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Interaction trees (ITrees) are a general-purpose data structure for representing the behaviors of recursive
programs that interact with their environments. A coinductive variant of łfree monads,ž ITrees are built out
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1 INTRODUCTION

Machine-checked proofs are now feasible at scale, for real systems, in a wide variety of domains,
including programming language semantics and compilers [Kumar et al. 2014; Leroy 2009, etc.],
operating systems [Gu et al. 2016; Klein et al. 2009, etc.], interactive servers [Koh et al. 2019, etc.],
databases [Malecha et al. 2010, etc.], and distributed systems [Hawblitzel et al. 2015; Wilcox et al.
2015, etc.], among many others. Common to all of these is the need to model and reason about
interactive, effectful, and potentially nonterminating computations. For this, most work to date
has relied either on operational semantics, represented as (small- or large-step) transition relations
defined on syntax, or on trace models, implemented as predicates over lists or streams of observable
events. These representations have their advantages: they are expressive, since nearly any semantic
feature can be modeled by transition systems or traces when combined with appropriate logical
predicates; and they fit smoothly with inductive reasoning principles that are well supported by
interactive theorem provers. But they also have significant drawbacks. Operational semantics
aren’t very compositional, often requiring auxiliary syntactic constructs (such as program counters,
substitution functions, or evaluation contexts) to specify desired behavior; such syntactic clutter
makes proofs unwieldy and brittle. Moreover, relational specifications are not executable, which
precludes running the model, either for testing or as a reference implementation.
We propose a new alternative called interaction trees (ITrees), a general-purpose data structure

and accompanying theory for modeling recursive, effectful computations that can interact with
their environment. ITrees allow us to give denotational semantics for effectful and possibly nonter-
minating computations in Gallina, the specification language of Coq [2018], despite Gallina’s strong
purity and termination constraints. Such łshallowž representations abstract away many syntactic
details and reuse metalanguage features such as function composition and substitution rather than
defining them again, making this approach inherently more robust to changes than relational łdeepž
embeddings. Moreover, ITrees work well with Coq’s extraction capabilities, making it compatible
with tools such as QuickChick [Lampropoulos and Pierce 2018] for testing and allowing us to easily
link the extracted code against non-Coq components such as external libraries, so that we can
directly execute systems modeled using ITrees. This combination of features makes ITrees a good
foundation for formal verification of interactive systems.

The problem of representing effectful programs in pure functional languages is nearly as old as
functional programming itself. Our design for interactions trees and their accompanying theory
draws heavily on a large body of prior work, ranging from monadic interpreters [Moggi 1989; Steele
1994] to free monads [Swierstra 2008] and algebraic effects [Plotkin and Power 2003]. Our core data
structure, the ITree datatype itself, is a coinductive variant of the free monad. Related structures
have been studied previously as the program monad in the FreeSpec [Letan et al. 2018] system in
Coq, I/O-trees [Hancock and Setzer 2000] and the general monad [McBride 2015] in dependent type
theory, and the freer monad [Kiselyov and Ishii 2015] in Haskell. ITrees are a natural generalization
of Capretta’s [2005] delay monad and are an instance of resumption monads [Piròg and Gibbons
2014], which have been extensively studied from a category-theoretic point of view. Section 8 gives
a thorough comparison of ITrees with these and other related approaches.
The use of a coinductive rather than an inductive structure represents a significant shift in

expressiveness, enabling ITrees to represent nonterminating computations without needing to
resort to step-indexed approaches such as fuel. Further, by including a łsilent effectž (Tau), ITrees
can express silently diverging computations and avoid the non-compositionality of guardedness
conditions within Coq. After the fact, we can quotient ITrees by these silent steps, providing a
generic definition of weak bisimulation. This also enables us to mechanize classic results from the
theory of iteration [Bloom and Ésik 1993], which, to our knowledge, have not previously been
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applied in the context of machine-checked formalizations. At a practical level, this means that we
can easily define semantics for mutually recursive components of an interactive system and reason
about them compositionally.

Using a coinductive structure comes with some practical tradeoffs. In particular, Coq’s evaluation
of coinductive terms is driven by context, rather than the term itself, which means that proofs must
rely on explicit (or tactic-driven) rewriting. Coq’s support for coinductive proofs is also notoriously
limited [Hur et al. 2013], but we have gone to some pains to encapsulate the use of coinduction
behind the ITrees library interface. Users of the ITrees library should rarely, if ever, need to write
their own coinductive proofs.

Contributions. Our main contribution is the design and implementation of a library that en-
ables formal modeling and reasoning about interactive, effectful, and potentially nonterminating
computations. Though it rests on a rich body of existing theory, our work is the first to simulta-
neously address four significant challenges. (1) It focuses on coinductively defined trees whose
representation is compatible with program extraction. (2) It offers a powerful equational theory of
monadic interpreters. (3) It is realized concretely as a practical Coq library, paying careful attention
to proof-engineering details that can be glossed over in pen-and-paper proofs. And finally, (4) it
comes with a demonstration that the library is usable in practice, in the form of a novel compiler
correctness proof. Our open-source development is publicly available,1 and all of the results claimed
here have been formally proved. Our experience suggests that ITrees are an effective way to work
with impure and interactive systems in Coq.

The rest of the paper develops these contributions in detail.
Section 2 introduces interaction trees and establishes that ITrees form a monad with several useful

notions of equivalence, including variants of strong and weak bisimulation. It also introduces
KTrees (łcontinuation ITreesž), a point-free representation of functions returning ITrees that is
convenient for equational reasoning.

Section 3 explains how to compositionally give semantics to the events of an ITree via monadic
event handlers, starting with the familiar example of interpretation into the state monad. It then
describes the rich algebraic structure of events and handlers exposed by the library.
Section 4 demonstrates how ITrees support recursion and iteration, allowing us to implement a

general fixpoint operator, mrec, whose properties are also described equationally.
Section 5 illustrates the use of ITree-based denotational semantics with an extended case study.

We verify the correctness of a compiler from Imp (a simple imperative source language) to Asm (a
simple assembly language). In the example we define the semantics of both languages as ITrees
by structural recursion on the syntax and the ITree recursion combinators. We then prove the
equivalence of the denotations by structural induction on the programs, leveraging the ITree library
to completely hide the coinductive nature of the proof. The final result is a termination-sensitive
bisimulation.

Section 6 shows (by example) that ITrees are compatible with Coq’s extraction mechanism. Event
handlers can easily be written outside of Coq, allowing Coq-generated code to be linked with
external libraries for the purposes of debugging, testing, and implementation.
Section 7 compares ITrees to more familiar trace-based semantics by defining the set of event

traces of an ITree and showing that two ITrees are weakly bisimilar iff their sets of traces coincide.
This correspondence means that ITree-based developments can easily (and formally) be connected
with non-executable models based on small-step operational semantics or similar formalisms.

1The link to the ITrees GitHub repository is https://github.com/DeepSpec/InteractionTrees. The version of the library as of
this publication is on the popl20 branch.
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CoInductive itree (E: Type → Type) (R: Type): Type :=

| Ret (r: R) (* computation terminating with value r *)

| Tau (t: itree E R) (* "silent" tau transition with child t *)

| Vis {A: Type} (e : E A) (k : A → itree E R). (* visible event e yielding an answer in A *)

Fig. 1. Simplified presentation of interaction trees.

Section 8 situates ITrees with respect to related work, and Section 9 wraps up with a discussion
of limitations and future work.

2 INTERACTION TREES

Interaction trees are a datatype for representing computations that can interact with an exter-
nal environment. We think of such computations as producing a sequence of visible eventsÐ
interactionsÐeach of which might carry a response from the environment back to the computation.
The computation may also eventually halt, yielding a final value, or diverge by continuing to
compute internally but never producing a visible event.

Figure 1 shows the definition of the type itree E R. The parameter E : Type → Type is a type of
external interactions: it defines the interface by which a computation interacts with its environment,
as we explain below. R is the result type of the computation: if the computation ever halts, it will
return a value of type R.
ITrees are defined coinductively2 so that they can represent potentially infinite sequences of

interactions or divergent behaviors. They are built using three constructors. Ret r corresponds to the
trivial computation that immediately halts and produces r as its result. Tau t corresponds to a silent
step of computation that does something internal, producing no visible events, and then continues
as t. Representing silent steps explicitly allows ITrees to represent diverging computations without
violating Coq’s guardedness condition [Chlipala 2017; Giménez 1995].3

The final and most interesting way to build an ITree is with the Vis A e k constructor (A is
often left implicit). Here, e : E A is a visible external event, including any outputs provided by
the computation to its environment, and A (for answer) is the type of data that the environment
provides in response to the event. The constructor also specifies a continuation, k : A → itree E T,
which produces the rest of the computation given the response from the environment. The tree-like
nature of interaction trees stems from the Vis constructor, since the continuation k can behave
differently for different values of type A. Importantly, the continuation is represented as a meta-level
(i.e., Gallina) function, which means both that we can embed computation in an ITree and that the
resulting datatype is extractable and contains executable functions.

As a concrete example of external interactions, suppose we choose E to be the following type IO,
which represents simple input/output interactions, each carrying a natural number. Then we can
define an ITree computation echo that loops forever, echoing each input received to the output:

2The definition shown here follows Coq’s historical style of using positive coinductive types, which emphasizes the tree-like
structure via its constructors. This approach is known to break subject reduction [Giménez 1996] and hence may be
deprecated in a future Coq version. Our library therefore uses the recommended negative coinductive form [Hagino 1989;
Coq development team 2019] where, rather than defining a coinductive type by providing its constructors, we instead
provide its destructors. We use łsmart constructorsž for Ret, Tau, and Vis, which have the types shown in this figure, so
the distinction is mostly cosmetic (though it does impact the structure of proofs). We suppress these and similar details
throughout this paper.
3The guardedness condition is a syntactic side-condition on cofix bodies in Gallina. It ensures that a finite amount
of computation suffices to expose the next constructor of the coinductive type. In practice, it means that the results of
co-recursive calls must occur under constructors and not be eliminated by pattern matching.
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Inductive IO : Type → Type :=

| Input : IO nat

| Output : nat → IO unit.

CoFixpoint echo : itree IO void :=

Vis Input (fun x ⇒ Vis (Output x) (fun _ ⇒ echo)).

Note that IO is indexed by the expected answer type that will be provided by the environment in
each interaction. Conversely, its constructors are parameterized by the arguments to be sent to
the environment. Hence, an Input event takes no parameter and expects a nat in return, while an
Output event takes a nat but expects a non-informative answer, represented by the unit type. The
return type of echo is void, the empty type, since the computation never terminates.
Similarly, it is easy to define an ITree that silently diverges, producing no visible outputs and

never returning a value:

CoFixpoint spin : itree IO void := Tau spin.

Or one that probes the environment until it receives 9 for an answer, at which point it terminates
(returning tt, the unique value of type unit):

CoFixpoint kill9 : itree IO unit :=

Vis Input (fun x ⇒ if x =? 9 then Ret tt else kill9).

