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ABSTRACT

In recent years, a number of mega-cities have provided 3D photorealistic virtual models to
support the decision making process for maintaining the cities' infrastructure and
environment more effectively. 3D virtual city models are static snap-shots of the
environment and represent the status quo at the time of their data acquisition. However,
cities are dynamic systems that continuously change over time. Accordingly, their virtual
representations need to be regularly updated in a timely manner to allow for accurate
analysis and simulation results that decisions are based upon.

The concept of "continuous city modeling™ is to progressively reconstruct city
models by accommodating their changes recognized in the spatio-temporal domain, while
preserving unchanged structures. As one of the most prominent objects comprising the
virtual city model, automatic reconstruction of building rooftops have been targeted by
many researchers over the last three decades. However, the goal of error-free rooftop
reconstruction from remotely sensed data is still not achieved yet. Moreover, most of the
existing research works have focused on the reconstruction of rooftops using a single
source of data captured at one specific epoch. Not many research methods have been
proposed for addressing the issues related to progressive reconstruction of rooftops using
multi-sensor data.

This thesis proposes a novel research framework for continuously reconstructing
3D building rooftops using multi-sensor data, which are acquired at different epochs. For
achieving this goal, we first propose a 3D building rooftop modeling method using a

popular single data source (i.e., airborne LIDAR data). The main focus is on the



implementation of an implicit regularization method which imposes a data-driven building
regularity to noisy boundaries of roof planes for reconstructing 3D building rooftop models.
The "implicit regularity” is achieved by introducing flexible regularity constraints which
can be adjusted to the given objects. The implicit regularization process is implemented in
the framework of Minimum Description Length (MDL) combined with Hypothesize and
Test (HAT). Secondly, we propose a context-based geometric hashing (CGH) method to
align newly acquired image data with existing building models as a prerequisite process of
the subsequent building refinement application. The novelty is the use of context features
to achieve robust and accurate matching results. Thirdly, the existing building models are
refined by a newly proposed sequential fusion method. The main advantage of the
proposed method is its ability to progressively refine modeling errors frequently observed
in LIDAR-driven building models. The refinement process is conducted in the framework
of MDL combined with HAT. Markov Chain Monte Carlo (MCMC) coupled with
Simulated Annealing (SA) is employed to perform a global optimization. Lastly, we
propose an evaluation metric to robustly assess various quality aspects of reconstructed
and refined 3D building models. The performance of the proposed methods have been
evaluated using the International Society of Photogrammetry and Remote Sensing (ISPRS)
benchmark datasets. The results demonstrate that the proposed continuous rooftop
modeling methods show promising aspects to support various critical decisions by not only
reconstructing 3D rooftop models accurately, but also by updating the models using multi-

sensor data.
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Chapter 1

Introduction

1.1 Motivation

Urbanization is an inevitable movement which is not merely a modern phenomenon, but a
rapid and historic transformation of human social roots on a global scale. According to the
United Nations (UN), half of the world's population lived in urban areas at the end of 2008
and the number will increase to about 70 percent by 2050 (International Herald Tribune,
2008). The rapid urbanization has led the dramatic change of city environments and has
presented an urgent need to construct, synthesize and update environmental information for
the purpose of planning, managing, and making various critical decisions that impact
growing cities. To create useful and accurate representations of various dynamic city
entities, researchers put forth numerous efforts in computer vision, photogrammetry and
remote sensing fields in the last few decades. Particularly, a building, a structure very
closely connected with human life, is recognized as the most important object in
generating of 3D virtual models of city environment. A study by the European
Organization for Experimental Photogrammetric Research (OEEPE) highlighted the
demand for accurate 3D city models (Fuchs et al., 1998). Of note, 95% of the study's
participants identified three-dimensional building data as the most interesting feature in
digital city models, clearly emphasizing the importance of buildings in representing urban

environments. Consequently, since initial efforts on automatic building extraction from



remotely sensed data in the early 1990s (Grun et al. 1995, 1997), a large number of
research studies have been conducted to recognize, detect, reconstruct and represent
building objects (Baltsavias, 2004; Brenner, 2005; Remondino and EL-Hakim, 2006;
Mayer, 2008; Haala and Kada, 2010; Musialski et al., 2012; Wang, 2013; Tomljenovic et
al., 2015). As a result, many applications for web mapping services and mobile use have
been developed by major companies, including Google, Apple, HERE, and Uber, and are
able to provide 3D building models for consumer use (Figure 1.1).

The 3D building models are used as base data for many geo-spatial information-
based applications such as coordination, web mapping service, and navigation.
Furthermore, recently emerging technologies such as Mobile Augmented Reality (MAR)
allow the 3D building models to be used as an interactive tool on a computer or mobile
device. Users enter queries utilizing the building models and the computer responds to the
request by presenting relevant information of the building on a display. Thus, accurate and
reliable 3D building models are an essential prerequisite to support these applications.

According to Skyscraperpage.com, in 2015, there were over 2,000 high-rise
buildings in the city of Toronto and 139 high-rise and mid-rise buildings were under
construction in January that year (Economic Dashboard-Annual Summary, 2015). With
expansion of different types of building structures, even more changes are expected to take
place in the cityscapes. A city is a dynamic entity as the environment continuously changes.
Accordingly, its virtual models also need to be regularly updated. In order to address the
continuous changes in the city environment, companies like HERE have been updating

their maps on a bi or tri-monthly basis (HERE 360, 2015). However, for a large-scale area,



newly generating building models whenever new data is acquired is cost-inefficient and
labor-intensive. Therefore, existing building models should be reused and appropriately
updated in cost-effective and automatic manners to record changes. As such, continuous
modeling of 3D cityscapes using remotely sensed multi-data taken at different epochs is

expected to play an important role in generating timely and accurate building models.

Figure 1.1 Photorealistic 3D building models on Google Earth (Location: Toronto, Ontario,
Canada)

In terms of data sources, the advance of data acquiring technologies has made it
possible to reconstruct 3D building models. Aerial images have been one of the most
common sources and are considered indispensable. At the early stage of building
reconstruction, image data was manually digitized to depict building boundaries in a stereo
view using a digital photogrammetric workstation (DPW). With the arrival of automatic

computer techniques from computer vision, the photogrammetric approach enables



automatic extraction of modeling cues (collection of building evidences). More recently,
structure from motion (SFM) techniques with the help of feature descriptors such as SIFT
(Lowe, 2004) and SURF (Bay et al., 2008) provide methods to automatically register
unordered multiple images and to recover sparse 3D point clouds whose density can be
later increased by dense matching methods. However, the few main disadvantages of
image data, such as the low level of automation due to incomplete modeling cue extraction
and matching ambiguity caused by the effects of shadows, low contrast, and occlusion, still
remains. Thus, it requires manual editing or human intervention to fully describe the
buildings. On the other hand, the emergence of airborne LiDAR system (ALS) in the
middle of 1990s has made significant changes in automatic building rooftop reconstruction.
Airborne LIDAR, as an active sensor, directly provides 3D point clouds over a large scale
scene with a high degree of accuracy. Its direct geo-referencing ability improves the level
of automation in the building reconstruction process. Nowadays, with improvements of
laser scanning techniques, obtaining accurate and dense points over a large-scale area has
become feasible for building rooftop reconstruction. Furthermore, these sensors, mounted
on various platforms such as ground, mobile, and unmanned aerial vehicle (UAV), have
provided new types of data: Image sensors mounted on UAVs provide oblique images and
video streams; and Terrestrial Laser Scanning (TLS) and Mobile Laser Scanning (MLS)
systems produce very dense 3D points for building facades. These data taken from
different time epochs and from different viewpoints encourage a full description of 3D
building models. However, in-depth understanding of data characteristics and registration

between data is required for accurate and reliable 3D building modeling.



In the perspective of building reconstruction, raw data acquired from remotely

sensed data are converted into "building models”. A large number of building

reconstruction methods, which range widely in terms of levels of automation (automatic vs.

semi-automatic), data sources (single data vs. multi-data), and data processing strategies

(data-driven, model-driven, or hybrid), have been explored to effectively represent a full

description of buildings. However, in spite of constant efforts, developing a "universal™

intelligent machine enabling the massive generation of highly accurate rooftop models in a

fully-automated manner still remains a challenging task. Many researchers (Ameri, 2000;

Sohn and Dowman, 2007) pointed out several reasons for the problem as follows:

Scene Complexity: Remotely sensed data from the urban scene contain a large
amount of information of non-building objects (e.g., ground, tree, car, and clutter)
in addition to the building objects. Although some heuristic knowledge (e.g.,
building height, certain brightness, or nearby shadow) can be used to recognize
building objects, detecting individual buildings is not easy because buildings are
attached and form blocks. In terms of building interpretation, buildings in urban
scenes have enormous variants in structure and shapes with multi-story planes, the
landmark buildings of the city in particular. The variety of shapes cannot be
described by common types of building structures. Thus, a method to simplify
complex building scenes is required for effective interpretation.

Incomplete cues: There is always a significant loss of information in data.
Occlusion of buildings or building parts by themselves or adjacent objects causes

problems in data integrity. Also, shadow, noise, low contrast, and superstructures



on building roofs cause redundant or spurious cues, bringing about ambiguity and
confusion to the building reconstruction process.

e Sensor dependency: Sensors used for building modeling have unique
characteristics related to the acquisition mechanism. This inherent property has a
considerable influence over the reconstructed building models; for instance,
LiDAR data provides accurate plane information, while the accuracy of building
boundaries is less than that of image data due to its irregular point distribution.
Thus, fully understanding sensor characteristics is one of the most important tasks

in building reconstruction.

Even though many algorithms for reconstructing 3D building models using single
data source have been introduced and can provide promising results (Rottensteiner, 2014),
the methods still have some limitations due to inherent sensor dependent properties, levels
of automation, model accuracies and missing data problems. One promising approach to
address these problems is to combine multi-sensor data which have different characteristics.
In this regard, combining LIiDAR point clouds and optical imagery for building
reconstruction have been exploited by many researchers (Haala and Kada, 2010). This is
due to the fact that the characteristics of the modeling cues from the two data are
complementary. Compared to LiDAR point clouds, the optical imagery better provides
semantically rich information, geometrically accurate step and eave edges, while it has

weakness in detecting roof edges and 3D information such as planar patches when single



imagery is used. However, LIDAR has somewhat opposite characteristics to optical
imagery.

