17 research outputs found

    Deep learning tools for outcome prediction in a trial fibrilation from cardiac MRI

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2021Atrial fibrillation (AF), is the most frequent sustained cardiac arrhythmia, described by an irregular and rapid contraction of the two upper chambers of the heart (the atria). AF development is promoted and predisposed by atrial dilation, which is a consequence of atria adaptation to AF. However, it is not clear whether atrial dilation appears similarly over the cardiac cycle and how it affects ventricular volumes. Catheter ablation is arguably the AF gold standard treatment. In their current form, ablations are capable of directly terminating AF in selected patients but are only first-time effective in approximately 50% of the cases. In the first part of this work, volumetric functional markers of the left atrium (LA) and left ventricle (LV) of AF patients were studied. More precisely, a customised convolutional neural network (CNN) was proposed to segment, across the cardiac cycle, the LA from short axis CINE MRI images acquired with full cardiac coverage in AF patients. Using the proposed automatic LA segmentation, volumetric time curves were plotted and ejection fractions (EF) were automatically calculated for both chambers. The second part of the project was dedicated to developing classification models based on cardiac MR images. The EMIDEC STACOM 2020 challenge was used as an initial project and basis to create binary classifiers based on fully automatic classification neural networks (NNs), since it presented a relatively simple binary classification task (presence/absence of disease) and a large dataset. For the challenge, a deep learning NN was proposed to automatically classify myocardial disease from delayed enhancement cardiac MR (DE-CMR) and patient clinical information. The highest classification accuracy (100%) was achieved with Clinic-NET+, a NN that used information from images, segmentations and clinical annotations. For the final goal of this project, the previously referred NNs were re-trained to predict AF recurrence after catheter ablation (CA) in AF patients using pre-ablation LA short axis in CINE MRI images. In this task, the best overall performance was achieved by Clinic-NET+ with a test accuracy of 88%. This work shown the potential of NNs to interpret and extract clinical information from cardiac MRI. If more data is available, in the future, these methods can potentially be used to help and guide clinical AF prognosis and diagnosis

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    Intracoronary electrocardiogram as a direct measure of myocardial ischemia

    Get PDF
    The electrocardiogram is a valuable diagnostic method providing insight into pathologies of the heart, especially rhythm disorders or insufficient myocardial blood supply (myocardial ischemia). The commonly used surface ECG is, however, limited in detecting short-lasting myocardial ischemia, in particular in the territory of the left circumflex coronary artery supplying the postero-lateral wall of the left ventricle. Conversely, an ECG recorded in close vicinity to the myocardium, i.e., within a coronary artery (intracoronary ECG, icECG) has been thought to overcome these limitations. Since its first implementation during cardiac catheterization in 1985, icECG has shown ample evidence for its diagnostic value given the higher sensitivity for myocardial ischemia detection when compared to the surface ECG. In addition, icECG has been demonstrated to be a direct measure of myocardial ischemia in real-time, thus, providing valuable information during percutaneous coronary diagnostics and interventions. However, a lack of analysing systems to obtain and quantify icECG in real-time discourages routine use. The goals of this MD-PhD thesis are two-fold: First, to determine the diagnostic accuracy of icECG ST-segment shift during pharmacologic inotropic stress in comparison to established indices for coronary lesion severity assessment using quantitative angiographic percent diameter stenosis as reference (Project I). Second, to determine the optimal icECG parameter for myocardial ischemia detection and quantification (Project II and III). In essence, this thesis demonstrates that the icECG is an easy available diagnostic method providing highly accurate information on the amount of myocardial ischemia in real-time. Quantitative assessment of acute, transmural myocardial ischemia by icECG is most accurately performed by measuring ST-segment shift at the J-point, while the quantitative assessment during physical exercise, respectively its pharmacologic simulation, is most accurately performed by measuring ST-segment shift 60ms after the J-point

