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Abstract
Purpose – The paper aims to investigate performance benefits associated with adopting a mobile wireless sensor network (WSN). Sensor nodes are
generally energy constrained due to the latter being acquired from onboard battery cells. If one or more sensor nodes fail, possible coverage holes may
be created which could invariantly lead to a reduced network lifetime. The paper proposes that instead of rendering the entire WSN inoperative, sensor
nodes should physically change position within the region of interest thus adaptively altering the WSN topology with a view of recovering from failures.
This type of motion will be referred to as “self healing”.
Design/methodology/approach – This paper presents a mobility scheme based on Bayesian networks for predictive reasoning (BayesMob) which is
essentially a distributed self healing algorithm for coordinating physical relocation of sensor nodes. Using the algorithm, sensor nodes can predict the
performance of the WSN in terms of coverage given that the node moves in a given direction. The evidence for this hypothesis is acquired from local
neighborhood information.
Findings – The paper compares BayesMob with an alternative algorithm – Coverage Fidelity Algorithm – and shows that BayesMob maintains a
higher level WSN coverage for a greater percentage of failures, thus increasing the useful lifetime of the WSN.
Research limitations/implications – The physical relocation of sensor nodes will incur energy overhead, therefore the tradeoffs between all
application criteria should be investigated before implementation.
Originality/value – This paper presents a Bayesian network based motion coordination algorithm for WSN which repairs coverage holes caused by
energy exhaustion and/or abrupt node failures.
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1. Introduction

Advances in sensor technology (in terms of size, power

consumption, wireless communication and manufacturing

costs) have enabled the prospect of deploying large quantities

of sensor nodes to form a wireless sensor network (WSN).

These networks are created by distributing large quantities of

usually small, inexpensive sensor nodes over a geographical

region of interest with a view to collect data relating to one or

more variables. These nodes are primarily equipped with the

means to sense, process and communicate data to other nodes

and ultimately to a remote user(s). Sensor nodes may

cooperate with their neighbors (within communication range)

to form an ad hoc network. WSN topologies are generally

dynamic and decentralized. Sensor nodes can also have

mobility capabilities which enable them to physically relocate

with relation to neighboring nodes and the environment in

which they are situated. WSNs have a wide range of

applications including military, environmental monitoring,

health, home, space exploration, chemical processing, and

disaster relief (Akyildiz et al., 2002).
The proposed application environments may be dynamic

and the network designer may have limited knowledge of the

region of interest. Also some of the proposed applications

environment may be unmanned/unexplored terrain. In most

cases the network designer would have little control over the

exact deployment configuration. Such scenarios may include

deployment via air drop.
The WSN deployment configuration is crucial to the

network satisfying the performance criteria and operational

lifetime. Even if the sensor nodes are deployed uniformly

across the region of interest as time passes, sensor nodes may

fail randomly due to energy exhaustion, malfunction or

malicious destruction. Non-uniform traffic distribution and

edge effects will directly influence the energy usage of the

sensor nodes. The cumulative result of these factors may

cause coverage holes and possibly detach a segment of

the WSN. The implication of these failures may result in

the WSN performance deteriorating thus preventing the

performance criteria from being met. The net result of these

failures is a reduced useful lifetime.
A proactive method of efficiently balancing the sensor

nodes energy discharge rate (EDR) is to place nodes and

assign tasks such that coverage holes are never formed in the

WSN. This method may give an optimal solution but this

approach to deployment is impractical for WSNs, as the
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network designer would require a comprehensive knowledge

of the application environment (Ganeriwal et al., 2004).

Generally when considering the application environment this

information is unavailable. Many of the foreseen applications

are within regions where human intervention is not always

possible. In such situations deployment is random and the

network designer has limited influence over the exact node

placement.
If coverage holes appear the WSN can be rendered

inoperative and the remaining active sensor nodes would be

wasted. We propose that when such holes are created the

WSN topology is reorganized via physically relocating

surrounding sensor nodes to repair the coverage hole.

