation of the same set of rules as that defining
the inductive judgment e ⇓ o. The particular form e ⇓co div asserts that the
execution of e diverges.

The complete set of rules defining both e ⇓ o and e ⇓co o appears in Fig-
ure 2. One novelty is the last rule, which is used to propagate divergence out of
exception handlers. The rule captures the fact that try1 div t produces the out-
come div, but it is stated in a potentially more general way that will be useful
when adding errors as a new kind of behavior. Remark: in Coq, we currently
need to copy-paste all the rules in order to build one inductive definition and
one coinductive definition, however it would be easy to implement a Coq plug-in
to automatically generate the coinductive definition from the inductive one.

2.4 Properties of the judgments

While we are ultimately only interested in the forms e ⇓ b and e ⇓co div, our
definitions syntactically allow for the forms e ⇓ div and e ⇓co b. It is worth

Pretty-Big-Step Semantics 9

clarifying their interpretation. For the former, the situation is quite simple: the
form e ⇓ div is derivable only when e is an intermediate term that carries a div.
In particular, t ⇓ div is never derivable.

Lemma 1. For any term t, t ⇓ div → False.

The interpretation of the form e ⇓co b is more subtle. On the one hand, the
coinductive judgment contains the inductive one, because any finite derivation
is also a potentially-infinite derivation. It is trivial to prove the following lemma.

Lemma 2. For any term e and outcome o, e ⇓ o → e ⇓co o.

On the other hand, due to coinduction, it is sometimes possible to de-
rive e ⇓co b even when e diverges. For example, consider ω = app δ δ, where
δ = absx (appxx); one can prove by coinduction that, for any outcome o, the
relation ω ⇓co o holds. Nevertheless, the coevaluation judgment is relatively
well-behaved, in the sense that if e ⇓co o holds, then either e terminates on
some behavior b, or e diverges. This property is formalized in the next lemma.

Lemma 3. For any term e and outcome o, e ⇓co o → e ⇓ o ∨ e ⇓co div.

We have proved in Coq that the pretty-big-step semantics shown in Figure 2
yields an operational semantics adequate with respect to the standard big-step
evaluation judgment for terminating programs (t ⇒ b) and with respect to
the coinductive big-step evaluation judgment (t ⇒∞) introduced by Leroy and
Grall [8, 9] for diverging programs. (The proof requires the excluded middle.)

Theorem 1 (Equivalence with big-step semantics). For any term t, and
for any behavior b (describing either a value or an exception),

t ⇓ b if and only if t ⇒ b and t ⇓co div if and only if t⇒∞.

All the results presented so far can be generalized to non-deterministic seman-
tics. In the particular case of a deterministic semantics, such as our call-by-value
λ-calculus, we can express the determinacy property as follows.

Lemma 4 (Determinacy). ∀eo1o2. e ⇓ o1 ∧ e ⇓co o2 → o1 = o2

As corollaries, we can prove that if a given term e evaluates to a behavior o1,
then it cannot evaluate to a different behavior o2 and it cannot diverge.

3 Error rules and type soundness proofs
3.1 Explicit error rules

When considering a deterministic language, one can express the type soundness
theorem in the form “if a term is well-typed, then it either terminates or diverges”.
However, for a non-deterministic language, such a statement does not ensure
soundness, because a term could execute safely in some execution but get stuck
in other executions. For a non-deterministic big-step semantics, the traditional
approach to proving type soundness consists of adding explicit error rules to the

10 Arthur Charguéraud

semantics, and then proving a theorem of the form “if a term is well-typed, then
it cannot evaluate to an error”.

Adding error rules to a pretty-big-step semantics turns out to be much easier
than for a big-step semantics, because we are able to reuse the abort rules for
propagating errors to the top level. To describe stuck terms in our language, it
suffices to add a behavior err, to state that it satisfies the predicate abort, and
to add two error rules, one for variables and one for stuck applications.

b := . . . | err abort err varx ⇓ err
∀xt. v1 6= absx t
app2 v1 v2 ⇓ err

3.2 The generic error rule

A classic problem with the introduction of explicit error rules for proving type
soundness is that the theorem can be compromised if an error rule is missing.
Indeed, if we remove a few error rules, then it makes it easier to prove that “if a
term is well-typed, then it cannot evaluate to an error”. So, the omission of an
error rule may hide a flaw in the type system that we want to prove sound.

