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ABSTRACT 

In recent years, a number of mega-cities have provided 3D photorealistic virtual models to 

support the decision making process for maintaining the cities' infrastructure and 

environment more effectively. 3D virtual city models are static snap-shots of the 

environment and represent the status quo at the time of their data acquisition. However, 

cities are dynamic systems that continuously change over time. Accordingly, their virtual 

representations need to be regularly updated in a timely manner to allow for accurate 

analysis and simulation results that decisions are based upon.  

The concept of "continuous city modeling" is to progressively reconstruct city 

models by accommodating their changes recognized in the spatio-temporal domain, while 

preserving unchanged structures. As one of the most prominent objects comprising the 

virtual city model, automatic reconstruction of building rooftops have been targeted by 

many researchers over the last three decades. However, the goal of error-free rooftop 

reconstruction from remotely sensed data is still not achieved yet. Moreover, most of the 

existing research works have focused on the reconstruction of rooftops using a single 

source of data captured at one specific epoch. Not many research methods have been 

proposed for addressing the issues related to progressive reconstruction of rooftops using 

multi-sensor data.    

 This thesis proposes a novel research framework for continuously reconstructing 

3D building rooftops using multi-sensor data, which are acquired at different epochs. For 

achieving this goal, we first propose a 3D building rooftop modeling method using a 

popular single data source (i.e., airborne LiDAR data). The main focus is on the 
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implementation of an implicit regularization method which imposes a data-driven building 

regularity to noisy boundaries of roof planes for reconstructing 3D building rooftop models. 

The "implicit regularity" is achieved by introducing flexible regularity constraints which 

can be adjusted to the given objects. The implicit regularization process is implemented in 

the framework of Minimum Description Length (MDL) combined with Hypothesize and 

Test (HAT). Secondly, we propose a context-based geometric hashing (CGH) method to 

align newly acquired image data with existing building models as a prerequisite process of 

the subsequent building refinement application. The novelty is the use of context features 

to achieve robust and accurate matching results. Thirdly, the existing building models are 

refined by a newly proposed sequential fusion method. The main advantage of the 

proposed method is its ability to progressively refine modeling errors frequently observed 

in LiDAR-driven building models. The refinement process is conducted in the framework 

of MDL combined with HAT. Markov Chain Monte Carlo (MCMC) coupled with 

Simulated Annealing (SA) is employed to perform a global optimization. Lastly, we 

propose an evaluation metric to robustly assess various quality aspects of reconstructed 

and refined 3D building models. The performance of the proposed methods have been 

evaluated using the International Society of Photogrammetry and Remote Sensing (ISPRS) 

benchmark datasets. The results demonstrate that the proposed continuous rooftop 

modeling methods show promising aspects to support various critical decisions by not only 

reconstructing 3D rooftop models accurately, but also by updating the models using multi-

sensor data. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

Urbanization is an inevitable movement which is not merely a modern phenomenon, but a 

rapid and historic transformation of human social roots on a global scale. According to the 

United Nations (UN), half of the world's population lived in urban areas at the end of 2008 

and the number will increase to about 70 percent by 2050 (International Herald Tribune, 

2008). The rapid urbanization has led the dramatic change of city environments and has 

presented an urgent need to construct, synthesize and update environmental information for 

the purpose of planning, managing, and making various critical decisions that impact 

growing cities. To create useful and accurate representations of various dynamic city 

entities, researchers put forth numerous efforts in computer vision, photogrammetry and 

remote sensing fields in the last few decades. Particularly, a building, a structure very 

closely connected with human life, is recognized as the most important object in 

generating of 3D virtual models of city environment. A study by the European 

Organization for Experimental Photogrammetric Research (OEEPE) highlighted the 

demand for accurate 3D city models (Fuchs et al., 1998). Of note, 95% of the study's 

participants identified three-dimensional building data as the most interesting feature in 

digital city models, clearly emphasizing the importance of buildings in representing urban 

environments. Consequently, since initial efforts on automatic building extraction from 
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remotely sensed data in the early 1990s (Grün et al. 1995, 1997), a large number of 

research studies have been conducted to recognize, detect, reconstruct and represent 

building objects (Baltsavias, 2004; Brenner, 2005; Remondino and EL-Hakim, 2006; 

Mayer, 2008; Haala and Kada, 2010; Musialski et al., 2012; Wang, 2013; Tomljenovic et 

al., 2015). As a result, many applications for web mapping services and mobile use have 

been developed by major companies, including Google, Apple, HERE, and Uber, and are 

able to provide 3D building models for consumer use (Figure 1.1).   

 The 3D building models are used as base data for many geo-spatial information-

based applications such as coordination, web mapping service, and navigation. 

Furthermore, recently emerging technologies such as Mobile Augmented Reality (MAR) 

allow the 3D building models to be used as an interactive tool on a computer or mobile 

device. Users enter queries utilizing the building models and the computer responds to the 

request by presenting relevant information of the building on a display. Thus, accurate and 

reliable 3D building models are an essential prerequisite to support these applications.  

 According to Skyscraperpage.com, in 2015, there were over 2,000 high-rise 

buildings in the city of Toronto and 139 high-rise and mid-rise buildings were under 

construction in January that year (Economic Dashboard-Annual Summary, 2015). With 

expansion of different types of building structures, even more changes are expected to take 

place in the cityscapes. A city is a dynamic entity as the environment continuously changes. 

Accordingly, its virtual models also need to be regularly updated. In order to address the 

continuous changes in the city environment, companies like HERE have been updating 

their maps on a bi or tri-monthly basis (HERE 360, 2015). However, for a large-scale area, 
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newly generating building models whenever new data is acquired is cost-inefficient and 

labor-intensive. Therefore, existing building models should be reused and appropriately 

updated in cost-effective and automatic manners to record changes. As such, continuous 

modeling of 3D cityscapes using remotely sensed multi-data taken at different epochs is 

expected to play an important role in generating timely and accurate building models. 

  

 

Figure 1.1 Photorealistic 3D building models on Google Earth (Location: Toronto, Ontario, 

Canada) 

 

 In terms of data sources, the advance of data acquiring technologies has made it 

possible to reconstruct 3D building models. Aerial images have been one of the most 

common sources and are considered indispensable. At the early stage of building 

reconstruction, image data was manually digitized to depict building boundaries in a stereo 

view using a digital photogrammetric workstation (DPW). With the arrival of automatic 

computer techniques from computer vision, the photogrammetric approach enables 
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automatic extraction of modeling cues (collection of building evidences). More recently, 

structure from motion (SFM) techniques with the help of feature descriptors such as SIFT 

(Lowe, 2004) and SURF (Bay et al., 2008) provide methods to automatically register 

unordered multiple images and to recover sparse 3D point clouds whose density can be 

later increased by dense matching methods. However, the few main disadvantages of 

image data, such as the low level of automation due to incomplete modeling cue extraction 

and matching ambiguity caused by the effects of shadows, low contrast, and occlusion, still 

remains. Thus, it requires manual editing or human intervention to fully describe the 

buildings. On the other hand, the emergence of airborne LiDAR system (ALS) in the 

middle of 1990s has made significant changes in automatic building rooftop reconstruction. 

Airborne LiDAR, as an active sensor, directly provides 3D point clouds over a large scale 

scene with a high degree of accuracy. Its direct geo-referencing ability improves the level 

of automation in the building reconstruction process. Nowadays, with improvements of 

laser scanning techniques, obtaining accurate and dense points over a large-scale area has 

become feasible for building rooftop reconstruction. Furthermore, these sensors, mounted 

on various platforms such as ground, mobile, and unmanned aerial vehicle (UAV), have 

provided new types of data: Image sensors mounted on UAVs provide oblique images and 

video streams; and Terrestrial Laser Scanning (TLS) and Mobile Laser Scanning (MLS) 

systems produce very dense 3D points for building facades. These data taken from 

different time epochs and from different viewpoints encourage a full description of 3D 

building models. However, in-depth understanding of data characteristics and registration 

between data is required for accurate and reliable 3D building modeling.  
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 In the perspective of building reconstruction, raw data acquired from remotely 

sensed data are converted into "building models". A large number of building 

reconstruction methods, which range widely in terms of levels of automation (automatic vs. 

semi-automatic), data sources (single data vs. multi-data), and data processing strategies 

(data-driven, model-driven, or hybrid), have been explored to effectively represent a full 

description of buildings. However, in spite of constant efforts, developing a "universal" 

intelligent machine enabling the massive generation of highly accurate rooftop models in a 

fully-automated manner still remains a challenging task. Many researchers (Ameri, 2000; 

Sohn and Dowman, 2007) pointed out several reasons for the problem as follows: 

 Scene Complexity: Remotely sensed data from the urban scene contain a large 

amount of information of non-building objects (e.g., ground, tree, car, and clutter) 

in addition to the building objects. Although some heuristic knowledge (e.g., 

building height, certain brightness, or nearby shadow) can be used to recognize 

building objects, detecting individual buildings is not easy because buildings are 

attached and form blocks. In terms of building interpretation, buildings in urban 

scenes have enormous variants in structure and shapes with multi-story planes, the 

landmark buildings of the city in particular. The variety of shapes cannot be 

described by common types of building structures. Thus, a method to simplify 

complex building scenes is required for effective interpretation.  

 Incomplete cues: There is always a significant loss of information in data. 

Occlusion of buildings or building parts by themselves or adjacent objects causes 

problems in data integrity. Also, shadow, noise, low contrast, and superstructures 
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on building roofs cause redundant or spurious cues, bringing about ambiguity and 

confusion to the building reconstruction process.  

 Sensor dependency: Sensors used for building modeling have unique 

characteristics related to the acquisition mechanism. This inherent property has a 

considerable influence over the reconstructed building models; for instance, 

LiDAR data provides accurate plane information, while the accuracy of building 

boundaries is less than that of image data due to its irregular point distribution. 

Thus, fully understanding sensor characteristics is one of the most important tasks 

in building reconstruction. 

   

 Even though many algorithms for reconstructing 3D building models using single 

data source have been introduced and can provide promising results (Rottensteiner, 2014), 

the methods still have some limitations due to inherent sensor dependent properties, levels 

of automation, model accuracies and missing data problems. One promising approach to 

address these problems is to combine multi-sensor data which have different characteristics. 

In this regard, combining LiDAR point clouds and optical imagery for building 

reconstruction have been exploited by many researchers (Haala and Kada, 2010). This is 

due to the fact that the characteristics of the modeling cues from the two data are 

complementary. Compared to LiDAR point clouds, the optical imagery better provides 

semantically rich information, geometrically accurate step and eave edges, while it has 

weakness in detecting roof edges and 3D information such as planar patches when single 
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imagery is used. However, LiDAR has somewhat opposite characteristics to optical 

imagery.   

 Generally, data fusion for building reconstruction can be divided into two 

approaches: parallel fusion and sequential fusion (Sohn et al., 2013). The parallel fusion 

approach allows each modeling cue to be extracted from two datasets in parallel. Then, a 

rooftop model is generated through various mechanisms recovering its spatial topology 

using the extracted modeling cues. In contrast, sequential fusion generates a building 

rooftop model relying on a single information source, which is later refined by the other 

data. Although the sequential fusion approach has not been studied as extensively as the 

parallel fusion approach, it is expected to play an important role in continuous modeling. 

In the sequential fusion framework, existing 3D building models can be updated using 

newly acquired data taken from different epochs.  

 Regardless of which fusion approach is applied, the registration between different 

sensor data is recognized as an essential and prerequisite process. The accuracy of 

registration has a substantial impact on the quality of results. The registration method 

should provide accurate and robust relations between datasets taken from different sensors 

or from different viewpoints at different epochs. In addition, a registration between 

existing models and newly taken sensor data should be addressed, particularly in 

continuous city modeling. However, while many registration methods that deal with 

correspondence problems between different sensor data have been studied, the registration 

between valuable 3D building models over a large-scale area and remotely sensed data has 
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been studied relatively less. Therefore, more research on development of registration 

methods using valuable 3D building models are required for continuous city modeling. 

 

1.2 Research Objectives  

As discussed in the previous section, it is obvious that reconstruction and update of city 

objects, particularly buildings, is essential to making various critical decisions impacting 

the city environment. The overall objective of this thesis is to address critical steps toward 

making available continuous city modeling, which includes 3D building rooftop 

reconstruction, model-to-image registration, update of building models and quality 

evaluation. In order to achieve the overall goal, several issues need to be addressed, as 

follows:  

 First, the proposed building reconstruction method should provide accurate and 

robust 3D building rooftop models. The accuracy of reconstructed building models should 

meet engineering level accuracy to support critical decisions in the city environment. 

Regardless of scene complexity and the configuration of buildings, the methods should 

produce geometrically and topologically correct 3D building rooftop models. Secondly, the 

proposed methods should produce regularized building models. A building is constructed 

with certain regularities such as orthogonality, parallelism, and symmetry. These 

regularities should be taken into account in the building reconstruction process so that the 

model represents the regular properties of real buildings. Thirdly, a reliable registration 

accuracy should be achieved when using multi-sensor data for continuous city modeling to 

be successful. A newly taken datum should be robustly and accurately aligned with the 
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existing 3D building models. Finally, the numerous valuable existing 3D building models 

should be able to be effectively updated and their modeling errors corrected. Also, 

automatic methods should be proposed to deal with large scale scene.   

 

1.2.1 General Research Framework 

Figure 1.2 represents the workflow of the subsequent processes and the interrelation 

between the major components of the continuous city modeling proposed in this thesis.  

 

• Roof element clustering and Modeling 

cue extraction

• BSP-based topology construction 

• MDL-based regularization

3D building rooftop models

Refined 3D building rooftop models

Aerial LiDAR Data Aerial Image Data

Chapter 4: Implicit regularization for 

reconstructing 3D building models using 

LiDAR data

• Feature extraction (edged corner feature 

and context feature)

• Context-based Geometric Hashing (CGH) 

• EOP estimation

Chapter 5: Matching aerial images to 3D 

building models using context-based 

geometric hashing

• Modeling cue extraction

• Hypothesis generation

• MCMC based optimization

Chapter 6: Sequential modeling of building 

rooftop by integrating airborne LiDAR data 

and optical imagery

• Data characteristics 

• Existing evaluation methods

• New evaluation matrics

Chapter 7: Data and evaluation metrics

 

Figure 1.2 Proposed setup for continuous modeling  

  

 First, 3D building rooftop models are reconstructed using airborne LiDAR data 

(Chapter 4). The method presents a full chain of 3D rooftop modeling which cover from 

low level processing to more realistic models. The process consists of four main stages: 1) 
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element clustering, 2) modeling cue extraction, 3) topology construction, and 4) 

regularization. In element clustering and modeling cue extraction processes, this 

dissertation explains how the modeling evidence can be effectively gathered from complex 

building scenes. In topology construction, the Binary Space Partitioning (BSP) technique 

proposed by Sohn et al. (2007) is utilized to recover geometrically and topologically 

correct rooftop models from incomplete modeling cues. As a main part of the study, an 

implicit regularization method based on Minimum Description Length (MDL) is applied to 

produce regularized 3D building rooftop model. In the proposed MDL-based objective 

function, the weight parameters are automatically determined based on a Min-Max 

weighting method and Entropy-based weighting method.  

 Secondly, a model-to-image registration method using context-based geometric 

hashing aligns a single image with existing LiDAR-driven building rooftop models 

(Chapter 5). The method consists of three typical registration steps: 1) feature extraction, 2) 

similarity measure and matching, and 3) EOPs estimation. In the feature extraction step, 

two new features, the edged corner feature and the context feature, are introduced. For 

similarity measure and matching, the geometric hashing method is refined by introducing a 

newly designed score function which consists of a unary term and context term. EOPs of a 

single image are adjusted by the least square method based on collinearity equations.  

 Thirdly, this dissertation proposes a sequential fusion method to refine LiDAR-

driven building models by incorporating image and airborne LiDAR data (Chapter 6). The 

sequential fusion method progressively rectifies geometrical and topological errors based 

on Hypothesize and Test (HAT) optimization using MDL. A new method to generate 



11 

 

 

 

hypotheses is designed by introducing topological lines connecting different data sources. 

Markov Chain Monte Carlo (MCMC) coupled with Simulated Annealing (SA) is 

employed to perform global optimization.  

 Lastly, an evaluation metric is proposed to assess the quality of reconstructed 

building models (Chapter 3). New evaluation methods, which can measure shape similarity 

and angle similarity, are proposed in order to compensate for limitations of existing 

evaluation methods. 

  

1.2.2 Contributions 

As mentioned before, major components, which need to be addressed in continuous 

modeling, are identified and then a solution for each component is provided. More 

specifically, the contributions of this study can be summarized as follows: 

 Suggesting an evaluation metric to assess the quality of reconstructed building 

rooftop models: In order to complement the limitation of existing evaluation 

methods, which mainly focus on measuring a local similarity, shape-based and 

angle-based methods, which can measure a global similarity of building models, 

are added to existing evaluation methods. The added evaluation methods are used 

to evaluate different characteristics of building models and show the performance 

of our proposed algorithms.  

 Proposing an implicit regularization method for reconstructing 3D building models 

using LiDAR: Building regularity is implicitly imposed by introducing flexible 

regularity constraints in a framework of MDL combined with HAT. In contrast to 
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explicit regularization, the implicit regularization method provides flexibility for 

describing more complex rooftop models while preserving building regularities. 

Also, the parameters governing the MDL optimization are estimated based on a 

Min-Max weighting method and Entropy-based weighting method. The proposed 

weighting methods provide appropriate weight parameters, which balance sub-

terms in MDL, by considering the properties of individual buildings.  

 Proposing a new model-to-image method to align a single image with existing 

building models: Edged corner feature, which provides local information of 

building structure, and context feature, which provides global information, are used 

as features of a subsequent matching process. In order to complement standard 

geometric hashing, context-based geometric hashing method is proposed by 

introducing a newly designed score function. The key aspect in CGH method is that 

context term in the score function, which represents relations between edged corner 

features, is used to reduce matching ambiguity and to achieve accurate and robust 

matching results.   

 Introducing a new sequential fusion method to refine LiDAR-driven building 

models: Modeling errors observed in LiDAR-driven building models are 

progressively rectified by incorporating image information based on HAT 

optimization using MDL. A novel concept of topological line is proposed to 

integrate modeling cues extracted from different information sources. MCMC 

coupled with SA is adopted to generate model hypotheses and perform a global 
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optimization where three proposition kernels are proposed to deal with transitions 

from the current configuration to a new configuration in Markov chain.  

 Conducting comprehensive experiments and analyses over the large-scale datasets 

to support the proposed methods.  

 

1.3 Thesis Outline 

This thesis is organized in seven chapters. An overview of the chapters follows: 

Chapter 1 presents an introduction to the motivation of this thesis, and the proposed 

methods and strategy for solving research questions.  

Chapter 2 gives background information that aids in understanding of this thesis, and 

comprehensive literature reviews concerning building reconstruction, regularization, data 

fusion and registration.   

Chapter 3 introduces the study area, data characteristics and evaluation methods. The 

existing evaluation methods are categorized according to their properties and a new 

evaluation metric is proposed to effectively assess the quality of reconstructed building 

models.  

Chapter 4 presents a method to reconstruct 3D building rooftop models using LiDAR data. 

MDL-based regularization method is used to impose geometrical regularity on 3D building 

models. Weight parameters in the MDL-based objective function are automatically 

determined based on a Min-Max criterion and Entropy-based weighting method.  
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Chapter 5 proposes a new model-to-image registration method to register a single image 

with large-scale LiDAR-driven building models. Newly developed context-based 

geometric hashing is applied to estimate accurate EOPs of a single image.     

Chapter 6 introduces a sequential fusion method to refine LiDAR-driven building models 

by integrating image information. A new method to generate hypotheses is designed by 

topological lines connecting two different data. A MCMC coupled with SA is employed to 

perform global optimization.   

Chapter 7 provides the conclusion of this study and recommendations for future works.  
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Chapter 2 

Background 

 

 

 

 

 

Recent years have seen the urban percentage of the global population surpass one-half, and 

continuing growth in urban areas is projected to add 2.5 billion people to the world's urban 

population by 2015 (United Nation, 2014). Thus, buildings, one of the most significant assets 

supporting the urban system, have been considered key areas of research in computer vision, 

photogrammetry and remote sensing fields over the past few decades. To address the various 

critical issues caused by rapid urbanization, many researchers have studied computational 

algorithms to provide 3D photo-realistic building models in an automated manner for supporting 

effective design, planning and maintenance of urban systems. In this chapter, we review a number 

of previous research works related to building reconstruction, registration and data fusion methods. 

The first part of this chapter discusses different data processing strategies (model-driven vs. data-

driven approaches) used for building model reconstruction and regularization. The second part 

reviews existing works addressing data fusion methods to combine the information retrieved from 

airborne LiDAR and imagery for building modeling process. The last part introduces existing 

registration methods, a prerequisite process for geometrically co-aligning multi-sensor data, 

particularly focusing on model-to-image registration.  
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2.1 Building Reconstruction  

Building reconstruction can be recognized as a huge process for the generation of digital 

representations of physical buildings where raw data without any structured information 

are converted into highly structured 3D building models with rich semantic information. 

Since initial efforts for automatically generating 3D building models began in early 1990s, 

numerous techniques using various remotely sensed data have been explored in computer 

vision, photogrammetry and remote sensing fields. In this section, we review existing 

building reconstruction methods in terms of reconstruction strategy (section 2.1.1) and 

regularization (section 2.1.2). 

 

2.1.1 Model-driven vs. Data-driven  

Numerous building reconstruction algorithms have been published for the past two decades. 

Although it is difficult to clearly classify these various methods into specific categories, 

there are several ways to categorize the methods: the used data source (single vs. multi-

sources), the data processing strategy (data-driven (or generic), model-driven (or 

parametric)), and the amount of human interaction (manual, semi-automatic, or fully 

automated) (Vosselman and Mass, 2010). Of those, classifying existing methods into data-

driven or model-driven approaches provides a good insight for understanding and 

developing 3D building model reconstruction algorithms.  

In the model-driven approaches, 3D building models are reconstructed by fitting 

parameterized primitives to data. This is possible due to the fact that many buildings in 

rural and suburban area have common shapes in whole building or building roof parts. 
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These common roof shapes such as flat, gable, and hip roof are considered as standard 

primitives for representing building rooftop structures. Simple buildings can be well 

represented as regularized building models using pre-defined parameterized primitives 

even with low density data and presence of missing data. However, complex buildings and 

arbitrarily shaped buildings are difficult to model using a basic set of primitives. Also, the 

selection of the proper primitives among a set of primitives is not an easy task. In order to 

address the limitations, Verma et al. (2006) presented a parametric modeling method to 

reconstruct relatively complex buildings by combining simple parametric roof shapes that 

are categorized into four types of simple primitives. In this study, the roof-topology graph 

is constructed to represent the relationships among the various planar patches of 

approximate roof geometry. The constructed roof-topology graph is decomposed into sub-

graphs, which represents simple parametric roof shapes, and then parameters of the 

primitives are determined by fitting LiDAR data. Although they decomposed complex 

buildings into simple building parts, many building parts cannot be still explained by their 

four simple shape primitives. Similarly, Milde et al. (2008) reconstructed 3D building 

models by matching sub-graphs of the region adjacency graph (RAG) with five basic roof 

shapes and then by combining them using three connectors. Kada and McKinley (2009) 

decomposed the building’s footprint into cells which provided the basic building blocks. 

Three types of roof shapes including basic, connecting, and manual shapes are defined. 

Basic shapes consist of flat, shed, gabled, hipped, and Berliner roofs while connecting 

shapes are used to connect the roofs of the sections with specific junction shapes. The 

parameterized roof shapes of all cells are determined from the normal direction of LiDAR 
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points. The entire 3D building model is represented by integrating the parameterized roof 

elements with the neighboring pieces. Although a high level of automation is achieved, the 

method still requires manual works to adjust cell parameters and to model more complex 

roof shapes like mansard, cupola, barrel, and even some detail elements. Lafarge et al. 

(2010) reconstructed building models from a digital surface model (DSM) by combining 

generic and parametric methods. Buildings are considered as assemblages of 3D 

parametric blocks from a library. After extracting 2D building supports, 3D parametric 

blocks are placed on the 2D supports using Gibbs model which controls both the block 

assemblage and the fitting to data. The optimal configuration of 3D blocks is determined 

using the Bayesian framework. They mentioned that the optimization step needs to be 

improved to achieve both higher precision and shorter computing time as future work. 

Based on a predefined primitive library, Huang et al. (2013) conducted a generative 

modeling to reconstruct roof models that fit the data. The library provides three groups 

including 11 types of roof primitives whose parameters consist of position parameters, 

contour parameters, and shape parameters. Building roofs are represented as one primitive 

or an assemblage of primitives allowing primitives overlaps. For combining primitives, 

they derived combination and merging rules which consider both vertical and horizontal 

intersections. Reversible Jump Markov Chain Monte Carlo (RJMCMC) with a specified 

jump mechanism is conducted for the selection of roof primitives, and the sampling of 

their parameters. Although they have shown potential and flexibility of their method, there 

are issues to be solved: 1) uncertainty and instability of the reconstructed building model, 
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2) influence of prior knowledge and scene complexity on completeness of the 

reconstruction, and 3) heavy computation time. 

 In contrast with model-driven approaches, data-driven approaches do not make any 

assumptions regarding to the building shapes, thus they can theoretically handle all kinds 

of buildings. However, the approach may cause considerable deformations due to the 

sensitivity to surface fluctuations and outliers in the data. Also, it requires a regularization 

step during the reconstruction process. In general, the generic approach starts by extracting 

building modeling cues such as surface primitives, step lines, intersection lines, and outer 

boundary lines followed by reconstructing the 3D building model.  

 The segmentation procedure for extracting surface primitives divides a given data 

set into homogeneous regions. Classical segmentation algorithms such as region growing 

(Rottensteiner et al., 2005, Kada and Wichmann, 2012) and RANSAC (Tarsha-Kurdi et al., 

2008) can be used for segmenting building roof planes. Also, Sampath and Shan (2010) 

conducted eigenanalysis for each roof point within its Voronoi neighbourhood, and then 

adopted the fuzzy k-means approach to cluster the planar points into roof segments based 

on their surface normal. Then, they separated the clusters into parallel and coplanar 

segments based on their distance and connectivity. Lafarge and Mallet (2012) extracted 

geometric shapes such as planes, cylinders, spheres, or cones for identifying the roof 

sections by fitting points into various geometric shapes, and then proposed a method for 

arranging both the geometric shapes and the other urban components by propagating point 

labels based on MRF. Yan et al. (2014) proposed a global solution for roof segmentation. 

Initial segmentation is optimized by minimizing a global energy function consisting of the 
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distances of LiDAR points to initial planes, spatial smoothness between data points, and 

the number of planes.  

 After segmenting points or extracting homogeneous surface primitives, modeling 

cues such as intersection lines and step lines can be extracted based on geometrical and 

topological relationships of the segmented roof planes. Intersection lines are easily 

obtained by intersecting two adjacent planes or segmented points while step lines are 

extracted at roof plane boundary with abrupt height discontinuity. In order to extract step 

lines, Rottensteiner et. al (2005) detected edge candidate points and then extracted step 

lines from an adjustment considering edge points within user-specified threshold. Also, 

Sohn et al. (2008) proposed a step line extractor, called Compass Line filter (CLF), for 

extracting straight lines from irregularly distributed LiDAR points. Although outer 

boundary is one type of step line, it is recognized as a separate process in many data-driven 

approaches. Some researchers delineated initial boundary lines from building boundary 

points using alpha shape (Dorninger and Pfeifer, 2008), ball-pivoting (Verma et al., 2006), 

and contouring algorithm (Zhou and Neumann, 2008). Then, the initial boundary was 

simplified or regularized. The detail reviews for simplification or regularization of 

boundary will be given in section 2.1.2.  

 Once all building modelling cues are collected, 3D building models are 

reconstructed by aggregating the modelling cues. In order to reconstruct topologically and 

geometrically correct 3D building models, Sohn et al. (2008) proposed the Binary Space 

Partitioning (BSP) which progressively partitions a building region into homogeneous 

binary convex polygons. Rau and Lin (2011) proposed a line-based roof model 
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reconstruction algorithm, namely TIN-Merging and Reshaping (TMR), to reconstruct 

topology with geometric modeling. Oude Elberink and Vosselman (2009), and Perera and 

Maas (2014) used a roof topology graph to preserve roof topology. In the latter, roof 

corners are geometrically modeled using the shortest closed cycles and the outermost cycle 

derived from the roof topology graph.  

 As mentioned before, a model-driven approach and a data-driven approach have 

different characteristics in the modeling process. Thus, Satari et al.(2012) proposed a 

multi-resolution hybrid approach to combine advantages of model-driven and data-driven 

approaches. In their study, the data-driven method was applied to reconstruct the main roof 

planes while the model-driven method was adopted to the models of appended parts such 

as dormers. 

 

2.1.2 Building Boundary Regularization 

Detection of building boundary is an intermediate step for 3D building reconstruction 

although it is not required in all building reconstruction algorithms. Generally, the initial 

boundary extracted from irregular LiDAR points have jagged shape with large numbers of 

vertices. Thus, a simplification or regularization process is required to delineate plausible 

building boundaries with certain regularities such as orthogonality, parallelism, and 

symmetry. Various techniques related to the regularization of building boundary have been 

proposed in the literature. Reviews on boundary detection were given by Brenner (2010). 

In most methods, the boundary detection process starts by extracting boundary points from 

segmented points. From extracted boundary points, initial building boundaries are 
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generated by tracing boundary points followed by a simplification or regularization process 

which improves the initial boundary. The easiest method to improve initial boundary is to 

simplify the initial boundary by removing vertices but preserving relevant points. The 

well-known Douglas-Peucker (DP) algorithm (Douglas and Peucker, 1973) is widely 

recognized as the most visually effective line simplification algorithm. The algorithm starts 

by selecting two points which have the longest distance and recursively adding vertices 

whose distance from the line is less than a given threshold. However, the performance of 

the algorithm fully depends on the used threshold and is substantially affected by outliers. 