Generally, data fusion for building reconstruction can be divided into two
approaches: parallel fusion and sequential fusion (Sohn et al., 2013). The parallel fusion
approach allows each modeling cue to be extracted from two datasets in parallel. Then, a
rooftop model is generated through various mechanisms recovering its spatial topology
using the extracted modeling cues. In contrast, sequential fusion generates a building
rooftop model relying on a single information source, which is later refined by the other
data. Although the sequential fusion approach has not been studied as extensively as the
parallel fusion approach, it is expected to play an important role in continuous modeling.
In the sequential fusion framework, existing 3D building models can be updated using
newly acquired data taken from different epochs.

Regardless of which fusion approach is applied, the registration between different
sensor data is recognized as an essential and prerequisite process. The accuracy of
registration has a substantial impact on the quality of results. The registration method
should provide accurate and robust relations between datasets taken from different sensors
or from different viewpoints at different epochs. In addition, a registration between
existing models and newly taken sensor data should be addressed, particularly in
continuous city modeling. However, while many registration methods that deal with
correspondence problems between different sensor data have been studied, the registration

between valuable 3D building models over a large-scale area and remotely sensed data has



been studied relatively less. Therefore, more research on development of registration

methods using valuable 3D building models are required for continuous city modeling.

1.2 Research Objectives

As discussed in the previous section, it is obvious that reconstruction and update of city
objects, particularly buildings, is essential to making various critical decisions impacting
the city environment. The overall objective of this thesis is to address critical steps toward
making available continuous city modeling, which includes 3D building rooftop
reconstruction, model-to-image registration, update of building models and quality
evaluation. In order to achieve the overall goal, several issues need to be addressed, as
follows:

First, the proposed building reconstruction method should provide accurate and
robust 3D building rooftop models. The accuracy of reconstructed building models should
meet engineering level accuracy to support critical decisions in the city environment.
Regardless of scene complexity and the configuration of buildings, the methods should
produce geometrically and topologically correct 3D building rooftop models. Secondly, the
proposed methods should produce regularized building models. A building is constructed
with certain regularities such as orthogonality, parallelism, and symmetry. These
regularities should be taken into account in the building reconstruction process so that the
model represents the regular properties of real buildings. Thirdly, a reliable registration
accuracy should be achieved when using multi-sensor data for continuous city modeling to

be successful. A newly taken datum should be robustly and accurately aligned with the



existing 3D building models. Finally, the numerous valuable existing 3D building models
should be able to be effectively updated and their modeling errors corrected. Also,

automatic methods should be proposed to deal with large scale scene.

1.2.1 General Research Framework

Figure 1.2 represents the workflow of the subsequent processes and the interrelation

between the major components of the continuous city modeling proposed in this thesis.

Aerial LIDAR Data Aerial Image Data
Chapter 4: Implicit regularization for Chapter 5: Matching aerial images to 3D
reconstructing 3D building models using > building models using context-based
LiDAR data geometric hashing
* Roof element clustering and Modeling « Feature extraction (edged corner feature
cue extraction and context feature)
« BSP-based topology construction  Context-based Geometric Hashing (CGH)
« MDL-based regularization * EOP estimation
Chapter 6: Sequential modeling of building

3D building rooftop models » rooftop by integrating airborne LIiDAR data
and optical imagery

Chapter 7: Data and evaluation metrics

* Modeling cue extraction
» Hypothesis generation
* MCMC based optimization

« Data characteristics ¢
« Existing evaluation methods
* New evaluation matrics Refined 3D building rooftop models

Figure 1.2 Proposed setup for continuous modeling

First, 3D building rooftop models are reconstructed using airborne LIiDAR data
(Chapter 4). The method presents a full chain of 3D rooftop modeling which cover from

low level processing to more realistic models. The process consists of four main stages: 1)



10

element clustering, 2) modeling cue extraction, 3) topology construction, and 4)
regularization. In element clustering and modeling cue extraction processes, this
dissertation explains how the modeling evidence can be effectively gathered from complex
building scenes. In topology construction, the Binary Space Partitioning (BSP) technique
proposed by Sohn et al. (2007) is utilized to recover geometrically and topologically
correct rooftop models from incomplete modeling cues. As a main part of the study, an
implicit regularization method based on Minimum Description Length (MDL) is applied to
produce regularized 3D building rooftop model. In the proposed MDL-based objective
function, the weight parameters are automatically determined based on a Min-Max
weighting method and Entropy-based weighting method.

Secondly, a model-to-image registration method using context-based geometric
hashing aligns a single image with existing LiDAR-driven building rooftop models
(Chapter 5). The method consists of three typical registration steps: 1) feature extraction, 2)
similarity measure and matching, and 3) EOPs estimation. In the feature extraction step,
two new features, the edged corner feature and the context feature, are introduced. For
similarity measure and matching, the geometric hashing method is refined by introducing a
newly designed score function which consists of a unary term and context term. EOPs of a
single image are adjusted by the least square method based on collinearity equations.

Thirdly, this dissertation proposes a sequential fusion method to refine LiDAR-
driven building models by incorporating image and airborne LIDAR data (Chapter 6). The
sequential fusion method progressively rectifies geometrical and topological errors based

on Hypothesize and Test (HAT) optimization using MDL. A new method to generate
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hypotheses is designed by introducing topological lines connecting different data sources.
Markov Chain Monte Carlo (MCMC) coupled with Simulated Annealing (SA) is
employed to perform global optimization.

Lastly, an evaluation metric is proposed to assess the quality of reconstructed
building models (Chapter 3). New evaluation methods, which can measure shape similarity
and angle similarity, are proposed in order to compensate for limitations of existing

evaluation methods.

1.2.2 Contributions

As mentioned before, major components, which need to be addressed in continuous
modeling, are identified and then a solution for each component is provided. More
specifically, the contributions of this study can be summarized as follows:

e Suggesting an evaluation metric to assess the quality of reconstructed building
rooftop models: In order to complement the limitation of existing evaluation
methods, which mainly focus on measuring a local similarity, shape-based and
angle-based methods, which can measure a global similarity of building models,
are added to existing evaluation methods. The added evaluation methods are used
to evaluate different characteristics of building models and show the performance
of our proposed algorithms.

e Proposing an implicit regularization method for reconstructing 3D building models
using LIDAR: Building regularity is implicitly imposed by introducing flexible

regularity constraints in a framework of MDL combined with HAT. In contrast to
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explicit regularization, the implicit regularization method provides flexibility for
describing more complex rooftop models while preserving building regularities.
Also, the parameters governing the MDL optimization are estimated based on a
Min-Max weighting method and Entropy-based weighting method. The proposed
weighting methods provide appropriate weight parameters, which balance sub-
terms in MDL, by considering the properties of individual buildings.

Proposing a new model-to-image method to align a single image with existing
building models: Edged corner feature, which provides local information of
building structure, and context feature, which provides global information, are used
as features of a subsequent matching process. In order to complement standard
geometric hashing, context-based geometric hashing method is proposed by
introducing a newly designed score function. The key aspect in CGH method is that
context term in the score function, which represents relations between edged corner
features, is used to reduce matching ambiguity and to achieve accurate and robust
matching results.

Introducing a new sequential fusion method to refine LiDAR-driven building
models: Modeling errors observed in LiDAR-driven building models are
progressively rectified by incorporating image information based on HAT
optimization using MDL. A novel concept of topological line is proposed to
integrate modeling cues extracted from different information sources. MCMC

coupled with SA is adopted to generate model hypotheses and perform a global



13

optimization where three proposition kernels are proposed to deal with transitions
from the current configuration to a new configuration in Markov chain.
e Conducting comprehensive experiments and analyses over the large-scale datasets

to support the proposed methods.

1.3 Thesis Outline

This thesis is organized in seven chapters. An overview of the chapters follows:

Chapter 1 presents an introduction to the motivation of this thesis, and the proposed

methods and strategy for solving research questions.

Chapter 2 gives background information that aids in understanding of this thesis, and
comprehensive literature reviews concerning building reconstruction, regularization, data

fusion and registration.

Chapter 3 introduces the study area, data characteristics and evaluation methods. The
existing evaluation methods are categorized according to their properties and a new
evaluation metric is proposed to effectively assess the quality of reconstructed building

models.

Chapter 4 presents a method to reconstruct 3D building rooftop models using LIDAR data.
MDL-based regularization method is used to impose geometrical regularity on 3D building
models. Weight parameters in the MDL-based objective function are automatically

determined based on a Min-Max criterion and Entropy-based weighting method.
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Chapter 5 proposes a new model-to-image registration method to register a single image
with large-scale LiDAR-driven building models. Newly developed context-based

geometric hashing is applied to estimate accurate EOPs of a single image.

Chapter 6 introduces a sequential fusion method to refine LIDAR-driven building models
by integrating image information. A new method to generate hypotheses is designed by
topological lines connecting two different data. A MCMC coupled with SA is employed to

perform global optimization.

Chapter 7 provides the conclusion of this study and recommendations for future works.
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Chapter 2

Background

Recent years have seen the urban percentage of the global population surpass one-half, and
continuing growth in urban areas is projected to add 2.5 billion people to the world's urban
population by 2015 (United Nation, 2014). Thus, buildings, one of the most significant assets
supporting the urban system, have been considered key areas of research in computer vision,
photogrammetry and remote sensing fields over the past few decades. To address the various
critical issues caused by rapid urbanization, many researchers have studied computational
algorithms to provide 3D photo-realistic building models in an automated manner for supporting
effective design, planning and maintenance of urban systems. In this chapter, we review a number
of previous research works related to building reconstruction, registration and data fusion methods.
The first part of this chapter discusses different data processing strategies (model-driven vs. data-
driven approaches) used for building model reconstruction and regularization. The second part
reviews existing works addressing data fusion methods to combine the information retrieved from
airborne LiDAR and imagery for building modeling process. The last part introduces existing
registration methods, a prerequisite process for geometrically co-aligning multi-sensor data,

particularly focusing on model-to-image registration.
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2.1 Building Reconstruction

Building reconstruction can be recognized as a huge process for the generation of digital
representations of physical buildings where raw data without any structured information
are converted into highly structured 3D building models with rich semantic information.
Since initial efforts for automatically generating 3D building models began in early 1990s,
numerous techniques using various remotely sensed data have been explored in computer
vision, photogrammetry and remote sensing fields. In this section, we review existing
building reconstruction methods in terms of reconstruction strategy (section 2.1.1) and

regularization (section 2.1.2).

2.1.1 Model-driven vs. Data-driven

Numerous building reconstruction algorithms have been published for the past two decades.
Although it is difficult to clearly classify these various methods into specific categories,
there are several ways to categorize the methods: the used data source (single vs. multi-
sources), the data processing strategy (data-driven (or generic), model-driven (or
parametric)), and the amount of human interaction (manual, semi-automatic, or fully
automated) (Vosselman and Mass, 2010). Of those, classifying existing methods into data-
driven or model-driven approaches provides a good insight for understanding and
developing 3D building model reconstruction algorithms.