For a language as simple as the λ-calculus, the error rules are few. However,
for a more realistic language, they can be numerous. In such a case, it becomes
fairly easy to forget a rule and thereby compromise the adequacy of the type
soundness theorem. One could hope to be able to prove (say, in Coq) that a
semantics is not missing any error rules. Yet, as far as we know, there is no way
of formally stating this property. (The formulation “every term either evaluates to
a value or to an error, or diverges” is not appropriate, due to non-determinism.)

In what follows, we explain how a pretty-big-step semantics can be equipped
with a generic error rule, which directly captures the intuition that “a term
should evaluate to an error if no other evaluation rule can be applied”. Remark:
this intuition was at the source of the work by Gunter and Rémy [6] on partial
proof semantics, which consists of a specialized proof theory that allows describ-
ing derivation trees with exactly one unproved leaf; our approach at handling
error rules in a generic manner can be viewed as a realization of Gunter and
Rémy’s idea of partial proofs within a standard proof theory.

The generic error rule is defined in terms of the progress judgment, written e ↓,
which asserts that there exists at least one pretty-big-step evaluation rule whose
conclusion matches the term e. The rules defining the progress judgment can
be derived in a systematic manner from the pretty-big-step evaluation rules, as
described next. An evaluation rule has a conclusion of the form e ⇓ o, a number
of evaluation premises and some other premises. The corresponding progress rule
is obtained by changing the conclusion to e ↓ (i.e., dropping the outcome o) and
by removing all the evaluation premises. The progress judgment associated with
the semantics described in Figure 2 is defined in Figure 3.

Then, the generic error rule, shown below, simply asserts that “if a term e
cannot make progress (e ↓ is false) then e should evaluate to an error”.

¬ (e ↓)
e ⇓ err

Pretty-Big-Step Semantics 11

v ↓ app t1 t2 ↓
abort o

app1 o t2 ↓ app1 v1 t2 ↓
abort o

app2 v o ↓

app2 (absx t) v ↓ raise t ↓
abort o

raise1 o ↓ raise1 v ↓ try t1 t2 ↓

try1 v t ↓ try1 (exn v) t ↓
abort o ∀v. o 6= exn v

try1 o t ↓

Fig. 3. Progress judgment.

We have proved in Coq that using the generic error rule yields evaluation and
coevaluation judgments that are equivalent to those obtained with the traditional
approach to introducing explicit error rules.

There are two main benefits to using the generic error rule. First, deriving
the progress rules from the evaluation rules is easier than deriving explicit error
rules. Indeed, instead of having to find out which rules are needed to complete the
semantics, we can apply to each of the evaluation rules a very systematic process
—so systematic that we believe it could be automated by a Coq plug-in. Second,
forgetting a progress rule does not compromise the type soundness theorem.
Indeed, omitting a progress rule makes it easier to prove that a term evaluates to
an error, and therefore makes it harder (if not impossible) to prove the statement
of the type soundness theorem. To be fair, it should be acknowledged that adding
arbitrary progress rules can compromise type soundness. That said, we believe
that it is much more unlikely for a researcher to add arbitrary progress rules
than to omit a few legitimate rules.

3.3 Type soundness proofs

To give an example of a type soundness proof, we equip our λ-calculus with
simple types. For simplicity, we enforce exceptions to carry only values of type
int. A source program can be typed using the standard typing judgment, of the
form E ` t : T . We write ` t : T when the typing context E is empty. The
typing rules for terms are standard, so we do not show them.

To prove type soundness, we first need to consider a typing judgment for
intermediate terms, written ` e : T , and another one for outcomes, written
` o : T . The proposition ` o : T asserts that the outcome o describes either
a value of type T , or an exception carrying a value of type int, or the outcome
div. Note that err, the error outcome, is never well-typed. The rules defining the
new typing judgments appear in Figure 4. The type soundness theorem states
that “if a closed term is well-typed, then it cannot evaluate to an error”.

Theorem 2 (Type soundness). For any t and T , ` t : T → ¬ t ⇓ err.

