34 research outputs found

    Logical Dynamics of Information and Interaction

    Full text link

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    Regulating competence-based access to agent societies

    Get PDF
    Advances in ubiquitous computing have resulted in changes to the way we access and use everyday applications, e.g. reading mail and booking tickets. At the same time, users interact with these applications in a variety of ways, each with different characteristics, e.g., different degrees of bandwidth, different payment schemes supported and so on. These are highly dynamic interactions, as some of the applications might become unavailable (either temporarily or permanently) or their behaviour may change. As the user has to deal with a large number of proactive and dynamic applications every day, he will need a personal assistant that possesses similar characteristics. The agent paradigm meets this requirement, since it exhibits the necessary features. As a result, the user will provide its personal agent assistant with a goal, e.g. I need a smartphone which costs less than three hundred pounds, and the agent will have to use a number of applications offering information on smartphones so that it finds the requested one. This, in turn, raises a number of issues regarding the organisation and the degrees of access to these services as well as the correctness of their descriptions. In this work, we propose the organisation of applications around the concept of artificial agent societies, to which access would be possible only by a positive evaluation of an agent's application. The agent will provide the Authority Agent with the role it is applying for and its competencies in the context of a protocol, i.e., the messages that it can utter/understand. The Authority Agent will then check to see if the applicant agent is a competent user of the protocols; if yes, entry is granted. Assuming that access is granted, the next issue is to decide on the protocol(s) that agent receives. As providing the full protocol will cause security and overload problems, we only need to provide the part required for the agent to play its role. We show how this can be done and how we can repair certain protocols so that they are indeed enactable once this role decomposition is performed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Implementation of second-life batteries as energy storage systems enhancing the interoperability and flexibility of the energy infrastructure in tertiary buildings

    Get PDF
    The main focus of this project is to evaluate the implementation of second-life batteries for a building stock enabling the energy flexibility schemes like Demand Response (DR). This project will focus particularly on how the building stock and its energy infrastructure (energy storage systems, legacy-assets, communication devices and grid architecture, among others) can participate as innovative energy solutions of the next generation of smart-grids, acting as virtual power plants (VPP) in order to deploy the distributed generation (DG) concept in the actual energy field and paving the way to unlock the demand response (DR) market in the distribution energy network. In addition, the implementation of these technologies will led to plan different business models and the scalability of them in the tertiary building sector. Battery energy storage systems (BESSs) are already being deployed for several stationary applications in a techno-economical feasible way. This project focuses in the study to obtain potential revenues from BESSs built from EVs lithium-ion batteries with varying states of health (SoH). For this analysis, a stationary BESS sizing model is done, using the parameters of a 14 kWh new battery, but also doing a comparison with parameters if the same battery would be 11.2 kWh second-life battery. The comprehensive sizing model consists of several detailed sub-models, considering battery specifications, aging and an operational strategy plan, which allow a technical assessment through a determined time frame. Therefore, battery depreciation and energy losses are considered in this techno-economic analysis. Potential economical feasible applications of new and second-life batteries, such the integration of a Building Integrated Photovoltaics (BIPV), self-consumption schemes, feed-in-tariff schemes and frequency regulation as well as their combined operation are compared. The research includes different electricity price scenarios mostly from the current Spanish energy market. The operation and integration of ICT-IoT technology upgrades is found to have the highest economic viability for this specific case study. A detailed study for this project will enhance the relevant importance of these topics in the energy field and how it will be a disruptive solution for the initial problem statement. A general context is given in order to introduce the main and specific objectives thus to trace an adequate way to follow and achieve them. The development of this master thesis will be coupled with the Demand Response Integration technologies (DRIvE) [10] H2020 EU funded project, currently on-going, considering some of the energy consumption data and initial parameters from the selected case study at COMSA CorporaciĂłn office building in Barcelona, Spain

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    On the Existence of Characterization Logics and Fundamental Properties of Argumentation Semantics

