628 research outputs found

    Updating of user requirements of elderly and disabled drivers and travellers

    Get PDF
    The user requirements have been reassessed in the light of the results from the collaborative evaluations with other Transport Telematics Projects, as well as data and expertise gathered from the literature and other experts in the field. The user requirements identified are also the fundamental base for the development of different parts of the TELSCAN project. User requirements cover, of course, a multitude of different aspects, and to demonstrate how they have been integrated into the project’s output, they have been grouped into the following categories: • System function requirements • Interface requirements • Information requirements • Protocol requirements

    Inventory of ATT system requirements for elderly and disabled drivers and travellers

    Get PDF
    This Inventory of ATT System Requirements for Elderly and Disabled Drivers and Travellers is the product of the TELSCAN project’s Workpackage 3: Identification and Updating of User Requirements of Elderly and Disabled Travellers. It describes the methods and tools used to identify the needs of elderly and disabled (E&D) travellers. The result of this investigation is a summary of the requirements of elderly and disabled travellers using different modes of transport, including private cars, buses/trams, metros/trains, ships and airplanes. It provides a generic user requirements specification which can guide the design of all transport telematics systems. However, it is important to stress that projects should also capture a more detailed definition of user requirements for their specific application area or system

    INTELLIGENTE TRANSPORT SYSTEMEN ITS EN VERKEERSVEILIGHEID

    Get PDF
    This report discusses Intelligent Transport Systems (ITS). This generic term is used for a broad range of information-, control- and electronic technology that can be integrated in the road infrastructure and the vehicles themselves, saving lives, time and money bymonitoring and managing traffic flows, reducing conges-tion, avoiding accidents, etc. Because this report was written in the scope of the Policy Research Centre Mobility & Public Works, track Traffic Safety, it focuses on ITS systems from the traffic safety point of view. Within the whole range of ITS systems, two categories can be distinguished: autonomous and cooperative systems. Autonomous systems are all forms of ITS which operate by itself, and do not depend on the cooperation with other vehicles or supporting infrastructure. Example applications are blind spot detection using radar, electronic stability control, dynamic traffic management using variable road signs, emergency call, etc. Cooperative systems are ITS systems based on communication and cooperation, both between vehicles as between vehicles and infrastructure. Example applications are alerting vehicles approaching a traffic jam, exchanging data regarding hazardous road conditions, extended electronic brake light, etc. In some cases, autonomous systems can evolve to autonomous cooperative systems. ISA (Intelligent Speed Adaptation) is an example of this: the dynamic aspect as well as communication with infrastructure (eg Traffic lights, Variable Message Sign (VMS)...) can provide additional road safety. This is the clear link between the two parts of this report. The many ITS applications are an indicator of the high expectations from the government, the academic world and the industry regarding the possibilities made possible by both categories of ITS systems. Therefore, the comprehensive discussion of both of them is the core of this report. The first part of the report covering the autonomous systems treats two aspects: 1. Overview of European projects related to mobility and in particular to road safety 2. Overview for guidelines for the evaluation of ITS projects. Out of the wide range of diverse (autonomous) ITS applications a selection is made; this selection is focused on E Safety Forum and PreVENT. Especially the PreVent research project is interesting because ITS-applications have led to a number of concrete demonstration vehicles that showed - in protected and unprotected surroundings- that these ITS-applications are already technically useful or could be developed into useful products. The component “guidelines for the evaluation of ITS projects” outlines that the government has to have specific evaluation tools if the government has the ambition of using ITS-applications for road safety. Two projects -guidelines for the evaluation of ITS projects- are examined; a third evaluation method is only mentioned because this description shows that a specific targeting of the government can be desirable : 1. TRACE describes the guidelines for the evaluation of ITS projects which are useful for the evaluation of specific ITS-applications. 2. FITS contains Finnish guidelines for the evaluation of ITS project; FIS is an adaptation of methods used for evaluation of transport projects. 3. The third evaluation method for the evaluation of ITS projects is developed in an ongoing European research project, eImpact. eImpact is important because, a specific consultation of stake holders shows that the social importance of some techniques is underestimated. These preliminary results show that an appropriate guiding role for the government could be important. In the second part of this document the cooperative systems are discussed in depth. These systems enable a large number of applications with an important social relevance, both on the level of the environment, mobility and traffic safety. Cooperative systems make it possible to warn drivers in time to avoid collisions (e.g. when approaching the tail of a traffic jam, or when a ghost driver is detected). Hazardous road conditions can be automatically communicated to other drivers (e.g. after the detection of black ice or an oil trail by the ESP). Navigation systems can receive detailed real-time up-dates about the current traffic situation and can take this into account when calculating their routes. When a traffic distortion occurs, traffic centers can immediately take action and can actively influence the way that the traffic will be diverted. Drivers can be notified well in advance about approaching emergency vehicles, and can be directed to yield way in a uniform manner. This is just a small selection from the large number of applications that are made possible because of cooperative ITS systems, but it is very obvious that these systems can make a significant positive contribution to traffic safety. In literature it is estimated that the decrease of accidents with injuries of fatalities will be between 20% and 50% . It is not suprising that ITS systems receive a lot of attention for the moment. On an international level, a number of standards are being established regarding this topic. The International Telecommunications Uniont (ITU), Institute for Electrical and Electronics Engineers (IEEE), International Organization for Standardization (ISO), Association of Radio