Another approach extracts straight lines from boundary points using the Hough Transform 

(Morgan and Habib, 2002) or using RANSAC (Fishcler and Bolles, 1981). The extracted 

lines are then connected by intersections of the extracted straight lines to generate closed 

outer boundary lines. However, Brenner (2010) pointed out that the methods require some 

additional steps due to missing small building edges.  

 On the other hand, the regularization process imposes certain regularities when the 

initial boundary is simplified. Vosselman (1999) assumed that building outlines are along 

or perpendicular to the main direction of a building. After defining the position of a line by 

the first two boundary points, the line is updated using the succeeding boundary points 

until the distance of a point to the line exceeds some bound. The next line starts from this 

point in a direction perpendicular to the previous line. A similar approach was proposed by 

Sampath and Shan (2007). They grouped points on consecutive edges with similar slopes 

and then applied a hierarchical least squares solution to fit parametric lines representing the 

building boundary.  
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 Some methods are based on the model hypothesis and verification approach. Ameri 

(2000) introduced the Feature Based Model Verification (FBMV) for modification and 

refinement of polyhedral-like building objects. In their approach, they imposed the 

geometrical and topological model information to the FBMV process as external and 

internal constraints which consider linearity for straightening consecutive lines, 

connectivity for establishing topology between adjacent lines, orthogonality, and co-

planarity. Then, the weighted least squares minimization was adopted to produce a good 

regularized description of a building model. Weidner and Förstner (1995) adopted the 

Minimum Description Length (MDL) concept to regularize noisy building boundaries. For 

four local consecutive points, ten different hypothetical models are generated with respect 

to regularization criteria. Then, MDL, which depends on the mutual fit of the data and 

model and on the complexity of the model, is used to find the optimal regularity of the 

local configuration. Jwa et al. (2008) extended the MDL-based regularization method by 

proposing new implicit hypothesis generation rules and by re-designing model complexity 

terms where line directionality, inner angle and number of vertices are considered as 

geometric parameters. Furthermore, Sohn et al. (2012) used the MDL-based concept to 

regularize topologies within rooftop model. Zhou and Neumann (2012) introduced global 

regularities in building modeling to reflect the orientation and placement similarities 

among 2.5D elements which consist of planar roof patches and roof boundary segments. In 

their method, roof-roof regularities, roof-boundary regularities, and boundary-boundary 

regularities are defined and then the regularities are integrated into a unified framework.   
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2.2 Data Fusion 

The integration of data and knowledge from several sources is known as data fusion. Hall 

and Llinas (1997) defined data fusion as follows: "Data fusion techniques combine data 

from multiple sensors and related information from associated databases to achieve 

improved accuracy and more specific inferences than could be achieved by the use of a 

single sensor alone." In the remote sensing community, data fusion combines multiple 

sources of data acquired with different spatial and spectral resolution to improve the 

potential values and interpretation performances of the source data and to produce a high-

quality visible representation of data. Remote sensing fusion techniques can be classified 

into three different levels: 1) pixel/data level, 2) feature level, and 3) decision level (Pohl 

and van Genderen, 1998). Pixel level fusion combines raw data from multiple sources to 

yield a single resolution datum. The pixel level fusion of optical images is well known as 

the pan-sharpening technique which improves spatial resolution of panchromatic (PAN) 

image by injecting structural and textual details of multi-spectral (MS) images or SAR 

images. Feature level fusion combines features extracted from multiple data sources. 

Because features are extracted from different characteristics of different sensors, the 

extracted features can provide additional valuable properties for various applications. 

Decision or interpretation level fusion combines the results, which are individually 

processed, to make a final decision. The decision level fusion methods contain voting 

methods, statistical methods, and fuzzy methods. Zhang (2010) provides reviews on the 

three different levels of fusion techniques. 
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 In this thesis, our interest is feature level fusion. In particular the fusion of LiDAR 

and optical images for building reconstruction. Although many building reconstruction 

algorithms using single data provide some promising results, the integration of two 

complementary datasets can improve the quality of 3D building models with an increase of 

available information. In particular, combining LiDAR point clouds and optical images for 

rooftop modeling have been exploited by many researchers (Haala and Kada, 2010). In 

previous studies, image information in the fusion approach is mainly used for four 

different purposes in terms of building reconstruction: 1) extraction of building points 

while removing non-building points such as tree points, 2) improvement of segmentation, 

3) improvement of building boundary, and 4) texture mapping. For building region 

extraction, Chen et al. (2005) used spectral information and texture of color images. Sohn 

and Dowman (2007) used Normalized Difference Vegetation Index (NDVI) to 

discriminate between buildings and trees. Demir and Baltsavias (2012) detected building 

regions by combining results of four different building detection methods which were 

respectively derived from combinations of spectral information and NDVI of image data 

and spatial distribution of LiDAR data.  

 Awrangjeb et al. (2013) proposed an image line guided technique to robustly 

segment building points into individual roof planes. Lines extracted from images were 

classified into ground, tree, roof edge, and roof ridge-lines using the ground mask, colour 

and texture information of the image. Lines classified as roof edge or roof ridge were used 

to define robust seed regions for region growing for roof plane segmentation. Cheng et al. 

(2011, 2013) used images to refine initial roof point segmentation derived from LiDAR 
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data based on the Shrink-Expand technique. Spectral and texture information (entropy) of 

images were used as a criterion for judging the reliability of segmentation.  

 Rottensteiner and Briese (2003) proposed wire frame fitting to improve the 

geometric quality of the polyhedral models created from LiDAR data. Image edges were 

matched with LiDAR-driven edges and then the matched image edges were considered in 

the estimation of model parameters. Hu et al. (2006) proposed a hybrid modeling system 

where building boundaries and plane surfaces were extracted from image and LiDAR data, 

respectively. Lee et al. (2008) proposed a method to extract the boundaries of complex 

buildings from LiDAR and photogrammetric images. Coarse building boundaries 

generated by LiDAR are simply substituted with image edges to extract precise building 

boundaries by matching with some constraints such as length ratio, angle and distance. 

Kim and Habib (2009) similarly replaced initial building boundaries by 3D lines which 

have the biggest spectral difference between two flanking regions. Sohn et al. (2013) 

proposed a sequential fusion method to improve the boundary quality of existing building 

models based on the hypothesis and test (HAT) framework. Image lines were used to 

propose possible hypotheses. Cheng et al. (2011, 2013) also used image data to extract 

building boundary and step lines. After establishing relationships between 2D image lines 

and 3D LiDAR points, 3D lines were determined from multi-view images. Two rectangle 

boxes along orthogonal directions of a line segment were analyzed to separate step and 

non-step line segments. 3D building models were reconstructed by segmented roof points, 

3D step lines, 3D ridge lines, and 3D boundaries using the Split-Merge-Shape (SMS) 

method.  
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 In order to achieve photorealistic rendering, Frueh et al. (2004) proposed a way to 

texture-map a LiDAR-driven 3D building models with oblique aerial images. After 

registering the oblique image with the existing building model, an optimal image for each 

triangle of the model was selected for texture by taking into account occlusion, image 

resolution, surface normal orientation, and coherence with neighbor triangles.  

 

2.3 Registration 

Registration is an essential process when multi-data sets are used for various applications 

such as object recognition, environmental monitoring, change detection, and data fusion. In 

computer vision, remote sensing, and photogrammetry, this includes registrations of the 

same source taken from different viewpoints at different times (e.g., image to image), 

between datasets collected with different sensors (e.g., image and LiDAR), and between an 

existing model and remotely sensed raw data (e.g., map and image). Numerous registration 

methods have been proposed to solve the registration problems for given environments and 

for different purposes (Brown, 1992; Fonseca and Manjunath, 1996; Zitova and Flusser, 

2003; Mishra and Zhang, 2012). Regardless of data types and applications, the registration 

process can be recognized as a feature extraction, and correspondence problem (or 

matching problem) between datasets. Brown (1992) categorized the existing matching 

methods into area-based, and feature-based methods according to their nature. Area-based 

matching methods use image intensity values extracted from image patches. They deal 

with images without attempting to detect salient objects. Correspondences between two 

image patches are determined with a moving kernel sliding across a specific size of image 
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search window or across the entire other image using correlation-like methods (Kaneko et 

al., 2003), Fourier methods (Castro and Morandi, 1987), mutual information methods 

(Viola and Wells, 1997), and others. In contrast, feature-based methods use salient objects 

such as points, lines, and polygons to establish relations between two different datasets. In 

feature matching processes, correspondences are determined by considering the 

attributions of the used features. In model-to-image registration, most of the existing 

registration methods adopt a feature-based method because many 3D building models have 

no texture information.  

 In terms of features, point features such as line intersections, corners and centroids 

of regions can be easily extracted from both models and images. Thus, Wunsch and 

Hirzinger (1996) applied the Iterative Closest Point (ICP) algorithm to register 3D CAD-

models with images. The ICP algorithm iteratively revises the transformation with two 

sub-procedures. First, all closest point pair correspondences are computed. Then, the 

current registration is updated using the least square minimization of the displacement of 

matched point pair correspondences. In a similar way, Avbelj et al. (2010) used point 

features to align 3D wire-frame building models with infrared video sequences using a 

subsequent closeness-based matching algorithm. Lamdan and Wolfson (1988) used a 

geometric hashing method to recognize 3D objects in occluded scenes from 2D grey scale 

images. However, Frueh et al. (2004) pointed out that point features extracted from images 

cause false correspondences due to a large number of outliers.  

 As building models or man-made objects are mainly described by linear structures, 

many researchers have used lines or line segments instead of points as features. Hsu et al. 
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(2000) used line features to estimate 3D pose of a video where coarse pose was refined by 

aligning projected 3D models of line segments to oriented image gradient energy pyramids. 

Frueh et. al. (2004) proposed a model to image registration for texture mapping of 3D 

models with oblique aerial images. Correspondences between line segments are computed 

by a rating function, which consists of slope and proximity. Because an exhaustive search 

to find optimal pose parameters was conducted, the method is affected by the sampling 

size of the parameter space, and it is computationally expensive. Eugster and Nebiker 

(2009) also used line features for real-time geo-registration of video streams from 

unmanned aircraft systems (UAS). They applied relational matching, which does not only 

consider the agreement between an image feature and a model feature, but also takes the 

relations between features into account. Avbelj et al. (2015) matched boundary lines of 

building models derived from DSM and hyper-spectral images using an accumulator. 

Iwaszczuk et al. (2013) compared RANSAC and the accumulator approach to find 

correspondences between line segments. Their results showed that the accumulator 

approach achieves better results. Yang and Chen (2015) proposed a method to register 

UAV-borne sequent images and LiDAR data. They compared building outlines derived 

from LiDAR data with tensor gradient magnitudes and orientation in images to estimate 

key frame-image EOPs. Persad et al. (2015) matched linear features between Pan-Tilt-

Zoom (PTZ) video images with 3D wireframe models based on a hypothesis-verification 

optimization framework. However, Tian et al. (2008) pointed out several reasons that make 

the use of lines or edge segments for registration a difficult problem. First, edges or lines 

are extracted incompletely, and inaccurately, so that ideal edges might be broken into two 



30 

 

 

 

or more small segments that are not connected to each other. Secondly, there is no strong 

disambiguating geometric constraint, whereas building models are reconstructed with 

certain regularities such as orthogonality and parallelism.  

 Utilizing a prior knowledge of building structures can reduce the matching 

ambiguities and the search space. Thus, Ding et al. (2008) used 2D orthogonal corners 

(2DOC) as a feature to recover the camera pose for texture mapping of 3D building models. 

The coarse camera parameters were determined by vertical vanishing points that 

correspond to vertical lines in the 3D models. Correspondences between image 2DOC and 

DSM 2DOC were determined using Hough transform and generalized M-estimator sample 

consensus. However, they described their error source as too limited to correct 2DOCs 

matches, in particular for residential areas. Also, Wang and Neumann (2009) pointed out 

that 2DOC features are not very distinctive because the features can be extracted from only 

orthogonal corners. Instead of using 2DOC, they proposed 3 connected segments (3CS) as 

a feature which is more distinctive, and repeatable. For putative feature matches, they 

applied a two level RANSAC method, which consists of a local, and a global RANSAC for 

robust matching. Table 2.1 summarizes the existing model-to-image registration methods.   
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Table 2.1 Reviews on model-to-image registration methods 

Author Data type Feature Matching Method Application 

Lamdan and Wolfson, 

1988 

3D object model and 

2D grey scale image 
point Geometric Hashing Object recognition 

Wunsch and Hirzinger, 

1996 

CAD-Model and 

image 
point 

Iterative Closest 

Point 
Pose estimation 

Hsu et al., 2000 3D model and Video  line RANSAC 
Pose estimation 

and Visualization 

Frueh et al., 2004 
3D building model and 

oblique aerial image 
line 

Rating function 

(slope and proximity) 
Texture mapping 

Ding et al., 2008 
3D building model and 

oblique aerial image 

2DOC 

(2D 

orthogonal 

corner) 

Hough transform and 

generalized M-

estimator sample 

consensus 

Texture mapping 

Eugster and Nebiker, 

2009 

3D building model and 

video steams 
line Relational matching 

Real-time 

georegistration 

Wang and Neumann, 

2009 

LiDAR and aerial 

image 

3CS(3 

connected 

segments) 

Two level RANSAC Texture mapping 

Avbelj et al., 2010 

3D building model and 

infrared video 

sequences 

point 
Closeness-based 

matching 
Pose estimation 

Iwaszczuk et al., 2013 

3D building model and 

thermal infrared 

images 

line 
RANSAC and 

accumulator 
Texture mapping 

Avbelj et al., 2015 
DSM and hyper-

spectral image 
line Accumulator Image fusion 

Yang and Chen, 2015 
UAV sequent image 

and LiDAR 
line 

Histogram-based 

matching 

Key frame-image 

registration 

Persad et al., 2015 
PTZ video images and 

3D wireframe model 
line 

Line-based 

Randomized 

RANdom Sample 

Consensus 

Pose estimation 
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Chapter 3 

Dataset and Evaluation Metrics 

 

 

 

 

 

Evaluation is an essential process to analyze the performance of proposed algorithms. Although 

many performance evaluation methods have been proposed to assess the quality of 3D building 

models, the evaluation methods were designed for accommodating specific performance 

characteristics to be assessed. A new evaluation metric, which is appropriate for our research 

purpose, needs to be proposed. In this chapter, we describe datasets and an evaluation metric used 

to assess the performance of our proposed algorithms. In the first part of this chapter, we describe 

test datasets covering two different sites: 1) Vaihingen in Germany and 2) downtown Toronto in 

Canada. For each dataset, acquired data types and characteristics are explained in detail. In the 

second part of this chapter, existing performance evaluation methods are reviewed, and an 

evaluation metric for our research is proposed to properly evaluate different aspects of our results. 

The proposed evaluation metric consists of existing evaluation indices used in Rottensteiner et al. 

(2014) and newly proposed evaluation indices (shape-based indices and angle-based index). Also, 

conceptual design is introduced to explicitly assess topology accuracy based on the Roof Topology 

Graph (RTG).  
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3.1 Introduction 

One of the main research objectives pursued in this study is to reconstruct accurate high-

quality 3D building models. In this regard, the important question to be answered is how to 

measure the quality of the building models extracted from our proposed algorithms. In 

order to answer the question, we propose a novel evaluation metric. In this chapter, we first 

describe datasets used for our continuous modeling methods and their characteristics in 

detail (section 3.2). Secondly, we review existing evaluation methods in literature and then 

present a new evaluation metric to assess the performance of our proposed algorithms 

(section 3.3). 

 

3.2 Datasets 

In 2012, International Society of Photogrammetry and Remote Sensing (ISPRS) Working 

Group III/4 initiated a benchmark test on urban classification and 3D building 

reconstruction. This benchmark project supported by ISPRS, the German Society for 

Photogrammetry, Remote sensing and Geoinformation, and Teledyne-Optech provided 

state-of-the-art airborne data sets, which can be used by interested researchers in order to 

test their own data analytic algorithms on urban object classification and building 

reconstruction (Rottensteiner et al., 2012). By having a common test dataset, and 

evaluation metrics, researchers can conduct a comparative analysis of their own algorithms 

against others in a less data-sensitive and metrics-sensitive manner.  

 In this thesis, the benchmark datasets provided by the ISPRS WGIII/4 were used 

for evaluating the performance of our proposed methods. Two independent benchmark 
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datasets were acquired over Vaihingen in German, and downtown Toronto in Canada, 

respectively, with multi-sensor data including aerial images and airborne laser scanning 

(ALS) data. In addition, the ISPRS provides reference datasets, which include manually 

labelled classes, and building models (footprints and rooftop models in 3D) reconstructed 

by manual stereo plotting method. The ISPRS WGIII/4 also designed evaluation metrics to 

estimate the accuracy of the results produced by individual participants using the 

benchmark datasets; if a benchmark participant submits his/her 3D building modeling 

results to the ISPRS WGIII/4, the modeling performance is measured based on the 

working group's evaluation metrics and reference data. More detailed explanation on the 

ISPRS WGIII/4's evaluation metrics can be found in Rottensteiner et al. (2014) and via 

website (http://www2.isprs.org/commissions/comm3/wg4/detection-and-

reconstruction.html). Figure 3.1 shows the coverage of the two datasets.  

 

  

(a) (b) 

Figure 3.1 Test datasets: (a) Vaihingen and (b) downtown Toronto 

Area 1

Area 2

Area 3

Roads

file:///C:/Users/jaewook/Dropbox/Bruce%20Jung-Thesis/(http:/www2.isprs.org/commissions/comm3/wg4/detection-and-reconstruction.html
file:///C:/Users/jaewook/Dropbox/Bruce%20Jung-Thesis/(http:/www2.isprs.org/commissions/comm3/wg4/detection-and-reconstruction.html
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3.2.1 Dataset 1: Vaihingen 

The first dataset consisted of aerial image and ALS data covering Vaihingen in Germany 

(8°57' E, 48°56' N). The ALS data consisted of 5 strips over the test area acquired by a 

Leica ALS50 system with 45° field of view at a mean flying height of 500m above ground 

level. The mean point density for each strip is 4 points/m
2
 while the median point density 

with the overlap is 6.7 points/m
2
 (i.e., ~0.39m point spacing). Multiple echoes and 

intensities were also recorded. The original point clouds were post-processed by strip 

adjustment to correct for systematic errors. The 3D positional accuracy shows 

approximately ±10cm. High-resolution pan-sharpened color images were also captured 

from the Intergraph Z/I imaging's DMC (Digital Mapping Camera) with the ground 

sampling distance of 8cm and the radiometric resolution of 11 bits. The area is covered by 

five overlapped strips with two additional cross strips (Figure 3.2(b)). The interior and 

exterior parameters were estimated at the level of 1 pixel georeferencing accuracy. Table 

3.1 gives the interior orientation of the digital images of the Vaihingen area while Table 

3.2 shows the flight parameters of the block. Reference building models were generated by 

manual stereo plotting with a planimetric accuracy of about 10 cm.  

 

Table 3.1 Interior orientation of the digital images of the Vaihingen dataset  

Camera 

Image Format 
Pixel size 

(mm) 

Focal length 

(mm) 

Principal Point 

Row (pixel) 
Col  

(pixel) 

Xpp 

(mm) 

Ypp 

(mm) 

DMC 7,680 13,824 0.012 120.00 0.00 0.00 
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Table 3.2 Flight parameters of the Vaihingen 8cm DMC block  

Camera 
Focal 

length 

Flying height 

above Ground 

Forward 

overlap 
Side lap GSD 

Spectral 

bands 

Radiometric 

resolution 

DMC 120mm 900m 60% 60% 8cm IR-R-G 11 bit 

 

 
 

(a) (b) 

Figure 3.2 (a) ALS strips and (b) image configuration for the Vaihingen dataset 

  

 This dataset is divided into three sub datasets; Area 1 (37 buildings; 125m×200m) 

contains historic buildings with complex shapes; Area 2 (14 buildings; 170m×190m) is 

characterized by a few high-rising residential buildings; Area 3 (56 buildings; 150m×220m) 

is a purely residential area with detached houses. Figure 3.3 shows three sub-datasets in the 

area of Vaihingen. 
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Strip 5

Area 1
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Strip 25

10250132

10250133

10250134

10250135

10250130

10250131

Strip 5
10050103 1005010410050105 1005010610050107

Strip 4
10040081 10040082 100400831004008410040085



37 

 

 

 

   

(a) (b) (c) 

Figure 3.3 Vaihingen dataset: (a) Area1, (b) Area2, and (c) Area3 

 

3.2.2 Dataset 2: Downtown Toronto 

This dataset covers an area of about 1.45 km
2
 in the central area of the City of Toronto in 

Canada. ALS data were acquired by Optech's ALTM-ORION M in February 2009 with the 

aircraft speed of 120 knots at the flying altitude of 650m. The ALTM-ORION M operates 

at a wavelength of 1064nm and scans the underlying topography with a scan width of 20° 

and the scan frequency of 50 Hz. The dataset consists of 6 strips and the average point 

density with the overlap is approximately 6.0 points/m
2
 (i.e., ~0.41m point spacing). In 

addition to the ALS data, digital aerial images were taken by UltraCam-D with the ground 

sampling distance of 15cm and radiometric resolution of 8 bits (Table 3.4). The image data 

consist of three overlapping strips with 30% side lap and 60% forward overlap (Figure 3.4). 

The exterior orientation is estimated by a bundle adjustment method at the level of 1 pixel 

georeferencing accuracy. Table 3.3 gives a summary of camera parameters of the 

downtown Toronto dataset. The reference building models were generated by manual 
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stereo plotting with planimetric accuracy of about 20 cm and height accuracy of about 

15cm.  

 

Table 3.3 Interior orientation of digital images of the downtown Toronto dataset 

Camera 
Image Format Pixel size 

(mm) 

Focal length 

(mm) 

Principal Point 

Row(pixel) Col (pixel) Xpp (mm) Ypp (mm) 

UltraCam D 11,500 7,500 0.009 101.40 -0.18 0.00 

 

Table 3.4 Flight parameters of the downtown Toronto 

Camera 
Focal 

length 

Flying height 

above Ground 

Forward 

overlap 

Side 

lap 
GSD 

Spectral 

bands 

Radiometric 

resolution 

UltraCam D 101.4mm 1,600m 60% 30% 15cm R-G-B 8 bit 

 

  

(a) (b) 

Figure 3.4 (a) ALS strips and (b) image configuration for the downtown Toronto dataset 

  

 This data contains representative scene characteristics of a modern mega city in 

North America. This dataset is divided into two sub-datasets; Area 4 (58 buildings; 

530m×600m) contains a mixture of low- and high-storey buildings with a wide variety of 
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rooftop structures; Area 5 (530m×600m) is distinguished by a complex cluster of high-rise 

buildings. Figure 3.5 shows two sub-datasets in the Downtown Toronto area.  

 

  

(a) (b) 

Figure 3.5 Two test sites in the downtown Toronto area: (a) Area 4 and (b) Area 5 

 

3.3 Performance Evaluation Metrics  

Performance evaluation is the process of analysing the performance of a building 

reconstruction algorithm by comparing its results to the reference models or the results 

produced by other algorithms. Existing research works suggested different performance 

variables and objectives to evaluate the quality of boundaries extracted from developed 

algorithms: by measuring shape similarity in matched contours (Veltkamp, 2001); 

geometric quality of building boundaries extracted (Song and Haithcoat, 2005; Rutzinger 

et al., 2009); and 3D building models reconstructed from remotely sensed data 

(Rottensteiner et al., 2014; Meidow and Schuster, 2005). However, those previous studies 

pointed out that there is no single optimal performance evaluation method, and evaluation 
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results, even over the outcome produced by the same algorithm, vary depending on which 

evaluation metrics are used. This is because a performance evaluation metric is designed 

for accommodating specific performance characteristics to be assessed, which are 

subjective to different applications. Therefore, more careful selection of performance 

evaluation metrics should be taken into account. In this chapter, we will discuss 

characteristics of existing evaluation methods suggested by previous research works on 

building reconstruction (section 3.3.1), and propose a new metric which is appropriate for 

our research purpose of continuous model reconstruction (section 3.3.2).   

 

3.3.1 Existing Evaluation Methods 

Existing evaluation methods for the assessment of building models can be roughly divided 

into two categories; 1) error rates measured based on confusion matrix and 2) shape 

similarity measuring methods. The former measures the completeness, correctness, and 

quality to assess the overlapping quality between algorithm results and references, while 

the latter calculates geometric accuracy and shape similarity between matched model 

boundaries. The following sections review the two types of evaluation methods in detail.  

 

3.3.1.1  Evaluation Using Confusion Matrix 

A confusion matrix, also known as an error metric, has been often used for assessing the 

performance of an algorithm, typically spatial object detection, and supervised learning. As 

a quality measure for object reconstruction algorithms, each column of the matrix 

represents the instances in a reconstructed object (a predicted class in supervised learning), 
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while each row represents the instances in a reference object (an actual class) or vice-versa. 

In this confusion matrix with two rows and two columns, we can compute the number of 

False Positive (FP), False Negative (FN), True Positive (TP), and True Negative (TN). 

These four performance elements allow more detailed analysis than mere proportion of 

correct detection. An algorithmic outcome can be positive if an object or image space 

(evaluation space) is occupied by the reconstructed model or negative if an evaluation 

space is not occupied by reconstructed model. The algorithm outcome may or may not 

match the subject's actual status (reference model); the matched case for true, otherwise for 

false. In this context, we can summarize the definitions of the four performance elements: 

 True Positive: Total areas of a reconstructed model correctly identified by a 

reference model; 

 False Positive: Total areas of a reconstructed model incorrectly identified by a 

reference model; 

 True Negative: Total areas of a missing model correctly identified by a reference 

model; 

 False Negative: Total areas of a missing model incorrectly identified by a reference 

model. 

 

 Then, using the confusion matrix and the four performance elements, the 

quantitative values for completeness, correctness and quality criteria can be determined for 

the results of reconstructed building models (Rutzinger et al., 2009): 
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(3.1) 

 

 The completeness refers to the fraction of the reference model which was correctly 

denoted as "building" by extracted models. The correctness measures how well the 

extracted model matches the reference model. The quality is a combination metric of 

completeness and correctness. One question then arises how we can determine the 

quantitative values of TP, FN, and FP in Eq. (3.1). There are two ways to address this 

problem: 1) area-based methods, and 2) object-based (or count-based) methods. Area-

based methods analyze overlapping areas between reference and extracted models as 

shown in Figure 3.6.  

 

 

Figure 3.6 Area-based evaluation between extracted model (A) and reference (B) 

(Movahedi, 2015). 
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However, Rutzinger et al. (2009) pointed out that the area-based method can mislead the 

evaluation results, which are sensitive to the quality of building (or roof plane) boundaries 

extracted. The accuracy of building boundaries are influenced not only by poor 

performance of an algorithm used, but also many other error sources including data 

resolution, sensor calibration errors, registration errors, differences in semantic definition 

and accuracy of reference data (Rutzinger et al., 2009; Foody, 2002). There is no 

comprehensive way to separate errors caused by the algorithm from the other non-

algorithmic errors in order to understand a pure characteristic of an algorithm's 

performance only.  

 On the other hand, an object-based evaluation method determines the quantitative 

values of TP, FN, and FP by counting the number of building objects belonging to each 

property. Overlapping areas can be used to determine whether two objects in reference and 

extracted results are correctly or incorrectly identified. This object-based identification is 

facilitated by introducing a specific threshold over an overlapping area. A fundamental 

underlying assumption behind this is that the value of overlapping threshold reflects the 

total influence of errors caused by non-algorithmic mechanisms to the accuracy of 

extracted object boundaries. However, determining the overlapping threshold is not a 

trivial task and an ad-hoc value is given. Thus, the object-based evaluation results are 

sensitive to this hard-constraint; the smaller the threshold used, the more overoptimistic the 

result may be. In many applications, a certain value between 50% and 70% has been 

typically used as a threshold value. Instead of using a single threshold, Rutzinger et al. 
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(2009) proposed investigating a range of system performance of building detection that 

was evaluated using multi-range thresholds.  

 The other issue, which should be addressed in object-based evaluation, is how to 

deal with topology inconsistency between reference models and extracted models. The 

topology inconsistency mainly occurs due to incomplete segmentation, and different 

representations of model structure. Thus, topology relations between two models in 

reference and extracted results may be represented by 1:m, n:1, or n:m correspondences. 

This causes ambiguity in identifying corresponding objects to be compared. In order to 

address this problem, Rutzinger et al. (2009) proposed a topological clarification method to 

evaluate the quality of building detection. The method changed building label image by a 

splitting and merging process where each building in one dataset has only zero or one 

corresponding buildings in the other dataset. This process reduces the correspondence 

ambiguity. Then, the completeness, correctness, and quality were computed based on the 

changed building label image.  

 Although methods based on the confusion matrix are typically used to assess 

overlapping quality between two models in reference and extracted results, Song and 

Haithcoat (2005) recommended to use the confusion matrix-based evaluation method with 

geometric accuracy such as root mean square error (RMSE) and shape similarity indices. 

 

3.3.1.2  Shape-based Evaluation 

Shape-based evaluations measure how two shapes resemble each other. The shape-based 

evaluations can be used to assess qualities of building models in terms of geometric 
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accuracy and shape similarity because building models are represented by a combination of 

planes of various shapes. In this section, we introduce several shape-based evaluation 

methods and their properties which are appropriate to assess qualities of building models. 

 

Minkowski distance (Lp distance) 

One of the most popular indices to measure a degree of shape similarity between two 

contours is Minkowski distance or Lp distance. Given two points             and 

           , the Minkowski distance of order p is defined as:  

 

                 
  

                                                (3.2) 

 

 For    , Minkowski distance is a metric to quantify a physical space displaced 

between given vectors. Manhattan distance and Euclidean distance can be considered as 

special cases of Minkowski distance: p=1 for Manhattan distance, and p=2 for Euclidean 

distance in Eq. (3.2). A well-known root mean square error (RMSE) uses Euclidean 

distance to measure the geometric accuracy of point vectors (test vertices) produced by an 

algorithm where reference point vectors (reference vertices) are used as check points. A 

shape similarity between test and reference vectors can be estimated by measuring RMSE. 

