Deep learning tools for outcome prediction in a trial fibrilation from cardiac MRI

Abstract

Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2021Atrial fibrillation (AF), is the most frequent sustained cardiac arrhythmia, described by an irregular and rapid contraction of the two upper chambers of the heart (the atria). AF development is promoted and predisposed by atrial dilation, which is a consequence of atria adaptation to AF. However, it is not clear whether atrial dilation appears similarly over the cardiac cycle and how it affects ventricular volumes. Catheter ablation is arguably the AF gold standard treatment. In their current form, ablations are capable of directly terminating AF in selected patients but are only first-time effective in approximately 50% of the cases. In the first part of this work, volumetric functional markers of the left atrium (LA) and left ventricle (LV) of AF patients were studied. More precisely, a customised convolutional neural network (CNN) was proposed to segment, across the cardiac cycle, the LA from short axis CINE MRI images acquired with full cardiac coverage in AF patients. Using the proposed automatic LA segmentation, volumetric time curves were plotted and ejection fractions (EF) were automatically calculated for both chambers. The second part of the project was dedicated to developing classification models based on cardiac MR images. The EMIDEC STACOM 2020 challenge was used as an initial project and basis to create binary classifiers based on fully automatic classification neural networks (NNs), since it presented a relatively simple binary classification task (presence/absence of disease) and a large dataset. For the challenge, a deep learning NN was proposed to automatically classify myocardial disease from delayed enhancement cardiac MR (DE-CMR) and patient clinical information. The highest classification accuracy (100%) was achieved with Clinic-NET+, a NN that used information from images, segmentations and clinical annotations. For the final goal of this project, the previously referred NNs were re-trained to predict AF recurrence after catheter ablation (CA) in AF patients using pre-ablation LA short axis in CINE MRI images. In this task, the best overall performance was achieved by Clinic-NET+ with a test accuracy of 88%. This work shown the potential of NNs to interpret and extract clinical information from cardiac MRI. If more data is available, in the future, these methods can potentially be used to help and guide clinical AF prognosis and diagnosis

    Similar works