The three basic ITree constructors and explicit CoFixpoint definitions provide very expressive
low-level abstractions, but working with them directly raises several issues. First, Coq’s syntactic
guardedness check is inherently non-compositional, so it is awkward to construct large, complex
systems using it. Second, we need ways of composing multiple kinds of events. Third, we often want
to model the behavior of a system by interpreting its events as having effects on the environment.
For example, a Write event could update a memory cell that a Read event can later access. Finally, to
reason about ITrees and computations built from them as above, we would have to use coinduction
explicitly. It is easier to work with loop and recursion combinators that are more structured and
satisfy convenient equational reasoning principles that can be expressed and proven once and for
all. The ITrees library provides higher-level abstractions that address all three of these concerns.
Figure 2 provides a synopsis of the library; the details are explained below.

Notation. The library makes extensive use of parametric functions, which have types of the form
∀ (X:Type), E X → F X. We write E { F as an abbreviation for such types.

2.1 Composing ITree Computations: ITrees are Monads

The type itree E is a monad [Moggi 1989; Wadler 1992] for any E, making it convenient to structure
effectful computations using the conventions and notations of pure functional programming.
Figure 3 gives the implementation of the monadic bind and ret operations. As shown there, bind t k

replaces each Ret r with the new subtree k r. We wrap the Ret constructor as a function ret and
introduce the usual sequencing notation x � e ;; k for bind.

We think of the visible events of an ITree as uninterpreted effects. In this sense, itree E is closely
related to the free monad (but technically distinct: see Section 8) where every event of type E A

corresponds to an effectful (monadic) operation that can be łtriggeredž to yield a value of type A:

Definition trigger {E : Type → Type} {A : Type} (e : E A) : itree E A :=

Vis e (fun x ⇒ Ret x).

Using trigger, we can rewrite the echo example with less syntactic clutter:

CoFixpoint echo2 : itree IO void :=

x � (trigger Input) ;; trigger (Output x) ;; Tau echo2.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 51. Publication date: January 2020.
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Interaction tree operations
itree E A : Type

Tau : itree E A → itree E A

Ret : A → itree E A

Vis : {R} (E R) → (R → itree E A) → itree E A

bind : itree E A → (A → itree E B) → itree E B

trigger : E A → itree E A

Events and subevents
E, F : Type → Type

(e : E R) R is the result type of event e

E +' F disjoint union of events

Typeclass E -< F E is a subevent of F

trigger '{E -< F} : E { itree F overloaded trigger

Heterogeneous weak bisimulation
eutt (r : A → B → Prop) :

itree E A → itree E B → Prop

Strong and weak bisimulation
_ � _ : itree E A → itree E A → Prop

_ ≈ _ := eutt eq.

Parametric functions
E { F := ∀ (X:Type), E X → F X

Monadic interpretation
`{Monad M} {̀MonadIter M}

interp : (E { M) → (itree E { M)

Standard event types
name events handler type
emptyE none ∀ M, emptyE { M

stateE S Get Put (stateE S) { stateT S

mapDefaultE K V d Insert LookupDefault Remove `{Map K V map} (mapDefaultE K V d) { (stateT map)

Fig. 2. Main abstractions of the ITrees library (simplified & abridged).

(* Apply the continuation k to the Ret nodes of the itree t *)

Definition bind {E R S} (t : itree E R) (k : R → itree E S) : itree E S :=

(cofix bind_ u := match u with

| Ret r ⇒ k r

| Tau t ⇒ Tau (bind_ t)

| Vis e k ⇒ Vis e (fun x ⇒ bind_ (k x))

end) t.

Notation "x � t1 ;; t2" := (bind t1 (fun x ⇒ t2)).

Definition ret x := Ret x.

Fig. 3. Monadic bind and ret operators for ITrees.

2.2 ITree Equivalences

Interaction trees admit several useful notions of equivalence even before we ascribe any semantics
to the external events. These properties are deceptively simple to state, but the weaknesses of
coinduction in Coq make some of them quite difficult to prove.

Strong and Weak Bisimulations. The simplest and finest notion of equivalence is strong bisimula-

tion, written t1 � t2, which relates ITrees t1 and t2 when they have exactly the same shape.
The monad laws and many structural congruences hold up to strong bisimulation, but once we

introduce loops, recursion, or interpreters, which use Tau to hide internal steps of computation, we
need to work with a coarser equivalence. In particular, we want to equate ITrees that agree on their
terminal behaviors (they return the same values) and on their interactions with the environment
through Vis events, but that might differ in the number of Tau’s. This łequivalence up to Tauž is a
form of weak bisimulation: it lets us remove any finite number of Tau’s when considering whether
two trees are the same, while infinite Tau’s must be matched on both sides (i.e., this equivalence
is termination sensitive). We write t ≈ u when t and u are equivalent up to Tau. For instance, we
have the defining equation Tau t ≈ t, which does not hold for strong bisimulation but is crucial for
working with general computations modeled as ITrees.

Heterogeneous Bisimulations. Both strong and weak bisimulation can be further relaxed to relate
ITrees that have different return types, which is needed for building more general simulations,
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Context {E : Type → Type} {A B : Type} (r : A → B → Prop).

Inductive euttF (sim : itree E A → itree E B → Prop) : itree E A → itree E B → Prop :=

| EqRet a b (REL: r a b) : euttF sim (Ret a) (Ret b)

| EqVis {R} (e : E R) k1 k2 (REL: ∀v, sim (k1 v) (k2 v)) : euttF sim (Vis e k1) (Vis e k2)

| EqTau t1 t2 (REL: sim t1 t2) : euttF sim (Tau t1) (Tau t2)

| EqTauL t1 ot2 (REL: euttF sim t1 ot2) : euttF sim (Tau t1) ot2

| EqTauR ot1 t2 (REL: euttF sim ot1 t2) : euttF sim ot1 (Tau t2).

Lemma euttF_monotone t1 t2 sim sim' (IN: euttF sim t1 t2) (LE: sim <2= sim') : euttF sim' t1 t2.

Definition eutt : itree E A → itree E B → Prop := nu euttF.

Fig. 4. Heterogeneous weak bisimulation for ITrees.

such as the one used in our compiler correctness proof (Section 5). If we have t1 : itree E A and
t2 : itree E B and some relation r : A → B → Prop, we can define eutt r (łequivalence up to Tau

modulo rž), which is the same as ≈ except that two leaves Ret a and Ret b are related iff r a b

holds. Intuitively, two such ITrees produce the same external events and yield results related by
r. Indeed ≈ is defined as eutt eq, where r is instantiated to the Leibniz equality relation eq. It is
straightforward to generalize � in the same way.
Figure 4 gives the formal definition of eutt r as a nested coinductiveśinductive structure. The

inner inductive euttF relation is parameterized by sim, a relation on subtrees. It defines a binary
relation on nodes of an ITree demanding that Ret a relates to Ret b only when r a b holds. Two
Vis nodes are related only if they are labeled with identical events and their continuation subtrees
are related by sim for every value the environment could return, i.e., any value of type R. EqTau

relates Tau t1 and Tau t2 whenever t1 and t2 are related by sim, while EqTauL and EqTauR allow to
strip off asymmetrically one extra Tau on either side. Note that EqTau and EqVis appeal coinductively
to the sim relation whereas EqTauL and EqTauR appeal inductively to euttF. This means that eutt can
peel off only a finite number of Tau’s from one or both trees before having to align them using sim.
It is easy to show that euttF acts monotonically on relations, which allows us to define eutt as

its greatest fixed point using the nu operator. To define nu and to work with coinductive predicates
like eutt, we use the paco library [Hur et al. 2013], which streamlines working with coinductive
proofs in Coq.
Although the definition of heterogeneous weak bisimulation is fairly straightforward to state,

some of its propertiesÐfor instance, transitivity and congruence with respect to bindÐare quite
challenging to prove. For these, we need an appropriate strengthening of the coinductive hypothesis
that lets us reason about eutt up to closure under transitivity and bind contexts. Our Coq library
actually uses a yet more general definition that subsumes both strong and weak bisimulation and
builds in such łup-tož reasoning to make proofs smoother; we omit these details here and refer the
interested reader to the Coq development itself. The upshot is that we can prove the following:

(1) � is an equivalence relation.

(2) If r is an equivalence relation, then so is eutt r.

(3) ≈ is an equivalence relation (corollary of (2)).

(4) t1 � t2 implies t1 ≈ t2.

Equational reasoning. Fortunately, clients of the ITrees library can treat the definition of eutt r

and its instances as black boxesÐthey never need to look at the coinductive machinery beneath this
layer of abstraction. Instead, clients should reason equationally about ITrees. Figure 5 summarizes
the most frequently used equations, each of which corresponds to a lemma proved in the library.
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Monad Laws
(x � ret v ;; k x) � (k v)
(x � t ;; ret x) � t

(x � (y � s ;; t) ;; u) � (y � s ;; x � t ;; u)

Structural Laws
(Tau t) ≈ t

(x � (Tau t) ;; k) ≈ Tau (x � t ;; k)
(x � (Vis e k1) ;; k2) ≈

(Vis e (fun y ⇒ (k1 y) ;; k2))

Congruences
t1 � t2 → Tau t1 � Tau t2
k1 ≈̂ k2 → Vis e k1 ≈ Vis e k2

t1 ≈ t2 ∧ k1 ≈̂ k2 → bind t1 k1 ≈ bind t2 k2

Fig. 5. Core equational theory of ITrees.

The monad laws, structural laws, and congruences let us soundly rearrange an ITree computationÐ
typically to put it into a form where a semantically interesting computation step, such as the
interpretation of an event, takes place. Much of the functionality provided by the ITrees library
involves lifting this kind of equational reasoning to richer settings, allowing us to work with
combinations of different kinds of events and interpretations of their effects.

One pragmatic consideration is that Coq’s rewrite and setoid_rewrite tactics, which let us rewrite
using an equivalence (for instance, replacing the term C[t1]with C[t2]when we know that t1 ≈ t2),
only work if the context is proper, meaning that it respects the equivalence. Coq’s Proper typeclass
registers such contexts with the rewriting tactics. The congruence rules of Figure 5 establish that
the ITree constructors themselves are proper functions. We prove instances of Proper for all of the
operations, such as those in Figure 2, so that we can rewrite liberally. Even so, definitions written in
monadic style make heavy use of anonymous functions, which tend to thwart the setoid_rewrite
tactic’s ability to find the correct Proper instances. It is therefore useful to further raise the level of
abstraction to simplify rewriting, as we show next.

2.3 KTrees: Continuation Trees

To improve equational reasoning principles and leverage known categorical structures for recursion,
the ITrees library provides an abstraction for point-free definitions, centered around functions of
the form _ → itree E _. We can think of these as impure Coq functions that may generate events
from E or possibly diverge. As we will show, they enjoy additional structure that we can exploit to
generically derive more ways of composing ITrees computations.
We call types of the form A → itree E B continuation trees, or KTrees for short:

Definition ktree (E : Type → Type) (A B : Type) : Type := A → itree E B.

