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A

e behavior of all biological systems is governed by numerous regulatorymechanisms,
acting on different levels of time and space. e study of these regulations has greatly ben-
e ted from the immense amount of data that has become available from high-throughput
experiments in recent years. To interpret this mass of data and gain new knowledge about
studied systems, mathematical modeling has proven to be an invaluable method. Never-
theless, before data can be integrated into amodel it needs to be aggregated, analyzed, and
the most important aspects need to be extracted.

We present four Systems Biology studies on different cellular organizational levels and
in different organisms. Additionally, we describe two so ware applications that enable
easy comparison of data and model results. We use these in two of our studies on the
mitogen-activated-protein (MAP) kinase signaling in Saccharomyces cerevisiae to generate
model alternatives and adapt our representation of the system to biological data. In the
two remaining studies we apply Bioinformatic methods to analyze two high-throughput
time series on proteins and mRNA expression in mammalian cells. We combine the re-
sults with network data and use annotations to identifymodules and pathways that change
in expression over time to be able to interpret the datasets. In case of the human somatic
cell reprogramming (SCR) system this analysis leads to the generation of a probabilistic
Booleanmodel whichwe use to generate new hypotheses about the system. In the last sys-
tem we examined, the infection of mammalian (Canis familiaris) cells by the in uenza A
virus, we nd new interconnections between host and virus and are able to integrate our
data with existing networks.

In summary, many of our ndings show the importance of data integration into mathe-
matical models and the high degree of connectivity between different levels of regulation.
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Z

Das Verhalten Biologischer Systeme wird durch eine Vielzahl regulatorischer Prozesse
beein usst, die sich auf verschiedenen Ebenen abspielen. Die Forschung an diesen Regu-
lationen hat stark von den großen Mengen von Hochdurchsatzdaten pro tiert, die in den
letzten Jahren verfügbarwurden. UmdieseDaten zu interpretieren undneueErkenntnisse
aus ihnen zu gewinnen, hat sich die mathematische Modellierung als hilfreich erwiesen.
Allerdings müssen die Daten vor der Integration inModelle aggregiert und analysiert wer-
den.

Wirpräsentierenvier Studienauf unterschiedlichenzellulärenEbenenund inverschiede-
nen Organismen. Zusätzlich beschreiben wir zwei Computerprogramme die den Vergle-
ich zwischenModell undExperimentellenDatenerleichtern. WirwendendieseProgramme
in zwei Studien über dieMAPKinase (MAP, engl. mitogen-acticated-protein) Signalwege
inSaccharomyces cerevisiae an, umModellalternativen zugenerierenundunsereVorstellung
des Systems anDaten anzupassen. In den zwei verbleibenden Studien nutzenwir bioinfor-
matischeMethoden, umHochdurchsatz-Zeitreihendaten vonProtein undmRNAExpres-
sion zu analysieren. Um die Daten interpretieren zu können kombinieren wir sie mit Net-
zwerken und nutzen Annotationen umModule identi zieren, die ihre Expression im Lauf
der Zeit ändern. Im Fall der humanen somatischen Zell Reprogrammierung führte diese
Analyse zu einem probabilistischen Boolschen Modell des Systems, welches wir nutzen
konnten um neue Hypothesen über seine Funktionsweise aufzustellen. Bei der Infektion
vonSäugerzellen (Canis familiaris)mitdemIn uenzaAVirus konntenwirneueVerbindun-
gen zwischen dem Virus und seinem Wirt heraus nden und unsere Zeitreihendaten in
bestehende Netzwerke einbinden.

Zusammenfassend zeigen viele unserer Ergebnisse die Wichtigkeit von Datenintegra-
tion in mathematische Modelle, sowie den hohen Grad der Verschaltung zwischen ver-
schiedenen Regulationssystemen.
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Science is what we understand well enough to explain to a
computer. Art is everything else we do.

Donald Knuth

1
Introduction

. O

e large variety of regulatory processes in modern Cell Biology and their high degree of
connectivity poses a lot of interesting and complex questions. Regulation happens on nu-
merous levels each of which includes plenty of mechanisms and acts on different scales.
Nevertheless all these processes are interconnected and only in combination lead the de-
sired behavior of the system as a whole. e physical entities that play a role in these reg-
ulations are proteins, RNA, DNA, or other types of molecules. All of these can play a part
in any of the different regulatory layers, be it gene expression, protein translation, or epi-
genetic modi cations.

Mass production of data on various biological systems has changed the way in which
biology as a science is done over the last decade. Stringent analysis, combined with math-
ematical modeling is required to utilize the full potential of this data. is thesis demon-
strates the integration of large scale data into the research process from a Bioinformatics
and Systems Biology perspective. We present multiple studies of systems reacting and
adapting toenvironmental stimuli. e reactionwasmeasuredwithhigh-throughputmeth-
ods on the protein andmRNA level. By utilizingBioinformatics analysis andmathematical
modeling, we try to isolate the most important parts of the different mechanisms and pro-
pose interactions between them. In the course of this endeavor we developed tools that
assist us in the construction of mathematical models and facilitate an efficient approach to
Computational Systems Biology.

Regulationof thebehavior anddynamics of a system is generally classi ed into anumber
of different levels. ese are grouped by scale (in time and space) or by chemical proper-



ties (stable modi cations vs. non-covalent-interactions). To nd similarities, differences,
and connections between the different levels, we span a large bandwidth of systems and
regulatory layers. In detail, we will cover four different levels and three species:

• Species interactions: In uenza A virus / domestic dog (Canis familiaris)

• Cell signaling: baker’s yeast (Saccharomyces cerevisiae)

• Gene regulatory networks: human (Homo sapiens) stem cells

• Epigenetic regulation: human (Homo sapiens) stem cells

ese different systems can all be analyzed using similar theoretical methods and their
behavior is governed by universal basic biological mechanisms and complex systems. is
exempli es the generality of theoretical methods and modeling in particular and
their potential to unify different areas of biological research by highlighting common prin-
ciples and standardizing a common language.

Systems Biology is a strongly interdisciplinary eld. It requires detailed knowledge of a
wide array of topics, spanning from mathematical theory to biological methods and back-
ground. As a resultwewill introducemanydifferent topics to the reader. emathematical
analysis and experimental methods used in the different studies, are explained in chapter
. We show the results of the different research topics in chapters , and .
In chapter we present the results of so ware development efforts and techniques for

the generation, management, and discrimination of mathematical models. We demon-
strate theuseof two resulting so ware applicationsondifferentmodels ofmitogen-activated
protein (MAP) kinase pathways in baker’s yeast.

Chapter is the main part of the thesis, and the focus of my work. It examines the re-
programmingof somatic body cells to pluripotent stemcells by viral transductionof exoge-
nous factors. is chapter consists of section . . , which is an in depth analysis of mRNA
expression changes in a reprogramming experiment and section . . which presents a
mathematical model that describes an hypothesis about themechanisms regulating repro-
gramming of human somatic cells to a pluripotent state.

Chapter deals with another infection process, but focuses on the interaction between
the In uenza A virus and its host. As we will see, the analysis methods used in this chapter
partly overlap with chapter , although they deal with protein rather than mRNA data.

Because of the large biological variety, we chose to give a biological introduction at
the beginning of each chapter, while the unifying theoretical background is given in the
remainder of this chapter. As last and concluding part, chapter gives an overview of
the results of the different projects and discusses the conclusions that can be drawn from
these. We present new approaches for so ware assisted model construction, insights on
the somatic reprogramming process, and new ndings on the virus-host-interactions dur-
ing in uenza infection. e chapterwill also give an outlook to further research efforts that
might result from the presented work.



. S B

In the th century, biology has seen an explosion of knowledge of unprecedented pro-
portions. From medical advances like antibiotics, over the discovery of the structure of
the DNA (Watson and Crick, ), to the full sequence of the human genome (Venter
et al., ), it was a success story throughout. Many important discoveries in the last
decades were based on the detailed study of the properties and functions of certain genes
and proteins. Researchers took a “reductionist” approach to understand life, by reducing
it to single pieces and their properties. ese studies produced an enormous amount of
knowledge about the details of cellular components and processes. e elds of genetics
and genomics were rapidly developing and genes were seen as the most important build-
ing blocks that determine the fate of an organism. ese billions of parts are an invaluable
resource for modern biology, and the task is now to put the pieces back together again.

Systems Biology is a new school of thought for the Biology of the st century. It shi s
the focus from the reductionist view of the biological system towards a wider view that is
moreholistic. From thiswide angle one tries to gain anoverall abstract understanding tobe
able to identify the important details of the system to include into further studies. Systems
Biology ideally connects all levels of regulation of the system to understand its behavior.

ese connections between the levels are also not unidirectional, from the direction of
genes to the complete organism, which is implied by the classic dogma of molecular biol-
ogy (from DNA to mRNA to protein) (Crick, ). But can also work in the opposite
direction, in which proteins in uence genes and their expression. e reprogramming of
body cells by transfer edansfer, in which the nucleus from a somatic cell is transfered into
an oocyte, is a good example of thesemechanisms. In this process proteins that are present
in themoment of nuclear transfer decidewhich genes are activated andwhich are not. is
results in the reprogramming of the whole cell to a stem cell, illustrating that proteins in-
uence the expression of genes and also chromatin structure.

e Systems Biology approach utilizes a combination of mathematical, computational
and experimental methods to get close to the goal of understanding why the whole system
is built as it is, and how its different levels are interconnected. is approach is not an en-
tirely new idea, and has been practiced by pioneers of the eld already in the s (e.g.
Kell, ; Noble, ). Nevertheless the approach has become more popular only in
the last decade (Kitano, ). is development is mainly due to the following reasons:
(i) e idea that the function of biological systems can be understood by mere intuition
a er looking at data has become increasingly unrealistic given the complexity of contem-
porary biology. (ii) Biology has become a much more data driven science than it used
to be, by the advances in bioinformatics algorithms, data analysis, and the establishment
of large databases storing the huge amounts of data that are gathered by modern “omics”
techniques like deep sequencing and proteomics. (iii) Computers are still becomingmore
powerful very quickly andmore specialized tools are becoming available for systems analy-



sis by so ware developers frombiological labs. Combinedwith the easy exchange of infor-
mation over the internet, thismakes computational approaches a powerful tool for biology
to help unravel the complex systems that need to be investigated.

. M M B S

Mathematical models of the studied system are an integral part of studies in Systems Bi-
ology. A model formulates the biological phenomena in a system using mathematical lan-
guage and techniques. If used well, models can be a great help in structuring information
and predict experimental outcomes for a system and propose new experiments. Models
can come in a variety of avors, e.g. they can describe the ow of metabolites through
an organism or a cell, or predict which genes are active in an organism under certain cir-
cumstances. A model in general is an abstraction of reality that highlights certain aspects
of a system and cannot aim to explain it completely. e superior aim in model building
should be to elucidate the key features of the processes under observation. A well known
and ing quote in this context was phrased by Box, :

“Essentially, all models are wrong, but some are useful.”

Models are o en used in an iterative cycle with experiments to state precise hypotheses
about a system and re ne the understanding of the processes that govern it (Figure . . ).
Ideally the process starts offwith an idea or hypothesis about a speci c biological question
that leads to amodel formulation based on the current knowledge. e model can then be
simulated to predict outcomes of new experiments. is model output can be compared
to experimental data that is used to readjust and improve the model, which can then start
the cycle anew. e data is ideally gathered in a way that it can clearly validate or reject the
model predictions.

To researchers new to the eld, the merits of theoretical models are not always obvious
at rst sight. Nevertheless, working with models is o en necessary and can prove useful
in practice. e most evident use is probably prediction of system behavior under altered
conditions, as described above. Another advantage of building mathematical models of
the studied system is inherent in the process of their creation. Modeling forces researchers
to formulate precise verbal hypotheses to enable the dialog between the experimentalists
and theoreticians already during the early phases of a study and thereby helps to specify
clear aims and questions. is o en sheds light on crucial gaps in understanding of the
system and in many cases inspires new experiments to close these gaps.

. . S M

Amodel represents the current knowledge about a system in an abstract and usable format
(Kitano, ). erefore, to be useful, the model has to be formulated in a way that is
adapted to the level of detail of said knowledge.



Figure 1.3.1: Systems
Biology is often associ-
ated with iteration be-
tween biological exper-
iments and theoretical
analysis. The cycle
is a strongly idealized
view of systems biolog-
ical research and can
contain inner loops or
feed-backs in reality.

ere is a variety of mathematical frameworks that have been used in the past to de-
scribe biological systems and the eld is still rapidly evolving. Choosing an appropriate
modeling framework is a crucial step in a Systems Biology project, because this de nes the
scope of the model and sets limits to the development. For this step the hypothesis that
shall be tested needs to be formalized and one needs to de ne clear goals for the study
while considering available data and possible experiments. ere is always a trade-off be-
tween granularity and detail of a model versus its complexity and the amount of data that
is needed to test hypothesis about its behavior. Each modeling framework has its advan-
tages and disadvantages and they all highlight different aspects of a system. Figure . .
summarizes some of the most common methods and their level of detail to visualize this
aspect. Models presented in this thesis use two common forms of dynamic modeling that
lie in opposite parts of this spectrum. First there are ordinary differential equation (ODE)
systems which are themain focus of section . that allow for a continuous dynamic simu-
lation of biological systems and for which there is a large amount of analysis tools available.

ese models o en have a large number of parameters that need to be set by using exper-
imental data. Second we concentrate on Boolean models (Section . ) that are the most
abstract form of dynamic modeling and are suited for large systems (e.g. Figure . . ) but
are only coarse grained approximations of reality. Boolean models have been extended by
stochastic frameworks to include uncertainties in the data into models, which we use in
section . . . ere are many more modeling frameworks that do not t into the scheme



(agent based models, game theory models, etc.) presented in gure . . , and it is always
a difficult decision which of the many approaches ts a system best.

Figure 1.3.2: A brief overview of different modelling methods and their degree of detail.
Approaches are ordered by their level of detail horizontally and are divided vertically into
stochastic and deterministic models. (PLDE = partially linear differential equations)

. . D D M

To build amathematical model it is necessary to de ne relationships between the building
blocks of a system (e.g. proteins and genes). is is frequently done using high-troughput
association data like chromatin immunoprecipitation on microarrays (ChIP-on-chip) for
transcription factor binding or affinity puri cation and mass spectrometry for protein in-
teractions. Another way to create such networks is by text-mining the literature on the
topic following expert curation. ese two approaches are o en combined and the re-
sulting networks are stored in public databases like KEGG (Kanehisa, ) or Reactome
(Joshi-Tope and Gillespie, ).

esenetworksbecomeuseful formodelingwhenannotatedwithGeneOntology (GO)
(Ashburner et al., ) and existing pathway data to see interconnections and crosstalks
between systems. When connected to (ideally dynamic) expression data, these networks
become testable for feasibility of the connections given the changes in expression and it is
possible to estimate the strengths of regulation inside the network (Section . . ). Visual-
ization of the data on a network can also facilitate communication and interpretation.

Data analysis and annotation are needed to nd out which parts of a system are modu-
lated by a certain stimulus and which are the most pressing ones to be elucidated by mod-
eling. We used these techniques to analyze different experiments in chapters and .

A er these rst steps of de ning a network structure from the data, the next task is to
de ne the dynamics of the topological system. Once there is enough information about



a system to formulate a detailed kinetic model, the challenge is to adjust the free parame-
ters to make the model behave like the data dictates. Ultimately, the best model has to be
chosen from a number of parameterizations or even structural alternatives.

On all of the previously mentioned levels there is a lot of bioinformatic and statistical
data processing needed, especially when working with high-throughput data. erefore,
so ware to facilitate and standardize these processes is severely needed.





We should continually be striving to transform every art into
a science: in the process, we advance the art.

Donald Knuth

2
Methods

e following chapter will describes the techniques used in this thesis in detail. It brie y
explains the experimental techniques that have been used to gather the data that was an-
alyzed. Although the experiments were not done in the frame of this thesis, their under-
standing is crucial for the relevance of the presented results and is therefore included.

A erwardswegivedetails of techniques that enable researchers tomakeuseof thewealth
of data that has become available in st century biology. e used techniques largely aim to
extract hidden features in given data and relate them to previously known biological facts.

e last section of the methods chapter deals with modeling techniques that were used in
different parts of the work.

. B M

e presented methods are all highly dependent on bioinformatic and statistical analysis,
which we explain in later sections (Section . ). Results of these analysis also have to be
carefully interpreted to gain insights into the biological meaning, where modeling, as de-
scribed in section . , plays a major role.

. . M S

Mass spectrometry (MS) is a very efficient technique to identify proteins in a complex
mixture. It utilizes the differences inmass and charge of peptides to identify them by com-
parison to known datasets.



e technique can be used to detect thousands of proteins simultaneously, but requires
somepreparation of the probe in advance. Mass spectrometerswork best in themass range
of peptides up to amino acids, therefore proteins need to be digested by proteases be-
fore the detection. is generates an even higher complexity in the probe, because pro-
teins are cut into a possibly large number of peptides. In order to reach a high resolution
in the measurement, one needs to separate the peptides by a form of chromatography. A
common technique is to couple themass spectrometerwith high performance liquid chro-
matography (HPLC). An especially powerfulmethod for proteomics is the reversed phase
HPLC, which separates the peptides by their hydrophobicity. Chromatography adds a
time dimension to the experiment, as the peptides arrive at the spectrometer at the time
they leave the HPLC column. e spectrometer then detects the mass by charge (m/z)
pro les measured at any given time point (Figure . . ).

Figure 2.1.1: HPLC-MS/MS experiments generate a huge amount of data that is
distributed over 3 dimensions: time, m/z, and intensity. The data measured in the m/z
and intensity dimensions as a function of time is used to identify peptides that appear
in each time point.

e setup of mass spectrometers can differ substantially, but by de nition all of these
machines consist of three parts: an ion source, a mass analyzer and an ion detector. To be
able to detect the peptides in the MS, they need to be ionized by an ionization technique
like for example electrospray ionization (ESI). Ionization adds charges to the peptides de-
pending on their amino acid sequence, because amino acids differ in their susceptibility to



ionization. e charged ions can enter the instrument via a capillary. e mass to charge
ratio of the ions as well as the overall intensity is then measured by different detection
systems depending on the setup. e total ion count (TIC) is calculated by the sum of
intensities over the whole mass range at one time point. Each time point in the TIC holds
information about the speci c m/z ratios of the ions that enter the machine at that time.
Unfortunately peptide mass pro les are not enough to deduce the present proteins with
a high degree of certainty, because there can be many peptides with the same mass but
different sequence. erefore sequence information is needed to discern between these
peptides. is information can be obtained by using tandem MS (MS/MS) techniques,
in which the peptides are oncemore broken apart by collision with gas molecules a er the
rst detection round. em/z values of the random ion fragments aremeasured again and

from their speci c values the exact amino acid sequence can be deduced.
In this step bioinformatic techniques are indispensable tomake use of the gathered data.
is analysis has two levels. First there is the basic level that maps the fragment pro les to

peptide sequences and subsequently identi es proteins with a high amount of certainty.
As this step is required in each MS experiment, there is sophisticated so ware available
to tackle this problem such as Maxquant or OpenMS (Cox and Mann, ; Sturm et al.,

). e second step includes functional analysis and detailed analysis of the identi ed
proteins by some of the techniques we used throughout this thesis (e.g. Section . . ).

S I L A A C C

Measuring the complete expressed set of proteins in a sample is possible since Mass Spec-
trometrymethods have becomemore common formixed samples. e eld of proteomics
has seen a similar growth as genomics in the last decades and identi cation of proteins has
become a straight forward process. A major drawback of mass spectrometry has always
been a lack of quantitative data that could be used for modeling approaches. e peptide
signal intensity is not directly proportional to the amount of peptide in the probe, due to a
multitude of errors introduced by themany processing steps inMS experiments (Ong and
Mann, ). Nevertheless, these errors are systematic, which enables a relative quan-
ti cation of proteins between experiments or different probes within one experiment. In
recent years several methods were established applying the principle of heavy isotope la-
beling of proteins. Stable isotope labeling introduces isotopes differing with differentmass
into chemically equivalent peptides that can be measured given a precise instrument.

Stable isotope labeling by amino acids in cell culture (SILAC) (Ong, ) applies this
principle by cultivating at least two cell populations that differ only in the media they are
grown on. ese media contain either light, medium, or heavy amino acids that are syn-
thesized using different isotopes (Figure . . ). In a SILAC experiment, cells are grown
on these media for several doubling rounds to replace even proteins with low turnover
rates completely with their medium or heavy counterparts. A er a sufficient cultivation
time, perturbations can be done to all the cultures. Tomeasure the dynamics of changes in



Figure 2.1.2: Stable
isotopic labeling of
amino acids in cell
culture (SILAC). This
quantitative MS tech-
nique works by growing
cells in media contain-
ing isopopicaly marked
amino acids, to be able
to distinguish different
cell lines or time points
in one MS experiment.

the proteome, the effect of the perturbation can be measured by taking samples from each
probe at a speci c time point. ese different samples can then be combined and pro-
cessed (lysed, fractionated, and puri ed) together, which reduces the possibility of errors
to a minimum. To be able to cover more than three time points at once, one can combine
measurements by de ning a common time point for all experiments and normalizing to it.

I B A Q

Opposed to the SILAC approach, there are also new label free proteomics approaches.
e intensity based absolute quanti cation (IBAQ) (Schwanhäusser et al., ) uses the

absolute intensities and the observation that more abundant proteins are also more likely
to be detected in shotgun experiments.

. . E P M

Gene expression analysis (pro ling) is the determination of the pa ern of genes expressed
at the level of genetic transcription, under speci c circumstances, or in a speci c cell. is
highly valuable information can be gathered by different techniques (e.g. RNA sequenc-
ing), but the most common method are still microarrays.

A microarray works by DNA-hybridization of a nucleic acid sample (target) to a large
set of oligonucleotide probes, which are a ached to a solid support surface, to detect vari-
ations in a gene sequence or in this casemRNA expression. e array is separated into tiny
spots or beads, depending on the actual implementation, each lled with a lot of oligonu-



cleotides (about bases long) that are speci c for a certainmRNA in the target cells tran-
scriptome. ereby the amount of cDNA binding to each spot is a measure for how much
of the mRNA was present in the target.

DNA microarray techniques are very diverse, but all are based on the same hybridiza-
tion principles. e target cells are prepared according to the array speci cations typically
including RNA extraction, puri cation, and digestion (Figure . . ). e next step is to
produce cDNA from the RNA probes via reverse transcriptase. e cDNA is then labeled
with a uorescent marker (e.g. cy or cy ) and then hybridized to the microarray. At this
point lies amajor difference between the speci c arrays that are available. First, there are so
called two channel arrays, that can compare two differently labeled target cell types on one
chip by measuring the staining by two uorophores at different wavelengths. And second,
there are single channel arrays that onlymeasure one expression pro le at a time. As the ar-
rays used for data generation for this thesis were purely single channel we will concentrate
on this variant in the following.

Figure 2.1.3: A typical single channel microarray experiment. RNA is purified, reverse
transcribed to cDNA which is then labeled and hybridized to the chip. Each target
is prepared in the same way but hybridized to a separate array. The arrays are then
compared in the following bioinformatic analysis.

A erhybridization the chip iswashed to removenonhybridizedcDNA, and then scanned
to evaluate the amount of uorescence in each spot. However, the brightness does not
truly indicate abundance levels of an mRNA. Each mRNA molecule encounters protocol
and batch-speci c bias during ampli cation, labeling, and hybridization phases of the ex-
periment rendering comparisons between genes for the same microarray uninformative.

e comparison of transcriptomes between different conditions is the major strength of
the approach, but it requires one array per condition. e advantage of single dye systems
is the easier comparison between arrays of the same type, as they are all done in the same
way.

B A

e large amount of measurements possible on an array, and the varying precision that
is in uenced by many factors, make the statistical analysis of array data quite challenging.



e rst of many factors that in uence the outcome is the experimental techniques and
bias that is introduced by the factors mentioned above. Second there are further data pro-
cessing steps, like scanner sensitivity and image processing. A very important point in the
analysis is the normalization of data and background correction. Data usually needs to be
normalized between the single channel arrays to be able to effectively compare the differ-
ent conditions. One problem for example is that differences between targets o en scale
with the absolute intensity in the spots. Normalization is usually done by assuming that
the majority of genes did not change between the targets and using a LOESS (Cleveland,

) normalization to make the differences comparable between genes.
e next important step is to lter out the genes of interest, by testing whether the dif-

ferences in a gene in the two arrays are signi cant or not. is can be done using well
suited statistical tests (t-tests, empirical Bayesian methods) which take into account the
large number of tests performed when calculating p-values. For all these steps there is a
large amount of so ware available, either provided by the manufacturers of the array or
freely available in the statistical programming language R. Most of these tools are bundled
into the so ware collection Bioconductor (Gentleman et al., ).

. F A

. . C T D

Clustering of biological data is o en done to nd hidden structures in large datasets. ere
are basically two different types of clustering that can be used to nd similarities to group
parts of a dataset together. (i) Hierarchical clustering methods nd an hierarchical order
that de nes a tree of increasingly similar data points de ned by an arbitrary distance met-
ric (e.g. euclidean distance). We use such a method in the heatmap visualization to show
the relationship between the displayed rows and columns (Section . . ), but they did not
play a major role in the presented work. In each step, the iterative clustering approach ag-
glomerates the closest data points or clusters into a new cluster, thereby generating a tree of
clusters (for details please see: Hastie, Tibshirani, and Friedman, ). (ii) Partitioning
clustering separates the data into non-overlapping classes that form around cluster cen-
ters. ese centers are de ned by the data points around them. e most frequently used
algorithm for partition clustering is the k-means algorithm (MacQueen, ). k-means is
a variant of the general expectation-maximization-algorithm (EM). e algorithm uses a
given number of k cluster centers which are placed randomly in the dataset. en it com-
putes the closest cluster center cj for each of the N data points xi (expectation step). In
the next step the positions of the cluster centers are recalculated as the mean of the corre-
sponding data points (maximization step). A erwards the data vectors are reassigned to
the new cluster centers and the next iteration cycle starts. e algorithm terminates when
no data points change the assigned centers in one iteration. In general, the algorithm tries



to minimize the function

E =
N∑
i

k∑
j

||xi − cj|| , ( . )

while its outcome strongly depends on the randomly chosen start sites. erefore the
algorithm will only nd local minima of the objective function E that is a measure for the
within-cluster variation.

An o en encountered problem in k-means clustering is the fact that outliers and noise
strongly affect the clustering process. ere is no measurement for the degree of member-
ship to a cluster, which could be used to weaken the in uence of outlier data points. is
is why we chose a fuzzy clustering method, with the optimization algorithm fuzzy-c-means
(FCM) (Dunn, ). is method is very robust against noise and additionally returns
a membership value for each data point to each cluster center. ese values are contained
in theN× k partitioningmatrixU. e objective function for the optimization is given by

J =
N∑
i

k∑
j

(uij)m||xi − cj|| , ( . )

where parameterm > de nes the sharpness of the clustering, i.e. how close the fuzzy
clustering is to hard partitioning. So for very largem the level of in uence of each point to
each center becomes equally large close to k and form → the values of uij are closer to
or , which renders the FCM equivalent to k-means clustering. Optimization is done with
the following two constraints:

. For each point xi the degree of membership to all clusters sums up to one:∑k
j= uij ∀ i = { , ...,N}.

. All clusters are non empty:
∑N

i= uij > ∀ j = { , ...k}.

e algorithm works similar to k-means in an EM-like fashion alternating between the
expectation step se ing the partition matrix:

uij = (
∥xi−cj∥∑k
l= ∥xi−cl∥

)
m−

∀ i = { , ..,N}, j = { , ..., k}, ( . )

and the maximization step se ing the cluster centers:

kj =
∑N

i= (uij)mxi∑N
i= (uij)m

∀ j = { , ..., k}. ( . )



ese two equations are based on the rst order conditions for a minimum of the La-
grange function. Fuzzy-c-means terminates, if the change in the partitioning matrix ∥Us −
Us− ∥ in a step s is below a threshold ε .

FCMclustering has favorable features for clustering of noisy datamainly because of two
reasons:

. e in uence of outliers on cluster-centers is drastically reduced by choosing the
rightm values and cluster artefacts can be reduced.