The proof is conducted by induction on the preservation property: (e ⇓ o) →
(` e : T) → (` o : T). To see why the above proposition implies the type
soundness theorem, it suffices to instantiate e with t, instantiate o with err,

12 Arthur Charguéraud

` v : T

` ret v : T

` v : int
` exn v : T ` div : T

` t : T

` trm t : T

` o : S → T ` t : S

` app1 o t : T

` v : S → T ` o : S

` app2 v o : T

` o : int
` raise1 o : T

` o : T ` t : int→ T

` try1 o t : T

Fig. 4. Typing rules for outcomes and intermediate terms.

and observe that ` err : T is equivalent to False. There are two particularly
interesting cases in the proof. First, when the evaluation rule is an abort rule,
we need to exploit the fact that a well-typed outcome satisfying abort admits
any type. Formally: (` o : T) ∧ (abort o) → (` o : T ′). Second, when the
evaluation rule is the error rule, we need to establish that if a term is well-typed
then it must satisfy the progress judgment. Formally: (` e : T)→ (e ↓).

All the other proof cases are straightforward. Compared with the big-step
semantics, the pretty-big-step semantics leads to a type soundness proof that
involves a slightly larger number of cases, however these proof cases are typically
simpler, due to the fact that the evaluation rules have at most two premises. In
practice, we have found that having simpler proof cases makes the proofs easier
to complete and easier to automate.

In summary, the pretty-big-step semantics, by reusing its abort rules, reduces
the amount of work needed for adding error behaviors. It also allows for a generic
error rule that makes it faster and less error-prone to add all the error rules.
Moreover, even though it requires additional typing rules for intermediate terms,
it leads to proofs that involve cases that are simpler and easier to automate.

4 Traces

Traces are typically used to record the interactions of a program with its envi-
ronment, for example i/o operations. In what follows, we show how to extend
the pretty-big-step evaluation rules with traces. A trace describes a sequence of
effects. Here, an effect, written α, describes a read operation (inn), or a write
operation (outn), or the absence of an operation (ε). We use the ε effect to make
the evaluation rules productive with respect to traces. Productivity is needed in
particular to ensure that a diverging program that does not perform any i/o
cannot be associated with arbitrary traces. A trace can be finite or infinite. A
finite trace, written τ , consists of a list of effects. An infinite trace, written σ,
consists of a stream of effects (i.e., an infinite list). The outcome of a program
can be either “termination on a value with a finite trace” or “divergence with an
infinite trace”. These definitions are summarized below.

α := ε | inn | outn o := ter τ b | divσ (τ list of α, and σ stream of α)

In several evaluation rules, we need to append a finite trace to the head of a
finite or an infinite trace. We write τ ·τ ′ and τ ·σ the corresponding concatenation

Pretty-Big-Step Semantics 13

abort (ter τ (exn v)) abort (divσ)

v ⇓ ter [ε] v
t1 ⇓ o1 app1 o1 t2 ⇓ o

app t1 t2 ⇓ [ε] · o
abort o

app1 o t ⇓ [ε] · o

t2 ⇓ o2 app2 v1 o2 ⇓ o
app1 (ter τ v1) t2 ⇓ [ε] · τ · o

abort o
app2 v o ⇓ [ε] · o

[x→ v] t ⇓ o
app2 (absx t) (ter τ v) ⇓ [ε] · τ · o

t ⇓ o1 read1 o1 ⇓ o
read t ⇓ [ε] · o

abort o
read1 o ⇓ [ε] · o read1 (ter τ tt) ⇓ ter ([ε] · τ · [inn])n

t ⇓ o1 write1 o1 ⇓ o
write t ⇓ [ε] · o

abort o
write1 o ⇓ [ε] · o write1 (ter τ n) ⇓ ter ([ε] · τ · [outn]) tt

Fig. 5. Pretty-big-step semantics with traces.

operations. By extension, we define an operation, written τ · o, to concatenate a
finite trace τ to the trace contained in the outcome o. The updated definition for
abort and the evaluation rules appear in Figure 5. ([·] denotes a singleton list.)

With traces, the inductive interpretation of the rules is no longer needed
because, thanks to the productivity of the rules with respect to the trace, a
diverging expression cannot coevaluate to a terminating behavior. We have:

Lemma 5. For any finite trace τ , (e ⇓co ter τ v) ⇔ (e ⇓ ter τ v).

