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Preface

Advances in ubiquitous computing have resulted in changes to the way
we access and use everyday applications, e.g. reading mail and booking
tickets. At the same time, users interact with these applications in a va-
riety of ways, each with different characteristics, e.g., different degrees
of bandwidth, different payment schemes supported and so on. These
are highly dynamic interactions, as some of the applications might be-
come unavailable (either temporarily or permanently) or their behaviour
may change. As the user has to deal with a large number of proactive
and dynamic applications every day, he will need a personal assistant
that possesses similar characteristics. The agent paradigm meets this
requirement, since it exhibits the necessary features. As a result, the
user will provide its personal agent assistant with a goal, e.g. I need a
smartphone which costs less than three hundred pounds, and the agent
will have to use a number of applications offering information on smart-
phones so that it finds the requested one. This, in turn, raises a number
of issues regarding the organisation and the degrees of access to these
services as well as the correctness of their descriptions.

In this work, we propose the organisation of applications around the
concept of artificial agent societies, to which access would be possible
only by a positive evaluation of an agent’s application. The agent will
provide the Authority Agent with the role it is applying for and its
competencies in the context of a protocol, i.e., the messages that it can
utter/understand. The Authority Agent will then check to see if the
applicant agent is a competent user of the protocols; if yes, entry is
granted.

Assuming that access is granted, the next issue is to decide on the pro-
tocol(s) that agent receives. As providing the full protocol will cause
security and overload problems, we only need to provide the part re-
quired for the agent to play its role. We show how this can be done and
how we can repair certain protocols so that they are indeed enactable
once this role decomposition is performed.
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Chapter 1

Introduction

1.1 Motivation

The advent of ubiquitous computing opens up new possibilities for appli-

cations and changes the way that users interact with a variety of devices

to perform everyday tasks [115, 116]. Bulky computing devices have

now turned into minuscule ones that users can take with them and use

in their day to day life. As a result, small devices - e.g. mobile phones,

PDAs and watches - acquired capabilities that only powerful desktop

computers had in the not so distant past like surfing the Internet at

high speeds and accessing e-mails. The final aim of ubiquitous comput-

ing is to seamlessly integrate all these devices into people’s everyday life

so they should be able to perform tasks like making bookings or partic-

ipating in auctions without going through the burden of understanding

the technicalities involved.

In the tasks of accessing the Internet or sending an e-mail, location

and/or configuration do not play a role - the services that the user is ac-

cessing are static. In some tasks, however, location and/or configuration

can play a crucial role. As an example, think of a tourist who is visiting

a place for the first time and he is interested in finding out the near-

est restaurant or tourist centre. Another example might be a purchase

application that accepts card payments among other ways of payment,

but there is a last minute problem with the component that deals with

that aspect and a replacement has to be found or the application has to

be reconfigured and the card payments taken off as an option.

Furthermore, the time span that the application will be needed for could

be really small [109] and the device will have a number of providers to
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choose from. In addition, the applications should exhibit a goal-oriented

and proactive behaviour (in the case that reconfiguration is needed or a

choice between providers has to be made).

These observations raise the issue of how this kind of applications will

be implemented and organised as well as how access to them will be

regulated. In terms of implementation, a number of paradigms exist

such as distributed objects [107] and network programming. More recent

is that of Service-Oriented Architectures (SOA) [39, 94] in many cases

applied through web services [63, 77].

On the other hand, web services do not address the issues of pro-active

and goal-oriented behaviour; rather, the interaction is limited to pre-

defined courses of interaction as specified in each party’s configuration.

The agent paradigm [19, 78] is well suited for this purpose as proactive

and goal-oriented behaviour are amongst the fundamental notions of

agency. Moreover, in complex services each agent can implement a part

of the protocol to add flexibility to the approach (e.g. one agent could

implement the purchase service, another the payment one and a third

one could implement the shipping service).

Artificial agent societies [82, 90] can be used to model such applications

as individual agents offering various services. The services will be offered

to society members, so if an agent needs to make use of a service offered

by one of the society member agents, it will have to join the society.

Each service of the society will be represented through a set of protocols

that the agent will have to participate in. The protocols will specify

the behaviour of the participants (expressed in the form of roles) and

co-ordinate the moves that they can make in the context of executing

the protocol.

When representing a protocol, a familiar metaphor would provide the

advantage of abstracting away from the technicalities and presenting

the user as well as the designer with something that they can easily

understand and use without problems [104]. In this context, we are

treating protocols as games and every move made by a participant in a

protocol is treated as a move made in a game. This is the case as both

games and protocols are rule-governed and additional components (e.g.

protocol variations) could be easily added.
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1.2 Admittance of agents to semi-open so-

cieties

Agents typically have a set of goals they are trying to fulfill. In order to

fulfill these goals, an agent may need to get access to a set of resources

relevant to this goal and collaborate with other agents to achieve sub-

goals [109]. However, these resources will have to be accessed from a

variety of locations, in a variety of ways and each one of them will

exhibit different properties - varying degrees of bandwidth on the con-

nection they use for example or varying accuracy, price and so on. We

choose to represent the agents providing these resources as an artificial

society. Such a society may be identified by a set of network locations,

will be governed by a set of rules and will be associated with a degree

of openness. Agents requiring a resource will need to join a society that

holds the resource and conforms to the rules of that society if admitted

to it.

We look at openness from a membership viewpoint [27], not from one

considering agent architectures, standards or ontologies. In this con-

text, new agents can be accepted to the society but they will have to go

through an application process first. The application will be assessing

the agent’s competence to interact with the other agents in that society;

informally, the agent will be allowed entry to the society if it can make

conversation with the other member agents. We will be defining compe-

tence formally later in Section 3.9, as well as describing the interactions

between an agent, on one hand, and a society on the other. The latter

will be represented in the interactions by its Authority Agents ; these are

agents that are assumed to know all the societal rules regarding what

protocols the society makes available and what roles participate in each

of them.

We will be using UML [41] to represent the activities of the interaction

between agents and societies in the form of activity diagrams. The use of

the extended set of UML diagrams as the modelling language for agent-

based systems [52] has been proposed as the result of agents having

richer properties than objects [79] and, also, some UML diagrams (e.g.

class diagrams) lacking formal semantics [88].

Our interest at this stage, however, is to represent the various interac-

tions between the applicant agent and the authority agent of the society

the applicant wants to join. Put another way, our representation is in-
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tended to be at a high-level of abstraction rather than describing all the

details. As a result, we are trying to show the flow of interactions by

grouping interactions serving similar purposes into activities; activity

diagrams are very useful in this context, due to their processing-thread

semantics [79] - this will give us the flexibility of describing activities

that happen in parallel. We should note here that AUML [12] could

have been used for the same purpose as activity diagrams in both UML

and AUML are based on Petri Nets; in fact, most of the enhancements

suggested by the AUML project are now part of UML 2.0.

In general, for societies where membership is conditional the lifetime of

the agent in an artificial society can be divided into three phases [66]:

(i) application phase, where the competence of the agent is assessed

with regards to the role(s) that it is applying for (application

phase);

(ii) the phase where the assignment of roles to the agent happens and it

pursues the goal(s) for which it entered the society (societal phase)

- this is where the interaction with the other agents happens;

(iii) the phase where the agent’s goal(s) was (were) achieved or it is

expelled from the society (exit phase).

In this context, this thesis is primarily concerned with the study of phase

(i) with the additional focus on the communication capabilities of agents

at the time of application.

1.2.1 Joining a semi-open society

The agent will be motivated for joining a society, because it needs the re-

sources available therein to accomplish its goal. The application process

is described in Figure 1.1.

The process starts when the Authority Agent of a society receives an

application from an individual agent to occupy a role (or roles) in the

society (as an example, the role of the auctioneer in an auction house).

When the application is made, we assume that is judged on two grounds:

• a set of social qualifications ; these represent anything that is not

related to the societal protocols, but might be a prerequisite for

using them. In the auction example, an agent might have to go
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Figure 1.1: Application process for an agent to join an agent society

through a number of credit checks before its application can be

processed further.

• a set of social skills ; these relate to the communicative acts that the

agent in question is capable of uttering. These acts will be checked

against the protocols that the agent will participate in under the

role(s) it is applying for, should it be accepted as a member to the

society. An example of skills could be acts like bid, register and so

on. In judging that, all other agents will be assumed to behaving

according to the protocol rules.

In the case that the agent receives a positive reply, then it enters the

society while if a negative reply is received it will have to seek another

society that fulfills its goals or acquire the new social skills and/or social

qualifications needed and then apply again for another - possibly the

same - role. There is, also, the possibility of a conditional reply in which

case the agent will have to enter another negotiation cycle - we are

assuming that nothing will have changed in the meantime as a result of

which the agent might have changed its opinion in relation to joining or

not the society.

For the remainder of this thesis, we will be assuming that the agent has

all the social qualifications needed and we will be focusing on verifying

its set of social skills against the protocol requirements. We will not

be looking at conditional replies either and focusing on providing the
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agent with a positive or negative response as to whether it is allowed

to enter the society or not.

1.2.2 An agent’s lifecycle in an artificial society

Once the agent’s request for joining the society is accepted, the agent

will need to be provided with descriptions of the protocols that it is going

to be involved in as a member of the society. Each of the protocols will

relate to a number of roles and sets of communicative acts that the agent

can use in these protocols, depending on what role it assumes in them.

During the time that the agent is part of the society, the set of protocols

needed to interact with other agents may not need to remain constant.

In an agent-oriented application of a business application domain, for

example, it is often convenient to have every user represented by an agent

so that the user accesses business applications and business processes via

the agent (similar to the way people access the web via a browser). In

this setting, if the user of the agent is promoted (thus, been involved

in more and, possibly, different protocols or in the same protocols but

with different roles), the user’s agent will need to accommodate the new

assignment as well. The protocol assignment part, therefore, is not static

but might require the agent, while in the society, to have to learn to cope

with more communicative acts. This is depicted in Figure 1.2. Moreover,

we need to ensure that the agent roles in the new set of protocols that

the agent receives does not contradict the ones it has at the moment,

i.e. there are no role conflicts.

Individual Agent Authority Agent

Assignment

of

Roles

Skills

Acquisition

may lead
to

Figure 1.2: Assignment of roles to an agent

In this work, we will not be considering the dynamic part of skill acqui-

sition and role allocation, but we are only concerned with the allocation
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of role(s) to the agent when it enters the society. Moreover, as we only

look at the static nature of role allocation, we do not include in our

analysis any role conflict issues.

1.2.3 Leaving a society

The status of the agent as a society member will need to be revised over

time. It might be the case that the agent has achieved its goal, in which

case it can leave the society (e.g. in the auction scenario because the

auction ended or the agent acquired the item it was bidding on from

another auction). On the other hand, the society might need to revise

its membership, as a result of the agent failing to comply with some of

the protocols or other constraints on membership (e.g. time constraints

due to limitations on resources availability).

The process in the form of an activity diagram is shown in Figure 1.3.

Individual Agent Authority Agent

Society-Revise

Status

Terminate

Membership

with current status

Membership
Expired

Individual-Revise

Status

else

Member
Expelled

Goal
Achieved

Goal
Failed

New status

acquisition

else

Figure 1.3: An agent leaving a society

As we will not be looking at this phase, we will just assume that the

agent will leave the society once its goal has been achieved or the society

will expel the agent if there are any constraints that the agent violates.

Furthermore, we are not interested in the possibility of the agent break-

ing the rules of the protocol, as we only look at whether the agent can

converse with other agents participating in the protocol. We are not

interested in its actual behaviour once it joins the society, but on its po-

tential to generate conversations with the other member agents on the

basis of its communication skills.
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1.3 Issues

Section 1.2 presents the whole lifetime of an agent within an artificial

agent society. This thesis will focus on the first part, namely the admit-

tance of an agent into an artificial society. In using this representation

(artificial agent societies where member agents provide services through

protocols in which participant agents assume roles) a number of issues

arise.