However, uniquely identifying a one-to-one correspondence between given two vectors is 

a challenging problem. This is because different mechanisms are applied for producing 

respective point vectors and thus resulting physical properties (e.g., numbers of vertices, 

curvatures, length, etc) differ from each other. Rottensteiner et al. (2014) suggested a 
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nearest neighborhood method to identify vertex correspondences between roof models 

generated by an algorithm and manually digitized reference models for evaluating the 

algorithmic performance (e.g., RMSE). They employed a proximity threshold to identify 

those corresponding point sets from two model vectors. However, a pre-fixed value for the 

proximity criterion was employed without considering local variations of point extractions 

that exist in test and reference vectors. This non-adoptive matching process may lead to 

errors in determining correspondences at a certain extent which are not ignorable.  

 

Simple shape descriptors 

As an alternative to the correspondence-based measurement, one can evaluate the shape 

similarity by measuring shape descriptors such as area, perimeter, circularity 

(perimeter
2
/area), eccentricity (length of major axis/length of miner axis), and major axis 

orientation. These shape descriptors can be measured over given entire vectors; measuring 

their similarities between two vector spaces does not require determining individual vertex 

correspondence locally and provides a shape characteristics of respective vectors at global 

scale (object level). However, the shape descriptors are not robust enough to discriminate a 

subtle difference of vectors, especially if given vectors to be evaluated belong to a similar 

object category, and shows its weakness to recognizing intra-variations of shapes (Zhang et 

al., 2004).  
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Hausdorff Distance  

Hausdorff distance is used as a method for determining the resemblance of one point set to 

another based on a max-min distance (Huttenlocher et al., 1993). Let             and 

            be two finite point sets, a directed Hausdorff distance        is defined as 

the largest distance from any point in A, to the closest point in B  as follows: 

 

                                                                      (3.3) 

 

where sup and inf represent the supremum and the infimum, respectively; d is an 

underlying norm on the points of A and B (e.g., L2 or Euclidean distance). The Hausdorff 

distance is defined as: 

 

                                                                   (3.4) 

 

 The advantage of the Hausdorff distance is that no correspondence between two 

shapes to be compared is needed. However, Hausdorff distance is sensitive to noise 

because a single outlier may determines the distance value. In evaluation of building 

models, the properties are useful to assess the quality of building models. In contrast to 

RMSE, which assesses the average difference between two models, the Hausdorff distance 

can measure the maximum shape difference caused by over-simplification and under-

simplification without any pre-defined value for the proximity criterion. Figure 3.7 shows 

a concept of the Hausdorff Distance.  
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Figure 3.7 Hausdorff distance 

 

Turning Function Distance 

A turning function       measures the angle of the counter-clockwise tangent as a 

function of the arc lengths in order to represent a shape A (Arkin et al., 1991). It begins in a 

certain point (reference point) on A's boundary, and firstly measures the counter-clockwise 

angle between the tangent at the point and the horizontal axis (x-axis).       keeps track 

of the turning that takes place, increasing with left-hand turns and decreasing with right-

hand turns as shown in Figure 3.8. The Lp distance between       and       is applied to 

measure shape similarity as follows: 

 

                        
                                     (3.5) 

 

where      denotes the Lp norm. A turning function distance is invariant under scale, 

rotation, and translation. Also, the distance can measure a resemblance between two shapes 

at global scale, and any vertex correspondences do not need to be established.  
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Figure 3.8 Turning function distance (Cakmakov and Celakoska, 2004) 

 

3.3.2 Proposed Performance Evaluation Metrics 

The ISPRS benchmark project on urban classification and 3D building modeling led by 

ISPRS WGIII/4 provides evaluation metrics in order to estimate the results obtained from 

the latest state-of-the-art algorithms for building detection, and 3D building reconstruction 

(Rottensteiner et al., 2014). The ISPRS evaluation metrics were designed for measuring the 

performance characteristics of individual algorithms by combining multiple evaluation 

indices including confusion matrix (area-based and object-based), topological analysis 

among roof planes, and geometric accuracy (RMSE). Thus, the ISPRS metrics allow us to 

evaluate the algorithm performance with many different aspects, rather than relying on a 

single measure. A summary of the ISPRS evaluation metrics in presented in Table 3.5.  
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Table 3.5 Evaluation indices used in Rottensteiner et al. (2014) 

Evaluation Index Description Object to be evaluated 

Comparea, Corrarea, 

Qarea 

Completeness, correctness, and quality 

determined on a per-area level. 
• Building detection 

Compobj, Corrobj, 

Qobj 

Completeness, correctness, and quality 

determined on a per-building level or 

a per-roof-plane level. 

• Building detection 

• Building reconstruction 

Comp50, Corr50, Q50 

Completeness, correctness, and quality 

determined on a per-building level but 

only considering building larger than 

50m
2
. 

• Building detection 

Comp10, Corr10, Q10 

Completeness, correctness, and quality 

determined on a per-roof-plane level 

but only considering roof planes larger 

than 10m
2
. 

• Building reconstruction 

N1:M, NM:1, NN:M Difference in the topologies of the 

extracted roof planes and the reference 
• Building reconstruction 

RMSXY 
Geometrical errors in planimetry; only 

distances shorter than 3m are 

considered. 

• Building detection 

• Building reconstruction 

RMSZ Geometrical error in height  • Building reconstruction 

 

 Although the ISPRS evaluation metrics provide one of the most extensive sets of 

indices used for measuring the performance of 3D roof modeling algorithms, they also 

have some limitations. Firstly, the ISPRS evaluation metrics focus on measuring a local 

similarity between references and resulting rooftop models produced by an algorithm by 

assessing overlapping areas or local geometric displacement between two models. 

However, these measures do not provide a holistic shape similarity such as the differences 

in main angle of a building object, Hausdorff distance and turning function distance 
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described in previous sections. As a consequence, the ISPRS metrics might have a 

tendency to be sensitive to per-roof segmentation accuracy or reconstructing accuracy of 

local vertices, missing the fact that global shape similarity is equally important to evaluate 

an algorithmic performance in 3D rooftop modeling. Secondly, the ISPRS evaluation 

metrics assess the geometric accuracy of rooftop models over the model's vertices only if 

their proximity to corresponding reference ones fall in a pre-specified error bound. Thus, 

by excluding model vertices beyond a given proximity threshold, resulting performance 

measures tend to be overoptimistic. The proximity threshold is determined by considering 

expected errors involved in rooftop models generated by an algorithm. However, it is 

difficult to predict this error tolerance in general in advance, and it is sensitive to locality. 

Lastly, the ISPRS evaluation matrix provides a mean to measure the accuracy of 

topological relations among adjacent roof planes produced by an algorithm against 

correspond reference models (1:M, N:1, and N:M relations). However, these ratios 

implicitly suggest error rates in roof plane generation, but do not provide an explicit 

understanding of topological errors produced by the algorithm; these indices represent 

planar segmentation errors, rather than topological errors. Thus, the ISPRS topological 

ratio indices might not correspond to the errors evaluated by our visual inspection.  

 In this study, we propose a set of performance measures evaluating the accuracy of 

rooftop models generated by our method presented in this thesis. For this purpose, a 

majority of the performance metrics were adopted from the ISPRS benchmark project 

(Table 3.5). However, in order to address limitations of the ISPRS performance metrics, 

we adopted additional measures, which include: 1) Hausdorff distance, 2) turning function 
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distance, and 3) main angle index (Table 3.6). As discussed previously, shape similarity 

measure is an important indicator evaluating the performance of rooftop model generation, 

which provides a global perspective in shape matching, and thus compensates the 

limitation of local similarity measures such as geometric accuracy (e.g., RMSE).  

 Hausdorff distance is a shape similarity measure between reference models and 

algorithmic models, which takes the maximum distance among the minimum distances 

measured between each vertex for two model datasets. Without introducing any threshold, 

total distance measured over entire shapes identifies a degree of shape similarity between 

two models matched. It can effectively assess how the reconstructed building model is 

over-simplified or under-simplified against its reference model. The turning function 

distance, as the second index of shape-based measures, represents a cumulative measure of 

the angles through which a polygonal curve turns. In contrast to Hausdorff distance 

measure (focusing on the measurement of over-simplification or under-simplification), 

turning function distance enables directly measuring similarity of turning patterns between 

reference and algorithmic models. However, as discussed in previous sections, applying 

the shape similarity measures is not a trivial task as it requires finding exact 

correspondences between reference and algorithmic models. Thus, we use a user-defined 

threshold for overlapping area to find correspondence between reference models and 

extracted models, and apply shape-based evaluation methods in two different stages: (1) 

for outer boundary and (2) roof planes with 1:1 correspondence.  

 In addition to Hausdorff distance and turning function distance, we assessed main 

orientation errors in building models generated by an algorithm (i.e., angle-based index). 
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This angle-based evaluation index measures the difference in main orientations of a 

building modelled in a reference dataset to the results produced by an algorithm. The main 

orientation of a building model is determined by analyzing the frequency of building lines 

for eight direction zones generated by the compass line filter (CLF) proposed by Sohn et al. 

(2008). A concept of CLF will be explained in Figure 4.7. Table 3.6 summarizes additional 

evaluation indices. Throughout this thesis, we use a set of performance metrics evaluating 

the performance of our building modeling methods by combining the indices addressed in 

Table 3.5 and Table 3.6. 

 

Table 3.6 Additional evaluation indices  

Evaluation Index Description Object to be evaluated 

Hausdorff Distance Evaluation for partly deformed shape 

• Building detection 

• Plane with 1:1 

correspondence 

Turning function 

Distance 
Evaluation for entire shape similarity 

• Building detection 

• Plane with 1:1 

correspondence 

Angle-based index 

Difference in main angle of building 

model between reference and resulting 

rooftop models. 

• Building detection 

• Building reconstruction 

 

 One remaining problem is how to explicitly measure topology inconsistency 

between the reference rooftop model and extracted rooftop model. We did not clearly solve 

the problem. However, we introduce a conceptual design for quantitatively measuring 

topology accuracy even though the method was not used to evaluate our proposed methods 

in this thesis. The method is based on the comparison of Roof Topology Graph (RTG) 

derived from the reference rooftop model and extracted rooftop model, and then assessing 
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topological accuracy by counting correctly matched edges. In RTG, a node represents a 

roof face, an edge represents the adjacency relationship of two roof faces (Oude Elberink 

and Vosselman, 2009). In this study, a graph edge is constructed if two roof faces share a 

common line (intersection line or step line). Figure 3.9(b) and (e) show RTGs constructed 

for a reference rooftop model and extracted rooftop model, respectively. We use the 

constructed RTGs for measuring topology accuracy between two building rooftop models. 

The process starts by finding correspondence between nodes (roof faces) by checking 

overlapping area where only 1:1, 0:1 or 1:0 correspondences are allowed. If other 

correspondences between two rooftop models (n:1, 1:m, or n:m) exist, roof faces, which 

have the maximum overlapping rate among possible node pairs, are considered to be 

matched, Once all corresponding nodes are determined, correctly matched edges can be 

identified by comparing node correspondences. For instance, Figure 3.9(c) and (f) shows 

matched nodes (red circle), and correctly matched edges (red line) in the reference rooftop 

model and extracted rooftop model, respectively. Then, a direct topology accuracy from 

the reference rooftop model to extracted rooftop model,       (or from extracted rooftop 

model to reference rooftop model,       ) can be estimated by calculating the number of 

matched edges over the number of total edges:       
                               

                       
. In 

the example of Figure 3.9,       and       are 40% and 73%, respectively. The result 

indicates that 40% of topology relations in the reference rooftop model can be explained by 

topology relations of the extracted rooftop model while 73% in extracted rooftop model 

can be described by reference rooftop model. The example shows that topology accuracy 

can be explicitly assessed. Although the introduced RTG-based accuracy measurement is a 
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conceptual design level, we believe that the method can be extended to quantitatively  

assess topology inconsistency in the future.   

 

   

(a) (c) (e) 

    

(b) (d) (f) 

Figure 3.9 RTG-based evaluation: (a) building rooftop model in reference, (d) extracted 

building rooftop model, (c) topology graph of (a), (d) topology graph of (b), (e) edges 

matched with (d) and (f) edges matched with (c) 

 

3.4 Summary 

In this chapter, we presented datasets and their characteristics, and evaluation metrics for 

assessing our results. The detailed descriptions of two datasets were given in the first part 
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of this chapter. The second part summarized existing evaluation methods in the literature 

by categorizing them into evaluations using confusion matrix and shape-based evaluation 

methods. Generally, there is no single optimal performance evaluation method, and 

individual existing evaluation methods assess specific performance characteristics to be 

assessed. Thus, based on the review of existing performance evaluation methods, we 

proposed evaluation metrics to test the performance of our proposed algorithms. The 

proposed evaluation metrics consists of existing evaluation methods, which focus on 

measuring a local similarity, and newly added shape-based and angle-based evaluation 

methods to assess different aspects of building models. Hausdorff distance and turning 

function distance were added to the evaluation metrics as shape-based indices. They can 

measure shape similarity at a global scale, and any correspondence between vertices 

derived from two models is not needed. Hausdorff distance is useful to measure over-

simplification and under-simplification of building models while turning function distance 

measures entire shape resemblance of two models to be compared. Also, we added an 

angle-based index in order to measure the difference of the main orientation of building 

models. The proposed evaluation metrics were used to assess different quality aspects of 

3D building models produced by our algorithms. In addition, we introduced a conceptual 

design to measure topology accuracy based on RTG even though the method was not used 

to evaluate our result. Future work is to extend the conceptual topology evaluation 

methods to explicitly assess topology inconsistency between two rooftop models.  
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Chapter 4 

Implicit Regularization for Reconstructing 

3D Building Rooftop Models Using LiDAR 

Data 

 

 

 

 

In this chapter, we propose a data-driven modeling approach to reconstruct 3D rooftop models 

from airborne laser scanning (ALS) data. The focus of the developed method is to implicitly 

impose building regularity on 3D building rooftop models by introducing flexible regularity 

constraints. This study covers a full chain of 3D building modeling from low level processing to 

realistic 3D building rooftop modeling. In the element clustering step, building-labelled point 

clouds are clustered into homogeneous groups by applying height similarity and plane similarity. 

Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, 

and step lines are extracted. Topology elements among the modeling cues are recovered by the 

Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is 

achieved by an implicit regularization process in the framework of Minimum Description Length 

(MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL 

optimization are automatically estimated based on Min-Max optimization and Entropy-based 

weighting method. The performance of the proposed method is tested over two large-scale datasets 

using an evaluation metric discussed in Chapter 3. The results show that the proposed method can 

robustly produce accurate regularized 3D building rooftop models.  
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4.1 Introduction 

A key problem domain that we address in this chapter is to reconstruct a 3D geometric 

model of building rooftop from remotely sensed data such as airborne laser point clouds. 

The representation that we follow for 3D rooftop models draws on ideas from geometric 

modeling used in Photogrammetry and Geographical Information Science (GIS). In this 

representation scheme, a 3D rooftop is modelled with either primitive geometric elements 

(i.e., points, lines, planes and objects), or primitive topological elements (i.e., vertices, 

edges, faces, and edge-groups (rings of edges on faces)). Typically, both primitive 

geometric and topological elements are used together for representing 3D rooftop models 

(e.g., CityGML and Esri ArcGIS's shapefile). CityGML is an open data model and XML-

based format for the storage and exchange of virtual 3D city models (Kolbe et al., 2005). 

 In CityGML, 3D rooftop models can be differently represented according to the 

level-of-detail (LoD). A prismatic model of rooftop that is a height extrusion of a building 

footprint is defined as LoD 1 in CityGML, while LoD 2 requires a detailed representation 

of the primitive geometric and topological elements in a 3D rooftop model. An important 

aspect in GIS-driven 3D model representation is that the reconstructed model elements 

should correspond to semantically meaningful spatial entities used in architecture, civil and 

urban planning: for instance, the reconstructed geometric elements represent roof lines 

(ridges, eaves), roof planes (gables, hips), vents, windows, doors, wall columns, chimneys, 

etc. Thus, a photo-realistic reconstructed rooftop model can be used for assisting human 

decisions on but not limited to asset management, renovation planning, energy 

consumption, evacuation planning, etc. As discussed in Rottensteiner et al. (2014), a city-



59 

 

 

 

scale building model will provide an important mean to manage urban infrastructure more 

effectively and safely for addressing critical issues related to rapid urbanization. In this 

thesis, we aim to reconstruct LoD 2 models of the rooftops from remotely sensed data.  

 Traditionally, 3D rooftop models are derived through interaction with a user using 

soft photogrammetric tools (e.g., multiple-view plotting or mono-plotting technology). 

This labour-intensive model generation process is tedious and time-consuming, which is 

not suitable for reconstructing rooftop models at city-scale. As an alternative method, great 

research efforts have been made for developing a machine-intelligent algorithm to 

reconstruct photo-realistic rooftop models in a fully-automated manner for the last two 

decades (Haala and Kada, 2010). Recently, airborne light detection and ranging (LiDAR) 

scanners became one of the primary data acquisition tools, which enable rapid capturing of 

targeted environments in 3D with high density and accuracy. Due to these advantages, 

state-of-the-art technologies for automatically reconstructing 3D rooftop models using 

airborne LiDAR data have been proposed by many researchers (Haala and Kada, 2010; 

Musialski et al., 2012; Wang, 2013; Rottensteiner et al., 2014; Tomljenovic et al., 2015). 

However, only limited success in a controlled environment has been reported, and the 

success of developing an error-free rooftop modeling algorithm is not achieved yet 

(Rottensteiner et al., 2014).  

 In general, 3D rooftop models are derived automatically from 3D LiDAR point 

clouds by (1) extracting the primitive geometric elements, namely "modeling cues" and (2) 

recovering the primitive topological elements among the modeling cues. A critical problem 



60 

 

 

 

to hinder the automation of 3D rooftop model generation is that many portions of the 

object (rooftop) are unknown, and recovered with errors caused by the following reasons: 

 Irregular point distribution: Despite the advantages of acquiring highly accurate 

and dense 3D point clouds over rooftops by airborne LiDAR, the sensor also has its 

limitations. Airborne LiDAR transmits a packet of collimated laser beams through 

an electro-optical scanner, and computes a location of scatter, which surface is 

reflected from the transmitted laser energy, by measuring a range between the 

transmitter and scatter with known position and orientation of the laser scanner. 

The size of the beam footprint and space between adjacent laser points on the 

ground are determined by the flying height of the airborne platform and scanning 

frequency. In addition, the weak energy reflectance due to absorption and ill-posed 

surface angle against scanning pose, where the peak is below a pre-defined 

threshold, are discarded. Thus, all these system variables produce an irregular 

distribution of laser point clouds over the targeted object surface. As a consequence, 

the modeling cues are often generated with errors, or are fragmented, or completely 

missing. These errors have a negative impact on the derivation of the topological 

elements, and thus the accuracy of rooftop model generation.  

 Occlusions: Like other sensors, airborne LiDAR also suffers from difficulties in 

capturing a complete view of objects due to occlusions. A disadvantageous viewing 

angle between the laser beam direction and object pose may hinder the illumination 

of laser beams on certain object surfaces, where no laser points are generated. In 

theory, airborne LiDAR has an ability to penetrate foliage; however, the amount of 
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returned laser energy varies depending on tree species, their maturity, seasonal 

effect and relative viewing angle between the laser beam and the leaf surface angle. 

A weak reflected energy will be neglected and not be able to produce any laser 

points over certain areas of roofs where trees grows nearby. These negative effects 

cause errors in recovering the primitive topological elements for reconstructing the 

rooftop model.  

 Unreliable data analysis: A few of the laser point cloud analytics are applied to 

detecting building objects, classifying non-roof-related objects (e.g., trees, roof 

superstructures, etc.), segmenting roof planar patches, extracting corners and line 

primitives, and other algorithms related to recovering the primitive topological 

elements (e.g., boundary tracing, edge-linking, etc.). The performance of these 

algorithms varies depending on data resolution, scene complexity and noise; they 

may produce some errors, which has a negative effect on recovering both modeling 

cues and topological elements.  

 

 As discussed previously, the aforementioned factors lead to errors in recovering the 

modeling cues sufficiently well for generating an error-free rooftop model. Typically, 

knowledge of a rooftop object of interest (e.g., roof type, structure, numbers of roof planes, 

etc.) is unknown. Thus, recovering all the primitive topological elements accurately with 

an error-free geometric model is a very challenging vision task. To address this issue, 

many researchers have introduced some modeling constraints to compensate the 

limitations of erroneous modeling cues (Vosselman, 1999; Verma et al., 2006; Sampath 
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and Shan, 2007; Huang et al., 2013). These constraints are used as a prior knowledge on 

targeted rooftop structures: (1) for constraining the modeling cues to conform with Gestalt 

law (i.e., parallelism, symmetry, and orthogonality), and linking fragmented modeling cues 

in the frame of perceptual grouping, and (2) by determining optimal parametric rooftop 

model fit into part of rooftop objects through a trial-and-error of model section from a 

given primitive model database. We refer these modeling constraints as an "explicit 

regularity" imposed on rooftop shape as the definition of regularity is fully and clearly 

described. However, as discussed in Chapter 2, only a few of the explicit regularity terms 

can be applicable, and the shapes of rooftops in reality appear too complex to be 

reconstructed with those limited constraints.  

 In this thesis, we focus on the data-driven modeling approach to reconstruct 3D 

rooftop models from airborne LiDAR data by introducing flexible regularity constraints 

that can be adjusted to given objects in the recovery of modeling cues and topological 

elements. The regularity terms that are used in this study represent a regular pattern of the 

line orientations, and the linkage between adjacent lines. In contrast to the term of "explicit 

regularity", we refer it as an "implicit regularity" because its pattern is not directly 

expressed, but found with given data and object (rooftop). This implicit regularity is used 

as a constraint for changing the geometric properties of the modeling cues and topological 

relations among adjacent modeling cues to conform with a regular pattern found in the 

given data. This data-adaptive regularity (or regularization process) allows us to 

reconstruct more complex rooftop models.  
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 In this chapter, we describe a pipeline of 3D rooftop model reconstruction from 

airborne LiDAR data. First, to gain some computational efficiency, we decompose a 

rooftop object into a set of homogeneous point clouds based on height similarity and plane 

similarity, from which the modeling cues of line and plane primitives are extracted. 

Secondly, the topological elements among the modeling cues are recovered by iteratively 

partitioning and merging over a given point space with line primitives extracted at a global 

scale using the Binary Space Partitioning (BSP) technique. Thirdly, errors in the modeling 

cues and topological elements are implicitly regularized by removing erroneous vertices or 

rectifying the geometric properties to conform with globally derived regularity. This 

implicit regularization process is implemented in the framework of Minimum Description 

Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the 

MDL optimization are automatically estimated based on Min-Max optimization and 

Entropy-based weighting method. The proposed parameter estimators provide optimal 

weight values that adapt according to building properties such as; size, shape, and the 

number of boundary points. The proposed pipeline of rooftop model generation was 

developed based on previous works reported in Sohn et al. (2012) and Jwa (2013). We 

extended these two works by proposing data-adaptive parameter estimation, conducting an 

extensive performance evaluation and engineering works to implement a computationally 

efficient modeling pipeline. The performance of the proposed method is evaluated using 

ISPRS benchmark data, which was also successfully reported by Rottensteiner et al. (2014). 
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4.2 3D Building Rooftop Reconstruction 

Figure 4.1 shows the overall workflow implemented for generating 3D building rooftop 

models from airborne LiDAR point clouds, where individual buildings are detected. The 

method consists of three main parts: 1) modeling cue extraction, 2) topology element 

reconstruction, and 3) regularization. In the modeling cue extraction, roof element clusters, 

lines (intersection and step lines), and outer-boundaries are extracted from a set of laser 

point clouds labelled as single building objects (i.e., building labelled points) (section 

4.2.1). Then, the topology relations among the modeling cues are established by BSP 

(section 4.2.2). Finally, an implicit regularization process is applied to outer-building 

boundaries and rooftop polygons. The regularization process is based on the framework of 

MDL in combination with HAT optimization (section 4.3). Note that the regularization 

process is conducted twice; once for regularizing building outer-boundaries which 

represent LOD1 models, and then for rooftop models which represent LOD2 models. Two 

types of weight parameters in the MDL-based objective function are automatically 

determined by Min-Max optimization and Entropy-based parameter estimation method, 

respectively (section 4.4). 
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Roof element clustering

Topology element 

recovery (BSP)

Step line extraction

Intersection line extraction

Plane clustering

Height clustering

Building-labelled

point clouds

Line extraction

 

Regularization

For rooftop

For outer boundaries
Outer-boundary extraction

(Boundary tracing)

LOD 2 model

LOD 1 model

Modeling cue extraction

 

Figure 4.1 The overall workflow developed for reconstructing 3D rooftop models from 

airborne LiDAR data 

 

4.2.1 Modeling Cue Extraction 

The first step towards generating 3D building models using LiDAR data is to gather the 

evidence of building structures (i.e., primitive geometric elements). Planes and lines are 

recognized as the most important evidence to interpret building structures due to the fact 

that 3D building rooftop models can be mainly represented by planar roof faces and edges. 

The two different modeling cues (planar and linear modeling cues) have different 

properties and can be separately extracted from LiDAR points. In section 4.2.1.1, building 

points are sequentially segmented into homogeneous clusters, first based on height 

similarity and then based on plane similarity. In section 4.2.1.2, linear modeling cues are 

extracted using boundary points of the homogeneous clusters.  
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4.2.1.1  Roof Element Clustering 

Roof element clustering segments building-labelled points into homogeneous rooftop 

regions with a hierarchical structure. A building rooftop in an urban area is a combination 

of multiple stories, each of which consists of various shapes of flat and sloped planes. 

Directly extracting homogeneous regions from entire building points may result in 

difficulties due to a high degree of shape complexity. In order to reduce the complexity, 

the building-labelled points are decomposed into homogeneous clusters by sequentially 

applying height similarity and plane similarity in order.  

 In the height clustering step, the rooftop region                  with n 

numbers of building-labelled points is divided into m height clusters                . 

Height similarity at each point is measured over its adjacent neighboring points in 

Triangulated Irregular Network (TIN). A point with the maximum height is first selected 

as a seed point, and then a conventional region growing algorithm is applied to add 

neighbor points to a corresponding height cluster with a certain threshold (  =1m). This 

process is repeated until all building rooftop points are assigned to one of the height 

clusters. As a result, the height clusters satisfy the property      
 
   ,         , 

    . Note that each height cluster consists of one or more different roof planes.  

 In the plane clustering step, each height cluster is decomposed into k plane clusters 

               based on a plane similarity criterion. The well-known random sample 

consensus (RANSAC) algorithm is adopted to obtain reliable plane clusters as suggested in 

previous studies (Ameri and Fritsch, 2000; Tarsha-Kurdi et al., 2008). The process starts 

by randomly selecting three points as seed points to generate an initial plane. After a 
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certain period of random sampling, a plane, which has the maximum number of inliers 

with a user defined tolerance distance ζ (ζ = 0.1m) from the estimated plane, is selected as 

a best plane. Points, which are assigned in the previous iteration, are excluded in the next 

step. The process continues until all points of the height cluster are assigned into certain 

plane clusters. The results of plane clustering, particularly over the intersecting region 

between two planes, are negatively affected by plane clustering order due to a so-called 

winner-take-all effect (Sohn et al., 2008); the first clustered plane has a tendency of over-

segmentation compared to the next clustered ones. Thus, segmentation errors may occur in 

points, which are close to intersecting regions of planes. To avoid this issue, a post-

validation process is introduced to refine those segmentation errors. The post-validation 

process reassigns points nearby plane boundaries by comparing distances between them 

and their adjacent planes. A final clustering decision is made by selecting the most optimal 

plane which shows the minimum proximity from the points of interest among adjacent 

plane candidates. Figure 4.2(b) and (c) show examples of height clusters and plane clusters, 

respectively, where different colors represent different clusters.  

 

  
 

(a) (b) (c) 

Figure 4.2 Roof element clustering: (a) building-labelled points (purple), (b) height 

clustering (pink and green), and (c) plane clustering (black, pink, blue and purple). 
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4.2.1.2  Linear Modeling Cue Extraction 

Once building-labelled points are segmented into homogeneous clusters with a hierarchical 

structure, linear modeling cues are extracted from the homogeneous clusters. We divide 

linear modeling cues into three different types in order to reduce the complexity in the 

modeling cue extraction process as follows: 1) outer boundaries of height clusters, 2) 

intersection lines, and 3) step lines within each height cluster.  

 In boundaries of height clusters, two adjacent planes have a large height 

discontinuity. Thus, outer boundaries of height clusters can be recognized as step lines. 

However, distinguishing between outer boundaries of height clusters and step lines within 

each height cluster can reduce ambiguity in the topology recovering process, which will be 

described in section 4.2.2. Also, outer boundaries of height clusters can serve to generate 

the LOD1 model. For these reasons, in this study, we separately extract outer boundaries of 

height clusters. The process starts by detecting boundary points of height clusters which 

share neighbour height clusters in a TIN structure. After selecting a starting boundary point, 

a next boundary point is determined by surveying neighbor boundary points, which are 

connected with the previous boundary point in TIN structure, and by selecting a boundary 

point which appears first in an anti-clockwise direction. The process continues until the 

boundary is closed. Then, the closed boundary is regularized by the MDL-based 

regularization method which will be described in section 4.3.  

 An intersection line candidate is extracted by two adjacent roof planes. Candidates 

are accepted as valid intersection lines if they separate the point sets of the planes and if a 

sufficient number of points is close to the generated lines. 
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 For step lines, boundary points of plane clusters, which do not belong to outer 

boundaries or intersection lines, are considered as candidate points for step lines. Given a 

sequence                of l candidate points, step lines are extracted in a similar way 

to the Douglas-Peucker (DP) algorithm. The process starts with a straight line (    ) 

connecting the first point and last point of the sequence and then recursively adding 

candidate points which have a distance larger than a user-defined tolerance (0.5m). Each 

segment of the line segments is considered a step line. Figure 4.3 gives examples of each 

type of linear modeling cues. 