An important consequence of Lemma 5 is that, when the semantics includes
traces, we do not need the inductive judgment (e ⇓ o) anymore. In theory,
all our reasoning can be conducted using solely the coevaluation judgment. In
particular, we should be able to prove a program transformation correct with
respect to both terminating and diverging programs through a single coinductive
proof. In practice, though, coinductive reasoning in proof assistants such as Coq
or Agda remains problematic because they only accept statement of theorems
whose conclusion is a coinductive judgment and where all applications of the
coinduction hypothesis are guarded by constructors. As soon as we fall out of
this basic pattern, we need to resort to heavy encodings in order to transform
the statement and the proof in the appropriate form.

The verification of program transformations, one important applications of
formal semantics, almost systematically departs from the basic pattern. Their
correctness proof typically relies on a simulation diagram establishing that any
behavior exhibited by the compiled code is indeed a behavior of the original code.
Consider for example a source-to-source translation, written J·K. Its correctness
would typically be captured by a statement of the form (JtK ⇓co o) → ∃o′. (o′ ≈
o) ∧ (t ⇓co o′), where o′ ≈ o asserts that o′ and o describe the same behavior
and contain traces that are bisimilar up to insertion or deletion of a finite num-
ber of ε between every two items of the traces. (The equivalence relation ≈ is
defined coinductively, by a single rule with premise o ≈ o′ and with conclusion

14 Arthur Charguéraud

εn · [α] · o ≈ εm · [α] · o′.) Intuitively, such a statement could be established by
coinduction, performing a case analysis on the derivation of JtK ⇓co o and, in
each case, picking the right o′ to build the proof of t ⇓co o′.

Unfortunately, this form of reasoning currently cannot be mechanized in Coq
because the conclusion of the statement is not just a coinductive judgment; in-
deed, the conclusion starts with an existential quantifier and a conjunction. One
possible work-around consists in defining o′ as a function of o and t (this defi-
nition is non-constructive), and then proving o′ ≈ o and t ⇓co o′, through two
independent proofs. These two proofs have a chance of satisfying the guard con-
dition because they conclude on coinductive judgments. Yet, overall, the work-
around described here is extremely unpleasant. First, defining the function that
produces o′ amounts to building the core of a proof term by hand. Second, the
process requires one to go three times over the structure of the intended proof:
once for the function definition, and once for each of the two coinductive proofs.

We must therefore acknowledge that, with the support for coinduction cur-
rently provided by Coq, mechanizing proofs based on pretty-big-step trace se-
mantics appears to be unrealistic in practice. Nevertheless, we hope that further
developments of proof assistants could allow us to conduct the intended reason-
ing without resorting to painful encodings, either by automating the generation
of the encoding, or by somehow relaxing the guard condition. We should then be
able to reason about both terminating and diverging programs in a single pass.

5 Scaling up to real languages

So far, we have only considered a toy λ-calculus with exceptions. In this section,
we explain how to set up pretty-big-step rules for more advanced programming
language constructs, such as effectful operations, tuples of arbitrary arity, and
C-style for loops. We also show how to handle constructs for which the order of
evaluation of the subterms needs to remain deliberately unspecified.

5.1 Factorization of the abort evaluation rules

The pretty-big-step semantics of a realistic language may involve a fair number
of intermediate terms. For each intermediate term, we typically need to intro-
duce an abort rule, i.e., a rule with a premise of the form abort o, to propagate
exceptions, divergence and errors. Fortunately, it is possible to factorize all the
abort rules using the generic abort rule. This rule formalizes the following in-
tuition: if an intermediate term e is not an exception handler and if one of its
arguments is an outcome o that satisfies the predicate abort, then e should di-
rectly evaluate to o. The definition of the generic abort rule relies on an auxiliary
function, called getout. It is defined in such a way that getout e returns the out-
come contained in e (there is at most one), except for exception handlers, which
are treated specially. Formally:

getout (app1 o t) ≡ Some o
getout (app2 v o) ≡ Some o
getout (raise1 o) ≡ Some o

getout (trm t) ≡ None
getout (try1 o t) ≡ None

Pretty-Big-Step Semantics 15

The generic abort rule, shown below, replaces the three abort rules from Figure 2.

getout e = Some o abort o
e ⇓ o

Throughout the rest of this section, when we introduce new intermediate
terms, we assume the definition of getout to be extended accordingly.