Definition eq_ktree {E} {A B : Type} : ktree E A B → ktree E A B → Prop

:= fun h1 h2 ⇒ ∀a, h1 a ≈ h2 a.

Infix "≈̂ " := eq_ktree

Whereas an itree E R directly produces an outcome (Ret, Tau, or Vis), a KTree k : ktree E A B first
expects some input a : A before continuing as an ITree (k a). Equivalence on KTrees, written ≈̂, is
defined by lifting weak bisimulation pointwise to the function space.
Two KTrees h : ktree E A B and k : ktree E B C can be composed using bind; the result is

written (h >>> k) : ktree E A C.

(* Composition of KTrees *)

Definition cat {E} {A B C : Type}

: ktree E A B → ktree E B C → ktree E A C := fun h k ⇒ (fun a ⇒ bind (h a) k).

Infix ">>>" := cat
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id_ : A → itree E A

cat : (B → itree E C) →

(A → itree E B) → (A → itree E C)

case_ : (A → tree E C) →

(B → itree E C) → (A + B → itree E C)

inl_ : A → itree E (A + B)

inr_ : B → itree E (A + B)

pure : (A → B) → (A → itree E B)

Fig. 6. KTree operations

id_ >>> k ≈̂ k
k >>> id_ ≈̂ k

(i >>> j) >>> k ≈̂ i >>> (j >>> k)
pure f >>> pure g ≈̂ pure (f ◦ g)
inl_ >>> case_ h k ≈̂ h
inr_ >>> case_ h k ≈̂ k
(inl_ >>> f) ≈̂ h ∧ (inr_ >>> f) ≈̂ k →

f ≈̂ case_ h k

Fig. 7. Categorical Laws for KTrees and Handlers
(cat is denoted by ł>>>ž)

KTree composition has a (left and right) identity, id_ (equal to ret), and is associative; the proof
follows from the monad laws for itree. Together, these facts mean that KTrees are the morphisms
of a category, the Kleisli category of the monad itree E.

This category has more structure that we expose as part of the ITrees library interface. The pure
operator lifts a Coq function trivially into an event-free KTree computation. We can also easily
define an eliminator for the sums type, case_ and corresponding left inl_ and right inr_ injections
(effectful variants of the sum type constructors inl and inr). The names of those operations are
suffixed with an underscore so as not to conflict with id, inl, and inr from the standard library, as
well as for the visual uniformity of case_ with inl_ and inr_. These operations and their types are
summarized in Figure 6. They satisfy the equational theory given in Figure 7.
The laws relating case_, inl_, and inr_ mean that KTree is a cocartesian category. The Kleisli

and cocartesian categorical structures are represented using typeclasses. These structures al-
low us to derive, generically, other useful operations and equivalences. For example, the fol-
lowing operations bimap and swap are defined from case_, inl_, and inr_. The KTree bimap f g :

ktree E (A + B) (C + D) applies the KTree f : ktree E A B if its input is an A, or g : ktree E C D

if its input is a C; the KTree swap : ktree E (A + B) (B + A) exchanges the two components of a
sum. As we will see below, event handlers also have a cocartesian structure, which lets us re-use
the same generic metatheory for them.

Similarly, the KTree category is just one instance of a Kleisli category, which can be defined for
any monad M. Monadic event interpreters, introduced next, build on these structures, letting us
(generically) lift the equational theory of KTrees to event interpreters too. This compositionality is
important for scaling equational reasoning to situations involving many kinds of events.

3 SEMANTICS OF EVENTS AND MONADIC INTERPRETERS

To add semantics to the events of an ITree, we define an event handler, of type E { M for some
monad M. Intuitively, it defines the meaning of an event of E as a monadic operation in M. An
interpreter folds such an event handler over an ITree; a good interpretation of ITrees is one that
respects itree E’s monadic structure (i.e., it commutes with ret and bind).

Events and handlers enjoy a rich mathematical structure, a situation well known from the litera-
ture on algebraic effects (see Section 8). Our library exploits this structure to provide compositional
reasoning principles and to lift the base equational theory of ITrees to their effectful interpretations.

3.1 Example: Interpreting State Events

Before delving into the general facilities provided by the ITrees library, it is useful to see how things
play out in a familiar instance. The code in Figure 8 demonstrates how to interpret events into a
state monad. The event type stateE S defines two events: Get, which yields an answer of state type
S, and putE, which takes a new state of type S and yields unit.
In the figure, the state monad transformer operations getT and putT implement the semantics

of reading from and writing to the state in terms of the underlying monad M, using its ret. The
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(* The type of

state events *)

Variant stateE (S : Type)

: Type → Type :=

| Get : stateE S S

| Put : S → stateE S unit.

(* State monad transformer *)

Definition stateT (S:Type) (M:Type → Type) (R:Type) : Type :=

S → M (S * R).

Definition getT (S:Type) : stateT S M S := fun s ⇒ ret (s, s).

Definition putT (S:Type) : S → stateT S M unit :=

fun s' s ⇒ ret (s', tt).

(* Handler for state events *)

Definition h_state (S:Type) {E}

: (stateE S) { stateT S (itree E) :=

fun _ e ⇒ match e with

| Get ⇒ getT S

| Put s ⇒ putT S s

end.

(* Interpreter for state events *)

Definition interp_state {E S}

: itree (stateE S) { stateT S (itree E) :=

interp h_state.

Fig. 8. Interpreting state events

function handle_state is a handler for stateE events: it maps events of type stateE S R into monadic
computations of type stateT S (itree E) R, i.e., S → itree E (S * R), taking an input state to
compute an output state and a result. Given this handler, we define the interp_state function,
which folds the handler across all of the visible events of an ITree of type itree (stateE S) R to
produce a semantic function of type stateT S (itree E) R. The definition of interp_state is an
instance of interp (see Section 3.2 below), specialized to a state monad.
To prove properties about the resulting interpretation, we need to show that interp_state is a

monad morphism, meaning that it respects the ret and bind operations of the ITree monad.

interp_state (ret x) s ≈ ret (s, x)

interp_state (x � t;; k x) s1 ≈ '(s2, x) � interp_state t s1;; interp_state (k x) s2

We next prove that handle_state implements the desired behaviors for the get and put operations,
which are short-hands for the trigger of the correponding stateE events.

interp_state get s ≈ ret (s,s)

interp_state (put s') s ≈ ret (s',tt)

These equations allow us to use put and get’s semantics when reasoning about stateful computa-
tions. They are also sufficient to derive useful equations when verifying programs optimizationsÐfor
instance, we can remove a redundant get as follows:

interp_state (x � get ;; y � get ;; k x y) s ≈ interp_state (x � get ;; k x x) s

3.2 Monadic Interpreters

The interp_state function above is an instance of a general interp function that is defined for any
monad M, provided that M supports an iteration operator, iter, of type (A → M (A + B)) → A → M B.
(The first argument is a loop body that takes an A and produces either another A to keep looping with
or a final result of type B.) Figure 9 shows the definition of interp. It takes a handler : E { M and
loops over a tree of type itree E R. At every iteration, the next constructor of the tree is interpreted
by handler, yielding the remaining tree as a new loop state.
The core properties of interp, summarized in Figure 11, are generalizations of the laws for

interp_state. In particular, interp preserves the monadic structure of ITrees, and its action on
trigger e is to apply the handler to the event e.
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Definition interp {E M : Type → Type} {̀MonadIter M} {R : Type} (handler : E { M)

: itree E R → M R := iter (fun t : itree E R ⇒

match t with

| Ret r ⇒ ret (inr r)

| Tau t ⇒ ret (inl t)

| Vis e k ⇒ bind (handler _ e) (fun a ⇒ ret (inl (k a)))

end).

Fig. 9. Interpreting events via a handler

id_ : E { itree E (* trigger *)

cat : (F { itree G) → (* interp *)

(E { itree F) → (E { itree G)

case_ : (E { itree G) →

(F { itree G) → (E +' F { itree G)

inl_ : E { itree (E +' F)

inr_ : F { itree (E +' F)

Fig. 10. Event Handler operations

interp h (trigger e) � h _ e

interp h (Ret r) � ret r

interp h (x � t;; k x) �

x � (interp h t);; interp h (k x)

Fig. 11. Some properties of interp.
See also Figure 7 for equations in terms of cat.

It remains to show how to instantiate the MonadIter typeclass, which provides the iter combinator
used by interp. We defer this discussion to Section 4, as it will benefit from a closer look at events
and handlers.

3.3 The Algebra of Events and ITree Event Handlers

The handle_state handler interprets computations with events drawn from the specific type
stateE S. More generally, we often want to combine multiple kinds of events in one computa-
tion. For instance, we might want both stateE S and IO events, or access to two different types
of state at the same time. Fortunately, it is straightforward to define E +' F, the disjoint union
of the events E and F. The definition comes with inclusion operations inl1 : E { E +' F and
inr1 : F { E +' F.4 The emptyE event type, with no events, is the unit of +'.
The corresponding operations on handlers manipulate sums of event types: case_ combines

handlers for different event types into a handler on their sum, while inl_ and inr_ are inl1 and
inr1 turned into event handlers.

Definition case_ {E F M} : (E { M) → (F { M) → (E +' F) { M

:= fun f g _ e ⇒ match e with

| inl1 e1 ⇒ f _ e1

| inr1 e2 ⇒ g _ e2

end.

Definition inl_ {E F} : E { itree (E +' F)

Definition inr_ {E F} : F { itree (E +' F)

Recall that the general type of an event handler is E { M. When M has the form itree F, we can
think of such a handler as translating the E events into F events. We call handlers of this type ITree
event handlers. Like KTrees, event handlers form a cocartesian category where composition of
handlers uses interp, and the identity handler is trigger. The interface is summarized in Figure 10.

Definition cat {E F G} : (E { itree F) → (F { itree G) → (E { itree G)

:= fun f g _ e ⇒ interp g (f _ e).

Definition id_ {E} : E { itree E := @trigger E.

4The 1 in inl1 and inr1 reminds us that E and F live in Type → Type.
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iter : (A → itree E (A + B)) → (A → itree E B)

loop : (C + A → itree E (C + B)) → A → itree E B

mrec : (E { itree (E +' F)) → (E { itree F)

Fig. 12. Summary of recursion combinators

CoFixpoint iter (body : A → itree E (A + B))

: A → itree E B :=

fun a ⇒ ab � body a ;;

match ab with

| inl a ⇒ Tau (iter body a)

| inr b ⇒ Ret b

end.

Definition loop (body : C + A → itree E (C + B))

: A → itree E B :=

fun a ⇒ iter (fun ca ⇒

cb � body ca ;;

match cb with

| inl c ⇒ Ret (inl (inl c))

| inr b ⇒ Ret (inr b)

end) (inr a).

Fig. 13. Iteration combinators: iter and loop.