    Iskeemisen sydänsairauden aiheuttajat, vaikutukset ja simulaatiot

    Get PDF
    Tässä tutkielmassa on kerätty tietoa iskemisestä sydänsairaudesta. Tutkielmassa käsitellään hapenpuutteen ja ravinteiden puutteen vaikutusta sydämeen sekä kyseisen tilan aiheuttajia. Tässä käsitellään iskemian vuoksi sydänsoluissa tapahtuvia muutoksia ja kudostason muutoksia. Iskemia aiheuttaa myös muutosta sydämen sähköiseen toimintaan ja mekaaniseen toimintaan. Lopuksi tutkielmassa on kerätty muutamia mallintamis- ja simuloimismenetelmiä ja tuloksia. Aiheuttajiin kuten sepelvaltimotautiin ja sydäninfarktiin perehdytään hieman. Ne aiheuttavat sydämessä happivajetta. Tämä aiheuttaa iskemisen sydänsairauden, jonka oireena voi olla rintakipua. Toisaalta kaikki eivät kaikki aluksi huomaa oireita. Sydänsoluille tapahtuu muutosta iskemiassa. Soluja ohjautuu apoptoosiin, koska tuumorinekroositekijä alfaa tuotetaan sydänsoluissa iskemian seurauksena. Soluja kuolee iskemiassa myös nekroottisesti. Nekroosia voi aiheuttaa ionien konsentraatioiden muutos. Iskemiassa kalsiumia kertyy soluun ja tämän vuoksi voi aiheutua nekroosia. Sydänsolujen kuoleminen ja korjaantuminen arpikudoksella vaikuttavat sydämeen elimenä. Sydämen seinämät voivat ohentua tai kammiot voivat laajentua. Veren kulun estyminen ja sen palautuminen voivat myös aiheuttaa sydämen jumittumisen supistumisvaiheeseen. Sydämen sähköiselle toiminnalle tulee muutoksia. Ne voidaan huomata elektrokardiogrammilla. Elektrokardiogrammissa voidaan huomata ST-segmentin ja T-aallon muutoksia. ST-segmentin nousua käsitellään tarkemmin. T-aallossa olevaa muutosta pystytään havainnollistamaan T-aallon pinta-alakäyrällä. Sen avulla pystytään paremmin arvioimaan, onko kyseessä iskemiaa vai ei. Mekaaniselle toiminnalle tulee muutoksia iskemiassa. Sydämen minuuttivolyymi pienenee kuten myös iskutilavuus. Tutkielmassa käsitellään sitä, miten ne ovat muuttuneet hiirillä. Hiirillä iskemian aiheuttamaa muutosta käsitellään myös rasituksessa. Iskemiassa on huomattavissa iskutilavuuden ja sydämen minuuttivolyymin laskua myös rasituksessa, kun verrataan tilaan ennen iskemiaa. Työssä on perehdytty lyhyesti useampaan tapaan simuloida ja mallintaa iskemiaa. Solutasolla pystytään mallintamaan iskemian aiheuttamaa muutosta aktiopotentiaalin kestoon. Iskemiasta on tehty elektrokardiogrammi simulointia ja magnetokardiogrammi simulointia. Sähköisen toiminnan mallinnuksessa on käsitelty myös kardiodynamiikkakäyrää, jonka avulla pystytään elektrokardiogrammista näkemään pieniä muutoksia

    Contribuciones de las técnicas machine learning a la cardiología. Predicción de reestenosis tras implante de stent coronario

