5,356 research outputs found

    Combining Boolean Networks and Ordinary Differential Equations for Analysis and Comparison of Gene Regulatory Networks

    Get PDF
    This thesis is concerned with different groups of qualitative models of gene regulatory networks. Four types of models will be considered: interaction graphs, Boolean networks, models based on differential equations and discrete abstractions of differential equations. We will investigate the relations between these modeling frameworks and how they can be used in the analysis of individual models. The focus lies on the mathematical analysis of these models. This thesis makes several contributions in relating these different modeling frameworks. The first approach concerns individual Boolean models and parametrized families of ordinary differential equations (ODEs). To construct ODE models systematically from Boolean models several automatic conversion algorithms have been proposed. In Chapter 2 several such closely related algorithms will be considered. It will be proven that certain invariant sets are preserved during the conversion from a Boolean network to a model based on ODEs. In the second approach the idea of abstracting the dynamics of individual models to relate structure and dynamics will be introduced. This approach will be applied to Boolean models and models based on differential equations. This allows to compare groups of models in these modeling frameworks which have the same structure. We demonstrate that this constitutes an approach to link the interaction graph to the dynamics of certain sets of Boolean networks and models based on differential equations. The abstracted dynamics – or more precisely the restrictions on the abstracted behavior – of such sets of Boolean networks or models based on differential equations will be represented as Boolean state transitions graphs themselves. We will show that these state transition graphs can be considered as asynchronous Boolean networks. Despite the rather theoretical question this thesis tries to answer there are many potential applications of the results. The results in Chapter 2 can be applied to network reduction of ODE models based on Hill kinetics. The results of the second approach in Chapter 4 can be applied to network inference and analysis of Boolean model sets. Furthermore, in the last chapter of this thesis several ideas for applications with respect to experiment design will be considered. This leads to the question how different asynchronous Boolean networks or different behaviours of a single asynchronous Boolean network can be distinguishedDiese Arbeit beschäftigt sich mit unterschiedlichen Typen von qualitativen Modellen genregulatorischer Netzwerke. Vier Typen von Modellen werden betrachtet: Interaktionsgraphen, Boolesche Netzwerke, Modelle, die auf Differentialgleichungen basieren und diskrete Abstraktionen von Differentialgleichungen. Wir werden mehr über die Beziehungen zwischen diesen Modellgruppen lernen und wie diese Beziehungen genutzt werden können, um einzelne Modelle zu analysieren. Der Schwerpunkt liegt hierbei auf der mathematischen Analyse dieser Modellgruppen. In dieser Hinsicht leistet diese Arbeit mehrere Beiträge. Zunächst betrachten wir Boolesche Netzwerke und parametrisierte Familien von gewöhnlichen Differentialgleichungen (ODEs). Um solche ODE-Modelle systematisch aus Booleschen Modellen abzuleiten, wurden in der Vergangenheit verschiedene automatische Konvertierungsalgorithmen vorgeschlagen. In Kapitel 2 werden einige dieser Algorithmen näher untersucht. Wir werden beweisen, dass bestimmte invariante Mengen bei der Konvertierung eines Booleschen Modells in ein ODE-Modell erhalten bleiben. Der zweite Ansatz, der in dieser Arbeit verfolgt wird, beschäftigt sich mit diskreten Abstraktionen der Dynamik von Modellen. Mit Hilfe dieser Abstraktionen ist es möglich, die Struktur – den Interaktionsgraphen – und die Dynamik der zugehörigen Modelle in Bezug zu setzen. Diese Methode wird sowohl auf Boolesche Modelle als auch auf ODE-Modelle angewandt. Gleichzeitig erlaubt dieser Ansatz Mengen von Modellen in unterschiedlichen Modellgruppen zu vergleichen, die dieselbe Struktur haben. Die abstrahierten Dynamiken (genauer die Einschränkungen der abstrahierten Dynamiken) der Booleschen Modellmengen oder ODE-Modellmengen können als Boolesche Zustandsübergangsgraphen repräsentiert werden. Wir werden zeigen, dass diese Zustandsübergangsgraphen wiederum selber als (asynchrone) Boolesche Netzwerke aufgefasst werden können. Trotz der theoretischen Ausgangsfrage werden in dieser Arbeit zahlreiche Anwendungen aufgezeigt. Die Ergebnisse aus Kapitel 2 können zur Modellreduktion benutzt werden, indem die Dynamik der ODE-Modelle auf den zu den Booleschen Netzwerken gehörigen “trap spaces” betrachtet wird. Die Resultate aus Kapitel 4 können zur Netzwerkinferenz oder zur Analyse von Modellmengen genutzt werden. Weiterhin werden im letzten Kapitel dieser Arbeit einige Anwendungsideen im Bezug auf Experimentdesign eingeführt. Dies führt zu der Fragestellung, wie verschiedene asynchrone Boolesche Netzwerke oder unterschiedliche Dynamiken, die mit einem einzelnen Modell vereinbar sind, unterschieden werden können