Industries and Business (ARIB) and European committee for standardization (CEN) are currently defining standards that describe different aspects of ITS systems. One of the names that is mostly mentioned in literature is the ISO TC204/WG16 Communications Architecture for Land Mobile environment (CALM) standard. It describes a framework that enables transparent (both for the application and the user) continuous communication through different communication media. Besides the innumerable standardization activities, there is a great number of active research projects. On European level, the most important are the i2010 Intelligent Car Initiative, the eSafety Forum, and the COMeSafety, the CVIS, the SAFESPOT, the COOPERS and the SEVECOM project. The i2010 Intelligent Car Initiative is an European initiative with the goal to halve the number of traffic casualties by 2010. The eSafety Forum is an initiative of the European Commission, industry and other stakeholders and targets the acceleration of development and deployment of safety-related ITS systems. The COMeSafety project supports the eSafety Forum on the field of vehicle-to-vehicle and vehicle-to-infrastructure communication. In the CVIS project, attention is given to both technical and non-technical issues, with the main goal to develop the first free and open reference implementation of the CALM architecture. The SAFEST project investigates which data is important for safety applications, and with which algorithmsthis data can be extracted from vehicles and infrastructure. The COOPERS project mainly targets communication between vehicles and dedicated roadside infrastructure. Finally, the SEVECOM project researches security and privacy issues. Besides the European projects, research is also conducted in the United States of America (CICAS and VII projects) and in Japan (AHSRA, VICS, Smartway, internetITS). Besides standardization bodies and governmental organizations, also the industry has a considerable interest in ITS systems. In the scope of their ITS activities, a number of companies are united in national and international organizations. On an international level, the best known names are the Car 2 Car Communication Consortium, and Ertico. The C2C CC unites the large European car manufacturers, and focuses on the development of an open standard for vehicle-to-vehicle and vehicle-to-infrastructure communications based on the already well established IEEE 802.11 WLAN standard. Ertico is an European multi-sector, public/private partnership with the intended purpose of the development and introduction of ITS systems. On a national level, FlandersDrive and The Telematics Cluster / ITS Belgium are the best known organizations. Despite the worldwide activities regarding (cooperative) ITS systems, there still is no consensus about the wireless technology to be used in such systems. This can be put down to the fact that a large number of suitable technologies exist or are under development. Each technology has its specific advantages and disadvantages, but no single technology is the ideal solution for every ITS application. However, the different candidates can be classified in three distinct categories. The first group contains solutions for Dedicated Short Range Communication (DSRC), such as the WAVE technology. The second group is made up of several cellular communication networks providing coverage over wide areas. Examples are GPRS (data communication using the GSM network), UMTS (faster then GPRS), WiMAX (even faster then UMTS) and MBWA (similar to WiMAX). The third group consists of digital data broadcast technologies such as RDS (via the current FM radio transmissions, slow), DAB and DMB (via current digital radio transmissions, quicker) and DVB-H (via future digital television transmissions for mobiledevices, quickest). The previous makes it clear that ITS systems are a hot topic right now, and they receive a lot of attention from the academic world, the standardization bodies and the industry. Therefore, it seems like that it is just a matter of time before ITS systems will find their way into the daily live. Due to the large number of suitable technologies for the implementation of cooperative ITS systems, it is very hard to define which role the government has to play in these developments, and which are the next steps to take. These issues were addressed in reports produced by the i2010 Intelligent Car Initiative and the CVIS project. Their state of the art overview revealed that until now, no country has successfully deployed a fully operational ITS system yet. Seven EU countries are the furthest and are already in the deployment phase: Sweden, Germany, the Netherlands, the United Kingdom, Finland, Spain and France. These countries are trailed by eight countries which are in the promotion phase: Denmark, Greece, Italy, Austria, Belgium,Norway, the Czech Republic and Poland. Finally, the last ten countries find themselves in the start-up phase: Estonia, Lithuania, Latvia, Slovenia, Slovakia, Hungary, Portugal, Switzerland, Ireland and Luxembourg. These European reports produced by the i2010 Intelligent Car Initiative and the CVIS project have defined a few policy recommendations which are very relevant for the Belgian and Flemish government. The most important recommendations for the Flemish government are: • Support awareness: research revealed that civilians consider ITS applications useful, but they are not really willing to pay for this technology. Therefore, it is important to convince the general public of the usefulness and the importance of ITS systems. • Fill the gaps: Belgium is situated in the promotion phase. This means that it should focus at identifying the missing stakeholders, and coordinating national and regional ITS activities. Here it is important that the research activities are coordinated in a national and international context to allow transfer of knowledge from one study to the next, as well as the results to be comparable. • Develop a vision: in the scope of ITS systems policies have to be defined regarding a large number of issues. For instance there is the question if ITS users should be educated, meaning that the use of ITS systems should be the subject of the drivers license exam. How will the regulations be for the technical inspection of vehicles equipped with ITS technology? Will ITS systems be deployed on a voluntary base, or will they e.g. be obliged in every new car? Will the services be offered by private companies, by the public authorities, or by a combination of them? Which technology will be used to implement ITS systems? These are just a few of the many questions where the government will have to develop a point of view for. • Policy coordination: ITS systems are a policy subject on an international, national and regional level. It is very important that these policy organizations can collaborate in a coordinated manner. • Iterative approach to policy development: developing policies for this complex matter is not a simple task. This asks for an iterative approach, where policy decisions are continuously refined and adjusted