 

    

(a) (b) (c) (d) 

Figure 4.3 Modeling cues extraction: (a) outer boundaries (black), (b) intersection lines 

(red), (c) step lines (blue), and (d) combined modeling cues 

 

4.2.2 BSP-based Topology Construction 

Once all modeling cues are collected, topological relations among the modeling cues are 

constructed by the BSP technique. In computer science, the BSP is a hierarchical 

partitioning method for recursively subdividing a space into convex sets with hyperlines. 

Sohn et al. (2008) used the BSP to recover topological relations of 3D building rooftop 

planes. We adopt the method to reconstruct a topologically and geometrically correct 3D 

building rooftop model from incomplete modeling cues. The topology recovery process 
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consists of a partitioning step and plane merging step. In the partitioning step, a 

hierarchical binary tree is generated by dividing a parent region into two child regions with 

hyperlines. The outer boundary is used as the initial building model    (Figure 4.4(a)). 

Both step and intersection lines      extracted as discussed in section 4.2.1.2 are formulated 

as hyperlines     , each of which will be involved in the subdivision of the given building 

polygon, which is described by: 

 

                                                                (4.1) 

 

where    and    represents the distance of the origin from a line segment   , and the slope 

angle between the edge normal and x-axis, respectively. A hyperline    is chosen to 

partition the parent region    into the positive region     and negative region     which 

are expressed  by: 

 

                                           

                                                             (4.2) 

 

As shown in Figure 4.4(b), a parent node is divided into two leaf nodes. This process 

continues until no hyperline exists in all leaf nodes. The partitioning result will be different 

when a different sequence of line segments is employed. The selection of hyperlines is 

achieved by a hypothesis and test scheme with a partition scoring function which consists 
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of plane homogeneity, geometric regularity and edge correspondence. Details about the 

partitioning optimum process can be found in Sohn et al. (2008).  

  

 

  

(a) (b) (c) 

Figure 4.4 Hierarchical generation of BSP tree: (a) initial region (  ) and hyperlines (  ), 

(b) partitioning process, and (c) merging process 

  

 In the plane merging step, starting from the node with the largest area in the 

generated BSP tree, a simple validation of normal vector compatibility is applied to its 

adjacent planes. The adjacent roof planes having similar normal vectors are merged. The 

merging process continues until no plane can be accepted by the co-planar similarity test 

(Figure 4.4(c)). Once all polygons are merged together, the 3D building rooftop model can 

be reconstructed by collecting final leaf nodes in the BSP tree. Figure 4.5 shows results of 

the partitioning step, merging step and the corresponding 3D rooftop model.   
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(a) (b) (c) 

Figure 4.5 Binary Space Partitioning: (a) partitioning step, (b) merging step, and (c) 

reconstructed model 

 

4.3 Implicit Regularization of Building Rooftop Models 

As mentioned in section 4.1, recovering error-free 3D rooftop models from erroneous 

modeling cues is a challenging task. Geometric constraints such as parallelism, symmetry, 

and orthogonality can be explicitly used as a prior knowledge on rooftop structures to 

compensate the limitations of erroneous modeling cues. However, explicitly imposing the 

constraints has limitations on describing complex buildings that appear in reality. In this 

study, we propose an implicit regularization where regular patterns of building structures 

are not directly expressed, but implicitly imposed on reconstructed building models 

providing flexibility for describing more complex rooftop models. The proposed 

regularization process is conducted based on HAT optimization in MDL framework. 

Possible hypotheses are generated by incorporating regular patterns that are present in the 

given data. MDL is used as a criterion for selecting an optimal model out of the possible 

hypotheses. The MDL concept for model selection is introduced in section 4.3.1 while 

section 4.3.2 introduces a method for hypothesis generation. 
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4.3.1 MDL Principles and Rooftop Modeling 

The MDL proposed by Rissanen (1978) is a method for inductive inference that provides a 

generic solution to the model selection problem (Grünwald, 2005). The MDL is based on 

the idea of transmitting data as a coded message, where the coding is based on some 

prearranged set of parametric statistical model. The full transmission has to include not 

only the encoded data values, but also the coded model parameter values (Davies, 2002). 

Thus, the MDL consists of model complexity and model closeness as follows:   

 

                                                             (4.3) 

 

where        indicates a goodness-of-fit of observations D given a model H while      

represents how complex the model H is.   is a weight parameter for balancing the model 

closeness and the model complexity. Assuming that an optimal model representing the data 

has the minimal description length, the model selection process allows a model H to be 

converged to the optimal model H* as follows: 

 

                                                              (4.4) 

  

 The first term in Eq. (4.3) is optimized for good data attachment to the 

corresponding model. With an assumption that an irregular distribution of data   

          with n measurements caused by random errors follows a Gaussian distribution 

          with expectation   and variance   , its density function can be represented as 
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   . By using a statistical model of the data, the degree of fit between a 

model and data can be measured by          , and then the term of model closeness can 

be rewritten in a logarithmic form as follows: 

 

                           
 
       

          
 

    
                      .. 

 
 

    
  

   

 
 
 

        
 

 
                                           (4.5) 

  

 In Eq. (4.5), the last two terms can be ignored with an assumption that all the 

hypotheses have the same  . Thus, the equation is simplified as follows: 

 

        
 

    
                                                       (4.6) 

 

where   is the weighted sum of the squared residuals between a model H and a set of 

observations D, that is             in matrix form.  

 The second term in Eq. (4.3) is designed to encode the model complexity. In this 

study, the model complexity is explained by three geometric factors: 1) the number of 

vertices   , 2) the number of identical line directions   , and 3) the inner angle 

transition    . By using the three geometric factors, an optimal model is chosen if its 

polygon has a small number of vertices and a small number of the identical line directions, 

and if the inner angle transition is smoother or more orthogonal.  
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 Suppose that   ,   , and     are used for an initial model, while   
 ,   

 , and    
  

are used for a hypothetical model generated from the initial model (e.g., Figure 4.6). In 

order to measure the description length for the number of vertices, we start by deriving the 

probability that a vertex is randomly selected from a given model,      
 

  
. Then, it can 

be expressed in bits as         . Since a hypothetic model generated by hypothesis 

generation process has   
  vertices, its description length is   

         .  
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(a) (b) 

Figure 4.6 An example of three geometric factors (a) for initial model (  ,   , and    ) 

and (b) for a hypothetical model generated from the initial model (  
 ,   

 , and    
   

 

 Similarly, the probability for the number of identical line directions    is      

 

  
 and can be expressed in bits as         . By considering the required number of line 

directions   
 , the description length for identical line direction is measured by 

  
         . In order to define line directions, we adopt compass line filter (CLF) 

suggested by Sohn et al. (2008) as shown in Figure 4.7. The CLF is determined by the 

whole set of eight filtering lines with different slopes               that is equally 
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separated in steps of 22.5º. The representative angle for each slope,   
   , is calculated by a 

weighted averaging of angles that takes the summed line length of each CLF slope into 

account. 

 

 

Figure 4.7 Compass line filter 

 

 Lastly, the description length for inner angle transition is measured by assigning a 

certain penalty value to quantized inner angles. As depicted in Eq. (4.7), the penalty values 

         are heuristically determined to have the minimum value of 0 (i.e., favour inner 

angle) if inner angle    is close to 90° or 180°, while the maximum value of 2 (i.e., un-

favour inner angle) is assigned to very acute inner angles. This is because acute inner angle 

at two consecutive building vectors rarely appears in reality. Thus, the probability for     

can be derived from an inner angle that is located in one of the quantized angles,       

 

   
, and expressed in bits as          . In the optimal model, the cost imposed by penalty 

values is          
  
 

   , and its description length is calculated by    
          .  

 

          
                                        
                                          
                  

             (4.7) 
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 As a result, the description length for sub-terms of model complexity      is 

obtained by the summation of three geometric factors as follows: 

 

          
            

              
                         (4.8) 

 

where    ,   , and     are weight values for each sub-factor in the model complexity.  

 

4.3.2 Hypothesis Generation  

The hypothesis generation process proposes a set of possible hypotheses under certain 

configurations of a rooftop model (or building boundary). Suppose a rooftop model 

consists of a polygon                           and a polygon 

                       , where   ,    and    are common vertices in both polygons 

(Figure 4.8(a)). A task is to generate possible hypotheses at a certain vertex considering a 

given configuration of rooftop model. The hypothesis generation process starts by defining 

an Anchor Point (AP), Floating Point (FP), and Guide Point (GP) and then by deriving a 

Floating Line (FL=[AP, FP]) and Guiding Line (GL=[GP, FP]). The role of AP is to 

define the origin of a line to be changed (FL). FP is a point to be moved while GP is used 

to generate GL which guides the movement of FP. Hypotheses are generated by moving 

FP along the GL with AP as an origin of FL. The orientation of FL is determined by 

representative angles of CLF which consists of eight directions as shown in Figure 4.7. 

There are different cases for hypothesis generation 1) depending on a relative direction of 

AP and FP (forward (clockwise) and backward (anti-clockwise)), 2) depending on whether 
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a vertex is removed (removal or non-removal), and 3) depending on whether FP is a 

common vertex in more than two adjacent polygons (common vertex or non-common 

vertex). For the reader's understanding, some cases are explained as follows: 

 Case 1 (forward, non-removal, and non-common vertex): As shown in Figure 

4.8(b),     and    are assigned as AP (blue circle) and FP (red point), respectively. 

Hypotheses are generated by moving FP along to the GL where red circles 

represent new possible positions of   . 

 Case 2 (backward, non-removal, and non-common vertex): As shown in Figure 

4.8(c),    and    are assigned as AP and FP, respectively. In contrast to case 1, FP 

is located in backward direction of AP.  

 Case 3 (backward, removal, and non-common vertex): As shown in Figure 4.8(d), 

after removing    (green point),    and    are assigned as AP and FP, respectively. 

New hypotheses are generated by moving   .  

 Case 4 (forward, non-removal, common vertex): As shown in Figure 4.8(e),    and 

   are assigned as AP and FP, respectively.    is a common vertex in    and   . 

Because the position of    changes, shapes of both polygons are changed.  

 Case 5 (forward, removal, common vertex): As shown in Figure 4.8(f),    and    

are assigned as AP and FP, respectively. After    is removed,    is assigned as FP 

so that the position of    is changed. 



79 

 

 

 

v1

v2
v3

v4

v5

v6

v10

v8

v9

A
B

v7

 

GL

(AP)

(FP)

(GP)

 

(a) (b) 

GL

(AP)

(FP)

(GP)

 

GL

(AP)(FP)

(GP)

 

(c) (d) 

GL

(AP) (FP)

(GP)

 

GL

(AP)

(FP)

(GP)

 

(e) (f) 

Figure 4.8 Examples of hypothesis generation (blue point: anchor point (AP), green point: 

removed point,  purple point: guide point (GP), red point: floating point (FP), red circle: 

new possible positions of FP, red line: floating line (FL) and purple line: guide line (GL)): 

(a) initial configuration, (b) case 1, (c) case 2, (d) case 3, (e) case 4, and (f) case 5  
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4.4 Parameter Optimization 

In the MDL-based objective function, two types of weight parameters are used to evaluate 

the relative importance of sub-terms. One is a weight parameter ( ) for balancing the 

model closeness and the model complexity in Eq. (4.3). The other is weight parameters 

(           for the three sub-terms in the complexity term in Eq. (4.8). In previous 

research (Sohn et al., 2012), these weight parameters were set as constant values, which 

were empirically determined, for all building models ( =0.5 and            ). 

However, buildings have different shapes and sizes in reality. Also, the density of LiDAR 

points varies on data acquisition settings and flight height. These properties, which vary on 

individual buildings, may cause unbalanced values in model closeness and model 

complexity. For instance, when building shape is very simple and the number of 

observations is significantly large, the closeness value is relatively larger than the 

complexity value. As a result, optimization process may be dominant to the variation of the 

model closeness. Thus, the weight parameters have to be appropriately tuned in an 

automated manner by individually considering the properties of each building. In order to 

automatically determine proper weight values, we propose two different weighting 

methods: 1) Min-Max weighting method (section 4.4.1), and 2) Entropy-based weighting 

method (section 4.4.2). The Min-Max weighting method is used to balance the model 

closeness and the model complexity while the Entropy-based weighting method is 

employed to determine the weight values for the three sub-terms in the complexity term.   

 

 



81 

 

 

 

4.4.1 Min-Max Weighting Method 

The proposed MDL-based objective function consists of two conflicting terms: the model 

closeness term        and the model complexity term      as shown in Eq. (4.3).   is a 

weight parameter which affects modeling result. The smaller the value of  , the simpler the 

optimal model is. In contrast, a larger value of   emphasizes goodness-of-fit to data, 

causing under-simplified model (or over-fitting problem) (see Figure 4.9). In order to 

automatically estimate an appropriate weight value, we adopt Min-Max criterion (Gennert 

and Yuille, 1998), which minimizes possible loss while maximizing the gain. In this study, 

the Min-Max principle is closely related to minimizing the cost value DL for each   and 

maximizing contributions from both of two terms, thereby finding the optimal         . 

For each term, this leads to avoid the best scenario where one of two terms dominates by 

having an excessively low or high value of  . To achieve this goal, the "Min" operator first 

finds the optimal model for each   using Eq. (4.4). Considering the boundary conditions, 

     at     and        at     corresponds to zero. Then,        and     are 

normalized using min-max normalization method, respectively, as follows: 

 

   
          

               
                                                     (4.9) 

 

where    is a normalized value for the i
th

 variable   ;        and         are the 

minimum value and maximum value for variable x.  After the total DL value is computed 

from normalized        and      for each  , the "Max" operator derives an optimal 

weight value    by selecting the worst scenario showing the maximum DL.  
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 Figure 4.9 shows an example of the Min-Max weighting method. As shown in 

Figure 4.9(a), as   is close to 0, a simple model is selected as the optimal model. As   gets 

larger, the optimal model is more complex because the DL value is more affected by the 

closeness term. In this example, 0.4 is selected as the best   because it produces the 

maximum DL value. 

 

 
(a) 

 
(b) 

Figure 4.9 Min-Max based parameter determination: (a) optimal rooftop model for each   

value and (b) corresponding normalized DL values where 0.4 is selected as the best   value. 
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4.4.2 Entropy-based Weighting Method 

Prior to determining the weight parameter  , we estimate the weight values of geometric 

parameters forming the complexity term      in Eq. (4.8). The      consists of three 

geometric terms including the number of vertices, the number of identical line directions 

and the inner angle transition.  

 In multi-attribute decision making, an entropy weighting method, which is one of 

the objective methods, is used to determine appropriate weights for attributes (Lotfi and 

Fallahnejad, 2010). The greater the value of the entropy corresponding to a special 

attribute, the smaller attribute's weight. We adopt the entropy weighting method to 

determine the relative importance of three geometric terms in Eq. (4.8). In information 

theory, entropy is understood as a measure of uncertainty about attributes drawn from data 

and can be normally characterized as follows: 

 

                     
 
                                         (4.10) 

 

 The basic formulation can be rewritten to calculate entropy in the existence of two 

possibilities p and q=1-p as follows: 

  

                                                              (4.11) 

 

where p represents the event that a current hypothesized parameter set belongs to a class of 

optimal model parameters and q indicates the reverse situation of p. In this study, a 

probability for each term in Eq. (4.8) is derived by calculating a probability that each 
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geometric factor in a given model can converge to the optimal model. The optimal model 

in terms of model complexity, according to the definition of model complexity discussed 

in section 4.3.1, is represented by a rectangle where the number of vertices is four, the 

number of identical line directions is two, and all inner angles have no penalty. Thus, the 

probability that four vertices are randomly selected from    vertices is one over four 

combinations of   ,          
  . Similarly, the probability that two identical line 

directions are selected from    identical line directions is one over two combinations of 

  ,         
   . The probability of inner angle with no penalty in Eq. (4.7) is 3/16. 

Because all inner angles have no penalty to be optimal model, the probability for     is 

             . The estimated probabilities are converted into entropy using Eq. 

(4.11). A smaller weight value is assigned to a sub-term with larger uncertainty. Thus, 

weight parameters for three sub-terms are determined as suggested in previous studies 

(Zou et al., 2006; Lotfi and Fallahnejad, 2010): 

 

   
      

                   
 ,    

      

                   
,     

       

                   
 (4.12) 

 

4.5 Experimental Result 

The performance of the proposed method was evaluated over the ISPRS benchmark 

datasets provided by the ISPRS WGIII/4 (Rottensteiner et al., 2014). The ISPRS 

benchmark datasets consist of three sub-regions (Area 1, Area 2, and Area 3) of the 

Vaihingen dataset, and two sub-regions (Area 4 and Area 5) of the Toronto dataset. The 

quality assessments for proposed algorithm were conducted based on the evaluation 
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metrics proposed in section 3.3. More detailed description of dataset characteristics, and 

proposed performance evaluation measure can be found in section 3.3.2. 

 

4.5.1 Evaluations Using Confusion Matrix 

Evaluations using confusion matrix were applied under three different conditions: (a) by 

applying area-based method for outer building boundary, and by applying object-based 

method (b) for all roof planes and (c) for roof planes with more than 10 m
2
, respectively 

(Table 4.1).  

 In the area-based evaluation (Table 4.1(a)), our proposed rooftop reconstruction 

algorithm showed that the completeness, correctness, and quality of the reconstructed 

building models are 91.5%, 97.4%, and 89.2%, respectively. The results indicate that most 

of resulting building models were properly overlapped to the corresponding reference 

building models. The error rate for the completeness is larger than the error rate for the 

correctness. This is due to the fact that the boundary points extracted from irregularly 

distributed points were not reflected from the real building boundary. The erroneous 

observations cause boundary displacement which is generally positioned toward the inside 

of the building. As a result, a building model tends to be shrunken compared to the 

reference building model. This leads to the increase of FNs and the decrease of TPs, 

degenerating the completeness.   
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Table 4.1 Confusion matrix-based evaluations 

Dataset Sub-Set 
# 

Building 

# 

Plane 

(a) Area-based 

evaluation 

Object-based evaluation 

(b) All roof planes 
(c) Roof planes 

(10m
2 
area) 

Comp. 

(%) 

Corr. 

(%) 

Quality 

(%) 

Comp. 

(%) 

Corr. 

(%) 

Quality 

(%) 

Comp. 

(%) 

Corr. 

(%) 

Quality 

(%) 

Vaihingen 

Area 1 38 288 90.6 98.8 89.6 88.9 98.2 87.5 93.9 98.5 92.6 

Area 2 15 69 91.3 99.7 91.0 73.9 100 73.9 95.8 100 95.8 

Area 3 57 235 88.6 99.7 88.4 86.4 100 86.4 97.6 100 97.6 

Sub-total 110 592 90.2 99.4 89.7 83.1 99.4 82.6 95.8 99.5 95.3 

Toronto 
Area 4 58 967 93.7 96.9 90.9 82.1 94.8 78.6 92.4 96.2 89.2 

Area 5 38 640 93.1 92.0 86.1 66.1 87.1 60.2 89.5 89.6 81.1 

Sub-total 96 1607 93.4 94.5 88.5 74.1 91.0 69.4 91.0 92.9 85.2 

Total 206 2199 91.5 97.4 89.2 79.5 96.0 77.3 93.8 96.9 91.3 

 

 In the object-based evaluation methods, a roof plane in one dataset was considered 

to be a true positive if a certain minimum percentage of its area (50% overlap) is covered 

by a roof plane in the other dataset. While the completeness, correctness, and quality for all 

roof planes are 79.5%, 96.0%, and 77.3%, respectively (Table 4.1(b)), the values are 

increased to 93.8%, 96.9%, and 91.3% if only large roof planes (>10m
2
) are considered 

(Table 4.1(c)). The results indicate that small roof planes were not detected as well by our 

proposed method. This is mainly caused by the small number of points on small building 

roof planes which made it difficult to extract sufficient modeling cues for reconstructing 

rooftop models. Figure 4.10 clearly shows the effect of the size of roof plane. When only 

roof planes with an area smaller than 5m
2
, are considered, the completeness is considerably 

low for all five datasets. In particular, the completeness for Area 2 (Figure 4.10(b)) and 

Area 5 (Figure 4.10(e)) were 26.3% and 37.4%, respectively. We observed that buildings 

in the two regions have many small objects on their roofs which were represented in 

reference building rooftop models. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 4.10 Object-based evaluation as a function of the roof plane area: (a) Area 1, (b) 

Area 2, (c) Area 3, (d) Area 4, and (e) Area 5 

 

As shown in Table 4.1, the area-based evaluations show that similar levels of 

model quality were achieved for both the Vaihigen dataset and the Toronto dataset. 

However, the object-based evaluations indicate that the model quality for the Vaihingen 

dataset is better than one for the Toronto dataset. This is mainly related to segmentation 

errors which occur more in complex scenes. We observed that many roof planes in the 

Toronto dataset were under-segmented by merging adjacent clusters. As a result, building 
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rooftop models generated from under-segmented clusters caused a low success rate of the 

completeness.   

 Also, we compared the evaluation results with those assessed for other algorithms 

that were reported in Rottensteiner et al. (2014) where area-based evaluation results were 

not reported (Table 4.2). The object-based evaluation results (Table 4.2(a)) demonstrate 

that our method can outperform other building reconstruction algorithms except for the 

BNU in terms of the completeness and quality. In particular, when roof planes, whose area 

is larger than 10m
2
, were considered, our proposed method showed more accurate results. 

The BNU, which outperform our method, was assessed only for Area 3. With regard to 

robustness, our proposed method outperforms the BNU. The correctness of our method is 

better than the average of all other evaluated methods. Considering that the correctness is 

above 90% for all compared methods except MON and FIE, the correctness of our method 

is large enough. Also, the superiority of our method can be proven by Toronto dataset 

which consists of complex buildings. Only three participants submitted their results for 

Toronto dataset. Out of them, our method achieved the best results for all indices.   
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Table 4.2 Evaluation results of algorithms reported in Rottensteiner et al. (2014) 

Dataset Algorithm 

(a) Object-based evaluation using confusion 

matrix 
(b) 

RMSE_XY 
(m) 

For all roof planes 
For roof planes  

(10m
2
 area) 

Comp. 

(%) 

Corr. 

(%) 

Quality 

(%) 

Comp. 

(%) 

Corr. 

(%) 

Quality 

(%) 

Vaihingen 

MON (Awrangjeb and Fraser, 

2013) 
77.5 89.7 71.2 90.3 91.4 83.5 0.90 

VSK (Dorninger and Pfeifer, 

2008) 
74.2 98.6 73.5 86.1 98.6 85.2 0.83 

ITCE1 (Elberink and 

Vosselman, 2009, 2011) 
69.4 90.1 63.1 78.4 90.3 69.5 1.00 

ITCE2 (Elberink and 

Vosselman, 2009, 2011) 
69.8 98.3 68.7 76.8 100.0 76.8 1.03 

ITCX1 (Xiong et al., 2014) 69.5 98.1 68.7 74.4 98.0 73.2 0.70 

ITCX2 (Xiong et al., 2014) 82.0 92.9 76.8 91.0 98.1 89.3 0.70 

ITCX3 (Xiong et al., 2014) 82.8 94.9 78.7 93.2 97.8 91.2 0.70 

CAS (Xiao, Y.) 68.5 100.0 68.5 81.2 100.0 81.2 0.75 

TUD (Perera et al., 2012) 70.0 95.8 67.8 78.8 98.6 78.0 0.70 

YOR (Sohn et al., 2012) 79.9 99.5 79.5 91.8 99.7 91.6 0.63 

KNTU (Zarea et al.) 80.4 96.7 78.3 91.9 97.7 90.0 0.90 

FIE (Bulatov et al., 2014) 82.6 83.1 70.7 88.7 93.4 83.5 1.10 

CKU (Rau and Lin, 2011) 82.1 96.8 80.1 91.4 99.4 90.9 0.73 

BNU (Zhang et al., 2011) 87.2 100.0 87.2 96.0 100.0 97.1 0.60 

Proposed method 83.1 99.4 82.6 95.8 99.5 95.3 0.76 

Toronto 

YOR (Sohn et al., 2012) 70.0 91.7 66.2 86.4 92.1 80.4 0.90 

CKU (Rau and Lin, 2011) 69.5 81.8 60.1 79.1 81.4 67.1 1.75 

FIE (Bulatov et al., 2014) 82.3 91.5 49.9 60.4 91.9 57.3 1.40 

Proposed method 74.1 91.0 69.4 91.0 92.9 85.2 0.96 

 

4.5.2 Shape-based and Angle-based Evaluations 

Geometrical errors in planimetry, and in height were assessed using RMSE. The RMSE 

measures Euclidean distance in two different ways: (1) from a vertex in the reconstructed 

rooftop model to its closest vertex in reference model, and (2) from a vertex in the 

reference model to its closest vertex in the reconstructed rooftop model. Both RMSEs are 

measured using Eq. (3.2) described in section 3.3.1.2. Note that only distances shorter than 
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a certain tolerance distance (<3m) were considered as introduced by Rottensteiner et 

al.(2014).  

 The average RMSE of distances in planimetry for the Vaihigen dataset and the 

Toronto dataset are 0.76m and 0.96m, respectively. As shown in Table 4.2(b), the 

geometric accuracy is better than the average geometric accuracy of building models 

reconstructed by other algorithms. Figure 4.11 shows the cumulative histogram of 

geometric accuracy in RMSE over the five sub-regions. Overall, more than 70% of 

evaluated vertices are located with less than 1.25m RMSE. In most test regions, the results 

of RMSE of reference vertices (Figure 4.11(b)) are better than those of RMSE of extracted 

vertices (Figure 4.11(a)). The reason is that the proposed method provides under-simplified 

models with redundant vertices (i.e., having more numbers of vertices compared to the 

reference model). Note that the closest vertex within a certain tolerance distance (>3m) 

was used to calculated RMSE. Thus, RMSE of extracted vertices, which have redundant 

vertices, tends to be worse than one of reference vertices.  

 

  

(a) (b) 

Figure 4.11 The cumulative histogram of geometrical errors: (a) RMSE of extracted 

vertices w.r.t reference vertices, and (b) RMSE of reference vertices w.r.t extracted 

vertices.  
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 Hausdorff distance was applied to 2D outer boundaries and to 3D roof planes with 

1:1 correspondence, respectively (Table 4.3(b)). The averages of Hausdorff distance for 

2D outer boundaries and for 3D roof planes are 1.81m and 1.17m, respectively. The results 

show that the maximum distance between the vertices of reference rooftop models and 

extracted rooftop models is expected to be less than roughly twice the RMSE by our 

proposed method. Also, the average of the Hausdorff distance for 2D outer boundaries is 

larger than the value for 3D roof planes. This is mainly caused by topology relations 

between roof planes. As shown in Figure 4.12, two roof planes, which share a common 

edge in reference models (or in extracted models), were represented by separated roof 

planes in extracted models (or reference models). The different topology relations caused a 

large amount of shape differences in outer boundary representation.  

  

 

Figure 4.12 Examples of a large amount of Hausdorff distance for 2D outer boundary (Red: 

Reference, Green: extracted rooftop model) 

  

 Turning function distance, which measures how similar two shapes are, was 

applied to outer building boundaries and to roof planes with 90% overlap, respectively. 

Roughly, when the value is smaller than approximately 0.03, two corresponding shapes are 

very similar in terms of visual inspection. However, when the value is larger than 
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approximately 0.05, the shapes are considerably dissimilar (Figure 4.13). For five sub-

regions, the average turning function distances are 0.042 for 2D outer boundaries and 

0.033 for 3D roof planes, respectively (Table 4.3(c)). Although turning function distances 

do not provide a specific range for which value is acceptable for building rooftop models, 

our results can be compared with examples given in Figure 4.13. The comparison indicates 

that the building rooftop models reconstructed by the proposed method can achieve 

acceptable shape similarities compared with reference building rooftop models in terms of 

visual inspection. Similarly to the results of Hausdorff distance, the turning function 

distance for 2D outer boundaries is larger than one for 3D roof planes due to different 

topologies and representations of rooftop models. 

 

   

(a) (b) (c) 

Figure 4.13 Approximate ranges of turning function distance (blue: reference, red: 

extracted model): (a) 0.016, (b) 0.055, and (c) 0.105 

 

 In order to evaluate the quality of model orientation, the angle difference was 

measured by calculating the difference of dominant orientations between reconstructed 

rooftop models and reference rooftop models. Table 4.3(a) shows the angle differences for 

five sub-regions where the averages of angle differences are 1.17º for 2D outer boundaries 
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and 0.91º for 3D roof planes, respectively. Note that main angles for outer boundary and 

for 3D roof planes can be different because the main angle is separately determined for 

outer boundary and 3D roof planes. The orientation error was entirely caused by 

representative angles of CLF which were used to represent a regular pattern of the line 

orientation. The representative angles of CLF were calculated from all initial boundary 

lines connecting boundary points of individual building models without any prior 

knowledge of building orientations. Thus, a large amount of orientation error in small 

building models can be accidently caused if angles of the boundary lines were distorted by 

local distributions of boundary points.  

 

Table 4.3 Angle-based and shape-based evaluations 

Dataset Sub-Set 

For 2D outer boundary 
For 3D roof planes with 1:1 

correspondence (90% overlap) 

(a) Angle 

difference 

(deg) 

(b) Hausdorff 

distance 

(m) 

(c) Turning 

function 

distance 

(a) Angle 

difference 

(deg) 

(b) Hausdorff 

distance 

(m) 

(c) Turning 

function 

distance 

Vaihingen 

Area 1 1.32 1.33 0.049 0.78 0.46 0.020 

Area 2 1.62 1.26 0.040 1.11 1.77 0.041 

Area 3 0.59 0.93 0.031 0.44 0.48 0.016 

Sub-total 1.18 1.17 0.040 0.78 0.90 0.026 

Toronto 

Area 4 1.30 2.44 0.046 1.30 1.38 0.040 

Area 5 1.04 3.10 0.046 0.91 1.75 0.047 

Sub-total 1.17 2.77 0.046 1.11 1.57 0.044 

Total 1.17 1.81 0.042 0.91 1.17 0.033 

  

 Additionally, topology relations were assessed by comparing overlap area between 

reference rooftop planes and extracted rooftop planes. Table 4.4 represents the number of 

instances of 1:1, 1:M, N:1, and N:M relations. More than 63% of roof planes are matched 

with 1:1 relations; 22% of roof planes have N:1 relations; 7% of roof planes have 1:M 
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relations; and 8% of roof planes have N:M relations. The topology errors are mainly 

caused by incorrect segmentation and incomplete modeling cues. In particular, relatively 

higher N:1 relations are caused by under-segmentations and superstructures on roofs which 

often occur in complex scene. Thus, the N:1 relations were observed more in the Toronto 

dataset.     