5.2 Side effects

We now extend the source language with side effects. When the evaluation of a
term terminates, it produces not just a value or an exception, but also an updated
memory store. We therefore update the grammar of outcomes as follows.

o := termb | div

The pretty-big-step evaluation judgment now takes the form e /m ⇓ o, as-
serting that the evaluation of the term e in the store m has o for outcome. In
particular, the proposition t /m ⇓ term′ b corresponds to the traditional big-step
judgment t/m ⇒ b/m′ and, similarly, the proposition t /m ⇓ div corresponds to
t/m ⇒∞. The evaluation rules are extended so as to take memory stores into
account. For example, the first rules for reducing applications are as shown be-
low. Observe that the intermediate term app1 o1 t2 is evaluated in the store m in
which t1 was evaluated, and not yet in the store produced by t1. Indeed, at this
point, we do not yet know whether the evaluation of t1 terminates or diverges.
In the particular case where t1 terminates, the store produced by the evaluation
of t1 can be pulled out of the outcome o1 and used for the evaluation of t2.

t1 /m ⇓ o1 app1 o1 t2 /m ⇓ o
app t1 t2 /m ⇓ o

t2 /m ⇓ o2 app2 v1 o2 /m ⇓ o
app1 (termv1) t2 /m′ ⇓ o

We end this section with an example of a rule that modifies the store. Con-
sider a term ref t1. Its evaluation goes through an intermediate term ref1 o1. If o1
is a value, then a memory cell is allocated at a fresh location. The updated store
is then returned together with the address of the new memory cell.

t1 /m ⇓ o1 ref1 o1 /m ⇓ o
ref t1 /m ⇓ o

l /∈ dom(m)

ref1 (termv) /m′ ⇓ ter (m[l 7→ v]) l

Other rules accessing and updating the memory store follow a similar pattern.

5.3 C-style for loops

We now come back to the example of C-style for loops described in the intro-
duction, revisiting the evaluation rules from Figure 1 using a pretty-big-step se-
mantics. We introduce a single intermediate term, written “for i o t1 t2 t3”, where
i ∈ {1, 2, 3}. The pretty-big-step evaluation rules, shown below, are significantly

16 Arthur Charguéraud

more concise than their big-step counterpart. Note that we included an abort
rule, even though it would typically be covered by the generic abort rule (§5.1).

t1 /m ⇓ o1 for 1 o1 t1 t2 t3 /m ⇓ o
for t1 t2 t3 /m ⇓ o for 1 (retm false) t1 t2 t3 /m′ ⇓ retm tt

t3 /m ⇓ o3 for 2 o3 t1 t2 t3 /m ⇓ o
for 1 (retm true) t1 t2 t3 /m′ ⇓ o

t2 /m ⇓ o2 for 3 o2 t1 t2 t3 /m ⇓ o
for 2 (retm tt) t1 t2 t3 /m′ ⇓ o

for t1 t2 t3 /m ⇓ o
for 3 (retm tt) t1 t2 t3 /m′ ⇓ o

abort o
for i o t1 t2 t3 /m ⇓ o

5.4 List of subterms

Consider a tuple expression, written tuple t, where t denotes a list of terms of ar-
bitrary length, and assume a left-to-right evaluation order. The semantics needs
to describe the fact that if one of the subterms of the tuple raises an exception or
diverge, then the remaining subterms should not be evaluated. In what follows,
we describe a technique for evaluating an ordered list of subterms in a way that
is not specific to tuples, so that we are able to reuse the same rules for reducing
other language constructs that involve lists of subterms (e.g., records).

We introduce an intermediate term, written list1 t v K, where v represents
the list of values that have already been produced, t represents the list of terms
remaining to be evaluated, andK denotes the continuation describing what term
to transition to once all the subterms have been evaluated. Here, K is a logical
function that takes a list of values as arguments and produces an intermediate
term. In practice, K is usually a partially-applied constructor.