Therefore, the remaining resources will be utilized via a

motion control algorithm and thus extend the useful lifetime

of the WSN. This motion algorithm is deemed as self healing.

Figure 1 shows the self healing mechanism, where sensor

nodes physically move to repair coverage holes.
In this paper, the performance criterion considered is

sensing coverage, which is defined as the fraction of the total

intended area actually covered by the WSN (Meguerdichian

et al., 2001). We propose an algorithm referred to as Bayesian

network mobility (BayesMob) that uses mobility as

an adaptive actuation facility for automated deployment and

repair of the WSN with the sole objective of salvaging lost

coverage. BayesMob incorporates a discrete Bayesian network

which enables a sensor node to reason about the WSN

coverage and actions required to maintain the required level

of performance. It is a distributed mobility control algorithm

which enables each sensor node to compute their optimum

direction of movement with a view to maintain or increase the

WSN coverage. The BayesMob algorithm predicts the

probability of coverage increasing given that a node moves

in a particular direction. Therefore, a sensor node may behave

altruistically and expend energy on moving with a view to

enhance the overall coverage of the WSN.
These predictions are derived from local neighborhood

information. The accuracy of these predictions is dependant

on the reconfiguration rate. The reconfiguration is the process

of communicating with neighboring nodes to perform

localization, navigation, neighbor discovery, synchronization

and possibly generating routing tables. The reconfiguration

process carries energy overheads due to the communication.

Therefore, a trade-off exists between the reconfiguration rate

and the WSN lifetime. The physical relocation of the sensor

nodes also carries energy overheads due to the energy

expended driving the motors and servos.
This approach to extend the network lifetime has already

been proposed, by creating the Coverage Fidelity (CoFi)

algorithm (Ganeriwal et al., 2004), (see related work).

BayesMob differs in that sensor nodes predict the

performance implications using a discrete Bayesian network.

Also each sensor node coordinates their own motion and do

not rely on the dying sensor node(s) for instructions.
In Section 2 we outline the related work that considers

mobile WSN, and the inherent performance implications and

benefits. Section 3 presents the BayesMob algorithm, and

discusses the pros and cons when implementing the

algorithm. The results of simulations are presented in

Section 4, and finally Section 5 concludes the paper.

2. Related work

Mobility as a control primitive for self-deployment of WSNs

has been investigated. For example, Wang et al. (2006)

proposed a distributed self-deployment protocol which uses

Voronoi diagrams to discover coverage holes caused by non-

uniform deployment. The paper proposes three movement-

assisted sensor deployment protocols which essentially

relocate sensor nodes from densely deployed regions to

areas with sparse coverage. Miao et al. (2006) proposed a self-

deployment protocol for heterogeneous WSNs.
Using mobility as a control primitive to extend the network

lifetime by balancing the EDR between all sensor nodes has

also been investigated. For example, Rao and Biswas (2005)

proposed a biologically inspired mobility model for balancing

the energy overhead related to communication. The algorithm

adopts a preventative approach to the creation of coverage

holes due to node energy exhaustion. The mechanism was

inspired by observing the natural grouping behavior of

Emperor penguin communities in the Antarctic regions. The

scheme however, does not consider node failure due to

malfunction or malicious destruction.
Mobility as a control primitive for improving network

coverage has also been investigated. For example, Ganeriwal

et al. (2004) proposed a distributed CoFi algorithm that

controls the relocation of a sensor node in order to repair

coverage holes which are assumed to be a consequence of

node failure.
Sekhar et al. (2005) proposed a dynamic coverage

maintenance (DCM) scheme that also exploits the limited

mobility of sensor nodes for active fault repair of the WSN.

Four distributed rule-based DCM algorithms are presented

which rely on local neighborhood topology information for

coordinating the sensor relocation. The proposed DCM

algorithms only relocate one hop neighbors of the dying

sensor node, therefore, jeopardizing the effectiveness of the

DCM scheme when limited redundancy is available within

the vicinity of the dying node.