    Development of rear-end collision avoidance in automobiles

    Get PDF
    The goal of this work is to develop a Rear-End Collision Avoidance System for automobiles. In order to develop the Rear-end Collision Avoidance System, it is stated that the most important difference from the old practice is the fact that new design approach attempts to completely avoid collision instead of minimizing the damage by over-designing cars. Rear-end collisions are the third highest cause of multiple vehicle fatalities in the U.S. Their cause seems to be a result of poor driver awareness and communication. For example, car brake lights illuminate exactly the same whether the car is slowing, stopping or the driver is simply resting his foot on the pedal. In the development of Rear-End Collision Avoidance System (RECAS), a thorough review of hardware, software, driver/human factors, and current rear-end collision avoidance systems are included. Key sensor technologies are identified and reviewed in an attempt to ease the design effort. The characteristics and capabilities of alternative and emerging sensor technologies are also described and their performance compared. In designing a RECAS the first component is to monitor the distance and speed of the car ahead. If an unsafe condition is detected a warning is issued and the vehicle is decelerated (if necessary). The second component in the design effort utilizes the illumination of independent segments of brake lights corresponding to the stopping condition of the car. This communicates the stopping intensity to the following driver. The RECAS is designed the using the LabVIEW software. The simulation is designed to meet several criteria: System warnings should result in a minimum load on driver attention, and the system should also perform well in a variety of driving conditions. In order to illustrate and test the proposed RECAS methods, a Java program has been developed. This simulation animates a multi-car, multi-lane highway environment where car speeds are assigned randomly, and the proposed RECAS approaches demonstrate rear-end collision avoidance successfully. The Java simulation is an applet, which is easily accessible through the World Wide Web and also can be tested for different angles of the sensor

    A Collaborative System to Manage Information Sources Improving Transport Infrastructure Data Knowledge

