1,669 research outputs found

    An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks

    Get PDF
    Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Resilient Wireless Sensor Networks Using Topology Control: A Review

    Get PDF
    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs

    COVERAGE PROBLEM IN HETEROGENEOUS WIRELESS SENSOR NETWORKS

    Get PDF
    A heterogeneous wireless sensor network consists of different types of nodes in sequence. Some of these nodes have high process powers and significant energy, which are called the manager nodes or super-nodes. The second type nodes, which have normal process power, are only used as monitoring nodes or act as relay nodes in the path to the manager nodes are called the normal nodes. In this paper, an energy-aware algorithm is presented for the optimum selection of sensor and relay groups that are used for monitoring and sending messages from goals in point coverage, using the competition between the nodes. This algorithm is effective in decreasing the energy consumption of the network and increasing its life-time. Moreover, providing that no node saves the information about the routing table and relay nodes; therefore, it will have less complexity and overload

    3D Multi-Objective Deployment of an Industrial Wireless Sensor Network for Maritime Applications Utilizing a Distributed Parallel Algorithm

    Get PDF
    Effective monitoring marine environment has become a vital problem in the marine applications. Traditionally, marine application mostly utilizes oceanographic research vessel methods to monitor the environment and human parameters. But these methods are usually expensive and time-consuming, also limited resolution in time and space. Due to easy deployment and cost-effective, WSNs have recently been considered as a promising alternative for next generation IMGs. This paper focuses on solving the issue of 3D WSN deployment in a 3D engine room space of a very large crude-oil carrier (VLCC), in which many power devices are also considered. To address this 3D WSN deployment problem for maritime applications, a 3D uncertain coverage model is proposed with a new 3D sensing model and an uncertain fusion operator, is presented. The deployment problem is converted into a multi-objective problems (MOP) in which three objectives are simultaneously considered: Coverage, Lifetime and Reliability. Our aim is to achieve extensive Coverage, long Lifetime and high Reliability. We also propose a distributed parallel cooperative co-evolutionary multi-objective large-scale evolutionary algorithm (DPCCMOLSEA) for maritime applications. In the simulation experiments, the effectiveness of this algorithm is verified in comparing with five state-of-the-art algorithms. The numerical outputs demonstrate that the proposed method performs the best with respect to both optimization performance and computation time

    On Connected Target Coverage for Wireless Heterogeneous Sensor Networks with Multiple Sensing Units

    Get PDF
    The paper considers the connected target coverage (CTC) problem in wireless heterogeneous sensor networks (WHSNs) with multiple sensing units, termed MU-CTC problem. MU-CTC problem can be reduced to a connected set cover problem and further formulated as an integer linear programming (ILP) problem. However, the ILP problem is an NP-complete problem. Therefore, two distributed heuristic schemes, REFS (remaining energy first scheme) and EEFS (energy efficiency first scheme), are proposed. In REFS, each sensor considers its remaining energy and its neighbors’ decisions to enable its sensing units and communication unit such that all targets can be covered for the required attributes and the sensed data can be delivered to the sink. The advantages of REFS are its simplicity and reduced communication overhead. However, to utilize sensors’ energy efficiently, EEFS is proposed. A sensor in EEFS considers its contribution to the coverage and the connectivity to make a better decision. To our best knowledge, this paper is the first to consider target coverage and connectivity jointly for WHSNs with multiple sensing units. Simulation results show that REFS and EEFS can both prolong the network lifetime effectively. EEFS outperforms REFS in network lifetime, but REFS is simpler

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered
    • 

    corecore