. It provides a way to do a posterior ltering of data by their membership values, in-
stead of a priori ltering of datasets (e.g. by their log fold changes from expression
pro ling). e reasoning here comes from a systems perspective: If a whole cluster
exists that has similar dynamics, the measurement can be related and has a higher
probability to be measured correctly. Noisy vectors can be ltered a er the clus-
tering by their generally low membership values and large distances to the cluster
centers.

ese properties make the method well suited for the datasets we use in this thesis.
e datasets we used are microarray and SILAC timecourse data, that represent the fold

changes for each mRNA/protein in every time point. Especially for the proteome data
(Section . . ) the posterior ltering is an important feature, because the dataset shows
very low fold changes in general (Chapter ).

For the clustering we standardized the fold-changes of the time-course to mean zero
and standard deviation of one, to make clustering in euclidean space possible. An FCM
implementation from the Mfuzz package (Futschik and Carlisle, ) in Bioconductor
(Gentleman et al., ) was used. By applying an iterative approach the number of cluster
centers and a value formwas determined that gives an optimal separation.

. . E F D

Assigning functions to the mass of biological entities found in high-throughput experi-
ments is an important step in the analysis of datasets, because it enables researchers to
interpret the data in the context to previous knowledge. ere are different methodolo-
gies that either aim to nd modules of genes that share a functional annotation and are
similarly regulated or to nd pathways that are in uenced by changes in a system. We used
both of these techniques to characterize the datasets in chapters and .

Identi ed genes and proteins were assigned to their biological process using gene ontol-
ogy (GO)(Ashburner et al., ) enrichment analysis. eGOdatabase consists of three
major annotation parts: Molecular Function (MF), Biological Process (BP), and Cellular
Component (CC). Each annotated gene can have multiple entries in each of these classes.

e classes are structured like a treewith verydetailed annotations at its branches andmore



general annotations at its root. Given a set of genes, one can now determine, using a hy-
pergeometric statistical test, whether certain annotations appear signi cantly more o en
in this set than expected from their distribution in the background of thewhole annotation
tree. e annotations that are signi cantly enriched are likely to describe an important part
of the process. For the enrichment analysis shown in this thesis, we always used the small-
est possible set of genes as a background distribution (universe), because an unnecessary
large universe would lead to an overestimation of p-values for enrichments.

Enrichment for biological process (BP)was tested using a hypergeometric test from the
GoStats (Falcon and Gentleman, ) package in Bioconductor for single clusters with
the complete set of measured genes as a background distribution. is test automatically
corrects for the bias resulting from the tree structure of the ontology. e analysis was
performed for the KEGG (Kanehisa, ) pathway annotations in a similar fashion.

For the stem cell expression data (Chapter . ) we also performed amore sophisticated
testing procedure that includes a Systems Biology based approach. is method is called
signalingpathway impact analysis (SPIA). It recognizes the in uenceof a regulatedgeneon
apathway, when calculating if the pathway is in uencedby the givenperturbation (Tarca et
al., ). SPIA uses very simple models of the pathways in the KEGG database that take
the topology of networks into account and consider how many downstream targets are
affected by each perturbation. Using these models it calculates how strong the regulation
measured in the dataset affects the general behavior of each pathway.

In combination with a classical enrichment test, these values enhance the sensitivity
and speci city of the tests and give a two dimensional picture of the impact on a certain
pathway.

. . P P

Based on the enrichment analysis described in the previous section, I performed a visual-
ization techniques for changes in the proteome.

To characterize the proteomic changes provoked by a perturbation, here in uenza A in-
fection (Chapter ), a proteomic phenotyping for GO terms was performed as previously
described (Pan et al., ). is technique divides a skewed distribution ofNmeasured
log fold changes into an arbitrary number ofM quantiles and does an enrichment test for
each of the quantiles separately with all detected proteins as background. is leads to an
M × Ne matrix P of p-values, whereNe is the number of GO terms that were enriched in
one of the quantiles with a p-value < . . We did a transformation byX = −log (P) and
computed a z-score by

Z =
(xij − μ(xi))

σ(xi)
, ( . )



where μ(xi) is the mean and σ(xi) is the standard deviation of the GO term p-value vec-
tor mathbfxi for all of the quantiles j. is matrix is visualized in a heatmap showing the
relative enrichment in each of the quantiles clustered by the z-scores.

. . N C A

Connecting different types of data to gain mechanistic insight into a system is a very im-
portant part of Systems Biology, because it o en helps the development of more precise
models than using just one type of data. Combining network structure with time evolu-
tionof thenetworknodes is a goodexample for this. With thenetwork component analysis
(NCA)Liao et al. ( ) developed an elegantmethod that allows to estimate the strength
of connections in a networkwith only structural information (i.e. from transcription factor
binding data) by analyzing the dynamic changes in the network induced by perturbations
(expression pro les). NCA computes the activity of transcription factors based on the ex-
pression of their targets (Figure . . ). e method is based on matrix decomposition of
the input data and optimization of the connection matrix. e method is a reverse enge-
neering approach to reconstruct a model of the form:

E = AP ( . )

where E is a matrix containing the expression data of the regulated genes (N×M, with
N time points andM genes). P is the expression data of the regulatory layer (N× L) with
L being the number of regulatory nodes (L << N). Matrix A contains the connectivity
strengths between the two layers. Once the system ful lls certain criteria (for details see
Liao et al., ), this estimation is done by minimizing the following function:

∥E− ĀP̄∥ , so that A ∈ Z ( . )

where Z is the allowed topology of the network. is optimization produces the esti-
mators for the transcription factor activity (TFA) P̄ and the connectivity strengths Ā. We
used this method in section . . to estimate the effect of stem cell transcription factors
on their target genes. is analysis was done using the NCA toolbox inMatlab (Kao et al.,

).

. D M

. . B M

Fromthemanyapproachesofdynamicmathematicalmodeling abiological system,Boolean
modeling is the most simplistic approach there is. It ignores a lot of details but has the



Figure 2.2.1: The connectivity
strengths and transcription factor
activities are estimated via the
known network connectivity and the
measurements for the target genes.
The method takes advantage of the
connectivity to reverse engineer the
influences of the inputs on the out-
puts. This is done by minimizing
the difference between the expres-
sion values and the product of the
connectivity times the inputs.

ability to provide an overview of the main qualitative properties of the modeled system
(Section . ). Boolean models were rst proposed as a tool for modeling gene regulation
in by Kauffmann. Kauffmann proposed the models of N genes with the degree K,
which is why they are also called N-K-models, to mimic the dynamics of gene regulatory
networks (GRNs).

A minimal example for such a network and the resulting dynamics is given in Figure
. . . A Boolean network can be represented as a graph G(V, F), consisting of a set of N

nodesV = {x , ..., xn} and a set ofN edges between the nodes that are de ned by the up-
date functions F = {f , f , ..., fn}, which represent the transitional relationships between
different time points. For every time point t, each node xi has a state xi(t) ∈ { , } de-
noting either no expression or expression of a gene (or absence or presence of activity of
a regulatory property, respectively). A Boolean function f(xj (i), xj (i), ..., xjk(i)(i))with k(i)
speci ed input nodes is assigned to node xi, where jk(i) represents the mapping between
genes at different time points. e state of gene xi at time point t+ is determined by the
values of a set of other genes at time point t using the Boolean function fi ∈ F. is way, a
state transition is de ned as:

xi(t+ ) = f(xj (i)(t), xj (i)(t), ..., xjk(i)(t)) ( . )

e state vector or simply the state S(t) of the network at time t corresponds to the
vector of the node states at time t, i. e. S(t) = (x (t), ..., xn(t)). us, since every xi(t) can
only take two possible values or , the number of all possible states is n.

Boolean models are used more and more to model GRNs and signaling networks in
recent literature (Albert and Othmer, ; Bauer et al., ; Kauffman and Peterson,

; Orlando et al., ) and there is active development of new techniques.



A S

e set of states that a Boolean model can possess form another network, the state space
network, which has to be strictly distinguished from the Boolean network de nition.

e state space network P(S,T) consists of the set of state vectors S and the set of tran-
sitions T between the states. Each state has exactly one outgoing transition edge (out-
degree), whereas the in-degree (i.e. number of incoming edges) can vary between the
states. e state space can be divided into different classes of states:

Transient states States that are only passed once and do not occur again in the same sim-
ulation

Leaf states States with an in-degree of zero that can never be reached in a simulation, it
they are not the start state

Point a ractors States thathave a transition to themselves andcannotbe le a er reached
once

Cyclic a ractors A set of states that form a cycle and are reached periodically during a
simulation

Usually the statespace is split into different a ractors and the transient states that lead
to them. ese transient states are sometimes called the basin of a raction of an a ractor
(Figure . . B).

S B M

Classical Boolean models are de ned as discrete deterministic systems, which obviously
far from biological reality with different timescales and stochastic processes. erefore
therehavebeenmanyapproachesof adaptingBooleanmodels to include thesephenomenons
(Garg et al., ; Twardziok, Siebert, and Heyl, ). We will now introduce the meth-
ods that were used in this thesis.

A U

e simulation of time in Boolean modeling strongly depends on the way of updating the
nodes. Synchronous updating, affecting all nodes in each time step is the most simple
form of Boolean simulation. ere are other alternatives for de ning the updating asyn-
chronously tomake the Boolean frameworkmore exible. In asynchronous updating only
a subset of nodes is updated in each time step, and the different variants differ in the selec-
tion criteria of nodes. In this thesis we only used a randomly selected node that is updated,
but there is also many other ways to choose. For example one can de ne a time delay for
each nodes’ update, to simulate different time scales of processes in a model. Stochastic



Figure 2.3.1: The basins of attraction under different updating methods. (A) A simple
model where OS(t+ ) = Nanog(t) and Nanog(t+ ) = OS(t). (B) Synchronous updating
leads to two point and one cyclic attractor. (C) Asynchronous updating leads to two
point attractors that have overlapping basins of attraction.

asynchronous updating strongly alters the statespace of amodel, because in this case every
state S can have as many as N outgoing transitions that can be chosen randomly (Figure
. . C).

P B M

Apart from the updating scheme, there are other ways to extend the Boolean framework
to allow to include uncertainty (Garg et al., ; Shmulevich, ; Twardziok, Siebert,
and Heyl, ). In chapter . . we used the probabilistic Boolean network (PBN) ap-
proach proposed by Shmulevich ( ). Probabilistic Boolean networks were designed
to represent the uncertainty in knowledge about regulatory functions and for the infer-
ence of networks from data. If there is experimental data showing that both transcription
factors A and B activate gene C, but it is unclear whether they can act separately or only
in combination, there is not only one determined logical function that can describe their
interaction and one can train a network with data to nd themost probable one. In proba-
bilistic Boolean networks this uncertainty is taken into account by relaxing the constraint
of xed update rules F and instead permi ing one or more functions per node x. us,
function fi is replaced by a set of functions

Fi = {f(i)j }, with j ∈ { , ..., l(i)}, ( . )

where fij is a Boolean function determining the value of node xi and l(i) the total number
of functions for node xi. In each update step the functions are chosen randomly according
to their given probability cij. Since cij are probabilities they must satisfy

l(i)∑
j=

cij = ( . )



A PBN is called independent, if the elements of different Fi are independent. Assuming
independence, there are at most

N =
n∏
i=

l(i) ( . )

possible PBN realizations, each of which is a classical BN. At any point in time t we
choose one of these networks to determine the state of time t+ . If fj is the jth realization
of the PBN,

fj = {f( )
j , f( )

j , ..., f(n)jn }, ≤ ji ≤ l(i), i = , , ...n. ( . )

e probability to choose this realization is:

Pi =
n∏
i=

c(i)ji , i = , , ...,N ( . )

As Pi is a probablity to choose one of the realizations, it is obvious that
∑N

i= Pi = .

S P B N U M C

e statespace of a PBN can be interpreted as a homogenous Markov chain, which can be
used to simulated its dynamics. A Markov chain is de ned as a set of random variables
following the Markov property that, given the present state, the future and past states are
independent.

P(Xn+ = x|Xn = xn), ( . )

where Xi are random variables from a set S of states. In time homogeneous Markov
chains the probablity of transition is independent of n. e state transitions of a BN have
exactly these properties and can be stated as a n × n state transition matrix A

Aij =

{
, if ∃ si → sj
, otherwise

( . )

Using this matrix and the probability of that PBN realization Pi, as de ned in equation
. , we can calculate the transtion matrix of a given PBN as the weighted sum of its real-

izations:



A =
N∑
i=

PiAi, ( . )

where Ai is the transition matrix of the PBNs jth realization. Due to the homogeneity
of the Markov chain we can then compute the transition probablity a er k steps as the k-
th power of A. We can calculate the dynamics of the PBN following a starting probability
distribution of statesD efficiently by

Dt+ = DtA ( . )
= D At+ , ( . )

whereDt is the state distribution at time point t. We can then nd a stationary distribu-
tion π such that π = πA. ese Markov properties were exploited in the simulation done
in section . . . All simulations were carried out using the R-Package BoolNet (Müssel,
Hopfensitz, and Kestler, ).

. . O D E

As already pointed out in section . , the most common approach on modeling biologi-
cal systems is to describe them with ordinary differential equations (ODE) (Klipp et al.,

). In this thesis we employ these in the so wareModelMageFlö mann et al., and
the given example (Section . ). Here we will only give a brief introduction to the ap-
proach. More detailed explanations can be found in various textbooks on the topic (e.g.
Klipp et al., ; Szallasi, Stelling, and Periwal, ).

ODEs have many advantages as a modeling framework. ey are frequently used in
many scienti c elds and there are very good tools available to work with these systems
(Hoops et al., ; Maiwald and Timmer, ) in a biological context. In an ODE sys-
tem, changes in the quantity of biological entities are described by a differential equation
each. ese entities can be anything from an individual in a predator-prey-model in popu-
lation dynamics to a protein in molecular Systems Biology.

An ordinary differential equation systemdescribes the changes in the systemdepending
on its current state. In reaction systems it consists of a number of terms, that describe the
different processes a species is involved in. e concentration of a variable xi in such a
system is determined by an initial concentration xi( ) and a differential equation of the
form

dxi
dt

= synthesis− degradation− complexation+ ... ( . )

Each of the single terms of these equations represents the velocity of a single reaction xi
is involved in. ey canbe a function of species concentrations and are usually kinetic laws,



e.g. Michaelis-Mentenormass-action kinetics. As the species of an interactionnetwork are
dependent, their fate is determined by a system of differential equations

dxi
dt

= fi(x , x , ..., xn, p , p , ...pj, t), ( . )

where pj are the kinetic parameters of the function fi(x, p, t). e system can be wri en
in vector notation as

dx
dt

= f(x, p, t), ( . )

where x = (xi, x , ..., xn)
T, p = (pi, p , ..., xj)

T and f = (fi, f , ..., fn)
T.

P E

Parameters of an ODE model describe dynamic properties of a system like the efficiency
of an enzyme catalyzing a reaction or simply the rate of diffusion in a system. eoreti-
cally all parameters could bemeasured given the right experiments with in nite precision.
In reality however measurements are always noisy and o en limited to some components
of the system, and the majority of parameters is not measured at all. Most biological ex-
periments somehow measure the (relative) abundance of proteins or nucleotides, which
leaves models unparameterized in many cases. erefore modelers o en need to resort
to optimization techniques to adjust the model parameters so that the model simulations
replicate the measured abundances as good as possible. ere are sophisticated methods
for this estimation and will only brie y explain the basic principles they build upon.

Given anODE system as de ned in Equation ( . ) and a set of noisy measurements d
for n time points we can de ne the difference between simulation and measurements as

εi = f(t, p)− di(t) ( . )

where ε is the measurement error in each time point i. Parameter estimation minimizes
ε by nding a set of parameters p so that

ε =
n∑
i=

εi
!
= min, ( . )

by following the least squares approach. In other words, it minimizes the squared dif-
ference between the simulated values yi = f(t, p) and themeasured values di in every time
point, which is called the residual sum of squares (RSS). Assuming an equal variance σ
of the measurement errors for every time point this can be done using the log-likelihood
function

L(p|d) = −
n∑
i

(
di − f(ti, p)

σ

)
. ( . )



is function expresses the probability of the parameter set p given the dataset d and
accordingly has to be maximized to nd the best set of parameters.

Given function f is linear and a complete dataset d, the best t can be found by solving
the system using the Gaussian algorithm. For sparse and noisy data and nonlinear system
that typically occur in practice one needs to resort to iterative approaches like the Gauß-
Newton method or improved variations, e.g. Levenberg-Marquardt. To nd an optimum,
these methods start from a given point in the parameter space , linearize the function, nu-
merically compute a gradient, and follow the steepest decent in each step until they con-
verge in an optimum. However, these so called local optimizers can only nd the local
optima that are closest to the starting conditions. Because the landscape of the objective
function can have multiple local optima, the start values have to sample the whole param-
eter space and the optimization has to be executed for all the samples, to locate global op-
tima. To tackle the o en very large parameter spaces of nonlinear optimization problems
a class of heuristic optimizers emerged that have different strategies to nd global optima
(e.g. Kirkpatrick and Vecchi, ).

Becauseof the scarcity of data, a commonproblem inSystemsBiology is that thedegrees
of freedomof amodel are toomany compared to the availablemeasurements (over ing),
or that paramaters of amodel cannot be determined uniquely due to structural constraints
(non-identi ability). Parameters are non identi able, if a change in one parameter a can
always be balanced by the change in another parameter b and thereby keeping the objective
function at the same level. Both problems have the effect, that there will be multiple sets
of parameters that t the data equally well, which limits the power of the ed model to
predict different conditions. In this case one needs to reduce the complexity of the model
to make best use of the data.

To be able to reduce an existing model, one o en needs to compare structurally differ-
ent model versions which is one of the points I will address in Chapter . is comparison
between differentmodels in one ensemble can be accomplished using the Akaike informa-
tion criterion (AIC) (Akaike, ). e AIC can be calculated using the RSS values from
the best obtained t for each model as

AIC = k+ n
(

ln
RSS
n

)
, ( . )

where k is the number of parameters and n is the number of observations. e AIC is
a measure for the goodness of t of a model that takes the model complexity into account
and thereby de nes the best model as a compromise between low RSS (= ε ) values and
small numbers of parameters. is prevents over ing and ranks simple models higher
than more complex models, which lives up to the principle of parsimony.





Animals and computers are both so complex that something
on the level of so ware explanation must be appropriate for
both of them.

Richard Dawkins

3
So ware Frameworks for Accelerated

Modeling

Based on:

• Jörg Schaber, Max Flö mann, Jian Li, Carl-Fredrik Tiger, Stefan Hohmann, Edda
Klipp (Jan. ). “Automated ensemble modeling with modelMaGe: analyzing
feedback mechanisms in the Sho branch of the HOG pathway.” In: PloS one . .
Ed. by Alan Ru enberg, e

• MaxFlö mann, FalkoKrause, EddaKlipp,MarcusKrantz ( ). “Reaction-contingency
based bipartite Boolean modelling”. In: under review

is chapter introduces two tools that aim to speed up the idealized cyclic work ow for
Systems Biology research in the theoretical part (Figure . . ). We built both tools to im-
prove the modeling process by quick generation of different model versions, and simple
testing for agreement of these with data and literature knowledge. e tools differ in the
way they aim to reach this goal and are designed for different modeling approaches that
cover contrasting levels of detail (Figure . . ). We will describe both tools and their core
principles and exemplify their application using differentmodels ofmitogen activated pro-
tein (MAP) kinase signaling pathways in Saccharomyces cerevisiae that were developed in
parallel with the presented tools. Because themodeling parts will primarily serve as exam-
ples for the presented so ware approaches we will keep the biological introduction in this
chapter to a minimum.



. I

Tobe really able toutilize thepowerof themultidisciplinarySystemsBiology approach, it is
absolutely necessary to develop tools for scientists from different elds to cooperate more
closely. is important task is o en neglected bymany scientists and funding bodies. Well
built and freely available so ware tools enable accurate and reproducible scienti c results
mainly because they canhelp to so en thedifferences between experimental biologists and
modelers. Standard so ware tools also have to stay in standards for data formats, which
have been developed in Systems Biology in recent years (Klipp et al., ).

. . A S

As mentioned in chapter , Systems Biology strongly depends on supporting so ware.
Many researchers spend a lot of their time developing so ware they need and that can
also help others. e catalog of Systems Biology so ware supporting the Systems Biol-
ogyMarkup Language (SBML) (Hucka et al., ) contains so ware packages alone
(http://www.sbml.org).

Some of these applications are full simulation frameworks that allowmodelers to build,
simulate, and analyze models (eg. Copasi, CellDesigner) (Funahashi et al., ; Hoops
et al., ), while many others are aimed towards more speci c tasks like annotation
(Krause et al., ) or visualization (König, Dräger, and Holzhü er, ). Still, there is
no so ware that can handle ensembles of model alternatives in SBML and compare these
in an automated way. Programs supporting Boolean models enable the user to simulate a
network, nd a ractors and perform analyses on network properties, e.g. a ractor search
(Section . . ). Although there is so ware available to “ t” networks tomeasureddata and
to translate Boolean models into simple ODE systems (Di Cara et al., ; Wi mann et
al., ), there is no simple so ware available for the step-by-step analysis and visualiza-
tionofBoolean simulations onnetwork graphswith simultaneous state space visualization.

We developed our so ware based on our own needs and the lack of so ware that could
help with faster iterations in model development. e given examples in the MAP kinase
system show the advantages our so ware can offer in this process.

. . MAP K P Y

e demonstration system for our so ware is the MAP kinase signaling system in baker’s
yeast. erefore, I will brie y give an overview of the necessary biological background. We
choseMAPkinase systems in yeast as examples for our so ware, because it is awell studied
signaling systemwith a lot of available detailed data (Botstein andFink, ) and existing
models ranging fromsmall focused to exhaustive large scale approachesKlipp,Nordlander,
and Krüger, ; Muzzey and Gómez-Uribe, ; Schaber et al., . Yeast is one of
the most important model organisms for eukaryotic signaling and metabolism. Its simple

http://www.sbml.org


cultivation and widespread industrial use make it a good target for scienti c efforts. It was
the rst eukaryotic organism to have its genome of≈ - genes fully sequenced by

. Additionally, MAP kinase signaling cascades are an abundant theme that reappear
in many pathways and across a wide array of species.

Yeasts need the MAP kinase system to sense and react to environmental stresses and
stimuli, like hormones or changes in nutrient supply. e high osmolarity glycerol (HOG)
pathway, which we will focus on in the following sections, senses and responds to increas-
ing extracellular osmolyte concentrations (reviewed in Hohmann, ). is reaction
is necessary for the cells to be able to survive, because without response they would de-
hydrate due to osmotic water out ux. e pathway senses turgor loss (caused by water
out ux) via two branches converging on a MAP kinase kinase Pbs and responds by in-
creasing cytosolic glycerol concentrations (reviewed inHohmann, ) tobalance theos-
motic pressure. e antagonist to the HOG pathway is called the protein kinase C (PKC)
pathway, which among other stimuli senses increased turgor (reviewed in Levin, ).
Under sparse nutrient conditions, yeast cells are able to transform into durable haploid
spores by meiotic division. In the haploid form there are two mating types (α and a) that
can mate to form a diploid cell when the nutritional conditions improve again. To locate
a mating partner the haploid cells sense a pheromone in the medium that is produced by
the complementarymating type and form a tip (shmoo) in the direction of the signal. is
process is directed by the mating (MAT) pathway which is only active in the haploid form
(reviewed in Bardwell, ). e pseudohyphal differentiation (PHD) pathway is the
least well studied of the mentioned pathways. Its suspected function is the regulation of
switching to a lamentous growth under nutrient (nitrogen) depletion.

ese pathways were the subject we used to test both frameworks we developed. Some
of the mentioned pathways are interconnected by cross-talks and are part of the Boolean
model presented in section . . as an example for the rxncon so ware framework. e
following section focuses on the ModelMaGe so ware and presents simple ODE models
of the HOG pathway.

. M M G SBMLM

In practice, mathematicalmodeling includes a lot of datamanagement and documentation
of model alternatives. e idealized Systems Biology work ow (Figure . . ) in reality
seldom is a purely cyclic process. Most of the time one has multiple hypotheses about a
mechanism that can be compared to datasets. ese hypotheses need to be formalized
in different structural models and modelers end up with a whole collection of models to
discriminate. Problems arise whenever there are changes affecting all of themodels in such
anensemble. In that case, the changeshave tobe applied to all the alternatives andallmodel
les have to be edited manually. is can be a slow and error prone manual process that

probably has to be done more than once during the iterative model creation.



Figure 3.2.1: Generalized work-
flow of the ModelMaGe software.
Input is a complete master model
and output is a set of candidate
models that can also be fit to
data and discriminated.

ModelMaGe is aimed towards solving this problem by following a simple approach: All
the alternative models are created from amaster model following a de ned reduction syn-
tax. Following this approach speeds up the initial modeling process and avoids errors, as
changes only have to be made in one place, the master model. Technical details of the
so ware were already discussed inmymaster thesis (Flö mann, ) and in (Flö mann
et al., ), which is why I will only brie y describe the work ow of the so ware and
concentrate on the application of the so ware for acceleration of modeling in a concrete
example.

. . M F W

ModelMaGe is able to work with ODE models in the SBML standard (Hucka et al., )
and theCopasi (Hoops et al., ) le format. Both formats canbeused as amastermodel
and alternative models can also be produced in the two formats.

e rst output ofModelMaGe is a set of model les generated following the reduction
directives. e modi cations to the master model are performed following simple logical
directives passed to the program via the command line or a separate le (Listing . ). e
produced les can be imported into any SMBL compliant so ware to be analyzed. If the
master model was given as a Copasi le, containing a mapping for a parameter estimation,
the so ware can automatically t the output models to given datasets and compare the
results using the AIC (Section . . ). is facilitates an easy discrimination between the
various candidatemodels generated byModelMaGe. e general work ow of the so ware
is depicted in Figure . . .



modelmage . py −r ‘ ‘ s p e c i e s _ & r e a c t i o n _ : s p e c i e s _ &
r e a c t i o n_ ’ ’ −k ‘ ‘ r e a c t i o n _ (MA) r e a c t i o n _ (mMA) ’ ’
Sho Mas t e r . c p s

Listing 3.1: An example of the commandline syntax of a ModelMaGe call. Models are
generated by removing species or reactions from the master model (argument “-r”) or
setting new kinetic laws for reactions (argument “-k”).

. . A F M S B HOGP -

We utilized ModelMaGe in a study on the adaptation mechanisms of the Sho branch of
theHOGpathway. is studywas based on a publishedmodel byHao et al. ( ), which
proposes anegative feedbackmechanismofphosphorylatedHog onto theupstreamcom-
ponents of the pathway and especially on the membrane protein Sho .

e aim of the study was to systematically explore different alternative hypothesis on
themechanism of adaptation of the HOGpathway and to test which of these are best sup-
ported by data published by Hao et al. ( ) and our own experiments.

We built a master model that includes the original model by Hao et al. ( ) as well
as our own alternatives, following the premise of simpli cation. In order to nd the most
simple working model, we le out major mechanisms (e.g. turgor, transcription, volume
change) that are known to be involved in the HOG pathway. A wiring scheme of the mas-
ter model can be found in Figure . . . In summary, this model contains the MAP kinase
cascade from Sho to Hog , the negative feedbacks proposed by Hao et al. ( ), and a
negative feedback through an integral response. is negative feedback involves the stim-
ulation of the production of intracellularGlycerol by phosphorylatedHog (P-Hog ). e
component Signal represents the difference between intra- and extracellular osmotic po-
tential, which is proposal to be sensed via turgor pressure (for simplicity represented by
the difference between OuterOsmolarity and Glycerol). e concentration of Glycerol can
also be in uenced by the state of the membrane channel Fps which, if closed hinders the
out ow of glycerol and can be actively controlled in some candidate models.

From this master model we generated candidate models that systematically explore
combinations of the features combined in the master model. e hierarchy of these mod-
els is depicted in Figure . . . e le most branch of the tree contains the models that
include the feedbackmechanisms proposed byHoa (C is the originalmodel) and differ-
ent submodels thereof. Simpli cations are done withModelMaGe by removing species or
using simpler reactions (For a list of candidate model structures refer to Figures A. . and
A. . ). Branches one and two contain the Sho desensitization feedback, in which P-Hog
mediates conversion of Sho a to its inactive form Sho i. Branches two to four contain the
integral feedback via potential difference (Signal) as described above. ese branches vary
in the number of signaling intermediates present in the cascade and the simplest models



Figure 3.2.2: Struc-
ture of the master
model in SBGN. Shaded
components are com-
ponents of the original
Hao model (dark), of
the C5c model (light),
or both (hatched).