    Embedding of biological regulatory networks and property preservation

    Get PDF
    Abstract. In the course of understanding biological regulatory networks (BRN), scientists usually start by studying small BRNs that they believe to be of particular importance to represent a biological function, and then, embed them in a larger network. Such a reduction can lead to neglect relevant regulations and to study a network whose properties can be very different from the properties of this network viewed as a part of the whole. In this paper we study, from a logical point of view, on which conditions concerning both networks, properties can be inherited by BRNs from sub-BRNs. We give some conditions on the nature of the network embeddings ensuring that dynamic properties on the embedded sub-BRNs are preserved at the level of the whole BRN

    When one model is not enough: Combining epistemic tools in systems biology

    Get PDF
    In recent years, the philosophical focus of the modeling literature has shifted from descriptions of general properties of models to an interest in different model functions. It has been argued that the diversity of models and their correspondingly different epistemic goals are important for developing intelligible scientific theories (Levins, 2006; Leonelli, 2007). However, more knowledge is needed on how a combination of different epistemic means can generate and stabilize new entities in science. This paper will draw on Rheinberger’s practice-oriented account of knowledge production. The conceptual repertoire of Rheinberger’s historical epistemology offers important insights for an analysis of the modelling practice. I illustrate this with a case study on network modeling in systems biology where engineering approaches are applied to the study of biological systems. I shall argue that the use of multiple means of representations is an essential part of the dynamic of knowledge generation. It is because of – rather than in spite of – the diversity of constraints of different models that the interlocking use of different epistemic means creates a potential for knowledge production

    Functional analysis of High-Throughput data for dynamic modeling in eukaryotic systems

    Get PDF
    Das Verhalten Biologischer Systeme wird durch eine Vielzahl regulatorischer Prozesse beeinflusst, die sich auf verschiedenen Ebenen abspielen. Die Forschung an diesen Regulationen hat stark von den großen Mengen von Hochdurchsatzdaten profitiert, die in den letzten Jahren verfügbar wurden. Um diese Daten zu interpretieren und neue Erkenntnisse aus ihnen zu gewinnen, hat sich die mathematische Modellierung als hilfreich erwiesen. Allerdings müssen die Daten vor der Integration in Modelle aggregiert und analysiert werden. Wir präsentieren vier Studien auf unterschiedlichen zellulären Ebenen und in verschiedenen Organismen. Zusätzlich beschreiben wir zwei Computerprogramme die den Vergleich zwischen Modell und Experimentellen Daten erleichtern. Wir wenden diese Programme in zwei Studien über die MAP Kinase (MAP, engl. mitogen-acticated-protein) Signalwege in Saccharomyces cerevisiae an, um Modellalternativen zu generieren und unsere Vorstellung des Systems an Daten anzupassen. In den zwei verbleibenden Studien nutzen wir bioinformatische Methoden, um Hochdurchsatz-Zeitreihendaten von Protein und mRNA Expression zu analysieren. Um die Daten interpretieren zu können kombinieren wir sie mit Netzwerken und nutzen Annotationen um Module identifizieren, die ihre Expression im Lauf der Zeit ändern. Im Fall der humanen somatischen Zell Reprogrammierung führte diese Analyse zu einem probabilistischen Boolschen Modell des Systems, welches wir nutzen konnten um neue Hypothesen über seine Funktionsweise aufzustellen. Bei der Infektion von Säugerzellen (Canis familiaris) mit dem Influenza A Virus konnten wir neue Verbindungen zwischen dem Virus und seinem Wirt herausfinden und unsere Zeitreihendaten in bestehende Netzwerke einbinden. Zusammenfassend zeigen viele unserer Ergebnisse die Wichtigkeit von Datenintegration in mathematische Modelle, sowie den hohen Grad der Verschaltung zwischen verschiedenen Regulationssystemen.The behavior of all biological systems is governed by numerous regulatory mechanisms, acting on different levels of time and space. The study of these regulations has greatly benefited from the immense amount of data that has become available from high-throughput experiments in recent years. To interpret this mass of data and gain new knowledge about studied systems, mathematical modeling has proven to be an invaluable method. Nevertheless, before data can be integrated into a model it needs to be aggregated, analyzed, and the most important aspects need to be extracted. We present four Systems Biology studies on different cellular organizational levels and in different organisms. Additionally, we describe two software applications that enable easy comparison of data and model results. We use these in two of our studies on the mitogen-activated-protein (MAP) kinase signaling in Saccharomyces cerevisiae to generate model alternatives and adapt our representation of the system to biological data. In the two remaining studies we apply Bioinformatic methods to analyze two high-throughput time series on proteins and mRNA expression in mammalian cells. We combine the results with network data and use annotations to identify modules and pathways that change in expression over time to be able to interpret the datasets. In case of the human somatic cell reprogramming (SCR) system this analysis leads to the generation of a probabilistic Boolean model which we use to generate new hypotheses about the system. In the last system we examined, the infection of mammalian (Canis familiaris) cells by the influenza A virus, we find new interconnections between host and virus and are able to integrate our data with existing networks. In summary, many of our findings show the importance of data integration into mathematical models and the high degree of connectivity between different levels of regulation