The equivalence relation for handlers h ≈̂ k is defined as ∀ A (e: E A), (h A e) ≈ (g A e), i.e.,
pointwise weak bisimulation. It admits the same equational theory (and derived constructs) as for
KTrees, hence we reuse the same notations for the operations (see Figure 7).

Subevents. When working with ITrees at scale, it is often necessary to connect ITrees with fewer
effects to ITrees with more effects. For instance, suppose we have an ITree t : itree IO A and we
want to bind it with a continuation k of type A → itree (X +' IO +' Y) B for some event types
X and Y. A priori, this isn’t possible, since the types of their events don’t match. However, since
there is a natural structural inclusion inc: IO { X +' IO +' Y (given by inl_ ◦ inr_) we can first
interpret t using the handler fun e ⇒ trigger (inc e) and then bind the result with k.
Since the need for such structural inclusions arises fairly often, the ITrees library defines a

typeclass, written E -< F, that can automatically synthesize inclusions such as inc. It generically
derives an instance of trigger : E { itree F whenever there is a structural subevent inclusion
E { F. We will see in the case study how this flexibility is useful in practice.

4 ITERATION AND RECURSION

While Coq does provide support for coinduction and corecursion, its technique for establishing
soundness relies on syntactic mechanisms that are not compositional. To make working with ITrees
more tractable to clients, our library provides first-class abstractions to express corecursion as well
as reasoning principles for these abstractions that hide the brittle nature of Coq’s coinduction.
From the point of view of a library user, recursive definitions using these combinators need only to
typecheck, even when they lead to divergent behaviors.
Our library exports two iteration constructs, iter and loop, and a recursion combinator mrec

(Figure 12). They are mutually inter-derivable, but they permit rather distinct styles of recursive
definitions.

4.1 Iteration

The first function is a combinator for iteration, iter, whose implementation is shown in Figure 13.
Given body : A → itree E (A + B) and a starting state a:A, iter body a is a computation that
produces either a new state from which to iterate the body again (after a Tau), or a final value to
stop the computation. This operator makes no assumption on the shape of the loop body, a marked
improvement over the intensional guardedness check required by cofix.
Defining fixpoint combinators as functions allows us to prove their general properties once

and for all. The equations for iter, given below, imply that continuation trees form an iterative
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category [Bloom and Ésik 1993]. The fixed point identity unfolds one iteration of the iter loop; the
parameter identity equates a loop followed by a computation with a loop where that computation
is part of its last iteration; the composition identity equates a loop whose body sequences two
computations f, g with a loop sequencing them in reverse order, prefixed by a single iteration of f;
and the codiagonal identity merges two nested loops into one.

iter f ≈̂ f >>> case_ (iter f) id_ (fixed point)

iter f >>> g ≈̂ iter (f >>> bimap id_ g) (parameter)

iter (f >>> case_ g inr_) ≈̂ f >>> case_ (iter (g >>> case_ f inr_)) id_ (composition)

iter (iter f) ≈̂ iter (f >>> case_ inl_ id_) (codiagonal)

The proofs of these equations makes nontrivial use of coinductive reasoning for weak bisimulation;
carrying them out in a proof assistant is a significant contribution of this work. Nevertheless, that
complexity is entirely hidden from users of the library, behind the simple interface exposed by
these equations, whose expressiveness we’ll demonstrate in our case study in Section 5.

The iter implementation shown in Figure 13 is specialized to the itree E monad. However, we
can generalize to other monads and characterize the abstraction using the following typeclass:

Class MonadIter (M : Type → Type) {̀Monad M} :=

iter : ∀A B, (A → M (A + B)) → A → M B.

Good implementations of the MonadIter interface must satisfy the iterative laws. In a total
language such as Coq, this limits the possible implementations. Base instances include ITrees and
the predicate monad (_ → Prop) where we can tie the knot using the impredicative nature of Prop.
In addition, we can lift MonadIter through a wide variety of monad transfomers, e.g., stateT S M

where M is an instance of MonadIter.

Traced categories. Figure 13 also shows the loop combinator, an alternative presentation of
recursion that is derivable from iter. We can think of the C part of the body’s input and output
types as input and output łportsž that get patched together with a łback-edgež by iter. We use
loop in Section 5 to model linking of control-flow graphs. This loop combinator equips KTrees with
the well-studied structure of a traced monoidal category [Hasegawa 1997; Joyal et al. 1996].

4.2 Recursion

Figure 14 shows the code for a general mutual-recursion combinator, mrec. The combinator uses a
technique developed by McBride [2015] to represent recursive calls as events. Here, an indexed
type D : Type → Type gives the signature of a recursive function, or, using multiple constructors,
a block of mutually recursive functions. For example, D := ackermannE represents a function with
two nat arguments and a result of type nat.

Inductive ackermannE : Type → Type :=

| Ackermann : nat → nat → ackermannE nat.

A recursive event handler for D is an event handler of type D { itree (D +' E), so it can make
recursive calls to itself via D events, and perform other effects via E events. As an example, the
handler h_ackermann pattern-matches on the event Ackermann m n to extract the two arguments of
the function, and to refine the result type to nat. The body of the function makes recursive calls
by trigger-ing Ackermann events, without any requirement to ensure the well-foundedness of the
definition.

Definition h_ackermann : ackermannE { itree (ackermannE +' emptyE) :=

fun _ '(Ackermann m n) ⇒ if m =? 0 then Ret (n + 1)

else if n =? 0 then trigger (inl1 (Ackermann (m-1) 1))

else (ack � trigger (inl1 (Ackermann m (n-1))) ;;
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(* Interpret an itree in the context of a mutually recursive definition (rh) *)

Definition mrec {D E} (rh : D { itree (D +' E)) : D { itree E :=

fun R d ⇒ iter (fun t : itree (D +' E) R ⇒

match t with

| Ret r ⇒ Ret (inr r)

| Tau t ⇒ Ret (inl t)

| Vis (inl1 d) k ⇒ Ret (inl (bind (rh _ d) k))

| Vis (inr1 e) k ⇒ bind (trigger e) (fun x ⇒ Ret (inl (k x)))

end) (rh _ d).

Fig. 14. Mutual recursion via events

trigger (inl1 (Ackermann (m-1) ack))).

The mrec combinator ties the knot. Given a recursive handler D { itree (D +' E), it produces a
handler D { itree E, where all D events have been handled recursively.

Definition ackermann : nat → nat → itree emptyE nat :=

fun m n ⇒ mrec h_ackermann (Ackermann m n).

The implementation of mrec in Figure 14 works similarly to interp, applying the recursive handler
rh to events in D. However, whereas interp directly uses the ITree produced by the handler as
output, mrec adds it as a prefix of the ITree to be interpreted recursively: the inl1 d branch returns
bind (rh _ d) k, which will be processed in subsequent steps of the iter loop.

For reasoning, mrec is also characterized as a fixed point by an unfolding equation, which applies
the recursive handler rh : D { itree (D +' E) once, and interprets the resulting ITree with interp,
where D events are passed to mrec again, and E events are passed to the identity handler, i.e., trigger,
which keeps events uninterpreted.

mrec rh d ≈ interp (case_ (mrec rh) id_) (rh d)

In fact, mrec is an analogue of iter, equipping event handlers themselves with the structure of an
iterative category. It satisfies the same equations as iter, relating event handlers instead of KTrees.

5 CASE STUDY: VERIFIED COMPILATION OF IMP TO ASM

To demonstrate the compositionality of ITree-based semantics and the usability of our Coq library,
we use ITrees to formalize and verify a compiler from a variant of the Imp language from Software

Foundations [Pierce et al. 2018] to a simple assembly language, called Asm.
We begin by explaining the denotational semantics of Imp (Section 5.1) and Asm (Section 5.2). It

is convenient to define the semantics in stages, each of which justifies a different notion of program
equivalence. The first stage maps syntax into ITrees, thereby providing meaning to the control-flow
constructs of the language, but not ascribing any particular meaning to the events corresponding to
interactions with the memory. The second stage interprets those events as effects that manipulate
(a representation of) the actual program state.

We then give a purely inductive proof of the correctness of the compiler (Sections 5.3 and 5.4).
The denotational model enables us to state a termination-sensitive bisimulation and prove it purely
equationally in a manner not much different from traditional compilers for terminating languages
with simpler denotational semantics [Pierce et al. 2018]. The correctness proof relates the semantics
of Imp to the semantics of Asm after their events have been appropriately interpreted into state
monads (a necessity, since compilation introduces new events that correspond to reading and
writing intermediate values). Since Imp programs manipulate one kind of state (global variables)
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(* Imp Syntax --------- - - - - - - - - - - - - - - - - - - - - - - - - - - - *)

Inductive expr : Set := ... (* omitted *)

Inductive imp : Set :=

| Assign (x : var) (e : expr)

| Seq (a b : imp)

| If (i : expr) (t e : imp)

| While (t : expr) (b : imp)

| Skip.

(* Imp Events --------- - - - - - - - - - - - - - - - - - - - - - - - - - - - *)

Variant ImpState : Type → Type :=

| GetVar (x : var) : ImpState value

| SetVar (x : var) (v : value) : ImpState unit.

Context {E : Type → Type} {̀ImpState -< E}.

(* Imp Denotational semantics ----------------- - - - *)

(* ITree representing an expression *)

Fixpoint denote_expr (e:expr) : itree E value :=

match e with

| Var v ⇒ trigger (GetVar v)

| Lit n ⇒ ret n

| Plus a b ⇒ l � denote_expr a ;;

r � denote_expr b ;; ret (l + r)

| ...

end.

(* Imp Denotational semantics cont'd --------------------- - - *)

(* ITree representing an Imp statement *)

Fixpoint denote_imp (s : imp) : itree E unit :=

match s with

| Assign x e ⇒ v � denote_expr e ;; trigger (SetVar x v)

| Seq a b ⇒ denote_imp a ;; denote_imp b

| If i t e ⇒ v � denote_expr i ;;

if is_true v then denote_imp t else denote_imp e

| While t b ⇒
iter (fun _ ⇒ v � denote_expr t ;;

if is_true v

then denote_imp b ;; ret (inl tt)

else ret (inr tt))

| Skip ⇒ ret tt

end.

(* Imp state monad semantics ----------------- - - - - - - - - - - - - - - *)

(* Translate ImpState events into mapE events *)

Definition h_imp_state {F: Type → Type} {̀mapE var 0 -< F}

: ImpState { itree F := ...(* omitted *)

(* Interpret ImpState into (stateT env (itree F)) monad *)

Definition interp_imp {F A} (t : itree (ImpState +' F) A)

: stateT env (itree F) A :=

let t' := interp (bimap h_imp_state id_) t in

interp_map t'.

Fig. 15. Syntax and denotational semantics of Imp. The While case uses iter; GetVar and SetVar events are
interpreted into the monad stateT env (itree E), where env is a finite map from var to value.

and Asm programs manipulate two kinds of state (registers and the heap), the proof involves
building an appropriate simulation relation between Imp states and Asm states.
To streamline, we identify Imp global variables with Asm heap addresses and assume that Imp

and Asm programs manipulate the same kinds of dynamic values. Neither assumption is critical.