(Issue 1) how do we formulate a game-based version representation of a pro-

tocol in terms of roles and how is access to the society regulated?

(Issue 2) Assuming the agent is granted access to the society, the next is-

sue is that of the knowledge it gets upon entrance. Sure enough,

we can provide all the details of the protocol but this will cre-

ate performance and, maybe, security problems. The issue to deal

with, then, becomes: can the agent be given a minimal protocol de-

scription that it can follow without worrying about the full protocol

complexity?

(Issue 3) Furthermore, one of the issues with protocols is that of protocol

decomposition [77], i.e., the breaking of complex ones into their

constituents. If the protocol is a well-designed one, then it should

be possible to decompose it into the constituent protocols (one for

each role participating in the protocol) and the resulting protocols

should be implementable, i.e., they should not contain any infor-

mation not known to the agent when it has to make decisions as

to how to proceed in the course of the protocol. In this case, the

question of whether the protocol is well-designed, i.e., is imple-

mentable by the participant agents or not is raised. The question

that we need to look at is: how can we verify that a protocol is

well-designed? If it is not, can it be repaired?

1.4 Aims & Objectives

1.4.1 Aims

The aims of this thesis are:

(Aim 1) (relating to (Issue 1)) Provide a framework based on the games

metaphor that:
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• represents protocols of an artificial society;

• links the representation of protocols to social notions (roles,

skills);

(Aim 2) (relating to (Issue 1)) provide a computational framework that can

assess the application of an agent wishing to join the society;

(Aim 3) (relating to (Issue 2) & (Issue 3)) provide a framework that can

decompose a protocol into smaller ones containing the minimal

information that the participant will need to know and assess if it

is well-designed;

(Aim 4) (relating to (Issue 2) & (Issue 3)) provide a framework for repairing

the protocol if it is not well-designed.

1.4.2 Objectives

The objectives of the project are:

(Objective 1) (relating to (Aim 1)) produce a framework that uses the games

metaphor as the main representation mechanism [104]. We chose

the games metaphor as users are familiar with the concept. More-

over, it is an intuitive metaphor as games and protocols are both

rule-governed.

(Objective 2) (relating to (Aim 1) & (Aim 2)) We aim at producing executable

specifications, which are event-based and structured; the protocols

as games representation meets these requirements as it is based

around the concept of events (moves made by the players). We

represent moves by considering the Event and Situation Calculi

frameworks to represent the evolution of the formulated protocols.

We are interested in the evolution of the protocol in cases where

focus is on the global state or on concurrent actions or property

changes over time and those two frameworks have proven to be

well suited for this purpose.

(Objective 3) (relating to (Aim 2)) evaluate the approach through the use of

protocols with different structures. One structure that might cause

problems is that of loops, as it might mean that we run the danger

of looping continuously and not reaching any result. We need to

filter out these moves and allow them to occur a certain number of

times. Another category that is of interest is in protocols where we
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have two instances of the same role - in this case, both instances

should receive the same behavioural description.

(Objective 4) (relating to (Aim 3) & (Aim 4)) use a technique that will allow us

to get a minimal version of the original protocol containing only

the rules pertinent to a specific role.

(Objective 5) (relating to (Aim 3) & (Aim 4)) use the aforementioned technique

in order to determine if the protocol is well-formed as well as repair

it so it has this property in the end.

1.5 Research Hypotheses

In the course of this research, we made the following assumptions:

(Hypothesis 1) We take a bird’s eye view of the society and look at it as a collection

of norms encapsulated in protocols and roles - nothing else (e.g.

reputation, trust) is of interest.

(Hypothesis 2) The strategies of the agents are, also, not taken into consideration

as they cannot be observed.

(Hypothesis 3) We look at societies whose admittance requirements will only de-

pend on the protocols. That is, admittance to the society is only

judged on the basis of the agent’s ability to participate in the rel-

evant societal protocols. We do not take into account the current

or future composition of the society (in terms of numbers of agents

playing specific roles) and how additional preferences regarding its

composition or any other aspect can affect agent’s admittance. For

example if an auction society has reached a pre-defined maximum

number of bidders, another one applying for a bidder’s place who

can perform well in the bidder’s protocol(s) will not be rejected

on the basis of a large number of bidders already present in the

society.

(Hypothesis 4) We only look at the message exchanges between societal agents

in the context of pre-defined protocols and roles. We also assume

that this exchange is free of any further constraints, e.g. due to

environmental models. If an exchange is allowed by a protocol

and the agent selects to utter that message, then the exchange

will happen.
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(Hypothesis 5) We are not interested in the architecture or communication lan-

guage of the individual agents. We assume that there is a shared

lingua and that agents themselves are responsible for ensuring that

they can understand the language spoken by other agents before

they make the application for entering the society.

(Hypothesis 6) We are not interested in the low-level primitives of agent com-

munication. We assume that messages will always arrive to their

recipients and any problems (e.g., network delays, concurrent com-

munication and so on) are outside the scope of this work.

(Hypothesis 7) When an agent is checked against the protocols that it will play

as a society member (if admitted to the society), the check is done

assuming that the other participants are ideal and collaborative.

This means that they can perform all moves prescribed by the pro-

tocol and they always collaborate. As mentioned in (Hypothesis

3), the current composition of the society is not taken into con-

sideration at all. This means that the new agent admitted might

posses skills that the agents currently in the society cannot match.

However, this approach has the following advantages:

(a) it can serve as a first pass. Assuming agents that can realise

all moves, we can discard applicants who do not meet our

expectations. This is much easier and effective than taking

into consideration the current composition of the society and

what moves each of its members can perform;

(b) it provides opportunities for expansion. As new agents are

added, the skills that cannot be put in use at the moment

might prove extremely useful later on. For example, an agent

that can take Visa payments, when no other agent in the

society can make a Visa payment now.

1.6 Description of the approach and archi-

tecture of the techniques used

This work aims at providing a framework for deciding if an agent is

competent to join a society offering services it is interested in and, if

accepted, provide it with the minimal enactable protocol with actions

only pertinent to its role. The approach followed to achieve this is:
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1 the agent applies for entry to the society providing his communi-

cation abilities (i.e., the messages it can utter/understand);

2 the Authority Agent of the society uses the game-based formula-

tion of the protocol (see Chapter 3 for the details) to decide if the

agent is competent to join the society or not;

3 provided it is considered to be competent, it will need to be pro-

vided with information on the role it is taking up. This will involve

creating a role specification from the protocol one. The technique

we use is based on an automata-theoretic technique called branch-

ing bisimulation equivalence(bbe ) Chapter 4 for the details).

4 the role specification is then checked for enactability.

• if it is found to be non-enactable, then the original protocol

is modified appropriately (check Section 4.3 for the details).

The process is shown in Figure 1.4.

membership to the
Agent applies for

Authority Agent judges
the agent’s competence

Agent Competenet?
No

Yes

role specifications
Authority Agent produces

Protocol
Enactable?

Yes

Provide agent
with the specification

Repair Protocol

No

society

Figure 1.4: Our approach

12



1.7 Structure of the Thesis

This is the introductory chapter, where we provide the motivation for

the research and outline its aims and objectives, as well as state any

assumptions made and listing the relevant publications. The rest of the

thesis is structured as follows:

Chapter 2 presents the background to our work. The concepts that

form the cornerstones of our work are presented briefly; namely the con-

cepts of agent societies, the original game-based protocol representation

framework and roles.

We, then, move on in Chapter 3 to describe the theoretical aspect of

our model. We describe how to model roles in games protocols and how

to compose them to compose the societal protocols. This is followed

by a definition of how a protocol can be represented in both Event and

Situation calculi formulations. Once the agent is accepted into the soci-

ety and should be given the protocols it has to enact, the question that

arises is whether it is competent to participate in the protocol or not.

We define the agent’s strategy and, on the basis of that, differentiate be-

tween different degrees of competence. Finally, the relationship between

the game-based approach that we use to describe the protocols and the

LTS one we are using for representing them is discussed.

Chapter 4 looks at the algorithms for meeting our objectives, namely

de-composing the protocol into roles, repairing it if needed and providing

the agent only with the minimal set of information required to enact

its role. We discuss three different approaches for repairing a protocol,

ranging from repairing every single problematic transition to a selected

subset of them.

Once the theoretical framework and the algorithms have been discussed,

in Chapter 5 we evaluate cyclic and acyclic protocols. We look at ex-

amples in both formulations - Event and Situation Calculi. We also

present an example of breaking down a protocol that contains two in-

stances of the same role, an auction with two bidders. If the protocol

is well-designed, then it should provide the same set of options for both

bidders as they enact the same role.

Chapter 6 reviews related work concerning competence (or conformance

or interoperability), extracting rules pertinent to a role from the descrip-

tion of the whole protocol and breaking down a protocol into component

roles. A brief account of each approach is given as well as a comparison
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with the game-based approach that we adopt in this work.

Finally, Chapter 7 concludes the thesis by presenting its main findings.

It also draws on directions for future research.

1.8 Previous Publications

The thesis contains materials from the following publications:

(Publication 1) Agents acquiring Resources through Social Positions [66]. This

publication describes the top-level framework for all stages of an

agent’s lifetime within a society. These include the application for

entrance, how it might evolve whilst in the society and the point

at which, voluntary or not, it leaves the society.

(Publication 2) An agent development framework based on social positions [65]. In

this publication, we discuss and link the main components of our

approach, namely roles and skills. Moreover, an attempt is made

to look at the problem of dynamically assigning new roles to the

agent. It also contains an initial attempt to define the concept

of social position as a placeholder for roles, which we have not

explored any further as it was not required to meet our aims.

(Publication 3) Competence Checking for the Global E-Service Society Using Games

[105]. In this publication, we present the game-based framework

for representing protocols. Furthermore, we describe the evolution

of a protocol in both time-independent (Situation Calculus) and

timed (Event Calculus) games.

(Publication 4) From Agent Game Protocols to Implementable Roles [59]. In this

publication, we present an algorithm for producing an individual

role specification from a protocol. We, also, address the problem of

protocols with structural problems (non-enactability) and propose

an algorithm for repairing them.
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Chapter 2

Background

2.1 Introduction

In this chapter, we look at the main concepts around which our work

is built and present the work already been carried out in these areas.

The presentation is done in a sequential order so that the next term

will depend on the previous one and will be motivated by that. More

specifically, we discuss the concepts of agent societies, game-based rep-

resentation of protocols, roles (and skills) and competence.

2.2 Agents

In recent years, there have been major advances in the way we perceive

and interact with computers. These advances were mainly due to the

progress made in the areas of distributed systems and networks as well

as the reductions in size and the increased penetration that computer

devices enjoy in our everyday life.

As a result, in contrast with the past, where the size of the devices as

well as the absence of open area networks made it impossible for the

user to interact with computing devices while on the move, it is now

perfectly possible to use small computing devices embedded in items

we use everyday (such as mobile phones or MP3 players) for performing

tasks that would otherwise be performed from our desktop. As an exam-

ple, many of us would use our mobile handset to connect to the Internet

and participate in auctions, book tickets, read and/or send emails, edit

office documents and so on.
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In conducting these applications, one option is to have the end user

fully involved in initiating and conducting them, i.e., if the user wants

to purchase a specific item in an auction, one option would be to look

at all the auction sites himself, evaluate and follow all the auctions

that this item features in. However, a more realistic and desirable way

forward, would be to allow the software running on the device make some

decisions and give it a degree of autonomy so the interaction required

from the user would be kept to a minimum.