    Towards modular verification of pathways: fairness and assumptions

    Full text link
    Modular verification is a technique used to face the state explosion problem often encountered in the verification of properties of complex systems such as concurrent interactive systems. The modular approach is based on the observation that properties of interest often concern a rather small portion of the system. As a consequence, reduced models can be constructed which approximate the overall system behaviour thus allowing more efficient verification. Biochemical pathways can be seen as complex concurrent interactive systems. Consequently, verification of their properties is often computationally very expensive and could take advantage of the modular approach. In this paper we report preliminary results on the development of a modular verification framework for biochemical pathways. We view biochemical pathways as concurrent systems of reactions competing for molecular resources. A modular verification technique could be based on reduced models containing only reactions involving molecular resources of interest. For a proper description of the system behaviour we argue that it is essential to consider a suitable notion of fairness, which is a well-established notion in concurrency theory but novel in the field of pathway modelling. We propose a modelling approach that includes fairness and we identify the assumptions under which verification of properties can be done in a modular way. We prove the correctness of the approach and demonstrate it on the model of the EGF receptor-induced MAP kinase cascade by Schoeberl et al.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    Freshwater ecosystem services in mining regions : modelling options for policy development support

    Get PDF
    The ecosystem services (ES) approach offers an integrated perspective of social-ecological systems, suitable for holistic assessments of mining impacts. Yet for ES models to be policy-relevant, methodological consensus in mining contexts is needed. We review articles assessing ES in mining areas focusing on freshwater components and policy support potential. Twenty-six articles were analysed concerning (i) methodological complexity (data types, number of parameters, processes and ecosystem-human integration level) and (ii) potential applicability for policy development (communication of uncertainties, scenario simulation, stakeholder participation and management recommendations). Articles illustrate mining impacts on ES through valuation exercises mostly. However, the lack of ground-and surface-water measurements, as well as insufficient representation of the connectivity among soil, water and humans, leave room for improvements. Inclusion of mining-specific environmental stressors models, increasing resolution of topographies, determination of baseline ES patterns and inclusion of multi-stakeholder perspectives are advantageous for policy support. We argue that achieving more holistic assessments exhorts practitioners to aim for high social-ecological connectivity using mechanistic models where possible and using inductive methods only where necessary. Due to data constraints, cause-effect networks might be the most feasible and best solution. Thus, a policy-oriented framework is proposed, in which data science is directed to environmental modelling for analysis of mining impacts on water ES

    Current Challenges in Modeling Cellular Metabolism

    Get PDF
    Mathematical and computational models play an essential role in understanding the cellular metabolism. They are used as platforms to integrate current knowledge on a biological system and to systematically test and predict the effect of manipulations to such systems. The recent advances in genome sequencing techniques have facilitated the reconstruction of genome-scale metabolic networks for a wide variety of organisms from microbes to human cells. These models have been successfully used in multiple biotechnological applications. Despite these advancements, modeling cellular metabolism still presents many challenges. The aim of this Research Topic is not only to expose and consolidate the state-of-the-art in metabolic modeling approaches, but also to push this frontier beyond the current edge through the introduction of innovative solutions. The articles presented in this e-book address some of the main challenges in the field, including the integration of different modeling formalisms, the integration of heterogeneous data sources into metabolic models, explicit representation of other biological processes during phenotype simulation, and standardization efforts in the representation of metabolic models and simulation results
    • …
    corecore