5.1 A Denotational Semantics for Imp

The syntax and the semantics for Imp is given in Figure 15. In the absence of while, a denotational se-
mantics could be defined, by structural recursion on statements, as a function from an initial environ-
ment to a final environment; the denotation function would have type imp → env → (env * unit).
However, it is not possible to give a semantics to while using this naïve denotation because
Gallina’s function space is total. The usual solution is to revamp the semantics dramatically,
e.g., by moving to a relational, small-step operational semantics (Section 8.5 discusses other ap-
proaches). With ITrees, the denotation type becomes imp → stateT env (itree F) unit, or, equiv-
alently, imp → env → itree F (env * unit), which allows for nontermination. It is also more
flexible, since the semantics can be defined generically with respect to an event type parameter F,
which can later be refined if new effects are added to the language or if we want to compose ITrees
generated as denotations of Imp programs with ITrees obtained in some other way.

Figure 15 shows how the Imp semantics are structured. We first define denote_expr and denote_imp,
which result in trees of type itree E unit. The typeclass constraint ImpState -< E indicates that
E permits ImpState actions, a refinement of stateE that provides events for reading and writing
individual variables; we would follow the same strategy to add other events such as IO. The
meanings of expressions and most statements are straightforward, except for While. This relies on
the iter combinator (see Section 4) to first run the guard expression, then either continue to loop
(by returning inl tt to the iter combinator) or signal that it is time to stop (by returning inr tt).

The second stage of the semantics is interp_imp, which takes ITrees containing ImpState events
and produces a computation in the state monad. It first invokes a handler for ImpState, h_imp_state,
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(* Asm syntax --------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *)

Variant instr : Set := ... (* omitted *)

Variant branch {label : Type} : Type :=

| Bjmp (_ : label) (* jump to label *)

| Bbrz (_ : reg) (yes no : label) (* cond. jump *)

| Bhalt.

Inductive block (label : Type) : Type :=

| bbi (_ : instr) (_ : block) (* instruction *)

| bbb (_ : branch label). (* final branch *)

Definition bks A B := fin A → block (fin B).

(* Control-flow subgraph: entries A and exits B. *)

Record asm (A B : nat) : Type :=

{ internal : nat

; code : bks (internal + A) (internal + B) }.

(* Asm events --------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *)

Variant Reg : Type → Type :=

| GetReg (x : reg) : Reg value

| SetReg (x : reg) (v : value) : Reg unit.

Inductive Memory : Type → Type :=

| Load (a : addr) : Memory value

| Store (a : addr) (v : value) : Memory unit.

Context {E : Type → Type}.

Context {̀Reg -< E} {̀Memory -< E}.

(* Asm denotational semantics ----------------- - - - - - *)

Definition denote_instr (i:instr) : itree E unit

:= ... (* omitted *)

(* Asm denotational semantics cont'd --------------------- - - - - *)

Definition denote_br (b:branch (fin B)):itree E (fin B) :=

match b with

| Bjmp l ⇒ ret l

| Bbrz v y n ⇒
val � trigger (GetReg v) ;;

if val ?= 0 then ret y else ret n

| Bhalt ⇒ exit

end.

Fixpoint denote_bk {L} (b : block L) : itree E L :=

match b with

| bbi i b ⇒ denote_instr i ;; denote_bk b

| bbb b ⇒ denote_br b

end.

Definition denote_bks (bs:bks A B):ktree E (fin A) (fin B)

:= fun a ⇒ denote_bk (bs a).

Definition den_asm {A B}:asm A B → ktree E (fin A) (fin B)

:= fun s ⇒ loop (denote_bks (code s)).

(* Asm state monad semantics ----------------- - - - - - - - - - - - - - - - - *)

Definition h_reg {F: Type → Type} {̀mapE reg 0 -< F}

: Reg { itree F := (* omitted *)

Definition h_mem {F: Type → Type} {̀mapE addr 0 -< F}

: Memory { itree F := (* omitted *)

Definition interp_asm {F A} (t:itree (Reg+'Memory+'F) A)

: memory → registers → itree F (memory*(registers*A)) :=

let h := bimap h_reg (bimap h_mem id_) in

let t' := interp h t in

fun mem regs ⇒ interp_map (interp_map t' regs) mem.

Fig. 16. Syntax and semantics of Asm

to translate the Imp-specific GetVar and SetVar events into the general-purpose mapE events provided
by the ITrees library (the bimap operator propagates other events untouched). It then uses interp_map
to define their meaning in terms of actual lookup and set operations on the type env, a simple finite
map from var to value. The final semantics of an Imp statement s is obtained simply by composing
the two functions: interp_imp (denote_imp s).
Factoring the semantics this way is useful for proofs. For instance, to prove the soundness of a

syntactic program transformation from s to s' it suffices to show that denote_imp s ≈ denote_imp s';
we need not necessarily consider the impact of interp_imp. We will exploit this semantic factoring
in the compiler proof below by reasoning about syntactic łlinkingž of Asm code before its state-
transformer semantics is considered.
This style of denotational semantics avoids defining a syntactic representation of machines,

which often comes with a number of administrative reduction rules. Instead, we represent these
administrative reductions using Gallina functions and Tau transitions in the semantics (though
these are hidden by iter). As we will see in Section 5.4, this uniform representation will allow us
to reason up to Tau and completely ignore these steps in our proofs.

5.2 A Denotational Semantics for Asm

The target of our compiler is Asm, a simple assembly language that represents computations as
collections of basic blocks linked by conditional or unconditional jumps. Figure 16 gives the core
syntax for the language, which is split into two levels: basic blocks and control-flow subgraphs.
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A basic block (block) is a sequence of straight-line instructions followed by a branch that transfers
control to another block indicated by a label. As with Imp expressions, the denotation of instructions
is mostly uninteresting, so we omit them.

A control-flow subgraph, or łsub-CFG,ž (asm in Figure 16) represents the control flow of a compu-
tation. These are open program fragments, represented as sets of labeled basic blocks. The labels in
a sub-CFG are separated into three groups: entry labels, from which the code in a sub-CFG can start
executing, exit labels, where the control flow leaves the sub-CFG, and internal labels, which are
invisible outside of the subgraph. A sub-CFG has a block of code for every entry and internal label;
control leaves the subgraph by jumping to an exit label. Labels are drawn from finite domains, e.g.,
fin A and fin B where A and B are nats, as seen in bks.5

Figure 16 presents the denotation of Asm programs, which factors into two parts, just as we
saw for Imp. The GetReg and SetReg events represent accesses of register state, and Load and Store

accesses of memory.6 Once again, we give meaning to the control-flow constructs of the syntax
independently of the state events. The result of denote_bks is a ktree that maps each entry label of
type fin A to an itree that returns the label of the next block to jump to. The den_asm function first
computes the denotation of each basic block and then wires the blocks together using loop, hiding
the internal labels in the process.

The stateful semantics of Asm programs is given by interp_asm, which, like interp_imp, realizes
the register andmemory as finitemaps using interp_map. As a result of this nesting, the łintermediate
statež of an Asm computation is a value of type memory * (register * A). Because they are built
compositionally from interpreters, it is very easy to prove that both interp_imp and interp_asm are
monad morphisms in the sense that they commute (up to Tau) with ret and bind, a fact that enables
proofs by rewriting.

5.3 Linking of Control-Flow Subgraphs

We now turn to the compilation of Imp to Asm. The compiler and its proof are each split into
two components. The first phase handles reasoning about control flow by embedding sub-CFGs
into KTrees. In the second phase, we perform the actual compilation and establish its functional
correctness by reasoning about the quotienting of the local events.

For the first phase, we first implement a collection of reusable combinators for linking sub-CFGs.
These combinators correspond to the operations on KTrees described in Section 2.3, which can be
seen in this context as presenting a theory of graph linking at the denotational level. Here are the
signatures of the four essential ones (their implementations are straightforward):

Definition app_asm (ab : asm A B) (cd : asm C D) : asm (A + C) (B + D).

Definition loop_asm (ab_ : asm (I + A) (I + B)) : asm A B.

Definition pure_asm (f : A → B) : asm A B.

Definition relabel_asm (f : A → B) (g : C → D) (bc : asm B C) : asm A D.

Two sub-CFGs can be placed beside one another while preserving their labels, via app_asm. Linking
of compilation units is performed by loop_asm: it connects a subset of the exit labels I as back edges
to the imported labels, also named I, and internalizes them. Visible labels can be renamed with
relabel_asm. Finally, pure_asm creates, for every label a : A, a block that jumps immediately to f a.
Together, relabel_asm and pure_asm provide the plumbing required to use the combinators app_asm
and loop_asm effectively.

5The finiteness of labels is useful for Asm program transformations and is faithful to łrealž assembly code, but this restriction
is not actually necessary. The correctness proof is independent of this choice, so we sweep the details under the rug.
6An additional Done event (not shown) represents halting the whole program for blocks terminated by a Bhalt instruction
via exit, but we omit it for the purposes of this exposition.
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Definition seq_asm {A B C} (ab : asm A B) (bc : asm B C): asm A C

:= loop_asm (relabel_asm swap id_ (app_asm ab bc)).

(* Auxiliary for if_asm *)

Definition cond_asm (e : list instr) : asm 1 (1 + 1)

:= ... (* omitted *)

Definition if_asm {A} (e : list instr) (t : asm 1 A) (f : asm 1 A)

: asm 1 A

:= seq_asm (cond_asm e) (relabel_asm id_ merge (app_asm t f)).

Definition while_asm (e : list instr) (p : asm 1 1) : asm 1 1

:= loop_asm (relabel_asm id_ merge

(app_asm (if_asm e

(relabel_asm id inl_ p)

(pure_asm inr_))

(pure_asm inl_))).

ab

bc

𝐵

𝐵𝐴 𝐶

t

f
e

1
true

false

A
A

A

p
e

true

false
11

Fig. 17. High-level control flow in Asm

The correspondence between these core Asm combinators and operations on KTrees is given by
the following equations, which commute the denotation function inside the combinator.

den_asm (app_asm ab cd) ≈̂ bimap (den_asm ab) (den_asm cd)

den_asm (loop_asm ab) ≈̂ loop (den_asm ab)

den_asm (relabel_asm f g bc) ≈̂ (pure f >>> den_asm bc >>> pure g)

den_asm (pure_asm f) ≈̂ pure_ktree f

Equipped with these primitives, building more complex control-flow graphs becomes a diagram-
matic game. Figure 17 shows how to use the primitives to build linking operations for sub-CFGs
that mimic the control-flow operations provided by Imp. For instance, sequential composition of
asm A B with asm B C places them in parallel, swaps their entry labels to get a sub-CFG of type
asm (B+A) (B+C), and then internalizes the intermediate label B via loop_asm.