In the model-driven approaches, 3D building models are reconstructed by fitting
parameterized primitives to data. This is possible due to the fact that many buildings in

rural and suburban area have common shapes in whole building or building roof parts.
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These common roof shapes such as flat, gable, and hip roof are considered as standard
primitives for representing building rooftop structures. Simple buildings can be well
represented as regularized building models using pre-defined parameterized primitives
even with low density data and presence of missing data. However, complex buildings and
arbitrarily shaped buildings are difficult to model using a basic set of primitives. Also, the
selection of the proper primitives among a set of primitives is not an easy task. In order to
address the limitations, Verma et al. (2006) presented a parametric modeling method to
reconstruct relatively complex buildings by combining simple parametric roof shapes that
are categorized into four types of simple primitives. In this study, the roof-topology graph
is constructed to represent the relationships among the various planar patches of
approximate roof geometry. The constructed roof-topology graph is decomposed into sub-
graphs, which represents simple parametric roof shapes, and then parameters of the
primitives are determined by fitting LIDAR data. Although they decomposed complex
buildings into simple building parts, many building parts cannot be still explained by their
four simple shape primitives. Similarly, Milde et al. (2008) reconstructed 3D building
models by matching sub-graphs of the region adjacency graph (RAG) with five basic roof
shapes and then by combining them using three connectors. Kada and McKinley (2009)
decomposed the building’s footprint into cells which provided the basic building blocks.
Three types of roof shapes including basic, connecting, and manual shapes are defined.
Basic shapes consist of flat, shed, gabled, hipped, and Berliner roofs while connecting
shapes are used to connect the roofs of the sections with specific junction shapes. The

parameterized roof shapes of all cells are determined from the normal direction of LIiDAR
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points. The entire 3D building model is represented by integrating the parameterized roof
elements with the neighboring pieces. Although a high level of automation is achieved, the
method still requires manual works to adjust cell parameters and to model more complex
roof shapes like mansard, cupola, barrel, and even some detail elements. Lafarge et al.
(2010) reconstructed building models from a digital surface model (DSM) by combining
generic and parametric methods. Buildings are considered as assemblages of 3D
parametric blocks from a library. After extracting 2D building supports, 3D parametric
blocks are placed on the 2D supports using Gibbs model which controls both the block
assemblage and the fitting to data. The optimal configuration of 3D blocks is determined
using the Bayesian framework. They mentioned that the optimization step needs to be
improved to achieve both higher precision and shorter computing time as future work.
Based on a predefined primitive library, Huang et al. (2013) conducted a generative
modeling to reconstruct roof models that fit the data. The library provides three groups
including 11 types of roof primitives whose parameters consist of position parameters,
contour parameters, and shape parameters. Building roofs are represented as one primitive
or an assemblage of primitives allowing primitives overlaps. For combining primitives,
they derived combination and merging rules which consider both vertical and horizontal
intersections. Reversible Jump Markov Chain Monte Carlo (RIMCMC) with a specified
jump mechanism is conducted for the selection of roof primitives, and the sampling of
their parameters. Although they have shown potential and flexibility of their method, there

are issues to be solved: 1) uncertainty and instability of the reconstructed building model,
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2) influence of prior knowledge and scene complexity on completeness of the
reconstruction, and 3) heavy computation time.

In contrast with model-driven approaches, data-driven approaches do not make any
assumptions regarding to the building shapes, thus they can theoretically handle all kinds
of buildings. However, the approach may cause considerable deformations due to the
sensitivity to surface fluctuations and outliers in the data. Also, it requires a regularization
step during the reconstruction process. In general, the generic approach starts by extracting
building modeling cues such as surface primitives, step lines, intersection lines, and outer
boundary lines followed by reconstructing the 3D building model.

The segmentation procedure for extracting surface primitives divides a given data
set into homogeneous regions. Classical segmentation algorithms such as region growing
(Rottensteiner et al., 2005, Kada and Wichmann, 2012) and RANSAC (Tarsha-Kurdi et al.,
2008) can be used for segmenting building roof planes. Also, Sampath and Shan (2010)
conducted eigenanalysis for each roof point within its VVoronoi neighbourhood, and then
adopted the fuzzy k-means approach to cluster the planar points into roof segments based
on their surface normal. Then, they separated the clusters into parallel and coplanar
segments based on their distance and connectivity. Lafarge and Mallet (2012) extracted
geometric shapes such as planes, cylinders, spheres, or cones for identifying the roof
sections by fitting points into various geometric shapes, and then proposed a method for
arranging both the geometric shapes and the other urban components by propagating point
labels based on MRF. Yan et al. (2014) proposed a global solution for roof segmentation.

Initial segmentation is optimized by minimizing a global energy function consisting of the
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distances of LIiDAR points to initial planes, spatial smoothness between data points, and
the number of planes.

After segmenting points or extracting homogeneous surface primitives, modeling
cues such as intersection lines and step lines can be extracted based on geometrical and
topological relationships of the segmented roof planes. Intersection lines are easily
obtained by intersecting two adjacent planes or segmented points while step lines are
extracted at roof plane boundary with abrupt height discontinuity. In order to extract step
lines, Rottensteiner et. al (2005) detected edge candidate points and then extracted step
lines from an adjustment considering edge points within user-specified threshold. Also,
Sohn et al. (2008) proposed a step line extractor, called Compass Line filter (CLF), for
extracting straight lines from irregularly distributed LiDAR points. Although outer
boundary is one type of step line, it is recognized as a separate process in many data-driven
approaches. Some researchers delineated initial boundary lines from building boundary
points using alpha shape (Dorninger and Pfeifer, 2008), ball-pivoting (Verma et al., 2006),
and contouring algorithm (Zhou and Neumann, 2008). Then, the initial boundary was
simplified or regularized. The detail reviews for simplification or regularization of
boundary will be given in section 2.1.2.

Once all building modelling cues are collected, 3D building models are
reconstructed by aggregating the modelling cues. In order to reconstruct topologically and
geometrically correct 3D building models, Sohn et al. (2008) proposed the Binary Space
Partitioning (BSP) which progressively partitions a building region into homogeneous

binary convex polygons. Rau and Lin (2011) proposed a line-based roof model
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reconstruction algorithm, namely TIN-Merging and Reshaping (TMR), to reconstruct
topology with geometric modeling. Oude Elberink and Vosselman (2009), and Perera and
Maas (2014) used a roof topology graph to preserve roof topology. In the latter, roof
corners are geometrically modeled using the shortest closed cycles and the outermost cycle
derived from the roof topology graph.

As mentioned before, a model-driven approach and a data-driven approach have
different characteristics in the modeling process. Thus, Satari et al.(2012) proposed a
multi-resolution hybrid approach to combine advantages of model-driven and data-driven
approaches. In their study, the data-driven method was applied to reconstruct the main roof
planes while the model-driven method was adopted to the models of appended parts such

as dormers.

2.1.2 Building Boundary Regularization

Detection of building boundary is an intermediate step for 3D building reconstruction
although it is not required in all building reconstruction algorithms. Generally, the initial
boundary extracted from irregular LIDAR points have jagged shape with large numbers of
vertices. Thus, a simplification or regularization process is required to delineate plausible
building boundaries with certain regularities such as orthogonality, parallelism, and
symmetry. Various techniques related to the regularization of building boundary have been
proposed in the literature. Reviews on boundary detection were given by Brenner (2010).
In most methods, the boundary detection process starts by extracting boundary points from

segmented points. From extracted boundary points, initial building boundaries are
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generated by tracing boundary points followed by a simplification or regularization process
which improves the initial boundary. The easiest method to improve initial boundary is to
simplify the initial boundary by removing vertices but preserving relevant points. The
well-known Douglas-Peucker (DP) algorithm (Douglas and Peucker, 1973) is widely
recognized as the most visually effective line simplification algorithm. The algorithm starts
by selecting two points which have the longest distance and recursively adding vertices
whose distance from the line is less than a given threshold. However, the performance of
the algorithm fully depends on the used threshold and is substantially affected by outliers.
Another approach extracts straight lines from boundary points using the Hough Transform
(Morgan and Habib, 2002) or using RANSAC (Fishcler and Bolles, 1981). The extracted
lines are then connected by intersections of the extracted straight lines to generate closed
outer boundary lines. However, Brenner (2010) pointed out that the methods require some
additional steps due to missing small building edges.

On the other hand, the regularization process imposes certain regularities when the
initial boundary is simplified. Vosselman (1999) assumed that building outlines are along
or perpendicular to the main direction of a building. After defining the position of a line by
the first two boundary points, the line is updated using the succeeding boundary points
until the distance of a point to the line exceeds some bound. The next line starts from this
point in a direction perpendicular to the previous line. A similar approach was proposed by
Sampath and Shan (2007). They grouped points on consecutive edges with similar slopes
and then applied a hierarchical least squares solution to fit parametric lines representing the

building boundary.
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Some methods are based on the model hypothesis and verification approach. Ameri
(2000) introduced the Feature Based Model Verification (FBMV) for modification and
refinement of polyhedral-like building objects. In their approach, they imposed the
geometrical and topological model information to the FBMV process as external and
internal constraints which consider linearity for straightening consecutive lines,
connectivity for establishing topology between adjacent lines, orthogonality, and co-
planarity. Then, the weighted least squares minimization was adopted to produce a good
regularized description of a building model. Weidner and Forstner (1995) adopted the
Minimum Description Length (MDL) concept to regularize noisy building boundaries. For
four local consecutive points, ten different hypothetical models are generated with respect
to regularization criteria. Then, MDL, which depends on the mutual fit of the data and
model and on the complexity of the model, is used to find the optimal regularity of the
local configuration. Jwa et al. (2008) extended the MDL-based regularization method by
proposing new implicit hypothesis generation rules and by re-designing model complexity
terms where line directionality, inner angle and number of vertices are considered as
geometric parameters. Furthermore, Sohn et al. (2012) used the MDL-based concept to
regularize topologies within rooftop model. Zhou and Neumann (2012) introduced global
regularities in building modeling to reflect the orientation and placement similarities
among 2.5D elements which consist of planar roof patches and roof boundary segments. In
their method, roof-roof regularities, roof-boundary regularities, and boundary-boundary

regularities are defined and then the regularities are integrated into a unified framework.
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2.2 Data Fusion