Figure 3.2.3: A tree represent-
ing the relationships between the
derived candidate models and
the master model. Models are
named according to the num-
ber of species and their features.
Numbers in the subscript indicate
the number of fitted parameters.

in branch four only contain ve species. e further simpli cations done in each branch
mainly concern the control of glycerol efflux, representing three main hypothesis: regula-
tion of glycerol efflux by Signal, constitutive efflux, no efflux.

. . M D

Model generation was automatically handled byModelMaGe using the master model and
the creation directives of the format given in Listing . . e master model was generated
in theCopasi format andparameter estimation to thedata timecoursedataprovidedbyHao
et al. ( ) was set up usingCopasi. e candidate models were then automatically ed
and ranked by their Akaike information criterion (AIC) values by ModelMaGe (Section
. . ). e output is listed in Table . . .



Table 3.2.1: Candidate models ranked by the AIC value. k number of parameters, SSR
value of objective function for best fit, AIC Akaike Information Criterion.

Model k SSR AIC(c)

. C c . - .

. C b . - .

. C c . - .

. C a . - .

. C b . - .

. C a . - .

. C a . - .

. C c . - .

. C b . - .
. C a . - .
. C b . - .
. C . .

e original model (C ) still shows the smallest differences to the data, as evident by
its small SSR value. Nevertheless, due to its large number of parameters it is ranked in the
last place. e simpli ed version we tested (C a), still showed very small residual errors,
and also ranked much higher, as it has parameters less due to a shorter cascade missing
Ste and Pbs .

e Hao model shows sustained oscillations a er an osmotic shock Figure . . , that
increase with the strength of the shock. e recent literature however provides data with
a higher time resolution and clearly shows that these oscillations can not be found in the
experimental system (Me etal and Muzzey, ; Muzzey and Gómez-Uribe, ; Sch-
aber et al., ). Such arti cial effects in the predictions of a model are a clear sign for
over- ing and weaken the models predictive power. As shown in Figure . . B, we can
represent the major features of the system, namely rapid increase upon shock and slow
adaptation, with amodel with only parameters and a very simple structure (model C c).
Although this model has a much larger residual error, it is ranked rst by its AIC value.

. . M P V

We show that the double shock data from theHao paper can be described to a large degree
with the simplemodelwedevelopedusingModelMaGe andwe suspect a strongover- ing
in the original model. Although over- edmodels o en show spurious effects in the data,
they are usually be er in predictions than too simple under- ed models (Burnham and
Anderson, ).

In order to nd out whether our minimum model is still predictive, we did different in



silico experiments to nd conditions that clearly set bothmodels apart fromeachother. e
setup which turned out to show the biggest differences was a simple triple shock experi-
ment. e Hao model predicts a much smaller response to the third shock and does not
show adaptation a er that, whereas model C c responds in the same way it did in the rst
two shocks. In order to falsify one of themodels wemeasured data of P-Hog time courses
a er repeated osmotic shock with . M KCl for both. e amount of KCl was added to
the culture three times with minutes intervals. Ourmeasurements clearly show that the
C cmodel predicted the experimental outcomemuch be er than the C model (Figure
. . ).

Figure 3.2.4: Triple osmotic shock experiments show the outcome predicted by the C5c
model is close to reality. Salt shock was applied at t=0, t=30 min, and t=60 minutes.
(A) The original Hao model with the best fit using our optimization. (B) Best fit of
model C5c. The maximum of the 0.4 M KCl triple shock time series is scaled to the
maximum of the 1 M KCl single shock time series. The error bars represent the standard
deviation of three independent measurements.

Interestingly, the C model was only able to react to a third shock at all when the de-
sensitization mechanism was nearly disabled. e transformation reaction velocity from
Sho a to the inactivated form Sho i was nearly zero and Sho i shows no response at all
(Figure . . A).

is outcome suggests, that our approach to systematic model reduction using alterna-
tive candidates is a useful way to improve existingmodels and combinemany datasets with
whole ensembles of models.

. R B M

Mathematical modeling of large cellular networks is unfeasible or impractical, mainly due
to the large number of model states and parameters needed to describe these networks.



is combinatorial complexity is particularlyproblematic for signal transductionnetworks.
eir components are o en in uenced by multiple interaction partners and/or modi -

cations such as phosphorylations, which rapidly combine to a large number of possible
con gurations – or speci c states – of each component. is makes it difficult to build
and parameterize large quantitative models, and computationally costly to analyze them.
However, mathematical analysis of these networks is an important tool for network val-
idation and understanding, urging a development of methods that can be used even for
large complex networks. Boolean modeling provides one of the few feasible approaches
to whole-network modeling. Even for systems with a lot of data like yeast signaling it can
prove useful for an initial study of network properties and is o en used when quantitative
effects do not play a major role in the overall qualitative behavior of a network (Section
. . ). erefore, Boolean models are used in a variety of signaling systems (Bauer et al.,

; Saez-Rodriguez et al., ).

e classical Booleanmodeling approach does not distinguish between different down-
stream roles played by a single component activated in different contexts. e de nition of
which biological entity is a variable in these networks is not standardized, but a common
approach is to treat each protein as a variable. is is not sufficient for signaling networks,
as modi cations of proteins play a major role in these. Ignoring e.g. different phosphory-
lation sites that allow a kinase to play a part in two different pathways would lead to the
activation of both downstream targets once the kinase is set to an “on” state and thereby
lead to a wrong signal.

Our work addresses these shortcomings with a bipartite Boolean modeling approach
and supporting so ware, which integratesmodel generation, simulation, and visualization.
Weused a state orientedmodeling approachwith separates update rules basedon reactions
and contingencies that corresponds directly to the reaction-contingency (rxncon)method
(Tiger et al., ).

e bipartite Boolean model has the same structure as the rxncon approach with sepa-
rate update rules for reactions and for states: States are a function of reactions that produce
or consume them, while reactions are functions of states given by contingencies. is bi-
partite Boolean modeling approach retains the contextual information on activation and
distinguishes distinct signals passing through the same component. We integrate this ap-
proach in the rxncon framework to allow automatic model generation, and benchmark the
method with the previously mapped MAP kinase network in yeast. Finally, we demon-
strate how this modeling approach can be integrated in the network de nition process for
validation purposes. Taken together, we present a bipartite Boolean modeling approach
that retains contextual activation information, which supports automatic model genera-
tion from existing network de nitions, and which can be used for iterative network build-
ing and validation.



. . T R F

Brie y, rxncon is a network de nition method which separates reaction and contingency
information. e elemental reactions and their corresponding elemental states de ne the
possible signaling events that can occur and the outcome of these events, respectively. e
contingencies de ne the constraints on these reactions, e.g. reaction A depends on state
B. Together, the reactions and contingencies can de ne the network completely and un-
ambiguously, similar to a reaction system with limited kinetic information (activation/in-
hibition).

e input le can be created as an Excel le or as text based direct input (described
further below). e Excel input consists of two lists; the reaction list and the contin-
gency list. e reaction list de nes the network topology. Each reaction is de ned by
two components and a relationship (reaction) between them. In the minimal format as
used for the example network in Figure . . , only reaction and component names are re-
quired. Reaction and state IDs are automatically generated. Importantly, the components
are always entered in their basic state even if previous modi cations are required. ese
requirements are de ned in the contingency list. Each constraint on a reaction must be
de ned as a contingency, and each contingency consists of three parts: A target, which
identi es the reaction that is affected, a contingency, which de nes how the target reac-
tion is affected, and amodi er, which identi es the state causing the effect. More complex
models may make use of Boolean statements, inputs and outputs, as described further on
http://www.rxncon.org and inTiger et al. ( ). A given excel le is loaded directly
into the rxncon tool from which all export functions as well as the simulation interface are
available.

Alternatively, a model can be de ned directly as text input. Reactions need to be writ-
ten exactly as theywould appear in theReaction list in the spreadsheet (http://rxncon.
org/rxncon/test for examples). Contingencies would be added directly to each reac-
tion a er “;”, as shown in the small model of the HOG pathway presented in Listing . .
We will use this simple model as an example to show the basic transitions from the rxncon
format to Boolean networks. A visualization of the model by rxncon and Cytoscape is also
shown in Figure . . .

. . B B M

e so ware built for this thesis is an extension to the already available rxncon so ware
framework. It adds value to thewhole systemby providing themeans to export the rxncon
de nitions to a model format that can be simulated without further input. ese simula-
tions can be used for rapid model improvements by checking whether e.g. a signal can be
transmi ed through the network or where exactly it is stopped. is process is assisted by
a graphical user interface and a visual representation of the network (Figure . . ).

http://www.rxncon.org
http://rxncon.org/rxncon/test
http://rxncon.org/rxncon/test


Figure 3.3.1: A small example network of the HOG pathway. (A) The rxncon data
visualized as a regulatory graph: The network is defined as elemental reactions (red
nodes); that produce (blue edges) or consume (purple edges) elemental states (blue
nodes), and contingencies showing how states activate (green edges) or inhibit reactions
(red edges). The elemental reactions correspond to the edges in a topological network,
and the contingencies provide the contextual constraints on the reactions. The example
network is a simplified version of the high osmolarity glycerol (HOG) pathway. The
rxncon code for this model is given in listing 3.2. (B) Simulation of the model with the
turgor feedback included. Due to the feedback from Hot1 on Sln1, the model ends in a
cyclic attractor when started with our standard initial values. The exported BooleanNet
code for the simulation is given in listing A.1



S ln _AP_Sln ; ! Hot −{P}
Sln _PT_Ypd
Ypd _PT_Ssk
S s k _pp i_S s k ; x Ssk −{P}
Ssk _P+_Pbs ; ! Ssk −−Ssk
Pbs _P+_Hog ; ! Pbs −{P}
Hog _P+_Hot ; ! Hog −{P}
PPase_P−_Ssk
PPase_P−_Pbs
PPase_P−_Hog
PPase_P−_Hot

Listing 3.2: The small example HOG model shown in Figure 3.3.1 formulated in the
rxncon format. The format uses a very compact notation to describe reactions and
contingencies that does not require declarations of e.g. components that other formats
need.

E L

Tiger et al. ( ) have previously shown that a rxncon network unambiguously de nes a
model structure and can be exported to SBML, rule based or agent based formats. While
thesemodels canbegenerated automatically, their behavior relies heavily onparameter val-
ues that must be estimated from empirical data. Our approach complements these export
options with a newBoolean format that is able to capture the qualitative network behavior
without any further parameterization.

eBooleanmodel structure directly corresponds to the rxncon regulatory graph (Tiger
et al., ). is bipartite graph consists of elemental reactions and states as nodes, reac-
tion effects as reaction-to-state edges, and contingencies as state-to-reaction edges. Our
approach of encoding the reaction information into Boolean logic uses the same bipartite
partitioning and has separate update functions for the reactions, states, and input and out-
put nodes. To be able to use a standard translation from the rxncon format to the Boolean
format, we had to make certain assumptions about the dependencies that are described in
the following.

In our Booleanmodels, reactions depend on the states that are given as their contingen-
cies and the components that are involved. Contingencies ca giving quantitative and ab-
solute requirements (k+/! in rxncon notation) as well as components d are all needed for
the function to be true. States cn given in negative contingencies (k-/x) simply are negated
with a NOT (¬) operator:

r(t+ ) =
∧

ca(t)
∧

d(t)
∧

¬cn(t). ( . )

Components are part of the Booleanmodel, but are not in uenced by any other entities
and are therefore considered constant. Boolean nodes de ned in the rxncon format are at-



tened in the update function of the reactions in the Boolean format by adding them recur-
sively to the function. Protein-protein interactionbetweenSsk andSsk (Ssk _ppi_Ssk )
is inhibited by Ssk phosphorylation (Ssk -{P}). is yields:

Ssk _ppi_Ssk (t+ ) = Ssk (t) ∧ Ssk (t) ∧ ¬Ssk -{P}(t). ( . )

Update functions of states are built up from the producing reactions, the consuming re-
actions, the involved components, and the state itself. Components are absolute require-
ments for the state to be true, while the exact structure of the update function depends on
the reaction types the state is involved in. Reversible production reactions rr need to be set
to true to keep the state active, because the states are considered to decay the state when
set to false.

si(t+ ) =
∧

d(t)
∧

rr(t) ( . )

In contrast, irreversible reactions rirr cannot switch produced states to false:

si(t+ ) =
(∧

d(t)
)
∧
(
si(t) ∨

∨
rirr(t)

)
( . )

Output nodes are treated in the same way as states, while input nodes are constantly
either true or false.

Updating states can be exempli ed by the reactions depicted in Figure B. e state
Sln -{P} of protein Sln is produced by auto-phosphorylation and consumed by phos-
photransfer to Ypd . is would be updated by the following rule:

Sln -{P}(t+ ) = Sln _AP_Sln (t) ∨ Sln -{P}(t) ∧ ¬Sln _PT_Ypd (t). ( . )

Once the state is true, it cannot be set to false by the producing reaction anymore, because
the reaction is irreversible. A different example is the Ssk -Ssk dimer (Ssk –Ssk ) that is
produced by the protein-protein interaction between Ssk and Ssk (Ssk _ppi_Ssk ). It
follows the update rule: Ssk Ssk (t + ) = Ssk _ppi_Ssk (t). e state would decay
if the reaction was false, as protein-protein interactions (ppi) are de ned as a reversible
reaction.

S V

Boolean simulation in the so ware extension is handled by the BooleanNet Python li-
brary (Albert et al., ) and the biographer library is used for visualization (http://
biographer.biologie.hu-berlin.de/biographer/). e simulation interface
visualizes the network as an activity ow (AF) diagram according to SBGN (LeNovère et
al., ). e SBGN-AF representation contains the reactions and states from the rxncon
regulatory graph, but also includes the nodes for each of the network components them-

http://biographer.biologie.hu-berlin.de/biographer/
http://biographer.biologie.hu-berlin.de/biographer/


selves. It comes in two different styles: the default style visualizes all in uences according
to theBooleanupdate rules, while the alternative stylemirrors the regulatory graph format.

e regulatory graph is more easily accessible as it leaves out the in uence of components
on reactions and a large number of Boolean operators. Both styles include all components,
reactions, states, inputs, and outputs, which can be turned onor off individually by the user
to alter the initial state of the simulation.



Figure 3.3.2: Screenshot of the simulation interface of the rxncon extension. The Exported BooleanNet files can be directly
simulated and visualized by the software and users can interact with the model by going through simulations step by step and
setting the desired starting state by selecting the nodes in the displayed visualization (left). Users can also check for the correct
behavior in the statespace (right) and select states that are then shown in detail on the network.



e network layout can be imported from an Extensible Graph Markup and Modeling
Language (XGMML) le from Cytoscape and/or edited manually. e so ware includes
different layout algorithms to arrange the network. Possible state trajectories are calculated
automatically and visualized within the simulator (Figure . . right). e complete state
space can only be calculated and visualized for small models, while for larger models the
calculation is limited to states reachable from a limited set of starting states (all permuta-
tions of the input nodes). e state space visualization allows the user to access a speci c
state by simply selecting it with the mouse, and also clearly identi es point and cyclic at-
tractors. e modeling interface includes layout algorithms and the node positions can be
saved to let previously existing nodes retain their positions if the model is modi ed.

Hence, this extension provides support for iterativemodel generation, visualization and
simulation. ereby it facilitates integration of the three steps in the network reconstruc-
tion process. As mentioned above, the bipartite Boolean simulation provides a power-
ful albeit qualitative validation tool. e iteration between model creation and qualitative
model validation provides for quality assurance in the model creation process without the
need of expensive – if not unfeasible – parameterization and quantitative simulation.

. . I M B V

e potentially most important contribution of the integration of Boolean model genera-
tion and simulation in the network de nition framework is that it enables iterative model
building and validation (Figure . . A). e idealized work ow starts from an existing
modelor a small network reconstruction,which is translated into abipartiteBooleanmodel
and simulated to con rm that the current reconstruction can reproduce the networks’ in
vivo function qualitatively. Ideally, the iteration uses small steps to immediately identify
missing and/or erroneous features and to constantly keep themodel consistentwith in vivo
observations. is can be done without any overhead due to Boolean model creation, as
the network de nition format is identical to that used in all other rxncon features (Figure
. . B). e input used to create the bipartite Boolean model can also be exported to the

standard SBML format or to formats for rule or agent basedmodeling, as well as to a range
of visual formats, including the SBGN formats. Hence, the Boolean analysis can easily be
integrated as a validation step in amodeling effort aiming for a quantitativemodel without
duplication of work.

V E Y MAP K N

To test our approach on a larger scale, we revisited the carefully curated MAP kinase net-
work of baker’s yeast, Saccharomyces cerevisiae (Tiger et al., ), henceforth referred to
as Tiger network. To assess the accuracy and completeness of this network curation, we
generated the corresponding bipartite Boolean model to determine which additional fea-
tures would be needed to (qualitatively) capture the physiological behavior of the network



Figure 3.3.3: The complete network structure of the MAPK model. This visualization
was done by the rxncon extension we implemented. For a larger version of the model
see Figure A.2.3 or http://www.rxncon.org to see a zoomable version.

(Figure . . ). e network was translated into a bipartite Boolean model assuming all
contingencies were absolute, as Boolean simulations cannot deal with quantitative mod-
i ers (Figure . . , Table A. . ). Not surprisingly, we found that this network de nition
is insufficient to predict the network behavior and proceeded to identify the missing fea-
tures. Most importantly, the Tiger network contains phosphorylation reactions that
lack a corresponding dephosphorylation reaction.

To address this shortcoming, we added hypothetical dephosphorylation reactions
tomake all phosphorylation states reversible (Table A. . ), which is likely the case in vivo.

ismodi cation alonewas enough tomake the Sln branch andhence theHOGpathway
functional, as measured by its ability to respond to turgor (Figure . . ). Next, we turned
our a ention to the PKC pathway. It has been reported to respond to increasing osmo-
larity (García-Rodríguez et al., ), although the sensing mechanism remains unclear.
To make it turgor sensitive, we simply added a turgor requirement for the guanine nu-
cleotide exchange (GEF) of Rho . While mechanistically unsatisfactory, this is sufficient
to make the PKC pathway responsive to turgor. Importantly, no additional modi cations
are needed downstream for the signal to reach its targets.

e MAT pathway required more complex adjustments, in part due to the intercon-
nection with the HOG and PHD pathways. Yeast mating only occurs between haploid
yeast cells of complementary mating types MATa and MATα. To simulate the well stud-

http://www.rxncon.org


Figure 3.3.4: Iterative model building and validation as a tool to guide and validate
network reconstruction. (A) Idealized workflow for model building: Model extensions
and improvements are done in small steps, with each step being evaluated as a Boolean
model. (B) The rxncon database underlying the Boolean model is fully compatible
with the other rxncon features, including a range of visualizations and automatic model
generation in formats suitable for quantitative modeling. (C) The iterative improvement
applied on the yeast MAP kinase network. Only a limited number of changes were needed
to make the HOG, PKC and MAT pathways functional (Table A.2.1). The single largest
change was the addition of 50 hypothetical dephosphorylation reactions (Table A.2.2).



ied MATa-cells, we removed the MATα-cell speci c mating receptor (Ste ), and added
a negative feedback loop on the pheromone response by allowing degradation of alpha
factor only a er gene induction of Bar . Next, we eliminated the interference from the
only partially de ned PHD pathway. In the Tiger network, the PHD and MAT pathway
stimulates some of the same components, which was translated as absolute requirements
hence blocking these reactions completely in the Boolean model. To remove this block,
we simply removed the in uence of the PHD pathway by removing the effect of four con-
tingencies and corrected the requirement for two others (Table A. . ).

Finally, we removed the cooperative binding of the downstream transcription factors
(which again were interpreted as absolute requirements and hence blocking reactions un-
duly) and added the ubiquitination dependent degradation of the Tec transcription fac-
tor, which was missing in the Tiger network. In total, we needed to adjust only ten out of

contingencies and add one reaction and one contingency tomake our Booleanmodel
of the MAT pathway work according to our current understanding (simulations Figure
. . ).
We resolved the HOG-MAT crosstalk by removing one nal contingency, namely the

ability of Ste recruitment of Ste to block the interaction of Ste and Sho . While this
block is likely true for each Ste bound to Ste , the amount of Ste in the cell vastly
exceeds that of Ste , making a complete inhibition by stoichiometric binding impossible
( omson et al., ). Taken together, the main changes were addition of new de-
phosphorylation reactions and turgor regulation of Rho . Additionally, we corrected the
assumption of absolute effects of of all contingencies and added transcriptional induc-
tion of Bar (Manney, ) and Tec degradation a er ubiquitination (Bao, Schwartz,
and Cantin, ). With the addition of these small changes, the model was able to repro-
duce physiological behavior of the included pathways in a qualitative fashion.

. D

In this chapter we described two so ware applications that we developed and tested in re-
search projects connected to the MAP kinase pathways in yeast. Both applications have
shown their value in accelerating the modeling process on different levels but in similar
ways. WhileModelMaGe assists the user in model generation and discrimination of ODE
models, Boolean rxncon helps the user in an earlier phase to build and test qualitativemod-
els. In the end both tools are a way to ease the o en frustrating model re nement steps
researchers have to repeat o en, and thereby reduce errors and speed work up in an early
phase of the project.

In the ModelMaGe project we were able to reject a hypothesis formulated by a former
publication (Haoet al., ) about the regulationof theHOGpathway and systematically
explore new hypothesis and models using the so ware. We could show that the formerly
proposed model simulated spurious effects that are not supported by data which is prob-



Figure 3.3.5: Time evolution of the Boolean version of the MAPK model under different
conditions displayed as a heatmap. States and reactions are hierarchically clustered on
the vertical axis by their activation profile over time (horizontal axis). Blue represents
inactive states and yellow active states, respectively. The model starts in the standard
state assigned by the exporter plus changes in Table A.2.1. Vertical grey lines indicate
external stimulus changes after an attractor is reached. Turgor is turned off after steady
state is reached (t=27), which activates the Hog pathway. Turgor is switched on again
at the next attractor (t=50) and the HOG pathway is inactivated again. From the
following attractor MFα is activated (t=75), which clearly turns on the mating pathway,
and adapts by degrading MFα. The pathway components cluster together in their state
evolution, including a group of early PKC genes that cluster with the (negative) Sln-
branch of the HOG pathway (P/H). The unregulated reactions (R) and states (S) are
turned on at time step 1 and 2, respectively, and stay constitutively active.



ably caused by over- ing. Additionally we could t our simpler alternatives to the pub-
lished data, albeit with larger residual errors. Nevertheless our simpler model represents
the data much be er in terms for parsimony and therefore gets lower AIC values. In order
to see which model is more predictive for the pathways behavior under altered conditions
we did in silico experiments to nd conditions in which both models differed sufficiently in
their predictions. We found that a third shock a er minutes was enough to clearly dis-
tinguish between the two predictions and therefore carried out an additional experiment
which con rmed the predictions of our model. is validation means we completed one
cycle of the Systems Biology work ow during which we learned new properties of the sys-
tem. e use of the ModelMaGe so ware makes the results completely transparent and
easy to replicate, as only the master model and reduction directives are sufficient to create
and test the validated as well as the rejected models. is facilitates reproducibility of the
modeling method and helps to communicate the outcome.

Biologically we could show with this example that the inherent feedback of the HOG
pathway, consisting of the adaptation of the intracellular glycerol levels is sufficient for the
signal adaptation a er osmotic shock. Even though the phosphorylation of Sho byHog
has been shownbyHaoet al. ( ), this doesnot seem tobe themaindesensitizingmech-
anism. Glycerol accumulationmediating adaptation andHog de-activation probably acts
via removal of the stimulus, which in turn might be volume or membrane related, e.g. tur-
gor pressure (Schaber et al., ). It has been shown for thewild type and the Sln branch
of theHOGpathway that such an integrator feedback is probably responsible for the adap-
tation response (Klipp, Nordlander, andKrüger, ; Me etal andMuzzey, ). Here,
we provide computational as well as experimental evidence that this is also the case for the
Sho branch.

e rxncon project aims in a different direction. It does only represent a small part of
the whole cycle, that deals with the initial model generation and testing. Its use of data is
only indirectly through conclusions drawn in the literature about qualitative network be-
havior. It helps to check whether or not a structural model can represent this knowledge in
a qualitative Boolean way in a quick and easy manner integrated into a standard work ow.

e so ware implements a new bipartite Boolean modeling approach supported by au-
tomatic model generation, simulation and visualization using the rxncon framework. Our
Boolean approach retains contextual activation information andavoids inappropriatepath-
way crosstalk, even when the signal passes through shared components. e interactive
visualization the so ware uses, enables model validation at a glance even for large models.
By using theMAP kinase network as an example, we demonstrate the use of Booleanmod-
eling for a preliminary model validation and show how it can be integrated in the model
construction process. We envisage this iterative process of model building and qualitative
validation to be a useful tool in construction of networkmaps and even quantitativemath-
ematical models. By using this approach we found a number of reactions missing from the
model that prevent it from being simulated, which we then added in a step wise manner.



is shows that we are close to a functional understanding of the HOG, PKC and MAT
pathways, that this functional understanding can be expressed within the rxncon formal-
ism, and that the iterativemodel building and bipartite Boolean simulation is a potent tool
to identify and correct missing or erroneous features in even large models.

In summary both developed tools show their applicability to signaling networks in the
presentedexamples andModelMaGewashas alreadybeenused in adifferent context (Klotz
et al., ). Both tools help to nd inconsistencies by comparison or ing to data. ey
accelerate the modeling process and facilitate communication of results and thereby ll
existing gaps in the Systems Biology so ware landscape.
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Gene RegulatoryNetworks in Pluripotency

Based on:

• Max Flö mann, Till Scharp, and Edda Klipp (Jan. ). “A stochastic model of
epigeneticdynamics in somatic cell reprogramming.” In: Frontiers in physiology .June,
p.

• Nancy Mah, Ying Wang, Mei-Chih Liao, Alessandro Prigione, Justyna Jozefczuk,
Björn Lichtner, Katharina Wolfrum, Manuela Haltmeier, Max Flö mann, Martin
Schaefer, Alexander Hahn, Ralf Mrowka, Edda Klipp, Miguel a Andrade-Navarro,
JamesAdjaye ( Jan. ). “Molecular Insights intoReprogramming-InitiationEvents
Mediated by the OSKM Gene Regulatory Network.” In: PloS one . , e

In this chapter we examine a system on a longer time scale and a different level of regu-
latory mechanisms than in chapter . Induced pluripotent stem cells the system under
examination received an increasing amount of a ention in recent years, which culmi-
nated in aNobel price for their inventor Shinya Yamanaka in . Fast technical advances
have beenmade in their production, but the underlying processes are still unclear. In order
to propose possible answers to open questions about these mechanisms, we developed a
model of the interplay between different levels of regulation in this system. Before con-
structing themodel, we analyzed the behavior of developmental gene regulatory networks
(GRNs) and their reaction to external perturbations based on different high-throughput
datasets.
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Multi-cellular organisms are the most complex form of life that ever existed on earth. e
cell as a formoforganization is still a riddle tobe solved, andcommunicationbetween these
highly complex systems that leads to the formation of higher organisms, is so intriguingly
complicated that its decoding seems nearly impossible. At this stage it is a useful model to
examine the development of the organisms to understand how the system is slowly built
up from its various parts. is is where stem cell research and Systems Biology t perfectly
together.

e term stem cells was rst introduced in by the Russian histologist Maximov on
a congress in Berlin (Maximov, ). He characterized hematopoetic stem cells as the
common ancestor of all blood cells. A similar de nition still holds today. Stem cells are
characterized as a class of cells that have two special properties in common: (i) they are able
to proliferate in nitely by mitosis and (ii) they can differentiate into different specialized
cell types.

Since thediscovery of a special class of stemcells and its extraction frommouse embryos
in the s (Evans and Kaufman, ) stem cells are divided into adult- and embryonic
stem cells (ES). In , the rst human ES cell line was derived by omson ( omson,

) who proposed the following de nition for ES cells:

(...), we proposed that the essential characteristics of primate ES cells
should include (i) derivation from the preimplantation or periimplantation
embryo, (ii) prolonged undifferentiated proliferation, and (iii) stable devel-
opmental potential to form derivatives of all three embryonic germ layers
even a er prolonged culture.

ES cells are derived from the early stages of embryonic development. A er fertilization,
the zygote starts todivide and formamorula. A er anumberof division this “lump”of cells
is transformed into a sphere, called the blastocyst (Figure . . ). In the early blastocyst,
the cells have already differentiated into trophectoderm cells that form the extra embry-
onic tissue, and the inner cell mass (ICM) that later differentiates into the three somatic
lineages. e ICM from these blastocysts is used to derive ES cells in culture.