This way repetitive tasks can be simplified and a less error-prone system

can be built. In the aforementioned auction example, it would be much

easier if the software running on the mobile phone or the PDA could

detect that a new auction came up with an item that interests the user

and joined it automatically.

In order for the software to work that way, it should exhibit a high degree

of autonomy and be able to reason about certain properties of the user.

Furthermore, it should be goal-oriented and focus on generating different

plans for achieving the user goal(s). Finally, it should be able to operate

in an open context (environment) and exchange information with other

software entities of the same kind.

This description fits naturally the description of a software agent. There

is no commonly agreed definition of an agent, however there is some

agreement over the characteristics that a software entity should exhibit

in order to be classified as an agent - these are as follows [19, 78]:

• encapsulates its own state - that is, every agent has its own view of

the world and that might be different to the view of other agents

in the system;

• the environment where the agent is situated is dynamic and open

- there are changes occurring that the agent must register (those

that are of interest to it);

• it should have the ability to reason on the basis of observations

registered from the environment;

• it should be able to communicate with other agents within the

same environment and execute actions based on data acquired

from the observation of the environment, the local state and the

internal reasoning that took place.

The definition above focuses on a number of characteristics that col-
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lectively define the weak notion of agency, i.e., the absolute minimum

characteristics that an application must possess in order to be classified

as an agent. These would be autonomy, social ability, reactivity and

pro-activity. Furthermore, agents can exhibit human-like characteris-

tics, such as benevolence, fairness and veracity, and these would define

the strong notion of agency.

2.3 MAS & Artificial Agent Societies

As an extension to the term agent, a collection of agents can be viewed

as a Multi-Agent System. A Multi-Agent system is a system made up of

software agents, where ([19]):

• not all problems can be solved with information that an agent of

the system possesses;

• there is no global system control;

• data is decentralised; and

• computation is asynchronous.

In the context of the environment described in Section 2.2, physical ev-

eryday devices are transformed into computing devices. On the other

hand, due to the technological advances and the availability of band-

width, they would able to migrate from one network/platform to the

other with ease. As a result, the question of how is access to these

resources going to be regulated arises.

Our view is that these network resources can be organised around the

concept of artificial agent societies [82, 90]. These are viewed in different

ways in the literature. Davidsson defines it as a collection of agents

interacting with each other under the presence of some norms and social

laws [26]. Moreover, a distinction can be made between agent societies

and agent communities in that the latter should represent agents in

closer proximity to those belonging in an agent society. In the same

context, an agent society is defined in [93] as a collection of agents

with similar interests working towards the achievement of a goal (the

focus been on the collaboration between the agents rather than their

proximity).

Formally, Artikis defines an open agent society as follows [5]:
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• a set of agents;

• a set of constraints on the society (a description of the societal

norms and rules that the agents have to obey);

• a communication language;

• a set of roles that the agents can play;

• a set of states of affairs that hold at each time at the society; and

• a set of agent owners.

Furthermore, Davidsson expands this definition in [28], to include the

following items:

• a set of agent designers;

• the environmental infrastructure in terms of communication and

computation;

• the environment owner (the organisation or institution that de-

fines who enters the society and what is the configuration of the

environment - roles to be assumed, communication language and

so on); and

• the environment designer.

The additional items in this definition are due to the fact that not all

system stakeholders are considered in [5] and any constraints due to

them will need to be acknowledged and explicitly stated. The societal

constraints element of the definition by Artikis would cover all the con-

straints but it is useful to look at constraints on a per stakeholder basis.

In [33], Doran defines the artificial society as a set of heterogeneous and

located inter-related agents. There is no assumption about the type of

agents, just the assumption on the society side that it is open, i.e., any

agent can join and leave freely. Society is formally defined as a network

graph where every node is a site and there are bidirectional links, called

channels, to join nodes (essentially sites will correspond to agents and

links will correspond to ways of communication). The agent members

of the society will be situated on a site and will have a unique identifier,

an owner, an internal unobservable selection strategy, might be mobile,

exchange information via the channels specified and can act on society

items.
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In [32], Dignum focuses more on the normative aspect of the specifica-

tion: an organizational-oriented view is taken upon the definition of an

artificial society. More specifically, the society is described by an or-

ganisational model and an individual (agent) model. The organisational

model is defined in deontic logic as a tuple OM = (R, CF, I, N), where:

• R is the set of role descriptions;

• CF is the communicative framework for the society (as agent will

be heterogeneous and speak different languages, this framework

will be used to provide common grounds for understanding be-

tween the agent members);

• I is a set of scripts to be realised in interaction scenes. Inter-

action scenes can represent states in a protocol execution, while

scripts will essentially represent an execution path for reaching

these states; and

• N is the set of social laws (or norms) - this is specified in terms

of contracts that, if broken, will result in the offending agent been

sanctioned.

In [48], the authors view society as a medium for agents to meet and

interact. They are characterised by their openness and the social norms

and laws that the society will need to have in place to enforce the order

in it.

The information from the approaches described above can be summarised

in Table 2.1:

Property Artikis Davidsson Doran Dignum
Set of Agents ✓ ✓ ✓ ✓
Set of Constraints ✓ ✓ ✗ ✓
Communication Language ✓ ✓ ✗ ✓
Set of Roles ✓ ✓ ✗ ✓
Set of States ✓ ✓ ✗ ✓
Set of Agent Owners ✓ ✓ ✓ ✗

Set of Agent Designers ✗ ✓ ✗ ✗

Environmental Infrastructure ✗ ✓ ✗ ✓
Environment Owner ✗ ✓ ✗ ✗

Environment Designer ✗ ✓ ✗ ✗

Table 2.1: Comparison of artificial agent society definitions

In our approach, artificial agent societies are viewed as a collection of

agents having specific skills, i.e., communicative acts that they can per-
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form. These societies are normative societies and are organised around

the concepts of protocols and roles.

More specifically, a protocol will describe a pattern of interaction be-

tween two or more agents and will describe what actions they are allowed

to take and at what states of the protocol evolution. The description

of the protocol will be in terms of behavioral components, i.e., in terms

of what the agents can do when they engage with the protocol. The

behavioral recipes will be expressed in terms of roles - every role will

specify the expected behaviour of an individual in a given context [14].

As an example, we can consider the case of a user seeking to purchase

an item (e.g. a mobile phone) from an online auction. The user will pass

the information of the item he wants to purchase to his representative

agent, who will then take over and look for auction services from which

it can purchase that item.

This will involve evaluating a number of auction societies with regards

to whether the item it is interested in is available as well as whether

any other auction-related preferences are met (e.g. shipment has to be

made within two days of the auction end). It will then have to join these

societies and participate in the auction(s) for the item it is interested in.

In this context, if an agent needs to get access to the resources offered

by an agent society, i.e., the services that the agents offer, such as the

auction, payment and shipping agent societies, it will need to request and

gain access to that society. In other words, the question now becomes:

what would be the criteria that we can use to grant access to an agent

into an artificial agent society.

2.4 Entry to Society

In representing collection of agents as artificial agent societies governed

by normative rules expressed in the form of protocols and roles, we

need to make a decision concerning how the society will accept (or not)

new members. There are four possibilities regarding the openess of the

society to new members [27]:

• open societies, where agents can join and leave at any time without

any restrictions;

• closed societies, where membership is pre-defined and static; any
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agent is either a member and it is allowed access to the resources

offered by the society or not;

• semi-open societies where membership is granted on successful

judgement of a submitted application form; and

• semi-closed societies, where entrance to new members is not al-

lowed, but agents external to the society can nominate agents al-

ready in the society to act as their representatives.

In light of the type of systems we want to represent in our approach

(highly dynamic, adaptable, critical and fault-tolerant systems) the op-

tion of closed societies seems too restrictive for our purposes. On the

other hand, the option of completely open societies might lead to prob-

lems such as poor communication and/or communication deadlocks be-

tween member and non-member agents – the same applies to semi-closed

ones, as the agent will have to entirely rely on agents who are already

members of the society.

A more realistic approach seems to be the restriction of agent entry to

the society on the basis of satisfying certain conditions. As long as these

conditions are met, the agent can become a member of the society until

it accesses the resources to achieve its goals or it decides to leave the

society.

A choice has, thus, to be made regarding a number of factors that will

control the agent’s admittance (or not) to the society, namely:

• what will the admittance criteria be;

• who will conduct the check of whether the agent meets the criteria

or not; and

• how will the societal behavioral rules, i.e., protocols be repre-

sented.

We look at each one of them in the following Sections.

2.4.1 Admittance Criteria

The first item we need to decide is on the basis of what criteria would

the new agents be admitted into the society. As stated in Section 1.5,

we are interested in all societies who use protocols to judge the agent’s
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competence as part of their admittance criteria. We concentrate on that

part only – societies can have other criteria as well. As an example, in a

society with one auctioneer and a million bidders if a new bidder agent

applies for membership, the current number of agents who are bidders

in that society already makes no difference (as well as other properties

of the applicant agent, e.g. the good or bad reputation it carries from

other societies that it was a member of in the same role or in similar

roles).

The question, thus, of whether an agent should be admitted to a society

or not is transformed to a question of whether it should be able to

understand and use the societal rules, as the latter are expressed in the

relevant protocols.

2.4.2 Authority Agents (AA)

Every society that is semi-open and accepts members only by applica-

tion, will need to have a way of regulating access [27]. The role of this

component will be to assess the membership applications received and

reach a decision as to whether the application will be accepted or not.

In our societies, this task is performed by one (or more) Authority Agents

(AA) - their task is to know all societal rules and how they are related to

the society’s protocols, i.e., what roles participate in each protocol and

what are the conditions for making a move within each protocol. On

the basis of this knowledge, they need to decide if the applicant agent

will be granted or denied entry.

2.5 Game-based representation of proto-

cols

As the decision of the Authority Agent will be based on the actions

that the agent can perform in relation to the role it is applying for

and the protocols in which the role participates in, we need a suitable

representation of protocols.

In the literature, a number of choices exist with respect to modelling

protocols. These include different types of automata [16, 57, 64] such

as Finite State Automata (both deterministic and non-deterministic),

Büchi automata and so on. The notion of automata is an attractive
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formalism as it is easy to understand and implement - the notation of

deterministic finite automata, specifically, has been widely used [31, 89].

Another approach is to model the protocols as games [106], emphasising

the similarities between the two approaches. The protocol participants

can be seen as players, the rules of the protocol as the rules of the game

and the participants decision on their next move they make could be

seen as part of their game strategy. Moreover, the starting point of the

protocol would be the starting point of the game and the final point(s)

would be when the game ends - depending on the final point reached, as

there might be many, one or the other participant would be declared the

winner. Finally, it can represent any of the protocols represented as an

FSA and can offer a higher level of granularity in the form of subgames.

In [68], a game description language is specified for playing online games

consisting of a Game Manager that will be connecting a number of

General Game Playing sessions; the players do not know the rules of

the game in advance, but they can understand the language in which

they are written. The development of the language was carried out as a

response to the large explosion of state space for a number of games (e.g.

chess) and the inability to differentiate - in a standard FSA - between

changes due to player moves or game dynamics. As an example when

two players are playing a game of Tic-Tac-Toe, we need to differentiate

between the case that the game terminated because one of the players

won or the network went down.

As a result, the Game Development Language (GDL) was introduced,

based on datalog⌝ [47]. This language describes the relations between

the players and the state of the game. The players of the game are

defined via the role relation, while the state of the game is described via

a series of relations - init to describe what is true at the beginning of the

game, control to describe the player who is in control, next to describe

the next player who is to make a move, legal that describes what are

the legal moves in a state and does to describe the moves that a player

makes (or has made). Finally, the goal rules will describe the goals of a

player and what he will be trying to achieve in the game.