The integration of data and knowledge from several sources is known as data fusion. Hall
and Llinas (1997) defined data fusion as follows: "Data fusion techniques combine data
from multiple sensors and related information from associated databases to achieve
improved accuracy and more specific inferences than could be achieved by the use of a
single sensor alone." In the remote sensing community, data fusion combines multiple
sources of data acquired with different spatial and spectral resolution to improve the
potential values and interpretation performances of the source data and to produce a high-
quality visible representation of data. Remote sensing fusion techniques can be classified
into three different levels: 1) pixel/data level, 2) feature level, and 3) decision level (Pohl
and van Genderen, 1998). Pixel level fusion combines raw data from multiple sources to
yield a single resolution datum. The pixel level fusion of optical images is well known as
the pan-sharpening technique which improves spatial resolution of panchromatic (PAN)
image by injecting structural and textual details of multi-spectral (MS) images or SAR
images. Feature level fusion combines features extracted from multiple data sources.
Because features are extracted from different characteristics of different sensors, the
extracted features can provide additional valuable properties for various applications.
Decision or interpretation level fusion combines the results, which are individually
processed, to make a final decision. The decision level fusion methods contain voting
methods, statistical methods, and fuzzy methods. Zhang (2010) provides reviews on the

three different levels of fusion techniques.
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In this thesis, our interest is feature level fusion. In particular the fusion of LIDAR
and optical images for building reconstruction. Although many building reconstruction
algorithms using single data provide some promising results, the integration of two
complementary datasets can improve the quality of 3D building models with an increase of
available information. In particular, combining LiDAR point clouds and optical images for
rooftop modeling have been exploited by many researchers (Haala and Kada, 2010). In
previous studies, image information in the fusion approach is mainly used for four
different purposes in terms of building reconstruction: 1) extraction of building points
while removing non-building points such as tree points, 2) improvement of segmentation,
3) improvement of building boundary, and 4) texture mapping. For building region
extraction, Chen et al. (2005) used spectral information and texture of color images. Sohn
and Dowman (2007) used Normalized Difference Vegetation Index (NDVI) to
discriminate between buildings and trees. Demir and Baltsavias (2012) detected building
regions by combining results of four different building detection methods which were
respectively derived from combinations of spectral information and NDVI of image data
and spatial distribution of LIDAR data.

Awrangjeb et al. (2013) proposed an image line guided technique to robustly
segment building points into individual roof planes. Lines extracted from images were
classified into ground, tree, roof edge, and roof ridge-lines using the ground mask, colour
and texture information of the image. Lines classified as roof edge or roof ridge were used
to define robust seed regions for region growing for roof plane segmentation. Cheng et al.

(2011, 2013) used images to refine initial roof point segmentation derived from LIiDAR
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data based on the Shrink-Expand technique. Spectral and texture information (entropy) of
images were used as a criterion for judging the reliability of segmentation.

Rottensteiner and Briese (2003) proposed wire frame fitting to improve the
geometric quality of the polyhedral models created from LiDAR data. Image edges were
matched with LiDAR-driven edges and then the matched image edges were considered in
the estimation of model parameters. Hu et al. (2006) proposed a hybrid modeling system
where building boundaries and plane surfaces were extracted from image and LiDAR data,
respectively. Lee et al. (2008) proposed a method to extract the boundaries of complex
buildings from LIiDAR and photogrammetric images. Coarse building boundaries
generated by LIiDAR are simply substituted with image edges to extract precise building
boundaries by matching with some constraints such as length ratio, angle and distance.
Kim and Habib (2009) similarly replaced initial building boundaries by 3D lines which
have the biggest spectral difference between two flanking regions. Sohn et al. (2013)
proposed a sequential fusion method to improve the boundary quality of existing building
models based on the hypothesis and test (HAT) framework. Image lines were used to
propose possible hypotheses. Cheng et al. (2011, 2013) also used image data to extract
building boundary and step lines. After establishing relationships between 2D image lines
and 3D LiDAR points, 3D lines were determined from multi-view images. Two rectangle
boxes along orthogonal directions of a line segment were analyzed to separate step and
non-step line segments. 3D building models were reconstructed by segmented roof points,
3D step lines, 3D ridge lines, and 3D boundaries using the Split-Merge-Shape (SMS)

method.
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In order to achieve photorealistic rendering, Frueh et al. (2004) proposed a way to
texture-map a LiDAR-driven 3D building models with oblique aerial images. After
registering the oblique image with the existing building model, an optimal image for each
triangle of the model was selected for texture by taking into account occlusion, image

resolution, surface normal orientation, and coherence with neighbor triangles.

2.3 Registration

Registration is an essential process when multi-data sets are used for various applications
such as object recognition, environmental monitoring, change detection, and data fusion. In
computer vision, remote sensing, and photogrammetry, this includes registrations of the
same source taken from different viewpoints at different times (e.g., image to image),
between datasets collected with different sensors (e.g., image and LiDAR), and between an
existing model and remotely sensed raw data (e.g., map and image). Numerous registration
methods have been proposed to solve the registration problems for given environments and
for different purposes (Brown, 1992; Fonseca and Manjunath, 1996; Zitova and Flusser,
2003; Mishra and Zhang, 2012). Regardless of data types and applications, the registration
process can be recognized as a feature extraction, and correspondence problem (or
matching problem) between datasets. Brown (1992) categorized the existing matching
methods into area-based, and feature-based methods according to their nature. Area-based
matching methods use image intensity values extracted from image patches. They deal
with images without attempting to detect salient objects. Correspondences between two

image patches are determined with a moving kernel sliding across a specific size of image
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search window or across the entire other image using correlation-like methods (Kaneko et
al., 2003), Fourier methods (Castro and Morandi, 1987), mutual information methods
(Viola and Wells, 1997), and others. In contrast, feature-based methods use salient objects
such as points, lines, and polygons to establish relations between two different datasets. In
feature matching processes, correspondences are determined by considering the
attributions of the used features. In model-to-image registration, most of the existing
registration methods adopt a feature-based method because many 3D building models have
no texture information.

In terms of features, point features such as line intersections, corners and centroids
of regions can be easily extracted from both models and images. Thus, Wunsch and
Hirzinger (1996) applied the Iterative Closest Point (ICP) algorithm to register 3D CAD-
models with images. The ICP algorithm iteratively revises the transformation with two
sub-procedures. First, all closest point pair correspondences are computed. Then, the
current registration is updated using the least square minimization of the displacement of
matched point pair correspondences. In a similar way, Avbelj et al. (2010) used point
features to align 3D wire-frame building models with infrared video sequences using a
subsequent closeness-based matching algorithm. Lamdan and Wolfson (1988) used a
geometric hashing method to recognize 3D objects in occluded scenes from 2D grey scale
images. However, Frueh et al. (2004) pointed out that point features extracted from images
cause false correspondences due to a large number of outliers.

As building models or man-made objects are mainly described by linear structures,

many researchers have used lines or line segments instead of points as features. Hsu et al.
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(2000) used line features to estimate 3D pose of a video where coarse pose was refined by
aligning projected 3D models of line segments to oriented image gradient energy pyramids.
Frueh et. al. (2004) proposed a model to image registration for texture mapping of 3D
models with oblique aerial images. Correspondences between line segments are computed
by a rating function, which consists of slope and proximity. Because an exhaustive search
to find optimal pose parameters was conducted, the method is affected by the sampling
size of the parameter space, and it is computationally expensive. Eugster and Nebiker
(2009) also used line features for real-time geo-registration of video streams from
unmanned aircraft systems (UAS). They applied relational matching, which does not only
consider the agreement between an image feature and a model feature, but also takes the
relations between features into account. Avbelj et al. (2015) matched boundary lines of
building models derived from DSM and hyper-spectral images using an accumulator.
Iwaszczuk et al. (2013) compared RANSAC and the accumulator approach to find
correspondences between line segments. Their results showed that the accumulator
approach achieves better results. Yang and Chen (2015) proposed a method to register
UAV-borne sequent images and LIDAR data. They compared building outlines derived
from LIDAR data with tensor gradient magnitudes and orientation in images to estimate
key frame-image EOPs. Persad et al. (2015) matched linear features between Pan-Tilt-
Zoom (PTZ) video images with 3D wireframe models based on a hypothesis-verification
optimization framework. However, Tian et al. (2008) pointed out several reasons that make
the use of lines or edge segments for registration a difficult problem. First, edges or lines

are extracted incompletely, and inaccurately, so that ideal edges might be broken into two
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or more small segments that are not connected to each other. Secondly, there is no strong
disambiguating geometric constraint, whereas building models are reconstructed with
certain regularities such as orthogonality and parallelism.

Utilizing a prior knowledge of building structures can reduce the matching
ambiguities and the search space. Thus, Ding et al. (2008) used 2D orthogonal corners
(2DOC) as a feature to recover the camera pose for texture mapping of 3D building models.
The coarse camera parameters were determined by vertical vanishing points that
correspond to vertical lines in the 3D models. Correspondences between image 2DOC and
DSM 2DOC were determined using Hough transform and generalized M-estimator sample
consensus. However, they described their error source as too limited to correct 2DOCs
matches, in particular for residential areas. Also, Wang and Neumann (2009) pointed out
that 2DOC features are not very distinctive because the features can be extracted from only
orthogonal corners. Instead of using 2DOC, they proposed 3 connected segments (3CS) as
a feature which is more distinctive, and repeatable. For putative feature matches, they
applied a two level RANSAC method, which consists of a local, and a global RANSAC for

robust matching. Table 2.1 summarizes the existing model-to-image registration methods.