 

Table 4.4 Topology evaluation  

Dataset Sub-Set 
Topology (reference rooftop planes: extracted rooftop planes)  

N1:1 NN:1 N1:M NN:M 

Vaihingen 

Area 1 125 36 17 8 

Area 2 29 5 9 1 

Area 3 72 49 6 2 

Sub-total 226 90 32 11 

Toronto 

Area 4 300 89 32 47 

Area 5 147 52 6 33 

Sub-total 447 141 38 80 

Total 673 231 70 91 

 

4.5.3 Effects on Weight Parameters 

In order to evaluate an effect of weight parameters in MDL-based objective function, we 

compared building models generated using fixed weight parameters with building models 

generated using the proposed weighting methods. Area-based evaluations using confusion 

matrix and shape-based indices were applied. The area-based evaluations using confusion 

matrix show an increase of 1.3% for the completeness, a decrease of 0.7% for the 

correctness, and an increase of 0.6% for the quality when the proposed weighting methods 

were used (Table 4.5). For Hausdorff distance and turning function distance, the 

improvements of 0.44m and 0.003 were achieved, respectively (Table 4.6). While 
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evaluation results using confusion matrix and evaluation results for turning function 

distance show slight improvements, the results for Hausdorff distance show relatively large 

improvements for all sub-regions except for Area 3. Also, the most improvements for all 

evaluation methods were achieved by Area 4 where a relatively large number of shape 

differences at local scale between extracted models and reference models were observed. 

Figure 4.14 shows an example where shape difference at local scale is reduced by the 

proposed weighting methods. When fixed weight parameters were used, a lower part of the 

building model (red circle) were under-simplified (Figure 4.14(c)). This is related to the 

number of boundary points and a degree of model complexity. A large number of 

observations produced relatively high closeness value compared with complexity value. 

This caused imbalance between two values because fixed weight parameters do not 

consider the property of an individual building model. In contrast, the closeness term and 

the complexity term were balanced by using flexible weight parameters (Figure 4.14(d)).  

As shown in Table 4.5, Table 4.6 and Figure 4.14, applying flexible weight values makes 

positive effects in preserving shapes similar to reference rooftop models.    

 

    
(a) (b) (c) (d) 

Figure 4.14. Effect on flexible weight parameters: (a) boundary points, (b) reference 

building model, (c) building model generated with fixed weight parameters, and (d) 

building model generated with flexible weight parameters. 
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Table 4.5 Effect on weight parameters in confusion matrix-based evaluation 

Dataset Sub-Set 

(a) Fixed weight parameters 

(b) Weight parameters 

determined by the proposed 

method  

(b)-(a) 

CompArea 

 (%) 

CorrArea 

(%) 

QualArea 

(%) 

CompArea 

(%) 

CorrArea 

(%) 

QualArea 

(%) 

CompArea 

(%) 

CorrArea 

(%) 

QualArea 

(%) 

Vaihingen 

Area 1 88.8 99.5 88.4 90.6 98.8 89.6 1.8 -0.7 1.2 

Area 2 90.2 99.8 90.0 91.3 99.7 91.0 1.1 -0.1 1.0 

Area 3 88.8 99.7 88.5 88.6 99.7 88.4 -0.2 0.0 -0.1 

Sub-total 89.3 99.7 89.0 90.2 99.4 89.7 0.9 -0.3 0.7 

Toronto 

Area 4 89.5 98.2 88.1 93.7 96.9 90.9 4.2 -1.3 2.8 

Area 5 93.8 93.5 88.1 93.1 92.0 86.1 -0.7 -1.5 -2.0 

Sub-total 91.7 95.9 88.1 93.4 94.5 88.5 1.8 -1.4 0.4 

Total 90.2 98.1 88.6 91.5 97.4 89.2 1.3 -0.7 0.6 

 

Table 4.6 Effect on weight parameters in shape-based evaluation 

Dataset Sub-Set 

(a) Fixed weight 

parameters 

(b)Weight parameters 

determined by the 

proposed methods 

(a)-(b) 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

Vaihingen 

Area 1 1.44 0.047 1.33 0.049 0.11 -0.002 

Area 2 1.58 0.041 1.26 0.040 0.32 0.001 

Area 3 0.91 0.036 0.93 0.031 -0.02 0.005 

Sub-total 1.31 0.041 1.17 0.040 0.14 0.001 

Toronto 

Area 4 3.76 0.058 2.44 0.046 1.32 0.012 

Area 5 3.58 0.045 3.10 0.046 0.48 -0.001 

Sub-total 3.67 0.052 2.77 0.046 0.9 0.006 

Total 2.25 0.045 1.81 0.042 0.44 0.003 

 

4.5.4 Visual Inspection  

Figure 4.15 visualizes reconstructed building rooftop models which are representative 

buildings of five sub-regions. Visual inspection indicates that the proposed building 

reconstruction method can robustly provide accurate regularized 3D building rooftop 
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models in both simple scenes and complex scenes. Figure 4.16 shows all reconstruction 

building rooftop models over our test datasets.  

 

   

   

   

   

   

(a) (b) (c) 

Figure 4.15 Reconstructed building models with complex roof structure: (a) image, (b) 

LiDAR point clouds, and (c) perspective view of the reconstructed 3D building model. 
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(a) (b) (c) 

  

(d) (e) 

Figure 4.16 Reconstructed building models: (a) Area 1, (b) Area 2, (c) Area 3, (d) Area 4 

and (e) Area 5 

 

4.5.5 Limitations 

Even though the proposed rooftop modeling method provided promising results, the 

method has some limitations. The main limitation is caused by plane clustering errors. 

Figure 4.17(a) shows that roof points were under-segmented by merging adjacent plane 

clusters. Also, superstructures on the rooftop were not detected due to the small number of 
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roof points (Figure 4.17(b)). The other limitation is that the method cannot extract 

polylines with small length as shown in Figure 4.17(c). This is because there are no 

sufficient observations to support the boundary with small length.  

 

 (Threshold)

  

(a) (b) 

 

(c) 

Figure 4.17 Limitations of the proposed rooftop modeling method: (a) incomplete plane 

clustering, (b) superstructures, and (c) over-simplification. 

 

4.6 Summary 

In this chapter, we proposed an automatic 3D building reconstruction method which covers 

a full chain of rooftop modeling. Building-labelled points were segmented into 

homogeneous clusters with a hierarchical structure which enables explicit interpretation of 
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building rooftop configuration. In order to effectively gather evidence of a rooftop 

structure, three linear modeling cues including intersection line, step lines, and boundaries 

were separately extracted by considering their characteristics. In the proposed method, 

regularization is the most important process which implicitly imposes geometric 

regularities on reconstructed rooftop models based on MDL principle. In the MDL 

framework, finding a regularized rooftop model was recognized as a model selection 

problem. The best model was selected by minimizing DL values among competing 

hypotheses generated by a newly designed hypothesis generation process. In order to 

automatically control weight parameters, a Min-Max based weighting method and 

Entropy-based weighting method were proposed. The experimental results showed that the 

proposed method can provide qualitatively and quantitatively well-regularized 3D building 

rooftop models. More specifically, the results are summarized as follows: 

 The proposed method provided a robust solution for 3D rooftop modeling 

regardless of scene complexity, e.g., typical European style structure with relatively 

simple building shapes as well as complex clusters of high-rise buildings. This is 

achieved by the hierarchical clustering of building rooftop points. Even though 

modeling cues were incompletely extracted, the BSP method produced 

geometrically and topologically correct rooftop models.  

 Evaluation results using confusion matrix showed that the proposed method 

outperforms other building reconstruction algorithms. However, object-based 

evaluation results indicated that our method has a limitation on extracting small 

size rooftops. It is a common problem in data-driven approaches due to the fact it is 
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difficult to extract modeling cues from the small number of roof points. One 

possible solution for this problem is to combine the data-driven method and model-

driven method by taking their complementary properties. 

 The proposed weighting methods have a positive effect on the building 

regularization process. Results for Hausdorff distance showed that the values are 

considerably improved when flexible weight parameters in MDL objective function 

were applied. In particular, shape deformation (under-simplified or over-simplified 

model) at a local scale were reduced by the proposed method.   

 Angle based evaluation shows that the method has 1.17º difference compared to the 

reference. However, the main orientations of building models in this study were 

determined without any prior knowledge. Thus, the accidently large amount of 

orientation error can occur in small size buildings. One possible solution for the 

problem is to use image data which can explicitly provide the orientation of 

building model. 
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Chapter 5 

Matching Aerial Images to 3D Building 

Models Using Context-based Geometric 

Hashing  

 

 

 

 

A city is a dynamic entity, whose environment is constantly changing over time. Accordingly, its 

virtual city models also need to be regularly updated to support accurate model-based decisions. A 

concept of continuous city modeling is to progressively reconstruct city models by accommodating 

their changes recognized in the spatio-temporal domain, while preserving unchanged structures. A 

first critical step for continuous city modeling is to coherently register remotely sensed data taken 

at different epochs with existing building models. In this chapter, we propose a new model-to-

image registration method using a context-based geometric hashing (CGH) method to align a single 

image with existing 3D building models. This model-to-image registration process consists of three 

steps: 1) feature extraction, 2) similarity measure, and matching, and 3) estimating exterior 

orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of 

matching cues: edged corner features representing the saliency of building corner points with 

associated edges, and contextual relations among the edged corner features within an individual 

roof. A set of matched corners are found with a given proximity measure through geometric 

hashing, and optimal matches are then finally determined by maximizing the matching cost 

encoding contextual similarity between matching candidates. Final matched corners are used for 

adjusting EOPs of the single airborne image by a least square method based on collinearity 

equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable 

using the proposed registration approach as an alternative to labor-intensive manual registration 

process.  
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5.1 Introduction 

In recent years, a number of mega-cities have built-up detailed 3D city models to support 

the decisions making process for smart city applications. These 3D models are usually 

static snap-shots of the environment at the time of their data acquisition. However, cities 

are dynamic systems that continuously change over time. Accordingly, their virtual 

representations need to be regularly updated in a timely manner in order to allow for 

accurate analysis and simulation results that decisions are based upon. In this context, a 

framework for continuous city modeling by integrating multiple data sources was proposed 

by Sohn et al. (2013).  

 A fundamental step to facilitate this task is to coherently register remotely sensed 

data taken at different epochs with existing 3D building models. Great research efforts 

have already been undertaken to address the related problem of image registration. For 

example, Brown (1992) and Zitova and Flusser (2003) give comprehensive literature 

reviews of relevant methods. Fonseca and Manjunath (1996) conducted a comparative 

study of different registration techniques for multisensory remotely sensed imagery. 

Although most of the existing registration methods have shown promising success in 

controlled environments, registration is still a challenging task due to the diverse properties 

of remote sensing data related to resolution, spectral bands, accuracy, signal-to-noise ratio, 

scene complexity, occlusions, etc. (Zitova and Flusser, 2003). These variables have a 

major influence on the effectiveness of the registration process, and lead to severe 

difficulties when attempting to generalize it. Still, though a universal method applicable to 



104 

 

 

 

all registration tasks seems impossible, the majority of existing methods consist of the 

following three steps (Brown, 1992; Habib et al., 2005):  

 Feature extraction: Salient features such as closed-boundary regions, edges, 

contour lines, intersection points, corners, etc. are detected in two datasets, and 

used in the registration process. Special care has to be taken to ensure that these 

features are distinctive, well distributed and can be reliably observed in both 

datasets.  

 Similarity measure and matching: The correspondences between features that are 

extracted from two different datasets are then found by a matching process. A 

similarity measure that is based on the attributes of the features quantifies its 

correctness. To be effective, the measure should consider the specific feature 

characteristics in order to avoid possible ambiguities and to be accurately evaluated.  

 Transformation: Based on the established correspondences, a transformation 

function is constructed that transforms one dataset to the other. The function 

depends on the assumed geometric discrepancies between both datasets, the 

mechanism of data acquisition, and required accuracy of the registration.   

 

 A successful registration strategy must consider the characteristics of the data 

sources, its later applications, and the required accuracy during the design and combination 

of the individual steps.  

 Recent advancements of aerial image acquisition make direct geo-referencing for 

certain types of applications (coarse localization and visualization) possible. If an 
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engineering-level accuracy is needed, however, including continuous 3D city modeling, 

the exterior orientation parameters (EOPs) obtained through these techniques may need to 

be further adjusted. In indirect geo-referencing of aerial images, accurate EOPs are 

generally determined by bundle adjustment with ground control points (GCPs). However, 

obtaining or surveying such points over a large-scale area is labor intensive, and time-

consuming. An alternative method is to use other known points instead.  

 Nowadays, large-scale 3D city models have been generated for many major cities 

in the world, and are, e.g., available within the Google Earth platform. Thus, the corner 

points of 3D building models can be used for registration purposes. However, the quality 

of the existing models is often unknown and varies from building to building, which is the 

result from different reconstruction methods and data sources being applied. For example, 

LiDAR points are mostly measured within the roof faces and seldom at their edges, which 

often results in their boundaries and corner points to be geometrically inexact. Thus, the 

sole use of corner points from existing building data bases as local features can lead to 

matching ambiguities and therefore to errors in the registration. 

 To address this issue for the registration of single images with existing 3D building 

models, we propose to use two types of matching cues: (1) edged corner features that 

represent the saliency of building corner points with associated edges, and (2) context 

features that represent the relations between the edged corner features within an individual 

roof. Our matching method is based on the Geometric Hashing method, which is a well-

known indexing-based object recognition technique, and it is combined with a scoring 

function that reinforces the context force.  
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 This chapter is organized into four parts. In section 5.2, we address the new model-

to-image registration including feature extraction (section 5.2.1) and similarity and 

matching (section 5.2.2). Section 5.3 deals with the evaluation of the approach, and 

conclusions are given in section 5.4. 

 

5.2 Registration Method 

Figure 5.1 illustrates the proposed registration method for registering a single image with 

existing 3D building models using extracted edged corner features. It starts by back-

projecting the 3D building models to the image using initial (or at later steps updated) 

EOPs. Then with the help of the similarity measure, the matching process finds 

corresponding features using a CGH method. Based on the matched feature pairs, the 

EOPs of the single image are estimated by a least square adjustment. As shown in Figure 

5.1, the second and third steps are conducted iteratively to find optimal EOPs until the 

corresponding matching pairs do not further improve. The three steps of the proposed 

method are further discussed in the following sub-sections whereat the last two steps are 

discussed together.   
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Figure 5.1 Flowchart of the proposed alignment method 

 

5.2.1 Feature Extraction 

Feature extraction is the first step of the registration task. As previously mentioned, feature 

selection should consider the properties of the given datasets, the application, and the 

required accuracy. In this study, we use two different types of features; edged corner 

features, and context features. An edged corner feature, which consists of a corner point, 

and the two associated lines that potentially intersect at this point ("arms"), provides local 

structure information of a building. In the building models, it is relatively straightforward 

to extract this feature because each vertex of a building polygon can be treated as a corner 

and the connected lines as arms. In an image with rich texture information, various corner 

detectors, and line detectors can be used to extract edged corner features. A context feature 

is defined as a characteristic spatial relation between two edged corner features selected 
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within an individual roof. This context feature is used to represent global structure 

information so that more accurate, and robust matching results can be achieved. Section 

5.2.1.1 explains the extraction of edged corner features from an image, and section 5.2.1.2 

describes the properties of context features.  

   

5.2.1.1  Edged Corner Feature Extraction from Image 

Edged corner features from a single image are extracted by three separate steps; 1) 

extraction of straight lines, 2) extraction of corners and their arms, and 3) verification. The 

process starts with the extraction of straight lines from a single image by applying a 

straight line detector. We use Kovesi's algorithm, which relies on the calculation of phase 

congruency to localize, and link edges (Korvesi, 2011). Then, corners are extracted by 

estimating the intersection of the extracted straight lines, considering the proximity with a 

given distance threshold (   = 20 pixels). Afterwards, corner arms are determined by two 

straight lines used to extract the corner with fixed length (20 pixels). This procedure may 

produce incorrect corners because the proximity constraint is the only one considered. 

Thus, the verification process removes incorrectly extracted corners based on geometric, 

and radiometric constraints. As a geometric constraint, the inner angle between two corner 

arms is calculated, and investigated to remove corners with sharp inner angles. In general, 

many of building structures appears in regular shapes following orthogonality and 

parallelism where small acute angles are found to be uncommon. Through this process, 

incorrectly extracted corners are filtered out by applying a user-defined inner angle 

threshold (    = 10º). For the radiometric constraint, we analyze the radiometric values 
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(Digital Number (DN) value or color value) of the left, and right flanking regions 

(  
    

    
    

 ) of each corner arm with a flanking width ( ) as used in Ok et al.(2012). 

Figure 5.2 shows a configuration of a corner, its arms, and the concept of the flanking 

regions. In a correctly extracted corner, the average DN (or color) difference between   
  

and   
 ,    

    
  , or between   

  and   
 ,    

    
  , is likely to be small, underlining 

the homogeneity of two regions while average DN difference between   
  and   

 ,    
  

  
  , or between   

  and   
 ,    

    
  , should be large enough to underline the 

heterogeneity of two regions. Thus, we measure two radiometric properties: the minimum 

average DN difference value of two neighbor flanking regions for homogeneity 

measurement,     
             

    
      

    
   , and the maximum DN difference 

value of two opposite flanking regions for heterogeneity measurement,     
       

        
    

      
    

   . A corner is considered as an edged corner feature if the 

corner has a smaller     
     than a threshold       and if it has a larger     

       than a 

threshold        .  
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Figure 5.2 Edged corner feature (corner and its arms) and flanking regions 
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 In order to determine thresholds for two radiometric properties, we assume that the 

intersection points are generated from both correct corners, and incorrect corners; and the 

two types of intersection points have different distributions with regards to their 

radiometric properties. Because there are two cases (correct corner and incorrect corner) 

for the average DN difference values, we can use the Otsu's binarization method (Otsu, 

1979) to automatically determine an appropriate threshold value. The method was 

originally designed to extract an object from its background for binary image segmentation 

based on histogram distribution. It calculates the optimum threshold by separating the two 

classes (foreground and background) in such a way that their intra-class variance is 

minimal. In our study, a histogram of homogeneity values (or heterogeneity values) for the 

entire selection of points is generated, and the optimal threshold for homogeneity (or 

heterogeneity) is automatically determined by Otsu's binarization method.  

 

5.2.1.2  Context Features   

While an edged corner feature provides only local structure information about a building 

corner, context features partly impart global structure information related to the building 

configuration. Context features are set by selecting any two adjacent edged corner features, 

that is, four angles (  
    

 ,   
     

,   
    

, and   
     

) between a line (l) connecting the two 

corners (   and   ) and their arms (    
    

,     
     

,     
    

, and     
     

) as shown 

in Figure 5.3. Note that each angle is determined by the relative line connecting any two 

corners (l). The context feature, which is invariant under scale, translation, and rotation, is 

used to calculate contextual similarity in our proposed score function (see section 5.2.2.2). 
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Figure 5.3 Context feature 

 

5.2.2 Similarity Measurement and Primitives Matching 

Similarity measurement, and matching process take place in the image space after the 3D 

building models are back-projected onto the image space using the collinearity equations 

with the initial EOPs (or updated EOPs). In order to find reliable, and accurate 

correspondences between features extracted from a single image, and building models, we 

introduce a CGH method where the vote counting scheme of a standard geometric hashing 

is supplemented by a newly developed similarity score function. The similarity score 

function consists of a unary term, and a contextual term. The unary term measures the 

similarity between edged corner features derived from the image and models while the 

contextual term measures the geometric property of context features. In the following 

sections, the standard geometric hashing and its limitations are described (section 5.2.2.1), 

and our proposed CGH method is introduced (section 5.2.2.2).  
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5.2.2.1  Geometric Hashing 

Geometric hashing, a well-known indexing-based approach, is a model-based object 

recognition technique for retrieving objects in scenes from a constructed database 

(Wolfson and Rigoutsos, 1997). In geometric hashing, an object is represented as a set of 

geometric features such as points, and lines, and by its geometric relations, which are 

transformation-invariant under certain transformations. Since only local invariant 

geometric features are used, geometric hashing can handle partly occluded objects. 

Geometric hashing consists of two main stages: the pre-processing stage, and the 

recognition stage. The pre-processing stage encodes the representation of the objects in a 

database and stores them in a hash table. Given a set of object points (          ), a 

pair of points (         ) is selected as a base pair (Figure 5.4(a)). The base pair is scaled, 

rotated, and translated into the reference frame. In the reference frame, the magnitude of 

the base pair equals 1; the midpoint between           is placed at origin of the reference 

frame; The vector              corresponds to a unit vector of the x axis. The remaining points of 

the model are located in the coordinate frame based on corresponding base pair (Figure 

5.4(b)). The locations (to be used as index) are quantized by a proper bin size and recorded 

with the form (model ID, used base pair ID) in hash table. For all possible base pairs, all 

entries of points are similarly recorded in the hash table (Figure 5.4(c)).   
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Figure 5.4 Geometric Hashing: (a) model points, (b) hashing table with a base pair, (c) all 

hashing table entries with all base pairs 

 

 In the subsequent recognition stage, the invariants, which are derived from 

geometric features in a scene, are used as indexing keys to assess the previously 

constructed hash table so that they can be matched with the stored models. In a similar way 

to the preprocessing stage, two points from a set of points in the scene are selected as the 

base pair. The remaining points are mapped to the hash table, and all entries in the 

corresponding hash table bin receive a vote. Correspondences are determined by a vote 

counting scheme, producing candidate matches. 

 Although geometric hashing can solve matching problems of rotated, translated, 

and partly occluded objects, it has some limitations. The first limitation is that the method 

is sensitive to the bin size used for quantization of the hash table. While a large bin size in 

the hash table cannot separate between two close points, a small bin size cannot deal with 

the position error of the point. Secondly, geometric hashing can produce redundant 

solutions due to its vote counting scheme (Wolfson and Rigoutsos, 1997). Although it can 

significantly reduce candidate hypotheses, a verification step or additional fine matching 
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step is required to find optimal matches. Thirdly, geometric hashing has a weakness in 

cases where the scene contains many features of similar shapes at different scales, and 

rotations. Without any constraints (e.g. position, scale and rotation) based on prior 

knowledge about the model, geometric hashing may produce incorrect matches due to the 

matching ambiguity. Fourthly, the complexity of processing increases by the number of 

base pairs, and the number of features in the scene (Lamdan and Wolfson, 1988). To 

address these limitations, we enhance the standard geometric hashing by changing the vote 

counting scheme to a score function, and by adding several constraints such as scale 

difference of a base and specific selection of bases.  

 

5.2.2.2  Context-based Geometric Hashing (CGH) 

In this section, we describe the building model objects, and the scene by sets of edged 

corner features. Edged corner features derived from input building models are used to 

construct the hash table in the pre-processing stage while edged corner features derived 

from the single image are used in the recognition stage. Each given building model 

consists of several planes. Thus, in the pre-processing stage, we select two edged corner 

features, which belong to the same plane of the building model as the base pair. It can 

reduce the complexity of the hashing table, and ensures that the base pair retains the spatial 

information of the plane. The selected base pair is scaled, rotated, and translated to define 

the reference frame. The remaining edged corner features which belong to the whole 

building model are also transformed with the base pair. In contrast to the standard 

geometric hashing, our hashing table contains model IDs, feature IDs of the base pair, the 
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scale of the base pair (the rate of real distance of base pair), an index for member edged 

corner features, and context features generated by combinations with edged corner features. 

Figure 5.5 shows an example of the information to be stored in a hashing table.  
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Figure 5.5 (a) Edged corner features derived from a model, and (b) information to be 

stored in hashing table (dotted lines represent context features).   

 

 Once all possible base pairs are set, the recognition stage tries to retrieve 

corresponding features based on the designed score function. Two edged corner features 

from the image are selected as base pair with two constraints: 1) scale constraint, and 2) 

position constraint. As a constraint on a scale, only those base pairs whose scale is similar 

to the scale of the base pair in the hash table are considered with an assumption that the 

initial EOPs provide an approximate scale of the image. Thus, if the scale ratio is smaller 
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than a user defined threshold (       ), the base pair is excluded from the set of possible 

base pairs. In addition to scale constraint, the possible positions of a base pair can be also 

restricted with a proper searching space. This searching space can be determined by 

calculating error propagation with the amount of assumed errors (calculated by the iterative 

process) for initial EOPs (updated EOPs) of the image, and the models. These two 

constraints reduce the matching ambiguity and the complexity of processing. After the 

selection of possible base pairs from the image, all remaining edged corner features in the 

image are transformed based on a selected base pair. Afterwards, the optimal matches are 

determined by comparing a similarity score. The process starts by generating context 

features from the model, and the image in a reference frame. Given a model that consists of 

five edged corner features (black color), ten context features can be generated as shown in 

Figure 5.6. Note that all edged corner features derived from the model are not matched 

with edged corner features derived from the image (red color). Thus, only edged corner 

features, which have corresponding image edged corner features within the search area 

(n=4 in Figure 5.6), and their corresponding context features (m=6 in Figure 5.6 (red long-

dash)) are considered in the calculation of the similarity score function.  
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Figure 5.6 Context features to be used for calculating score function 

 

 The newly designed score function consists of a unary term, which measures the 

position differences of the matched points, and a contextual term, which measures length 

and angle differences of corresponding context features, as follows; 

 

            
      
   

 
       

         
   

 
   

 
                   (5.1) 

where,  

 

   
    

                     

                          
    

     

                                     (5.2) 
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  is an indicator function where the minimum number of features to be matched is 

determined depending on    (   = 0.5 in this study, at least 50% of corners in the model 

should be matched with corners from the image) so that all features of the model do not 

need to be detected in the image; n and m are the number of matched edged corner features 

and context features, respectively; w is a weight value which balances the unary term and 

the contextual term; in our case, w = 0.5 is heuristically selected.  

 

 Unary term: The unary term      measures the position distance between edged 

corner features derived from the model, and the image in reference frame. The position 

difference    
    

   between an edged corner feature in the model and its corresponding 

feature in the image is normalized by the distance   
  calculated by error propagation.  

 

      
  
     

    
  

  
                                                 (5.3) 

 

 Contextual term: This term is designed to measure the similarity between context 

features in terms of length and four angles. The contextual term is calculated for all context 

features which are generated from matched edged corner features. For the length difference, 

    
     

  , the difference between lengths of context features in the model, and in the 

image is normalized by length    
  of the context feature in the model. For angle 

differences, the angle difference     
      

    between inner angles of a context feature is 

normalized by the    
  (   

  
 

 
). 
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                              (5.4) 

 

 For each model, a base pair and its corresponding corners which maximize the 

score function are selected as optimal matches. Note that if the maximum score is smaller 

than a certain threshold (       in this study), the matches are not considered as 

matched corners. Once all correspondences are determined, the EOPs of the image are 

adjusted through space resection using pairs of object coordinates of the existing building 

models, and newly derived image coordinates from the matching process. Values 

calculated from the similarity score function are used to weight matched pairs. The process 

continues until matched pairs do not change.  

 

5.3 Experimental Results 

The proposed CGH-based registration method was tested on the Downtown Toronto and 

the Vaihingen datasets. Table 5.1 shows characteristics of reference building models, 

which were used to determine EOPs. For the Downtown Toronto datasets, two different 

types of reference building models were prepared by : 1) a manual digitization process 

conducted by human operators, and 2) using the method proposed in Chapter 4. These two 

building models were used to investigate their respective effects on the performance of our 

method (Figure 5.7). For the Vaihingen datasets, LiDAR-driven building models were 

automatically generated by Kada and Wichmann (2013) and adjusted as described in 
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Wichmann and Kada (2014) as shown in Figure 5.8. A total of 16 check points for each 

dataset, which were evenly distributed throughout the image, were used to evaluate the 

accuracy of the EOPs.  