Compared to adult stem cells which are limited in their differentiation capabilities to
certain lineages, ES cells have the great advantage to be able to differentiate into all cells of
the body. In general stem cells are classi ed by their developmental capabilities into the
following hierarchy of potential:

Totipotent Cells that are able to produce a full viable embryo, including extra embryonic
tissues. A potency of this level is only observed in the fused egg- and sperm cells and
a few divisions a er that.



Pluripotent Cells that are able to form all body cells. Examples for these are ES cells and
the arti cially produced induced pluripotent stem cells (iPS) (Sec. . . ).

Multipotent Cells that are found in the adult organismandcandifferentiate into anumber
of cells from different lineages. A good example are the hematopoetic stem cells
mentioned above.

Oligopotent Progenitor cells which are able to differentiate into a small number of closely
related cells.

Unipotent Progenitors (also called precursor cells) that can only differentiate into one
cell type, for example hepatocytes in the liver.

Figure 4.1.1: Development of germ layers from the zygote over the early and late
blastocyst. ES cells are extracted from the inner cell mass in the late blastocyst stage.

ese de nitions from cell biology are re ected bymolecular differences inDNA struc-
ture and gene expression between these cell states. e potency of a cell seems to be
strongly coupled to the general structure of epigenetic marks on the chromatin like DNA
methylation and histone modi cations (Laurent et al., ; Lister et al., , ).

ese epigenetic changes are governed by gene expression andprotein levels in the cell and
vice versa, giving a perfect example of the need for a Systems Biology approach combining
different levels of regulation. emodelwepresent in section . . is basedon these effects
to a large extent. e feedback from the expressed proteins on the expression of genes be-
comes strikingly obvious when looking at the rst techniques for cellular reprogramming.

is technique is called somatic cell nuclear transfer (SCNT) and is also used for repro-
ductive cloning. e somatic nucleus is transferred into an enucleated oocyte, and thereby
forms an ES cell by restructuring its chromatin to the pluripotent state (Hochedlinger and
Jaenisch, ; Rideout, Eggan, and Jaenisch, ). When transplanted into a surrogate
mother this oocyte can also give rise to a genetically equivalent animal (clone). is is a
great example to show that proteins present in the cytoplasm are sufficient to alter gene
expression and also epigenetic regulation in the nucleus radically.
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e de nition of a differentiation potential of cells is strongly in uenced by the vivid im-
age of a so called epigenetic landscape rst described byWaddington (Waddington, ,

). He depicted the process of development as a ball rolling around in a sloping land-
scape full of hills and valleys. In the course of development cells take different paths guided
by the shape of the surface and end up in different valleys in the end. Spontaneous dedif-
ferentiation is prevented by “gravity” keeping the cell in the valley it went into. His view
was that there are epigenetic barriers keeping cells in their valley (lineage), but given strong
enough perturbation cells are able to leave their valley again. is visual description of the
differentiation process is surprisingly similar to the modern view of biological processes
as complex dynamical systems and their a ractors and critical points (Figure . . ). e
a ractor can be seen as a “balanced” (steady) state of a dynamical system in which, while
unperturbed, all forces are in balance and the state does not change (Section . ). Pluripo-
tent cells like ES cells are in a balanced, but unstable state, which can be le due to minor
perturbations, while fully differentiated cells are in a stable state that can only be le by
major perturbations of the whole system. To provide a holistic view on this epigenetic
landscape, I have developed a model that shows these differences between the stability of
cell states (Section . . ).

Figure 4.1.2: (A) An example of an epigenetic landscape showing the different sta-
bilities of a state depending on its location. (B) Differentiation shown as cross-section
of a path through the epigenetic landscape. Different progenitor cells can be sustained
in local minima of the landscape. (C) Changes in the epigenetic landscape are pro-
duced by the Yamanaka factors and the difference in potential between differentiated
and pluripotent cells becomes less pronounced.
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Pluripotent cells, like ES cells, are the most universal cells that can be cultured in the lab.
ey hold great promise for a number of medical applications and their study has become

a large research eld. However, working with these cells poses ethical problems due to
their embryonic origin, at least for human cells. eir discovery has led to a still ongoing
public debate about the ethic implications of their use, as embryos have to be destroyed to
harvest the cells from ICMand cultivate them. Due to these problems, research in the eld
is difficult and highly regulated in many countries.

Aside from the ethical problems, the clinical useof stemcells is limited to thedonorhim-
self due to immune system reactions. Until recently, there was no way to derive pluripo-
tent stem cells for the adult patient. is changedwith the discovery of iPS cells in by
Takahashi and Yamanaka, who derived pluripotent cells that could contribute to all three
germ layers from mouse embryonic broblasts. Only one year later the same process of
somatic cell reprogramming (SCR) was completed with human broblasts (Takahashi et
al., ). is surprisingly simple process is only based on the viral induction of the same
four transcription factors in mouse and human. ese factors, Oct , Sox , Klf , and cMyc
are sometimes also referred to as theYamanaka factors. Since their discovery, iPS cells have
been derived from a large number of different somatic cell types using the same cocktail
or variations and subsets of it (Okita et al., ; Zhou et al., ). e genes used in the
reprogramming cocktail are all master regulators of transcription that have a lot of targets
throughout the genome. ey all in uence many targets and their target sets have large
overlaps (Boyer et al., ).

Around these factors there is a large gene regulatory network in uencing cell state and
potential that is only partly known (Kim et al., ). Oct is at the center of this net-
work and has been studied as a stem cell factor long before the discovery of iPS cells.
Together with Nanog, another important pluripotency factor, it forms the core pluripo-
tency gene network. is network, when activated, keeps cells in a pluripotent state. To
enable fully differentiated cells to return to this state one needs to activate other factors
as well. To reprogram partially differentiated progenitor cells to pluripotency it has been
shown that the induction of only Oct is sufficient if certain small molecules are added
to the medium. Also all the other factors except Oct can be replaced in the process by
using small molecules (Huangfu et al., a,b; Mikkelsen et al., ; Shi et al., ).
Another interesting development around more efficient reprogramming was the genera-
tion of a mouse with stable integrated Yamanka factors that are inducible by administering
doxycycline (DOX). ese secondary iPS systems have a much higher reprogramming ef-
ciency of about , compared to . of the standard approach.
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Although direct reprogramming enabled us to study the interplay of the networks regulat-
ing pluripotency in ade ned environment, it is still not understoodhow the transitionhap-
pens in detail. However, it has become clear that the reprogramming potential is not lim-
ited to speci c cells in a culture, but rather that essentially every cell can be reprogrammed
given enough time and the appropriate method (Hanna et al., ). A high proliferation
rate seems to be bene cial to the process of overcoming the barriers in reprogramming
(Hong et al., ; Kawamura et al., ; Marión et al., ). As mentioned above, ef-
ciency could be improved by the addition of small molecules (Wang and Adjaye, ),

some of which are also capable of replacing KLF and cMYC or even SOX (Ichida et al.,
) in the process. Most of these small molecules act on the epigenetic modi cations

that x the cells in their current developmental state. One of the most prominent drugs
improving reprogramming is the histone deacetylase (HDAC ) inhibitor valproic acid
(VPA) (Huangfu et al., a). e inhibition of HDAC seems to lower the epigenetic
barrier between the cell states and facilitates the transition from one state to the other.

Pluripotency in general is regulated by an interplay of differentmechanisms that wewill
outline in detail in the following. First, transcriptional regulation, i.e. activation or inhi-
bition of target gene activity by speci c transcription factors, controls the expression of
master regulators of pluripotency or differentiation. A second layer of control consists in
DNA-methylation of promoters of genes. Finally, the activating or repressive modi ca-
tions on histones represent the third mechanism (reviewed in Meissner, ).

e core transcriptional regulatory circuitry of pluripotency in human embryonic stem
cells (hESCs) was rst established by (Boyer et al., ) and contained the master regu-
lators of pluripotencyOCT , SOX , andNANOG. ese three transcription factors were
found to interact in a mutually- and auto-activating fashion thereby promoting and main-
taining pluripotency (Boyer et al., ; Loh et al., ). is regulatory circuitry has
been extended in further studies to yield different larger networks regulating pluripotency
(Chavez et al., a; Ivanova et al., ; Zhou, Chipper eld, and Melton, ).

DNA-methylation of regulatory sequences, which silences gene promoters, is one of
the known mechanisms in epigenetic regulation. is methylation is a major hindrance
in reprogramming, because methylation marks cannot easily be removed, although there
is evidence for active demethylation in reprogramming cells (Bhutani, Burns, and Blau,

), which we will further discuss below.
With the advent of next generation sequencing techniques there is a wealth of data ac-

cumulating on DNA-methylations (“methylomes”) in different cell types (Laurent et al.,
; Lister et al., , ). ese studies reported large differences between ES/iPS

and differentiated cells in the methylation states of promoters of key pluripotency and de-
velopmental genes. Moreover, they identi ed a very slow reprogramming of methylation
states with aberrant methylation persisting in reprogramming cells, which can thus be dis-
tinguished from fully reprogrammed or ES cells. ese remaining DNA-methylation dif-



ferences also limit the differentiation potential of the iPS cells and restrict their applica-
tions. A recent study also reported the occurrence of newly methylated aberrant sites that
did neither occur in the source nor in the target (ES) cells (Nishino et al., ).

Comparative studieswerenot limited toDNA-methylation. Histonemodi cationswere
also studied extensively, suggesting a close connection betweenDNA-methylation and hi-
stonemodi cations (Hawkins et al., ). It has been found that there is a strong correla-
tion between gene silencing histonemodi cations andDNAmethylations in promoters of
pluripotency regulators (Cedar and Bergman, ). However, the relationship between
the two is still not fully understood. e connection is probably established by histone
binding proteins such as G a, which have histone methylation activity (HMT) and there-
fore facilitate the formation of heterochromatin. G a can also recruit the de novo methyl
transferases DNMT A andDNMT B to the nucleosomewhich in turn canmethylate the
gene promoters on the DNA. DNA-methylation is thought to stabilize chromatin struc-
ture during mitosis through differential binding of proteins for closed or open chromatin
(Cedar and Bergman, ) and it can also inhibitmethylation ofH K , an activating his-
tonemark. Inheritance of histonemodi cations is coupled to themethylation pa ern as it
guides binding of certain HDACs (Fuks et al., ). DNA-methylation itself is sustained
throughout DNA replication and mitosis by virtue of DNMT and other associated pro-
teins like NP by copying the methylation pa ern of the template strand to the copied
strand. ough this process is quite efficient, methylations can be lost in rapidly dividing
cells and cells lacking DNMT (Monk, Adams, and Rinaldi, ).

E

e consequencesof the complex interplayof the threementioned regulatorymechanisms,
i.e. transcriptional regulation, histonemodi cations leading to changes in chromatin struc-
ture, and DNA methylation, are not easy to understand. Mathematical modeling can help
to unravel these complex interactions and explain how cellular behavior is linked to the
molecularmechanisms. Sincewe aredealingwith an enormously complex system,weneed
to reduce its complexity in order to discern the basic underlying features of the network.

ere have been various a empts tomodel certain parts of regulatory networks in great de-
tail, which gave valuable insights into the dynamics of these subsystems (e.g. MacArthur,
Please, and Oreffo, ).

All the above mentioned regulatory processes only work correctly in an orchestrated
manner. Regulatory structures in stem cells have been described by various models us-
ing different modeling approaches. ere is a number of detailed models describing the
interplay of regulatory genes in pluripotency and reprogramming, which help to under-
stand the gene networks in detail and have elucidated the bistability of decisions taken
in development and the in uence of expression noise (Chickarmane and Peterson, ;
Chickarmane, Troein, and Nuber, ; Kalmar et al., ; MacArthur, Please, and Or-
effo, ). ese models use ordinary differential equations to show the dynamics inside



a small part of the whole machinery. ere are also many studies describing regulation of
differentiation into different lineages (Duff et al., ; Huang et al., ; Roeder and
Glauche, ; Wang et al., ). Bigger networks were just recently modeled using dy-
namic Bayesian networks and were used to predict improved reprogramming factor com-
binations (Chang, Shoemaker, and Wang, ).

A second class of more coarse grained models deals with transitions between cell states
and how they are shaped by self-organizing systems in the cells (Halley, Burden, andWin-
kler, ; Qu and Ortoleva, ). ese models are very conceptual and refrain from
describing single gene interactions. ere have also been efforts to characterize the pro-
cesses in chromatin remodeling in a theoretical model, which showed that there must be
a positive feedback in the formation of heterochromatin structure to explain its observed
behavior (Dodd et al., ).

Looking at the experimental evidence in the literature it seems that the progression of
reprogramming is governed by stochastic processes that prohibit or permit activation of
pluripotency genes. For that reason, there have also been a empts to model it with noisy
ordinary differential equations (MacArthur, Please, andOreffo, ) or even as a stochas-
tic process of state transitions (Hanna et al., ). In amore general approach Artyomov,
Meissner, and Chakraborty ( ) explicitly modeled the space of cellular states as a bi-
nary tree with nodes for each cell state and the pluripotent state as the root of the tree. is
study was the rst to include gene regulation and epigenetic changes in one model and it
could, among other things, explain the low efficiency of reprogramming.

. R

. . G R N G P

As a starting point for our work on stem cell gene regulation we used two networks that
have been generated by the two different approaches mentioned in section . . , i.e. liter-
ature mining and high-throughput data. e rst network was assembled by an extensive
literaturemining and database search for transcription factor binding of the Yamanaka fac-
tors and was presented inMah et al. ( ). e second network was derived fromChIP-
on-chip experiments for a number of pluripotency factors byBoyer et al. ( ) combined
with some activation/inactivation information fromChavez et al. ( b). Henceforthwe
will denote these as Mah network and Boyer network. e two networks are completely
different in their focus and we used them for different purposes. e Boyer network is
an exhaustive listing of all genes with promoters binding one of the transcription factors
in the study (topology partly shown in gure . . ), whereas the Mah network is a much
smaller network centered around the Yamanaka factors and all their interactions, including
signaling pathways (Figure . . A).

e second piece of information that was a prerequisite for the analyses in this section,
was a set of microarray measurements gathered before, during, and a er a reprogramming



experimentwithhumanembryonic broblasts and theYamanaka standardprocedure (Fig-
ure . . ). is dataset was generated by transduction of human foreskin broblast cells
(HFF ) with retroviral constructs and culturing them on a feeding layer of mouse em-
bryonic broblasts. we took samples from the cells before transduction and at three early
time points a erwards ( h, h, and h). ese sampleswere hybridized on an Illumina
whole genome microarray and also compared to HFF derived iPS cells and ES cell lines.

e cells showed a stable expression of the exogenous Yamanaka factors already a er h,
although some of these were not captured on the array.

Figure 4.2.1: Experimental procedure for gathering reprogramming timecourse data.
Embryonic fibroblast cells were transduced with the reprogramming factors and expres-
sion profiles by microarrays were taken after 0h, 24h, 48h, and 72h. Additionally profiles
were measured for reprogrammed iPS cells from this experiment and H1 cells as a com-
parison.

e basic analysis of raw data was done by Nancy Mah using standard Bioconductor
(Gentleman et al., ) tools. As expected the expression changes get stronger over time
and the largest set of differential expression was found in iPS cells (Figure B. . ).

F A E D

For a further analysis of the timecourse data we only considered probes that showed a p-
value < . for differential expression in at least one of the time points ( of
probes). To get a separation of different dynamics of the genes we performed a fuzzy-c-
means clustering (Section . . ) of these genes with nine cluster centers (Figure . . ).

e clustering showed different classes of dynamics. Most showed a consistent pa ern
during the early phase of reprogramming with either constantly declining or increasing
abundances. As expected, differences to the reprogrammed iPS state or the ES (H cells)
statewere the biggest in every class, but interestingly the trendof the early stageswas some-
times reversed (e.g. cluster and ) and there were strong differences between iPS and ES
cells for some classes (e.g. cluster ).

To nd out which genes were grouped into the clusters, we conducted a Gene Ontol-
ogy (Ashburner et al., ) enrichment analysis for biological processes by comparing
the genes belonging to each cluster to the whole set of genes present on the chip. We used
a hypergeometric test to screen for signi cantly over-representedGO-terms in the clusters



Figure 4.2.2: Clustering of timecourse data. I clustered all differentially expressed
genes (p < . ) by their expression profile over time using the fuzzy-c-means method.
Expression profiles of genes are color-coded by their membership values for the cluster
(Section 2.2.1). Cluster core size (α > . ) given in brackets for each cluster.



using a correction for the tree structure of the GO-terms (Falcon and Gentleman, )
(Section . . ). is analysis showed that there was no enrichment for developmental
genes in any of the classes and that the main changes in the dataset laid in immune re-
sponse and mitosis. Cell division differences were most signi cantly enriched in cluster
that showed strong differences between iPS and ES cells, suggesting that ES cells aremuch
more potent in proliferation than the reprogrammed iPS. Cluster showed an opposite
behavior and is enriched with many ribonucleotide biosynthetic processes, suggesting a
fast metabolism in the iPS cells compared to the other cell lines.

Cluster and are interesting, because they show a completely different trend in the
beginning than in iPS and ES cells. ey show a strong to moderate activation in the be-
ginning of reprogramming and much less expression in the stable iPS and ES cells. Both
clusters are enriched with apoptotic and immune system genes. e early activated Clus-
ter is related to immune and anti viral response even clearer with “response to virus” be-
ing the rst ranking GO term. is cluster also contains genes responsible for cell-matrix-
adhesion. Cluster , which was constantly declining in expression, shows an enrichment
in substrate junction assembly and actin related processes, anticipating the results of the
next analysis.

A S P A H E R C

To complement the GO enrichment analysis, we also searched for pathways that were ac-
tivated or inhibited in the early time-steps of reprogramming. e pathway analysis over
all KEGG (Kanehisa, ) signaling pathways was performed for each time point on all
differentially expressed genes ( h: genes, h: genes, h: genes). For the
analysis we used the Bioconductor package SPIA (Tarca et al., ). is analysis com-
bines a standard enrichment analysis in signaling pathways with an analysis of the impact
of the regulations on the pathway, which makes it more speci c and sensitive as simple
enrichment testing (Section . . ). e analysis showed a clear picture of pathways that
are in uenced by the transcriptional changes during viral infection and the beginning of
reprogramming (Figure . . ).

A er h there are only pathways impacted and activated that are associated with im-
mune response and various viral diseases (Table . . ). is is not surprising, because the
cells are transduced with the Yamanaka factors using retroviral vectors. Already a er h
the Focal adhesion pathway is signi cantly inhibitedwhile viral response is still active. e
viral response is loosing signi cance in the h time point while focal adhesion is strongly
signi cant at h as well as in the iPS state. e focal adhesion pathway is responsible
for the formation of cell-matrix adhesion points termed focal adhesion, where bundles of
actin laments are anchored to trans-membrane receptors of the integrin family. Integrin
signaling events culminate in reorganization of the actin cytoskeleton; a prerequisite for
changes in cell shape andmotility, as well as gene expression. e early inactivation of this
pathway shows a fast activation of morphology changes and downregulation of cell-cell



Figure 4.2.3: Pathways returned by SPIA analysis for all time points. The y-axis shows
the p-values corrected for false discovery rate. Only pathways annotated with their
names are significantly enriched in any time point. In the first time points these are
primarily viral response pathways, which are all activated. After 72h this reaction is
already superseded by inhibition of cell-cell-adhesion and communication (Table 4.2.1).

and cell-matrix-contacts. In the iPS state there is also a signi cant inhibition of the ECM
receptor interactions, which serve an important function in organmorphogenesis and cell
differentiation. e evidence for downregulation of the focal adhesion pathway is really
strong. Looking at the regulation of pathway proteins over time, our experiment shows a
clear downregulation for a large part of the pathway proteins on all levels (Figure . . ).



Table 4.2.1: Top three pathways that were enriched in the differentially expressed genes
at each time point.

Pathway p-value Impact

h

Herpes simplex infection . e- +
In uenza A . e- +
Measles . e- +

h
Measles . e- +
In uenza A . e- +
Focal adhesion . e- -

h
Focal adhesion . e- -
Measles . e- +
Pathways in cancer . e- -

iPS
Focal adhesion . e- -
ECM-receptor interaction . e- -
Type II diabetes mellitus . e- -



Figure 4.2.4: KEGG representation of the focal adhesion pathway with projected expression data for the genes that were present
in our dataset. Each present gene is divided into four blocks colored representing its expression changes in the measured time
points. It becomes clear that regulation happens on all levels of the pathway, but especially on the receptor level and regulation
of the actin skeleton.



e focal adhesion pathway and the ECM receptors are usually active in HFF cells,
because broblasts show strong matrix interactions. Its downregulation already a er h
shows an early step in reprogramming that has not been reported before. e transition
from a mesenchymal to an epithelial cell type (MET) plays a major role in SCR. ES cells
are epithelial cells that undergo epithelial-mesenchymal-transition (EMT) during differ-
entiation to the mesenchymal broblast lineage. is process needs to be reversed in SCR
and is then called MET. One of the major differences of these cells types is their a ach-
ment to their environment. While mesenchymal cells are strongly connected to the extra-
cellularmatrix, epithelial cells are directly bound to their neighboring cells to form a dense
layer. Another hint towards the activation of MET is that we see a downregulation of N-
Cadherin (CDH ) within the rst three days, which is proposed to be a functional switch
between focal adhesion and cell-cell-adhesion (Lehembre et al., ). e analysis shows
a clear shi away frommatrix associatedmesenchymal broblasts by inhibition of the focal
adhesion pathway.

M T D N

To combine the data measured in the experiment (Figure . . ) with the literature knowl-
edge in theMah network, we used the timecourse of expression pro les to lter out amore
speci c network (Figure . . ).

Firstwe ltered for genes andgeneproducts, as nodes in the literaturenetwork represent
different kinds of biological entities and also include smallmolecules, extra-cellular signals,
etc. In cases where the literature was not completely clear which gene was referred to (i.e.
use of common names), we used databases to identify all possible genes and treated them
as different nodes with the connections pointed out in the reference network.

Every gene from the original network that showed a differential expression (p-value <
. ) in either h, h, or hwas used to produce a network of themost important genes

during the beginning of reprogramming. We furthermore added SOX to the network, as
it was one of the exogenous factors. It was not measured correctly by the chip, because the
probe on the chip matches an untranscribed region that is not transduced by the vector.

is processing lead to a network consisting of differentially expressed genes, which
had one large connected component and unconnected nodes.

To transform the network into one large connected component, we added the genes
(BMP , STAT , EHMT , and TGFB ) that were on the shortest paths between the un-
connected nodes and the connected component. We did not include additional nodes if
the original nodes had a distance greater than one from the connected component, which
leaves genes unconnected (ID , ID , and PTPN ) (Figure . . B).

We assembled a Boolean model from this resulting network, to be able to explain parts
of the data and show inconsistencies in the network. e aim of this work was to nd the
update functions that would produce a Boolean simulation consistent with the data for
the topology given by literature data. When examining the network structure with data



Figure 4.2.5: Visualization of the networks, color of the nodes according to their
expression changes at 72h and setting node size relative to their p-values for differential
expression. (A) The complete Mah network with the reprogramming data mapped onto
it. (B) The filtered model of all differentially expressed genes in one of the time points
during reprogramming.



Figure 4.2.6: Transcription factor ac-
tivation profiles as estimated from the
expression data and transcription factor
binding data. The three core factors Oct4,
Sox2, and Nanog show different dynamics
from cMyc, which is already more active
after 72h, whereas the other factors are
inhibited during the early reprogramming
phases.

mappedonto the nodes, it becameobvious that the discrepancy betweendata andnetwork
structure was too big to make this approach feasible.

To understand why the approach was not working, we highlighted the differences be-
tween the observed expression changes in the Yamanaka factors and other pluripotency
factors in the beginning of reprogramming and their actually observed effects. We did
this using the Boyer network in combination with the timecourse data.

E I

In the experiment we observed protein expression of the four exogenous Yamanaka fac-
tors already a er h post transduction (Mah et al., ). One of the big questions in
reprogramming is what the roadblocks are that hinder greater efficiency and faster repro-
gramming. If the factors are already there a er h why does reprogramming happen so
slowly? We investigated which changes one could observe in the target genes and how
they relate to the activity of the single factors. To be able to see the direct effects of the four
Yamanaka factors over the course of the experiment, weused thenetwork component anal-
ysis (NCA)method described in section . . . NCA is amethod to calculate transcription
factor activation (TFA) and connectivity strengths (CS) for a set of transcription factors
and their targets. As described above, we rst combined the transcription factor binding
data with the computationally derived activation and inactivation data to get a network
with some directed edges be er suited for NCA (Boyer et al., ; Chavez et al., b).
From this large network we only used the Yamanaka factors andNanog and all their target
genes as input for the NCA.

e estimated activity of the Yamanaka factors did not resemble the measured expres-
sion pa erns (Figure . . ) at all. e mRNAs were present, the proteins were expressed,
but the expression of the target genes did not change accordingly (Mah et al., ). Only



in the iPS cells, where we saw an endogenous activation of the Yamanaka genes, the TFA
pro les showed higher levels. Directly a er transduction the TFAs even declined. is re-
sult suggests the presence of epigenetic regulation prohibiting the action of the Yamanaka
factors in the beginning of reprogramming on many genes they would act on in ES cells.

Driven by these results, we asked the question which genes are in uenced in the begin-
ning, and which are not. ere is a second outcome of NCA that can partly answer this
question. e connectivity strengths de ne how strongly a gene is in uenced by a cer-
tain transcription factor. Combinedwith the TFAs, the connectivity strengths of all acting
TFs predict the behavior of a gene (Section . . ). ese important factors are shown in
Figures . . and . . .

e heatmap in Figure . . shows the similarities between the connectivity strengths
on the different genes by a hierarchical clustering. e similarity of the four core pluripo-
tency factors is clearly visible, as they in uence many genes in the same fashion, whereas
cMyc and Klf show opposite behavior in many cases.

. . A P B M S R D -

Somatic cell reprogramming has dramatically changed stem cell research in recent years.
As obvious from the results in the previous sections, the many levels of regulation make it
a challenge to isolate core principles of the process. In order to analyze suchmechanisms, I
developed an abstract butmechanisticmodel of a subset of the known regulatory processes
during cell differentiation and production of induced pluripotent stem cells.

is probabilisticBooleannetwork(Section . . ) describes the interplaybetweengene
expression, histone modi cations, and DNA-methylation. e model incorporates re-
cent ndings in epigenetics and reproduces experimentally observed reprogramming ef-
ciencies and changes in DNA-methylation and chromatin remodeling. Using the model

simulations, I could investigate how the temporal progression of the process is regulated.
Guided by the results of the previous section that clearly highlight the importance of cellu-
lar responses to the deliverymethod, themodel also explicitly includes the transduction of
factors using viral vectors and their silencing in reprogrammed cells. Viral transduction is
still a standard procedure in somatic cell reprogramming and it was also used in the exper-
iments for the previous analysis. Based on the model, we calculate probability landscapes
of cell states for different starting conditions.

e model differs from the existing models of pluripotency described in section . . ,
because it is an abstract representation of the combinednetworks that govern pluripotency
and reprogramming using well established modeling frameworks in a novel way (Figure
. . ). e model is based on a standard Boolean networks approach comparable to the

one used in section . . is has the advantage that it can easily bemodi ed and combined
with other results.

Booleanmodels have the convenient property that a cell state is de ned as a binary vec-



Figure 4.2.7: A network of transcription factors Oct4, Sox2, Nanog, Klf4, and cMyc
generated from ChIP-on-chip data from Boyer et al. (2005) and a computationally
generated network from Chavez et al. (2009a). The network was combined with the
dynamic expression data from Mah et al. (2011) to estimate the control strengths of the
factors on their target genes. The corresponding TFA profiles can be found in Figure
4.2.6



Figure 4.2.8: The connectivity strengths of the reprogramming factors on their target
genes. Again the core pluripotency factors cluster together and exert seemingly similar
influences on the majority of their targets.



Figure 4.2.9: General model structure.
The model consists of sub-modules rep-
resenting classes of transcriptional master
regulators. The full model has four mod-
ules: Two differentiated cell lines A and B,
the pluripotency module P, and the exoge-
nous factors E. These inhibit each other
and thereby create a bistability with dif-
ferent steady states.

tor of the states of all variables, making it easy to compare states without further compli-
cated de nitions. Since the processes the model should elucidate are non-deterministic,
we chose a probabilistic approach. e model is also much smaller compared to the net-
works presented in the previous sections. It only has species that are simulated, whereas
the smallest network derived from theMah network has nodes. e exact model struc-
ture will be derived in Section . . .