Table 2.1 Reviews on model-to-image registration methods
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Author Data type Feature Matching Method Application
Lamdan and Wolfson, 3D object model and . . . . ..
1988 2D grey scale image point Geometric Hashing | Object recognition
Wunsch and Hirzinger, CAD-Model and . Iterative Closest N
. point . Pose estimation
1996 image Point
Hsu et al., 2000 3D model and Video line RANSAC Pose estimation
and Visualization
Frueh et al., 2004 3D b'undlng .mo.del and line Rating functl_on_ Texture mapping
obligue aerial image (slope and proximity)
2DOC Hough transform and
Ding et al., 2008 3D b.UI|dIng model and (2D ge_nerallzed M- Texture mapping
oblique aerial image | orthogonal estimator sample
corner) Consensus
Eugster and Nebiker, | 3D bu!ldlng model and line Relational matching Real_-tlmg
2009 video steams georegistration
. . 3CS(3
Wang and Neumann, L'DA.R and aerial connected | Two level RANSAC Texture mapping
2009 image
segments)
3D building model and Closeness-based
Avbelj et al., 2010 infrared video point . Pose estimation
matching
sequences
3D building model and
Iwaszczuk et al., 2013 thermal infrared line RANSAC and Texture mapping
. accumulator
images
Avbelj et al., 2015 DSM and.hyper— line Accumulator Image fusion
spectral image
UAYV sequent image . Histogram-based Key frame-image
Yang and Chen, 2015 and LiDAR line matching registration
Line-based
PTZ video images and . Randomized S
Persad et al., 2015 3D wireframe model line RANdom Sample Pose estimation

Consensus
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Chapter 3

Dataset and Evaluation Metrics

Evaluation is an essential process to analyze the performance of proposed algorithms. Although
many performance evaluation methods have been proposed to assess the quality of 3D building
models, the evaluation methods were designed for accommodating specific performance
characteristics to be assessed. A new evaluation metric, which is appropriate for our research
purpose, needs to be proposed. In this chapter, we describe datasets and an evaluation metric used
to assess the performance of our proposed algorithms. In the first part of this chapter, we describe
test datasets covering two different sites: 1) Vaihingen in Germany and 2) downtown Toronto in
Canada. For each dataset, acquired data types and characteristics are explained in detail. In the
second part of this chapter, existing performance evaluation methods are reviewed, and an
evaluation metric for our research is proposed to properly evaluate different aspects of our results.
The proposed evaluation metric consists of existing evaluation indices used in Rottensteiner et al.
(2014) and newly proposed evaluation indices (shape-based indices and angle-based index). Also,
conceptual design is introduced to explicitly assess topology accuracy based on the Roof Topology
Graph (RTG).
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3.1 Introduction

One of the main research objectives pursued in this study is to reconstruct accurate high-
quality 3D building models. In this regard, the important question to be answered is how to
measure the quality of the building models extracted from our proposed algorithms. In
order to answer the question, we propose a novel evaluation metric. In this chapter, we first
describe datasets used for our continuous modeling methods and their characteristics in
detail (section 3.2). Secondly, we review existing evaluation methods in literature and then
present a new evaluation metric to assess the performance of our proposed algorithms

(section 3.3).

3.2 Datasets

In 2012, International Society of Photogrammetry and Remote Sensing (ISPRS) Working
Group I11/4 initiated a benchmark test on urban classification and 3D building
reconstruction. This benchmark project supported by ISPRS, the German Society for
Photogrammetry, Remote sensing and Geoinformation, and Teledyne-Optech provided
state-of-the-art airborne data sets, which can be used by interested researchers in order to
test their own data analytic algorithms on urban object classification and building
reconstruction (Rottensteiner et al., 2012). By having a common test dataset, and
evaluation metrics, researchers can conduct a comparative analysis of their own algorithms
against others in a less data-sensitive and metrics-sensitive manner.

In this thesis, the benchmark datasets provided by the ISPRS WGIII/4 were used

for evaluating the performance of our proposed methods. Two independent benchmark
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datasets were acquired over Vaihingen in German, and downtown Toronto in Canada,
respectively, with multi-sensor data including aerial images and airborne laser scanning
(ALS) data. In addition, the ISPRS provides reference datasets, which include manually
labelled classes, and building models (footprints and rooftop models in 3D) reconstructed
by manual stereo plotting method. The ISPRS WGIII/4 also designed evaluation metrics to
estimate the accuracy of the results produced by individual participants using the
benchmark datasets; if a benchmark participant submits his/her 3D building modeling
results to the ISPRS WGIII/4, the modeling performance is measured based on the
working group's evaluation metrics and reference data. More detailed explanation on the
ISPRS WGIII/4's evaluation metrics can be found in Rottensteiner et al. (2014) and via

website (http://www?2.isprs.org/commissions/comm3/wag4/detection-and-

reconstruction.html). Figure 3.1 shows the coverage of the two datasets.

1o
¥

Figure 3.1 Test datasets: (a) Vaihingen and (b) downtown Toronto


file:///C:/Users/jaewook/Dropbox/Bruce%20Jung-Thesis/(http:/www2.isprs.org/commissions/comm3/wg4/detection-and-reconstruction.html
file:///C:/Users/jaewook/Dropbox/Bruce%20Jung-Thesis/(http:/www2.isprs.org/commissions/comm3/wg4/detection-and-reconstruction.html
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3.2.1 Dataset 1: Vaihingen

The first dataset consisted of aerial image and ALS data covering Vaihingen in Germany
(8°57' E, 48°56' N). The ALS data consisted of 5 strips over the test area acquired by a
Leica ALS50 system with 45° field of view at a mean flying height of 500m above ground
level. The mean point density for each strip is 4 points/m? while the median point density
with the overlap is 6.7 points/m® (i.e., ~0.39m point spacing). Multiple echoes and
intensities were also recorded. The original point clouds were post-processed by strip
adjustment to correct for systematic errors. The 3D positional accuracy shows
approximately £10cm. High-resolution pan-sharpened color images were also captured
from the Intergraph Z/I imaging's DMC (Digital Mapping Camera) with the ground
sampling distance of 8cm and the radiometric resolution of 11 bits. The area is covered by
five overlapped strips with two additional cross strips (Figure 3.2(b)). The interior and
exterior parameters were estimated at the level of 1 pixel georeferencing accuracy. Table
3.1 gives the interior orientation of the digital images of the Vaihingen area while Table
3.2 shows the flight parameters of the block. Reference building models were generated by

manual stereo plotting with a planimetric accuracy of about 10 cm.

Table 3.1 Interior orientation of the digital images of the Vaihingen dataset

Image Format Principal Point

Pixel size Focal length

Camera Col

Row (pixel) (mm) (mm) Xpp Yop

(pixel) (mm) (mm)

DMC 7,680 13,824 0.012 120.00 0.00 0.00
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Table 3.2 Flight parameters of the VVaihingen 8cm DMC block

Focal Flying height Forward . Spectral Radiometric
Camera length above Ground overlap Side lap GSD bands resolution
DMC 120mm 900m 60% 60% 8cm IR-R-G 11 bit

|
- = +Strip 10 o
1
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Figure 3.2 (a) ALS strips and (b) image configuration for the Vaihingen dataset

This dataset is divided into three sub datasets; Area 1 (37 buildings; 125mx200m)
contains historic buildings with complex shapes; Area 2 (14 buildings; 170mx190m) is
characterized by a few high-rising residential buildings; Area 3 (56 buildings; 150mx220m)
is a purely residential area with detached houses. Figure 3.3 shows three sub-datasets in the

area of Vaihingen.
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(b)
Figure 3.3 Vaihingen dataset: (a) Areal, (b) Area2, and (c) Area3

3.2.2 Dataset 2: Downtown Toronto

This dataset covers an area of about 1.45 km? in the central area of the City of Toronto in
Canada. ALS data were acquired by Optech's ALTM-ORION M in February 2009 with the
aircraft speed of 120 knots at the flying altitude of 650m. The ALTM-ORION M operates
at a wavelength of 1064nm and scans the underlying topography with a scan width of 20°
and the scan frequency of 50 Hz. The dataset consists of 6 strips and the average point
density with the overlap is approximately 6.0 points/m? (i.e., ~0.41m point spacing). In
addition to the ALS data, digital aerial images were taken by UltraCam-D with the ground
sampling distance of 15cm and radiometric resolution of 8 bits (Table 3.4). The image data
consist of three overlapping strips with 30% side lap and 60% forward overlap (Figure 3.4).
The exterior orientation is estimated by a bundle adjustment method at the level of 1 pixel
georeferencing accuracy. Table 3.3 gives a summary of camera parameters of the

downtown Toronto dataset. The reference building models were generated by manual
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stereo plotting with planimetric accuracy of about 20 cm and height accuracy of about

15cm.

Table 3.3 Interior orientation of digital images of the downtown Toronto dataset

Camera Image Format Pixel size | Focal length Principal Point
Row(pixel) | Col (pixel) (mm) (mm) Xpp (MM) | Yy (MmM)
UltraCam D 11,500 7,500 0.009 101.40 -0.18 0.00
Table 3.4 Flight parameters of the downtown Toronto
Camera Focal Flying height | Forward | Side GSD Spectral Radlomgtrlc
length above Ground | overlap lap bands resolution
UltraCam D | 101.4mm 1,600m 60% 30% | 15cm | R-G-B 8 hit

Strip1

Strip 2

Strip 3

(b)

Figure 3.4 (a) ALS strips and (b) image configuration for the downtown Toronto dataset

This data contains representative scene characteristics of a modern mega city in
North America. This dataset is divided into two sub-datasets; Area 4 (58 buildings;

530mx600m) contains a mixture of low- and high-storey buildings with a wide variety of
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rooftop structures; Area 5 (530mx600m) is distinguished by a complex cluster of high-rise

buildings. Figure 3.5 shows two sub-datasets in the Downtown Toronto area.

Figure 3.5 Two test sites in the downtown Toronto area: (a) Area 4 and (b) Area 5

3.3 Performance Evaluation Metrics

Performance evaluation is the process of analysing the performance of a building
reconstruction algorithm by comparing its results to the reference models or the results
produced by other algorithms. Existing research works suggested different performance
variables and objectives to evaluate the quality of boundaries extracted from developed
algorithms: by measuring shape similarity in matched contours (Veltkamp, 2001);
geometric quality of building boundaries extracted (Song and Haithcoat, 2005; Rutzinger
et al., 2009); and 3D building models reconstructed from remotely sensed data
(Rottensteiner et al., 2014; Meidow and Schuster, 2005). However, those previous studies

pointed out that there is no single optimal performance evaluation method, and evaluation
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results, even over the outcome produced by the same algorithm, vary depending on which
evaluation metrics are used. This is because a performance evaluation metric is designed
for accommodating specific performance characteristics to be assessed, which are
subjective to different applications. Therefore, more careful selection of performance
evaluation metrics should be taken into account. In this chapter, we will discuss
characteristics of existing evaluation methods suggested by previous research works on
building reconstruction (section 3.3.1), and propose a new metric which is appropriate for

our research purpose of continuous model reconstruction (section 3.3.2).

3.3.1 Existing Evaluation Methods

Existing evaluation methods for the assessment of building models can be roughly divided
into two categories; 1) error rates measured based on confusion matrix and 2) shape
similarity measuring methods. The former measures the completeness, correctness, and
quality to assess the overlapping quality between algorithm results and references, while
the latter calculates geometric accuracy and shape similarity between matched model

boundaries. The following sections review the two types of evaluation methods in detail.