 

Table 5.1 Characteristics of reference building models 

Dataset 
Reconstruction 

method 

# of 

buildings 

# of 

planes 
Description 

Toronto 

Manually 

digitized 
159 1,560  Complex clusters of high-rise buildings 

 Maximum building height : approximately 290m 
LiDAR-driven 126 1,066 

Vaihingen LiDAR-driven 894 2,619 

 Typical European style structures with simple 

building shapes 

 Maximum building height : approximately 32m 

 

 

 
(a) (b) 

 

 
(c) (d) 

Figure 5.7 Toronto dataset: (a) LiDAR-driven building models, (b) LiDAR-driven building 

models back-projected to image, (c) manually digitized building models and (d) manually 

digitized building models back-projected to image.  
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(a) (b) 

Figure 5.8 Vaihingen dataset: (a) LiDAR-driven building models, (b) LiDAR-driven 

building models back-projected to image  

 

 For Downtown Toronto dataset, various analyses were conducted to evaluate the 

performance of the proposed registration method in detail. From the image, a total of 

90,951 straight lines were extracted and 258,486 intersection points were derived by 

intersecting any two straight lines found within 20 pixels of proximity constraint. Out of 

these, 57,767 intersection points were selected as edged corner features following the 

removal of 15%, and 60% of intersection points using geometric constraint (  =10º), and 

radiometric constraints (        , and           ), respectively (Table 5.2). The 

      and         were automatically determined by Otsu's binarization method. Figure 

5.9 shows edged corner features extracted from the aerial image. As many of the 

intersection points are not likely to be corners, the majority of them were removed. The 

method correctly detected corners and arms in most cases even though some corners were 

visually difficult to detect due to their low contrasts.  
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(a) 

 
(b) 

Figure 5.9 Edged corner features from image: (a) straight lines (red) and (b) edged corner 

features (blue) 

 

 After the existing building models were back-projected onto the image using error-

contained EOPs, edged corner features were extracted from the vertices of the building 

models in the image space (Figure 5.10). It should be noted that two different datasets were 

used as the existing building models. Some edged corner features extracted from both 

existing building models were not observed in the image due to occlusions caused by 

neighbour building planes. Also, some edged corner features, in particular those extracted 

from LiDAR-driven building models do not match with the edged corner features extracted 

from the image due to modeling errors caused by irregular point distribution, occlusion and 

the reconstruction mechanism. Thus, correspondences between edged corner features from 

the image and from the existing building models are likely to be partly established.  
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(a) (b) 

Figure 5.10 Features from existing building models: (a) manually digitized building 

models and their edged corner features and (b) LiDAR-driven building models and their 

edged corner features 

 

 The proposed CGH method was applied to find correspondences between features 

derived from the image and from existing building models. When manually digitized 

building models are used as the existing building models, a total of 693 edged corner 

features (7.8% of edged corner features extracted from the models) were matched using the 

parameters given in Table 5.3. Only 381 edged corner features (4.9%) were matched using 

LiDAR-driven building models (Table 5.2). It is noted that the number of matched edged 

corner features is influenced by the quality of the existing building models, and thresholds 

used, in particular   . As shown in Table 5.2, more edged corner features are matched 

when manually digitized building models were used as the existing building models than 

when LiDAR-driven building models were used. If    is set as a small value, the number 

of matched edged corner features increases, but this increases the risk it may contain a 

large number of incorrect matched edged corner features. The effect on the    will be 

discussed in detail later.  
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Table 5.2 Extracted features and matched features  

 

Image Existing building models 

Intersections Corners 
Manually digitized 

building models 

LiDAR-driven 

building models 

# of features 258,486 57,767 8,895 7,757 

# of matched features - - 693 381 

 

Table 5.3 Parameters setting  

Feature extraction Geometric hashing 

                                

20 pixel 10º automatic automatic 0.98 automatic 50% 0.6 

 

 Based on matched edged corner features, EOPs for the image were calculated by 

applying the least square method based on collinearity equations. For qualitative 

assessment, the existing models were back-projected to the image with refined EOPs. Each 

column of Figure 5.11 and Figure 5.12 shows back-projected building models with error-

contained EOPs (a), matched edged corner features (b), and back-projected building 

models with refined EOPs (c). In the figures, boundaries of the existing building models 

are well matched to building boundaries in the image with refined EOPs. 
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(a) (b) (c) 

Figure 5.11 Manually digitized building models: (a) with error-contained EOPs, (b) 

matching relations (blue) between edged corner features extracted from the image (blue) 

and the models (cyan)  and (c) with refined EOPs 
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(a) (b) (c) 

Figure 5.12 LiDAR-driven building models (a) with error-contained EOPs, (b) matching 

relations (blue) between edged corner features extracted from the image (blue) and the 

models (cyan)  and (c) with refined EOPs  
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 In our quantitative evaluation, we assessed the root mean square error (RMSE) of 

check points back-projected onto the image space using refined EOPs (Table 5.4). When 

reference building models were used as the existing building models, the results show that 

the average difference in x and y directions are -0.27 and 0.33 pixels, respectively, with 

RMSE of  ±0.68 and ±0.71 pixels respectively. The results with LiDAR-driven buildings 

models show that the average differences in x and y directions are -1.03 and 1.93 pixels, 

with RMSE of ±0.95 and ±0.89 pixels, respectively. Although LiDAR-driven building 

models are used, the accuracy of the EOPs is less than 2 pixels in image space 

(approximately 30cm in ground sample distance (GSD)). Considering that the point space 

(resolution) of the input airborne LiDAR dataset is larger than 0.3m, the refined EOPs 

provide a greater accuracy for engineering applications.   

 

Table 5.4 Quantitative assessment with check points (unit: pixel) 

Error-contained initial EOPs 
Refined EOPs with manually 

digitized building models 

Refined EOPs with LiDAR-driven 

building models 

Ave. RMSE Ave. RMSE Ave. RMSE 

x y x y x y x y x y x y 

20.51 -24.81 ±6.64 ±8.22 -0.27 0.33 ±0.68 ±0.71 -1.03 1.93 ±0.95 ±0.89 

 

 In this study, threshold,    has an effect on the accuracy of the EOPs. In order to 

evaluate the effect of   , we estimated the matched number of edged corner features and 

calculated the average error and the RMSE of the check points with different values of   . 

As shown in Table 5.5, the number of matched features is inversely proportional to the 

value of   , regardless of which existing building models are used. However, the effect of 

   on the accuracy is not the same for both building models. We observed    affects the 
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matching accuracy of digitized building models less than it does for LiDAR-driven 

building models. Furthermore, the matching accuracy tends to get worse with very low or 

high    values. The latter can be explained by the low number of matched features, giving 

us insufficient data to accurately adjust the EOPs of the image. In the other case, if a low 

   value is selected, the number of matched features increases, but so does the number of 

incorrect matches if the building models are inaccurate. Thus, we can observe that LiDAR-

driven building models, reconstructed with relatively lower accuracy compared to the 

manually digitized models, produced more sensitive results in the matching accuracy 

according to   . In contrast, the matching accuracy of the manually digitized building 

models remains high because of high model accuracy. In summary, a higher accuracy of 

the building models can lead to a higher EOP accuracy, and the value of    should be 

determined by balancing the ratio of correct matched features, and incorrect matched 

features.  

 

Table 5.5 Effects for    (unit: pixel) 

   

Manually digitized building models LiDAR-driven building models 

# of 

matched 

features 

Ave. RMSE # of 

matched 

features 

Ave. RMSE 

x y x y x y x y 

0.9 67 0.38 0.78 ±0.43 ±0.42 9 0.49 -1.93 ±7.39 ±6.99 

0.8 268 0.00 0.84 ±0.81 ±0.97 98 -1.09 1.22 ±1.53 ±1.52 

0.7 505 -0.20 0.31 ±0.95 ±1.08 273 -1.58 1.56 ±0.68 ±0.61 

0.6 693 -0.27 0.33 ±0.68 ±0.71 381 -1.03 1.93 ±0.95 ±0.89 

0.5 766 -0.22 0.21 ±0.81 ±0.66 438 -0.43 3.26 ±2.61 ±3.52 

0.4 796 0.25 -0.08 ±1.06 ±0.75 499 1.21 2.15 ±3.06 ±3.66 

0.3 800 0.00 -0.09 ±0.88 ±0.71 502 1.37 2.19 ±3.12 ±3.93 

0.2 800 0.00 -0.09 ±0.88 ±0.71 502 1.37 2.19 ±3.12 ±3.93 

0.1 800 0.00 -0.09 ±0.88 ±0.71 502 1.37 2.19 ±3.12 ±3.93 
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 In order to evaluate the effect on context feature, we set the weight parameter w in 

the score function (Eq. 5.1) as 1 and 0.5, respectively, and then compared the results. 

When w=1, the score function considers only the unary term without the effect of the 

contextual term so that the contextual force is ignored. As shown in Table 5.6, the results 

show that registration with only unary terms causes considerably low accuracy in both 

cases. In particular, with LiDAR-driven models, the accuracy is heavily affected. These 

results indicate that the use of context features has a positive effect on resolving the 

matching ambiguity and thus improving the EOP accuracy by reinforcing contextual force.  

 

Table 5.6 Effect on pair-wise feature (unit: pixel) 

 

Manually digitized building models LiDAR-driven building models 

# of 

matched 

features 

Ave. RMSE # of 

matched 

features 

Ave. RMSE 

x y x y x y x y 

Unary term only 

(w = 1) 
542 -0.67 -0.39 ±1.56 ±1.84 361 5.98 1.17 ±7.72 ±5.31 

Unary term and 

contextual term 

(w = 0.5) 

693 -0.27 0.33 ±0.68 ±0.71 381 -1.03 1.93 ±0.95 ±0.89 

 

 We also analyzed various impacts of errors in initial EOPs on the matching 

accuracy by adding different levels of errors to evaluate our proposed method. Each 

parameter of the EOPs leads different behaviors from back-projected building models:    

and    parameters are related to the translation of back-projected building models;    is 

related to scale;    and    cause shape distortion;    is related to rotation (Figure 5.13). In 

order to assess effects on translation and scale, errors ranging from 0m to 25m were added 

to three position parameters (        ). To assess the shape distortion and rotation effects, 



130 

 

 

 

errors ranging from 0º to 2.5º were added to three rotation parameters (        ). Figure 

5.14 shows the accuracies of the refined EOPs with different level of errors for each EOP 

parameter. Regardless of errors in the initial EOPs, RMSE of under 2 pixels for manually 

digitized building models, and RMSE of under 3 pixels for LiDAR-driven building models 

were achieved. The results indicate that the accuracy of the refined EOPs was less affected 

by the amount of initial EOPs errors. This is due to the fact that the EOPs converge to the 

optimum solution iteratively.  

 

Flight Direction

 

Flight Direction

 

Flight Direction

 

(a) (b) (c) 

Flight Direction

 

Flight Direction

 

Flight Direction

 

(d) (e) (f) 

Figure 5.13 The behaviors caused by errors for EOPs: (a)   , (b)   , (c)   , (d)   , (e)   , 

and (f)   . 
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With manually digitized building models With LiDAR-driven building models 
 

 
 

(a) 

 

 
 

 

(b) 

  
(c) 

  
(d) 

Figure 5.14 The impacts of errors in initial EOPs: (a)    and   , (b)   , (c)    and   , and 

(d)    
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 In order to evaluate the robustness of the proposed registration method, the 

algorithm was applied to the Vaihigen dataset. A total of 31,072 edged corner features 

from the image and 11,812 edged corner features from the existing building models were 

extracted using the parameters set in Table 5.3. A total of 379 edged corner features were 

matched by the CGH method where    was heuristically set as 0.7, and other parameters 

were set by Table 5.3. The results of the extracted and matched features are summarized in 

Table 5.7. Sixteen check points were evaluated for error-contained EOPs and refined EOPs. 

The accuracies of the check points with refined EOPs show that the average difference for 

x and y directions are 0.67 and 0.97 pixels with RMSE of ±1.25 and ±1.49 pixels 

respectively (Table 5.8). The results suggest that the proposed registration method can 

achieve accurate and robust matching results even though building models with different 

error types were used for the registration of a single image. 

 

Table 5.7 Extracted features and matched featrues (Vaihigen dataset) 

 
Image 

Existing building models 
Straight lines Intersections Corners 

# of extracted features 276,109 181,200 31,072 11,812 

# of matched features - - - 379 

 

Table 5.8 Quantitative assessment with check points (Vaihigen dataset, unit: pixel) 

With error-contained initial 

EOP 

With refined EOPs 

Unary term only (w=1) 
Unary term and contextual 

term (w=0.5) 

Ave. RMSE Ave. RMSE Ave. RMSE 

x y x y x y x y x y x y 

22.92 -19.06 ±2.28 ±3.90 -1.32 -0.35 ±2.45 ±2.93 0.67 0.91 ±1.25 ±1.49 
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5.4 Summary 

In this chapter, we proposed a new model-to-image registration method which can align a 

single image with 3D building models. Edged corner features, represented by a corner and 

its associated edges, and context features are proposed as the matching features. Edged 

corner features are extracted from the image by calculating the intersection of two 

neighboring straight lines and verified using geometric and radiometric properties. For 

similarity measurement, and matching, the CGH method was proposed to compensate for 

the limitations of the standard geometric hashing method. The qualitative assessment 

showed that the boundaries of the existing building models, back-projected by refined 

EOPs, are well aligned with boundary lines from the image. Meanwhile, the quantitative 

assessment showed that both manually digitized building models, and LiDAR-driven 

building models can be used to evaluate the EOPs of a single image with acceptable and 

reliable accuracy. More specifically, experimental results are summarized as follows: 

 The quality of building models directly affects the accuracy of EOPs. When 

manually digitized building models were used, the proposed registration method 

accurately and reliably achieved the EOPs regardless of threshold and assumed 

error. However, if building models contain more modeling errors, the accuracy of 

EOPs is reduced, which are more susceptible to threshold, and assumed errors.  

 Contextual features employed in geometric hashing enhances matching 

performance. This is because contextual values provide information about the 

relation between edged corner features, characterizing geometric properties of 

individual roof polygon. In particular, the use of context features, which provide 
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global information of building models, that is at larger scale (object-level) than at 

using single corners only (point-level), plays a significant role in our enhanced 

geometric hashing method, and making our matching performance more robust to 

errors involved in building models used.  

 The proposed method can iteratively recover the EOPs of a single image in spite of 

considerable error in their initial values, which exceed error amounts permitted in 

commercial aerial image acquisition.  

 As future works, we will extend the proposed method to arbitrarily acquired images 

(e.g., UAV image and security camera image).  
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Chapter 6 

Sequential Modeling of Building Rooftop by 

Integrating Airborne LiDAR Data and Optical 

Imagery 

 

 

 

 

 

In this chapter, we present a novel fusion method to sequentially reconstruct building rooftop 

models over time by integrating multi-sensor data. Specifically, the proposed method aims to refine 

the quality of rooftop models generated by an existing algorithm, in our case the LiDAR-driven 

method explained in Chapter 4, by integrating modeling cues extracted by an airborne imagery. 

This fusion method is designed to compensate the limitations caused by respective sensor and thus 

improve three types of modeling errors (shape deformation, boundary displacement, and 

orientation error) that are often involved in rooftop building models. An ultimate goal of this 

research is to develop a research platform for continuously refining the quality of city-scale rooftop 

models from multi-sensory data acquired over time. In our fusion scheme, a set of new model 

hypotheses are generated by connecting the lines derived from an existing rooftop model to the 

lines that are extracted from an airborne imagery around the existing rooftop model. This modeling 

cue integration process is developed for progressively rectifying geometric errors based on 

Hypothesize and Test (HAT) optimization using Minimum Description Length (MDL). A 

stochastic method, Markov Chain Monte Carlo (MCMC), coupled with Simulated Annealing (SA), 

is employed to generate model hypotheses and perform a global optimization for finding the best 

solution. In particular, a prior knowledge derived from an image is used to propose a new move in 

Markov Chain. The performance of the proposed fusion method is evaluated by s newly proposed 

error evaluation matrix. The results show that our proposed method can further refine the three 

types of modeling errors of LiDAR-driven building rooftop models.      
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6.1 Introduction 

As one of the most prominent objects comprising the virtual city models, automatically 

reconstructing 3D geometric models of building rooftops has been considered as a central 

research topic in photogrammetry and computer vision communities for more than two 

decades. Recently, a few of researchers have reported their success on the automation of 

the detailed rooftop models (Haala and Kada, 2010). Rottensteiner et al. (2014) reported 

the latest benchmark experiments of the state-of-the art rooftop modeling algorithms. 

However, they concluded that current status of the rooftop modeling algorithms is still far 

from achieving an error-free model generation in an automated manner. In particular, most 

of the rooftop modeling methods focus on the reconstruction of the roof structure from the 

information captured by a single data acquisition mode at one particular time epoch. Not 

many research works have addressed the research problems to reconstruct the rooftop 

models using multiple sensors over time. In continuously changing city environments, the 

appearance of the rooftops can be differently viewed by different remote sensors, or with 

different resolutions of the same sensor, or over time due to the changes of their physical 

structures. Thus, accurately updating the rooftops is essential to timely provision of 

accurate building models and to maintaining up-to-date status of a city. This chapter aims 

to develop a research framework, called “continuous city modeling”, which sequentially 

refines the quality of the rooftop models by sequentially fusing modeling cues extracted 

from two different airborne sensors. In this framework, we assume that “existing” rooftop 

models are reconstructed from airborne LiDAR data, which are sequentially updated by 
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integrating the information retrieved from the existing model with new modeling cues 

extracted from an airborne optical imagery. 

 Many building modeling algorithms using LiDAR data have provided promising 

results (Rottensteiner et al., 2014). However, LiDAR-driven building models suffer from 

certain modeling errors caused by inherent characteristics of LiDAR data. Through a 

thorough analysis, we identified three types of modeling errors, which are often observed 

in LiDAR-driven building models as follows: 

 Shape deformation (over- or under-simplified model): A shape deformation is 

defined as an overall difference in shape of the rooftop generated by an algorithm 

from the reference model. The shape deformation can be caused by various reasons 

such as scene complexity, data characteristics (resolution, signal-to-noise ratio, 

occlusion, and incomplete cue extraction), and characteristics of the rooftop 

modeling algorithms used (model-driven approach or data-driven approach). In 

general, the building models generated by model-driven approaches tend to be 

over-simplified due to a limited number of model primitives that are applicable 

from pre-specified primitive library. The primitive library consists of parameterized 

simple building shapes such as flat, gable, and hip roof. Detailed local shapes that 

are not fit by any of the pre-specified model primitives tend to be missed. For 

instance, the simple primitives cannot delineate details of building rooftops with 

protruded structure or step-shaped structure even though a combination of 

primitives is used. Also, the data-driven approach can produce the under-simplified 

modeling errors when it is over-fitted to error-contained observation, and it also can 
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cause a loss of small but important parts of building structures as shown in Figure 

6.1(a).  

 Boundary displacement (or shrinkage): A boundary displacement is caused by a 

discrete point distributions of LiDAR, which errors usually do not affect the overall 

shape of the model, but produce certain errors in model’s geometry. In general, 

building boundary or boundary of roof planes is reconstructed from object 

boundary points detected from LiDAR data. However, reconstructing exact object 

boundaries are difficult due to irregular point gaps caused by LiDAR sensor; the 

irregular gaps (“spacing”) shown between adjacent points are produced due to the 

discrete nature of LiDAR’s scanning mechanism or occlusions (or absorptions) 

casted from illuminated materials. Thus, the building boundary generated from 

LiDAR data contains the displacement error as much as a sum of the point gap and 

position error of LiDAR data. The boundary displacement tends to occur toward 

the inside of the building. As a consequence of this effect, the boundary 

displacements result in a shrinkage of the reconstructed building boundary as 

shown in Figure 6.1(b). 

 Orientation error: The main orientation of a building model is often used as a 

modeling cue to regularize noise included in the boundaries of building model. A 

strong regularization process fit the orientation of noisy model edges to the 

building’s main orientation. The building orientation is determined by analyzing 

angle distributions of initial rooftop boundaries which are generated by tracking 

irregularly distributed boundary points. Unlike optical imagery, the building 



139 

 

 

 

orientation errors caused by LiDAR data are not uniform across buildings, but are 

subject to a relative angle between the scanner’s flying direction and the orientation 

of a building of interest. That is, more uniform distribution is expected as the 

relative angle gets smaller, and vice versa. Due to this reason, the orientation 

computed by LiDAR data is not accurate and may accidently contain a large 

amount of error. Thus, enforcing incorrectly determined orientation in 

regularization process leads to an incorrectly oriented building model as shown in 

Figure 6.1(c). 

 These modeling errors observed in LiDAR-driven building models are closely 

related to the inherent characteristics of LiDAR data. The modeling errors can be rectified 

by integrating image data which have complementary properties. 

 

   

(a) (b) (c) 

Figure 6.1 Modeling errors observed in LiDAR-driven building rooftop models: (a) shape 

deformation, (b) boundary displacement, and (c) orientation error. 

 

 We propose a sequential fusion method to refine modeling errors contained in 

LiDAR-driven building models by integrating them with modeling cues extracted from an 
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airborne imagery. Main contributions of the proposed method can be summarized as 

follow. First, existing building models are reused and updated in the proposed sequential 

fusion framework. Whenever a new image is acquired, the existing building models can be 

effectively updated in an automated manner. Secondly, the proposed method progressively 

rectifies geometrical errors based on HAT optimization using MDL. The MDL is designed 

to favor regularized building model by balancing model closeness and model complexity. 

Thirdly, the method provides a novel concept of “topological lines” that are virtually 

generated using implicitly derived model regularities (orientation distribution of rooftop 

model lines) in order to integrate modeling cues extracted from two different information 

sources (i.e., LiDAR-driven model and image-driven modeling cues). Lastly, we propose a 

novel kernel process to generate rooftop model hypotheses based on MCMC coupled with 

SA for determining an optimal rooftop model. Three different types of proposition kernels 

to govern how to generate building hypotheses are integrated into the MCMC framework.   

 

6.2 Sequential Building Rooftop Modeling 

We propose a sequential fusion algorithm to refine an existing rooftop model derived from 

LiDAR data (L-Model) by integrating it with image features (I-Lines and I-Corners) 

derived from a single airborne image. Figure 6.2 shows an overall workflow of the 

proposed method. A LiDAR-driven building rooftop model, which was generated by the 

method proposed in Chapter 4, is required as an input vector (initial building rooftop 

model to be refined) of the sequential modeling chain. After extracting image features from 

a single image, relationships between L-Model and image features are established by 
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introducing topological lines. The initial rooftop model is gradually refined by integrating 

image features in MCMC framework. The MDL, which balances model closeness and 

model complexity favoring regularized building rooftop model, is used to select the 

optimal model through stochastically competing model candidates. 
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Figure 6.2 Flowchart for the proposed refinement algorithm 

 

6.2.1 Feature Extraction from Optical Image 

As a man-made object that usually contains a certain amount of geometric regularity, the 

shape of building rooftops can be well described by lines and corners. Images are one of 

the most appropriate data sources for acquiring the geometrically accurate lines and 

corners. Thus, we use lines and corners extracted from a single image to rectify modeling 
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errors of LiDAR-driven building models. In section 6.2.1.1, we extract modeling cues 

(lines and corners) from a single image. The extracted 2D modeling cues in image space 

are transformed into 3D object space using collinearity equation (section 6.2.1.2). Then, 

the 3D modeling cues are quantized with respect to orientation and distance to the origin 

(section 6.2.1.3). 

 

6.2.1.1  Modeling Cue Extraction  

From a single image, straight lines are extracted using Kovesi's algorithm (Kovesi, 2011) 

that relies on the calculation of phase congruency to localize and link edges (Figure 6.3(a)). 

Also, we adopted an algorithm proposed by Chatat et al. (1999) to extract corners. The 

corner detector is based on the analysis of local anisotropism and identifies corners as 

points with strong gradient without being oriented in a single dominant direction. The 

advantage of the adopted corner detector is its ability to detect true location of a corner and 

orientations of its arms (Figure 6.3(b)). The information of corners and their arms provide 

the local structure information of building shapes (“high-level” primitive geometric 

elements), facilitating a high-level interpretation of building structures. After extracting 

corners, each corner is assigned to corresponding lines through a greedy search based on 

its proximity (20 pixels) and direction. The extracted modeling cues are used as a prior 

knowledge for generating rooftop model hypotheses.  
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(a) 

 
(b) 

Figure 6.3 Modeling cue extraction: (a) straight lines and (b) corners and their arms  

 

6.2.1.2  Transformation between Image Space and Object Space  

A transformation between image space and object space is an essential process in 

establishing a mapping relationship between 3D building models and 2D image features. 

Given interior orientation parameters (IOPs) and exterior orientation parameters (EOPs) of 

the image, the well-known collinearity condition between image space and object space is 

established as follows: 

 

        
                                

                                
                                 .   

        
                                

                                
                          (6.1) 
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where    and    are the image space coordinates of image point a; XA, YA, ZA are object 

space coordinates of point A; XL, YL, ZL are object space coordinates of the exposure station; 

f is the camera focal length;    and    are the coordinates of the principal point; and the 

m’s are functions of three rotation angles.  

 A transformation from object space in 3D to image space in 2D is straightforward 

with given IOPs and EOPs. However, its inverse conversion (from 2D to 3D) is known as 

an ill-posed problem due to the missing one dimension. One possible solution to address 

this problem is to use stereo images or multiple images. However, in our research 

framework, our method is limited to a single image due to constraints of multiple-view 

data availability. Thus, we use the height information of 3D building models in order to 

recover the missing third dimension. The process starts by back-projecting L-Model 

(LiDAR-driven rooftop model) and its associated LiDAR points with attributes including 

labels (building, non-building) and plane segmentation IDs into the image space (Figure 

6.4(1)). I-Lines (line extracted from the imagery) corresponding to L-Model are 

determined using a proximity criterion; A I-Line is assigned to a line of L-Model as a 

conjugate line pair if the I-Line is found within a searching space (minimum bounding box) 

generated from the L-Model line projected onto the image space (Figure 6.4(2)). Then, 3D 

coordinates of I-Lines are calculated by projecting 2D I-Lines onto their corresponding 

roof planes (L-Model) using the collinearity equation in Eq. (6.1); starting and ending 

points of a I-Line is transformed following co-linearity rays, each of which is intersected 

by the corresponding roof plane in order to calculate the parameters of 3D line in the object 

space (Figure 6.4(3)). In a similar way, 2D coordinates of I-Corners (i.e., corners and their 
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arms extracted from the imagery) are computed into 3D object space. It is noted that an I-

Line can be shared by multiple roof planes. In this case, multiple 3D lines are calculated in 

the object space for a single I-Line, all of which will be considered as the modeling cues 

for generating the rooftop hypotheses.   

 

(1) Back-projection 

of L-Model to 

image space

(2) Establishment of 

relation between I-Lines 

(I-Corners) and L-Model

EOPs

(3) Determination of 3D 

coordinates of I-Lines 

(I-Corners) with height 

information of L-Model

I-Lines

L-Model

I-Corner

 

Figure 6.4. Determination of 3D coordinates of I-Lines (or I-Corners) 

 

6.2.1.3  Quantization 

Once 2D I-Lines are converted to 3D I-Lines, the 3D I-Lines are projected into the x-y 

plane and formulated as: 

 

                                                                   (6.2) 
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where   and   are a slope of line and distance to the origin, respectively, while keeping the 

z value information of each line. Quantization process is conducted to slope   and distance 

to the origin   in order.  

 For quantization of  , we assume that main directions of building models can be 

represented by representative directions of Compass Line Filter (CLF) proposed by Sohn 

et al. (2008). As shown in Figure 4.7, the CLF is determined by the whole set of eight 

filtering lines with different slopes              that is equally separated in steps of 

22.5º. The representative angle for each slope is calculated by averaging angles weighted 

by lengths of I-Lines belonging to each slope.  

 In addition to the orientation quantization, we quantize the distance of I-Lines to 

the origin  . In line extraction process, ideal edges might be broken into two or more small 

segments that are not connected to each other. The fragmented line segments do not exist 

on a specific line due to line extraction error and image resolution. Also, a direct use of I-

Lines, which are very close to each other, complicates the final rooftop model in an 

undesired way. In order to address this problem, I-Lines are quantized with a certain 

threshold (  =0.2m) based on distance to the origin, and then adjusted by averaging 

distances to the origin of corresponding lines. It is noted that the quantization process is 

respectively conducted on I-Lines belonging to each CLF. Figure 6.5 shows I-Lines' 

quantization for angle and distance to the origin. 
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(a) (b) (c) 

Figure 6.5 Quantization: (a) I-Lines in object space, (b) quantization for angle based on 

CLF and (c) quantization for distance from the origin 

 

6.2.2 Modeling Cue Integration 

After all the image modeling cues (I-Lines and I-Corners) are extracted (section 6.1.2.1) 

and transformed in the object space (section 6.1.2.2), the integration of I-Lines and I-

Corners with existing rooftop models (L-Models) is conducted in the object space. This 

process establishes spatial relationships between modeling cues derived from two different 

data sources. 

Suppose that L-Model, I-Lines and I-Corners are denoted as a set of model lines 

      
          , image lines       

          , and image corners    

   
           where l, m and n represent the number of model lines, image lines and 

image corners, respectively (Figure 6.6 (a)). The first step of the cue integration is to 

identify their spatial relations by investigating a spatial proximity and geometric 

configuration among   ,    and   . Given a model line   
 , a set of image cues are 

determined as its conjugate cue pairs if they satisfy following spatial cue relations:  

 Image Cues to Model Line Relations:  As described in section 6.1.2.1, an image cue 

(i.e.,   
  or   

 ) is assigned its membership to a model line   
  if a spatial proximity 

measured between the image cues and a model line in the object space is less than a 
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pre-specified threshold (2m). A I-Line can belong to multiple model lines if it 

spans multiple model lines (1 to N relation); 

 Image Line to Corner Relations: The image cues meeting the previous “image cues 

to model line relation are further filtered in order to determine an “image line to 

corner pair”. A image line    
  is paired with an image corer   

  if the orientation of 

  
  is co-aligned with the one of orientations of the edged arms   

 . Note that   
  is 

excluded for the hypothesis generation if it is not paired with any image line; while 

  
  is accepted even though its corner pair does not exist.   

 

Once all the membership of the image cues to each model line are found, the next 

cue integration process is to “physically” represent the spatial relations among the paired 

cues. This topological cue relation is conducted by generating “virtual” lines to connect the 

paired cues (Figure 6.6). When a model line   
  is given and its paired image cues,   

  and 

  
  are found, we define two different types of virtual lines as follows: 

 Guide Line (   : Two guide lines,    
   
    

 and    
   
    

, are defined as the infinite 

lines which line parameters are identical to     
  and     

  (  
 's neighboring lines), 

and are generated from starting and ending points of   
  respectively (Figure 6.6 

(a)). The starting (s) and ending point (e) of   
  is defined through guide points, 

   
   
    

 and    
   
    

; 

 Topological Line (   : A topological line     is a virtual line to establish spatial 

relations between image cues and   
 . An anchor point AP is defined as a starting 
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point of newly generated topological line.    
   
    

 and    
   
    

 are the anchor 

points defined from the starting (s) and ending point (e) of an image line   
 , while 

   
   

  
 is defined from the image corner point   

 . Starting from these anchor 

points, a set of infinite lines are generated with CLF line slope angles determined 

(see section 6.2.1.3). A line segment generated by intersecting the infinite lines 

with   
  or guide lines (   

   
    

 and    
   
    

) is considered as the topological line 

to connect the image cues to its paired model line ((Figure 6.6 (b), (c) and (d)).    