Figure 1 Use of node mobility to salvage performance and counteract coverage holes

Failing sensor node Coverage hole

Sensor node relocating
to repair coverage hole
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Butler and Rus (2003) proposed an event-based mobility

scheme that coordinates the relocation of sensor nodes to
areas that require a higher sensing resolution due to

environment, application and topology (nodes failing or

moving) changes. Two distributed algorithms are proposed
which use a history and history-free technique. The trade-offs

between computation, memory and accuracy of the node’s
positions is also given. Using single dimensional mobility for

improving sensing resolution and overcoming unpredictable
environmental influences has also been investigated. Kansal

et al. (2004b) presented a low complexity single dimension
mobility strategy which has low energy actuation primitives.

The nodes move along a single dimension to counteract a loss
in coverage caused by environmental influences such as the

presence of obstacles.
Low complexity mobility was also investigated by Kansal

et al. (2004a) and Pon et al. (2005a, b) through the

development of the Network InfoMechancial System
(NIMS). NIMS’s integrate distributed, embedded sensing

and computing systems with infrastructure – supported
mobility. The papers suggest that the NIMS’s motion

capability enables the network to adapt to environment,
application and topology changes.

3. Bayesian self healing algorithm

3.1 Motivation

The lifetime of a WSN is directly influenced by the ability of

the network to satisfy the application criteria. The latter
would generally define an acceptable level of coverage and

connectivity that the WSN should maintain. Sensor nodes in
the WSN do not die simultaneously for a variety of reasons.

Failure may occur due to energy exhaustion, malicious
destruction, or malfunction. The phenomena that the WSN is

detecting may itself be non-uniform. For example, a traffic
monitoring application may yield varying traffic densities in

alternative areas of the region of interest. The sensor nodes

closer to the base station are likely to die faster as they would
forward greater number of data packets than nodes on the

outer periphery (this phenomenon is referred to as an edge
effect).
These networks are also generally deployed in inhospitable

environments where nodes may have to tolerate extreme

environmental conditions. Therefore, abrupt sensor
node failure may occur. These sensor node failures may

impair the WSN coverage and connectivity, via the creation of
coverage holes. A coverage hole is defined as an area of the

region not covered by the WSN, or a sub-section of the WSN
being disconnected due to the node failure. When these

coverage holes are created the WSN may fail to satisfy the
application criteria and therefore the remaining energy within

the WSN would be wasted.
We propose to utilize the remaining resources by relocating

the energy proficient sensor nodes to repair the coverage

holes. Therefore, the nodes may give up their current position
and expend energy to relocate, effectively resulting in the

WSN healing itself. However, the physical relocation of
the sensor nodes will reduce their energy reserve, due to the

energy necessary to drive motors and servos. Hence, a
method is required to determine whether the energy

expended due to physical relocation would yield
performance benefits, to assist with the decision-making

process.

The existing self-healing algorithms outlined in the related

work section are centralized, where the failing sensor nodes

coordinate the relocation of the neighboring nodes.

Therefore, these algorithms only consider failures due to

energy exhaustion where nodes have sufficient time and

energy to coordinate the relocation of neighboring nodes. Also

the algorithms only consider the relocation of one hop

neighbors therefore, the recovery from a node failure may be

jeopardized when considering limited local redundancy.

3.2 Bayesian mobility (BayesMob)

The BayesMob algorithm coordinates the sensor node

relocation to maintain coverage in the event of node failures

which cause coverage holes. BayesMob provides a distributed

approach to motion control by adopting a Bayesian network,

which uses probabilistic reasoning to determine the optimum

node motion direction (in terms of coverage). The node

effectively predicts the performance benefits and implications

of moving in a given direction. A Bayesian network is a

graphical structure that describes how each sensor node

evaluates the uncertainty within the WSN (Korb and

Nicholson, 2004).
BayesMob incorporates a discrete Bayesian network which

predicts the probability of the WSN coverage increasing or

remaining constant/unchanged given the WSN topology and

sensor node’s motion direction. The variables used in

BayesMob are outlined in Table I.
Netica application software from Norsys (Netica, 2007)

was used to create and validate the Bayesian networks.