3.3.1.1 Evaluation Using Confusion Matrix

A confusion matrix, also known as an error metric, has been often used for assessing the
performance of an algorithm, typically spatial object detection, and supervised learning. As
a quality measure for object reconstruction algorithms, each column of the matrix

represents the instances in a reconstructed object (a predicted class in supervised learning),
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while each row represents the instances in a reference object (an actual class) or vice-versa.
In this confusion matrix with two rows and two columns, we can compute the number of
False Positive (FP), False Negative (FN), True Positive (TP), and True Negative (TN).
These four performance elements allow more detailed analysis than mere proportion of
correct detection. An algorithmic outcome can be positive if an object or image space
(evaluation space) is occupied by the reconstructed model or negative if an evaluation
space is not occupied by reconstructed model. The algorithm outcome may or may not
match the subject's actual status (reference model); the matched case for true, otherwise for
false. In this context, we can summarize the definitions of the four performance elements:
e True Positive: Total areas of a reconstructed model correctly identified by a
reference model,
e False Positive: Total areas of a reconstructed model incorrectly identified by a
reference model;
e True Negative: Total areas of a missing model correctly identified by a reference
model;
e False Negative: Total areas of a missing model incorrectly identified by a reference

model.

Then, using the confusion matrix and the four performance elements, the
guantitative values for completeness, correctness and quality criteria can be determined for

the results of reconstructed building models (Rutzinger et al., 2009):
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TPl
Com =
P = TP+ IENI]
el
Corr = i ixiFrl (31)
Quality — Comp-Corr

Comp+Corr—Comp-Corr

The completeness refers to the fraction of the reference model which was correctly
denoted as "building” by extracted models. The correctness measures how well the
extracted model matches the reference model. The quality is a combination metric of
completeness and correctness. One question then arises how we can determine the
quantitative values of TP, FN, and FP in Eq. (3.1). There are two ways to address this
problem: 1) area-based methods, and 2) object-based (or count-based) methods. Area-
based methods analyze overlapping areas between reference and extracted models as

shown in Figure 3.6.

False Negatives

True Negatives

Figure 3.6 Area-based evaluation between extracted model (A) and reference (B)
(Movahedi, 2015).
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However, Rutzinger et al. (2009) pointed out that the area-based method can mislead the
evaluation results, which are sensitive to the quality of building (or roof plane) boundaries
extracted. The accuracy of building boundaries are influenced not only by poor
performance of an algorithm used, but also many other error sources including data
resolution, sensor calibration errors, registration errors, differences in semantic definition
and accuracy of reference data (Rutzinger et al., 2009; Foody, 2002). There is no
comprehensive way to separate errors caused by the algorithm from the other non-
algorithmic errors in order to understand a pure characteristic of an algorithm's
performance only.

On the other hand, an object-based evaluation method determines the quantitative
values of TP, FN, and FP by counting the number of building objects belonging to each
property. Overlapping areas can be used to determine whether two objects in reference and
extracted results are correctly or incorrectly identified. This object-based identification is
facilitated by introducing a specific threshold over an overlapping area. A fundamental
underlying assumption behind this is that the value of overlapping threshold reflects the
total influence of errors caused by non-algorithmic mechanisms to the accuracy of
extracted object boundaries. However, determining the overlapping threshold is not a
trivial task and an ad-hoc value is given. Thus, the object-based evaluation results are
sensitive to this hard-constraint; the smaller the threshold used, the more overoptimistic the
result may be. In many applications, a certain value between 50% and 70% has been

typically used as a threshold value. Instead of using a single threshold, Rutzinger et al.



44

(2009) proposed investigating a range of system performance of building detection that
was evaluated using multi-range thresholds.

The other issue, which should be addressed in object-based evaluation, is how to
deal with topology inconsistency between reference models and extracted models. The
topology inconsistency mainly occurs due to incomplete segmentation, and different
representations of model structure. Thus, topology relations between two models in
reference and extracted results may be represented by 1:m, n:1, or n:m correspondences.
This causes ambiguity in identifying corresponding objects to be compared. In order to
address this problem, Rutzinger et al. (2009) proposed a topological clarification method to
evaluate the quality of building detection. The method changed building label image by a
splitting and merging process where each building in one dataset has only zero or one
corresponding buildings in the other dataset. This process reduces the correspondence
ambiguity. Then, the completeness, correctness, and quality were computed based on the
changed building label image.

Although methods based on the confusion matrix are typically used to assess
overlapping quality between two models in reference and extracted results, Song and
Haithcoat (2005) recommended to use the confusion matrix-based evaluation method with

geometric accuracy such as root mean square error (RMSE) and shape similarity indices.

3.3.1.2 Shape-based Evaluation

Shape-based evaluations measure how two shapes resemble each other. The shape-based

evaluations can be used to assess qualities of building models in terms of geometric
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accuracy and shape similarity because building models are represented by a combination of
planes of various shapes. In this section, we introduce several shape-based evaluation

methods and their properties which are appropriate to assess qualities of building models.

Minkowski distance (L, distance)
One of the most popular indices to measure a degree of shape similarity between two
contours is Minkowski distance or L, distance. Given two points X = (xy, ..., x,) and

Y = (y1, -, ¥n), the Minkowski distance of order p is defined as:

Lp(x,y) = Eikolxi — yil)VP (3.2)

For p = 1, Minkowski distance is a metric to quantify a physical space displaced
between given vectors. Manhattan distance and Euclidean distance can be considered as
special cases of Minkowski distance: p=1 for Manhattan distance, and p=2 for Euclidean
distance in Eg. (3.2). A well-known root mean square error (RMSE) uses Euclidean
distance to measure the geometric accuracy of point vectors (test vertices) produced by an
algorithm where reference point vectors (reference vertices) are used as check points. A
shape similarity between test and reference vectors can be estimated by measuring RMSE.
However, uniquely identifying a one-to-one correspondence between given two vectors is
a challenging problem. This is because different mechanisms are applied for producing
respective point vectors and thus resulting physical properties (e.g., numbers of vertices,

curvatures, length, etc) differ from each other. Rottensteiner et al. (2014) suggested a
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nearest neighborhood method to identify vertex correspondences between roof models
generated by an algorithm and manually digitized reference models for evaluating the
algorithmic performance (e.g., RMSE). They employed a proximity threshold to identify
those corresponding point sets from two model vectors. However, a pre-fixed value for the
proximity criterion was employed without considering local variations of point extractions
that exist in test and reference vectors. This non-adoptive matching process may lead to

errors in determining correspondences at a certain extent which are not ignorable.

Simple shape descriptors

As an alternative to the correspondence-based measurement, one can evaluate the shape
similarity by measuring shape descriptors such as area, perimeter, circularity
(perimeter®/area), eccentricity (length of major axis/length of miner axis), and major axis
orientation. These shape descriptors can be measured over given entire vectors; measuring
their similarities between two vector spaces does not require determining individual vertex
correspondence locally and provides a shape characteristics of respective vectors at global
scale (object level). However, the shape descriptors are not robust enough to discriminate a
subtle difference of vectors, especially if given vectors to be evaluated belong to a similar
object category, and shows its weakness to recognizing intra-variations of shapes (Zhang et

al., 2004).



47

Hausdorff Distance

Hausdorff distance is used as a method for determining the resemblance of one point set to
another based on a max-min distance (Huttenlocher et al., 1993). Let A = {al, ...,ap} and

B = {bl, s bq} be two finite point sets, a directed Hausdorff distance h(4, B) is defined as

the largest distance from any point in A, to the closest point in B as follows:

h(A' B) = SUPgea inbeBd(al b) (33)

where sup and inf represent the supremum and the infimum, respectively; d is an
underlying norm on the points of A and B (e.g., L, or Euclidean distance). The Hausdorff

distance is defined as:

H(A, B) = max (h(A, B), h(B, A)) (3.4)

The advantage of the Hausdorff distance is that no correspondence between two
shapes to be compared is needed. However, Hausdorff distance is sensitive to noise
because a single outlier may determines the distance value. In evaluation of building
models, the properties are useful to assess the quality of building models. In contrast to
RMSE, which assesses the average difference between two models, the Hausdorff distance
can measure the maximum shape difference caused by over-simplification and under-
simplification without any pre-defined value for the proximity criterion. Figure 3.7 shows

a concept of the Hausdorff Distance.



48

sup . ,inf, ;d(a.b)

sup,_pinf, , d(a,b)

Figure 3.7 Hausdorff distance

Turning Function Distance

A turning function 04(s) measures the angle of the counter-clockwise tangent as a
function of the arc lengths in order to represent a shape A (Arkin et al., 1991). It begins in a
certain point (reference point) on A's boundary, and firstly measures the counter-clockwise
angle between the tangent at the point and the horizontal axis (x-axis). @4(s) keeps track
of the turning that takes place, increasing with left-hand turns and decreasing with right-
hand turns as shown in Figure 3.8. The L, distance between 0,(s) and @3 (s) is applied to

measure shape similarity as follows:

164 = O5ll, = ([104(s) — O5(s)|"ds)*P (3.5)

where [|-||,, denotes the L, norm. A turning function distance is invariant under scale,
rotation, and translation. Also, the distance can measure a resemblance between two shapes

at global scale, and any vertex correspondences do not need to be established.
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Figure 3.8 Turning function distance (Cakmakov and Celakoska, 2004)

3.3.2 Proposed Performance Evaluation Metrics

The ISPRS benchmark project on urban classification and 3D building modeling led by
ISPRS WGIII/4 provides evaluation metrics in order to estimate the results obtained from
the latest state-of-the-art algorithms for building detection, and 3D building reconstruction
(Rottensteiner et al., 2014). The ISPRS evaluation metrics were designed for measuring the
performance characteristics of individual algorithms by combining multiple evaluation
indices including confusion matrix (area-based and object-based), topological analysis
among roof planes, and geometric accuracy (RMSE). Thus, the ISPRS metrics allow us to
evaluate the algorithm performance with many different aspects, rather than relying on a

single measure. A summary of the ISPRS evaluation metrics in presented in Table 3.5.
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Table 3.5 Evaluation indices used in Rottensteiner et al. (2014)

Evaluation Index Description Obiject to be evaluated

Com , COITarea, .
Parea ared | Completeness, correctness, and quality

Qarea determined on a per-area level. * Building detection

Compoyj, Corrq, | Completeness, correctness, and quality
Oupi determined on a per-building level or
obj a per-roof-plane level.

« Building detection
« Building reconstruction

Completeness, correctness, and quality
Compso, Corrsg, Qso | determined on a per-building level but
only considering building larger than
50m?.