Simulation results show good reproduction of experimental observations during repro-
gramming, despite the simple structure of the model (Section . . ). An extensive analy-
sis and introduced variations hint towards possibilities for optimization of the process that
could push the technique closer to clinical applications.

M S

With this model we analyze the interplay of three different regulatory layers, as we include
histone modi cations, DNA-methylation, and transcription factor DNA interaction. Due
to the different properties of these mechanisms it needs to keep a fairly high level of ab-
straction to combine them in one simple model (Figure . . ).

For the sake of simplicity, we combine the single genes and regulatory factors that are
responsible for the activation of a certain cell state into modules. is can be justi ed by
the strongly correlated behavior of these genes (Berg et al., ) and their large number of
shared targets (Kim et al., ). It has also been used in other theoretical models before
and has proven to be successful (e.g Artyomov, Meissner, and Chakraborty, ).



e modules contain many activating interactions between their members. A good ex-
ample is thenetworkof corepluripotency transcription factorsOCT , SOX , andNANOG
that is responsible for sustaining pluripotency. ese transcription factors bind a large
number of shared targets as well as their own promoters. is leads to their mutual and
auto-activation (Boyer et al., ). Similar interactions have been reported for master
regulators of differentiated cell lines like PU- for erythrocytes (Nishimura et al., ;
Okuno et al., ) or PPARγ for adipose tissue (Wu et al., ).

Interactions between these modules are o en mutually repressive, as it was reported
for GATA- and PU- (Rekhtman et al., ). e pluripotency module also represses
differentiation factors. is mutual antagonism paired with auto-activation of the single
modules is the basic structure of the transcription factor regulations in my model.

Basic biological ndings underlying the logical rules of the model are summarized in
table B. . . e epigenetic regulations that in uence the expression level in general and
speci cally for each module are described in detail in the following.

As explained in the introduction of this chapter, there has been immense progress in the
eld of epigenetics in recent years. Nevertheless many of the regulatory mechanisms and

their interactions are still enigmatic to researchers (Cedar and Bergman, ; Djuric and
Ellis, ). In our model we explore different motifs of the epigenetic marks governing
gene expression in development and reprogramming.

e general mechanism implemented in the model follows the approach suggested by
Cedar and Bergman ( ) and others. Epigenetic dynamics emanate from the more
rapidly changing states of the proteome of the cell. e expressed regulatory proteins and
RNAs not only govern future expression pro les by direct action on promoters, but also
change the more persistent epigenetic marks which then in turn de ne a new set of tran-
scribed genes and, thus, of cellular proteins. In the model, the expression of genes that be-
long to the same module increases the chances of removing silencing marks on histones.
Once the chromatin is in a less dense conformation by changes in histone modi cations,
we assume there is a possibility to remove DNA methylation if it is also suppressing gene
expression in themodule. e process of silencing can happen if the genes of amodule are
not expressed. e module is then prone to methylation and formation of repressing his-
tone marks. If one of the silencing marks (either negative histone or DNA-methylation)
is set, it increases the chances of keeping it and se ing the second mark as well. As de-
scribed above, histone modi cations and DNA-methylations are strongly interconnected
(Epsztejn-Litman et al., ; omson et al., ). is collaborative aspect of silencing
creates a positive feedback loop, which promotes bimodality of the epigenetic states. us
there is only a low probability to stay in a state where only one of themarks is set when the
gene state is constant.

ere is evidence for a co-regulation of DNA-methylation in genes with similar func-
tions, which was found by comparison of whole genome methylation pa erns between
HFF and ES cells by bisul te sequencing (Lister et al., ). Here, we assume that the



Figure 4.2.10: A schematic representation of the processes described by our model.
(A) Connection between DNA-methylation, histone modifications, and the pluripotency
master regulators. Pluripotency transcription factors activate their own expression and
can be suppressed by factors regulating differentiation. The pluripotency factors them-
selves increase the expression of DNMT3 which enables de novo methylation of DNA
preferably in combination with repressive histone modifications such as methylation or
deacetylation (right nucleosome). Additional activation of pluripotency genes also leads
to a higher cell division rate, a suppression of methylation maintenance, and probably
active demethylation, which also increases the chances of euchromatin formation. (B)
Without external influences (e.g. retroviral genes or signaling molecules), the structure
of our model consists of three gene modules (P,A,B) inhibiting each other and each
governed by their specific epigenetic states. The pluripotency (P) module regulates the
activation of methylation and demethylation.



DNA-methylations in the promoter regions of the genes in one module are co-regulated
to a large degree, and are thus also characterized by one variable only. is variable follows
rules which we derived from literature (Table B. . and Figure . . ). Activation of this
variable means that the promoters are methylated, which leads to inhibition of gene ex-
pression. e activation of the DNA-methylation status is governed by the presence of de
novomethyl transferasesDNMT A/B that are summarized in the variable dnmt. However,
dnmt is not the only variable in uencing the methylation state of a module. As described
above, there are also other chromatin binding proteins in uencing the likeliness of DNA
methylation. We assume that all of these proteins combined are responsible for the current
local chromatin structure and set the histonemarks of themodule as amodifying factor of
the DNA methylation. is de nes the activating update function that – if chosen – can
only activate the variable.

If the DNA is already methylated, it can be demethylated by different mechanisms. For
example, inefficiency of DNMT in copyingmethylation pa erns is considered as passive
demethylation (Monk, Adams, and Rinaldi, ). is process can only happen when
cells are dividing, as it depends on DNA replication. However, there might as well be
active demethylation processes in uencing the DNA-methylation state as discovered re-
cently (Table B. . ). In our model, we summarize these processes leading to demethy-
lation of DNA in the variable demeth. All of the mentioned processes happen very slowly
compared to transcription factor mediated changes in the regulation of expression. Be-
cause of this, we also introduced a function that does not alter the variable if chosen. is
function gets a high probability compared to the rest to guarantee that there are only slow
changes in the variable over time. A combination of the above yields the following update
functions for methylation of pluripotency genes:

mA
m(t+ ) = mA

m(t) ∨ dnmt(t) ∧ mA
hc

mA
m(t+ ) = mA

m(t) ∧ (demeth(t) ∨ mA
hc)

mA
m(t+ ) = mA

m(t) ∧ demeth(t)
mA

m(t+ ) = mA
m(t)

( . )

where mA
m and mA

hc are the methylation and histone modi cation states of module A,
respectively. Similar rules hold formodulesB andP. Note that probabilities of the formulas
must sum up to .



e dnmt and demeth variables are governed by the following rules:

dnmt(t+ ) = mP
e (t) ∨ mE

e (t)
dnmt(t+ ) = mP

e (t) ∨ mE
e (t) ∨ dnmt(t)

demeth(t+ ) = mP
e (t) ∨ mE

e (t)
demeth(t+ ) = mP

e (t) ∨ mE
e (t) ∨ demeth(t)

( . )

where mP
e and mE

e are the expression of the pluripotency and the exogenous modules,
respectively. Switching off these factors is very slow (small chances), because we assume
that the in uences implemented here are not the only impact on these variables and that
they are active in many cell states.

Histone modi cations are strongly simpli ed in our model. We consider neither single
modi cations on different sites nor different numbers of methyl groups on the residues.
Chromatin changes are dependent on the expression of the module’s genes. If these genes
are expressed, it is impossible to remodel the chromatin to a closed form. If they are not
present, there is a chance of negative histone modi cation, which is increased by present
DNA-methylation marks. In Boolean formulas these processes are described as

mA
hc(t+ ) = mA

hc(t) ∨ mA
m(t) ∧ ¬mA

e (t)
mA

hc(t+ ) = mA
hc(t) ∨ ¬mA

e (t)
mA

hc(t+ ) = mA
hc(t) ∧ ¬mA

m(t)
mA

hc(t+ ) = mA
hc(t)

( . )

where mA
e is the expression of module A, mA

hc the histone modi cation state, and mA
m

is the DNA-methylation of the module, respectively. Following these rules the DNA-
methylation in amodule increases the chance of forming and keeping heterochromatin in-
dependentlyof the chosenparameters. e same is true for the chancesofDNA-methylation,
which are dependent on thehistonemodi cation state of themodule aswell. us, the epi-
genetic states are mutually dependent on each other, and are also reigned by the states of
their expressed genes.

In turn, the expression of a module is governed by its epigenetic states. If the gene is
located in heterochromatin and methylated it is marked inactive and can not be activated
by any composition of transcription factors. If both epigenetic sub-modules are inactive,
the expression of the genes in the next time step only depends on the transcription factors.
If the gene is in heterochromatin and not methylated or vice versa, there is still a chance
that it is expressed, given the right transcription factors. We implemented these rules for



all modules by the following Boolean formulas:

mA
e (t+ ) = mA

e (t) ∧ ¬(mB
e ∨ mP

e (t)) ∧ ¬mA
m(t)

mA
e (t+ ) = mA

e (t) ∧ ¬(mB
e ∨ mP

e (t)) ∧ ¬mA
hc(t).

( . )

Activation of the pluripotency network by the transduced gene cocktail is also mod-
eled explicitly. e pluripotency network has a small chance of being activated by the ar-
ti cially introduced genes. Exogenic factors are deactivated when the cell has reached a
pluripotent state with the pluripotency module turned on and all differentiated modules
turned off. e probability of activation is rather small compared to the probability of the
pluripotency module activating itself. Since only a small subset of pluripotency regulators
is transduced in reprogramming experiments (Yamanaka factors) we assume that the acti-
vation is happening rarely. Section . . clearly showed that the exogenous factors do not
activatemany of their targets effectively. e probability of activation is directly connected
to the number of reprogramming factors transcribed, and it can be increased to model the
in uence of e.g. additionalNANOG transduction, which has been shown to be bene cial
to the efficiency of reprogramming (Hanna et al., ).

e deactivation of the transduced genes is achieved by silencing of their promoters
through methylation and histone deacetylation (reviewed in Ho a and Ellis, ). In
our model this process is triggered when the cell exhibits the iPS expression pro le.

Since the transduced genes differ from the endogenous pluripotency genes in their pro-
moter region, some changes regarding their transcriptional repression and interactions of
DNA-methylation and chromatin remodeling are required compared to the other mod-
ules. Due to the constitutively active viral promoters the expression of the transduced
genes only depends on their histone modi cations and DNA-methylation state and not
on any transcriptional inhibitors or activators.

mE
e (t+ ) = mE

hc(t) ∨ mE
m(t)

mE
e (t+ ) = mE

hc(t) ∧ mE
m(t).

( . )

e rules for DNA-methylation of the promoter of the exogenous genes are very sim-
ilar to the ones of the other modules except for the probabilities which we chose to be
smaller for dnmt and histone modi cation dependent DNA-methylation. is is due to
the nding that a er reprogramming, the retroviral genes can either be active (class I iPS
cells) or silenced and thus producing fully reprogrammed class II iPS cells (Mikkelsen et
al., ; Niwa, ). is suggests that methylation of the viral promoters is not fast
and complete, as this necessarily would lead to quick silencing. Moreover, methylation
does down-regulate the activity of the retroviral genes according to Pannell et al. ( )
which accounts for these low probabilities as well. Similar to the other modules, we also



introduced slow, cell cycle dependentDNAdemethylation induced by variable expression
of DNMT a er mitosis (Li, Bestor, and Jaenisch, ) (Table B. . ).

Since the remaining update rules for DNA-methylation stay the same with the sole dif-
ference of lower probability in comparison to the other modules, this is the only structural
difference:

mE
m(t+ ) = mE

m(t) ∧ (¬demeth(t) ∨ dnmt(t)). ( . )

ehistonemodi cation rulesof the retroviral genesmainlydependon their ownmethy-
lation state (just like the othermodules) and on the expression of the endogenous pluripo-
tency genes. We hypothesize this interaction to be mediated by the NANOG and OCT
associated deacetylase (NODE) complex. It consists of a histone deacetylase (HDAC)
and NANOG or OCT (Liang et al., ) and was found to catalyze histone deacetyla-
tion on developmental target genes, thereby leading to heterochromatin formation. e
hypothesis that this complex or at least one with very similar properties and behavior is
responsible for retroviral gene silencing is based on the fact that de novoDNA-methylation
is not necessary for retroviral silencing as mentioned above (Pannell et al., ). An ad-
ditional hint into this direction is that a complex of NANOG andHDAC exists, which has
shown to be active in silencing (Ho a andEllis, ). us, the only update rule differing
from the other modules regarding the chromatin structure depends on the expression of
the pluripotency module P:

mE
hc(t+ ) = mE

hc(t) ∨ mP
e (t) ( . )

which completes the set of update rules.

S C S D C M

Whencombining the singlemodules to amodelof twodifferentiated states and thepluripo-
tency network (A,B,P model) (Figure . . B), already quite complex dynamics of state
transitions exist. Gene expression in eachmodule ismutually exclusivewith all othermod-
ules and amodule that is shut off once can only be activated by an external signal combined
with epigenetic activation. e steady state of the pluripotency module consists of a num-
ber of different states that represent the hyperdynamic characteristics in epigenetic factors
of the pluripotent cells (Meshorer et al., ). ese states have different probabilities
to differentiate, depending on the current epigenetic con guration. Similar kinds of pop-
ulation differences have been shown for pluripotent cells and the expression of NANOG
(Kalmar et al., ).

We have already included three different levels of regulation in the model, we refrain



from adding detailed signaling pathways to the system to regulate differentiation. We sim-
ulate differentiationby simply activating the gene expressionof genemoduleAwith a small
probability. is causes the system to leave the pluripotent state very fast. A er about
time steps it reaches its steady state with the differentiated state being the main a ractor
(Figure . . ). e system also reaches a state, in which no proteins are expressed. is
state is probably reached because the differentiation signal is strongly simpli ed and does
not guarantee the correct timing of events. If the pluripotency genes are switched off be-
fore the correct methylation pa ern is in place, differentiation related genes may not yet
be properly expressed while pluripotency genes and thus de novo DNA-methylation and
pluripotency related DNA demethylationmechanisms are already silenced. is behavior
could be prevented by a proper regulation of gene expression by signaling molecules.

Nonetheless, de-regulation occurs in biological systems as well, caused by i.e. transcrip-
tional noise, epigenetic variability, or external factors. e unde ned cell state could be
identi ed with cell death or other fatal events caused by the introduction of the stimulus.
Such a simple differentiation could even be compared to the deregulation that happens in
reprogramming and leads to senescence and apopotosis inmany cells (Section . . ). De-
spite the simplicity of the mechanism, the model differentiates very quickly and produces
stable differentiated cell lines.

M R R

To be able to analyze reprogramming, we combined the four singlemodules, i.e. the retro-
viral transcription factors E, the endogenous pluripotency genes P, and the twomodel cell
lineagesA and B into onemodel (Figure . . ). We simulated the model in aMarkov sim-
ulation (Section . . ) for various starting distributions and systematically analyzed the
temporal dynamics of the model for typical start scenarios.

First, we analyzed the situation in which the system is initialized with only one de ned
state that corresponds to either one of the two cell lineagesA andB. is is the state, where
the set of master regulator genes associated with lineageA is expressed, unmethylated, and
in an open chromatin con guration. At the same time the module for lineage B and for
exogenous (E) and endogenous (P) pluripotency genes has the opposite con guration, i.e.
the genes are downregulated, methylated, and in a closed chromatin formation. For this
speci c start state, the network remains in its differentiated cell lineage over the complete
time of simulation, i.e. the de ned cell lineage is stable without any outer perturbation
(data not shown).

Second, when the simulation starts from a state that corresponds to the fully repro-
grammed cells, i.e. where module P has the active con guration, while the other modules
are silenced, we observed a shi into a set of states closely related to pluripotency. is
behavior can be observed in cultures of iPSCs and ESCs as well and is o en referred to as a
hyperdynamic plasticity. e cells have a fast changing chromatin structure in general and
different methylation states on several loci (Meshorer et al., ). is plasticity leads to



Figure 4.2.11: The epigenetic landscape of differentiation by the activation of module
A through a weak signal. All possible states of the model are sorted along the x-axis
by similarity. The y-axis corresponds to simulation time steps, and the z-axis to state
probabilities.



a distribution across different states in our model as there is no single point a ractor. is
effectmay also be responsible for the priming of iPSCs to quickly differentiate into various
different cell types upon external signals (Ang et al., ), as we also observe states that
can more easily differentiate than the de ned pluripotent state.

ird, the focus of the simulationwas themodel starting in the sharp states of the differ-
entiated cell lineageswhen the retroviral transcription factors are expressed, unmethylated,
and in open chromatin. ese simulations canbe related to classical direct reprogramming.
As shown in gure . . , the starting state will be le quickly for transient states that lie
along the path to pluripotent cells. On inspection of the landscape it becomes clear that
cells will transit into states that resemble pluripotent cells more and more until they even-
tually reach the fully reprogrammed state with a certain probability. is probability can
be considered as the reprogramming efficiency that increases with time (or cell cycles) as
demonstrated before by Hanna et al. ( ).

Figure 4.2.12: Landscape of the reprogramming experiment. Reprogramming starting
from one clearly defined state where module A is active and the reprogramming factors
are present. Compared to Figure 4.2.11, the transition happens a lot slower and the
probabilities of the reprogrammed state are lower.



R

e state space of the simulation (Figure . . ) reveals some more details about the tim-
ing and order of the states that are passed on the way to reprogrammed cells. Since we are
dealing with a model of variables, the whole state space has states, in a probabilistic
approach the state space could in theory be fully connected, i.e. every node of the state
space could possibly have outgoing edges. erefore, we only show those states that
can be reached from our starting state, and reach a probability larger than . in the
course of the simulation. ese most relevant states are the ones that some cells will prob-
ably pass during the process of becoming iPS cells. Surprisingly, these states clearly show
different events that are crucial in the reprogramming process and resemble the order of
events described in the literature (Papp and Plath, ).

We simulated the model over time steps, until the state probabilities assumed a
steady distribution. e states that have the highest probability to be observed in the be-
ginning (time steps ∼ − ) show a slow unpacking of the pluripotency genes, but
about also show modi cations to the genes in the other lineage. A er this stage all
cells can enter the next phase which lasts for about time steps. Nearly all states in
this phase share the property that the differentiation genes are already shut down, but en-
dogenous pluripotency genes are still silenced. From this stage there is a non-negligible
possibility that the cells enter a non-functional state where nothing is expressed anymore,
which cannot be le . is state creates a small a ractor that prevents the cells from suc-
cessful reprogramming. e phase that follows with a much higher probability is the rst
stage of reprogrammed states. Cells in this state have been characterized as class I iPS cells
(Mikkelsen et al., ; Niwa, ), as they express the endogenous pluripotency genes,
as well as the exogenous reprogramming cocktail that is not epigenetically silenced yet.
From these states there is a slow transition to the states with a stable silencing of the ex-
ogenous factors, expression of pluripotency genes, and a hyperdynamic state in the differ-
entiation modules. Cells exhibiting one of these states can have taken any existing path
through the state space. In the visualized subspace, whichmakes up about half of the states
reachable from the start state, there are states and edges with only one connected
component. As there are so many possibilities, the probability for each path is in nites-
imally small. e most probable single path from the start state to the iPS state only has
a probability of . · − and consists of state transitions. When looking at the state
space structure it becomes obvious that the phases described above cluster together in the
graph and that some states aremuchmore central to the transition than others. Most states
are not essential to the reprogramming, because there are paths that can avoid them. But
there is one transition that is absolutely essential for reprogramming. is is the transient
activation of the pluripotency module relatively early in the process a er removal of their
methylation marks. is enables the suppression of the differentiation genes and makes
further reprogramming possible.

At the end of the process there is a large probability that cells are in the reprogrammed



state. is corresponds to the ndings by Hanna et al. ( ), who showed that in a drug
inducible reprogramming system all cells are able to reprogram given enough time.

As illustrated by the most probable path, not all of the described phases will be passed
by all cells, shortcuts like the one shown are possible, e.g. cells with a demethylation of all
modules in an early phase, the pluripotency genes can be activated much faster compared
to the rest.



Figure 4.2.13: State space of reprogramming. Time evolution of the model starting with an active differentiation network and
active reprogramming genes. The figure only shows the states that are reached with a probability of p ≥ − . The model has 2073
possible state transitions between these 149 states. Different phases can clearly be separated in the reprogramming process. In
the beginning (yellow area) the epigenetic factors of the different modules are modified, but there is no change in gene expression
yet. The second phase (dark yellow) represents the down-regulation of the differentiation module followed by the activation of the
pluripotency module (blue area). The last step consists of the silencing of exogenous factors that produces stable iPS cells (red
area). There are some states that can lead to nonviable cells, in which no regulators are expressed at all (grey area). The bold
blue arrows represent the shortest path to the main pluripotent state.



P V M

In order to analyze the stability of our model and its behavior upon parameter variation,
we varied the strength of the epigenetic modi cations, i.e. DNA-methylation and histone
modi cation changes. We chose these parameters, because they are present in most up-
date functions (Table B. . ) and thereby probably also have the biggest in uence. We
de ned a parameter range including the parameters of our main model, a decreased and
an increased probability of changes in methylation and deactivating histone modi cation
formation and analyzed the effect on the reprogramming efficiency (Figure . . ). Inter-
estingly, we can observe that in the time range of time steps our main model nearly
seems to have a maximal saturation for its reprogramming efficiency. is is only slightly
surpassedby increasing the probability for removal of negative histonemarks. e increase
could experimentally be reached through a heterochromatin formation inhibiting agent
such as VPA (Section . . and Table B. . ).

However, the timing of reprogramming can obviously be in uenced by parameter vari-
ations. While an increase in methylation dynamics, i.e. faster demethylation, speeds up
the reprogramming process with a reprogramming efficiency peaking at approximately .
a er time steps, we observe slower reprogramming for increased probabilities of the
formation of negative histonemodi cations andDNA-methylation. To check the sensitiv-
ity of themodel to structuralmodi cations and how its behavior corresponds to responses
of reprogramming cells in reality, we searched the literature for various experiments that
can be mimicked by slight modi cations (Table B. . ). In the following sections we de-
scribe such modi cations and their effects on the reprogramming process with a focus on
efficiency.

S

Since the exact mechanism of action of DNMTs in DNA-methylation is still not fully un-
derstood, we modi ed the model to include spontaneous methylation. We introduced an
interaction that accounts for methylation of the different modules by dnmt independently
of other factors.

We found that in comparison to the original model, there was an overall decrease in the
reprogramming efficiency, i.e. probability to be in a reprogrammed state is approximately

times lower than in the original model a er time steps. However, the spontaneous
methylation model reaches its maximum distribution slightly faster. Another interesting
featureof the spontaneousmethylationmodel is the fact, that it assumes anewspeci c state
with a high probability. In this state, which we will call the unde ned state, all modules are
silenced except for the retroviral ones. We will discuss this state below.



S H D

Similar to DNA-methylation, the exact mechanisms of histone modi cations are still a
ma er of debate. In our model, introducing spontaneous formation of negative histone
marks as an independent term is a general de-regulation of thesemechanisms. In principle
it could happen during reprogramming due to Yamanaka factor induction.

e steady state reprogramming efficiency in the spontaneous methylation model is
more than times lower than in the main model. Interestingly, in the rst time steps
the probability to be in a reprogrammed state is higher than in the original or the methy-
lation model and it is only at later time points that this ratio is reversed. is may be due
to the fact that the differentiation related state is downregulated much faster (results not
shown). Similar to the methylation model, the unde ned state mentioned above is also
a ained with a high probability.

S D

In contrast toDNA-methylation andhistonemodi cations, whichhave been already in the
focus of research formany years, active DNAdemethylation has long remained in the dark
until recent discoveries have unraveled a newperspective. DNAdemethylation seems pos-
sible via the intermediate -hydroxymethylcytosine anddifferent enzymedrivenmodi ca-
tions which transform it back to unmethylated cytosine (Bhutani, Burns, and Blau, ).
To account for uncertainty in spontaneous demethylation, we transformed themodules of
themodel in order to be able to randomly lose theirmethylationwith a certain probability.

Of all the structural model variants, spontaneous demethylation leads to the highest
reprogramming efficiency a er time steps although it is still - times lower than in
the originalmodel. Although its reprogramming efficiency stands back behind the original
model in every time-point, its differentiated state shows a fast decrease in probability at
the beginning, followed by amuch longer second phase of slow decay. is process is very
similar, to the reprogramming experiment of the original model (Figure . . ).

S I B M H

We analyzed the effects of the debated interaction between methylation and negative hi-
stone mark formation which we explained above and in Table B. . . e overall repro-
gramming efficiency a er time steps was approximately reduced by the factor . e
dynamics of the differentiated state are similar to the ones of the originalmodel although it
decreases even slower and remains with a higher probability at the end. Interestingly, an-
other state is foundwith high probability. It is similar to the differentiated state of the other
cell lineage, except that the pluripotency module is already demethylated and in an open
chromatin formation but not expressed. Yet, this state is transiently present with a high
probability which slightly decreases over time. is phenomenon could be interpreted as



Figure 4.2.14: Reprogramming effi-
ciency seen as the sum of all states that
end up in the reprogrammed state can be
quite high, and follows a saturation ki-
netic. The original model has the high-
est efficiency, compared to all variants.
Differences between the original model
and structural changes are quite drastic,
whereas parameter variations don’t influ-
ence the outcome very much.

trans-differentiation during reprogramming without passing the pluripotency state (Vier-
buchen et al., ).

N M

As a nal model variant we assume that methylation has no in uence on gene expression
or heterochromatin formation. Without methylation effects, the model is neither able to
reprogram anymore nor to differentiate. What we can observe instead is a re-distribution
of the different start states, i.e. the pluripotency related or the differentiation related states
into similar states but no transition to any states that are further away in the state space. is
is most likely due to the fact that methylation is needed in the long run to determine the
heterochromatin structure a er cell division and to fully silence gene expression. Without
these features active modules cannot be silenced and thus inactive modules stay transcrip-
tionally inhibited although they might be demethylated and have positive histone marks
structure.

S

e effects of the analyzed model variants on the reprogramming efficiency are summa-
rized in Figure . . . For every model variant the reprogramming efficiency increases
over time except for themodel without methylation. What becomes apparent at rst sight



is that obviously all structuralmodel variants seem to have a strongly decreased reprogram-
ming efficiency a er timesteps.

Overall, we nd that all variants resulted in de-regulating modi cations of the original
model, i.e. modi cations that reduced the level of tight regulation of the epigenetic pro-
cesses involved, which in turn have a direct effect on the expression of important genes.
In the landscape of these model variants (not shown here), one could observe a general
transition from a few de ned states that could be reached in the original model, to a dra-
matically increased number of states. In the original model, we can reach a total of
states a er time steps in a reprogramming simulation, while the spontaneous methy-
lation model variant could reach states in the same time. However, the efficiency
of reprogramming was approximately times lower (Figure . . ) in the spontaneous
methylation model. Nevertheless, the pluripotency related states in both models are
the same. Only their probability to be reached a er time steps is much lower in the
variant.

. D

e goal of the work outlined in this chapter was to improve our understanding of the
intricate regulatory mechanisms that govern the process of reprogramming somatic cells
to a pluripotent state. A rst step was the analysis of high-throughput and literature data to
generate aworking hypothesis for amodel of reprogramming. emodel we implemented
a erwards includes key ndings of the recent literature, but additionally uses the outcome
of the analysis as a guideline.

We were able to extract crucial processes from the microarray time series dataset com-
paring the rst three days of a reprogramming experiment to the source cells (HFF ) and
the desired cell states (iPS/ES) (Mah et al., ). By structuring the dataset, employing
clustering methods in combination with database enrichment, we identi ed key expres-
sion changes that play a role in the commencement of reprogramming.