The Bayesian networks are used for predictive reasoning.

BayesMob only considers discrete variables so the

relationships between connected nodes are represented by a

conditional probability table (CPT), (Coles, 2007). The CPT

values are generally specified using statistical data from the

system, and/or Bayes’ theorem. The values within BayesMob

have been specified by the designer with a view to achieve the

desired response from the Bayesian networks.
The information used as evidence fed into the Bayesian

networks is acquired from the local neighborhood.

The predictions are based on a possible move in one of the

cardinal directions north, south, east, or west.
BayesMob calculates the conditional probability of an

increase in WSN coverage if the sensor node moves in one of

the cardinal directions given evidence based on neighbors’

Table I Definition of variables

Symbol Definition

T True

F False

N Cardinal direction north

S Cardinal direction south

E Cardinal direction east

W Cardinal direction west

i Cardinal direction index (N, S, E, W)

Cr Sensor node communication range

Ci Coverage increase in cardinal direction i [ (true, false)

Ni Need to move in cardinal direction i [ (true, false)

Ai Neighbor in cardinal direction i [ (true, false)

di Neighbor distance ,Cr in cardinal direction i [ (true, false)

Q Motion angle of sensor node

A self-healing mobile wireless sensor network

Matthew Coles, Djamel Azzi and Barry Haynes

Sensor Review

Volume 28 · Number 4 · 2008 · 326–333

328



positions. The evidence is expressed as the probability of

neighbors lying in each one of the cardinal directions and the

probability that the closest neighbor’s distance in each

direction is less than the communication range (Cr). The

BayesMob structure is shown in Figure 2. The joint

probability function for BayesMob is given in equation (1):

PðCi ; u;NN ;NS ;NE ;NW Þ
¼ PðuÞPðNNÞPðNSÞPðNEÞPðNW Þ
� PðCi ju;NN ;NS ;NE ;NW Þ

ð1Þ

The probability of coverage increasing given that the node

moves in direction i ðPðCi ¼ T ju ¼ iÞÞ is calculated by using

joint probability theory and marginalization, which is given in

equation (2):

PðCi ¼ T ju ¼ iÞ ¼ PðCi ¼ T ; u ¼ iÞ
Pðu ¼ iÞ

¼
NN ;NS ;NE ;NW [{T ;F}

X
PðNNÞPðNSÞPðNEÞPðNW ÞPðu ¼ iÞ £ PðCi

¼ T ju ¼ i;NN ;NS ;NE ;NW Þ ð2Þ

where PðNNÞ to PðNW Þ (probability of the need to move into

each of the cardinal directions) is calculated using equation (3):

PðNi ¼ TÞ ¼
Ai ;di[{T ;F}

X
PðAiÞPðdiÞPðNi ¼ T jAi ; diÞ ð3Þ

The belief in the evidence Ai and di are calculated from a

contacts information table (CIT) local to each sensor node.The

CIT stores all known information about neighboring nodes and

also sensor nodes that route data packets through the node

destined for the commander node. An example of this table is

shown in Figure 3. The sensor nodes represents each of it

neighbors’ positions (motion) with two Gaussian distributions.

Therefore, the CIT stores a mean (m) and a standard deviation

(s) for each of its neighbors’ x and y coordinates. The CITalso

contains additional information such as a timestamp associated

with last communication and a relay count associated with the

number of communication hops to the contact. The motion

characteristics such as motion direction (u) and speed are also

stored.
A sensor node must reconfigure at regular intervals to

maintain a valid contacts table. The reconfiguration allows

sensor nodes to exchange information with neighboring nodes

forWSNmaintenance purposes. This carries a communication

overhead resulting in the need to extend the time between

reconfigurations; this in turn, leads to increased uncertainty.