« Building detection

Completeness, correctness, and quality
Compio, Corrig, Qyo | determined on a per-roof-plane level
but only considering roof planes larger
than 10m?,

» Building reconstruction

Ny, Nwo, Ny | Difference in the topologies of the

extracted roof planes and the reference * Building reconstruction

Geometrical errors in planimetry; only | Building detection

RMSXY distances shorter than 3m are « Building reconstruction
considered. g
RMSZ Geometrical error in height « Building reconstruction

Although the ISPRS evaluation metrics provide one of the most extensive sets of
indices used for measuring the performance of 3D roof modeling algorithms, they also
have some limitations. Firstly, the ISPRS evaluation metrics focus on measuring a local
similarity between references and resulting rooftop models produced by an algorithm by
assessing overlapping areas or local geometric displacement between two models.
However, these measures do not provide a holistic shape similarity such as the differences

in main angle of a building object, Hausdorff distance and turning function distance
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described in previous sections. As a consequence, the ISPRS metrics might have a
tendency to be sensitive to per-roof segmentation accuracy or reconstructing accuracy of
local vertices, missing the fact that global shape similarity is equally important to evaluate
an algorithmic performance in 3D rooftop modeling. Secondly, the ISPRS evaluation
metrics assess the geometric accuracy of rooftop models over the model's vertices only if
their proximity to corresponding reference ones fall in a pre-specified error bound. Thus,
by excluding model vertices beyond a given proximity threshold, resulting performance
measures tend to be overoptimistic. The proximity threshold is determined by considering
expected errors involved in rooftop models generated by an algorithm. However, it is
difficult to predict this error tolerance in general in advance, and it is sensitive to locality.
Lastly, the ISPRS evaluation matrix provides a mean to measure the accuracy of
topological relations among adjacent roof planes produced by an algorithm against
correspond reference models (1:M, N:1, and N:M relations). However, these ratios
implicitly suggest error rates in roof plane generation, but do not provide an explicit
understanding of topological errors produced by the algorithm; these indices represent
planar segmentation errors, rather than topological errors. Thus, the ISPRS topological
ratio indices might not correspond to the errors evaluated by our visual inspection.

In this study, we propose a set of performance measures evaluating the accuracy of
rooftop models generated by our method presented in this thesis. For this purpose, a
majority of the performance metrics were adopted from the ISPRS benchmark project
(Table 3.5). However, in order to address limitations of the ISPRS performance metrics,

we adopted additional measures, which include: 1) Hausdorff distance, 2) turning function
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distance, and 3) main angle index (Table 3.6). As discussed previously, shape similarity
measure is an important indicator evaluating the performance of rooftop model generation,
which provides a global perspective in shape matching, and thus compensates the
limitation of local similarity measures such as geometric accuracy (e.g., RMSE).

Hausdorff distance is a shape similarity measure between reference models and
algorithmic models, which takes the maximum distance among the minimum distances
measured between each vertex for two model datasets. Without introducing any threshold,
total distance measured over entire shapes identifies a degree of shape similarity between
two models matched. It can effectively assess how the reconstructed building model is
over-simplified or under-simplified against its reference model. The turning function
distance, as the second index of shape-based measures, represents a cumulative measure of
the angles through which a polygonal curve turns. In contrast to Hausdorff distance
measure (focusing on the measurement of over-simplification or under-simplification),
turning function distance enables directly measuring similarity of turning patterns between
reference and algorithmic models. However, as discussed in previous sections, applying
the shape similarity measures is not a trivial task as it requires finding exact
correspondences between reference and algorithmic models. Thus, we use a user-defined
threshold for overlapping area to find correspondence between reference models and
extracted models, and apply shape-based evaluation methods in two different stages: (1)
for outer boundary and (2) roof planes with 1:1 correspondence.

In addition to Hausdorff distance and turning function distance, we assessed main

orientation errors in building models generated by an algorithm (i.e., angle-based index).
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This angle-based evaluation index measures the difference in main orientations of a
building modelled in a reference dataset to the results produced by an algorithm. The main
orientation of a building model is determined by analyzing the frequency of building lines
for eight direction zones generated by the compass line filter (CLF) proposed by Sohn et al.
(2008). A concept of CLF will be explained in Figure 4.7. Table 3.6 summarizes additional
evaluation indices. Throughout this thesis, we use a set of performance metrics evaluating
the performance of our building modeling methods by combining the indices addressed in

Table 3.5 and Table 3.6.

Table 3.6 Additional evaluation indices

Evaluation Index Description Obiject to be evaluated

« Building detection
Hausdorff Distance | Evaluation for partly deformed shape |+ Plane with  1:1
correspondence

« Building detection
Evaluation for entire shape similarity |+ Plane  with  1:1
correspondence

Turning function
Distance

Difference in main angle of building
Angle-based index | model between reference and resulting
rooftop models.

« Building detection
» Building reconstruction

One remaining problem is how to explicitly measure topology inconsistency
between the reference rooftop model and extracted rooftop model. We did not clearly solve
the problem. However, we introduce a conceptual design for quantitatively measuring
topology accuracy even though the method was not used to evaluate our proposed methods
in this thesis. The method is based on the comparison of Roof Topology Graph (RTG)

derived from the reference rooftop model and extracted rooftop model, and then assessing
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topological accuracy by counting correctly matched edges. In RTG, a node represents a
roof face, an edge represents the adjacency relationship of two roof faces (Oude Elberink
and Vosselman, 2009). In this study, a graph edge is constructed if two roof faces share a
common line (intersection line or step line). Figure 3.9(b) and (e) show RTGs constructed
for a reference rooftop model and extracted rooftop model, respectively. We use the
constructed RTGs for measuring topology accuracy between two building rooftop models.
The process starts by finding correspondence between nodes (roof faces) by checking
overlapping area where only 1:1, 0:1 or 1:0 correspondences are allowed. If other
correspondences between two rooftop models (n:1, 1:m, or n:m) exist, roof faces, which
have the maximum overlapping rate among possible node pairs, are considered to be
matched, Once all corresponding nodes are determined, correctly matched edges can be
identified by comparing node correspondences. For instance, Figure 3.9(c) and (f) shows
matched nodes (red circle), and correctly matched edges (red line) in the reference rooftop
model and extracted rooftop model, respectively. Then, a direct topology accuracy from
the reference rooftop model to extracted rooftop model, TAg_,, (or from extracted rooftop

model to reference rooftop model, TA,,_x ) can be estimated by calculating the number of

# of matched edges in reference

matched edges over the number of total edges: TAgr_y = . In

#of edges inreference

the example of Figure 3.9, TAx_, and TA,,_ g are 40% and 73%, respectively. The result
indicates that 40% of topology relations in the reference rooftop model can be explained by
topology relations of the extracted rooftop model while 73% in extracted rooftop model
can be described by reference rooftop model. The example shows that topology accuracy

can be explicitly assessed. Although the introduced RTG-based accuracy measurement is a
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conceptual design level, we believe that the method can be extended to quantitatively

assess topology inconsistency in the future.

(@) (c) (e)

(b) (d) ()

Figure 3.9 RTG-based evaluation: (a) building rooftop model in reference, (d) extracted
building rooftop model, (c) topology graph of (a), (d) topology graph of (b), (e) edges
matched with (d) and (f) edges matched with (c)

3.4 Summary

In this chapter, we presented datasets and their characteristics, and evaluation metrics for

assessing our results. The detailed descriptions of two datasets were given in the first part
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of this chapter. The second part summarized existing evaluation methods in the literature
by categorizing them into evaluations using confusion matrix and shape-based evaluation
methods. Generally, there is no single optimal performance evaluation method, and
individual existing evaluation methods assess specific performance characteristics to be
assessed. Thus, based on the review of existing performance evaluation methods, we
proposed evaluation metrics to test the performance of our proposed algorithms. The
proposed evaluation metrics consists of existing evaluation methods, which focus on
measuring a local similarity, and newly added shape-based and angle-based evaluation
methods to assess different aspects of building models. Hausdorff distance and turning
function distance were added to the evaluation metrics as shape-based indices. They can
measure shape similarity at a global scale, and any correspondence between vertices
derived from two models is not needed. Hausdorff distance is useful to measure over-
simplification and under-simplification of building models while turning function distance
measures entire shape resemblance of two models to be compared. Also, we added an
angle-based index in order to measure the difference of the main orientation of building
models. The proposed evaluation metrics were used to assess different quality aspects of
3D building models produced by our algorithms. In addition, we introduced a conceptual
design to measure topology accuracy based on RTG even though the method was not used
to evaluate our result. Future work is to extend the conceptual topology evaluation

methods to explicitly assess topology inconsistency between two rooftop models.
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Chapter 4

Implicit Regularization for Reconstructing
3D Building Rooftop Models Using LiDAR
Data

In this chapter, we propose a data-driven modeling approach to reconstruct 3D rooftop models
from airborne laser scanning (ALS) data. The focus of the developed method is to implicitly
impose building regularity on 3D building rooftop models by introducing flexible regularity
constraints. This study covers a full chain of 3D building modeling from low level processing to
realistic 3D building rooftop modeling. In the element clustering step, building-labelled point
clouds are clustered into homogeneous groups by applying height similarity and plane similarity.
Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines,
and step lines are extracted. Topology elements among the modeling cues are recovered by the
Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is
achieved by an implicit regularization process in the framework of Minimum Description Length
(MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL
optimization are automatically estimated based on Min-Max optimization and Entropy-based
weighting method. The performance of the proposed method is tested over two large-scale datasets
using an evaluation metric discussed in Chapter 3. The results show that the proposed method can

robustly produce accurate regularized 3D building rooftop models.
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4.1 Introduction

A key problem domain that we address in this chapter is to reconstruct a 3D geometric
model of building rooftop from remotely sensed data such as airborne laser point clouds.
The representation that we follow for 3D rooftop models draws on ideas from geometric
modeling used in Photogrammetry and Geographical Information Science (GIS). In this
representation scheme, a 3D rooftop is modelled with either primitive geometric elements
(i.e., points, lines, planes and objects), or primitive topological elements (i.e., vertices,
edges, faces, and edge-groups (rings of edges on faces)). Typically, both primitive
geometric and topological elements are used together for representing 3D rooftop models
(e.g., CityGML and Esri ArcGIS's shapefile). CityGML is an open data model and XML-
based format for the storage and exchange of virtual 3D city models (Kolbe et al., 2005).

In CityGML, 3D rooftop models can be differently represented according to the
level-of-detail (LoD). A prismatic model of rooftop that is a height extrusion of a building
footprint is defined as LoD 1 in CityGML, while LoD 2 requires a detailed representation
of the primitive geometric and topological elements in a 3D rooftop model. An important
aspect in GIS-driven 3D model representation is that the reconstructed model elements
should correspond to semantically meaningful spatial entities used in architecture, civil and
urban planning: for instance, the reconstructed geometric elements represent roof lines
(ridges, eaves), roof planes (gables, hips), vents, windows, doors, wall columns, chimneys,
etc. Thus, a photo-realistic reconstructed rooftop model can be used for assisting human
decisions on but not limited to asset management, renovation planning, energy

consumption, evacuation planning, etc. As discussed in Rottensteiner et al. (2014), a city-
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scale building model will provide an important mean to manage urban infrastructure more
effectively and safely for addressing critical issues related to rapid urbanization. In this
thesis, we aim to reconstruct LoD 2 models of the rooftops from remotely sensed data.