We emphasize that while these control-flow graphs are specific to Imp, their definitions do not
depend on Imp’s or even Asm’s state-transformer semantics. We can reason about control-flow
independently of other events. For instance, the denotation of the seq_asm combinator is indeed the
sequential composition of denotations of its arguments (up to Tau):

Lemma seq_asm_correct {A B C} (ab : asm A B) (bc : asm B C) :

(den_asm (seq_asm ab cd)) ≈̂ (den_asm ab >>> den_asm bc).

The while_asm combinator is, naturally, more involved. As illustrated in Figure 17, it constructs
the control-flow graph of a while loop given the list of instructions for the test condition and the
compilation unit corresponding to the body of the loop. The type of p represents a compilation
unit with a single imported label (the target to jump to when the loop body finishes) and a single
exported label (the entry label for the top of the loop body). The correctness of the combinator
establishes that its denotation can be viewed as an entry point that runs the body if a variable
tmp_if is non-zero after evaluating the expression e. This is expressed at the level of KTrees via the
loop operator. In the code below, label_case l analyzes the shape of the label l, and l1 and l2 are
two distinct label constants corresponding to the loop entry or exit, respectively.

Lemma while_asm_correct (e : list instr) (p : asm 1 1)

: denote_asm (while_asm e p)

≈̂ loop (fun l:fin (1 + 1) ⇒

match label_case l with

| inl _ ⇒ denote_list e ;; v � trigger (GetReg tmp_if) ;;

if (v:value) then Ret l2 else (denote_asm p l1;; Ret l1)

| inr _ ⇒ Ret l1
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end).

Most importantly, the proof of while_asm_correct is again purely equational, relying solely on the
theory of KTrees and correctness equations of the low-level linking combinators (app_asm_correct,
seq_asm_correct, etc.).

5.4 Compiler Correctness

The compiler itself is entirely straightforward. It compiles Imp statements using the linking combina-
tors along with compile_assign and compile_expr, both of which are simple (and omitted). We pass
to compile_expr the name of a target register (here, just 0), into which the value of the expression
will be computed; it stores intermediate results in additional Asm registers as needed.

Fixpoint compile (s : stmt) {struct s} : asm 1 1 :=

match s with

| Skip ⇒ id_asm

| Assign x e ⇒ raw_asm_block (after (compile_assign x e) (Bjmp l1))

| Seq l r ⇒ seq_asm (compile l) (compile r)

| If e l r ⇒ if_asm (compile_expr 0 e) (compile l) (compile r)

| While e b ⇒ while_asm (compile_expr 0 e) (compile b)

end.

The top-level compiler correctness theorem is phrased as a bisimulation between the Imp program
and the corresponding Asm program, which simply requires them to have łequivalentž behavior.

Theorem compile_correct (s : stmt) : equivalent s (compile s).

Figure 18 unpacks the definition of equivalent, which requires the ITree denotations of s and
its compilation to be bisimilar. Two ITrees t1 and t2, representing Imp and Asm computations
respectively, of types itree (ImpState +' E) A and itree (Reg +' Memory +' E) B, are bisimilar if,
when run in Renv-related initial states, they produce computations that are equivalent up to Tau and
both terminate in states related by state_invariant TT. The relation Renv formalizes the assumption
that the Imp environment and Asm memory have the same contents when viewed as maps from
Imp variables / Asm addresses to values, and it is implied by state_invariant. Here, TT is the trivial
relation on the output label of Asm, since a statement has a unique exit point; in general the RAB
relation parameter in state_invariant is used to ensure that both computations jump to the same
label, which is needed to prove that loops preserve the state invariant.
Since the compiler introduces temporary variables, the bisimulation does not hold over the

uninterpreted ITrees. To prove that expressions are compiled correctly, we need to explain how
reads and writes of Asm registers relate to the computations done at the Imp level. The relation
sim_rel establishes the needed invariants, which ensure that the code generated by the compiler (1)
doesn’t corrupt the Asm memory, (2) uses registers in a łstack discipline,ž and (3) computes the Imp
intermediate result v into the target register n. These properties are used to prove the correctness
of compile_expr.
Crucially, despite correctness being termination sensitive, the proofs follow by structural in-

duction on the Imp terms: all coinductive reasoning is hidden in the library. As in the first phase,
the reasoning here follows by rewriting, this time using the bisimilarity relation and equations
about interp_imp and interp_asm that are induced by virtue of being compositionally defined from
interp_state.

Setting aside the usual design of the simulation relation, the resulting proofs are slightly verbose,
but extremely elementary. They mostly consist in successive rewrites to commute the denotation
with the various combinators, and some elementary semantic reasoning where events are reached
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(* Relate an Imp env to an Asm memory *)

Definition Renv (g_imp : Imp.env) (g_asm : Asm.memory) : Prop :=

∀ k v, alist_In k g_imp v ↔ alist_In k g_asm v.

Definition sim_rel l_asm n: (Imp.env * value) → (Asm.memory * (Asm.registers * unit)) → Prop :=

fun '(g_imp', v) '(g_asm', (l_asm', _)) ⇒

Renv g_imp' g_asm' ∧ (* we don't corrupt any of the Imp state *)

alist_In n l_asm' v ∧ (* we get the right value in register n *)

(∀ m, m < n → ∀v, alist_In m l_asm v ↔ alist_In m l_asm' v).

(* we don't mess with anything on the "stack" *)

Context {A B : Type}. (* Imp / Asm intermediate result types *)

Context (RAB : A → B → Prop). (* Parameter that relates intermediate results *)

(* Relate Imp to Asm intermediate states. *)

Definition state_invariant (a : Imp.env * A) (b : Asm.memory * (Asm.registers * B)) :=

Renv (fst a) (fst b) ∧ (RAB (snd a) (snd (snd b))).

Definition bisimilar {E} (t1 : itree (ImpState +' E) A) (t2 : itree (Reg +' Memory +' E) B) :=

∀ g_asm g_imp l, Renv g_imp g_asm

→ eutt (state_invariant RAB) (interp_imp t1 g_imp) (interp_asm t2 g_asm l).

(* Imp / Asm program equivalence *)

Definition TT : unit → fin 1 → Prop := fun _ _ ⇒ True.

Definition equivalent (s:stmt) (t:asm 1 1) : Prop := bisimilar TT (denote_stmt s) (den_asm t f1).

Fig. 18. The simulation relations for the compiler correctness proof.

to prove that the simulation relation is preserved. We believe that these kind of equational proofs
can be automated to a large degree, a perspective we would like to explore in further works.

6 EXTRACTING ITREES

One of the big benefits of ITrees is that they work well with Coq’s extraction facilities. If we extract
the echo definition from Section 2, we obtain the code shown at the top of Figure 19.7 The itree

type extracts as a lazy datatype and observe forces its evaluation.
To actually run the represented computation, we provide a driver that traverses the itree, forcing

all of its computation and providing handlers for any visible events that remain in the tree. The
OCaml function run does exactly that, where, for the sake of this example, we interpret each Input

event as a call to OCaml’s read_int command and each Output event as a call to print_int.8 This kind
of simple event handling already suffices to add basic IO and łprintf debuggingž to Coq programs,
which can be extremely handy in practice. We can, of course, implement more sophisticated event
handlers, using the full power of OCaml.
ITrees extractability has played a key role in several different parts of an ongoing research

project that seeks to use Coq for Deep Specifications.9 In particular, our re-implementation of the
Vellvm10 formalization of LLVM, which aims to give a formal semantics for the LLVM IR in Coq,
heavily uses ITrees exactly as proposed in this paper to build a denotational semantics for LLVM
IR code. The Vellvm semantics has many layers of events and handlers (for global data, local data,
interactions with the memory model, internal and external functions calls, etc.), and the LLVM

7For simplicity, here we also extract Coq’s nat type as OCaml’s int type.
8Thanks to its dependent type, the OCaml extraction of Vis uses OCaml’s Obj.t as the domain of the embedded continuations,
so handlers should be written with care, otherwise type-safety could be jeopardized.
9http://www.deepspec.org.
10https://github.com/vellvm/vellvm
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let rec echo =

lazy (Vis (Input, (fun x -> lazy (Vis ((Output (Obj.magic x)), (fun _ ->

echo))))))

(* OCaml handler -----(not extracted) ------------------------------------------ *)

let handle_io e k = match e with

| Input -> k (Obj.magic (read_int ()))

| Output x -> print_int x ; k (Obj.magic ())

let rec run t =

match observe t with

| Ret r -> r

| Tau t -> run t

| Vis (e, k) -> handle_io e (fun x -> run (k x))

Fig. 19. OCaml extracted from the echo example (top); OCaml handler and łdriverž loop (bottom).

IR control-flow graphs are a richer version of the Asm language (Section 5.2). The flexibility of
using ITree-based interpreters means that Vellvm can define a relational specification that accounts
for nondeterministic features of the LLVM (such as undef) but that can also be refined into an
implementation. We are able to extract an executable interpreter that performs well enough to test
small- to medium-sized LLVM code samples (including recursion, loops, etc.). All but the outermost
run driver are extracted from Coq, as in the echo example.
We are also using ITrees as executable specifications to model the semantics of web servers

[Koh et al. 2019]. The ITree representation serves two purposes: (1) ITrees model the interactive
operations of the web server in a way that can be connected via Princeton’s VST framework [Appel
2011, 2014] to a C implementation, and (2) the model can also be used for property-based testing
with QuickChick [Lampropoulos and Pierce 2018]. The ability to link against handlers written in
OCaml means that the testing framework can be used to test real web servers like Apache across
the network, in addition to linking against our own web servers. Here again, the performance of
the extracted executable has been good enough that we have felt no need to do any optimization
on the ITree representation.

7 RELATING ITREES AND TRACE SEMANTICS

We have shown that ITrees provide a way to define denotational semantics for possibly diverging,
effectful programs in Coq. In this approach, we use monadic interpreters that produce ITrees as a
semantic representation of program behaviors, which we can then reason about equationally.

A more common approach to defining language semantics in Coq (and in other proof assistants)
is via a deep embedding, in which the program’s operational semantics are specified relationally. For
example, the CompCert project [Leroy 2009] takes this approach, where the fundamental transition
relation is given by step : state → event → state → Prop. Here, a state is a representation of
the current program state, and the event type contains information about both the outputs to the
environment and the inputs that the program might receive from the environment. The proposition
step s1 e s2 holds when it is possible for the system to transition from state s1 to state s2 while
producing the observable event e. The meaning of a complete program is given by the set of all
finite sequences of events, called traces, generated by the transitive closure of the step relation.

An important distinction in trace semantics is that the step relation quantifies over possible inputs
that it might receive from the environment. Unlike ITrees, whose Vis e k constructors expose
the continuation k as a function, relational semantics with input events are fundamentally not
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Inductive trace (E : Type → Type) (R : Type) : Type :=

| TEnd : trace E R

| TRet : R → trace E R

| TEventEnd : ∀{X}, E X → trace E R

| TEventResponse : ∀{X}, E X → X → trace E R → trace E R.