Different database analyses highlighted different aspects, but generally showed a con-
sistent picture of the changing biological functions and pathways. Both, GO and KEGG
inspection, showed an activation of immune related genes in the rst day of reprogram-
ming compared to either HFF and iPS cells, but also a fast adaptation of the immune
pathways. Already a er two days we saw a lower expression of response to virus genes
which continued to decline. is identi es innate immunity as the rst barrier that cells
have to overcome to become reprogrammed. It hints towards immune suppression as a
possible candidate for optimization of reprogramming protocols. is observation would
also partly explain the differences in efficiency between stable inducible reprogramming
systems and viral transduction (Hockemeyer et al., ).

e second set of genes we identi ed in both analyses were those related to cell-matrix
adhesion and actin bers. ese genes start to decline in expression a er twodays of repro-



gramming and are continuously less expressed in iPS andES cells. e focal adhesionpath-
way includes a number of these genes and is constantly negatively impacted (Figure . . ).

e downregulation of these genes is an example for the early onset of cellular changes to-
wards a stem cell like state in SCR. e loss of focal adhesions can be seen as the onset of
the MET, which is a necessary step towards a successful reprogramming (Papp and Plath,

). Epithelial genes were only upregulated in the iPS and ES cells and did not change
in the rst phases, which shows that the MET is not completed on the third day.

e fact that there are nearly no pluripotency related genes activated in the beginning
led to a further inspection of direct in uence of the Yamanaka factors on their targets. We
observed a difference between the expression changes of the exogenous factors and the
expected changes in their targets in the experiment. e Yamanaka factors were all highly
expressed a er h, but therewere nearly nopluripotencymarkers present in the rst three
days of reprogramming, which was re ected in low TFA values for the early time points.

is difference is probably causedby epigeneticmodi cations (Hawkins et al., ; Lister
et al., ) that hinder the direct transfer of the information from the Yamanaka factors
to their targets. Epigeneticmodi cations were not subject of the experiment, but we could
observe some downregulation of HMTs in early reprogramming as well as in iPS and ES.

e extra layer of regulation between our stimulus (Yamanaka factors) and our readout
made it impossible to build a quantitative model that could reproduce the data without
including epigenetic modi cations. is forced us to take a more abstract approach, be-
cause a simulatable stochastic model of the whole network with includedmethylation and
histone modi cations would not be feasible. However, since the whole dynamic process
cannot be understood by looking at its single pieces (Section . ), we want to take a more
holistic approach in this work and combine gene expression and epigenetic principles in
one abstract model.

We developed (to our knowledge) the rst model of processes in somatic cell repro-
gramming that explicitly includes the virally transduced factors and their regulatory inter-
actions. e model is also unique in its representation of the different epigenetic factors
that regulate cell states and their interactions. Our modeling approach qualitatively re-
produces experimental results from reprogramming as well as differentiation experiments.

e probabilisticBoolean state space in combinationwith the epigenetic landscapeplots of
the simulations gives insights into different possible ways reprogrammed cells take in this
scenario. In combination these visualizations can be related to the potential landscapes
that have been developed for continuous modeling approaches (Wang et al., ). ey
show thedirection the system ismoving towards aswell as the probability for reaching each
state under speci c conditions. e stategraph also enables us to identify different phases
during reprogramming that are important milestones. ese simulation phases are coher-
ent with the sequence of events reported in experiments (reviewed in Hanna, Saha, and
Jaenisch, ; Papp and Plath, ). is sequence is also supported by our experimen-
tal data, e.g. by the early inhibition of the native HFF pathways, and the later activation



of pathways typical for ES cells.
e reprogramming efficiency of the system seems high (p = . a er time steps)

compared to experimental results from transduction experiments, but one has to keep in
mind that the model leaves out major experimental hurdles and regulatory mechanisms.
We neither include the immune response of cells which we previously identi ed as re-
programming roadblocks nor varying transduction rates. e general efficiency shows
a similar behavior to experiments done in inducible stem cell systems, which also showed
sigmoidal efficiency curves with saturation at high levels (Hanna et al., ). A er a long
simulation timewe see a high steady state of reprogrammed cells in a relatively broaddistri-
bution of states. Nevertheless, this high reprogramming rate indicates that there aremech-
anisms not included in our model that suppress reprogramming in differentiated cells.

Differentiation in our model is also possible and happens a lot faster than reprogram-
ming, although it is impaired by the lack of regulatory factors. In order to improve the
representation of the course of differentiating cells the model would need to be extended
by signaling pathways. is would enable a more precise modulation of the activity of the
important model components and would moreover enable the system to sense external
factors. Another interesting extension of the model consists in the integration of further
branches of differentiation for other cell lineages to depict the path from stem cells over
progenitors to fully differentiated cells. ese extensions are simpli ed by the modular
structure of our model, but would nevertheless increase the statespace drastically.

emodel is centered on themutual inhibition ofmaster transcription factors and their
connection to epigenetic factors, which is an importantmechanism. However, other regu-
latory processes, not captured by this approach, certainly play crucial roles during pheno-
type transitions (e.g. miRNAs). Cell types are generally viewed as different steady states of
gene regulatory networks. is is re ected in themodel by various a ractors that represent
different cell types. Nevertheless, it does not account for cell types that express a mixture
of regulatory genes, as for example progenitor cells would. ese states can occur as cyclic
a ractors, but are unstable to stochastic perturbations and are therefore le quickly. One
could, in an extended version, include conditions that stabilize these states to generate a
progenitor cell.

Because the model is so abstract, predictions cannot aim to re ect more than a small
part of biological reality, but they can show trends and general effects that hold true for the
modeled entities. e modi cations we introduced show how the system reacts to pertur-
bations in the epigenetic regulations. Most of the structural changes showed a devastating
effect on the reprogramming efficiency, demonstrating the need for tight regulation of the
process. e only two modi cations, in which efficiency can be sustained at an adequate
level, are those that increase the in uence of the gene regulatory networks on the epige-
netic factors.

Improvements of the reprogramming efficiency can only be achieved by two modi ca-
tions. First, higher probabilities for changes in DNA methylation status lead to a faster



increase of the reprogrammed cells, but also to a lower probability in the steady state.
erefore ade-regulation canhavebene cial effects on theprocess, but alsohasdrawbacks.

Higher probabilities for changes in histone mark formation lead to a mild increase in effi-
ciency, resembling the effects of small molecules like VPA.

Abe er understanding of the underlying processes of somatic cell reprogramming is the
key to a clinical application of iPS cells in the future. e proposed model, although ab-
stract and limited, extends our knowledge into this direction. It outlines the possible epige-
netic regulations that play a role in reprogramming, elucidates their connections, andpartly
explains experimental observations in reprogramming although it ignores large parts of the
complex gene regulatory network of developmental genes. Additionally, the analyzed ex-
periments hint at the possibility of improving reprogramming efficiency by inhibiting im-
mune response in the early phase of reprogramming.



5
Proteomes of In uenza Virus and its Host in

the Course of the InfectionCycle

e in uenza A virus still poses a serious health issue worldwide, and has caused millions
of deaths in different pandemics in the last century. Due to its virulence it a racts a lot
of research and a lot of its lifecycle has been uncovered already (reviewed in Bouvier and
Palese, ). Nevertheless, a lot of the cellular processes the virus in uences during its
lifecycle are still unknown. In this chapter, we present the results of a study that tries to
unravel the connections between host and virus, utilizing recent advances in proteomic
research. We were able to measure virus and host proteomes in parallel at different time
points of infection. With this data we were able to re ne the knowledge about interactions
between host and virus and propose new levels of interconnection.

. I

. . I A I H V I

In uenza A infection is a complex process, in which the virus uses the host cell’s metabolic
machinery to produce new virions. On an organism level, the virions enter the body via
the respiratory system, and primarily infect cells in the upper and lower respiratory tract.
In uenza viruses belong to the family of Orthomyxoviridae, a term containing the greek
word formucus (myxa), which describes the symptoms caused by in uenza infection. Or-
thomyxoviridae are single stranded, negative senseRNAviruseswith a fragmented genome.

e genomeof in uenzaAconsists of independent viralRNA(vRNA) fragments that are



translated to messenger RNA (mRNA) and complementary RNA (cRNA) in the course
of virus replication.

e virus particles are coated with a lipid envelope, a ained during budding from the
former host cell membrane. ey can differ in shape, although most are spherical with
about nm in diameter. Embedded in the lipid hull are two of the viral proteins
Hemagglutinin (HA) and Neuraminidase (NA) that are presented on the outside of
the virus. ese proteins are crucial for both ends of the infection cycle. While HA, one
of the best studied viral proteins, initiates the lifecycle by mediating virus binding to the
cell surface and its escape from the endosome, NA enzymatically cuts the newly produced
virions loose from sialic bonds on the cellmembrane and enables them to infect other cells.
HAandNAare soobviously important for the virus that their subtypes areused todescribe
the virus subtype (e.g. H N , H N ). ese virus classes differ strongly in virulence and
there are only subtypes that have been isolated from humans (Cheung and Poon, ),
although there are types ofHA and nine types of NA (Fouchier et al., ; Laver et al.,

). Other types of viruses infect birds or pigs.
Another reason why these proteins are so extensively investigated is that they are pre-

sented on the viral envelope, and are therefore a target for antibodies. e problem for im-
mune system recognition is the so called antigenic dri that these proteins exhibit. ey
accumulate point mutations quickly and generate new subtypes every year. On top of
that, a so called antigenic shi can happen, when two different in uenza A subtypes in-
fect the same host (Bouvier and Palese, ). is co-infection can lead to a genome
re-assortment, due to the fragmented nature of the in uenza genomes. is o en happens
across species boundaries in hosts and leads to words like “swine- u”. e resulting sub-
types can have a dramatically increased virulence and can cause pandemics of catastrophic
proportions (“spanish u” ).

e in uenza genome codes for other proteins, whichwewill describe to some extend
in the following section.

G S I V

As stated above, the in uenzaA virus has a fragmented genome, that consists of negative-
vRNAstrands that are present in each virion and encode for proteins in total. e vRNA
is encapsulated in Nucleoprotein (NP). is structure is referred to as the ribonucleopro-
tein vRNPand it is complexedwith the viral polymerase subunits (PA, PB , andPB ). e
polymerases seem to interact with both ends of the vRNP and it probably forms a cyclic
or supercoil structure inside the virion (Hsu, ). NP is the secondmost abundant pro-
tein in the virions (≈ proteins per viral particle), connecting to the vRNA in a one
protein per bases ratio (Baudin et al., ). It is only topped by the Matrix Protein
(M ) that forms the connection between the membrane proteins and the vRNP (≈
proteins per viral particle). M has plenty of described functions throughout the lifecy-
cle of the virus which we will describe in detail further below. It has to be distinguished



from the thirdmembrane protein, matrix protein (M ) that is transcribed from the same
genome segment asM by alternative splicing. M is an ion channel and is responsible for
the acidi cation in the viral particle during endocytosis inside the endosome, followed by
uncoating of the vRNA. HA comprises about of the proteins in the viral membrane,
and is therefore much more abundant than NA or M (Table . . ).

Two proteins were characterized as nonstructural proteins (NS and NS ). Nonstruc-
tural in the sense that only the coding RNA fragments are present in the virions, but the
protein is only needed for reproduction in the host cell and only translated “on the y”. In
case of NS this characterization still holds, but NS has been found in low amounts in
the virion (Richardson and Akkina, ). NS is active in the export of vRNA from the
nucleus, and it has therefore been proposed to rename it to nuclear export protein (NEP)
(ONeill, Talon, and Palese, ). NS also plays an important role in the cap snatching
mechanism and in the modulation of host mRNA.

Recently there have been ndings of new post transcriptional modi cations producing
protein variantswhich have not beenobserved before. PB -F serves an anti in ammatory
function and increases the virulence of virus strains where it was detected (Varga et al.,

). PA-X, another frame shi variant of the viral proteinPA, falls into the samecategory
and has been described to modulate the host immune response (Jagger et al., ).

I C

Viruses reproduce by using the cellularmachinery of their hosts to their advantage. e in-
uenza virus replication is a cycle that in the endproduces newviral particles that bud from

the host cell, which can then in turn infect new host cells and organisms (Figure . . ). To
start the cycle the virus has to bind to the cell membrane and initiate the process of endo-
cytosis. Animal cells are covered with glycopeptides or glycolipids, which o en contain
sialic acids at their ends that can differ in their exact chemical structure. e HA protein
on the virus surface has a binding pocket for special sialic acids that differ from subtype to
subtype (α − , or α − , , depending on the preferred host species).

A er the virus is bound to the cell surface, it is endocytosed and enclosed in an endo-
some via cellular mechanisms. e low pH values in the endosome trigger two important
processes for the virus uncoating: (i) e M ion channel in the virus envelope lets H+

ions enter into the virus matrix, which weakens protein-protein interactions between the
M protein and the vRNP by lowering the pH; (ii) the HA protein changes its conforma-
tion and thereby exposes the so called fusion peptide. is peptide facilitates the fusion of
the viral envelope with the endosomal membrane, releasing the vRNP into the cytosol.

e vRNP exhibits nuclear localization signals, which direct cellular proteins to import
them into the nucleus (Cros and Palese, ). Inside the nucleus, twomajor processes in
virus replication are driven by the viral polymerases complexed with the vRNP: (i) tran-
scription of the vRNA to polyadenylated and cappedmRNA; (ii) transcription of the neg-
ative sense vRNAtopositive cRNAtemplates that are used to generate copies of the vRNA.



Table 5.1.1: The viral proteins present in the H1N1 variant that was used in our
experiments (Influenza A Puerto Rico/8/H1N1). For proteins where it is known, the
approximate proteins per particle number is given. To provide an overview, the RNA
segment they are transcribed from and the most prominent functions are mentioned.

Protein RNA AA ≈p/p Function

M Virus budding; inhibition
of transcription; vRNP
nuclear export

NP formation of vRNP with
RNA;

HA host cell surface binding;
endosome escape;

NA detachment of virus from
host cells;

PA ?? polymerase subunit; heli-
case;

PB ?? functional polymerase
subunit;

PB -F ?? anti-interferon function;
pro apoptotic;

PB ?? cap-snatching;
M < ion channel; pH regula-

tion
NS - transcription regulation;

host interaction;
NS /NEP < vRNA nuclear export



Figure 5.1.1: The influenza virus and its infection of the host cell. ( ) The virus HA
membrane protein binds cellular sialic acids and is endocytosed. ( ) Induced by low pH
in the endosome, conformation changes lead to fusion of the viral membrane with the
endosomal membrane and release of the vRNP into the cytosol. The vRNP is imported
into the nucleus by the nuclear pore, because of its localization signal peptides. ( ) Viral
mRNA is transcribed and provided with 5’-caps of host mRNA by the viral polymerase.
( ) vRNA is replicated and exported from the nucleus. ( ) Viral proteins are translated
and transported to the membrane on different ways, depending on whether they are
integral membrane proteins or not. ( ) New viral particles bud from the cell and are cut
loose by the NA proteins on the membrane.



Regulation of the balance between these twoprocesses is proposed to be dependent on the
level of NP protein that seems to act as a switch from transcription to replication (Shapira
et al., ; Shapiro and Krug, ). Viral mRNA capping is a unique process, as it in-
cludes amechanism called cap snatching. e endonuclease domain of PB cuts the ’-cap
from cellular mRNA to use it as a primer for viral mRNA transcription. is mechanism
protects the mRNA from endonucleolytic degradation (Plotch et al., ). Additionally
it ensures that the cellular RNAs robbed of their caps are degraded and thereby are pre-
vented from nuclear export to the cytosol for translation.

e viral proteins that need to be embedded into the viral envelope are translated by
membrane bound ribosomes and trafficked through the Golgi apparatus to the cell mem-
brane for budding, making use of the actin cytoskeleton of the cell. e mRNA coding for
internal and non structural proteins are exported via the normal cellular pathways to the
cytosol and translated by free ribosomes. vRNA however which has to leave the nu-
cleus to reach the membrane for budding of new viral particles needs the NEP andM
proteins to mediate its export via nucleoporins (Bouvier and Palese, ).

When there is a sufficient amount of vRNA and viral proteins present, the viruses are
packaged and start budding from the cell membrane. is part of the replication cycle
is the least well studied. e budding probably starts by accumulation of M at the cell
membrane and recently discovered signaling sequences ensure the packaging of the whole
genome in each particle (Fujii et al., ). At this state the NA protein is of u er impor-
tance for the virulence and effectiveness of the virus. e NA protein cuts the sialic bonds
that are formed by the HA protein and the surface glycoconjugates of the host.

. R

e viral infection cycle has been studied in great detail, but the dynamic host reaction has
not been the target of a greater interest, especially looking at the proteome.

In our global study of proteome dynamics of the host and the in uenza virus, we mea-
sured cellular proteins and viral proteins over time points spread over hours
( , , , and hours). To be able to measure this many proteins at once, we applied a
high-throughput quantitative MS technique. Stable Isotope Labeling of Amino acids in
Culture (SILAC, Section . . ), is a sensitive way to measure the relative changes of pro-
tein concentrations in a probe. Using IntensityBasedAbsoluteQuanti cation (IBAQ)we
could also measure absolute abundance values of proteins, albeit with a lower precision.



Figure 5.2.1: A Experimental procedure following the SILAC protocol. Two SILAC experiments were combined by normalization
on a common time point creating 4 time points with relative data. B Western blots of viral NP protein from the same cells used for
the SILAC experiment. C Proteomic phenotyping of the influenza A/PR/8 infected MDCK cell proteome using GO annotations.
Quantiles of the quantification histogram are indicated at the top of the heatmap. Each quantile was separately analyzed for
gene ontology pathways and clustered for the z-transformed p-values. The most prominent representatives of all over-represented
biological processes of each quantile were selected and annotated.



e experiments were carried out using MDCK cells (Canis familiaris), which we in-
fected withH N (In uenza A Puerto Rico/ /H N ) virus particles at amultiplicity of in-
fection (MOI) ≈ . We prepared probes in different SILAC media and then measured
at , , , and hours post infection (Figure . . A).

An in depth bioinformatic analysis we performed showed the strong interconnection of
the viral and the host proteome and suggests interesting feedback loops between the two
that can explain the data (Section . . ).

. . V P S S D D T

As expected, virus proteins showmuchbigger changes in abundance than cellular proteins,
as they are not present in the cells before infection and then gradually increase with virus
entry and replication. e dynamics of the observed virus proteome are presented in Fig-
ure . . . e method was able to identify nearly all ( of ) known viral proteins that
can be found in the strain (Table . . ). e only standard protein that was not detected
is the envelope ion channel M .

Quantifying the changes in the viral proteins was not as straight forward as the SILAC
approach for the cellular proteins. e reason is, that for the SILAC approach we use a
number of probes that are grown in differentmedia to include the labeled amino acids into
their proteome (Section . . ). is makes the total protein of the different time points
visible as different peaks in the spectrum (Figure . . A). For the virus particles used for
the infection however, this is different. e particles were all cultured in normal (i.e light)
mediumand sowehave to interpret the SILAC results for the viral proteins differently. e
ratios we see between the different timesteps are not the ratios between the total protein
present, but the ratio between the newly produced protein and the protein still present
from the infection batch. We therefore need to be very careful with interpreting the SILAC
results for the viral data, but we can include IBAQ data to show the large scale changes in
the viral proteins.

e quanti ed proteins can be separated into two groups relating to their dynamic
expression. e rst group including HA, M , NS , and NP shows comparatively
high protein counts already at the hour time point and gradually increases up to hours
where it saturates (Figure . . A). e second group on the other hand shows a different
behavior. NA,NS , PA,PB , andPB staymoreor less constant until the hour timepoint
and then increase dramatically at hours(Figure . . B). But not only the time pro le
is a major difference between the groups, also the absolute abundance differs signi cantly.

e rst group is always expressed more strongly than the second by approximately an
order ofmagnitude in every time point. e differences in protein abundance nicely re ect
the previously reported protein abundances in the virion for most proteins (Table . . ).
For example for M :HA:NA we found a molar ratio of : : . is is in good agreement
with previous studies reporting about molecules of M protein per particle forming
the inner core while HA and NA molecules are embedded in the viral membrane



(Lamb and Krug, ).

Figure 5.2.2: Viral proteins are mass produced upon infection, although with varying
dynamics between the different protein groups.

. . I I I P P H

Whilewe could interpret the changes in the virus proteomeby analyzing the temporal evo-
lution of every single protein, this was an unfeasible task for more than a thousand mam-
malian proteins for four time points. It is also more informative to examine the regulation
of whole modules of proteins rather than changes in only one single protein. We used sta-
tistical and bioinformatic methods to structure the dataset and interpret the dynamics of
whole groups of proteins. I characterized these proteinmodules using functional databases
to obtain an overview of what is happening in the host cells.

A fuzzy clustering of the host proteins showed groups of genes that showed different
dynamics altogether. is clustering approachhas the advantage that one can lter the data
posterior to the clustering based on the similarity it has to other data points (Section . . ).

is is an important feature for proteome data, because a priori ltering by e.g. minimum
fold change would discard a substantial amount of data and other ltering methods from
micro array systems cannot beused in this case. Due to the similar dynamics of the proteins
in a cluster it is likely that these proteins are somehow functionally related to each other. To
nd outwhether there are any functions that can be related to the dynamics, we performed

different enrichment analyses of the proteins in each cluster (Section . . ). We present
themost signi cant terms combinedwith the dynamics of the cluster cores in Figure . . .

First of all we could not detect the overall breakdown of cellular protein production that
we expected to happen, but a rather differentiated modulation of protein expression. e



Figure 5.2.3: Proteins are clustered by their changes over time. All normalized temporal
profiles were clustered by a fuzzy clustering algorithm to find modules of coregulated
proteins. We performed enrichment tests for GO terms on each cluster for all proteins
with a membership value >0.5 (n = number in brackets). The most significant terms
are represented on the right panel.



hours post infection (p.i.) time point is of special interest, because infection is already
established at this time, but the cells are still in a healthy condition. To get a more detailed
picture of the changes at this time point, we performed an additional analysis called pro-
teomic phenotyping (Section . . ) that shows the differences between the uninfected cell
and the hour state in greater detail (Figure . . and . . ). e analysis con rmed the
results of the dynamic clustering, and showed further differences.

M E I I

Clusters with a general downward trend in concentration like cluster (Figure . . ) show
enriched GO terms like “TCA cycle”, “cellular respiration”, “respiratory electron transport
chain”, or “hypotonic response”, all related to a downregulation of respiratory processes.
On the other hand the clusters containing proteins that are produced in higher amounts
(e.g. cluster ) are connected to terms like “glycolysis” or “glucose metabolic process”. On
top of that, the analysis of the hour time point showed an upregulation of pathways like
“synthesis and degradation of ketone bodies” and “pentose phosphate way”.

ese results suggested to take a closer look at the metabolic pathways. e functional
annotations of the cellular proteins show an increase in glycolytic and other metabolic
pathway enzymes (Figure . . ). As suggestedby the analysis, also allmeasured concentra-
tions of enzymes in the pentose phosphate pathway and the nucleotide synthesis increase
over time. Strikingly, only the core glycolytic enzymes increase in abundance, but nearly all
subunits of the pyruvate dehydrogenase complex (PDC) are less expressed over the course
of infection, slowing the conversion of pyruvate to acetyl coenzyme A down. is would
lead to an accumulation of intermediate metabolites of glycolysis and a lower ux through
the TCA cycle as reported by Ri er et al. ( ). Downstream enzymes in the TCA cycle
are nearly constant, while even further downstream enzymes in oxidative phosphorylation
all decrease in concentration (Figure C. . ). Changing the balance from oxidative phos-
phorylation to glycolysis energy production leads to a faster, but much more inefficient
production of ATP. is redistribution of resources to different ATP producing pathways
is a remarkable process in the infected cell. It is difficult to untangle what is the cause of
this and what is the effect.

R P B L A C I

e ribosome plays a special role in viral replication, because the virus needs it to produce
the large amount of proteins to be able to generate new virions. is is achieved by differ-
entmechanisms likepreventing cellularmRNAfrom leaving thenucleus (details in Section
. . ). is process needs to be regulated tightly to not disrupt the cells’ protein produc-

tion completely and keep it alive to produce viral offspring. In our data we see a general
decrease in ribosomal proteins. Wewere able to quantify changes in ribosomal proteins
(of knownmammalian ribosomal proteins). Only of these proteins increased in con-



Figure 5.2.4: The quantified glycolysis proteins follow a similar pattern and most seem
to be upregulated over the course of infection.



Figure 5.2.5: Proteomic pheno-
typing of the influenza A/PR/8
infected MDCK cell proteome at
10 hrs. p.i. using KEGG anno-
tations. Quantiles of the quan-
tification histogram are indicated
at the top of the heatmap. Each
quantile was analyzed separately
for KEGG pathways and clustered
by the z-transformed p-values.
The most prominent representa-
tives of all enriched biological
processes of each quantile were
selected and annotated.

centration over the course of themeasurements, while the rest decreased uniformly. ose
ribosomal proteins that increased over time stand out by their associated extra-ribosomal
functions. Seven of the proteins have been reported to possess such functions, while
only of the remaining proteins do. Additionally, of the proteins (RPS , RPL , and
RPL ) are directly connected to p activation (Warner and McIntosh, ).

. . A L D N H I P D

e large collection of data we gathered using the SILAC approach proves hard to inter-
pret on its own. e picture changes when making use of already existing studies. ere
have been high-throughput studies before, generating a lot of data on virus host interac-
tion using multiple techniques. ese siRNA knockdown screens looked for genes that
strongly affect infection and virus replication (e.g. Karlas et al., ; König et al., ).

ese valueable datasets were combined and used by Watanabe, Watanabe, and Kawaoka



( ) to generate interaction networks of host and virus proteins. e authors created
different networks showing the interactions inbetween host genes connected to the virus,
between the vRNPandhost genes, and between the virus proteins and the host. ese net-
works contain only proteins that the authors found in at least two of the included studies
and thereby have a higher accuracy than the original networks. We merged all these net-
works and used database identi ers to map our genes on the network. e outcome was a
network of proteins (Figure C. . ). Topological analysis shows that most proteins in-
teract with the vRNP and connections to other proteins are comparatively rare. is is due
to many known interaction points in replication, translation, and transport of the vRNP.

e interactions to the single proteins with cellular proteins are most prominent for the
NS and the NP protein, which both also interact with the splicing and replication ma-
chinery. is network shows the connections between the dynamic changes in viral and
host proteins that are evidently important for virus replication and enables us to show a
global temporal picture of host proteins connected to their functions in viral replication
(Figure . . ).

. . V H I

Asmentioned in the introductionof this chapter (Section . . ), virus replication is a com-
plex process that involves a large number of cellular proteins. us, we will describe it
again step by step and relate it to the changes we found in both measured proteomes. In
the following description we will refer to steps one to six marked in Figure . . . e virus
enters the cell via endocytosis ( ). For this step we detected an upregulation of proton
pumps (ATP V ) in the endosomal membrane, which leads to acidi cation and virus es-
cape from the endosome. ( ) e escaped vRNP enter the nucleus via the nuclear pore
complex. We saw an early increase in the concentration of karyopherin β (importin β) as
well as two subunits of karyopherin α (importin α), which are both essential for this pro-
cess (Mosammaparast and Pemberton, ). ey all increased in concentration with
roughly the samedynamics (Figure . . KPNB ,KPNA ,KPNA ). ( )When the vRNP
enters the nucleus, it starts to transcribe new vRNAandmRNA.Wequanti ed proteins
that are connected to this process in one way or another. ese proteins are mostly related
to RNA processing. For example SRNP, PRPF , and RBMX (among others), are com-
ponents of the spliceosome. e dynamics of these proteins differ strongly, although be-
longing to the same functional group. ( )Nuclear export of vRNPs ismediated byNEP in
conjunction with cellular proteins like nucleoporins. We were able to quantify proteins
related to this process and viral replication, which increased in concentration without ex-
ception, but showed a rather late activation. ( ) Translation of proteins depends on the
ribosome and on translation factors. Our data showed that the translation initiation fac-
tor complex EIF is strongly activated (six subunits with similar dynamics). is complex
is responsible for the correct assembly of ribosomes and the recognition of AUG codons
on the mRNA (Dong and Zhang, ). As mentioned earlier, most ribosomal proteins



on the other hand decrease as well as EIF over the course of infection. ( ) A er transla-
tion, the virus proteins have to be transported to the cell membrane via the actin bers, for
which we also found an increased translation.

. D

e experiments and the extensive functional analysis presented in this chapter are the rst
proteome wide study of dynamics of in uenza A infection covering both, host and virus
proteins. e wide array of changes we detected in the proteome albeit on a rather
low level of change in most single proteins tells us a lot about the interactions that are
going on between virus and host. For this knowledge to be accessible, theoretical analysis
is a prerequisite. Only in combination with existing data from functional databases and
screening experiments could our data live up to its full potential.