On the other hand, the Game Manager is responsible for synchronising

the state between the players and receiving their moves. Every player

will be assigned a single role - every time that the player has to make a

move, the player will send the move to the Game Manager and it will be

the responsibility of the Game Manager to assess its validity and either
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apply the move if it is valid or randomly select a move and apply it if

the player submitted an invalid move or did not submit a move at all. It

will, also, be its responsibility to keep the clock for the game, i.e., if there

are any time constraints regarding the selection of moves by the players,

then Game Manager will enforce that. It can, also, provide some time

to the players for reading the rules before the start of the game. All the

communication in GDL happens through HTTP connections.

Our approach is based on the existing games framework described in

[103, 104, 106]. In this framework, for each game we need to specify the

following components:

• the state of the game;

• the moves that the players can make; and

• the rules of the game.

Moves will describe what actions are available, while the rules will de-

scribe what actions are legal. The moves are represented by Prolog

select/2 predicates in the form select(Player, Act). The state of

the game is represented by rule/3 predicates as follows: rule(State,

Property, Conditions) meaning that property Property holds in

state State if conditions Conditions hold. Any property that we want

to check against is considered to be a goal of the player and check for

multiple properties can be done recursively (by using a Prolog list con-

struct).

When a player makes a move, this will change the state of the game

by producing some effects; these are represented by effects/2 pred-

icates as follows: effects(State, Actions) defines the effects

of actions Actions on the current state State of the game. This is

further extended to the effectsRule/4 predicate, which is defined as

effectsRule(State, Action, Conditions, Actions). If the

game is in state State, if conditions Conditions of action Action are

met, then actions Actions are carried out. Action is the move that the

player(s) decided to make and we need to look at Conditions one at a

time, checking that they are met; for example, in a request-query pro-

tocol we need to check that a query has been made before the agent

produces a response. In other words, if Conditions of Action are ver-

ified in the current state of the game, Action is a valid move and its

effects will be described by Actions.

The game itself is defined as a sequence of steps as shown below:
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• check that the state we are currently in is not a terminating state;

• find the next valid move,

• apply its effects.

A distinction is made between moves that the game makes available to

the players (available), the moves that are allowed at a certain stage of

the game (legal) and the intersection of those (valid).

In order to play a game between two or more players, we have the option

of filtering the moves through an umpire. The umpire will check whether

the game is in a terminating state or not and - if not - check that a valid

move has been selected, display its effects and then call itself recursively

to check if the new state is a terminating state or not. If the game has

reached a terminating state, this will be offered as a solution – the game

can be terminated there, or the user might request more terminating

paths. The program is shown in Listing 2.1:

1 umpire(Umpire, State, Result, game(State,Result)):-

2 stop(Umpire,State,Result,terminating(State,Result)).

3 umpire(Umpire,State,Result,game(State,Result)):-

4 not terminating(State, _),

5 check(Umpire,Move,State,valid(State,Move)),

6 display(Umpire,State,Move,effects(State,Move)),

7 umpire(Umpire,State,Result,game(State,Result)).

Listing 2.1: umpire/4 predicate

The check/4 predicate in Listing 2.1 can be run in both a backward

mode - the player selects a move and the umpire checks if it is valid - or

in a forward mode - all valid moves are provided to the player and he

selects one.

As an example, we can look at the request-reply protocol in Figure 2.1.

select(responder,not−understood,initiator)

select(initiator,request,responder) select(responder,reply,initiator)

s1
s0

s2

s3

Figure 2.1: A simple request-reply protocol
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It consists of two roles, initiator and responder, with the agent assuming

the role of initiator making a request for information to the agent assum-

ing the role of responder. The responder agent can, then, choose to reply

with the requested information or with a not-understood move. Both of

these moves take the protocol to a final state where it terminates.

The code in Listing 2.1 is saving the moves made so far by the game play-

ers in State and if the last move is a terminating move, State becomes

equal to Result which is the end result of the game. If the last move

selected is not a terminating move, then the state of the game is checked

for another valid move. Once selected, its effects are displayed and the

umpire predicate is called again to check whether it is a terminating one

or not; if not, the cycle continues.

The stop/4 predicate simply calls the terminating/2 predicate, which

contains information about the moves that bring the game to completion

along with any pre-conditions that will have to be met for a move to be

a terminating one. The same holds for the check/4 predicate; it merely

calls the valid/2 that looks at the current state of the game and decides

on the next valid move to be selected. Finally, the display/4 predicate

is calling the effects/2 one so that the effects of the last move selected

in the previous step will be reflected on the current state of the game.

The request-reply protocol that we are looking at has two terminating

moves, reply and not-understood. These can be selected provided that a

request move has been made by the initiator of the protocol beforehand.

Assuming a rule of the form

1 rule(requestreply(ID),terminating(reply(P1,P2,Query)),

2 [next(P1),previous(select(P2,request(P1,Query)))]).

Listing 2.2: Example of a protocol rule

if the second player selects reply, it is his turn to make a move and the

previous selected move has been a request by the first player then the

game terminates.

In the case of non-terminating moves, we need to specify their effect

on the state of the game. The effects of, for example, a request move

in the protocol of Figure 2.1 are shown in Listing 2.3. The player who

makes the move is not the next player any more, but becomes the last;

furthermore, the move is added as the last move selected.

1 effectsRule(qprotocol,select(P,Act),[Act=request],

2 [delete(previous(select(L,_))),add(previous(select(P,Act))),

3 delete(next(P)),add(next(L)),delete(last(L)),add(last(P))]).

Listing 2.3: effectsOne/4 predicate
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This approach also allows for games with subgames, i.e., games that

contain other games as independent components. There is no restriction

on the relationship between the game and its subgame components - i.e.,

we can represent subgames where once the agents enters the subgame,

it has to terminate it before going back to the main game as well as

subgames where the player can interleave and go back to the main game

without having terminated the subgame first.

Once engaged in the protocol (game), the players will need to get in-

formation about what are the moves they are entitled to make and in

which context. This is the task carried out by roles; setting a behavioural

context regarding the agents’ behaviour.

2.6 Summary

In this chapter, we presented the basic concepts on which we will base

our approach as well as work already done on them. We will be using

the agent metaphor to link the low-level implementation details of web

services to the high-level description of service providers and service

issuers. Each agent will have a number of skills, that is a number of

messages they can utter (understand) in the course of a protocol. A test

should be run to verify that the skills they have can lead to successful

co-operation when the protocol runs. This calls for a formal framework

to represent protocols & roles, as well as providing a local view for the

roles which is the subject of the next chapter.
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Chapter 3

Formal Framework

3.1 Introduction

In this chapter we present the formal framework of our approach, de-

tailing how the protocols as games concept is formulated as an LTS; we

show how a protocol and a role within a protocol are defined. If the

definition of roles is given, then we can work out the protocol as the

parallel composition of the role definitions. Furthermore, we present the

representation - as well as the evolution - of protocols by integrating in

our representation of games (a) the Situation Calculus where the focus

is on changes of a global state and (b) the Event Calculus, if concur-

rency is a domain requirement and the focus is on local changes of state

properties. The choice of the frameworks is done on the basis of seeking

executable specifications ; thus, the representation of the state as Normal

Logic Programs that can produce executable specifications. Finally, we

explore the different degrees of competence for an agent on the basis of

its strategy S and use the Netbill protocol to illustrate them.

3.2 The Netbill Protocol

In this section, we will be illustrating the main concepts of our frame-

work by the use of a variation of the e-commerce protocol NetBill [25, 46].

This can be used by a society that aims at allowing merchants to sell

goods to customers and make use of payment gateways in order to collect

payment. An agent wishing to enter a society where Netbill is available

will have to apply for the role of customer, merchant or gateway depend-

ing on the goal it wishes to achieve when entering the society. In the
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original protocol, there are three roles - customer (c), merchant (m) and

gateway (g)- and eight overall steps for a customer to purchase goods

from a merchant and the merchant to process payment for the order

through NetBill’s gateway. These are depicted in Figure 3.1 and are as

follows:

m ssepo g

c rq m

s0 s7s6

c oa m m pq c

c oa m

m pq c

s8s1 s2 s3 s4 s5

c sepo m

m dgb c

m dg c

m dga c m dgk cg sr m

Figure 3.1: A variant of the NetBill protocol

• The customer requests a quote for some digital goods from a mer-

chant - see the transition (s0, (c, rq,{m}), s8), i.e., from state 0 to

state 8, labelled as (c, rq,{m}).

• The merchant provides a quote to the customer - (s8, (m,pq,{c}),

s7).

• The customer accepts the quote made by the merchant - (s7,

(c, oa,{m}), s6).

• The merchant proceeds to deliver the ordered goods encrypted

with a key K - (s6,(m,dg,{c}), s1).

• The customer signs an Electronic Purchase Order (EPO) with the

merchant - (s1, (c, sepo,{m}), s2).

• The merchant signs in its turn the EPO and sends it to the NetBill

gateway - (s2, (m,ssepo,{g}), s3).

• The NetBill gateway internally checks the information on the EPO,

transfers the money and ends by sending the merchant a receipt -

(s3,(g, sr,{m}),s4).
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• Finally, the merchant sends the customer the key needed to de-

crypt the goods it purchased - (s4, (m,dgk,{c}), s5).

We made the following additions to the original NetBill protocol to cre-

ate one with branching structure so that we can illustrate problems when

the agent has to make a decision but does not have all the information

required:

• The merchant can now make a price quote directly - (s0, (m,pq,{c}),

s7); e.g., in the case of a promotional offer.

• The merchant could select to deliver the goods as its first move -

(s0, (m,dga,{c}), s1); e.g., when the customer has good credit and

solid reputation with that merchant. In this case, the encryption

method used in the delivery can be more relaxed than the normal

one as the process involves a trusted customer.

• The customer might accept the merchant’s quote directly - (s0,(c, oa,

{m}), s6); e.g., when the merchant is trusted or this is a recurring

order.

• On reception of a quote request, the merchant can make the quote

and ship the goods directly without waiting for a formal acceptance

of the quote - (s8, (m,dgb,{c}), s1); e.g. when dealing with a

trusted customer or a recurring order. The delivery and encryption

method will have to be different again, as if it is a recurring order

it will mean that the customer is low on stock for this particular

item.

3.3 Definition of a protocol in a society

We present a representation of protocols based on Labelled Transition

Systems, following closely the game metaphor and the notation of [105],

where the protocol is described as a set of player roles that interact via

dialogue moves representing message passing.

A protocol interpreted as a game will need to provide structures for

specifying what happens when the game starts, as well as describing the

evolution of game. This is happening through the transition between

states, once certain actions are triggered. In this section, we look at the

LTS-based definition of the protocol and Sections 3.6 and 3.7 describe
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the frameworks used for specifying what applies initially to a game pro-

tocol and, also, how the game properties (next player to make a move,

properties that hold at a specific state) are been modelled.

A game protocol (PG) is defined as a tuple

<N , R, S , I , F , A, M , V , E >,

where the components are as follows:

1. N is the game protocol’s name;

2. R is the set of player roles, participating in the game protocol;

3. S is the set of game protocol states ;

4. I is the initial state of the game protocol, I ∈ S ;

5. F is the set of final states of the game protocol, with F ⊆ S .

6. A are the labels of the actions that are known to the game protocol,

that is, all possible messages which can be exchanged by any two

(or more) players at any time during the execution of the protocol.

7. game moves are described by the relation M = R ×A × (2R ∖ ∅),

i.e., the available actions are associated with the role that can

perform them, as well as, the roles which will be the recipients of

that action, assuming that an action can be performed on multiple

recipients.

8. valid moves are defined for a role according to the state that the

protocol is in and narrow down the choices of the next message to

be sent by the role. They are defined by the relation V = S ×M .