Sensor nodes handle this uncertainty by representing contacts

locations as Gaussian distributions which vary in time. This

expresses the fact that information becomes less accurate the

longer a node goes without being updated with contact

information. In addition, the assumed Gaussian distributions

provide a mechanism for quantifying the interdependencies

between sensor nodes. When the contacts table is updated

during reconfigurationmx,my store the contacts’ current x and y

coordinates, which represent its neighbor’s mean position

coordinates. Also the standard deviations associated with x and

y sx ¼ sy ¼ 1m (arbitrarily initial value) which allows for

localization errors.
During the period between reconfigurations and assuming

the sensor node has not been in contact with its neighbors, it

periodically increases the sx;sy associated with each contact

entry thus increasing the uncertainty associated with the

contacts’ coordinates. The standard deviation increase is

calculated using equation (4):

s ¼ sþ v · tupdate ð4Þ

where v is the node speed and tupdate table update duty cycle

time.

3.3 Probability of neighbor distance being less than the

communication range

The Gaussian distributions associated with each of the

contacts’ coordinates are used to calculate the probability that

neighbor’s distance is less than the communication range

(Pðdið jÞ ¼ TÞ where j ¼ 1. . .n, and n equals the total number

of neighbors from the contacts table). If x and y are

independent Gaussian random variables with nonzero means

then the distance z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
has a probability density

function f zðzÞ which can be represented by a Rician

distribution, which is given in equation (5):

f zðzÞ ¼
ze2ðz2þm2Þ=2s2

s2
Io

zm

s2

� �
ð5Þ

where:

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þ m2
y

q
; u ¼ tan21 y

x

� �
; s ¼ sx ¼ sy;

mx ¼ m cosf; my ¼ m sinf

and:

IoðhÞD¼
1

2p

Z 2p

0

eh cosðu2fÞdu ¼ 1

p

Z p

0

eh cos udu ð6Þ

Figure 2 Coverage increase Bayesian network structure

θθ CiCi

NNNN

ANAN dNdN AWAW dWdW

NSNS NENE NWNW

Figure 3 CIT local to sensor nodes

Node
ID

1

i

....

Time-
stamp

Relay
Count

Spead
(m/s–1)

θµx
(m)

σx
(m)

µy
(m)

σy
(m)

A self-healing mobile wireless sensor network

Matthew Coles, Djamel Azzi and Barry Haynes

Sensor Review

Volume 28 · Number 4 · 2008 · 326–333

329



Equation (6) is the modified Bessel function of the first kind

and zeroth order.
Pðdið jÞ ¼ TÞ in the cardinal direction i is approximated by

numerically integrating the Rician distribution between zero
and the Cr.

3.4 Probability of a neighbor lying in each of the

cardinal directions

PðAið jÞÞ; j ¼ 1. . .n is approximated using Algorithm 1
because the p.d.f f uðuÞ of the angle u ¼ tan21ðy=xÞ is
intractable when x and y are independent Gaussian random
variables with nonzero means:
The probabilities Pðdið jÞ ¼ TÞ and PðAið jÞ ¼ TÞ are

aggregated to approximate the evidence for BayesMob. This
is shown in equations (7) and (8). Pðdið jÞ ¼ TÞ is scaled with
respect to the belief that the neighbor is in direction i:

PðAi ¼ TÞ ¼ 12
Yn

j¼1

PðAið jÞ ¼ iÞ ð7Þ

Pðdi ¼ TÞ ¼ 12
Yn

j¼1

Pðdið jÞÞ £ PðAið jÞ ¼ iÞ ð8Þ

Algorithm 1
Approximate PðAið jÞ ¼ T Þ x, y ¼ sensor node’s

coordinates, and s ¼ sx ¼ sy:

mdistance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 2 xjÞ2 þ ðy 2 yjÞ2

q

¼ mean distance from neighbour

if s , ð4 £ mdistanceÞ

Assume the f uðuÞ p.d.f is represented by a Gaussian
distribution with:

suðsÞ ¼ 1002 100e2ðs=mdistanceÞ

mu ¼ tan21 my

mx

� �

/ *Probability of direction is approximated by integrating
between
45 to 135 and 405 to 495 degrees for north
135 to 225 and 2225 to 2135 degrees for west
225 to 315 and 2135 to 245 degrees for south
315 to 360 and 0 to 45 and 245 to 0 and 360 to 405 degrees

for east */
else

Assume f uðuÞ is represented by a uniform distribution
/ *assume a uniformed distribution between 0 and 360
degrees */