Traditionally, 3D rooftop models are derived through interaction with a user using
soft photogrammetric tools (e.g., multiple-view plotting or mono-plotting technology).
This labour-intensive model generation process is tedious and time-consuming, which is
not suitable for reconstructing rooftop models at city-scale. As an alternative method, great
research efforts have been made for developing a machine-intelligent algorithm to
reconstruct photo-realistic rooftop models in a fully-automated manner for the last two
decades (Haala and Kada, 2010). Recently, airborne light detection and ranging (LiDAR)
scanners became one of the primary data acquisition tools, which enable rapid capturing of
targeted environments in 3D with high density and accuracy. Due to these advantages,
state-of-the-art technologies for automatically reconstructing 3D rooftop models using
airborne LIDAR data have been proposed by many researchers (Haala and Kada, 2010;
Musialski et al., 2012; Wang, 2013; Rottensteiner et al., 2014; Tomljenovic et al., 2015).
However, only limited success in a controlled environment has been reported, and the
success of developing an error-free rooftop modeling algorithm is not achieved yet
(Rottensteiner et al., 2014).

In general, 3D rooftop models are derived automatically from 3D LiDAR point
clouds by (1) extracting the primitive geometric elements, namely "modeling cues” and (2)

recovering the primitive topological elements among the modeling cues. A critical problem
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to hinder the automation of 3D rooftop model generation is that many portions of the

object (rooftop) are unknown, and recovered with errors caused by the following reasons:

Irregular point distribution: Despite the advantages of acquiring highly accurate
and dense 3D point clouds over rooftops by airborne LiDAR, the sensor also has its
limitations. Airborne LIDAR transmits a packet of collimated laser beams through
an electro-optical scanner, and computes a location of scatter, which surface is
reflected from the transmitted laser energy, by measuring a range between the
transmitter and scatter with known position and orientation of the laser scanner.
The size of the beam footprint and space between adjacent laser points on the
ground are determined by the flying height of the airborne platform and scanning
frequency. In addition, the weak energy reflectance due to absorption and ill-posed
surface angle against scanning pose, where the peak is below a pre-defined
threshold, are discarded. Thus, all these system variables produce an irregular
distribution of laser point clouds over the targeted object surface. As a consequence,
the modeling cues are often generated with errors, or are fragmented, or completely
missing. These errors have a negative impact on the derivation of the topological
elements, and thus the accuracy of rooftop model generation.

Occlusions: Like other sensors, airborne LIDAR also suffers from difficulties in
capturing a complete view of objects due to occlusions. A disadvantageous viewing
angle between the laser beam direction and object pose may hinder the illumination
of laser beams on certain object surfaces, where no laser points are generated. In

theory, airborne LiDAR has an ability to penetrate foliage; however, the amount of
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returned laser energy varies depending on tree species, their maturity, seasonal
effect and relative viewing angle between the laser beam and the leaf surface angle.
A weak reflected energy will be neglected and not be able to produce any laser
points over certain areas of roofs where trees grows nearby. These negative effects
cause errors in recovering the primitive topological elements for reconstructing the
rooftop model.

e Unreliable data analysis: A few of the laser point cloud analytics are applied to
detecting building objects, classifying non-roof-related objects (e.g., trees, roof
superstructures, etc.), segmenting roof planar patches, extracting corners and line
primitives, and other algorithms related to recovering the primitive topological
elements (e.g., boundary tracing, edge-linking, etc.). The performance of these
algorithms varies depending on data resolution, scene complexity and noise; they
may produce some errors, which has a negative effect on recovering both modeling

cues and topological elements.

As discussed previously, the aforementioned factors lead to errors in recovering the
modeling cues sufficiently well for generating an error-free rooftop model. Typically,
knowledge of a rooftop object of interest (e.g., roof type, structure, numbers of roof planes,
etc.) is unknown. Thus, recovering all the primitive topological elements accurately with
an error-free geometric model is a very challenging vision task. To address this issue,
many researchers have introduced some modeling constraints to compensate the

limitations of erroneous modeling cues (Vosselman, 1999; Verma et al., 2006; Sampath
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and Shan, 2007; Huang et al., 2013). These constraints are used as a prior knowledge on
targeted rooftop structures: (1) for constraining the modeling cues to conform with Gestalt
law (i.e., parallelism, symmetry, and orthogonality), and linking fragmented modeling cues
in the frame of perceptual grouping, and (2) by determining optimal parametric rooftop
model fit into part of rooftop objects through a trial-and-error of model section from a
given primitive model database. We refer these modeling constraints as an "explicit
regularity” imposed on rooftop shape as the definition of regularity is fully and clearly
described. However, as discussed in Chapter 2, only a few of the explicit regularity terms
can be applicable, and the shapes of rooftops in reality appear too complex to be
reconstructed with those limited constraints.

In this thesis, we focus on the data-driven modeling approach to reconstruct 3D
rooftop models from airborne LIiDAR data by introducing flexible regularity constraints
that can be adjusted to given objects in the recovery of modeling cues and topological
elements. The regularity terms that are used in this study represent a regular pattern of the
line orientations, and the linkage between adjacent lines. In contrast to the term of "explicit
regularity”, we refer it as an "implicit regularity" because its pattern is not directly
expressed, but found with given data and object (rooftop). This implicit regularity is used
as a constraint for changing the geometric properties of the modeling cues and topological
relations among adjacent modeling cues to conform with a regular pattern found in the
given data. This data-adaptive regularity (or regularization process) allows us to

reconstruct more complex rooftop models.
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In this chapter, we describe a pipeline of 3D rooftop model reconstruction from
airborne LIiDAR data. First, to gain some computational efficiency, we decompose a
rooftop object into a set of homogeneous point clouds based on height similarity and plane
similarity, from which the modeling cues of line and plane primitives are extracted.
Secondly, the topological elements among the modeling cues are recovered by iteratively
partitioning and merging over a given point space with line primitives extracted at a global
scale using the Binary Space Partitioning (BSP) technique. Thirdly, errors in the modeling
cues and topological elements are implicitly regularized by removing erroneous vertices or
rectifying the geometric properties to conform with globally derived regularity. This
implicit regularization process is implemented in the framework of Minimum Description
Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the
MDL optimization are automatically estimated based on Min-Max optimization and
Entropy-based weighting method. The proposed parameter estimators provide optimal
weight values that adapt according to building properties such as; size, shape, and the
number of boundary points. The proposed pipeline of rooftop model generation was
developed based on previous works reported in Sohn et al. (2012) and Jwa (2013). We
extended these two works by proposing data-adaptive parameter estimation, conducting an
extensive performance evaluation and engineering works to implement a computationally
efficient modeling pipeline. The performance of the proposed method is evaluated using

ISPRS benchmark data, which was also successfully reported by Rottensteiner et al. (2014).
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4.2 3D Building Rooftop Reconstruction

Figure 4.1 shows the overall workflow implemented for generating 3D building rooftop
models from airborne LIDAR point clouds, where individual buildings are detected. The
method consists of three main parts: 1) modeling cue extraction, 2) topology element
reconstruction, and 3) regularization. In the modeling cue extraction, roof element clusters,
lines (intersection and step lines), and outer-boundaries are extracted from a set of laser
point clouds labelled as single building objects (i.e., building labelled points) (section
4.2.1). Then, the topology relations among the modeling cues are established by BSP
(section 4.2.2). Finally, an implicit regularization process is applied to outer-building
boundaries and rooftop polygons. The regularization process is based on the framework of
MDL in combination with HAT optimization (section 4.3). Note that the regularization
process is conducted twice; once for regularizing building outer-boundaries which
represent LOD1 models, and then for rooftop models which represent LOD2 models. Two
types of weight parameters in the MDL-based objective function are automatically
determined by Min-Max optimization and Entropy-based parameter estimation method,

respectively (section 4.4).
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Figure 4.1 The overall workflow developed for reconstructing 3D rooftop models from
airborne LIiDAR data

4.2.1 Modeling Cue Extraction

The first step towards generating 3D building models using LIiDAR data is to gather the
evidence of building structures (i.e., primitive geometric elements). Planes and lines are
recognized as the most important evidence to interpret building structures due to the fact
that 3D building rooftop models can be mainly represented by planar roof faces and edges.
The two different modeling cues (planar and linear modeling cues) have different
properties and can be separately extracted from LiDAR points. In section 4.2.1.1, building
points are sequentially segmented into homogeneous clusters, first based on height
similarity and then based on plane similarity. In section 4.2.1.2, linear modeling cues are

extracted using boundary points of the homogeneous clusters.
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4.2.1.1 Roof Element Clustering

Roof element clustering segments building-labelled points into homogeneous rooftop
regions with a hierarchical structure. A building rooftop in an urban area is a combination
of multiple stories, each of which consists of various shapes of flat and sloped planes.
Directly extracting homogeneous regions from entire building points may result in
difficulties due to a high degree of shape complexity. In order to reduce the complexity,
the building-labelled points are decomposed into homogeneous clusters by sequentially
applying height similarity and plane similarity in order.

In the height clustering step, the rooftop region R = {p;|i = 1,2, ...,n} with n
numbers of building-labelled points is divided into m height clusters R = {S;, S,, ..., S;,}.
Height similarity at each point is measured over its adjacent neighboring points in
Triangulated Irregular Network (TIN). A point with the maximum height is first selected
as a seed point, and then a conventional region growing algorithm is applied to add
neighbor points to a corresponding height cluster with a certain threshold (§,=1m). This
process is repeated until all building rooftop points are assigned to one of the height
clusters. As a result, the height clusters satisfy the property R = UM, S;, S; ns; = {3},
Vi # j. Note that each height cluster consists of one or more different roof planes.

In the plane clustering step, each height cluster is decomposed into k plane clusters
11 = {m,,m,, ..., m;} based on a plane similarity criterion. The well-known random sample
consensus (RANSAC) algorithm is adopted to obtain reliable plane clusters as suggested in
previous studies (Ameri and Fritsch, 2000; Tarsha-Kurdi et al., 2008). The process starts

by randomly selecting three points as seed points to generate an initial plane. After a
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certain period of random sampling, a plane, which has 