To evaluate tuple t, we evaluate list1 t nil (tuple1), where the continuation
tuple1 indicates that, when we get the list of values v describing the results of the
terms t, we should evaluate the term tuple1 v. This latter term will immediately
evaluate to the value vtuple v. The corresponding evaluation rules are:

list1 t nil (tuple1) /m ⇓ o
tuple t /m ⇓ o tuple1 v /m ⇓ term (vtuple v)

It remains to describe the rules involved in the evaluation of list1 t v K. If t
is empty, we apply (in the logic) the continuation K to v and obtain the term
from which to continue the evaluation. Otherwise, t is of the form t1 :: t. In
this case, we evaluate the head term t1, obtaining some outcome o, and we then
evaluate the term list2 o t v K. If o corresponds to a value, we can save this value
at the tail of the list v and continue. Otherwise, we can apply the generic abort
rule to propagate this outcome directly, skipping the evaluation of the remaining
terms t. The corresponding evaluation rules are shown below.

(K v) /m ⇓ o
list1 nil v K /m ⇓ o

t1 /m ⇓ o1 list2 o1 t v K /m ⇓ o
list1 (t1 :: t) v K /m ⇓ o

list1 t (v ++ [v1])K /m ⇓ o
list2 (termv1) t v K /m′ ⇓ o

Pretty-Big-Step Semantics 17

5.5 Unspecified order of evaluation

Some programming languages choose to deliberately not specify the order of
evaluation of the subterms of particular language constructs. For example, Caml
does not specify the order of evaluation of the arguments of a function call. In
what follows, we explain how to describe the semantics of a list of subterms
without specifying the order of evaluation. We use a list r whose items are either
values or unevaluated terms. Formally, r := Trm t | Val v, and r := list r.

We start from an intermediate term ulist1 tK, where, as previously, t denotes
the list of subterms and K is a logical function that denotes the continuation. To
evaluate ulist1 tK, we evaluate another intermediate term, ulist2 rK, where r is
obtained by mapping the constructor Trm to all the elements of t. Then, we pick
any unevaluated term from the list r and evaluate it. We repeat this process until
either the evaluation of one of the term diverges or produces an exception, or
until all the items in r are values. The rules, shown below, involve an intermediate
term of the form ulist3 r1 o r2K, where o denotes the outcome that has just been
produced, and where r1 and r2 denote the prefix and the suffix of r, respectively.

ulist2 (map (Trm) t)K /m ⇓ o
ulist1 tK /m ⇓ o

t1 /m ⇓ o1 ulist3 r1 o1 r2K /m ⇓ o
ulist2 (r1 ++ [Trm t1] ++ r2)K /m ⇓ o

ulist2 (r1 ++ [Val v1] ++ r2)K /m ⇓ o
ulist3 r1 (termv1) r2K /m′ ⇓ o

(K v) /m ⇓ o
ulist2 (map (Val) v)K /m ⇓ o

5.6 Formalization of core-Caml

To assess the ability of the pretty-big-step semantics to scale up to a realistic
programming language, we formalized the semantics of core-Caml, both in big-
step and in pretty-big-step style. By core-Caml, we refer to the subset of Caml
Light made of booleans, integers, tuples, algebraic data types, mutable records,
boolean operators (lazy and, lazy or, negation), integer operators (negation,
addition, subtraction, multiplication, division), comparison operator, functions,
recursive functions, applications, sequences, let-bindings, conditionals (with op-
tional else branch), for loops and while loops, pattern matching (with nested
patterns, as patterns, or patterns, and when clauses), raise construct, try-with
construct with pattern matching, and assertions. (The features missing from
Caml Light are: floats, mutual recursion, recursive values, with construct for
records, and arrays. Objects and modules are not covered either.)

Translating the big-step semantics into a pretty-big-step one following the
ideas described in this paper was straightforward and took little time. Apart from
adapting the rules, the only extra work required consisted of the definition of
outcomes and of the abort predicate (4 lines), the definition of the 28 intermediate
terms, and the definition of the auxiliary function getout using a simple pattern
matching with 22 cases (one case per intermediate term carrying an outcome).

