4,867 research outputs found

    Sparse Volumetric Deformation

    Get PDF
    Volume rendering is becoming increasingly popular as applications require realistic solid shape representations with seamless texture mapping and accurate filtering. However rendering sparse volumetric data is difficult because of the limited memory and processing capabilities of current hardware. To address these limitations, the volumetric information can be stored at progressive resolutions in the hierarchical branches of a tree structure, and sampled according to the region of interest. This means that only a partial region of the full dataset is processed, and therefore massive volumetric scenes can be rendered efficiently. The problem with this approach is that it currently only supports static scenes. This is because it is difficult to accurately deform massive amounts of volume elements and reconstruct the scene hierarchy in real-time. Another problem is that deformation operations distort the shape where more than one volume element tries to occupy the same location, and similarly gaps occur where deformation stretches the elements further than one discrete location. It is also challenging to efficiently support sophisticated deformations at hierarchical resolutions, such as character skinning or physically based animation. These types of deformation are expensive and require a control structure (for example a cage or skeleton) that maps to a set of features to accelerate the deformation process. The problems with this technique are that the varying volume hierarchy reflects different feature sizes, and manipulating the features at the original resolution is too expensive; therefore the control structure must also hierarchically capture features according to the varying volumetric resolution. This thesis investigates the area of deforming and rendering massive amounts of dynamic volumetric content. The proposed approach efficiently deforms hierarchical volume elements without introducing artifacts and supports both ray casting and rasterization renderers. This enables light transport to be modeled both accurately and efficiently with applications in the fields of real-time rendering and computer animation. Sophisticated volumetric deformation, including character animation, is also supported in real-time. This is achieved by automatically generating a control skeleton which is mapped to the varying feature resolution of the volume hierarchy. The output deformations are demonstrated in massive dynamic volumetric scenes

    Robust Feature-Preserving Mesh Denoising Based on Consistent Sub-Neighborhoods

    Get PDF
    published_or_final_versio

    Faint dwarfs as a test of DM models: WDM vs. CDM

    Full text link
    We use high resolution Hydro++N-Body cosmological simulations to compare the assembly and evolution of a small field dwarf (stellar mass ~ 106−7^{6-7} M⊙\odot, total mass 1010^{10} M⊙\odot in Λ\Lambda dominated CDM and 2keV WDM cosmologies. We find that star formation (SF) in the WDM model is reduced and delayed by 1-2 Gyr relative to the CDM model, independently of the details of SF and feedback. Independent of the DM model, but proportionally to the SF efficiency, gas outflows lower the central mass density through `dynamical heating', such that all realizations have circular velocities << 20kms at 500 ~pc, in agreement with local kinematic constraints. As a result of dynamical heating, older stars are less centrally concentrated than younger stars, similar to stellar population gradients observed in nearby dwarf galaxies. Introducing an important diagnostic of SF and feedback models, we translate our simulations into artificial color-magnitude diagrams and star formation histories in order to directly compare to available observations. The simulated galaxies formed most of their stars in many ∼\sim10 Myr long bursts. The CDM galaxy has a global SFH, HI abundance and Fe/H and alpha-elements distribution well matched to current observations of dwarf galaxies. These results highlight the importance of directly including `baryon physics' in simulations when 1) comparing predictions of galaxy formation models with the kinematics and number density of local dwarf galaxies and 2) differentiating between CDM and non-standard models with different DM or power spectra.Comment: 13 pages including Appendix on Color Magnitude Diagrams. Accepted by MNRAS. Added one plot and details on ChaNGa implementation. Reduced number of citations after editorial reques

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Continuous Modeling of 3D Building Rooftops From Airborne LIDAR and Imagery

    Get PDF
    In recent years, a number of mega-cities have provided 3D photorealistic virtual models to support the decisions making process for maintaining the cities' infrastructure and environment more effectively. 3D virtual city models are static snap-shots of the environment and represent the status quo at the time of their data acquisition. However, cities are dynamic system that continuously change over time. Accordingly, their virtual representation need to be regularly updated in a timely manner to allow for accurate analysis and simulated results that decisions are based upon. The concept of "continuous city modeling" is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. However, developing a universal intelligent machine enabling continuous modeling still remains a challenging task. Therefore, this thesis proposes a novel research framework for continuously reconstructing 3D building rooftops using multi-sensor data. For achieving this goal, we first proposes a 3D building rooftop modeling method using airborne LiDAR data. The main focus is on the implementation of an implicit regularization method which impose a data-driven building regularity to noisy boundaries of roof planes for reconstructing 3D building rooftop models. The implicit regularization process is implemented in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). Secondly, we propose a context-based geometric hashing method to align newly acquired image data with existing building models. The novelty is the use of context features to achieve robust and accurate matching results. Thirdly, the existing building models are refined by newly proposed sequential fusion method. The main advantage of the proposed method is its ability to progressively refine modeling errors frequently observed in LiDAR-driven building models. The refinement process is conducted in the framework of MDL combined with HAT. Markov Chain Monte Carlo (MDMC) coupled with Simulated Annealing (SA) is employed to perform a global optimization. The results demonstrates that the proposed continuous rooftop modeling methods show a promising aspects to support various critical decisions by not only reconstructing 3D rooftop models accurately, but also by updating the models using multi-sensor data
    • …
    corecore