    Get PDF
    Given the large variety of existing logical formalisms it is of utmost importance to select the most adequate one for a specific purpose, e.g. for representing the knowledge relevant for a particular application or for using the formalism as a modeling tool for problem solving. Awareness of the nature of a logical formalism, in other words, of its fundamental intrinsic properties, is indispensable and provides the basis of an informed choice. One such intrinsic property of logic-based knowledge representation languages is the context-dependency of pieces of knowledge. In classical propositional logic, for example, there is no such context-dependence: whenever two sets of formulas are equivalent in the sense of having the same models (ordinary equivalence), then they are mutually replaceable in arbitrary contexts (strong equivalence). However, a large number of commonly used formalisms are not like classical logic which leads to a series of interesting developments. It turned out that sometimes, to characterize strong equivalence in formalism L, we can use ordinary equivalence in formalism L0: for example, strong equivalence in normal logic programs under stable models can be characterized by the standard semantics of the logic of here-and-there. Such results about the existence of characterizing logics has rightly been recognized as important for the study of concrete knowledge representation formalisms and raise a fundamental question: Does every formalism have one? In this thesis, we answer this question with a qualified “yes”. More precisely, we show that the important case of considering only finite knowledge bases guarantees the existence of a canonical characterizing formalism. Furthermore, we argue that those characterizing formalisms can be seen as classical, monotonic logics which are uniquely determined (up to isomorphism) regarding their model theory. The other main part of this thesis is devoted to argumentation semantics which play the flagship role in Dung’s abstract argumentation theory. Almost all of them are motivated by an easily understandable intuition of what should be acceptable in the light of conflicts. However, although these intuitions equip us with short and comprehensible formal definitions it turned out that their intrinsic properties such as existence and uniqueness, expressibility, replaceability and verifiability are not that easily accessible. We review the mentioned properties for almost all semantics available in the literature. In doing so we include two main axes: namely first, the distinction between extension-based and labelling-based versions and secondly, the distinction of different kind of argumentation frameworks such as finite or unrestricted ones

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    Ecology-based planning. Italian and French experimentations

    Get PDF
    This paper examines some French and Italian experimentations of green infrastructures’ (GI) construction in relation to their techniques and methodologies. The construction of a multifunctional green infrastructure can lead to the generation of a number of relevant bene ïŹ ts able to face the increasing challenges of climate change and resilience (for example, social, ecological and environmental through the recognition of the concept of ecosystem services) and could ease the achievement of a performance-based approach. This approach, differently from the traditional prescriptive one, helps to attain a better and more ïŹ‚ exible land-use integration. In both countries, GI play an important role in contrasting land take and, for their adaptive and cross-scale nature, they help to generate a res ilient approach to urban plans and projects. Due to their ïŹ‚ exible and site-based nature, GI can be adapted, even if through different methodologies and approaches, both to urban and extra-urban contexts. On one hand, France, through its strong national policy on ecological networks, recognizes them as one of the major planning strategies toward a more sustainable development of territories; on the other hand, Italy has no national policy and Regions still have a hard time integrating them in already existing planning tools. In this perspective, Italian experimentations on GI construction appear to be a simple and sporadic add-on of urban and regional plans

    Environmental and territorial modelling for planning and design

    Get PDF
    Between 5th and 8th September 2018 the tenth edition of the INPUT conference took place in Viterbo, guests of the beautiful setting of the University of Tuscia and its DAFNE Department. INPUT is managed by an informal group of Italian academic researchers working in many fields related to the exploitation of informatics in planning. This Tenth Edition pursed multiple objectives with a holistic, boundary-less character, to face the complexity of today socio-ecological systems following a systemic approach aimed to problem solving. In particular, the Conference will aim to present the state of art of modeling approaches employed in urban and territorial planning in national and international contexts. Moreover, the conference has hosted a Geodesign workshop, by Carl Steinitz (Harvard Graduate School of Design) and Hrishi Ballal (on skype), Tess Canfield, Michele Campagna. Finally, on the last day of the conference, took place the QGIS hackfest, in which over 20 free software developers from all over Italy discussed the latest news and updates from the QGIS network. The acronym INPUT was born as INformatics for Urban and Regional Planning. In the transition to graphics, unintentionally, the first term was transformed into “Innovation”, with a fine example of serendipity, in which a small mistake turns into something new and intriguing. The opportunity is taken to propose to the organizers and the scientific committee of the next appointment to formalize this change of the acronym. This 10th edition was focused on Environmental and Territorial Modeling for planning and design. It has been considered a fundamental theme, especially in relation to the issue of environmental sustainability, which requires a rigorous and in-depth analysis of processes, a theme which can be satisfied by the territorial information systems and, above all, by modeling simulation of processes. In this topic, models are useful with the managerial approach, to highlight the many aspects of complex city and landscape systems. In consequence, their use must be deeply critical, not for rigid forecasts, but as an aid to the management decisions of complex systems
    corecore