The table shown below quantifies the improvement. It reports on the number
of evaluation rules, the number of evaluation premises, and the number of tokens

18 Arthur Charguéraud

(excluding head quantified variables, which are typically omitted in paper def-
initions). It shows that switching to the pretty-big-step semantics reduced the
number of the evaluation rules by 38%, reduced the total number of evaluation
premises by more than a factor of 2, and reduced the total size of the evaluation
rules (as counted by the number of tokens) by 40%.

rules premises tokens
Big-step without divergence 71 83 1540
Big-step with divergence 113 143 2263
Pretty-big-step 70 60 1361

6 Related work

Cousot and Cousot [2] proposed a coinductive big-step characterization of diver-
gence for λ-terms. Leroy and Grall [8, 9] showed how to represent coinductive
big-step semantics in a theorem prover such as Coq, and used this semantics
to prove that nontrivial program transformations preserve diverging behaviors.
They justify the need to introduce separate coinductive rules by observing that
naively taking the coinductive interpretation of the standard evaluation rules
yields a coevaluation judgment that does not properly characterizes diverging
terms. Indeed, there exist terms that diverge but do not coevaluate. Leroy and
Grall also explained how to extend their semantics with traces, using two judg-
ments: t ⇒ v/τ asserts that the execution of t produces the value v and a finite
trace τ (a list), and t ⇒∞/σ asserts that the execution of t diverges producing
an infinite trace σ (a stream). We have shown in this paper, among other things,
how to factorize these two separate judgments into a single one.

Following up on earlier work [2], Cousot and Cousot further developed the
notion of bi-inductive semantics [3, 4]. These semantics are able to characterize
both terminating and diverging executions using a common set of inference rules.
Their approach is based on the construction of a least fixed point of a set of
evaluation rules with respect to a non-standard ordering, which corresponds
neither to induction nor coinduction. By contrast, we have shown in this paper
how to achieve the same goal using only the standard notions of induction and
coinduction. In their work, Cousot and Cousot also decompose the evaluation
rule for application in separate rules. However, their decomposition does not go
as far as ours. For example, two of their rules perform the evaluation of the left
branch of an application, whereas with the pretty-big-step semantics we only
need one such rule.

Nakata and Uustalu [10] propose a coinductive relation that provides a big-
step semantics for both terminating and diverging programs, using possibly-
infinite traces (coinductive lists) that record all the intermediate memory states
of an execution. Formally, they define traces coinductively: φ := 〈m〉 | m ::: φ.
Their (coinductive) big-step evaluation judgment takes the form t/m ⇒ φ. Its
definition, whose key rules are shown below, is mutually-recursive with another

Pretty-Big-Step Semantics 19

judgment, t/φ ∗⇒ φ′. The definition is quite subtle. It is explained next.

t1/m ⇒ φ t2/(m ::: φ)
∗⇒ φ′

(t1 ; t2)/m ⇒ φ′
t/m ⇒ φ

t/〈m〉 ∗⇒ φ

t/φ
∗⇒ φ′

t/(m ::: φ)
∗⇒ (m ::: φ′)

To evaluate a sequence (t1 ; t2), we first evaluate t1 and obtain a trace φ.
Using the relation t2/(m ::: φ)

∗⇒ φ′, we ensure that the trace φ produced by t1
corresponds to the prefix of the trace φ′ associated with the term (t1 ; t2). If the
trace φ is finite, then we reach the judgment t2/〈m′〉

∗⇒ φ′′, wherem′ denotes the
state produced by t1 and where φ′′ corresponds to what remains of the trace φ′
after stripping its prefix φ. We can then proceed to the evaluation of t2 in m′.
Otherwise, if the trace φ is infinite, then the third rule shown above applies
indefinitely, ensuring that the trace φ′ associated with the term (t1 ; t2) is equal
(up to bisimilarity) to the trace φ produced by t1.

The manipulation of traces involved with the pretty-big-step semantics is,
in our opinion, much simpler for several reasons. First, instead of working with
potentially-infinite lists, we use a syntactic disjunction between finite traces and
infinite traces, so it is always clear whether we are describing a finite or an infinite
execution. Second, we do not need to use an auxiliary, mutually-coinductive
judgment to traverse traces; instead, we use a simpler concatenation operation
that only needs to traverse finite traces. Third, applying Nakata and Uustalu’s
approach to a λ-calculus instead of a simple imperative language would require
all the rules to be stated in continuation-passing style, because the judgment
t/φ

∗⇒ φ′ would need to be generalized to the form K/φ
∗⇒ φ′, where K denotes

a continuation that expects the result of the previous computation (that is, the
result stored at the end of the trace φ) and produces the term to continue the
evaluation from. Such a systematic use of continuations would likely result in
fairly obfuscated rules.