9. effects of the valid moves are calculated by the relation E = V ×S ,

i.e., the transition relation of the LTS. This relation is used to

determine the next state of the LTS on the basis of the current

one and the move that has been selected by the agent.

For the NetBill protocol shown in Figure 3.1 we have the following formal

representation:

<N , R, S , I , F ,A, M , V , E >,
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where:
N = NetBill

R = {c,m, g}

S = {s0, s1, s2, s3, . . . , s8}

I = {s0}

F = {s5}

A = {rq, pq, oa, dg, sepo, ssepo, sr, dgk}

M = {(c, rq,{m}), . . . , (m,dgk,{c})}

V = {(s0, (c, rq,{m})), . . . , (s7, (m,dgk,{c}))}

E = {(s0, (c, rq,{m}), s8), . . . , (s4, (m,dgk,{c}), s5)}

3.4 Modelling Roles in Game Protocols

This section presents the formal framework for describing a role in the

context of a protocol and links it to the previous notion of a game pro-

tocol. In a role-oriented model, a game protocol is assumed to be a set

of roles, i.e., PR = {RR}; the protocol will be produced as a composition

of the constituent roles.

The role descriptors are effectively a projection of the relevant compo-

nents of the game protocol onto a specific role; a role, thus, is specified

as a tuple <N R, RR, SR, IR, FR, AR, MR, V R, ER >. The component

RR represents the set of roles that the role N R will be interacting with

during the course of the protocol, either as initiators or as recipients of

messages sent (received) by the role in consideration. Any message by

any other role would be considered irrelevant and illegal. The actions

known to the role are AR, i.e., moves that the role can perform or re-

ceive. Given that has role(R,2R
R
) are all the subsets of RR containing

N R, the known moves set MR = {{R}×AR ×(2R
R
∖∅)}∪{(RR ∖{R})×

AR ×has role(R,2R
R
)} specifies whether an action can be performed by

the role itself (and by which other roles it can be received) or whether it

can be performed by some other role and received by the role in question

(possibly among others).

We should note here that each role is represented by an LTS . In order to

work out the possible interactions between the roles, we need to compose

these LTS using parallel composition, i.e., any actions that are common

between the roles will have to be performed at the same time.
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3.5 From Roles back to Game Protocols

If the role descriptors for the roles participating in a protocol are avail-

able, then we can construct the protocol by taking the synchronous

composition of the role LTS. The steps for the composition and, thus,

the final protocol will be as follows:

• The roles of the protocol should be the union of all the rolesets

from the role definitions (R = ⋃r∈{RR}RR
r).

• The state of the game can be defined at any moment to be the

composition of the state of all its roles (S = ∏r∈{RR} S
R
r ).

• The initial state would be the state where all roles are in their

initial states (I = ∏r∈{RR} s0r).

• The final state would be the state where all roles are in their final

states - therefore, any combination of role terminating states will

be a terminating state for the game protocol as well (F = {s ∶

∀r ∈ {RR}.sr ∈ FR
r }).

• The available moves for the game protocol would be the union of

available moves of all role moves and the same will hold for the

game actions (A = ⋃r∈{RR}AR
r , M = ⋃r∈{RR}MR

r ).

• The valid moves of the game will comprise of those moves where all

roles are in a state to make a valid move - transitions with the same

labels in their LTS’s will be synchronised (as this is a requirement

for parallel composition). This means that both roles should be

in a state where they can select to make the respective moves (

V = {(s,m) ∶ s ∈ S ,m ∈M ∧ ∀r ∈ {RR}.m ∈MR
r ⇒ (sr,m) ∈ V

R
r }).

• The effects of a move will be derived by looking at the effects of

each move on an individual role, when all other roles remain in

the same state. The new state of the protocol will be the result

of the composition of the new state of the role making the move

with the states of the other roles. The formal representation is :

E = {(s1,m, s2) ∶ (s1,m) ∈ V ∧ ∀r ∈ {RR}.

((s1r ,m) ∈ V
R
r ⇒ (s1r ,m, s2r) ∈ E

R
r ) ∨ ((s1r ,m) ∉ V

R
r ⇒

s2r = s1r)}.

In the case of breaking a protocol into its constituent roles, the paral-

lel composition of the resulting role LTS will not always give us back
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the original protocol (or one that is branching bisimilar to it); see Sec-

tion 5.4.1 on Page 94 for a counter-example.

3.6 Game evolution in Situation Calculus

We are using the games metaphor [103, 104, 106] in order to describe the

interactions among participants in protocols of artificial agent societies

as interactions and moves made in the context of a game. The idea here

is that protocol enactment happens through a series of communicative

acts, which are viewed as moves made between players in the context

of a game. The game does not, necessarily, need to have a winner or

a loser in the traditional sense (in an order protocol, the supplier wins

by making a sale and the merchant wins by acquiring the item(s) it

wanted). Termination of the game signals that the protocol has reached

a state where no further moves can be made by any of the participants

of the protocol. The focus is on the interaction between the different

participants with the ultimate aim of being to apply the formalisation

to practical applications, as for example the Netbill protocol [25, 46].

The next Sections will present a brief overview of Situation Calculus as

well as describe the representation for the different components of the

game definition.

3.6.1 Situation Calculus

Originally the Situation Calculus has been presented as a first-order

logic formalism to represent change in dynamically changing worlds [67,

72, 85]. Its formalisation allows for actions that have an effect on the

current state of the world, as it is perceived by an agent.

The basic assumption of the Situation Calculus is that the world may be

modeled as a system of interacting finite automata or transition systems

[72]. Using the calculus we formalise a domain problem by providing a

model describing:

• how the state of this world will be described, including the initial

state;

• any actions that can be performed in the world;

• the preconditions and the effects of an action;
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• the state following after a certain action has been decided;

• how properties of the world that are not affected by actions remain

the same.

3.6.1.1 Formalisation of Situation Calculus

move(‘B‘, ‘A‘, ‘C‘)

D D

B

A C A

B

C

Figure 3.2: Blocks world example.

In Figure 3.2, on the left-hand side we see the initial situation where

blocks A and C are on the table D and block B is on block A. On the

right-hand side the picture shows the situation where we have moved

block B from A on the block C.

Using the Situation Calculus, we model the world as a sequence of situ-

ations. The initial state of the world is modeled by an initial situation

which is denoted by the constant symbol s0. In each situation we de-

scribe the facts that hold true in it. For example, to describe a blocks’

world as shown on the left in Figure 3.2 (initially block B is on top of

block A and after the move block B is on top of block C ), we need to

write:

holds(on(’B’, ’A’), s0).

holds(on(’A’, ’C’), s1).

Situations change as a result of actions. When an action A takes place

in a situation S, it brings about a new situation that is referred to by

the function do(A, S). Thus, to derive the new situation, we need to

apply an action to it through the do function. Note that a situation is

not equivalent to a state; a situation is a history of actions recorded by

the do function, while a state is what holds true at a specific situation.

For example, in the blocks’ world, the situation where the action move(’

B’, ’A’, ’C’) is performed, is defined as: do(move(’A’, ’B’, ’C’), s0).

In this situation the relations between blocks in the state of the world

have changed, as we discuss next.
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3.6.1.1.1 Fluents

A fluent is a predicate whose value might change from a situation to

another one, as the result of the effects of an action. In our blocks’ world

example, the on(’B’, ’A’) is a fluent that is true in the initial situation

and false in the situation that resulted from moving block ’B’ on top

of block ’C’. Typically, a set of fluents can be true in many different

situations, for example, there are many different configurations of the

blocks’ world where block B is on top of block C in different situations.

3.6.1.2 Preconditions of Actions and Effects

It is often the case that actions have preconditions. In Situation Calcu-

lus these are modeled by a special predicate called possible(S, A): this

denotes that in situation S it is possible to perform action A.

1 possible(S, move(From, Obj, To)) ←

2 block(Obj),

3 holds(clear(Obj), S),

4 holds(on(Obj, From), S),

5 holds(clear(To), S).

Listing 3.1: possible/2 example in Situation Calculus

This way of defining the preconditions of the actions allows us to define

generally an action’s effects. For example, in order to define what holds

after a move block action has taken place, we need to write what is

known in the Situation Calculus as an effects axiom, as follows:

holds(on(Obj, To), do(move(From, Obj, To), S) ←

possible(S, move(From, Obj, To)).

This defines the positive effects of the actions. We can also state what

properties an action terminates after it is performed. In this version of

situation calculus, we define this by writing what becomes abnormal in

the new situation. For example, when we move a block from one position

to another, we need to also write: abnormal(on(Obj, From), move(From, Obj,

To), S).

The above assertion states that it is abnormal to move the block in a

situation and the block to remain where it was in the new situation.

The abnormality predicate above must be understood in conjunction

with the frame axiom, which we describe next.
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3.6.1.3 The Frame axiom

One of the main issues that we need to take into consideration when

we describe how fluents change as a result of actions being carried out

in situations, is expressing what remains unchanged. For example, we

need to state generally that facts such as on(A, C) remain there until an

action changes them. We do this by describing a general frame axiom

as in Listing 3.2.

1 holds(do(A, S), F) ←

2 holds(S,F),

3 \+ abnormal(F, A, S).

Listing 3.2: Definition of The Frame Axiom

This states that a fluent F that holds in a situation S continues to hold

after an action A has been executed, as long as it is not abnormal that

it holds in the new situation. This frame action, using a holds predicate,

is much more general than the way successor-state axioms are presented

in full-first order logic formulation of the situation calculus [72].

3.6.1.4 Static Facts

To complete the formulation of a domain description using the Situation

Calculus, we assume the existence of facts that hold across situations, or

are not situation dependent. For example the assertions in Listing 3.3

allow us to describe the rigid facts for the blocks world of interest:

1 block(’A’).

2 block(’B’).

3 block(’C’).

4 table(’D’).

Listing 3.3: Static Facts

3.6.2 Evolution of a game

We represent the evolution of a game as the logic program shown in

Listing 3.4 [102, 105]:

The game is defined by a recursive predicate through a game Situation

structure, which we first need to check if it is a terminating state or

not. If it is, the game terminates with result equal to Result. If it is

not terminating and there is a valid move that can be made, that valid

move is selected, its effects are applied to produce a NewSituation, and,
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1 game(Situation, Result):-

2 terminating(Situation, Result).

3 game(Situation, Result):-

4 \+ terminating(Situation, _),

5 valid(Situation, Move),

6 effects(Situation, Move, NewSituation),

7 game(NewSituation, Result).

Listing 3.4: Game Evolution Representation

then, we continue exploring this NewSituation in order to reach the final

Result.

We, now, need to define how a game situation will be represented, how

initial and terminating states will be defined (what will hold at the

beginning of the game and what would indicate its termination), how

the selection of valid moves by the player will be made and how the

effects of these moves are assumed to produce a new situation. Once

all these concepts are fully defined, the Authority Agent will be able

to explore the interactions between the various players and decide on

whether to accept or not an agent’s application for joining the society.

3.6.3 Game Situations using the Situation Calculus

A game situation will be represented by terms of the form sit(Name, Id,

Narrative). A situation, thus, will consist of three elements:

• Name to represent the name (or type) of the protocol (e.g. auc-

tion);

• Id to represent the instance of the protocol that this situation

describes. This makes it possible to have many instances of the

same protocol running at the same time (e.g. auc1 ).

• Narrative to represent the moves made in the game so far - that

list of moves will define the state of the game. This is represented

as a Prolog list and an empty Narrative means that no move has

been made in the game.