    Get PDF
    The present paper describes the WIKI RoadSMap project implemented within a start-up research program. The main objective of the project is to create a system that applies innovative technologies to information gathered to enable the acquisition of greater local knowledge and analysis of issues related to road infrastructure and directly and indirectly connected elements. By applying semantic analysis technology for the extraction, collection, integration and publication of data, WIKI RoadSMap allows users to acquire greater knowledge in order to optimize choices related to road infrastructure. The system allows more detailed and targeted dissemination of data related to the design, management and maintenance of an infrastructure. The source and type of data needed are different and heterogeneous, including information 'posted' by people with private and/or commercial purposes, or available at road agencies and/or public administrations or related to specific surveys carried out. The system platform should be available on the Web and on smartphones, both providing different levels of access and subscriptions. The spread and use of WIKI RoadSMap could have a positive impact on the market with regard to the supply of materials and specialized technical skills and companies operating in the areas of interest

    Ambient hues and audible cues: An approach to automotive user interface design using multi-modal feedback

    Get PDF
    The use of touchscreen interfaces for in-vehicle information, entertainment, and for the control of comfort settings is proliferating. Moreover, using these interfaces requires the same visual and manual resources needed for safe driving. Guided by much of the prevalent research in the areas of the human visual system, attention, and multimodal redundancy the Hues and Cues design paradigm was developed to make touchscreen automotive user interfaces more suitable to use while driving. This paradigm was applied to a prototype of an automotive user interface and evaluated with respects to driver performance using the dual-task, Lane Change Test (LCT). Each level of the design paradigm was evaluated in light of possible gender differences. The results of the repeated measures experiment suggests that when compared to interfaces without both the Hues and the Cues paradigm applied, the Hues and Cues interface requires less mental effort to operate, is more usable, and is more preferred. However, the results differ in the degradation in driver performance with interfaces that only have visual feedback resulting in better task times and significant gender differences in the driving task with interfaces that only have auditory feedback. Overall, the results reported show that the presentation of multimodal feedback can be useful in design automotive interfaces, but must be flexible enough to account for individual differences

    When technology cares for people with dementia:A critical review using neuropsychological rehabilitation as a conceptual framework

    Get PDF
    Clinicians and researchers have become increasingly interested in the potential of technology in assisting persons with dementia (PwD). However, several issues have emerged in relation to how studies have conceptualized who the main technology user is (PwD/carer), how technology is used (as compensatory, environment modification, monitoring or retraining tool), why it is used (i.e., what impairments and/or disabilities are supported) and what variables have been considered as relevant to support engagement with technology. In this review we adopted a Neuropsychological Rehabilitation perspective to analyse 253 studies reporting on technological solutions for PwD. We analysed purposes/uses, supported impairments and disabilities and how engagement was considered. Findings showed that the most frequent purposes of technology use were compensation and monitoring, supporting orientation, sequencing complex actions and memory impairments in a wide range of activities. The few studies that addressed the issue of engagement with technology considered how the ease of use, social appropriateness, level of personalization, dynamic adaptation and carers' mediation allowed technology to adapt to PWD's and carers' preferences and performance. Conceptual and methodological tools emerged as outcomes of the analytical process, representing an important contribution to understanding the role of technologies to increase PwD's wellbeing and orient future research.University of Huddersfield, under grants URF301-01 and URF506-01

    Designing with older car drivers: seeking out aspirations and needs.

    Get PDF
    Older adults are increasingly being recognised as an important and growing consumer market, however they appear reticent in adopting new technologies. One factor contributing to this is that their needs are poorly understood and products are thus poorly specified. Within the context of driving as a socially valuable skilled behaviour we applied a participatory design approach to engage with older people as valued design partners. This paper examines different strategies for involving older people as experts in their own domain, developing a better understanding of their needs and aspirations and empowering them within the design process. This research took account of new developments in car design and opportunities for intelligent driver assistance systems to support driver safety. The findings indicate that older car drivers responded well to the opportunity to identify their needs and to evaluate prototypes and novel technologies. The use of novel technologies particularly supported improved understanding of skilled behaviours and mismatches with the technology. These evaluative activities when framed as part of the early stages of the design process offer important opportunities to enhance understanding of latent and implicit needs of older adults which can inform and refine design requirements

    MOG 2010:3rd Workshop on Multimodal Output Generation: Proceedings

    Get PDF
    • …
    corecore