 

 The generation of topological lines fully depend on a spatial configuration among 

modeling cues,   ,    and   . Three different types of topological lines are defined as 

follows: 

 Type I: This topological lines,    
   
     

 and    
   
    
  are generated for connecting 

lines between an image line   
  and guide lines,    

   
    

 and    
   
    

, that are 

created from two anchor points of a model line   
  (Figure 6.6 (b)). The direction of 

topological lines is the same as one of   
 .  

 Type II: Type II topological lines are defined for connecting an image line   
  to a 

modeling line   
  (Figure 6.6 (c)). A set of Type II topological lines are generated 

from two anchor points,    
   
    

 and    
   
    

 of an image line   
 . Each topological 

lines are generated using one of the representative angles of CLF. The angle is 
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determined by quantizing the orientation distribution of lines extracted from a 

targeted building region captured in an airborne imagery (see section 6.2.1.3). 

 Type III: Type III topological lines are generated for connecting an image corner   
  

to its paired modeling line   
 . In Type III topological line, the corner point   

   

serves as an anchor point    
   

  
and its arms are used as a priori knowledge to 

generate topological line; each topological line is generated following one of 

orientations of the edged arms   
  (Figure 6.6 (d)). 
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Figure 6.6 Topological lines (red) (Type I: between guidelines and I-Line (b), Type II: 

between I-Line and L-Model (c), and Type III: prior-guided (d))  
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6.2.3 Model Hypothesis Generation 

In the previous section, multiple topological relations integrating image features with 

existing model lines were established. The model hypothesis generation is a process to 

generate probable models reflecting the contribution of image features to improve existing 

models. Given L-Model lines and I-Lines, I-Corners, guide lines and topological lines, 

hypotheses are generated by sampling possible combinations (see section 6.2.5.2). A 

hypothesis with one of possible combinations is generated by finding intersection points 

between topological line and I-Line, between topological line and L-Model line and/or 

between guide line and I-Line. Figure 6.7 shows some examples generated with different 

combination sets for Figure 6.6(a).  

 

...

...

...

...

...

...

...

 

Figure 6.7 Examples of possible hypotheses (red) with respect to a given configuration 

(black) 
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6.2.4 MDL-based Model Formulation 

In a discriminative modeling approach, the specific model that best explains the given 

observation is usually not known a priori. Instead, a decision process, called model 

selection, is adopted for selecting the optimal model through stochastically competing 

model candidates. Rissanen (1978) introduced MDL for inductive inference that provides a 

generic solution to the model selection problem (Grünwald, 2005). The MDL provides a 

flexibility to encode a bias term, which allows us to protect against over-fitting of the 

model of interest to limited observations. This bias is estimated by measuring the "model 

complexity", which varies depending on the regularity (similar or repetitive patterns) 

hidden in observations. Weidner and Förstner (1995) posed building outline delineation as 

the model selection problem using MDL. Sohn et al. (2012) extended it to rooftop models 

comprising multiple planes by implicitly generating model hypotheses. In this study, we 

adopted Sohn et al. (2012)’s MDL framework, whose objective function is described 

below: 

 

                                                           (6.3) 

 

where H and D indicate a building model hypothesis and its boundary associated laser 

points, respectively.   is a weight value for balancing between the model closeness and the 

model complexity. In Eq. (6.3), the model closeness term represents bits encoding the 

goodness-of-fit between the hypothesis and its associated laser points, while the model 

complexity term represents bits evaluating the hypothesized model’s complexity.  
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6.2.4.1  Closeness Term 

Assuming that the error model between data and hypothesis follows a Gaussian 

distribution, the closeness term can be rewritten as: 

 

       
 

    
                                                       (6.4) 

 

where   is the sum of the squared residuals between a model (H) and a set of observations 

(D), that is            . In this research, observations for the model consist of 

boundary points belonging to the target plane (target points) and boundary points 

belonging to the non-target planes (non-target points).   is a measure described as the 

shortest length between a point and its corresponding model line using Euclidean distance. 

However, in order to favor a model hypothesis that maximizes the planar homogeneity, we 

add a penalized distance for points which hinder planar homogeneity (Figure 6.8). Points 

to be penalized are determined by checking whether the point is inside or outside of the 

target polygon. Target points should be inside of the target polygon while non-target points 

should be outside of the target polygon. For points which do not satisfy this condition, a 

penalized distance criterion is applied. The amount of penalized distance is the minimum 

distance between the point and the terminal nodes of its corresponding model line, but 

cannot exceed a certain given threshold (  =2m in this study). Note that we take the 

accuracy of LiDAR points (0.2m) into account as a tolerance when measuring 

homogeneity with buffer.   
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Figure 6.8 Penalized distance (dot: target points and circle: non-target points) 

 

6.2.4.2  Complexity Term 

The complexity term is designed to estimate the degree of geometric regularity of the 

hypothesized model. The geometric regularity is measured depending on 1) polyline 

simplicity (the number of vertices), 2) directional patterns (the number of different 

directions), and 3) penalty for inner angles (orthogonality and presence of acute angles). 

Based on information theory, each term is encoded in bits as follows: 

 

          
            

              
                    (6.5) 

 

where the subscript v, d,    indicate vertex, line direction, and inner angle;             

indicate the number of vertices, the number of identical line directions, and penalty value 

for inner angle.             are estimated from the initial model determined at pervious 

iteration;    
    

     
   are computed from model hypotheses that are locally generated as 

described in section 6.2.3;             are weight values for each factor. Note that 
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grouping the inner angle and thus estimating    and    
  was conducted using 

heuristically determined threshold. Refer to Chapter 4 (section 4.3.1) for details.  

 

6.2.5 Global Optimization 

Let              denote a set of all possible roof hypotheses. The optimal model    is 

selected through the direct comparison of DL values for all model candidates, in which    

has the minimum DL as follows: 

 

                                                        (6.6) 

 

where   is the configuration space in which configuration H resides. However, as stated in 

section 6.2.3, it is not possible to explore a large hypothetical space to find the optimal 

solution. For example, the number of possible hypotheses at a certain configuration, even 

when new configurations are generated by a model line and an image line using Type II 

topological lines, is 64 (8 directions for    
   
    

 and 8 directions for    
   
    

). Considering 

all model lines, image lines, and corners, it is too computationally expensive to compare all 

solutions. Thus, we employ a stochastic method, Monte Carlo Markov Chain (MCMC) 

coupled with Simulated Annealing (SA), to find a global optimization in the large 

hypothetical space. Compared to naive hypothesis generation (Chapter 4), the stochastic 

hypothesis generation can reduce computing time because it does not compare all possible 

hypotheses. Furthermore, the optimal model    is not sensitive to an initial building 

rooftop configuration because the optimization process is conducted by random sampling. 
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In section 6.2.5.1, we introduce MCMC for solving our optimization problem. Three types 

of proposition kernels are proposed to deal with transitions from the current configuration 

to a new configuration in section 6.2.5.2.   

 

6.2.5.1  Global Optimization in MCMC Framework 

MCMC, first introduced by Metropolis et al. (1953), is a method for obtaining a sequence 

of random samples from a probability distribution for which direct sampling is difficult. As 

the name suggests, MCMC is a combination of concepts of Monte Carlo sampling and 

Markov Chain. The Monte Carlo sampling is a method to generate a set of samples from a 

target density to compute integrals. Markov Chain refers to a sequence of random variables 

generated by a Markov process whose transition probabilities between different values in 

the state space depend only on the random variable's current state,                 

          . By combining these two concepts, the MCMC sampler can effectively explore 

a configuration space and approximates a target density. MCMC has been applied to many 

applications such as Bayesian inference and learning, statistical mechanics, optimization, 

and penalized likelihood model selection (Andrieu et al., 2003).  

 In this study, MCMC coupled with SA is used to solve our optimization problem 

by simulating a discrete Markov Chain     ,     on the configuration space  , which 

converges towards an invariant measure specified by the DL. The MCMC sampler 

performs transitions from one state to another, which can be managed by kernels    (see 

section 6.2.5.2). If a rooftop configuration h transits to    according to proposition kernels 
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        , the move between these configurations is accepted with the following 

probability as suggested in Zhang (2015):  

 

              
              

  

               
                                       (6.7) 

 

If          , the new configuration    is added to the Markov Chain. Otherwise, it 

remains at h. 

 A simulated annealing is then embedded in the MCMC to find the optimal 

configuration with the minimum global DL value. To perform the simulated annealing, the 

description length DL is replaced by               , where    is the temperature 

parameter, which tends to zero as t approaches  . The acceptance rate is as follows: 

 

              
          

    
      

  

         
            

                                     (6.8) 

 

A logarithmic decrease ensures the convergence to the global optimum for any initial 

configuration   . In practice, a geometric cooling scheme is preferred to accelerate the 

process and to give an approximate solution close to the optimal one as follow: 

 

      
                                                                (6.9) 
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where   ,   and t are the initial temperature, the decreasing coefficient and the number of 

iterations, respectively. A slight adaption of the schedule was made in which the 

temperature is updated in every k-th iteration of the algorithm.  

 

6.2.5.2  Proposed Kernels 

MCMC algorithms typically require the design of proposal mechanisms to propose 

candidate hypothesis. Appropriately designed proposal kernels let MCMC algorithm 

quickly converge by proposing configurations of interest. In our approach, three types of 

kernels (  ,    and   ) are defined to perform moves between different configurations as 

follows: 

 Kernel    (with Type I topological line): This kernel is designed to replace an L-

Model line with an I-Line. The kernel does not add any vertex where an ending 

point of L-Model line moves to a point generated by intersecting the extension line 

of I-Line with GL. Thus, L-Model fully contains I-Line's properties (slope and 

position).  

 Kernel    (with Type II topological line): This kernel is designed to change the 

shape at an ending point of an I-Line. This kernel adds vertices to a new 

configuration to represent the shape changes. The shape changes occur in two 

intersection points between I-Line and topological line, and between topological 

line and L-Model. The direction of the topological line is determined by sampling 

one representative angle of CLF. Thus, a new configuration contains properties of 
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I-Line, L-Model and topological line. In this Kernel, no prior knowledge for 

corners is used. 

 Kernel    (with Type III topological line ): This kernel is an advanced form of 

kernel   , which adds vertices with prior knowledge for corners. A corner, 

evidence of a sudden change in building structure, serves to represent shape 

changes. Directions of the corner arms are used to guide the direction of topological 

line. If there are more than two arms, one direction of the topological lines is 

determined by randomly sampling the directions of the arms.  

  

 L-Model line   
  and I-Line   

  are randomly selected and topological relations are 

established as stated in section 6.2.2. The move from a configuration h to    is realized by 

sampling    with uniform distribution for each AP. Kernel    and    can be selected for 

all I-Lines while Kernel    is only selected in the case that corners exist. After selecting 

the kernel type for each AP, a new building rooftop configuration is generated as explained 

in section 6.2.3. Figure 6.9 shows the pseudo-code for the optimization process.   
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Pseudo-code: 

1. Set   ,   and t (     ,       , and t = 1) 

2. Choose randomly a target L-Model   
  and a I-Line   

  from the 

previous L-Model (h)  

3. Sample proposition kernels (  ) for two ending points of I-Line 

4. Propose a new hypothesis (h') based on sampled proposition kernels 

5. Compute the acceptance ratio using Eq. (6.8) 

6. Add the n
th

 configuration h' to the Markov Chain if the proposed 

hypothesis is accepted. Otherwise, add the previous model (h).  

7. Repeat the steps 2-6 with the same temperature k times (k = 500) 

8. Decrease the temperature using Eq. (6.9) 

9. Repeat the steps 2-8 until the DL value has converged. 

Figure 6.9 Pseudo-code for MCMC coupled with SA 

 

6.3 Experimental Results 

The proposed sequential fusion method was tested on the Vaihigen and the Toronto 

datasets. Before testing the entire real datasets, the proposed method was applied to two 

simulated building rooftop models, which were produced by manually digitizing vertices 

around real building boundary. This simulated model-based experiments allow us to 

investigate the performance of the proposed algorithm in a controlled environment. Figure 

6.10 and Figure 6.11 show the simulated over-simplified building model and under-

simplified building model, respectively. As shown in Figure 6.10, the simulated over-

simplified building model consists of a small number of vertices compared with real 

building boundary. For the initial building model, the model closeness is large because the 

boundaries of the model are far away from observations (boundary points) while the model 
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complexity has a small value with regard to the definition of our model complexity 

(section 6.2.4.2). As fusion process proceeds, the model closeness gradually decreases; the 

model complexity increases; total DL value decreases. At the end, the model is converged 

to the optimal building model which has the minimum DL value (Figure 6.10(b)). Figure 

6.10(a) shows transitions from the initial over-simplified model to the optimal building 

model where the initial model is progressively rectified by the proposed algorithm.  

 

 

(a) 

 

(b) 

Figure 6.10 (a) Model transitions and (b) DL values for over-simplified model 
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 The simulated under-simplified model represents different patterns compared with 

the over-simplified model in terms of behavior for model closeness and model complexity 

(Figure 6.11(b)). Similarly to the over-simplified model, the model closeness has a large 

value for the initial under-simplified model. However, the model complexity is 

significantly larger because the initial model has a large number of vertices and directions, 

and large penalty of inner angles. The model closeness and the model complexity 

simultaneously decrease during refinement process. At the end of refinement process, the 

under-simplified model gets closer to the real building. Figure 6.11(a) and (b) show 

transitions of the under-simplified model and their corresponding DL values, respectively.     

 

 

(a) 

 

(b) 

Figure 6.11 (a) Model transitions and (b) DL values for under-simplified model 
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 For the above two simulated examples, quantitative assessments were conducted 

based on an evaluation metric proposed in Chapter 3. Table 6.1 describes results of area-

based evaluations using confusion matrix where the average completeness, correctness and 

quality of the refined model are 96.26%, 97.11% and 93.57%, respectively. Table 6.2 

shows results of angle-based and shape-based evaluations where the average angle 

differences, Hausdorff distance and turning function distance are 0.49º, 0.47m, and 0.031, 

respectively. The results clearly indicate that arbitrarily drawn initial models can be 

effectively refined regardless of error types and an amount of modeling errors.  

 

Table 6.1 Confusion matrix-based evaluations 

 
Initial Model Refined Model 

CompArea 

(%) 

CorrArea 

(%) 

QualityArea 

(%) 

CompArea 

(%) 

CorrArea 

(%) 

QualityArea 

(%) 

Over-Simplified model 90.58 79.96 73.83 96.92 96.64 93.76 

Under-Simplified model 93.62 88.37 83.35 95.59 97.58 93.37 

Total 92.10 84.17 78.59 96.26 97.11 93.57 

 

Table 6.2 Angle-based and shape-based evaluations 

 

Initial Model Refined Model 

Angle 

difference 

(deg) 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

Angle 

difference 

(deg) 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

Over-Simplified model 3.06 3.06 0.136 0.49 0.55 0.032 

Under-Simplified model 1.72 1.36 0.101 0.49 0.39 0.029 

Total 2.39 2.21 0.119 0.49 0.47 0.031 

 

 Five representative building models of sub-datasets, which have different types of 

modeling errors, were selected to demonstrate evaluation results in detail. In the selected 

LiDAR-driven building models, three modeling errors were observed partly or in 

combinations (Figure 6.12(c)). For example, shape deformations including under-



165 

 

 

 

simplified parts (blue circles) and over-simplified parts (red circles) were observed in all 

building models; Orientation error was observed in the building model V which was 

rotated by approximately 1.62º compared to the reference building model (Table 6.4); All 

models were slightly shrunken due to boundary displacements (Table 6.3).  

 

I 

    

II 

    

III 

    

IV 

    

V 

    

 (a) (b) (c) (d) 

Figure 6.12 Quantitative assessment for selected five building models: (a) input images, (b) 

reference models (c) initial models, and (d) refined models. 
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 Figure 6.12(d) shows refined building models where most modeling errors 

observed in the initial building models were rectified in terms of visual inspection. In order 

to clearly show improvements, quantitative assessments were conducted. Table 6.3 shows 

evaluation results using confusion matrix. For the initial models, the averages of the 

completeness, correctness, and quality were 90.91%, 99.84%, and 90.77%, respectively. 

The correctness was nearly 100% for all building models while the completeness was 

approximately 91%. These results implicitly indicate that the initial models were shrunken 

by approximately 9% compared with the reference models. After applying the proposed 

method, the averages of the completeness, correctness and quality were 96.52%, 98.74%, 

and 95.33%, respectively. For all selected building models, the correctness was slightly 

deteriorated by small increase of false positives while higher completeness and quality 

were achieved by a large decrease of false negatives and an increase of true positives. The 

results imply that a loss of correctness is inevitable, but the proposed sequential fusion 

method can improve the overall quality of LiDAR-driven building models.  

 

Table 6.3 Assessment based on confusion matrix for selected building models 

Building 

Model 

Between reference and initial model Between reference and refined model 

CompArea 

(%) 

CorrArea 

(%) 

QualityArea 

(%) 

CompArea 

(%) 

CorrArea 

(%) 

QualityArea 

(%) 

I 85.79 100 85.79 93.09 98.77 92.02 

II 92.15 99.99 92.14 98.06 98.52 96.63 

III 90.47 99.95 90.43 95.68 99.50 95.22 

IV 93.03 99.25 92.37 96.66 98.63 95.38 

V 93.12 100 93.12 99.10 98.28 97.40 

Total 90.91 99.84 90.77 96.52 98.74 95.33 
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 Angle difference, Hausdorff distance and turning function distance were assessed 

by comparing the reference building models with the initial building models and the 

refined building models, respectively (Table 6.4). The average angle difference for the 

initial models was 0.67º while the average angle difference for the refined models was 

0.33º. Major improvement was achieved in building model V whose initial model 

contained considerable orientation error. This indicates that an orientation error accidently 

occurred in LiDAR-driven building models is rectified by accurate orientation derived 

from image. As shaped-based evaluations, the average Hausdorff distances and the average 

turning function distance between the reference models and the initial models were 1.43m 

and 0.037, while the evaluation results for the refined models were 0.61m and 0.017, 

respectively. The results represent that the proposed method can rectify partly deformed 

shapes in addition to providing very similar building models with reference models.  

 

Table 6.4 Assessments by angle-based index and shape-based indices for selected building 

models 

Building 

Model 

Between reference and initial model Between reference and refined model 

Angle 

difference 

(deg) 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

Angle 

difference 

(deg) 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

I 0.49 1.28 0.041 0.44 0.49 0.024 

II 0.25 1.55 0.024 0.18 0.87 0.024 

III 0.08 1.13 0.050 0.72 0.34 0.007 

IV 0.89 1.80 0.051 0.24 0.79 0.016 

V 1.62 1.41 0.017 0.09 0.56 0.013 

Total 0.67 1.43 0.037 0.33 0.61 0.017 
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 The proposed sequential fusion method was applied to entire datasets. Figure 6.13 

visualizes the final outcomes. The results for corresponding quantitative assessments are 

listed in Table 6.5 ~ Table 6.8. 

 

 
 

 

(a) (b) (c) 

  

(d) (e) 

Figure 6.13 3D visualization of rooftop models produced by sequential modeling algorithm: 

(a) Area 1, (b) Area 2, (c) Area 3, (d) Area 4, and (e) Area 5 
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 As shown in Table 6.5, evaluations using confusion matrix show improvements of 

2.4% and 1.8% for the completeness and quality while the correctness is deteriorated by 

0.6%. Similarly to the results derived from five selected building models, the evaluation 

results for the entire datasets indicate that true positives were increased while false 

negatives and false positives were decreased. As a result, model quality was improved by 

the sequential fusion method.   

 

Table 6.5 Assessment by area-based confusion matrix for entire datasets 

Dataset Area 

Between reference and initial 

model 

Between reference and refined 

model 

CompArea 

(%) 

CorrArea 

(%) 

QualityArea 

(%) 

CompArea 

(%) 

CorrArea 

(%) 

QualityArea 

(%) 

Vaihingen 

Area1 90.6 98.8 89.6 92.2 98.6 91.0 

Area2 91.3 99.7 91.0 95.8 98.6 94.5 

Area3 88.6 99.7 88.4 92.0 98.5 90.8 

Sub-total 90.2 99.4 89.7 93.3 98.6 92.1 

Toronto 

Area4 93.7 96.9 90.9 95.3 96.4 92.0 

Area5 93.1 92.0 86.1 94.2 91.8 86.9 

Sub-total 93.4 94.5 88.5 94.8 94.1 89.5 

Total 91.5 97.4 89.2 93.9 96.8 91.0 

 

 Angle-based and shape-based evaluations were conducted for 2D building 

boundaries (Table 6.6) and for 3D rooftop planes with 50% overlap (Table 6.7). For 2D 

building boundaries, the average orientation error reduced from 1.17º to 0.63º; The average 

Hausdorff distance decreased from 1.81m to 0.48m; The average turning function distance 

decreased from 0.042 to 0.007, respectively. For 3D rooftop planes, the average angle 

difference, Hausdorff distance, and turning function distance were improved by 0.3º, 0.3m, 

and 0.004, respectively.  
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Table 6.6 Assessments by angle-based index and shape-based indices for 2D building 

boundary  

Dataset Area 

Between reference and initial model Between reference and refined model 

Angle 

difference 

(deg) 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

Angle 

difference 

(deg) 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

Vaihingen 

Area1 1.32 1.33 0.049 0.65 1.32 0.043 

Area2 1.62 1.26 0.040 0.82 0.83 0.029 

Area3 0.59 0.93 0.031 0.70 0.72 0.028 

Sub-total 1.18 1.17 0.040 0.72 0.96 0.033 

Toronto 

Area4 1.30 2.44 0.046 0.61 2.14 0.039 

Area5 1.04 3.10 0.046 0.35 2.37 0.035 

Sub-total 1.17 2.77 0.046 0.48 2.26 0.037 

Total 1.17 1.81 0.042 0.63 1.48 0.035 

 

Table 6.7 Assessment by angle-based index and shape-based indices for 3D rooftop 

polygons  

Dataset Area 

Between reference and initial model 
Between reference and refined 

model 

Angle 

difference 

(deg) 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

Angle 

difference 

(deg) 

Hausdorff 

distance 

(m) 

Turning 

function 

distance 

Vaihingen 

Area1 0.78 0.46 0.020 0.82 0.43 0.021 

Area2 1.11 1.77 0.041 0.56 0.65 0.030 

Area3 0.44 0.48 0.016 0.58 0.42 0.024 

Sub-total 0.078 0.90 0.026 0.65 0.50 0.025 

Toronto 

Area4 1.30 1.38 0.040 0.72 1.28 0.041 

Area5 0.91 1.75 0.047 0.39 1.59 0.031 

Sub-total 1.11 1.57 0.044 0.56 1.44 0.036 

Total 0.91 1.17 0.033 0.61 0.87 0.029 

 

 More specifically, Figure 6.14 shows distributions of angle difference, Hausdorff 

distance and turning function distance for initial building models and for refined building 

models, respectively. The figures clearly show that the proposed sequential fusion method 
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has positive effects for the corrections of orientation errors and shape deformations of 

LiDAR-driven building models.   

 

  

(a) (b) 

 

(c) 

Figure 6.14 Distributions of (a) angle difference, (b) Hausdorff distance, and (c) turning 

function distance for entire initial models and refined models 

 

 Additionally, geometric accuracies in planimetry and in height were evaluated over 

3D rooftop polygons with 50% overlap (Table 6.8). The results show similar levels of 

geometric accuracies for initial building models and refined building models. This is 

mainly due to the fact that only the points, which have correspondence between reference 

building boundary points and extracted building boundary points within user-defined 
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buffer size, were considered in calculating geometric errors. Thus, points that have larger 

position errors than the user-defined buffer size do not influence on the geometric accuracy.    

 

Table 6.8 Assessment based on geometric accuracy for rooftop polygons with 50% overlap 

(unit: m) 

Dataset Area 
Between reference and initial model Between reference and refined model 

 RMSE x RMSE y RMSE z RMSE x RMSE y RMSE z 

Vaihingen 

Area1 ±0.76 ±0.70 ±0.52 ±0.76 ±0.69 ±0.50 

Area2 ±0.80 ±0.55 ±0.40 ±0.63 ±0.48 ±0.40 

Area3 ±0.71 ±0.73 ±0.42 ±0.66 ±0.75 ±0.38 

Sub-total ±0.76 ±0.66 ±0.45 ±0.68 ±0.64 ±0.43 

Toronto 

Area4 ±0.95 ±0.76 ±1.39 ±0.94 ±0.75 ±1.49 

Area5 ±0.97 ±0.66 ±1.32 ±0.95 ±0.67 ±1.32 

Sub-total ±0.96 ±0.71 ±1.36 ±0.95 ±0.71 ±1.41 

Total ±0.84 ±0.68 ±0.81 ±0.79 ±0.67 ±0.82 

 

 Even though the proposed sequential fusion algorithm can effectively rectify 

modeling errors of LiDAR-driven building models, the method has some limitations. The 

main limitation is that topology errors of initial models cannot be ameliorated. Figure 6.15 

shows an example where two rooftop polygons in the lower part of reference building 

model are represented by polygon in polygon. However, in the initial model, the two 

rooftop polygons are represented as two adjacent polygons. After refinement process, the 

two rooftop polygons still remain as two adjacent polygons.  
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(a) (b) (c) 

Figure 6.15 Limitation of the proposed method: (a) reference model, (b) initial model, and 

(c) refined model 

 

6.4 Summary 

In this chapter, we proposed a sequential fusion method to refine existing building models 

(rooftop models reconstructed from LiDAR data) by incorporating modeling cues extracted 

from an airborne imagery. In this fusion modeling framework, a set of building hypotheses 

reflecting the contribution of the airborne imagery to existing models are implicitly 

generated. A progressive regularization of the rooftop models was implemented in MDL as 

an objective function for determining the most optimal rooftop model. A global 

optimization was achieved by MCMC coupled with SA where proposition kernels with or 

without prior knowledge were proposed. The results over both simulated data and entire 

real datasets demonstrated that the proposed method can effectively and robustly rectify 

modeling errors caused by inherent characteristics of LiDAR data. More specifically, 

experimental results are summarized as follows: 



174 

 

 

 

 As shown in the simulated data, the method can provide accurate building models 

regardless of modeling error types such as under-simplified and over-simplified 

shapes and the amount of errors.  

 Evaluations using the confusion matrix showed that the proposed fusion modeling 

algorithm improves the completeness and quality while correctness was slightly 

degenerated.  

 Angle-based evaluation presented that the orientation error, which occurred in 

LiDAR-driven building models, can be robustly rectified by the proposed method. 

This is due to the fact that the errors in the building orientation caused by irregular 

distribution of LiDAR data were reduced by introducing accurate orientation 

derived from image.  

 Shape-based evaluations showed that refined building models produced similar 

shapes compared to reference building models. Also, partly deformed building 

parts were well recovered by the proposed method.  

  

 As our future works, we will study on topology error correction which was not 

covered by the current method. Also, we will extend the proposed method using 3D lines 

derived from multiple images and using points derived from the structure from motion 

(SFM) instead of LiDAR points.  
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Chapter 7 

Conclusions and Future Directions 

 

 

7.1 Conclusions 

This thesis aimed to continuously reconstruct 3D building rooftop models using multi-

sensor data. In order to achieve the goal, we identified four critical steps and provided 

reasonable and promising solutions for each topic. The first step towards continuous city 

modeling was to devise a method to reconstruct robust and accurate regularized building 

rooftop models, regardless of scene complexity. The second step was to automatically 

register newly acquired image data with existing building models without any labor-

intensive manual process, thus providing a reasonable solution for the sequential fusion 

process. The third step was to construct a method which can update the existing building 

models using multi-sensor data in a timely way. Lastly, we addressed the issue of assessing 

the quality of reconstructed or refined building rooftop models. The following sections 

provide the conclusions of each critical topic toward continuous city modeling.  

 

 Chapter 3 proposed an evaluation matrix which assess various qualities of 

reconstructed 3D building models. After exhaustive reviews on existing evaluation 

methods, we added new evaluation indices to measure shape similarity and angle similarity 

of reconstructed building models. The newly proposed Hausdorff distance provided a way 
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to quantitatively measure the largest error amount of partly deformed building models. The 

turning function distance measured how the reconstructed building model is similar to the 

reference model in terms of overall shape of rooftop models. Angle difference provided 

information on the orientation error of building models compared with reference models. 

The developed matrix was used to assess the qualities of LiDAR-driven building models 

and refined building models. The experiments based on the proposed evaluation matrix 

showed that the evaluation indices are good indicators for measuring the various qualities 

of building models. However, the limitation of the proposed evaluation was that the 

metrics cannot measure the topology accuracy of building rooftop models. Therefore, 

topology-based evaluation method should be investigated in future works.   

 

 In Chapter 4, we proposed an automatic building reconstruction method using 

LiDAR data which covered low level modeling cue extraction to reconstruction of realistic 

3D rooftop models. A hierarchical strategy for modeling cue extraction made it possible to 

effectively collect modeling evidence from complex building structures. The regularization 

method proposed by Sohn et al. (2012) was extended by proposing automatic weighting 

parameter determination methods. The hypothesis generation method generated regular-

shaped candidate hypotheses by implicitly designed rules from various configurations of 

building rooftop. MDL was used as a criterion for model selection, to choose the best 

model among possible candidate hypotheses. In particular, the proposed implicit 

regularization provided flexibility for describing more complex rooftop models while 

preserving building regularity. The experimental results showed that the proposed building 
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reconstruction method can robustly produce regularized building rooftop models regardless 

of building complexity. Area-based evaluations using confusion matrix were the average 

completeness of 91.5%, correctness of 97.4%, and quality of 90%. Object-based evaluation 

using confusion matrix showed that our method outperforms other building reconstruction 

algorithms. However, results of object-based evaluations indicated that small size rooftops 

are not effectively extracted. Also, angle-based index showed that angle difference is 

approximately 1.17º compared with reference models. These results demonstrated that our 

proposed building reconstruction method is a reasonable solution. Additionally, the effect 

for automatic weighting methods was evaluated by comparing building rooftop models 

with fixed weight parameters and these with adaptive weight parameters determined by the 

proposed weight methods. Shape-based evaluations indicated that the use of the weighting 

methods have positive effects for decreasing partly deformed shapes of building models. 