As an example, a term of the form sit(order, s0, []) represents an order

protocol with an instance name of s0 and in which protocol no move has

been made so far; the narrative component of the description is empty

([]). A situation with a non-empty narrative will be shown shortly.
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3.6.4 Game Moves

A move Move made by player Player is represented by a term of the

form select(PlayerId, Action, Recipients); in cases where there is only one

role instance, PlayerId can be substituted by the role name as there is

no ambiguity regarding who made the move.

In the protocols we look at in this thesis, the move is specified only

by its name (e.g. bid). However, the representation could be enhanced

with moves that are parameterised, i.e., the specification of the move

will depend not only on the type of the move (expressed by its name),

but on a number of other parameters as well. As an example, rather

than simply stating that an agent places a bid for an auctioned item

we could add the value of the bid and the id of the item, e.g. se-

lect(bidder1,bid(watch1,12),auctioneer).

3.6.5 Game Situation

We now need to describe a game situation as a result of the moves made

by its players. In this context, we need to be able to reason about

properties that describe the game and see how they change when play-

ers choose their moves (in an auction protocol, these properties would

involve the current highest bid and the bidder who made it). In the

Situation Calculus version of the formal framework, we combine the

game formulation with our own interpretation of the situation calculus

[72] expressed as a normal logic program and describe the state of the

game with a series of holds predicates, as shown in Listing 3.5

1 holds(sit(Name, Id, []), F):-

2 initially(sit(Name, Id, []), F).

3 holds(sit(Name, Id, [M | Ms]), F):-

4 effect(F, M, sit(Name, Id, Ms)).

5 holds(sit(Name, Id, [M | Ms]), F):-

6 holds(sit(Name, Id, Ms), F),

7 \+ abnormal(F, M, sit(Name, Id, Ms)).

Listing 3.5: holds/2 predicate in Situation Calculus

The first rule in Listing 3.5 states that if we have not started the game yet

(the list representing the moves is an empty list), a property F will hold

if it holds in the initial situation, represented by initially/2 assertions.

The second rule states that a property F holds, if it is the result (effect)

of the last move made in the game. Note that we use a list to keep a

history of the moves and the leftmost element refers to the latest move

being made. Finally, the third clause states that a property F will hold
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if it held before the move was made and the move applied did not affect

its persistence.

We will be using the mail order protocol in Figure 3.3 to illustrate our

formalism. In this protocol we have two roles, merchant and supplier.

Initially, the merchant agent makes an order which can either be con-

firmed or refused by the supplier (the supplier can also reorder once an

order is placed). If the supplier agent refuses the order, the protocol

terminates. If it confirms it, the merchant has the option of either with-

drawing (protocol termination) or accepting it and then the supplier will

have to notify the merchant at which point the protocol terminates.

s6

m:order

s:reorder

s:refuse

s:confirm

m:withdraw

m:accept

s:notify

s0 s1

s2

s3

s4

s5

Figure 3.3: A Mail Order protocol

3.6.6 Initial and Terminating States

As mentioned in Section 3.6.2, we need to specify the initial and ter-

minating states of the protocol, i.e., we need to specify what properties

hold when the protocol starts and when it ends. The properties holding

at the beginning of the game will be recorded by the initially predi-

cate, while those describing a terminating state will be specified with

terminating clauses.

A typical example of properties holding initially are the properties re-

lated to the roles of the players. In the mail order protocol involving

a manufacturer and a supplier, Listing 3.6 indicates that player p1 is

the manufacturer and player p2 is the supplier; the role of predicate is
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used to define that the player specified as the first parameter has the

role specified in the second one.

1 initially(sit(mail_order,order,[]),role_of(p1, manufacturer)).

2 initially(sit(mail_order,order,[]),role_of(p2, supplier)).

Listing 3.6: Initial Situation of a mail order protocol

The protocol will terminate when the supplier selects to perform a notify,

withdraw or refuse move. In this case, the current state of the game

as expressed by the Situation argument of the terminating predicate

becomes a terminating path and is returned by the game predicate in

the variable Result (the running path is a terminating path so it is

returned). In other words, the current situation becomes the final result

of the game, as it is one of the (possibly) many ways that a sequence of

valid moves can be terminated.

In our games framework, we can write it as:

1 terminating(Situation, Situation):-

2 Situation = sit(mail_order, s0, N),

3 holds(Situation, last_move(select(Player, Act,_))),

4 holds(Situation, role_of(Player, manufacturer)),

5 member(Act, [refuse, withdraw, notify]).

3.6.7 Valid Moves

When describing an interaction protocol as a game, it is important to be

able to differentiate between valid and invalid moves - an auctioneer, for

example, will need to know which bids are valid so that the item under

auction can be adjudicated to the highest bidder. In our framework a

move will be valid if it meets two conditions - it should be:

• available - the protocol must be providing this move as a move

that is meaningful to be made within its context (e.g. accept in

the case of the manufacturer-supplier example);

• matching certain conditions depending on the state the game is in

- the fact that the protocol makes a move available does not mean

that the user can always select it. For example, the manufacturer

agent can select accept only if the supplier agent has selected con-

firm as the previous move in the protocol. In this case, accept

would be a valid move only if there has been a confirm move made

by the supplier before the merchant selects accept.

Listing 3.7 shows how to make the order move available to any player

of the mail order protocol.
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1 available(sit(mail_order, _, _),select(_, order, _)).

Listing 3.7: Available predicate in Situation Calculus

If we want to represent that it is valid for a supplier to select the notify

move, if the previous move was made by a merchant agent and it was

an accept move, we can write it as in Listing 3.8.

1 valid(sit(mail_order, s0, N), select(P1, notify, P2)):-

2 holds(sit(mail_order, s0, N),role_of(P1, supplier)),

3 holds(sit(mail_order, s0, N),last_move(select(P2, Act, P1))),

4 holds(sit(mail_order, s0, N),role_of(P2, manufacturer)),

5 Act = accept.

Listing 3.8: Valid Moves of a mail order protocol

3.6.8 Effects of Moves

Every time a valid move is performed in a communication protocol, the

effects of the move need to be applied to the current game situation so

that they can bring about the next one. In terms of updating the game

situation, all we need to do is extend the Narrative component of the

situation predicate to include the last move that the player chose. The

Narrative component is the component holding the list of moves made

by the players so far in the course of the protocol. This is represented

by an effects predicate, an example of which is shown in Listing 3.9. We

are representing the game moves as a list, so we need to prepend the

last move made to the head of that list.

effects(sit(mail_order,s0,Ms), M, sit(mail_order,s0,[M| Ms]).

Listing 3.9: Effects predicate in Situation Calculus

The update of the specific game properties is done implicitly via effect

and abnormal definitions. The effect predicate describes what is the

effect of a move made in the game on certain properties of interest.

For example, the effect of any move is that it changes the last move

property in the next situation. Listing 3.10 demonstrates that the effect

of selecting a move M is that the value of the last move predicate will

have to change to reflect that.

effect(last_move(M), M, sit(mail_order, s0, _)).

Listing 3.10: Effect predicate for the mail order protocol

We, also, need to provide abnormality conditions - i.e. conditions when

a property should not hold. The code in Listing 3.11 states that once a

new move has been selected, it is abnormal for the last move predicate

to have the value of the old move.

43



abnormal(last_move(Mold), Mnew, sit(mail_order,s0,[ Mnew | Mold])).

Listing 3.11: Abnormal predicate in the mail order protocol

3.7 Timed games in Event Calculus

A number of protocols have a time element in their description. In

the auction protocol presented in Figure 3.4, we are using a compact

version with logic propositions binding player actions rather than listing

all different combinations to present a high-level view of the protocol. In

this context, b:bid1∪ bid2 . . . bidn is used to accommodate both the cases

where the first bidder bids or the second one or the nth one does. In this

protocol, we can have multiple bidders who will be sending messages to

the auctioneer in no particular order, and time constraints might be in

place for the bidders to place a bid; after this period of time passes, the

bid is not accepted.

[ p ≥ r ] a:adjudicate:bi

s0 s1 s2

s3 s5

a:openauction:bi

b: (bid1 or bid2 or ⋯ or bidn):a

[ p < r ] a:withdraw:bi

a:callforbids(p):bi
s4

b: (nobid1 and nobid2 and ⋯ and nobidn):a

Figure 3.4: An English Auction

In this protocol (an English auction protocol), the auctioneer opens the

auction with an openauction call, followed by a call for bids at a start

price p. If any of the bidders place a bid (by sending a bidi message to

the auctioneer), the auctioneer will issue another call for bids, this time

at the price of the new bid. This process will be repeated until none of

the bidders expresses an interest in bidding for the item been auctioned.

In that case, the auctioneer will have to compare the current price of the

item against the reserve price (a price that, if not met, the auctioneer

is not obliged to sell the item). If the current price is higher than the

reserve price, then the auctioneer adjudicates the item to the highest

bidder; otherwise, it is withdrawn.
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The following Sections provides a brief overview of the simple version of

Event Calculus and describe how the components of the game will need

to be changed in order to incorporate time constraints.

3.7.1 Event Calculus

In complex computer systems, such as those representing agent commu-

nities, protocols and agent actions need to be represented in a strict and

theoretical basis. This requirement demonstrates the need for a formal-

ism that will be used to represent the effects of the agent actions over

time, as well as any dependencies amongst them (an action might be the

starting point for a property or it might be terminating it). We will be

using the simple version of Event Calculus [60, 95–98] to define them.

3.7.1.1 The simple version of Event Calculus

Event Calculus allows quantifications over fluents, actions or events and

time points. A fluent can be anything that its value can change over time

- for example next(Player) in the case of a turn-taking game. Actions or

events (both terms can be used interchangeably) that happen at different

time points influence the truth value of fluents and allow us to reason

about them, provided we know what happened up to that point in time.

This, of course, makes the assumption that nothing else that influences

the truth value of these predicates happened in the time period under

consideration, otherwise our reasoning would be based on the wrong

value for the fluent. An example of an event is the selection of a move

by a player, denoted as select(P,M,R); this might affect the truth value

of some of the fluents we are interested in. In our case when a move is

selected, the value of the fluents next(Player) and last move(Move) are

affected.

The predicates of Event Calculus allow us to reason about what is true

initially, what happens at which time points, what are the effects of an

event on the value of the predicates and what predicates hold at what

times. The list of the predicates specifying what events initiate/termi-

nate the truth value of what fluents, as well as the fluents that hold true

initially, when an event happens, whether it holds true at time point T

and when a fluent is clipped - its value changes to false between time

points T1 and T2, is summarised in Table 3.1.
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initiates(E, F, T)
fluent F starts to hold after event E has hap-
pened at time T

terminates(E, F, T) fluent F stops holding after event E at time T

initially(F) fluent F starts from time 0

happens(E, T) event E happens at time T

holds at(F, T) fluent F holds at time T

clipped(T1 ,F ,T2 )
fluent F is terminated between time points T1

and T2

Table 3.1: The predicates of the simple version of Event Calculus

3.7.1.2 The axioms of the Event Calculus

The three axioms in Listing 3.12 connect the different predicates of Event

Calculus.

The first one says that a fluent holds at time T, if it holds initially and

it has not been stopped until that time point, while the second that a

fluent holds at time T2 if an event A happened at time T1 - prior to T2

- that initiated it and it has not been stopped between the time points

T1 and T2. Finally, the third one states that a fluent is stopped between

the time points T1 and T2 if there is an action A that happens at time

T, somewhere in the time interval that we look at, that terminates the

fluent.

holdsat(F,T) ← initially(F) ∧ ¬ clipped(0, F, T)

holdsat(F,T2) ← happens(A,T1) ∧ initiates(A, F, T1) ∧T1 < T2 ∧ \+

clipped(T1, F, T2)

clipped(T1,F,T2) ← ∃ A, T [happens(A, T) ∧T1 < T < T2 ∧ terminates(A,F,T)]

Listing 3.12: Event Calculus Axioms

3.7.2 Representing games in the Event Calculus

Time constraints cannot be represented in the simple version of the Sit-

uation Calculus framework that we have used so far. Extended versions

[61, 62, 86, 87, 91, 110] to support reasoning with time in Situation Cal-

culus do exist but we prefer to use event calculus for this, as its ontology

provides a more natural way to represent time.