Viral proteins mostly behave as expected and increased in abundance a er infection
quite rapidly. e two different dynamics of viral proteins were more surprising. Timing
of viral protein expression that we observed can be explained when looking at the func-
tions the proteins have in the course of the infection cycle. e rst group with fast and
early translation, mainly consists of structural proteins, or those that need to be present in
high concentrations at an early phase of the infection cycle. HA,M , andNP are the main
structural proteins of the viral particle, and are therefore present in relatively high concen-
tration directly a er virus entry and need to be translated later to form new viral particles.
NS on the other hand is purely non structural, but needs to be present in the early phase
to counteract the hosts interferon response. It in uences a number of important host pro-
cesses like mRNA splicing (Marión et al., ), nuclear export (Qiu and Krug, ),
mRNA polyadenylation (Nemeroff et al., ), and translation (Luna et al., ). One
hypothesis could be that due to its wide array of binding partners NS needs to be present
in high concentrations.

e second group consists of proteins that mainly serve enzymatic or catalytic func-
tions. NS /NEP is mainly responsible for exporting vRNPs from the nucleus, while the
polymerase subunits PA, PB , and PB as well as NA are enzymes. ese proteins are not
needed in high copy numbers in early replication, as they perform their functions multi-
ple times. NA even serves no known functions inside the host cell and is only needed af-
ter virus budding. When virus budding starts, the requirements change and the enzymes
switch their function to structural proteins, as the virus needs to include them into the
budding particles. is explains the steep increase in copy numbers of the proteins in this
group once the rst particles start to bud a er hours p.i..

It appears that the interactions between host and viral systems are very complex. Acti-
vation of the majority of proteins interacting with the viral proteins and temporal inhibi-
tion of immune response genes could suggest that the virus is able to manipulate protein
concentrations in the host for its own pro t. Another interaction process seems to be the



Figure 5.2.6: Schematic depictions of the viral life cycle and the connected host pro-
teins. Protein symbols are divided into equal parts, each representing one time point
and colored according to its relative concentration changes. Presented proteins were
the overlap between proteins included in our dataset and genes interacting with viral
proteins by Watanabe, Watanabe, and Kawaoka, 2010. These proteins were grouped
by their function and put into context by the schematic graphics of the infection cycle.



shi from respiration to glycolysis that is also known fromproliferating cells or tumor cells
(e.g. Alberghina et al., ; Salminen and Kaarniranta, ). is could be a result of
immune system induced apoptosis and mitochondrial degradation, but whether this dy-
namic change is only a cellular stress response or induced by the virus to gain a faster ATP
production in a short time, remains to be elucidated.

One explanation could also be the competition of virus and host genes for other re-
sources necessary for transcription and translation, e.g. tRNAs or amino acids. One could
speculate that it is bene cial for the virus to keep the cell fromproducing the largemachin-
ery needed for cellular respiration, in order to save these resources for the viral proteins and
mRNAs. It has to be mentioned that in a simple model of viral replication Sidorenko and
Reichl ( ) suggested that these resources are no limiting factor for viral reproduction.

Another important resource for protein production are ribosomes. We see a correllated
loss in concentration of ribosomal proteins that would lead to an even greater scarcity in ri-
bosomes. e changes in the ribosomal proteins are evenmore surprising, as their mRNA
as well as the proteins themselves are reported to generally have a very long hal ife≥ h
(Schwanhäusser et al., ). is would suggest an even stronger breakdown in the pro-
duction (or maybe active degradation) of these proteins than it seems on rst sight. is
lack of ribosomes could in the further course of infection lead to a bo leneck in viral pro-
duction. Nucleolar changes and interactions to viral proteins, which could possibly lead
to inhibition of ribosome production, have been shown before (e.g. Emmo et al., ;
Murayama et al., ) in in uenza infected MDCK cells (the same system we used) and
should be investigated with a longer timecourse in the future. In this context, the differ-
ential regulation of ribosomal proteins is also an interesting result, as the expression of the
groupof ribosomal proteinswith knownextraribosomal functions (Warner andMcIntosh,

) seems to be rather activated than inhibited.

e outcome of this study is only a rst glance into the complex dynamic interactions
and gives a birds eye view of the processes involved in infection and their timing. e
amount of measured proteins is only a subset of the expressed proteome, which is biased
towards abundant proteins due to experimental limitations. e combined measurement
of viral and host proteins could also lead to a misidenti cation of proteins due to peptide
similarities. A repeated studywith longermass spectrometrymeasurements andmore time
points would be helpful to follow the hints we got from this studymore closely. Especially
for the metabolic proteins (glycolysis, ATPase) data it would be interesting to extend the
timecourse to h p.i. to be able to compare all time points to the metabolic data from
Ri er et al. ( ). Another interesting follow up experiment would be a combination of
this study with a RNAseq or microarray study to distinguish whether regulation happens
on a transcriptional or translational level. From a bioinformatics perspective follow up
experiments would be more informative if they are done in human cell lines, because the
annotation of the human genome is much be er than that of Canis familiaris. is would
result in amore precise functional annotation and also in a be er identi cation of proteins.



More detailed datawould also allowmodeling and parameterizations of existingmodels
(Heldt, Frensing, andReichl, ; Sidorenko andReichl, ), whichwouldbe still very
vague with the presented dataset. A dynamicmodel of the replication process highlighting
the bo lenecks of infection based on real data would be a big step towards new anti-viral
therapies, as it could identify new targets for anti-viral drugs using Systems Biology tools
(Schulz, Bakker, and Klipp, ). e observed changes in ribosomal protein abundance
andmetabolismshouldbe a center of a ention for themodel anddata fromother resources
should be included in the model construction and parameterization.



Science is facts; just as houses are made of stones, so is sci-
ence made of facts; but a pile of stones is not a house and a
collection of facts is not necessarily science.

Henri Poincare

6
Discussion andOutlook

e goal of this thesis was to apply a Systems Biology approach to different eukaryotic
systems and identify new important aspects in their regulation by data analysis and dy-
namic modeling. From a methodological perspective we also tried to nd bo lenecks in
the modeling process and widen these by the development of specialized so ware. e
work was split up into three major parts. We investigated ( ) the yeast signaling response
to different stimuli via the MAP kinase system, ( ) the response of human broblast cells
to a viral transduction system carrying Yamanaka factors for reprogramming, and ( ) the
interaction between the in uenza A virus and its host.

Major properties of all these seemingly different systems could be successfully investi-
gated using similar theoretical methods that generated new insights about their regulation.
For ( ) we built two working models of different scope using ODE and Boolean frame-
works and in parallel developed and veri ed the functionality of two so ware applications.
In ( ) we analyzed dynamic transcription pro les gathered during early reprogramming,
and were able to identify roadblocks in the process of iPS generation. We used these nd-
ings to formulate a probabilistic Boolean model describing the process of reprogramming
and the associated epigenetic regulations. For ( ) we performed a functional analysis of
the proteomes of virus and host in parallel over the course of the infection cycle. is anal-
ysis lead to new insights about the virus-host-interactions and the dynamics of infection.



. F D M

Mathematicalmodels can advance our understanding of biological systems and clarify ver-
bal hypothesis about these. Nevertheless, models can only be as good as the data they are
based upon, and there is also no machine or so ware that could directly transform the
available data into a useful model. Onemight say that data drivenmodeling is supposed to
be propelled by data, but has to be steered by the modelers themselves.

To be able to build a model based on data, this data needs to be analyzed and put into
context. Especiallywhen using high-throughput data as presented inChapters and , this
analysis is a crucial point for scienti c progress. Functional analysis is needed to structure
data andmake it usable for hypothesis generation and construction of topologies andmod-
els (Chapter . . ). Functional annotations of datasets were a large part of this esis and
proved very useful for hypotheses generation, which is one step of the typical work ow of
Systems Biology (Figure . . ). A good example for this process can be found in chapter
: Functional annotation of the dataset (and literature data) in combination with struc-

tural analysis lead to the realization that epigenetic marks and immune response block the
early phases of reprogramming, which in turn lead to development of the modular model
of epigenetic dynamics in reprogramming.

Although we were able to nd new modeling approaches by analyzing the data exten-
sively, we were not able to make further use of the different high-throughput datasets in
terms of parameterization or quanti cation. is was mostly due to the low temporal res-
olution and the low precision of these approaches. is kind of data is mostly qualitative
and can only be a rst step for dynamicmodeling to be able to generate abstract birds-eye-
models. ese models should establish a general understanding and be able to identify
the most important parts of the system, which can then be investigated experimentally by
more speci c methods. e results could then be used to improve the level of detail of
models in these parts and so on.

. M S C P

In the course of this work,models helped immensely to gain an initial understanding of the
different systems we worked with already during initial literature studies. ey proved to
be an efficientway of scienti c communication, which is still improving by advancing stan-
dardization efforts (Hucka et al., ). Standardization is not limited to le formats, but
also aims towards visual model representation (Le Novère et al., ), which is an im-
portant feature for communication. Facilitating communication between modelers and
experimenters is one of the most important features of the so ware we present in Chap-
ter . is is done in different ways with both developed tools. ModelMaGe simpli es
the process of generation, documentation, and validation of different model alternatives.

is makes it easier to nd a useful model, and also to present falsi ed models that lead to



the end product of a working model. is helps other researchers to verify the results and
understand the reasoning behind different model versions. As I mentioned before, anno-
tation proved indispensable when dealing with large amounts of data. We strongly believe
that the same holds true for further use ofmathematicalmodels, which is whyModelMaGe
also supports automatic (although still limited) annotation of the generated models.

e way Boolean rxncon helps to communicate modeling results is a completely differ-
ent approach. emost important aspects in this tool are its easy accessibility (freely avail-
able, without installation) and its standard compliant, dynamic, and interactive visualiza-
tion features powered by the open Biographer framework (Figure . . ). Integrating visu-
alization into themodel generation process will largely improve themutual understanding
of modelers and experimenters, while also highlighting problems in early modeling steps
that can be discussed before further steps are taken. Additionally accepted standards for
Boolean models are still missing, which hinders portability. e rxncon framework (Sec-
tion . ) could be a rst step towards a be er adaptation of existing, or the creation of a
new standard.

e other important goal besides communication, that both tools have in common, is
to speed up the cycle of Systems Biology research at the modeling part. O en this part is
the most non-linear and includes many internal loops before it leads on to the next phase.
Inmany cases, models need to be created, parameterized, tested, and analyzedmany times
before the work can be presented and passed on to the experimenters. Both tools proved
to help shorten and accelerate this inner loop in the presented examples andModelMaGe
has already been actively used in other projects (e.g. Klotz et al., ). Further iterations
of the tools are currently under development.

. B A

. . S C R

Somatic cell reprogramming is a rapidly changing eld with thousands of published arti-
cles each year. However, we were able to add some new details to the view of the early
stages of the reprogramming process. e most notable part is the effect of the innate im-
mune system that we saw in the microarray data by upregulation of immune related genes.

e second novelty we found in the data was the early onset of changes in morphological
pathways. e importance of MET has been reported before (Li et al., ; Samavarchi-
Tehrani et al., ), but has not been shown for such early time points in a viral repro-
gramming system.

Analysis of the data also has revealed the clearly existing epigenetic blocks of Yamanaka
factor target genes, which have been shown before (Lister et al., ), but not in the con-
text of early reprogramming. So far, there has been no analysis of the strength of the epi-
genetic inhibition for each target, which we roughly estimated with the NCA analysis.



Based on these experimental ndings and our stochastic Boolean model we were able
to propose possible methods for improving somatic cell reprogramming using, immune
suppression, histone modi cation enzymes or their inhibitors. Our model also showed
that the interplay between different epigenetic marks might be important for the veloc-
ity of chromatin remodeling during reprogramming. In the model we were able to im-
prove reprogramming by faster DNA methylation and downregulation of somatic genes.
DNA demethylation of pluripotency genes also proved to be an important step in the
model, which might explain the reported improvements in efficiency of reprogramming
by P knockout and faster proliferation (Hong et al., ; Kawamura et al., ), be-
cause demethylation is tightly coupled to cell cycle and proliferation (Cedar andBergman,

).

. . I I

In the analysis of proteomic data of the in uenza A infection and its host we could nd
interesting dynamic changes in various host pathways that have not been reported before.
Additionally we could show different abundances and dynamics of viral proteins during
the infection cycle. ese differences in viral proteins resemble previously reported stoi-
chiometries and are nicely aligned with the proteins’ reported functions during infection
(Bouvier and Palese, ).

An interesting new nding of our analysis are the changes in the host’s metabolic path-
ways that were not known before. e increase in glycolytic enzymes and the slight de-
crease in respiratory proteins probably leads to changes in the ux through the pathways
and causes the major changes in the ATP metabolism of the cell that have been reported
before (Ri er et al., ).

e second major change in the proteome of the host is the decrease of the ribosomal
proteins over the course of infection. is could be caused by a deregulation of protein
production by a strong production of viral proteins and lack of capacity of ribosomes to
produce enough of their own proteins to sustain a steady state. In uences of the viral in-
fection on the nucleolus and possibly ribosomal subunit production have been reported
before (Emmo et al., ).

Bymapping the dynamic data onto established interaction networks of infection and re-
lating it tometabolomedata, we have also taken the rst steps towards data driven, detailed
modeling of the infection process.

. . D L - D P

As described in the introduction, the selection of amodeling framework is a crucial step in
model creation. We had to gather a lot of literature data and knowledge about the speci c
system before we could choose a way to model it to answer the most pressing questions.

e question one poses as well as the type of data available de nes which framework is ap-



propriate. Let us take the two yeast models in chapter as an example: On the one hand,
it would have been unfeasible to build and simulate the whole MAP kinase network as a
kinetic ODE model, but the Boolean approach proved to be helpful in advancing the net-
work structure and identifymissing parts in the large network. On the other hand, only the
quantitative modeling in combination with the detailed data for the HOG model enabled
us to discriminate between the different alternatives and nd the integrating feedback that
predicted the additional experiments.

e more coarse grained approach for the large scale model can now be used to itera-
tively addmore detail to thewholemodel or parts of it. e integration of our so ware into
rxnconmakes the switching between formalisms a lot easier than it used to be, this means
we could take out one of the pathways andmodel it quantitatively once data becomes avail-
able and reintegrate the additional knowledge into the whole system.

. A L E

In the previous chapters we have discussed different regulatory systems. Although all of
them act in roughly the same space (the cell), they all work on different timescales, from
short lived signaling events (HOG activation in seconds and adaptation in minutes), over
protein concentrations changing over the course of hours, to epigeneticmarks on the chro-
matin that can last over generations of cells and sometimes organisms.

As expected, we have seen that all of these levels are important for the whole system to
survive and that they are interconnected to a large degree. We found examples for such
interconnections in each of the systemswe investigated. eHOGpathway and its perfect
adaptation via glycerol accumulation is a beautiful, well studied and simple example for
the interplay of different levels, where signaling induces glycerol production via protein
expressionwhich results in silencing of the signal. e ribosomedownregulationwe found
during the virus infection might be the opposite example of such an interplay, in which
mRNA abundances in uence protein production in such a way that the system gets out
of control and protein production nally collapses because of a lack of ribosomes. e
interplay between protein concentrations and epigenetic modi cations described by our
Boolean model of reprogramming are another example of an interplay of regulatory levels
that is substantial for the development of the organism and for the transfer of short lived
signals into long time marking.

In summary, we see the importance of a combination of upward and downward causa-
tion as it was proposed by Noble ( ) in all the systems we examined. To nd the exact
mechanismsbehind interconnections of regulatory layers and toquantify their importance
should be one of the primary goals of Systems Biology in the coming years. ere are nu-
merous unresolved questions in the speci c systems we examined and there are also basic
mechanisms that are not understood in this context. To name only some questions the
results of this work pose: To which extend does the increase in protein concentration dur-



ing in uenza infection affect the ux of metabolites through glycolysis? How is the lower
expression of genes of focal adhesion pathway affecting signaling and morphology in the
cells? What is the exact mechanism connecting the expression of Yamanaka factors and
epigenetic reprogramming events? To us, one of the most challenging general question
is, how the proteins regulating chromatin structure nd their targets and how do so few
general modifying enzymes control the structure of the whole genome?

. O F W

Our models generated a number of testable hypothesis and the data analyses gave hints
where to focus further research. In Chapter . we showed the negative in uence of im-
mune response on iPS generation, which should further be investigated to produce be er
reprogramming protocols. Screenings with libraries of immune suppressors for increas-
ing efficiency would be one possible way to go forward. Our model of epigenetic changes
in reprogramming would bene t from be er data on the single modules of gene regula-
tion. With such data we could use the model as a scaffold for more detailed models of
transcription factor interactions inside the modules to be able to specify the update rule
probabilities based on data. It should also be tested whether our model can re ect recent
single cell data on reprogramming that pro led genetic variation between cells during re-
programming (Buganim et al., ). is data could be directly compared to the differ-
ent probability distributions ourmodel produces. Using similar single cell techniques, one
could also test if the early repression of somatic genes is really a predestining step for effi-
cient reprogramming as our model suggests.

e new aspects of Booleanmodelingwe propose in Section . . and . . deserve fur-
ther development and theoretical investigation. e model in Section . . could also be
analyzed further by for example calculating in uence factors for all the nodes, which gives
the relative importance of one node in the network. It would also be interesting to analyze
single Boolean networks from the PBN using methods for a ractor landscape generation
like the one presented by Choi et al. ( ).

e PBN approach we used could also be included into the Boolean rxncon so ware
to make PBN generation more user friendly and faster. e presented so ware tools are
under constant development andwill be improved in usability and featureset. ModelMaGe
is currently being closely integratedwithCopasi tomake the parameter ing even simpler
and the whole tool more reliable. We hope that the open source licensing (LGPL) of both
tools will help to a ract further users and developers.

In the in uenza A study we managed to extract interesting features from the large body
of data. To test which potential impact these features might have on infection, we could
add them to existing models of in uenza A infection (Heldt, Frensing, and Reichl, ;
Sidorenko and Reichl, ). On the contrary, to be able to improve these models by pa-
rameter ing with our data, we would certainly need to reduce them to a fraction of their



current sizes. A combination of the new features of the host reaction and a simpli ed gen-
eralmodel of infectionwould be one possibleway to ndout how these changes in the host
might impact infection. Nevertheless, to parameterize such a model in a meaningful way
we would need more data with a higher time resolution for the important proteins. e
high-troughput study identi ed candidates of host proteins that showed strong uctua-
tions and are responsible for key events in the infection cycle (e.g. lysosomal proton pump
ATP V). ese could potentially be measured with precise low-throughput techniques to
verify our results. To verify the hypothesis about ribosme loss, another MS study would
be needed that could be more targeted towards ribosomal proteins.

. C R

e presentedwork once again highlights the importance of a SystemsBiological approach
for the understanding of complex biological systems as eukaryotic cells. None of the ex-
amined systems could be understood in isolation, and the effects we found in experiments
would be hard to explain without a broader context and will require additional work on
both experimental and theoretical sides.
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A
So ware

A. I

All so ware wri en for this work was implemented in Python and R. Grphical user inter-
faceswere implementedusing Javascriptwith jQuery andvisualizationswithBiographer and
D .js. ModelMaGe is available at http://www.modelmage.org and Boolean rxncon as
part of the rxnconframework on http://www.rxncon.org.

A. M M G

Ordinary differential equation system for themastermodelmentioned used in section . :

http://www.modelmage.org
http://www.rxncon.org


dSho
dt

= −k v · Sho · Signal · OuterOsmo+ Vv · Sho a
Kmv + Sho a

+
Vv · Sho i

Kmv + Sho i
dSho a

dt
= k v · Sho · Signal · OuterOsmo− Vv · Sho a

Kmv + Sho a
− vmaxv P− Hog · Sho a

Kmv + Sho a
dSho i

dt
=

vmaxv P− Hog · Sho a
Kmv + Sho a

− Vv · Sho i
Kmv + Sho i

dSte
dt

= −vmaxv · Sho a · Ste
Kmv + Ste

+
Vv · PSte

Kmv + P− Ste
dPSte

dt
=

vmaxv · Sho a · Ste
Kmv + Ste

− Vv · PSte
Kmv + PSte

dPbs
dt

= −vmaxv · PSte · Pbs
Kmv + Pbs

+
Vv · PPbs

Kmv + PPbs
dPPbs

dt
=

vmaxv · PSte · Pbs
Kmv + Pbs

− Vv · PPbs
Kmv + PPbs

dHog
dt

= −k v · Hog · PPbs · Sho a · Signal+ Vv · PHog
Kmv + PHog

dPHog
dt

= k v · Hog · PPbs · Sho a · Signal− Vv · PHog
Kmv + PHog

dsignal
dt

=

{
osmoout − osmoin, osmoout > osmoin
, else

dosmoin
dt

= kv · PHog + vv − kv · osmoin

+
(

signal
kiv

)h



Figure A.2.1: Structure of candidate models C10, C6a, C6b, C8a, C8b, and C8c.



Figure A.2.2: Structure of candidate models C7a, C7b, C7c, C5a, C5b, and C5c.



Table A.2.1: The necessary changes in the MAPK model for a signal transduction in
all pathways. Changes are given in the rxncon format.



Table A.2.2: List of reactions where a phosphatase needed to be added to enable the
pathways to be responsive to signaling.



Table A.2.3: The small HOG model in BooxXklean terms as converted by my export
tool.

Sln -{P} = Sln _AP_Sln ∨ ¬Sln _PT_Ypd ∧ Sln -{P}
Ssk -{P} = Ypd _PT_Ssk ∨ ¬PPase_P-_Ssk ∧ Ssk -{P}
Hot -{P} = Hog _P+_Hot ∨ ¬PPase_P-_Hot ∧ Hot -{P}
Hog -{P} = Pbs _P+_Hog ∨ ¬PPase_P-_Hog ∧ Hog -{P}
Ypd -{P} = Sln _PT_Ypd ∨ ¬Ypd _PT_Ssk ∧ Ypd -{P}
Pbs -{P} = Ssk _P+_Pbs ∨ ¬PPase_P-_Pbs ∧ Pbs -{P}

Ssk –Ssk = Ssk _ppi_Ssk

Hog _P+_Hot = Hog ∧ Hot ∧ Hog -{P}
Ssk _ppi_Ssk = Ssk ∧ Ssk ∧ ¬Ssk -{P}
PPase_P-_Hot = PPase ∧ Hot ∧ Hot -{P}
PPase_P-_Pbs = PPase ∧ Pbs ∧ Pbs -{P}
PPase_P-_Ssk = PPase ∧ Ssk ∧ Ssk -{P}

PPase_P-_Hog = PPase ∧ Hog ∧ Hog -{P}
Ypd _PT_Ssk = Ypd ∧ Ssk ∧ Ypd -{P}
Pbs _P+_Hog = Pbs ∧ Hog ∧ Pbs -{P}
Sln _PT_Ypd = Sln ∧ Ypd ∧ Sln -{P}
Ssk _P+_Pbs = Ssk ∧ Pbs ∧ Ssk –Ssk
Sln _AP_Sln = Sln ∧ Sln ∧ Hot -{P}



Hot = True
S ln = True
Ssk = True
Ypd = True
PPase = True
Hog =True
Pbs = True
Ssk = True

Sln −_P_ = F a l s e
Ssk −_P_ = F a l s e
Hot −_P_ = F a l s e
Hog −_P_ = F a l s e
Ypd −_P_ = F a l s e
Pbs −_P_ = F a l s e
Ssk −−Ssk = F a l s e

Hog _P+_Hot = F a l s e
Ssk _pp i_Ssk = F a l s e
PPase_P−_Hot = F a l s e
PPase_P−_Pbs = F a l s e
PPase_P−_Ssk = F a l s e
PPase_P−_Hog = F a l s e
Ypd _PT_Ssk = F a l s e
Pbs _P+_Hog = F a l s e
Sln _PT_Ypd = F a l s e
Ssk _P+_Pbs = F a l s e
Sln _AP_Sln = F a l s e

Sln −_P_ *= ( Sln _AP_Sln ) or ( not ( Sln _PT_Ypd ) and Sln −_P_)
Ssk −_P_ *= (Ypd _PT_Ssk ) or ( not ( PPase_P−_Ssk ) and Ssk −_P_)
Hot −_P_ *= (Hog _P+_Hot ) or ( not ( PPase_P−_Hot ) and Hot −_P_)
Hog −_P_ *= (Pbs _P+_Hog ) or ( not ( PPase_P−_Hog ) and Hog −_P_)
Ypd −_P_ *= ( Sln _PT_Ypd ) or ( not (Ypd _PT_Ssk ) and Ypd −_P_)
Pbs −_P_ *= ( Ssk _P+_Pbs ) or ( not ( PPase_P−_Pbs ) and Pbs −_P_)
Ssk −−Ssk *= ( Ssk _pp i_Ssk )

Hog _P+_Hot *= Hog and Hot and Hog −_P_
Ssk _pp i_Ssk *= Ssk and Ssk and not ( Ssk −_P_)
PPase_P−_Hot *= PPase and Hot and Hot −_P_
PPase_P−_Pbs *= PPase and Pbs and Pbs −_P_
PPase_P−_Ssk *= PPase and Ssk and Ssk −_P_
PPase_P−_Hog *= PPase and Hog and Hog −_P_
Ypd _PT_Ssk *= Ypd and Ssk and Ypd −_P_
Pbs _P+_Hog *= Pbs and Hog and Pbs −_P_
Sln _PT_Ypd *= S ln and Ypd and Sln −_P_
Ssk _P+_Pbs *= Ssk and Pbs and Ssk −−Ssk
Sln _AP_Sln *= S ln and S ln and Hot −_P_

Listing A.1: The small example HOG model shown in Figure 3.3.1 formulated in the
BooleanNet format as exported by our software.



Figure A.2.3: The complete network structure of the MAPK model. This visualization was done by the rxncon extension I
implemented.





B
Pluripotency

Figure B.0.1: General changes in the measured genes over time. The stronger changes
in the iPS cells are clearly visible compared to the first time points.



Figure B.0.2: Heatmap of the reprogramming factors TFA.