Three main modeling errors (shape deformation, boundary displacement, and orientation 

errors) were observed in the rooftop models reconstructed by our proposed method. The 

modeling errors of the proposed building rooftop modeling was caused by the inherent 

characteristics of LiDAR data. Thus, a fusion method to integrate complementary data (i.e., 

image data) with LiDAR data is required to rectify the modeling errors.  

  

 Chapter 5 proposed a new registration method, context-based geometric hashing 

(CGH), to align a single image with existing 3D building models. As an essential step for 

continuous city modeling, the newly-acquired single image was aligned with large-scale 

existing building models without any labor-intensive manual processes. We solved the 
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registration problems by adopting geometric hashing, a well-known model-to-image 

matching method. In order to compensate the limitations of standard geometric hashing 

methods, new features, namely the cornered edges and context feature, were proposed. The 

main contribution of this registration was the development of the new score function in the 

CGH-based registration method, which reinforce context forces to improve matching 

performance. Experimental results showed that the overall registration accuracy was under 

2 pixels (under 30cm in GSD) over two different scenes which have different complexity. 

The amount of registration error is reasonable and acceptable for the sequential refinement 

process considering that airborne LiDAR point space is approximately 30cm and its 

position accuracy is approximately 15cm. However, the quality of building models directly 

affected the accuracy of EOPs. When manually digitized accurate building models were 

used for registering image data, the proposed registration method achieved reliably 

accurate EOPs of a single image, regardless of used threshold and assumed error amount.  

In contrast, if the existing building models contained more modeling errors, the accuracy 

of EOPs degenerated and was more sensitive to the used threshold and assumed error 

amount. In terms of feature used, the use of the context feature played a significant role in 

the matching process. It is due to that fact that contextual term made it possible to provide 

global information of building structures. 

 

 Chapter 6 proposed a sequential fusion method to refine existing LiDAR-driven 3D 

building models. The modeling errors of LiDAR-driven building rooftop models were 

progressively refined by image features derived from images in a HAT framework. A new 
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method to connect the existing LiDAR-driven building model with the image cues was 

proposed to generated possible hypotheses. MDL was again used as a criterion for model 

selection. MCMC coupled with SA was employed for evaluation of global optimization. 

Experimental results on simulated data showed that the proposed fusion method can 

effectively recover the large amount of modeling errors which were often observed in 

LiDAR-driven building models. Various analyses based on the evaluation matrix proposed 

in Chapter 3 were conducted to confirm the performance of the proposed fusion method. 

Confusion matrix-based evaluations showed that the completeness and quality were 

considerably improved, compared with those of initial LiDAR-driven models, while the 

correctness is slightly degenerated. Angle-based evaluation showed that orientation error, 

which accidently occurs in LiDAR-driven building models, can be refined by accurate 

orientations derived from image. Shape-based evaluations showed that partly deformed 

shapes in LiDAR-driven models were improved by the sequential fusion method. The 

proposed refinement process provided a way that existing building models can be 

effectively reused by accommodating their changes recognized in temporal domain. 

However, the proposed method should be extended to deal with topology errors of building 

rooftop models which was not covered by the current method.  

 

7.2 Directions for Future Research  

As described in the previous section, this research provided a research platform for 

continuous cityscape modeling using multi-sensor data. However, the methods mainly 

focused on airborne LiDAR and image data. The ultimate goal of this research is to fully 
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describe 3D building models using any type of data. As well as airborne LiDAR and 

images, laser scanning data, images and video images mounted on mobile and UAV 

platforms should be able to be imported in our continuous city modeling framework; this 

could be addressed in future research. Future works of each topic can be summarized as 

follows: 

 In terms of evaluation of building rooftop models, even though the proposed 

evaluation metrics represented good scores for reconstructed building models, 

visual inspection indicated that the model still have many modeling errors. The 

main reason for discrepancies between visual inspection and evaluation matrix was 

topology difference between the extracted building model and reference. Thus, a 

method for measuring topology similarity should be studied.  

 

 The proposed building rooftop modeling method provided a promising results. 

However, the main limitation was that the method cannot detect small size rooftop 

planes. It is a main disadvantage of data-driven approach which cannot recover all 

building rooftop structures if enough observations are not taken from the structures 

in detail. One possible method is to combine model-driven approach to our 

proposed data-driven approach. Thus, small object such as superstructure can be 

recovered by model-driven approach.    

 

 The proposed CGH-based registration method required rough initial EOPs of a 

single image to back-project existing building models to the image and to reduce 
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search area and matching ambiguity. One prospective goal is to automatically find 

the rough initial EOPs. Also, we will extend the proposed method to arbitrarily 

acquired images (e.g.,  UAV image and security camera image).  

  

 In terms of data fusion, the proposed method used 2D image lines derived from 

single images as cues for refining existing LiDAR-driven building models. The 

process made refinement of 3D building models complex, where 2D lines should 

be converted to 3D lines by adding height information of LiDAR. The direct 

extraction of 3D lines from stereo images or multi-images would reduce processing 

complexity and ambiguity in selection of corresponding line cues, and should 

definitely be considered in future projects. 



182 

 

 

 

Bibliography 

 

Ameri, B., 2000. Feature based model verification (FBMV): a new concept for hypothesis 

validation in building reconstruction. In: Proceedings of the XIXth ISPRS Congress 

IAPRS, 33(B3), Amsterdam, the Netherlands, pp. 24- 35. 

Ameri, B., 2000. Automatic recognition and 3D reconstruction of buildings through 

computer vision and digital photogrammetry. PHD thesis, University of Stuttgart.  

Ameri, B. and Fritsch, D., 2000. Automatic 3D building reconstruction using plane-roof 

structures. Proceedings of the American Society for Photogrammetry and Remote 

Sensing Conference, Washington, D.C. 

Andrieu, C., de Freitas, N., Doucet, A., Jordan, M. I., 2003. An introduction to MCMC for 

machine learning. Machine Learning, 50, pp. 5-43. 

Arkin, E., Chew, L. P., Huttenlocher, D. P., Kedem. K., Mitchell, J. S. B., 1991. An 

efficiently computable metric for comparing polygonal shapes. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 13(3), pp. 209-215.  

Avbelj, J., Iwaszczuk, D., Müller, R., Reinartz, P., Stilla, U., 2015. Coregistration 

refinement of hyperspectral images and DSM: an object-based approach using spectral 

information. ISPRS Journal of Photogrammetry and Remote Sensing, 100, 23-34. 



183 

 

 

 

Avbelj, J., Iwaszczuk, D., Stilla, U., 2010. Matching of 3D wire-frame building models 

with image features from infrared video sequences taken by helicopters or UAVs. 

International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 38(Part 3B), pp 149-154. 

Awrangjeb, M., Fraser, C. S., 2013. Rule-based segmentation of LiDAR point cloud for 

automatic extraction of building roof planes. ISPRS Annals of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, II-3/W3, Antalya, Turkey, pp. 1-6. 

Awrangjeb, M., Zhang, C., Fraser, C. S., 2013. Automatic extraction of building roofs 

using LIDAR data and multispectral imagery. ISPRS Journal of Photogrammetry and 

Remote Sensing, 83, pp. 1–18. 

Baltsavias, E. P,, 2004. Object extraction and revision by image analysis using existing 

geodata and knowledge: current status and steps towards operational systems. ISPRS 

Journal of Photogrammetry & Remote Sensing, 58, pp.129-151. 

Bay, H., Ess, A., Tuytelaars, T., Van Gool, L., 2008. Speeded-up robust features (SURF). 

Computer Vision and Image Understanding, 110(3), pp. 346-359. 

Brenner, C., 2005. Building reconstruction from images and laser scanning. International 

Journal of Applied Earth Observation and Geoinformation, 6(3-4), pp. 187-198. 



184 

 

 

 

Brenner, C., 2010. Building extraction. Book chapter. In: Airborne and Terrestrial Laser 

Scanning. George Vosselman, Hans-Gerd Maas (eds.), Whittles Publishing, 2010.  

Brown, L.G., 1992. A survey of image registration techniques. ACM Computing Surveys, 

24, pp. 326-376. 

Bulatov, D., Häufel, G., Meidow, J., Pohl, M., Solbrig, P., Wernerus, P., 2014. Context-

based automatic reconstruction and texturing of 3D urban terrain for quick-response 

tasks. ISPRS Journal of Photogrammetry and Remote Sensing, 93, pp. 157-170.  

Cakmakov, D., Celakoska, E., 2004. Estimation of curve similarity using turning function. 

International Journal of Applied Math, 15(4), pp. 403-416. 

Castro, E. D., Morandi, C., 1987. Registration of translated and rotated images using finite 

Fourier transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

9, pp. 700-703. 

Chabat, F., Yang, G.Z., Hansell, D.M., 1999. A corner orientation detector. Image and 

Vision Computing, 17, pp. 761-769. 

Chen, L., Teo, T., Rau, J., Liu, J., Hsu, W., 2005. Building reconstruction from LiDAR 

data and aerial imagery. In: Proceedings of the IEEE International Geoscience and 

Remote Sensing Symposium, pp. 2846–2849. 



185 

 

 

 

Cheng, L., Gong, J., Li, M., Liu, Y., 2011. 3D building model reconstruction from multi-

view aerial imagery and LIDAR data. Photogrammetric Engineering & Remote 

Sensing, 77, pp. 125–139. 

Cheng, L., Tong, L., Chen, Y., Zhang, W., Shan, J., Liu, Y., Li, M., 2013. Integration of 

lidar data and optical multi-view images for 3d reconstruction of building roofs. 

Optics and Lasers in Engineering, 51(4), pp. 493–502. 

Davies, R. H., Twining, C. J., Cootes, T. F., Waterton, J. C., Taylor, C. J., 2002. A 

minimum description length approach to statistical shape modeling. IEEE 

Transactions on Medical Imaging, 21(5), pp. 525-537. 

Demir N., Baltsavias, E., 2012. Automated modeling of 3d building roofs using image and 

lidar data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, I(4), Melbourne, Australia, 2012, pp. 35–40. 

Ding, M., Lyngbaek, K., Zakhor, A., 2008. Automatic registrationof aerial imagery with 

untextured 3D LiDAR models. IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition (CVPR), Anchorage, Alaska. 

Dorninger, P., Pfeifer, N., 2008. A comprehensive automated 3D approach for building 

extraction, reconstruction, and regularization from airborne laser scanning point 

clouds. Sensors, 2008(8), pp. 7323–7343. 



186 

 

 

 

Douglas, D., and Peucker, T., 1973. Algorithms for the reduction of the number of points 

required to represent a digitized line or its caricature. The Canadian Cartographer, 

10(2), pp. 112-122. 

Economic Dashboard-Annual Summary, 2015.  

http://www.toronto.ca/legdocs/mmis/2015/ed/bgrd/backgroundfile-76322.pdf 

Eugster, H., Neibiker, S., 2009. Real-time georegistration of video streams from mini or 

micro UAS using digital 3D city models. 6th International Symposium on Mobile 

Mapping Technology, Presidente Prudente, Sao Paulo, Brazil. 

Fischler, M. A. and Bolles, R. C., 1981. Random sample consensus: A paradigm for model 

fitting with applications to image analysis and automated cartography. 

Communications of the ACM, 24(6), pp. 381-395. 

Fonseca L, M. G. and Manjunath B. S., 1996. Registration techniques for multisensor 

remotely sensed imagery. Photogrammetric Engineering & Remote Sensing, 62(9), pp. 

1049-1056. 

Foody, G., 2002. Status of land cover classification accuracy assessment. Remote Sensing 

of Environment, 80(1), pp. 185-201. 



187 

 

 

 

Frueh, C., Russell, S., Zakhor, A., 2004. Automated texture mapping of 3D city models 

with oblique aerial imagery. Proceeding of the 2nd International Symposium on 3D 

Data Processing, Visualization, and Transmission (3DPVT'04).  

Fuchs, C., Förstner, W., Gülch, E., Heipke, C., Eder, K., 1998. OEEPE survey on 3D-city 

models. Bundesamt für Kartographie und Geodäsie. 

Gennert, M. A., and Yuille, A. L., 1998. Determining the optimal weights in multiple 

objective function optimization. In Proc. IEEE Int. Conf. Computer Vision, pp. 87-89. 

Grün, A., Baltsavias, E., Henricsson, O.(Eds.), 1997. Automatic extraction of man-made 

objects from aerial and space images (II). Birkhäuser, Basel.  

Grün, A., Kübler, O., Agouris, P. (Eds.), 1995. Automatic extraction of man-made objects 

from aerial and space images. Birkhäuser, Basel. 

Grünwald, P., 2005. A tutorial introduction to the minimum description length principle. In 

P. Grünwald, I. J. Myung, and M. Pitt, editors, Advances in Minimum Description 

Length: Theory and Applications, pp. 3–81. MIT Press. 

Lamdan, Y., Wofson, H. J., 1988. Geometric hashing : a general and efficient model-based 

recognition scheme. In: Proceedings of the 2nd International Conference on Computer 

Vision (ICCV), pp. 238–249. 



188 

 

 

 

Lee, D. H., Lee, K.M., Lee, S.U., 2008. Fusion of lidar and imagery for reliable building 

extraction. Photogrammetric Engineering and Remote Sensing, 74 (2), pp. 215–225. 

Lotfi, F. H., Fallahnejad, R., 2010. Imprecise Shannon's entropy and multi Attribute 

decision making. Entropy, 12, pp. 53-62. 

Lowe, D. G., 2004. Distinctive image features from scale-invariant keypoints. 

International Journal of Computer Vision, 60(2), pp. 91-110. 

Haala, N., and Kada, M., 2010. An update on automatic 3D building reconstruction. ISPRS 

Journal of Photogrammetry and Remote Sensing, 65, pp. 570-580. 

Habib, A., Ghanma, M., Morgan, M., Al-Ruzouq, R., 2005. Photogrammetric and LiDAR 

data registration using linear features. Photogrammetric Engineering & Remote 

Sensing, 71(6), pp. 699-707. 

Hall, D. L. and Llinas, J., 1997. An introduction to multisensor data fusion. Proceedings of 

the IEEE, 85(1), pp. 6–23. 

HERE 360, 2015. HERE updates maps worldwide for Android, iOS and Windows. 

http://360.here.com/2015/08/04/here-updates-maps-for-android-ios-and-windows/ 



189 

 

 

 

Hsu, S., Samarasekera, S., Kumar, R., Sawhney, H., S., 2000. Pose estimation, model 

refinement, and enhanced visualization using video. Proceedings of IEEE 

International conference on Computer Vision and Pattern recognition, Hilton Head, 

SC, pp. 488-495. 

Hu, J., You, S, Neumann, U., 2006. Integrating LiDAR, aerial image and ground image for 

complete urban building model. Proceedings of the Third International Symposium on 

3D Data Processing, Visualization and Transmission (3DPVT'06).  

Huttenlocher, D. P., Klanderman, G. A., Rucklidge, W. J., 1993. Comparing images using 

the Hausdorff distance. IEEE Transaction on Pattern Analysis and Machine 

Intelligence, 15(9), pp. 850-863. 

Huang, H., Brenner, C., Sester, M., 2013. A generative statistical approach to automatic 

3D building roof reconstruction from laser scanning data. ISPRS Journal of 

Photogrammetry and Remote Sensing, 79, pp. 29-43. 

International Herald Tribune, 2008. UN says half the world's population will live in urban 

areas by end of 2008. 

https://web.archive.org/web/20090209221745/http://www.iht.com/articles/ap/2008/02/

26/news/UN-GEN-UN-Growing-Cities.php 



190 

 

 

 

Iwaszczuk, D., Helmholz, P., Belton, D., Stilla, U., 2013. Model-to-image registration and 

automatic texture mapping using a video sequence taken by a mini UAV. 

International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, XL(1/W1), pp. 151-156.  

Jwa, Y., 2013. 3D reconstruction of building rooftop and power line models in right-of-

ways using airborne LiDAR data. PHD thesis, York University. 

Jwa, Y., Sohn, G., Cho, W., Tao, V., 2008.  An Implicit geometric regularization of 3D 

building shape using airborne LiDAR data. International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(PartB3A), pp. 

69-76. 

Kada, M., McKinley, L., 2009. 3D Building reconstruction from lidar based on a cell 

decomposition approach. International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences, 38(Part 3/W4), pp. 47-52. 

Kada, M., Wichmann, A., 2012. Sub-surface growing and boundary generalization for 3D 

building reconstruction. ISPRS Annals of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, I(3), pp. 223-238. 



191 

 

 

 

Kada, M. and Wichmann, A., 2013. A feature-driven 3D building modeling using planar 

halfspace. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, II-2(W3), pp. 37-42. 

Kaneko, S., Satoh, Y., Igarashi, S., 2003. Using selective correlation coefficient for robust 

image registration. Pattern Recognition, 36, pp. 1165-1173. 

Kim, C. and Habib, A., 2009. Object-based integration of photogrammetric and LiDAR 

data for automated generation of complex polyhedral building models. Sensors, 9, pp. 

5679-5701. 

Kolbe, T. H., Gröger, G., Plümer, 2005. CityGML-interoperable access to 3D city models. 

Geo-information for Disaster Management, Springer Berlin Heidelberg, pp. 883-899.  

Kovesi, P.D., 2011. MATLAB and octave functions for computer vision and image 

processing. Centre for Exploration Targeting, School of Earth and Environment, The 

University of Western Australia. 

Lafarge, F., Descombes, X., Zerubia, J., Pierrot-Deseilligny, M., 2010. Structural approach 

for building reconstruction from a single DSM. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 32(1), pp. 135-147. 



192 

 

 

 

Lafarge, F., Mallet C., 2012. Creating large-scale city models from 3d-point clouds: a 

robust approach with hybrid representation. International Journal of Computer Vision, 

99 (1), pp. 69–85. 

Lamdan, Y. and Wolfson, H., 1988. Geometric hashing: a general and efficient model-

based recognition scheme. ICCV'88, pp. 238-249. 

Lee, D. H., Lee, K. M., Lee, S. U., 2008. Fusion of lidar and imager for reliable building 

extraction. Photogrammetric Engineering and Remote Sensing, 74(2), pp. 215-225.  

Mayer, H., 2008. Object extraction in photogrammtric computer vision. ISPRS Journal of 

Photogrammetry & Remote Sensing, 63, pp. 213-222. 

Meidow, J., Schuster, H. F., 2005. Voxel-based quality evaluation of photogrammetric 

building acquisitions. International Archives of the photogrammetry, remote sensing 

and spatial information sciences, XXXVI (Part 3/W24), pp. 117-122. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E., 1953. 

Equations of state calculations by fast computing machines. Journal of Chemical 

Physics, 21, pp. 1087–1091. 

Milde, J., Zhang, Y., Brenner, C., Plümer, L., Sester, M., 2008. Building reconstruction 

using a structural description based on a formal grammar. International Archives of 



193 

 

 

 

the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B3b), 

pp. 227-232. 

Mishra, R. K., Zhang, Y., 2012. A review of optical imagery and airborne LiDAR data 

registration methods. The Open Remote Sensing Journal, 5, pp. 54-63. 

Morgan, M., Habib, A., 2002. Interpolation of LiDAR data and automatic building 

extraction. ACSM-ASPRS 2002 annual conference proceedings, 12-14 November 

2002, Denver, CO, USA. 

Movahedi, V., 2015. Automatic extraction of closed contours bounding salient object: new 

algorithms and evaluation methods. PHD thesis, York University. 

Musialski, P., Wonka, P., Aliaga, D. G., Wimmer, M., van Gool, L., Purgathofer, W., 2012. 

A survey of urban reconstruction. EUROGRAPHICS 2012.  

Ok, A. O., Wegner, J. D., Heipke, C., Rottensteiner, F., Soergel, U. and Toprak, V., 2012. 

Matching of straight line segments from aerial stereo images of urban areas. ISPRS 

Journal of Photogrammetry and Remote Sensing, 74, pp. 133–152. 

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE 

Transactions on Systems, Man, and Cybernetics., 9(1), pp. 62-66. 



194 

 

 

 

Oude Elberink, S., Vosselman, G., 2009. Building reconstruction by target based graph 

matching on incomplete laser data: analysis and limitations. Sensors, 9(8), pp. 6101–

6118. 

Oude Elberink S., Vosselman G., 2011. Quality analysis on 3D building models 

reconstructed from airborne laser scanning data. ISPRS Journal of Photogrammetry 

and Remote Sensing, 66(2), pp. 157-165. 

Perera, S. Nalani, H. A., Maas, H. G., 2012. An automated method for 3D roof outline 

generation and regularization in airborne laser scanner data. ISPRS Annals of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, I-3, Melbourne, 

Australia, pp. 281-286. 

Perera, S., Mass, H. G., 2014. Cycle graph analysis for 3D roof structure modelling: 

concepts and performance. ISPRS Journal of Photogrammetry and Remote Sensing, 

93, pp. 213–226. 

Persad, R. A., Armenakis, C., Sohn, G., 2015. Automatic co-registration of pan-tilt-zoom 

(PTZ) video images with 3D wireframe models. Photogrammetric Engineering & 

Remote Sensing, 81(11), pp. 847-859. 



195 

 

 

 

Pohl, C., van Genderen, J.L., 1998. Multisensor image fusion in remote sensing: concepts, 

methods and applications. International Journal of Remote Sensing, 19(5), pp. 823-

854.  

Rau, J. Y., Lin, B. C., 2011. Automatic roof model reconstruction from ALS data and 2D 

ground plans based on side projection and the TMR algorithm. ISPRS Journal of 

Photogrammetry and Remote Sensing, 66 (6), pp.s13-s27. 

Remondino, F., El-Hakim, S., 2006. Image-based 3D modelling: a review. The 

Photogrammetric Record, 21(115), pp. 269-291. 

Rissanen, J., 1978. Modeling by the shortest data description. Automatica,14, pp. 465-471. 

Rottensteiner, F., and Briese, Ch., 2003. Automatic generation of building models from 

LiDAR data and the integration of aerial images, International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIV(3/W13). 

Rottensteiner, F., and Jansa, J., 2002. Automatic extraction of building from LIDAR data 

and aerial images. International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, 34(Part 4), pp. 295-301. 

Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J. D., 2012. ISPRS test project on urban 

classification and 3D building reconstruction. http://www.commission3.isprs.org/wg4.  



196 

 

 

 

Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J.D., Breitkopf, U., Jung, J., 2014. Results 

of the ISPRS benchmark on urban object detection and 3D building reconstruction. 

ISPRS Journal of Photogrammetry and Remote Sensing, 93, pp. 256-271. 

Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitex, S. and Breitkopf, U., 

2012. The ISPRS benchmark on urban object classification and 3D building 

reconstruction. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, I(3), pp. 293-298. 

Rottensteiner, F., Trinder, J., Clode, S., Kubik, K., 2005. Automated delineation of roof 

planes from LiDAR data. International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences, 36 (Part 3/W4), pp. 221–226. 

Rutzinger, M., Rottensteiner, F., Pfeifer, N., 2009. A comparison of evaluation techniques 

for building extraction from airborne laser scanning. IEEE Journal of Selected Topics 

in Applied Earth Observations and Remote Sensing, 2(1), pp.11-20. 

Sampth, A., and Shan, J., 2007. Building boundary tracing and regularization from 

airborne lidar point clouds. Photogrammetric Engineering and Remote Sensing, 73(7), 

pp. 805-812. 



197 

 

 

 

Sampath, A., Shan J., 2010. Segmentation and reconstruction of polyhedral building roofs 

from aerial lidar point clouds. IEEE Transactions on Geoscience and Remote Sensing, 

48 (3), pp. 1554–1567 

Satari, M., Samadzadegan, F., Azizi, A., Maas, H. G., 2012. A multi-resolution hybrid 

approach for building model reconstruction from LIDAR data. The Photogrammetric 

Record, 27(139), pp. 1554-1567. 

Sohn, G., and Dowman, I., 2007. Data fusion of high-resolution satellite imagery and lidar 

data for automatic building extraction. ISPRS Journal of Photogrametry and Remote 

Sensing, 62(1), pp. 43-63. 

Sohn, G., Huang, X., Tao, V., 2008. Using a binary space partitioning tree for 

reconstructing polyhedral building models from airborne LiDAR data. 

Photogrammetric Engineering & Remote Sensing, 74 (11), pp. 1425–1438. 

Sohn, G., Jung, J., Jwa, Y, Armenakis, C., 2013. Sequential modelling of building rooftops 

by integrating airborne LiDAR data and optical imagery: preliminary results. ISPRS 

Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-

3(W1), pp. 27-33. 



198 

 

 

 

Sohn, G., Jwa, Y., Jung, J., Kim, H. B., 2012. An implicit regularization for 3D building 

rooftop modeling using airborne data. ISPRS Annals of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences, I(3), pp. 305-310. 

Song, W. and Haithcoat, T. L., 2005. Development of comprehensive accuracy assessment 

indexes for building footprint extraction. IEEE Transactions on Geoscience and 

Remote Sensing, 43(2), pp. 401-404. 

Tarsha-Kurdi, F.,  Landes, T., Grussenmeyer, P., 2008. Extended RANSAC algorithm for 

automatic detection of building roof planes from lidar data. The photogrammetric 

journal of Finland, 21(1), pp. 97–109. 

Tian, Y., Gerke, M., Vosselman, G., Zhu, Q., 2008. Automatic edge matching across an 

image sequence based on reliable points. International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Science, 37(Part 3B), pp. 

657-662. 

Tomljenovic, I., Höfle, B., Tiede, D., Blaschke, T., 2015, Building extraction from 

airborne laser scanning data: An analysis of the state of the art. Remote Sensing, 7, pp. 

3826-3862. 



199 

 

 

 

United Nation, 2014, World urbanization prospects: the 2014 revision. Available online: 

http://esa.un.org/unpd/wup/highlights/wup2014-highlights.pdf (assessed on 12 March, 

2016) 

Veltkamp, R. C., 2001. Shape matching: similarity measures and algorithms. In Proc. 

Shape Model. Int., May 2001, pp. 188-197. 

Verma, V., Kumar, R., Hsu, S., 2006. 3D building detection and modeling from aerial lidar 

data. The IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, CVPR’06. IEEE Computer Society, Washington, DC, pp. 2213-2220. 

Viola, P., Wells, W. M., 1997. Alignment by maximization of mutual information. 

International Journal of Computer Vision, 24(2), pp. 137-154. 

Vosselman, G., 1999. Building reconsstruction using planar faces in very high density 

height data. International Archives of Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 32(Part 3/2W5), pp. 87-92. 

Vosselman, V., Maas, H.-G. (Eds.), 2010. Airborne and terrestrial laser scanning. Taylor & 

Francis. 



200 

 

 

 

Wang, L., Neumann, U., 2009. A robust approach for automatic registration of aerial 

images with untextured aerial LiDAR data. In Proc. 2009 IEEE Computer Society 

Conf., CVPR 2009, pp.2623-2630.  

Wang, R., 2013. 3D building modeling using images and LiDAR: a review. International 

Journal of Image and Data Fusion, 4(4), pp. 273-292. 

Weidner, U., Förstner, W., 1995. Towards automatic building extraction from high 

resolution digital elevation models. ISPRS Journal of Photogrammetry and Remote 

Sensing, 50(4), pp. 38-49. 

Wichman, A. and Kada, M., 2014. 3D building adjustment using planar half-space 

regularities. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, II-3, pp. 189-196.  

Wolfson, H. J., Rigoutsos, I., 1997. Geometric hashing: an overview. IEEE Computational 

Science and Engineering, 4(4), pp. 10-21. 

Wunsch, P. and Hirzinger, G.,1996. Registration of CAD-models to images by iterative 

inverse perspective matching. ICPR'96. 



201 

 

 

 

Xiong, B., Oude Elberink, S., Vosselman, G., 2014. A graph edit dictionary for correcting 

errors in roof topology graphs reconstructed from point clouds. ISPRS Journal of 

Photogrammetry and Remote Sensing, 93, pp. 227-242. 

Yan, J., Shan, J., Jiang, W., 2014. A global optimization approach to roof segmentation 

from airborne lidar point clouds. ISPRS Journal of Photogrammetry and Remote 

Sensing, 94, pp. 183-193. 

Yang, B., Chen, C., 2015. Automatic registration of UAV-borne sequent images and 

LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 101, pp. 262-

274. 

Zhang, D., Lu, G., 2004. Review of shape representation and description techniques. 

Pattern Recognition, 37, pp. 1-19. 

Zhang,  J., 2010. Multi-source remote sensing data fusion: status and trends. International 

Journal of Image and Data Fusion, 1(1), pp.5-24.  

Zhang, J., 2015. Single tree detection from airborne laser scanning data: a stochastic 

approach. PHD thesis, York University. 

Zhang, W., Grussenmeyer, P., Yan, G., Mohamed, M., 2011. Primitive-based building 

reconstruction by integration of LiDAR data and optical imagery. International 



202 

 

 

 

Archives of Photogrammetry, Remote Sensing and Spatial Information Systems, 38 

(Part 5-W12). 

Zhou, Q.Y., Neumann, U., 2008. Fast and extensible building modeling from airborne 

LiDAR data. In: Proceedings of the 16th ACM SIGSPATIAL International Conference 

on Advances in Geographic Information Systems. ACM GIS 2008 (on CD-ROM). 

Zhou, Q. Y., Neumann, U., 2012. 2.5D building modeling by discovering global 

regularities. The IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, 16–21 June, IEEE Computer Society, Providence, RI, USA, pp. 326–333. 

Zitova, B. and Flusser, J., 2003. Image registration method: a survey. Image and Vision 

Computing,  21, pp. 977-1000. 

Zou, Z.,Yun, Y., Sun, J., 2006. Entropy method for determination of weight of evaluating 

indicators in fuzzy synthetic evaluation for water quality assessment. Journal of 

Environmental Sciences, 18(5), pp. 1020-1023. 