To represent timed games, we need to change the representation of sit-

uation to include a reference to the time component of the game. The

new representation is sit(Name, Id, Time, Narrative).

As before, Name is the name ( some times we can use the type if there

is only one protocol of each type running) of the protocol, Id is the
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id of the game - to facilitate the running of multiple games in paral-

lel, and Time is the time point at which we are looking at the game’s

state. On the other hand, the narrative of what happened so far in

the game is now expressed in terms of episodes, a set of moves that

have happened at the same time point in the game (for example, mul-

tiple bidders bidding at the same time point). In their general form,

episodes are written as at([select(Player1, Act1,Recipients1), ..., select(

PlayerN,ActN,RecipientsN)], T). This means that at time point T a number

of moves have been selected (Act1 from Player1, Act2 from Player2, . . .,

ActN from PlayerN); player identifiers can substitute role identifiers if

there is one role instance for each role.

In this context, the episode at([], T) would mean that nothing happened

at time point T (no move specified).

As we will have to reason about a number of properties in the game,

we need to have a way of representing what properties hold and when.

This is discussed in Section 3.7.3.

3.7.3 Reasoning about properties in timed games

We are using the simple version [97] of Event Calculus [60], rather than

Situation Calculus - as the concept of time is inherent in the formula-

tion of Event Calculus, to reason about games with a time component.

Listing 3.13 shows the process for deciding whether a property holds or

not at a certain time point as well as when it stops holding (i.e., it is

clipped) between time points Ti and Tn when a event happens in this

time period that terminates it.

1 holds(sit(Name, Id, Tn, Narrativen), F):-

2 0 ≤ Tn,

3 initially(sit(Name, Id, Ti, Narrativei), F),

4 \+ clipped(F, sit(Name,Id,Ti,Narrativei),sit(Name, Id, Tn, Narrativen)).

5

6 holds(sit(Name, Id, Tn, Narrativen), F):-

7 happens(E, Ti, Narrativei, Narrativen),

8 Ti < Tn,

9 initiates(E, F, sit(Name, Id, Ti, Narrativei)),

10 \+ clipped(F,sit(Name,Id,Ti,Narrativei),sit(Name, Id, Tn, Narrativen)).

11

12 clipped(F, sit(Name, Id,Ti,Narrativei),sit(Name,Id, Tn, Narrativen)):-

13 happens(Estar,Tj,Narrativej,Narrativen),

14 Ti < Tj,

15 Tj < Tn,

16 terminates(Estar,F,sit(Name, Id, Tj, Narrativej)).

Listing 3.13: holds/2 predicate in Event Calculus
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One important difference between the normal Event Calculus formula-

tions and ours is that we do not assert knowledge facts into the knowl-

edge base, but hold them as a list in the game situation predicate. We

hold them as a list of episodes in the game situation and they describe

a sequence of situations in terms of selections made by the game players

previously in the game.

The first clause defines that a property F holds at a time point Tn if

the property holds initially and nothing has happened from the time of

the initial situation until Tn to change the persistence of the property.

The second clause states that a property F holds if an event happened

at a time point Ti that initiated F and F has not been clipped in any

episode between time points Ti and Tn. A property F is clipped if we

have some event happening at time point Tj, which lies between Ti and

Tn, that terminates F.

We, now, need to define the happens/4 predicate in line with our rep-

resentation of events as lists of episodes. This predicate takes four ar-

guments, the first been the event (or the group of events) that we want

to check for, the second one is the time we are checking for, while the

third and fourth ones are the situations of the game at different (or the

same) time points. The general idea is that an event happened if it

is part of the list showing the episode moves. As we might be looking

for single or multiple events, we have definitions that cover both cases.

Listing 3.14 shows the definition for single events, while Listing 3.15 for

multiple events.

1 happens(E, Tn, [at(Esn, Tn) | Situationn],[at(Esn, Tn) | Situationn]):-

2 member(E, Esn).

3

4 happens(E, Ti, [at(Esi, Ti) | Situationi], [at(Esn, Tn)| Situationn]):-

5 happens(E, Ti, [at(Esi, Ti) | Situationi],Situationn).

Listing 3.14: happens/4 definitions in Event Calculus for single events

In the case of single events, if we want to check that an event happened at

a specific time point, then the third and fourth elements of the happens/4

predicate will need to be the same - then, the event happened if it

is a member of the list of events that happened at this time point.

Alternatively, if we are checking for whether an event happened between

two time points, i and n, and we check if the event happened at time i,

then we are not interested in the list of episodes at time point n, so we

can discard it and call the happens/4 predicate with the rest of the list

as the fourth argument.
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1 happens(at(Esn, Tn), Tn,[at(Esn,Tn)|Situationn],[at(Esn,Tn)|Situationn]).

2

3 happens(at(Esi, Ti), Ti,[at(Esi,Ti)|Situationi],[at(Esn,Tn)|Situationn]):-

4 happens(at(Esi,Ti),Ti,[at(Esi,Ti)|Situationi],Situationn).

Listing 3.15: happens/4 definitions in Event Calculus for multiple events

In the case of multiple events, the logic is similar. An episode of multiple

events for the time point Tn happened by definition at time point Tn

(third and fourth arguments of happens will be the same). Alternatively,

if we are interested in checking whether a sequence of events happened

at a time point Ti and we are looking at the time period between Ti and

Tn , i.e., the third argument of happens would be the list of episodes for

time point i and the fourth the list of episodes for time point n we can

discard from the fourth argument the list of episodes for time point n).

3.7.4 Effects of actions in timed games

As a result of the changes in the representation of a situation, we need

to make changes to the rule describing the effects of an episode. The

update consists of adding the episode to the list containing the moves

made so far and then increment the clock of the game by one as shown

in Listing 3.16. Here, the assumption is made that any new episodes

will last for one game time unit, but obviously other time increments

can be used.

1 effects(sit(N, Id, T, Es), at(Ms, T),

2 sit(N, Id, NewT, [at(Ms, T) | Es])):-

3 T > 0,

4 NewT is T + 1.

Listing 3.16: Effects of a move in Event Calculus

3.8 Relationship between games and LTSs

As mentioned in Section 1.1, we want a representation of protocols that

is intuitive and easy to understand and used by both the designer and

the user of the protocol. The representation of protocols as games meets

both requirements as it provides a rich framework with a number of

possible extensions. In Section 3.3, we have described a game protocol

in terms of an LTS, while Section 2.5 provides a game-based decription

of protocols (based on [104]).

The question that arises is how the two descriptions are linked together.

As they describe the same set of interactions, there needs to exist a map-

ping and a transformation process that given the LTS description will
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output the game-based one and vice-versa. Some of them are straight-

forward as they are the same in both approaches (e.g. initial and final

states). Others need some more thought as the LTS framework is more

theoretic whereas the game-based one places the emphasis on the pro-

duction of executable specifications.

The relationship between our games framework and LTS is shown in

Table 3.2.

LTS
Representation

Game Representation

Initial State Initial Situation Description

Final State(s)
Those states (situations) described by the

terminating/2 predicate

States
Game Situations (essentially sequences of

moves)
Transition Function effects/3 predicate

Input Alphabet
Player moves (as described by select/3

statements).

Table 3.2: Relationship between game and LTS components

The states in the LTS can be represented by the moves that have been

made so far ( i.e., the situations in the LTS representation). The transi-

tion function of an LTS describes the effect that a move has when made

on a given state; in the LTS representation this is dealt with by the

effects predicate. Finally, the input alphabet for the LTS consists of

the moves the players make at certain states. The LTS representation

describes them in terms of select statements.

3.9 Formal definition of Competence

In Section 3.3, we defined how social interaction in a society is formulated

and understood; we can use the formulation to define what we mean that

an agent is competent to enter the society.

More specifically a game protocol, PG, is defined as a tuple < N ,R,S ,

I ,F ,V ,M ,V ,E >. Based on this definition, we will define the compe-

tence levels of an agent, g, whose skills are Skills(g), with respect to a

role, r, of a protocol, p.

As in section 3.4, the valid moves for the role that the agent is assuming

are defined by equation 3.1 and the actions of its role are defined by

equation 3.2.
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V r = {v = (si, (rn, αj,{rkm})) ∶ v ∈ V ∧ (r = rn ∨ r ∈ {rkm})} (3.1)

Ar = {αj ∶ ∃(si, (rn, αj,{rkm})) ∈ V
r} (3.2)

(Comp.1:FC). Fully Competent (FC). The agent is fully competent when equa-

tion 3.3 holds.

Ar = Skills(g) (3.3)

(Comp.2:CuA). Competent under adversity (CuA). The agent needs to have a

strategy, Sr
g , that it can use to avoid reaching a state where it

must utter an action that does not belong in its skills or receive

an action that it does not understand. This strategy is effectively

a subset of V r – we allow the agent to know the protocol context

when deciding which action to perform. The agent must remove

from V r all the valid moves that it is allowed to do, which it can

either not perform or if it performs them it may reach a state

where it will be unable to execute the protocol. First we need to

define the set of valid moves that the role can enact itself, as in

equation 3.4.

This is effectively the set that the agent can restrict, since it con-

tains the actions that it can decide to perform or not.

V r
e = {v = (si, (rn, αj,{rkm})) ∶ v ∈ V ∧ r = rn} (3.4)

To define the required strategy we need first to define the set of

trace runs, T of the protocol, as in equation 3.5.

T = {t = (e0, e1, . . .) ∶ ei = (si, rn, αj,{rkm}, s
′
i) ∈ E ∧si+1 = s

′
i} (3.5)

The projection, TStr of traces to a set of valid moves, Str, is the set

of trace runs where traces whose effects’ valid moves don’t belong
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to Str have been removed, as in equation 3.6.

TStr = {t = (e0, e1, . . .) ∶ ei = (si, (rn, αj,{rkm}), s
′
i) ∈ E ∧ si+1 = s

′
i

∧(si, (rn, αj,{rkm})) ∈ Str}

(3.6)

The projection of traces effectively introduces a projection of the

protocol states into the reachable states, SStr, under that strategy.

The strategy of an agent that is competent under adversity is given

by equation 3.7.

Strrg =

{ v = (si, (rn, αj,{rkm}))

∶ v ∈ V r
e

∧ ∀ s ∈ SStrrg∪(V ∖V
r
e )

.(( r ≠ rn ∧ r ∉ {rkm})

∨

( (∀ (s, (rn, αk,{rkm})) ∈ V

. ((r ≠ rn ∧ r ∈ {rkm})→ αk ∈ Skills(g))

∧( (∃(s, (r,αk,{rkm})) ∈ Str
r
g

∧αk ∈ Skills(g))

∨(∃ (s, (rn, αk,{rkm})) ∈ V

.r ≠ rn ∧ (r ∉ {rkm}

∨αk ∈ Skills(g))))

)

)

)}

(3.7)

In equation 3.7, the enacted valid moves of the role are constrained

in such a manner that the set of reachable states has only states

with actions that: (i) do not involve the role (r ≠ rn ∧ r ∉ {rkm})),

or (ii) valid moves where if the agent is the recipient it must be

able to understand all of them, and either there is an action that

the agent can perform and has not been constrained (((r ≠ rn ∧

r ∈ {rkm}) → αk ∈ Skills(g))), (iii) or there is an action that it

can understand or that it is not involved in ((∃(s, (r,αk,{rkm})) ∈

Strrg∧αk ∈ Skills(g))∃(s, (rn, αk,{rkm}) ∈ V.r ≠ rn∧(r ∉ {rkm}∨αk ∈

Skills(g)))). So an agent must be able to understand all valid

moves that involve it as a recipient in the set of reachable states but

may choose to perform no valid move if there is another possible

valid move (to avoid deadlocks). The existence of a move that
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is not constrained by the strategy or of a move that cannot be

constrained by the strategy (in the bottom part), is there to ensure

that reachable states will have at least one action. While an agent’s

strategy may be the empty set, Strrg = ∅, which means that the

agent never performs any actions itself, only receives actions, we

do demand that the set of reachable states to contain some final

states, F ∩ SStrrg∪(V ∖V
r
e ) ≠ ∅, so as to avoid the case where the

protocol cannot be executed at all.