Table B.0.1: Spia 24h

Name ID pSize NDE pNDE tA pPERT pG pGFdr pGFWER Status

Herpes simplex infection , E+ . . . . , , E+ , E+ , E+ Activated
In uenza A , E+ . . . . , , E+ , E+ , E+ Activated
Measles , E+ . . . . , , E+ , E+ , E+ Activated
Cytosolic DNA-sensing pathway , E+ . . . . , , E+ , , Activated
Neuroactive ligand-receptor inter-
action

, , , , Inhibited

RIG-I-like receptor signaling path-
way

, . . . . , , , , Activated

African trypanosomiasis , - . . . . , , , , Inhibited
Pertussis , . . . . , , , , Activated
Hepatitis C , , , , , Activated
Toll-like receptor signaling pathway , . . . . , , , Activated
Jak-STAT signaling pathway , . . . . , , , Activated
Intestinal immune network for IgA
production

, , , , , Activated

Calcium signaling pathway , . . . . , , , Activated
Cytokine-cytokine receptor interac-
tion

, , , , , Activated

Legionellosis , . . . . , , , Activated
Pathways in cancer , , , , , Activated
Leishmaniasis , . . . . , , , Activated
Complement and coagulation cas-
cades

, - . . . . , , , Inhibited

Bladder cancer , - , , , , Inhibited
Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

, . . . . , , , Activated



Table B.0.2: Spia 48h

Name ID pSize NDE pNDE tA pPERT pG pGFdr pGFWER Status

Measles , . . . . , , E+ , ,
In uenza A , E+ . . . . , , E+ , ,
Focal adhesion , - . . . . , , , ,
Pertussis , . . . . , , , ,
Legionellosis , . . . . , , , ,
Colorectal cancer , - . . . . , , , ,
Herpes simplex infection , . . . . , , , ,
Cytosolic DNA-sensing pathway , . . . . , , , ,
Jak-STAT signaling pathway , . . . . , , , ,
Malaria , NA , ,
African trypanosomiasis , - . . . . , , ,
Calcium signaling pathway , . . . . , , ,
Toll-like receptor signaling pathway , . . . . , , ,
Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

, , , , ,

Neuroactive ligand-receptor inter-
action

, , , , ,

Regulation of autophagy , - . . . . , , ,
Pathways in cancer , - . . . . , , ,
Epithelial cell signaling in Heli-
cobacter pylori infection

, - . . . . , , ,

Cytokine-cytokine receptor interac-
tion

, - , , , ,

Leishmaniasis , . . . . , , ,



Table B.0.3: Spia 72h

Name ID pSize NDE pNDE tA pPERT pG pGFdr pGFWER Status

Focal adhesion , E+ - . . . . , , E+ , , Inhibited
Measles , . . . . , , , Activated
Pathways in cancer , - . . . . , , , Inhibited
Complement and coagulation cas-
cades

, - , , , , Inhibited

Pathogenic Escherichia coli infec-
tion

, - . . . . , , , Inhibited

Cytosolic DNA-sensing pathway , , , , , Activated
Calcium signaling pathway , , , , , Activated
Regulation of actin cytoskeleton , - . . . . , , , Inhibited
GnRH signaling pathway , - . . . . , , , Inhibited
Colorectal cancer , - . . . . , , , Inhibited
Gap junction , - . . . . , , , Inhibited
Jak-STAT signaling pathway , . . . . , , , Activated
Viral myocarditis , . . . . , , , Activated
Prostate cancer , - . . . . , , , Inhibited
Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

, . . . . , , , Activated

Legionellosis , . . . . , , , Activated
Vibrio cholerae infection , - . . . . , , , Inhibited
African trypanosomiasis , - . . . . , , , Inhibited
Melanoma , - . . . . , , , Inhibited
Epithelial cell signaling in Heli-
cobacter pylori infection

, - . . . . , , , Inhibited



Table B.0.4: Enriched GO terms cluster 1

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . . positive regulation of stress ber assembly
GO: . Inf cellular response to tumor necrosis factor
GO: . . anatomical structure formation involved in morphogenesis
GO: . . regulation of actin lament bundle assembly
GO: . . signaling process
GO: . . negative regulation of multicellular organismal process
GO: . . biological adhesion
GO: . . cell-substrate adhesion
GO: . . regulation of actin lament-based process
GO: . . negative regulation of steroid hormone receptor signaling

pathway
GO: . . positive regulation of cellular component organization
GO: . . positive regulation of cytoskeleton organization
GO: . . signal transduction
GO: . . primary neural tube formation
GO: . . actin lament organization
GO: . . epithelial tube formation
GO: . . negative regulation of cell migration
GO: . . muscle contraction
GO: . . system development
GO: . . growth
GO: . . regulation of biological quality
GO: . . multicellular organismal process
GO: . . neural tube development
GO: . . tissue regeneration
GO: . . morphogenesis of embryonic epithelium
GO: . . blood vessel morphogenesis
GO: . . response to oxidative stress
GO: . . tissue morphogenesis
GO: . . regulation of angiogenesis
GO: . . regulation of Rho GTPase activity
GO: . Inf MHC protein complex assembly
GO: . Inf peptide antigen assembly withMHC class I protein complex
GO: . Inf positive regulation of heart rate by epinephrine
GO: . Inf progesterone biosynthetic process
GO: . Inf peptidyl-cysteine methylation
GO: . Inf positive regulation of actin lament depolymerization
GO: . Inf positive regulation of leukotriene production involved in in-

ammatory response
GO: . Inf negative regulation of B cell differentiation
GO: . Inf positive regulation of ryanodine-sensitive calcium-release

channel activity
GO: . Inf negative regulation of vascular wound healing
GO: . . small GTPase mediated signal transduction
GO: . . vesicle-mediated transport
GO: . . negative regulation of catalytic activity
GO: . . cell motility
GO: . . cellular response to reactive oxygen species
GO: . . positive regulation of endocytosis
GO: . . response to cytokine stimulus



Table B.0.5: Enriched GO terms cluster 2

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . . cell division
GO: . . cytoskeleton organization
GO: . . regulation of mitotic spindle organization
GO: . . cell cycle process
GO: . . positive regulation of Ras protein signal transduction
GO: . . actin lament organization
GO: . . spindle organization
GO: . . actin lament-based process
GO: . . microtubule-based process
GO: . . hemopoiesis
GO: . . wound healing
GO: . . response to progesterone stimulus
GO: . . protein amino acid autophosphorylation
GO: . . meiosis
GO: . . meiotic cell cycle
GO: . . actin lament-based movement
GO: . . mitosis
GO: . Inf actin rod assembly
GO: . Inf negative regulation of elastin biosynthetic process
GO: . Inf estrus
GO: . Inf regulation of ATP:ADP antiporter activity
GO: . . immune system development
GO: . . organelle ssion
GO: . . striated muscle cell differentiation
GO: . . regulation of cell cycle

Table B.0.6: Enriched GO terms cluster 3

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . . cellular homeostasis
GO: . . inositol phosphate-mediated signaling
GO: . . oxidative demethylation
GO: . . lipid transport
GO: . . metal ion transport
GO: . . cellular ion homeostasis
GO: . . low-density lipoprotein particle clearance
GO: . . chemical homeostasis
GO: . . di-, tri-valent inorganic cation transport
GO: . . cellular membrane organization
GO: . . di-, tri-valent inorganic cation homeostasis
GO: . . carboxylic acid transport
GO: . . DNA fragmentation involved in apoptotic nuclear change
GO: . Inf negative regulation of receptor recycling
GO: . Inf reduction of food intake in response to dietary excess
GO: . Inf myoblast cell fate determination
GO: . Inf adult somatic muscle development
GO: . Inf alkaloid catabolic process
GO: . Inf histidine catabolic process to glutamate and formamide
GO: . Inf response to bacterial lipoprotein
GO: . Inf RNA repair
GO: . Inf drug catabolic process
GO: . Inf positive regulation of cell volume
GO: . Inf positive regulation of phagocytosis, engulfment
GO: . Inf transepithelial ammonium transport
GO: . Inf seminal clot liquefaction
GO: . Inf cellular response to bacterial lipopeptide
GO: . . long-chain fa y acid transport
GO: . . cellular iron ion homeostasis
GO: . . regulation of smooth muscle contraction
GO: . . activation of phospholipase C activity by G-protein coupled

receptor protein signaling pathway coupled to IP second
messenger

GO: . . cellular metal ion homeostasis



Table B.0.7: Enriched GO terms cluster 4

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . . triglyceride biosynthetic process
GO: . . complement activation
GO: . . neutral lipid biosynthetic process
GO: . . rRNA processing
GO: . . G-protein signaling, coupled to cAMP nucleotide second

messenger
GO: . . protein maturation by peptide bond cleavage
GO: . . intermediate lament cytoskeleton organization
GO: . . glycerol ether biosynthetic process
GO: . . negative regulation of hydrolase activity
GO: . . second-messenger-mediated signaling
GO: . . ncRNAmetabolic process
GO: . . negative regulation of caspase activity
GO: . Inf CDP-choline pathway

Table B.0.8: Enriched GO terms cluster 5

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . . triglyceride metabolic process
GO: . . negative regulation of lipid storage
GO: . . nucleotide-sugar metabolic process
GO: . . response to temperature stimulus
GO: . . endochondral ossi cation
GO: . . negative regulation of ossi cation
GO: . . negative regulation of actin lament depolymerization
GO: . . neutral lipid metabolic process
GO: . . cell-substrate junction assembly

Table B.0.9: Enriched GO terms cluster 6

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . . translational elongation
GO: . . ribosomal large subunit biogenesis
GO: . . regulation of translational initiation
GO: . . metabolic process
GO: . . endothelial cell differentiation
GO: . Inf ribosomal large subunit assembly
GO: . Inf glucosamine catabolic process
GO: . Inf FAD biosynthetic process
GO: . Inf pyruvate family amino acid metabolic process
GO: . Inf lipoate biosynthetic process
GO: . Inf cobalamin transport
GO: . Inf positive regulation of toll-like receptor signaling pathway
GO: . Inf positive regulation of toll-like receptor signaling pathway
GO: . Inf ribo avin and derivative metabolic process
GO: . Inf L-alanine metabolic process



Table B.0.10: Enriched GO terms cluster 7

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . . response to virus
GO: . . multi-organism process
GO: . . response to biotic stimulus
GO: . . growth plate cartilage development
GO: . . negative regulation of endothelial cell proliferation
GO: . . defense response
GO: . . chronic in ammatory response
GO: . Inf bioluminescence
GO: . Inf peptidyl-proline hydroxylation to -hydroxy-L-proline
GO: . . cell motility
GO: . . response to lipopolysaccharide
GO: . . extracellular matrix organization
GO: . . peptidyl-proline modi cation
GO: . . cell-matrix adhesion
GO: . . palate development
GO: . . wound healing
GO: . . complement activation, lectin pathway
GO: . . extracellular matrix disassembly
GO: . . regulation of acute in ammatory response
GO: . . response to unfolded protein
GO: . . endothelial cell migration
GO: . . negative regulation of cellular component movement
GO: . . response to bacterium
GO: . . bone development
GO: . . protein retention in ER lumen
GO: . . developmental growth involved in morphogenesis
GO: . . immune response
GO: . . response to drug
GO: . . cell adhesion
GO: . . negative regulation of protein maturation by peptide bond

cleavage
GO: . . protein-chromophore linkage
GO: . . positive regulation of fever
GO: . . osteoblast proliferation
GO: . . circadian behavior
GO: . . positive regulation of coagulation
GO: . . response to organic substance
GO: . . membrane protein ectodomain proteolysis
GO: . . positive regulation of nucleocytoplasmic transport
GO: . . endochondral bone morphogenesis
GO: . . cellular copper ion homeostasis
GO: . . regulation of heat generation
GO: . . regulation of protein processing
GO: . . cell chemotaxis
GO: . . response to temperature stimulus
GO: . . cytokine-mediated signaling pathway
GO: . . signal initiation by diffusible mediator
GO: . . odontogenesis
GO: . . taxis
GO: . . protein maturation
GO: . . zymogen activation
GO: . . regulation of viral transcription



Table B.0.11: Enriched GO terms cluster 8

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . . cellular response to stress
GO: . . DNA repair
GO: . . cell division
GO: . . single strand break repair
GO: . . nucleic acid metabolic process
GO: . . regulation of activated T cell proliferation
GO: . . DNA ligation
GO: . . V(D)J recombination
GO: . . epithelium development
GO: . . DNA topological change
GO: . . cellular macromolecule metabolic process
GO: . . cellular nitrogen compound metabolic process
GO: . . regulation of biological process
GO: . . chromosome segregation
GO: . . regulation of protein catabolic process
GO: . . positive regulation of viral reproduction
GO: . . regulation of chromosome segregation
GO: . . spermatogenesis
GO: . . positive regulation of DNAmetabolic process
GO: . . negative regulation of T cell proliferation
GO: . . peptide biosynthetic process
GO: . . regulation of cell cycle process
GO: . . negative regulation of cellular metabolic process
GO: . . negative regulation of macromolecule metabolic process
GO: . . regulation of cell cycle
GO: . . negative regulation of mononuclear cell proliferation
GO: . . protein K -linked ubiquitination
GO: . . DNA recombination
GO: . . double-strand break repair
GO: . . cellular component disassembly
GO: . . positive regulation of cell proliferation
GO: . . protein ubiquitination involved in ubiquitin-dependent pro-

tein catabolic process
GO: . . mammary gland duct morphogenesis
GO: . . response to molecule of bacterial origin
GO: . . DNA replication
GO: . . positive regulation of metabolic process

Table B.0.12: Enriched GO terms cluster 9

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . . cellular nitrogen compound biosynthetic process
GO: . . nucleobase, nucleoside and nucleotide biosynthetic process
GO: . . purine nucleoside monophosphate metabolic process
GO: . . purine nucleotide biosynthetic process
GO: . . ribonucleoside monophosphate metabolic process
GO: . . purine base biosynthetic process
GO: . . nucleoside monophosphate biosynthetic process
GO: . . heterocycle biosynthetic process
GO: . . ribonucleotide biosynthetic process
GO: . . purine ribonucleosidemonophosphate biosynthetic process
GO: . . nucleotide metabolic process
GO: . . nucleobase metabolic process
GO: . Inf positive regulationof chronic in ammatory response tonon-

antigenic stimulus
GO: . Inf adenine salvage
GO: . Inf AMP phosphorylation
GO: . Inf threonine biosynthetic process
GO: . Inf deoxyribonucleoside monophosphate catabolic process
GO: . Inf positive regulation of norepinephrine secretion
GO: . Inf negative regulation of interleukin- production
GO: . Inf snRNA transcription from RNA polymerase II promoter
GO: . Inf snRNA transcription from RNA polymerase III promoter
GO: . Inf negative regulation of macrophage differentiation
GO: . Inf adenine metabolic process



Table B.0.13: General model structure. In bold, the part of the variable’s update rule that reflects the modeled property referenced
in the column Explanation. Column P contains the probabilities of the update rule

Represented property Update rule Probability Explanation
Auto activation of gene modules mA

e (t + ) = mA
e (t) ∧ ¬(mB

e (t) ∨ mP
e (t)) ∧

¬mA
m/hc(t)

. / . Regulatory proteins are closely coregulated and are
o en connected by positive feedback loops. (Boyer
et al., ; Chickarmane and Peterson, ;
MacArthur, Please, and Oreffo, )

Pluripotencymodule activatingDNAmethy-
lation through variable DNMT expression

dnmt(t+ ) = mP
e (t) ∨ mE

e (t) ∨ dnmt(t) . DNMT coregulated with Pluripotency genes.
DNMT methylates unspeci cally (Adewumi, A a-
toonian, and Ahrlund-Richter, ; Mah et al.,

)
Mutual inhibition of gene modules mA

e (t+ ) = mA
e (t)∧¬(mB

e (t) ∨ mP
e (t))∧

¬mA
m/hc(t)

. / . Master Regulators inhibit other master regulators,
competing lineages repress each other (MacArthur,
Please, and Oreffo, ; Niwa et al., ; Ralston
and Rossant, )

Heterochromatin increases probability for
DNAmethylation

mA
m(t+ ) = mA

m(t) ∨ dnmt(t)∧mA
hc(t) . Interaction via G a complex: DNMT A/B bind

to nucleosomes with methylated histones such as
H K me and methylates DNA (Cedar and Bergman,

)
Heterochromatin formation is inhibited by
appropriate gene module

mA
hc(t+ ) = mA

hc(t) ∨ mA
m(t)∧¬mA

e (t) . G a binds speci c sequences (Epsztejn-Litman et al.,
)

DNA methylation increases probability for
heterochromatin formation

mA
hc(t+ ) = mA

hc(t) ∨mA
m(t) ∧ ¬mA

e (t) . Promotes chromatin inheritance a er mitosis ( om-
son et al., )

DNA demethylation slower than other fac-
tors

mA
m(t+ ) = mA

m(t) ∧ demeth(t) . Passive cell cycle dependent demethylation through
variableDNMT activity a ermitosis (Li, Bestor, and
Jaenisch, )

DNA demethylation is faster in euchromatin mA
m(t+ ) = mA

m(t)∧(demeth(t) ∨mA
hc) . Histone deacetylase (HDAC) inhibitor TSA induces

global and speci c DNA demethylation (Ou et al.,
)

Methylation not necessary to downregulate
retroviral gene expression

mE
e (t+ ) = ¬mE

hc(t)¬ ∨ mE
m(t) . Retroviral silencing is DNMT A/B independent in

the rst days of reprogramming (Pannell et al.,
)

Retroviral gene demethylation is very slow in
absence of DNMT A/B or DNMT

mE
m(t + ) = mE

m(t) ∧
(¬demeth(t) ∨ dnmt(t))

.

Retroviral gene heterochromatin dynamics mE
hc(t+ ) = mE

hc(t) ∨ mP
e (t) . A complex between HDAC and NANOG (NODE

complex responsible for the silencing of developmen-
tal genes) could account for retroviral silencing (Ho a
and Ellis, ; Liang et al., )



Table B.0.14: Experimental findings from literature compared to simulation results.

Experimental Finding eoretical validation by our model
Somatic cells can be reprogrammed to
iPSCs upon viral delivery of pluripo-
tency factors with a very low efficiency
(Takahashi and Yamanaka, b)

Reprogramming experiment of our
main model (Figure . . )

iPSCs can be re-differentiated into
various kinds of tissues (all three germ
layers) (Takahashi and Yamanaka,

b)

Differentiation experiment of our
main model (Figure . . )

ESCs have more euchromatin and
accumulate high condensed het-
erochromatin as differentiation
progresses (Francastel et al., )

In the differentiation of the pluripo-
tent state, which still consists of a dis-
tribution across several different chro-
matin andmethylation con gurations,
we can observe a transition to more
sharply de ned states, which mostly
include heterochromatin andmethyla-
tion compositions (Figure . . A)

DNAmethylation is essential for chro-
matin structure during development
(Hashimshony et al., )

In models lacking DNA methylation,
differentiation as well as reprogram-
ming are abolished and cellswill not be
able to pass to other states in the state
space

Treatment of partially differentiated
ES cells with the DNA demethylating
agent -azacytidine ( -AzaC) induces
de-differentiation (Tsuji-Takayama et
al., )

When starting from partly dif-
ferentiated states in models with
spontaneous demethylation mimick-
ing -AzaC treatment, we observe
de-differentiation and even efficient
reprogramming

Knockdown of DnmtI reactivates
retroviral genes (Wernig et al., )

In models mimicking DnmtI knock-
down (e.g. spontaneous demethyla-
tion in or nomethylation in simulation
from the iPS state leads to partial reac-
tivation of retroviral genes

Dnmt a and Dnmt b are not required
for retroviral silencing in the rst
days of reprogramming (Ho a and El-
lis, ; Pannell et al., )

In models without dnmt activity we
can still observe silencing of retroviral
genes (results not explicitly shown)

Continued on next page



Table B.0.14: Experimental findings from literature compared to simulation results.

Experimental Finding eoretical validation by our model
e histone deacetylase (HDAC) in-

hibitor valproic acid is capable of
enhancing reprogramming efficiency
(Huangfu et al., b)

In models where the probability for
heterochromatin formation is down-
regulated (mimicking inhibition of
HDAC)we observe a slight increase in
the reprogramming efficiency (Figure
. . ).





C
In uenza A



Figure C.0.1: Subunits of the ATP synthetase are downregulated in our experiments.



Figure C.0.2: TCA cycle and its regulation in the early phase of infection



Figure C.0.3: The network of host and virus proteins was derived from a number of high-throughput studies by Watanabe,
Watanabe, and Kawaoka (2010).



Table C.0.1: Enriched GO terms cluster 1

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . translational elongation
GO: . DNA-dependent DNA replication initiation
GO: . . reproduction
GO: . . molting cycle
GO: . . molting cycle, collagen and cuticulin-based cuticle
GO: . . gene expression
GO: . . post-Golgi vesicle-mediated transport
GO: . . ribosomal small subunit biogenesis
GO: . . macromolecule biosynthetic process
GO: . Inf transferrin transport
GO: . Inf chromosome separation
GO: . . microtubule-based process
GO: . . epithelial cell differentiation
GO: . . molting cycle process
GO: . . cell cycle cytokinesis
GO: . . cuticle pa ern formation

Table C.0.2: Enriched GO terms cluster 2
GOBPID Pvalue OddsRatio ExpCount Count Size Term
GO: . negative regulation of protein ubiquitination
GO: . negative regulation of ligase activity
GO: . negative regulation of ubiquitin-protein ligase activity in-

volved in mitotic cell cycle
GO: . positive regulation of ubiquitin-protein ligase activity in-

volved in mitotic cell cycle
GO: . positive regulation of ligase activity
GO: . regulation of ubiquitin-protein ligase activity
GO: . protein modi cation by small protein conjugation
GO: . anaphase-promoting complex-dependent proteasomal

ubiquitin-dependent protein catabolic process
GO: . positive regulation of protein ubiquitination
GO: . ubiquitin-dependent protein catabolic process
GO: . cellular protein catabolic process
GO: . modi cation-dependent macromolecule catabolic process
GO: . negative regulation of cellular process
GO: . proteasomal protein catabolic process
GO: . positive regulation of cellular protein metabolic process
GO: . negative regulation of molecular function
GO: . positive regulation of cellular process
GO: . regulation of protein modi cation process
GO: . negative regulation of cellular protein metabolic process
GO: . macromolecule catabolic process
GO: positive regulation of molecular function
GO: . regulation of catalytic activity
GO: . regulation of protein metabolic process
GO: . proteolysis
GO: . cell cycle process
GO: . regulation of cellular metabolic process
GO: . positive regulation of macromolecule metabolic process
GO: macromolecule modi cation
GO: . catabolic process
GO: . mitotic cell cycle
GO: . negative regulation of macromolecule metabolic process
GO: . regulation of biological process
GO: . programmed cell death
GO: . hexose catabolic process
GO: . regulation of protein polymerization
GO: . protein import into nucleus
GO: . regulation of cellular component biogenesis
GO: . alcohol catabolic process
GO: . actin lament organization
GO: . protein localization to organelle
GO: . regulation of mitotic cell cycle
GO: . glycolysis
GO: . death
GO: . . protein complex subunit organization
GO: . . cellular carbohydrate catabolic process
GO: . . keratinocyte differentiation
GO: . . ’de novo’ protein folding
GO: . Inf chaperonemediated protein folding independent of cofactor
GO: . . protein complex biogenesis
GO: . . purine-containing compound metabolic process
GO: . . translational initiation
Continued on next page



Table C.0.2: Enriched GO terms cluster 2
GOBPID Pvalue OddsRatio ExpCount Count Size Term
GO: . . cellular catabolic process
GO: . . nucleoside monophosphate biosynthetic process
GO: . . nucleotide metabolic process
GO: . . positive regulation of NFAT protein import into nucleus
GO: . . cellular process involved in reproduction
GO: . . cellular membrane organization
GO: . . regulation of actin polymerization or depolymerization
GO: . . M phase
GO: . . response to DNA damage stimulus
GO: . . cellular protein metabolic process
GO: . . vesicle-mediated transport
GO: . . regulation of apoptosis
GO: . . histamine secretion
GO: . . histamine production involved in in ammatory response
GO: . . histamine secretion by mast cell
GO: . . activation of pro-apoptotic gene products
GO: . . response to nicotine
GO: . . negative regulation of protein dephosphorylation
GO: . . regulation of nucleocytoplasmic transport
GO: . . purine nucleotide biosynthetic process
GO: . . regulation of cell death
GO: . . cellular macromolecular complex subunit organization
GO: . . cytoskeleton organization
GO: . . regulation of organelle organization
GO: . . nucleobase-containing biosynthetic process
GO: . . response to cadmium ion
GO: . . ribonucleoside monophosphate metabolic process
GO: . . microtubule polymerization or depolymerization
GO: . . negative regulation of cytoskeleton organization
GO: . Inf GTP biosynthetic process
GO: . Inf pyrimidine ribonucleotide biosynthetic process
GO: . Inf tail tip morphogenesis
GO: . Inf embryonic digestive tract development
GO: . . limbic system development
GO: . . mitotic spindle organization
GO: . . cellular protein complex disassembly
GO: . . actin lament polymerization
GO: . . response to inorganic substance
GO: . . establishment of localization
GO: . . ribonucleoside metabolic process
GO: . . negative regulation of protein complex assembly
GO: . . heterocycle biosynthetic process
GO: . . purine ribonucleotide metabolic process
GO: . . glucose metabolic process
GO: . . regulation of cell shape
GO: . . response to radiation
GO: . . Golgi organization
GO: . . regulation of transcription factor import into nucleus
GO: . . establishment of vesicle localization
GO: . . macromolecular complex disassembly
GO: . . response to estrogen stimulus
GO: . . cellular protein complex assembly
GO: . . microtubule-based process
GO: . . ribonucleotide biosynthetic process
GO: . . response to other organism
GO: . . purine ribonucleosidemonophosphate biosynthetic process
GO: . . negative regulation of actin lament polymerization
GO: . . regulation of primary metabolic process
GO: . . organ development
GO: . . regulation of developmental process
GO: . . response to heat
GO: . . fructose metabolic process
GO: . . tubulin complex assembly
GO: . . sporulation resulting in formation of a cellular spore
GO: . . cytoplasmic sequestering of protein
GO: . . regulation of cellular component size
GO: . . oxidoreduction coenzyme metabolic process
GO: . . nicotinamide nucleotide metabolic process
GO: . . pyridine-containing compound metabolic process
GO: . . myeloid cell activation involved in immune response
GO: . . myeloid leukocyte mediated immunity
GO: . . leukocyte degranulation
GO: . . COPI coating of Golgi vesicle



Table C.0.3: Enriched GO terms cluster 3

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . translational elongation
GO: . DNA-dependent DNA replication initiation
GO: . . reproduction
GO: . . molting cycle
GO: . . molting cycle, collagen and cuticulin-based cuticle
GO: . . gene expression
GO: . . post-Golgi vesicle-mediated transport
GO: . . ribosomal small subunit biogenesis
GO: . . macromolecule biosynthetic process
GO: . Inf transferrin transport
GO: . Inf chromosome separation
GO: . . microtubule-based process
GO: . . epithelial cell differentiation
GO: . . molting cycle process
GO: . . cell cycle cytokinesis
GO: . . cuticle pa ern formation

Table C.0.4: Enriched GO terms cluster 4

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . protein-DNA complex subunit organization
GO: . nucleosome assembly
GO: . carboxylic acid transport
GO: . chromatin assembly or disassembly
GO: . transmembrane transport
GO: . DNA packaging
GO: . ATP catabolic process
GO: Inf ADP biosynthetic process
GO: Inf purine nucleoside diphosphate biosynthetic process
GO: Inf ribonucleoside diphosphate biosynthetic process
GO: . anion transport
GO: . respiratory electron transport chain
GO: . purine ribonucleoside triphosphate biosynthetic process
GO: . proton transport
GO: . organic anion transport
GO: . . establishment of localization
GO: . . mitochondrial transport
GO: . . nucleoside triphosphate biosynthetic process
GO: . . energy derivation by oxidation of organic compounds
GO: . . cholesterol metabolic process
GO: . . ion transmembrane transport
GO: . . purine ribonucleoside diphosphate metabolic process
GO: . . sensory perception of pain
GO: . . multicellular organismal response to stress
GO: . . regulation of growth
GO: . . positive regulation of growth rate
GO: . Inf photorespiration
GO: . . acidic amino acid transport
GO: . . oxidative phosphorylation
GO: . . positive regulation of multicellular organismal process
GO: . . ATP synthesis coupled proton transport
GO: . . positive regulation of smooth muscle cell migration
GO: . . amine transport
GO: . . metal ion transport
GO: . . regulation of cell adhesion
GO: . . calcium ion transport
GO: . . aging
GO: . . lipid storage
GO: . . sodium ion transport
GO: . . regulation of steroid metabolic process
GO: . . chromosome organization
GO: . . ribonucleoside triphosphate metabolic process
GO: . . sterol biosynthetic process
GO: . . behavioral fear response
GO: . . hypotonic response
GO: . . ceramide biosynthetic process
GO: . . regulation of cytokine production
GO: . . lipid biosynthetic process
GO: . . biological adhesion
GO: . . purine nucleoside triphosphate metabolic process
GO: . . cell growth
GO: . . cation transport



Table C.0.5: Enriched GO terms cluster 5

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . oxoacid metabolic process
GO: . oxidation-reduction process
GO: . succinate metabolic process
GO: . . immune system development
GO: . . chemical homeostasis
GO: . . negative regulation of vulval development
GO: . . regulation of nematode larval development
GO: . . dicarboxylic acid metabolic process
GO: . . regulation of biological quality
GO: . . response to lipopolysaccharide
GO: . . monocarboxylic acid metabolic process
GO: . . acetyl-CoA metabolic process
GO: . . cofactor metabolic process
GO: . . cell redox homeostasis
GO: . . regulation of synaptic transmission
GO: . Inf epithelial to mesenchymal transition
GO: . Inf negative regulation of broblast proliferation
GO: . Inf regulation of neurotransmi er transport
GO: . Inf regulation of synaptic vesicle exocytosis
GO: . . nervous system development
GO: . . generation of precursor metabolites and energy
GO: . . protein folding
GO: . . hemopoiesis
GO: . . tricarboxylic acid cycle
GO: . . cortical actin cytoskeleton organization
GO: . . negative regulation of post-embryonic development
GO: . . respiratory electron transport chain
GO: . . somatic diversi cation of immune receptors via germline re-

combination within a single locus
GO: . . glycolipid metabolic process
GO: . . iron ion homeostasis
GO: . . gonad development
GO: . . cellular respiration
GO: . . cellular ion homeostasis

Table C.0.6: Enriched GO terms cluster 6

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GO: . translational elongation
GO: . macromolecule biosynthetic process
GO: . mitotic spindle elongation
GO: . cellular macromolecule metabolic process
GO: . cellular biosynthetic process
GO: . protein metabolic process
GO: . cellular component biogenesis at cellular level
GO: . rRNA processing
GO: . spindle organization
GO: . RNA processing
GO: . microtubule-based process
GO: . regulation of RNA stability
GO: . ribosome biogenesis
GO: . metabolic process
GO: . mRNA stabilization
GO: . organelle assembly
GO: . ribosomal large subunit biogenesis
GO: . ncRNAmetabolic process
GO: . . ribosomal small subunit assembly
GO: . . regulation of translation
GO: . . nucleic acid metabolic process
GO: . . regulation of macromolecule biosynthetic process
GO: . . cell cycle phase
GO: . . regulation of cellular biosynthetic process
GO: . . cytoskeleton organization
GO: . . regulation of gene expression
GO: . . ribonucleoprotein complex subunit organization
GO: . Inf nuclear-transcribed mRNA catabolic process. exonucle-

olytic
GO: . . translation
GO: . . mRNA catabolic process
GO: . . lipoprotein metabolic process
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