Danielsson [5] revisits Nakata and Uustalu’s work by defining a corecursive
function that yields a big-step semantics for both terminating and diverging
programs. This function produces a value of type (Maybe Value)⊥, where the
Maybe indicates the possibility of an error and where the bottom represents
the partiality monad. The partiality monad involves two constructors: one that
carries a value, and one that “delays” the exhibition of a value. Formally, the
coinductive definition is A⊥ := nowA | later (A⊥). The partiality monad thus
corresponds to a degenerated version of potentially-infinite traces, where the
spine of a trace does not carry any information; only the tail of a trace, if any,
carries a value. Note that, to accommodate non-deterministic semantics, the type
(Maybe Value)⊥ needs to be further extended with the non-determinism monad.

In summary, Danielsson’s semantics for the λ-calculus consists of a refer-
ence interpreter, defined in a formal logic. (It is actually not so straightforward
to convince the checker of the guard condition that the definition of the inter-
preter indeed yields a productive function.) Note that this interpreter should
only be used for specification, not for execution, because it is quite inefficient:
each bind operation needs to traverse the trace that carries the result that it is
binding. Specifying the semantics of a language via an interpreter departs quite

20 Arthur Charguéraud

significantly from the traditional statement of a big-step semantics as a relation
between a term and a result. We find that pretty-big-step semantics remains
much more faithful to big-step semantics, and is thus more likely to be accepted
as the reference semantics of a programming language. Moreover, some forms of
reasoning, such as reasoning by inversion, are typically easier to conduct when
the definition is a relation than when it is a function.

7 Conclusion

In this paper, we addressed the duplication problem associated with big-step
semantics by introducing pretty-big-step semantics. Pretty-big-semantics rely
on four key ingredients: (1) a breakdown of complex rules into a larger number
of simpler rules, (2) a grammar of intermediate terms for ensuring that rules
are applied in the appropriate order, (3) an explicit constant div to represent
divergence, and (4) an inductive and a coinductive interpretation of the same
set of reduction rules. Pretty-big-step semantics accommodate the introduction
of a generic error rule for conducting type soundness proofs, and they scale up
to realistic programming languages. Moreover, they can easily be extended with
traces, in which case the behavior of both terminating and diverging programs
is adequately captured by the coinductive evaluation judgment alone.

Acknowledgments I am grateful to Xavier Leroy for very useful feedback.

References
1. Arthur Charguéraud. Characteristic Formulae for Mechanized Program Verifica-

tion. PhD thesis, Université Paris-Diderot, 2010.
2. Patrick Cousot and Radhia Cousot. Inductive definitions, semantics and abstract

interpretation. In POPL, pages 83–94, 1992.
3. Patrick Cousot and Radhia Cousot. Bi-inductive structural semantics: (extended

abstract). Electronic Notes Theoretical Computer Sciences, 192(1):29–44, 2007.
4. Patrick Cousot and Radhia Cousot. Bi-inductive structural semantics. Information

and Computation, 207(2):258–283, 2009.
5. Nils Anders Danielsson. Operational semantics using the partiality monad. In

ICFP, pages 127–138. ACM, 2012.
6. Carl A. Gunter and Didier Rémy. A proof-theoretic assessment of runtime type

errors. Research Report 11261-921230-43TM, AT&T Bell Laboratories, 1993.
7. Gilles Kahn. Natural semantics. In Symposium on Theoretical Aspects of Computer

Science (STACS), volume 247 of LNCS, pages 22–39. Springer-Verlag, 1987.
8. Xavier Leroy. Coinductive big-step operational semantics. In European Symposium

on Programming (ESOP), volume 3924 of LNCS, pages 54–68. Springer, 2006.
9. Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. CoRR,

abs/0808.0586, 2008.
10. Keiko Nakata and Tarmo Uustalu. Trace-based coinductive operational semantics

for while. In TPHOLs, volume 5674 of LNCS, pages 375–390. Springer, 2009.
11. G. D. Plotkin. A structural approach to operational semantics. Internal Report

DAIMI FN-19, Department of Computer Science, Aarhus University, 1981.
12. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.

Information and Computation, 115(1):38–94, 1994.