Inductive is_trace_of {E : Type → Type} {R : Type} :

itree E R → trace E R → Prop :=

| TraceEmpty : ∀t, is_trace_of t TEnd

| TraceRet : ∀r, is_trace_of (Ret r) (TRet r)

| TraceTau : ∀t tr, is_trace_of t tr → is_trace_of (Tau t) tr

| TraceVisEnd : ∀X (e : E X) k, is_trace_of (Vis e k) (TEventEnd e)

| TraceVisContinue : ∀X (e : E X) (x : X) k tr,

is_trace_of (k x) tr → is_trace_of (Vis e k) (TEventResponse e x tr).

Fig. 20. ITree traces: is_trace_of t trmeans that tr is a possible trace of ITree t.

executable, because of that universal quantification. If we try to shoehorn ITrees into a small-step
transition relation in this style, the Vis case becomes:

Inductive step {E R} : (itree E R) → {X & E X * X} → (itree E R) → Prop :=

| step_vis : ∀X e (x:X) k, step (Vis e k) (existT _ X (e, x)) (k x).

We instantiate the event type as an existential package containing a pair of the event e : E X

and a response x : X, which is universally quantifiedÐthe step can take place for any x of type
X provided by the environment. This propositional encoding of inputs means that operational
semantics developed in this style cannot be extracted from Coq. Consequently, such semantic
definitions cannot easily be used as implementations or executable tests. The CompCert project goes
to some pains to implement a separate interpreter that corresponds to their small-step semantics to
aid with debugging.

On the other hand, traces are sometimes convenient, particularly when there is inherent nonde-
terminism in the specification of a system’s behaviors. Rather than defining a trace of an ITree
using a small-step semantics, like CompCert, it is more natural to think of an ITree as directly
denoting a set of possible tracesÐfinite prefixes of paths through the tree that record Vis events
and corresponding responses from the environment. This definition is shown in Figure 20.

The trace datatype is intuitively a list of events. TEndmarks a partial trace; it corresponds to spin

or ⊥ (we cannot distinguish the two, a problem of using finite traces). TRet r denotes a computation
that finished, producing the value r. TEventResponse e x t corresponds to a Vis event e to which the
environment respondedwith the answer x, then continues with trace t, and TEventEnd e corresponds
to a situation in which the ITree is waiting for a response from the environment (perhaps one that
will never come, i.e., if it has an event of type E void).

The is_trace_of predicate leads to a natural notion of trace refinement, and thus a different
characterization of ITree equivalence.

Definition 1 (Trace Refinement). t ⊑ u iff ∀ tr, is_trace_of t tr → is_trace_of u tr.

Definition 2 (Trace Equivalence). t ≡ u iff t ⊑ u and u ⊑ t.

Using these definitions, we can show that trace equivalence coincides with weak bisimulation,
i.e., that t1 ≈ t2 ⇐⇒ t1 ≡ t2.

Trace refinement shows that spin ⊑ t. Since all events in the ITree are visible in the trace, if u ⊑ t,
then t can be obtained from u by replacing silently diverging behaviors with some visible events, or
otherwise inserting/removing a finite number of Taus into/from u. In many cases, different notions
of refinement may be more useful. For instance, one may want nondeterministic behavior to be
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refined by possible deterministic behaviors. One way to do this is to directly allow the is_trace_of
predicate to allow a choice of possible refinements, effectively interpreting away some events in the
refinement definition. A second option is to introduce a more sophisticated version of refinement
that uses both the definition above and an event interpreter as described in Section 3.2Ðthe resulting
relations should be quite similar to those studied by Johann et al. [2010].

8 RELATED WORK

The problem of accommodating effectful programming in purely functional settings is an old one,
and a variety of approaches have been explored, monads and algebraic effects being two of the
most prominent. We concentrate on these two techniques, beginning with general background and
then focusing on the closest related work.

8.1 Monads, Monad Transformers, and Free Monads

Moggi’s seminal paper [1989] introduced monads as one way to give meaning to imperative features
in purely functional programs. Monads were subsequently popularized byWadler [1992] and Peyton
Jones and Wadler [1993] and have had huge impact, especially in Haskell. However, it was soon
recognized that composing monads to combine multiple effects was not straightforward. Monad
transformers [Moggi 1990] are one way to obtain more compositionality; for example, Liang et al.
[1995] showed how they can be used to build interpreters in a modular way. The interp_state

function from Section 3 is an example of building an event interpreter using a monad transformer
in this style. In our case, not all monads are suitable targets for interpretation: we require them
to support recursion in the sense that their Kleisli category is iterative. Correspondingly, not all
monad transformers can therefore be used to build interpreters.

Sweirstra’s Datatypes à la Carte [2008] showed how to use a free monad to definemonad instances
modularly. Transporting his definition to our setting, we would obtain the following:

CoInductive Free (E : Type → Type) (R:Type) :=

| Ret : R → Free E R

| Vis : E (Free E R) → Free E R.

This version of the Vis constructor directly applies the functor E to the coinductively defined
type Free E R itself. However, this type violates the strict positivity condition enforced by Coq:
certain choices of E would allow one to construct an infinite loop.

Subsequent work by Apfelmus [2010], Kiselyov et al. [2013] and Kiselyov and Ishii [2015] showed
how free monads can be made more liberal by exposing the continuation in the Vis constructor.
The resulting łfreerž monad (called FFree in their work) is essentially identical to our ITreesÐthe
difference being that, because they work in Haskell, which admits nontermination by default, it
needs no Tau constructor.

When considered up to strong bisimulation, ITrees form the free completely iterative monad [Aczel
et al. 2003] with respect to a functor of the form fun X ⇒ F X + X, where the second component cor-
responds to Tau nodes. Quotiented byweak bisimulation, ITrees define a free pointedmonad [Uustalu
and Veltri 2017]. There is a rich literature on the theory of iteration [Bloom and Ésik 1993; Gon-
charov et al. 2017; Milius 2005], studying the properties of operators such as mrec in yet more
general category-theoretic settings. The ITrees library makes such results concretely applicable to
formally verified systems.

ITrees are a form of resumptions, which originated from concurrency theory [Milner 1975]. More
precisely, ITrees can be obtained by applying a coinductive resumption monad transformer [Cen-
ciarelli and Moggi 1993; Piròg and Gibbons 2014] to the delay monad of Capretta [2005]. Other
variations of the resumption monad transformer have been used to model effectful and concurrent
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programs [Goncharov and Schröder 2011; Nakata and Uustalu 2010]. In particular, Nakata and
Uustalu [2010] also used coinductive resumptions in Coq to define the semantics of Imp augmented
with input-output operations. They also defined termination-sensitive weak bisimilarity (łequiva-
lence up to tausž) using mixed induction-coinduction. However, their semantics was defined as an
explicitly coinductive relation, with judicious introductions of Tau. Their Coq development was
specialized to Imp’s global state and was not intended to be used as a general-purpose library. In
contrast, our semantics are functional (denotational, definitional) interpreters, and we encapsu-
late nontermination (Tau is an internal implementation detail) using recursion operators that are
compatible with Coq’s extraction mechanisms.

8.2 Algebraic Effects and Handlers

Algebraic effects are a formalism for expressing the semantics of effectful computations based
on the insight by Plotkin and Power that many computational effects are naturally described by
algebraic theories [2001; 2002; 2003]. The idea is to define the semantics of effects equationally,
with respect to the term model generated by operations op ∈ Σ, the signature of an algebra. When
combined with the notion of an effect handler, an idea originally introduced by Cartwright and
Felleisen [1994] and later investigated by Plotkin and Pretnar [2013], algebraic effects generalize
to more complex control effects yet still justify equational reasoning. The monoidal structure of
algebraic effects is well known [Hyland et al. 2006]; more recent work has studied the relationship
between monad transformers and modular algebraic effects [Schrijvers et al. 2016].
In our setting, an event interface such as stateE (Figure 8) defines an effect signature Σ, and its

constructors Get and Put s define the operations. Plotkin and Pretnar used the notation op(𝑥 :𝑋 .𝑀),
corresponding to the ITrees Vis op (fun x:X ⇒ M) construct, and called it łoperation applicationž.
They axiomatized the intended semantics of effects via equations on operation applicationsÐfor
example, the fact that two get operations can get collapsed into one was expressed by the equation
get(𝑥 : 𝑆. get(𝑦 : 𝑆. 𝑘𝑥𝑦)) = get(𝑥 : 𝑆. 𝑘𝑥𝑥). For ITrees, we prove such equations relative to an
interpretation of the events, as in Section 3.1.
The handlers of algebraic effects specify the data needed to construct an interpretation of the

effect; they have the form handler{return 𝑥 ↦→ 𝑓 (𝑥), (op(𝑦;𝜅) ↦→ ℎ(𝑦, 𝜅))op∈Σ}. In terms of
our notation, the return component of the handler specifies the Ret case of an interpreter, and
the sum over operation interpretations is written using a dependent type. Here, ℎ corresponds
to the most general elimination form for the ITree Vis constructor, which is a function of type
∀ X, E X → (X → itree E R) → M R for M an iterative monad. However, Coq prevents us from
creating a general-purpose interpeter parameterized by such a typeÐit needs to see the definition
of the handler’s body to verify the syntactic guardedness conditions.

In a language such as Eff [Bauer and Pretnar 2015], which supports algebraic effects natively, the
operational semantics plumbs together the continuations with the appropriate handlers, scoping
them according to the dynamic semantics of the language. In our case, we must explicitly invoke
functions like interp_state as needed, possibly after massaging the structure of events so that they
have the right form.

Johann et al. [2010] studied the contextual equivalences induced by interpretations of standard
effects. Most saliently, their paper developed its theory in terms of observations of łcomputation
trees,ž which are łincompletely knownž ITreesÐthey are inductively defined, and hence finite, but
may also include ⊥ leaves that denote (potential) divergence. Johann et al. showed how to endow
the set of computation trees with a CPO structure based on approximation (⊥ ⊑ 𝑡 for any tree 𝑡 ) and
use that notion to study contextual equivalences induced by various interpreters. The techniques
proposed there should be adaptable to our setting: instead of working with observational partial
orders, we might choose to work more directly with the ITree structures themselves.
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8.3 Effects in Type Theory

Most of the work discussed above was done either in the context of programming languages with
support for general recursion or in a theoretical łpen and paperž setting, rendering these approaches
fundamentally different to the ITree library which is formalized in a total language. Work more
closely related to ITrees is that undertaken in the context of dependent type theory.
The earliest work on mixing effects with type theory was done by Hancock and Setzer [2000],

followed by Hancock’s dissertation [Hancock 2000]. This line of work, inspired by monads and
especially Haskell’s IO monad, showed how to encode such constructs in Martin-Löf type theory.
Those theories, in contrast to ITrees, do not allow silent steps of computation, instead integrating
guarded or sized coinductive types as part of a strong discipline of total functional programming.
The benefit of this is that strong bisimilarity is the only meaningful notion of equivalence; the
drawback is that they cannot handle general recursion. Later work on object encodings [Setzer
2006] did consider recursive computations, though it did not study their equational theory or the
general case of implementing interpreters within the type theory, as we have done. More recently,
Abel et al. [2017] have demonstrated the applicability of these ideas in Agda. Although their paper
includes a proof of the correctness of a stack object (among other examples), they do not focus on
the general equational theory of such computations.