    Get PDF
    [ES]Antecedentes: Existen pocos temas de actualidad equiparables a la posibilidad de la tecnología actual para desarrollar las mismas capacidades que el ser humano, incluso en medicina. Esta capacidad de simular los procesos de inteligencia humana por parte de máquinas o sistemas informáticos es lo que conocemos hoy en día como inteligencia artificial. Uno de los campos de la inteligencia artificial con mayor aplicación a día de hoy en medicina es el de la predicción, recomendación o diagnóstico, donde se aplican las técnicas machine learning. Asimismo, existe un creciente interés en las técnicas de medicina de precisión, donde las técnicas machine learning pueden ofrecer atención médica individualizada a cada paciente. El intervencionismo coronario percutáneo (ICP) con stent se ha convertido en una práctica habitual en la revascularización de los vasos coronarios con enfermedad aterosclerótica obstructiva significativa. El ICP es asimismo patrón oro de tratamiento en pacientes con infarto agudo de miocardio; reduciendo las tasas de muerte e isquemia recurrente en comparación con el tratamiento médico. El éxito a largo plazo del procedimiento está limitado por la reestenosis del stent, un proceso patológico que provoca un estrechamiento arterial recurrente en el sitio de la ICP. Identificar qué pacientes harán reestenosis es un desafío clínico importante; ya que puede manifestarse como un nuevo infarto agudo de miocardio o forzar una nueva resvascularización del vaso afectado, y que en casos de reestenosis recurrente representa un reto terapéutico. Objetivos: Después de realizar una revisión de las técnicas de inteligencia artificial aplicadas a la medicina y con mayor profundidad, de las técnicas machine learning aplicadas a la cardiología, el objetivo principal de esta tesis doctoral ha sido desarrollar un modelo machine learning para predecir la aparición de reestenosis en pacientes con infarto agudo de miocardio sometidos a ICP con implante de un stent. Asimismo, han sido objetivos secundarios comparar el modelo desarrollado con machine learning con los scores clásicos de riesgo de reestenosis utilizados hasta la fecha; y desarrollar un software que permita trasladar esta contribución a la práctica clínica diaria de forma sencilla. Para desarrollar un modelo fácilmente aplicable, realizamos nuestras predicciones sin variables adicionales a las obtenidas en la práctica rutinaria. Material: El conjunto de datos, obtenido del ensayo GRACIA-3, consistió en 263 pacientes con características demográficas, clínicas y angiográficas; 23 de ellos presentaron reestenosis a los 12 meses después de la implantación del stent. Todos los desarrollos llevados a cabo se han hecho en Python y se ha utilizado computación en la nube, en concreto AWS (Amazon Web Services). Metodología: Se ha utilizado una metodología para trabajar con conjuntos de datos pequeños y no balanceados, siendo importante el esquema de validación cruzada anidada utilizado, así como la utilización de las curvas PR (precision-recall, exhaustividad-sensibilidad), además de las curvas ROC, para la interpretación de los modelos. Se han entrenado los algoritmos más habituales en la literatura para elegir el que mejor comportamiento ha presentado. Resultados: El modelo con mejores resultados ha sido el desarrollado con un clasificador extremely randomized trees; que superó significativamente (0,77; área bajo la curva ROC a los tres scores clínicos clásicos; PRESTO-1 (0,58), PRESTO-2 (0,58) y TLR (0,62). Las curvas exhaustividad sensibilidad ofrecieron una imagen más precisa del rendimiento del modelo extremely randomized trees que muestra un algoritmo eficiente (0,96) para no reestenosis, con alta exhaustividad y alta sensibilidad. Para un umbral considerado óptimo, de 1,000 pacientes sometidos a implante de stent, nuestro modelo machine learning predeciría correctamente 181 (18%) más casos en comparación con el mejor score de riesgo clásico (TLR). Las variables más importantes clasificadas según su contribución a las predicciones fueron diabetes, enfermedad coronaria en 2 ó más vasos, flujo TIMI post-ICP, plaquetas anormales, trombo post-ICP y colesterol anormal. Finalmente, se ha desarrollado una calculadora para trasladar el modelo a la práctica clínica. La calculadora permite estimar el riesgo individual de cada paciente y situarlo en una zona de riesgo, facilitando la toma de decisión al médico en cuanto al seguimiento adecuado para el mismo. Conclusiones: Aplicado inmediatamente después de la implantación del stent, un modelo machine learning diferencia mejor a aquellos pacientes que presentarán o no reestenosis respecto a los discriminadores clásicos actuales

    Preface

    Get PDF
    corecore