3.5 Selecting the motion status and direction

The sensor node selects the motion direction by evaluating
probability of coverage increase PðCiÞ and determining which

direction yields the maximum probability of the coverage
being maintained or increased and also evaluating the
adjacent cardinal direction probabilities. If PðCiÞ is greater
than a specified threshold the node moves in the direction
determined by Algorithm 2, else it will remain static. The
threshold defines the motion status of the sensor node by
setting the sensitivity of the BayesMob algorithm. If this value
is too low the sensor node will continuously move and thus

exhaust their limited energy reserve. Alternatively setting the

threshold too high will prevent the sensor node from moving
to repair coverage holes. Therefore, this value specifies how
responsive a sensor node is to a coverage hole. The threshold
was set to 35 per cent through trial and error testing.

Algorithm 2
Selecting motion direction

Calculate the difference between adjacent cardinal directions
probabilities P(Ci ^ 1)
if difference ,2 per cent and difference .22 per cent

motion direction ¼ direction which yields maximum
probability

else
motion direction ¼ direction which yields maximum
probability þ difference between adjacent cardinal

direction probabilities
end

4. Simulation and results

4.1 Simulation set up

All simulations have been generated using a custom built
Matlab based WSN simulator. The geographical region of

interest was set to a 100 £ 100m area. Every sensor node is
equipped with motion capabilities. Table II details the settings
of the simulation parameters. The sensor nodes were
configured to generate and transmit data packets destined

for the commander node in a duty period of 2min.
The reconfiguration duty time defines the period between

neighbor communications used to update localization
information within the CIT. The former was set to 2min.
We assumed a perfect medium access control (MAC)
protocol, therefore the practical implications associated with

communication were not considered. Having said that, in a
practical implementation the repeat mechanism built into the
MAC protocol would ensure successful transmissions at the
cost of negligible packet delay. The latter is of the order of

hundreds of milliseconds (upper estimate) which is negligible
when compared with the duty time of the system at hand.
Two types of deployment strategies have been tested; fixed

and random deployments. Under the fixed approach the
sensor nodes would be placed manually, thus ensuring a
uniform distribution of the sensor nodes and maximum
coverage. Alternatively the random approach positions the

nodes following a uniform distribution.
Simulations have been carried out for a range of sensor

node densities (64, 81 and 100 nodes for the 100 £ 100m2).

The latter values were selected to provide a uniform spatial
distribution across the region of interest (which is square
shaped), whilst adopting a fixed deployment approach. For
example, a deployment of 64 nodes which are evenly

Table II Simulation parameters

Parameter Value Rationale

Communication range 20 m Typical ranges observed in external

environments with Berkeley motes

Sensing range 10 m Sensing range is half the

communication range

Mobility cost 17.8758 J/m X4e robot platforms (2006)

Total initial energy 87,480 J Capacity of 6 v alkaline battery
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distributed across the region of interest yields 8 £ 8 node

grid. The simulations evaluate the WSN coverage for the

CoFi algorithm (Ganeriwal et al., 2004) and whilst adopting

BayesMob. We present results that compare both approaches

in terms of coverage loss and motion energy overheads. The

node failures are induced via a uniform distribution and occur

at 30min intervals which attempts to emulate abrupt failures

under volatile application environment conditions.