As mentioned previously, Capretta proposed using the łdelay monadž to encode general recursion
in a type theory, as we do here, though his paper used strong bisimulation as the notion of
equivalence. The delay monad can be seen as either an ITree without the Vis constructor or,
isomorphically, an ITree of type itree emptyE R. The main theoretical contribution of that paper
was showing that the monad laws hold and that the resulting system is expressive enough to be
Turing complete. Subsequent work explored the use of the delay monad for defining operational
semantics [Danielsson 2012] and studied how to use quotient types [Chapman et al. 2015] or higher
inductive types [Altenkirch et al. 2017] to define equivalence up to Tau, which we take as the basis
for most of our equational theory. Because we are working in Coq, which does not have quotient
or higher inductive types, we must explicitly use setoid rewriting, requiring us to prove that all
morphisms respect the appropriate equivalences.

McBride [2015], building on Hancock’s earlier work, used what he called the łgeneral monadž to
implement effects in Agda. His monad variant is defined inductively as shown below.

Inductive General (S:Set) (T : S → Set) (X : Set) : Set :=

| RetG (x : X)

| VisG (s:S) (k : T s → General S T X).

Its interface replaces our single E : Type → Type parameter with S : Type and a type family
S → Type to calculate the result type of the event. McBride proposed encoding recursion as an
(uninterpreted) effect, as we present in Section 4. In particular, he shows how to give a semantics
to recursion using first a łfuelž-based (a.k.a. step-indexed) model and then by translation into
Capretta’s delay monad. The latter can be seen as a version of our interp_mrec, but one in which all
of the effects must be handled. Our coinductively defined interaction trees also support a general
fixpoint combinator directly, which is impossible for the Generalmonad.
The FreeSpec Coq library, implemented by Letan et al. [2018], uses a łprogram monadž to

model components of complex computing systems. The program monad is essentially an inductive
version of itree11 (without Tau). What we call łevents,ž the FreeSpec project calls łinterfaces.ž The
FreeSpec project is primarily concerned with modeling first-order, low-level devices for which
general recursion is probably not needed. Its library offers various composition operators, including

11The original version of FreeSpec also included a bind constructor, but, following our ITrees development, it was removed
in favor of defining bind.
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a form of concurrent composition, and it includes a specification logic that helps prove (and
automate proofs of) properties about the systems being modeled. However, due to FreeSpec’s
use of the inductive definition, such systems must be structured as acyclic graphs. Nevertheless,
FreeSpec doesn’t eschew coinduction altogetherÐas we explain below, it, like CompCert, defines
the environment in which the program runs coinductively. FreeSpec’s handlers are thus capable of
expressing diverging computations, but it does not support the equational reasoning principles
that we propose.

8.4 Composition with the Environment

An idea that is found in several of the works discussed above is the need to characterize properties
of the program’s environment. Recall the kill9 program from earlier, which halts when the input
is 9 but continues otherwise. One might wish to prove that, if the environment never supplies the
input 9, the program goes on forever. In a more realistic setting like CompCert, one might wish
to make assertions about externally supplied functions, such as OS calls, malloc or memcpy, or to
reason about the accumulated output on some channel such as the terminal.

The behavior of the environment is, in a sense, dual to the behavior of the program. CompCert,
for example, formulates the environment as a coinductively defined łworld,ž whose definition is (a
richer version of) the following:

CoInductive world : Type :=

World (io : string → list eventval → option (eventval * world))

Here the string and list of eventvals are the outputs of the event (they are provided by the program),
and the result (if any) is a returned value and a new world. The environment’s state is captured in
the closure of the io function. Transliterating this type to our setting we arrive at:

CoInductive world E : Type := World (io : ∀{A:Type}, E A → option (A * world E)).

Letan et al. [2018] use a definition very close to this (without the option) to define a notion of
łsemanticsž for the program monad. Given such a definition, one can define a world that satisfies
a certain property (for example, one that never produces 9 as an answer) and use it to constrain
the inputs given to the program, by łrunningž the program under consideration in the given
world. CompCert defines łrunningž via a predicate called possible_trace that matches the answers
provided by the io function to the events of the program trace.
The CertiKOS project [Gu et al. 2015, 2018] takes the idea of composing a program with its

environment even further. Their Concurrent Certified Abstraction Layers (CCAL) framework also
uses a trace-based formulation of semantics. In their context, traces are called logs and (concurrent)
components are given semantics in terms of sets of traces. Each component (e.g., a thread) can be
separately given a specification in terms of its interface to (valid) external environments, which
encode information about the scheduler and assumptions about other components in the context.
A layer interface can łfocusž on subsets of its concurrently executing components; when it is
focused on a single, sequential thread, the interface is a deterministic function from environment
interactions (as represented by the log) to its next action. The parallel layer composition operation
links two compatible layers by łrunningž them together (as above) according to the schedule (inputs
to one component can be provided by outputs of the other). In this case, one thread’s behaviors
influence another thread’s environment. They formulate such interactions in terms of concepts
from game semantics, which gives rise to a notion of refinements between layer specifications.
Layers have the symmetric monoidal structure familiar from algebraic effects.
We conjecture that the sequential behavior of the CCAL system could be expressed in terms

of ITrees and that the concurrent composition operations of the framework could be defined on
top of that. Our KTree combinators already offer a rich notion of composition, including general,
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mutually recursive linking, which is similar to that offered by CCAL. Moreover, we can define
similar łrunningž operations directly on ITrees, rather than on traces, coordinating multiple ITrees
via an executable scheduler. This means that, besides proving properties of the resulting system,
we can extract executable test cases [Koh et al. 2019].

8.5 Formal Semantics

There are a plethora of techniques used to describe the semantics of programming languages within
proof assistants. In evaluating these techniques, we need to consider both the simplicity of the
definitions and their robustness to language extensions. The former is important because complex
models are difficult to reason about, while the latter is important because seemingly small changes
sometimes cascade through a language, invalidating previous work.
Denotational semantics translate the object language (e.g., Imp or Asm) into the meta-language

(e.g., Gallina), seeking to leverage the existing power of the proof assistant. Chlipala [2007] also
uses denotational semantics to verify a compiler, but in a simpler setting with a normalizing source
language, and with models individually tailored to the intermediate languages. In contrast, ITrees
serve as a common foundation for both semantics in our case-study compiler, and an equational
theory enabling the verification of a termination-sensitive theorem. As we saw in Section 5.1,
impure features such as nontermination can make this difficult, as proof assistants often include
only a total function space. One way to circumvent this limitation is via a łfuelž-based semantics,
where computations are approximated to some finite amount of unwinding. Owens et al. [2016] use
this approach to develop functional big-step semantics. To reason about nonterminating executions,
Owens et al. [2016] leverages the classical nature of the HOL logic to assert that, if no amount of
fuel is sufficient for termination, then the computation diverges. They further show how oracle
semantics [Hobor 2008] can be used to enrich this language with both IO and nondeterminism.
In practice, the approach is quite similar to ITrees, except that we can omit the fuel and instead
directly construct the infinite computation tree. With ITrees, events encode oracle queries and Taus
represent internal steps, which may lead to divergence. Though, as we showed in Section 5, users
of ITrees are mostly insulated from Taus when using the combinators from Section 4.
The approach of Owens et al. [2016] is reminiscent of traditional step indexing [Ahmed 2004],

in which the meaning of a program is described by a set of increasingly accurate approximations.
Coinductive interaction trees enable us to describe an entire, possibly infinite, computation once
and for all. Post-facto, ITrees can be easily approximated by a collection of trees or traces (Section 7),
providing a means to recover step-indexed reasoning if desired.
Formalizations of more classic domain-theoretic denotational models exist [Benton et al. 2010,

2009]. Unfortunately, the learning curve for this style of denotational semantics was widely con-
sidered to be quite steep. The complexity of domain theoretic models prompted exploring more
operational approaches to formalizing semantics [Plotkin 2004a,b]. Big-step operational semantics
share a similar flavor to denotational semantics as they both connect terms directly to their mean-
ing. Unfortunately, interpreting big-step semantics inductively prevents them from representing
divergent computations. Some works [Chlipala 2010; Delaware et al. 2013] avoid the issue of
nontermination entirely, ascribing semantics only to terminating executions. Charguéraud [2013]
provides a technique for avoiding the problem by duplicating the semantics both inductively and
coinductively. They argue that such duplication can be automated and therefore should not be
overly burdensome. The functional style of this łpretty big stepž semantics is quite similar to
functional denotational semantics, and thus bears a resemblance to ITrees. ITrees avoid the need to
duplicate the semantics by giving a data representation rather than a propositional representation.

Leroy and Grall [2009] give an in-depth discussion relating inductive and coinductive semantic
styles, providing an inductive judgment for łterminates in a value (and a trace)ž and a coinductive
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judgment for łdiverges (with an infinite trace).ž Relating these semantics can be difficult, and the
proofs sometimes rely on classical logic.

9 CONCLUSION

Interaction trees are a promising basis on which to build denotational semantics for impure and
recursive computations in theorem provers like Coq. We have established a solid theoretical
foundation and demonstrated a usable realization of the theory in Coq, as well as its practical use
via a demonstrative verified compiler example.

A natural question concerns the ease of transferring this work to other proof assistants. While
the theory does not depend on Coq, adapting the choices made through the conception of the
library to other languages for formal verification may require some non-trivial work.
We leverage mainly three features of Coq: extraction, coinductive types, and higher-order

types. While extraction (or, alternatively, executability) is available in most popular modern proof
systems, the two other characteristics can raise challenges in adapting this work. More specifically,
Lean [de Moura et al. 2015] lacks coinductive types, making it seemingly inadequate to the task.
Isabelle/HOL [Nipkow et al. 2002] lacks higher-order types, which appears to be a serious obstacle
to a faithful translation of our work. An expert might find a way to encode the ITree generic
event types, but we are unsure about the feasibility of the task: this might be a stumbling block.
Finally, Agda [Norell 2007] would be perfectly suitable, and some related work of a similar structure,
discussed in Section 8, actually enjoy a formalization in this proof assistant.
Many directions for further exploration remain. Other kind of effects, such as nondeterminism

and concurrency, are instrumental in the modeling of some systems: developing simulations and
reasoning principles for those represent a valuable challenge. We are accumulating empirical
evidence that ITrees are both expressive enough to be adequate in various targets for formalization,
while also being very convenient to work with. Their compositional and modular nature seems to
lead to better proofs than traditional approaches, notably when it comes to reasoning about control
flow. Building formal bridges and comparisons to related approaches such as domain theoretic
denotations, operational semantics, step-indexed-based approaches, or game semantics models
would be a great opportunity to attempt to ground this empirical evidence. Finally, the versatility
of ITrees make them a potential fit in many contexts. Stress-testing their viability and scalability is
a major avenue we are beginning to explore.
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