4.2 Fixed deployment

First we consider a fixed deployment scenario, under which the

sensor nodes are uniformly distributed over the region of

interest to provide 100 per cent coverage. Figures 4-6 show the

respective coverage loss plots for a deployment of 64, 81, and

100nodes.These results show that the physical relocation of the

sensor nodes under the BayesMob algorithm will sustain the

WSN coverage for an increased percentage of node failures.

This observation becomes more apparent as the sensor node
density increases. For example, if the application criterion
specifies amaximum coverage loss of 20 per cent, withCoFi the
WSN could tolerate 35, 43, and 44 per cent of nodes failing for

64, 81, and 100 nodes deployed, respectively. Using the
BayesMob algorithm theWSN tolerates 45, 58, and 66 per cent
of nodes failing for the same node densities.
The sharp increases in coverage loss observed in all figures

are due to a subsection of the WSN becoming disconnected
(loss in connectivity). The BayesMob fails to recover the

coverage loss when the number of sensor nodes deployed is
not sufficient to cover the region of interest.

4.3 Random deployment

Here, the sensor nodes are deployed randomly according to a
uniform distribution over the region of interest. Figures 7-9
show the respective coverage loss plots. The results of the

simulations show that the BayesMob algorithm tolerates 50,
60 and 68 per cent of nodes failing (for 64, 81 and 100 nodes
deployed, respectively) before the coverage loss criterion is

exceeded. Under the same conditions, the CoFi tolerates only
40, 43 and 57 per cent node failure before the coverage
criterion is breached.

4.4 Motion energy overheads

The percentage of total energy available to the WSN used for
motion for both strategies (BayesMob and CoFi) has been
evaluated and is represented in Figure 10 as a function of the

percentage of dead nodes. The total energy is calculated by
multiplying the total number of sensor nodes by their individual
energy reserves (total battery capacity) throughout the length of

the simulation. The motion energy costs associated with the
BayesMob exceed those of CoFi.When 80 per cent of theWSN
has failed the motion energy for BayesMob algorithm is

approximately 1.7 per cent of the total energy. The
corresponding motion energy for the CoFi algorithm under
the same conditions is approximately 0.025 per cent.
The motion energy for BayesMob rapidly increases as the

percentage of nodes fail. This is due to sensor nodes moving

Figure 4 Coverage loss plot for a fixed deployment of 64 nodes
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Figure 5 Coverage loss plot for a fixed deployment of 81 nodes
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Figure 6 Coverage loss plot for a fixed deployment of 100 nodes
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a greater distance to repair the coverage holes. The CoFi
algorithm will only attempt to repair coverage holes via
relocating one hop neighbors. Therefore, the motion distance
is restricted at the cost of coverage. The decentralized nature
of BayesMob means that it can also accommodate abrupt
failures due to malicious destruction and or malfunction.

5. Conclusion

This paper has shown how, through the use of a Bayesian
network based mobility scheme, a WSN can be imparted self
healing properties with regards to coverage losses induced by
energy exhaustion and abrupt node failures (such as those
caused by malicious interference). The paper has described
how sensor nodes operating according to BayesMob can
predict WSN coverage variations using only local information
and compute a direction of motion with a view to maximize or

maintain the coverage of the network. The results of

comparing BayesMob with the CoFi algorithm have been

presented and show that BayesMob maintains coverage for a

greater percentage of dead nodes, albeit at the expense of

increased energy overheads – which may be acceptable given

the application coverage requirements.
BayesMob is a promising technique which is currently

being extended to coordinate the motion of nodes within a

mobile WSN to improve additional performance criteria such

as lifetime (for example edge effect minimisation where a

sensor node would base their next move on the estimated

EDR of neighboring nodes). It is also planned to create

mobility strategies which would provide varying degrees of

sensing resolution across the region of interest, dependent on

varying application criteria and operating conditions.

Figure 7 Coverage loss plot for a random deployment of 64 nodes
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Figure 8 Coverage loss plot for a random deployment of 81 nodes
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Figure 10 Motion energy overheads for BayesMob vs CoFi
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Figure 9 Coverage loss plot for a random deployment of 100 nodes
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