The maximal strategy of an agent is the maximal set Strrg. It

should be noted that in the case of fully competent agents, we

have that max(SStr) = V r
e , since they do not need to constrain the

set of reachable states at all.

(Comp.3:CuC). Competent under cooperation (CuC). The agent in this case does

not have a strategy to constrain the set of reachable states to those

where it can perform an action or understand all messages received.

Instead, it needs the cooperation of the other protocol participants

to form a partial strategy, as shown in equation 3.8, that allows the

set of reachable states to be non-empty, i.e. F ∩SpStrrg∪(V ∖V
r
e ) ≠ ∅.

pStrrg =

{v = (si, (rn, αj,{rkm}))

∶ v ∈ V r
e

∧∀ s ∈ SpStrrg∪(V ∖V
r
e )

.(( r ≠ rn ∧ r ∉ {rkm})

∨

( (∃ (s, (rn, αk,{rkm})) ∈ V

. ((r ≠ rn ∧ r ∈ {rkm}) → αk ∈ Skills(g))

∧( (∃(s, (r,αk,{rkm})) ∈ pStr
r
g

∧αk ∈ Skills(g))

∨(∃ (s, (rn, αk,{rkm})) ∈ V

.r ≠ rn ∧ (r ∉ {rkm}

∨αk ∈ Skills(g)))))))}

(3.8)

The only difference between equation 3.7 and equation 3.8 is that

now the agent need only be able to respond to some messages of

the other agents, not to all of them, that is, the ∀ symbol in the

sixth line has been replaced by an ∃ symbol. As long as the other

agents cooperate and do not send it messages it cannot understand,

the agent can participate in the protocol.
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Effectively, an agent in this category may never perform an action

itself, just like in the case of agents who are competent under

adversity. In addition, in this case an agent may never receive a

message from the other agents either, essentially participating in

the protocol only in name.

(Comp.4:I). Incompetent (I). In this case the agent has no strategy through

which it can participate in the protocol and still allow the set of

reachable states to contain some final states, that is, we have that

F ∩ SpStrrg∪(V ∖V
r
e ) = ∅.

Essentially, an agent is incompetent (Comp.4:I) if it can find itself at a

state of the protocol where it is required to do an action it cannot. The

competency levels we have just defined, essentially consider different

cases for what a requirement may be.

Agent A Agent B Protocol Deadlocks

(Comp.1:FC) (Comp.1:FC) No
(Comp.1:FC) (Comp.2:CuA) No
(Comp.1:FC) (Comp.3:CuC) Possibly
(Comp.2:CuA) (Comp.2:CuA) No
(Comp.2:CuA) (Comp.3:CuC) Possibly
(Comp.3:CuC) (Comp.3:CuC) Possibly
(Comp.4:I) * Possibly

Table 3.3: Games where agents have different competency levels

It is interesting to consider now how an agent of competency type A

will behave with an agent of competency type B when participating in

the same protocol - will the protocol ever deadlock? Table 3.3 presents

the different cases we have. We can see that a protocol may deadlock

only if an agent is incompetent or competent under cooperation. The

latter is the case because the other agents (even those who are fully

competent (Comp.1:FC)) may not wish to cooperate with this agent.

Therefore, the authority agent needs to have a simple test to identify

agents that are either incompetent (Comp.4:I) or competent only under

cooperation (Comp.3:CuC). Checking whether an agent has (at least)

a partial strategy is easily performed by finding a terminating trace

run of the protocol where all the actions involving the agent in ques-

tion belong into its skills 1. Checking whether an agent is fully com-

1A terminating trace run that does not involve the agent at all is an obvious such
example.
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petent (Comp.1:FC) is even easier, since we only need to verify that

equation 3.3 is true.

3.10 Competence and Protocol Completion

The existence of a maximal strategy for an agent does not imply that

it will be used, even in cases where the agent is fully competent and its

maximal strategy is the full protocol. This is the case as what the agent

will actually do when the protocol runs depends on a set of personal

preferences that we do not have access to and, symmetrically, the fact

that the other agents have certain skills does not mean they will use

them as that would depend on a set of personal preferences that we did

not take into account. As a result, fully competent agents may choose

to use conflicting strategies. For example, we can look at the simple

greeting protocol in Figure 3.5. It involves two agents that do nothing

else than greeting each other. If agent A greets first, agent B follows

and vice versa.

b:greet:{a}

s0 s1

s2

s3

a:greet:{b} b:greet:{a}

a:greet:{b}

Figure 3.5: A Simple Greeting Protocol

This protocol has two possible traces, namely s0
a∶greet∶{b}
ÐÐÐÐÐ→ s1

b∶greet∶{a}
ÐÐÐÐÐ→ s3

and s0
b∶greet∶{a}
ÐÐÐÐÐ→ s2

a∶greet∶{b}
ÐÐÐÐÐ→ s3. Assuming that both agents have the

skill greet, they are both fully competent. The maximal strategy of agent

A following Equation 3.8 is V r
e = {(s0, (a ∶ greet ∶ {b}), s1), (s2, (a ∶ greet ∶

{b}), s3)} and for agent B V r
e = {(s0, (b ∶ greet ∶ {a}), s2), (s1, (b ∶ greet ∶

{a}), s3)}. For both agents the only move in the set V r
e are the greet

actions that they can perform and the only action that they are not the

sender but they can receive (as it is part of their skill set) is the greet

action that the other agent performs that follows their initial greeting.

As a result, their maximal strategy are the couple of greet moves made by

them. One would expect that the two agents will be able to fully utilise

the protocol, as they have the skills to do so. However, we have not taken

into account their own personal preferences. We use the case where each
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agent has a preference that says that it does not greet the other agent,

unless it receives a greeting from it first, i.e., greet(A) ← greet(B). If

that is the case, then none of the agents will do anything, as they will

be waiting for one another to act first.

More specifically, if V r
e is the maximal strategy of the agent and PA is

the set of preferences for the agent (expressed in the form of if-then-else

rules or any other notation) that influences the moves it will be making

in the protocol, then the part of the protocol that the agent will enact

will be V r
e ∩ PA, as the valid moves that the agent can enact will be

further constrained by its personal preferences.

For the greeting protocol in Figure 3.5 PA = {s0
b∶greet∶{a}
ÐÐÐÐÐ→ s2

a∶greet∶{b}
ÐÐÐÐÐ→ s3}

and PB = {s0
a∶greet∶{b}
ÐÐÐÐÐ→ s1

b∶greet∶{a}
ÐÐÐÐÐ→ s3}. Given their maximal strategy

V r
e and their preferences, we can see that the agents will never engage

in conversation, as they will both wait for each other to greet first.

3.11 Competence Checking as Planning

Our game-based specification so far allows us to check the evolution

of a protocol, by describing all valid game situations that agents can

be in, if they follow the social rules imposed by the protocol. As a

result, an authority agent can use it to check valid moves when they

are made on-line - acting as a referee - or offline - acting as an auditor

for a certain sequence of moves representing a particular interaction.

However, the specification as it is currently provided does not allow an

authority agent to check for competence. For competence checking the

authority agent must have the competence profile (essentially the set

of actions that it can send/receive) of a specific candidate agent and a

representation of the competence profiles of existing agents within the

society it is an authority agent of. It can then use the rules of the

game, the competence profile of the agent at hand and the other agents,

to construct hypothetical situations that reach a terminating situation.

The construction of these hypothetical situations amounts essentially to

the authority agent planning for these situations using moves that belong

to agent profiles and are based on the rules of the protocol. Therefore,

we can augment this approach by considering competence checking as a

special case of planning under the constraint that rules of the game are

observed.

Listing 3.17 shows how the agents formulate their plans on the basis of
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the rules of the game.

1 plan(game(Situation, Result), Situation, Result):-

2 achieved(terminating(Situation, Result), Situation, Result).

3 plan(game(Situation, Result), Situation, Result):-

4 \+ terminating(Situation, _),

5 assume(valid(Situation, Move), Situation, Move),

6 apply(effects(Situation, Move, NewSituation), Situation, Move,

NewSituation),

7 plan(game(NewSituation, Result), NewSituation, Result).

Listing 3.17: Competence Checking by Planning

In order to plan for a game, we can stop when a terminating state has

been achieved. If that is not the case, a valid move needs to be selected,

its effects should be applied on the situation of the game to give us a

new game situation and that new situation will be used for running the

planning procedure again.

The definition for achieved/3 and apply/3 respectively is straightforward

as it involves simply calling the terminating/3 and effects/3 definitions,

as they have been defined for a specific protocol (e.g. see Sections 3.6.6

and 3.6.8 for the mail order protocol). The use of different names is

chosen simply to reflect the domain of planning that this variation is

used in. Listing 3.18 shows their implementation.

1 achieved(Terminating, Initial, Result):- call(Terminating).

2

3 apply(Effects, Situation, Move, NewSituation):- call(Effects).

Listing 3.18: Move effects and checking for terminating state

3.11.1 Competency Profiles

When planning for valid moves, however, we need to consider what the

players would do given their competency profiles. Such a profile contains

the skills and service abilities of the agents ( i.e., the services that the

agents offer, the messages that it can understand).

For a communication protocol a competency profile amounts to the com-

munication acts that the agent can utter and understand in the context

of that protocol. To describe a competency profile we use rules of the

form shown in Listing 3.19.

1 competent(Agent, do(Situation, Act)):- Conditions.

Listing 3.19: Generic form of Competency Rules

The Authority Agent of the society will need to keep competence pro-

files of every agent in the society. This way it should be able to assess
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whether these agents would be able to fully exploit the protocol or just

part of it. As an example, for the two agents in the mail order protocol

in Figure 3.3, the competence rules in Listings 3.20 and 3.21 will hold.

Player p1 is able to select moves order and accept in a mail order sit-

uation while player p2 can select the acts called reorder, confirm and

notify - for all rules, there are no conditions limiting the agents from

performing them.

1 competent(p1, do(sit(mail_order, _, _), order)).

2 competent(p1, do(sit(mail_order, _, _), accept)).

Listing 3.20: Competence Profile for p1

1 competent(p2, do(sit(mail_order, _, _), reorder)).

2 competent(p2, do(sit(mail_order, _, _), confirm)).

3 competent(p2, do(sit(mail_order, _, _), notify)).

Listing 3.21: Competence Profile for p2

We assume that competence profiles will always generate ground in-

stances of actions.

3.11.2 Hypothesising Valid Moves

We can now specify the assume/3 predicate shown in Listing 3.22.

1 assume(Valid, Situation, select(Player1, Act, Player2)):-

2 competent(Player1, do(Situation, Act)),

3 call(Valid),

4 acceptable(Situation, select(Player1, Act, Player2)).

Listing 3.22: Definition of the assume/3 predicate

During the planning process a move is generated by the competence pro-

file of a player and then it is checked for validity. There is, though, one

more element that we need to check and possibly place a constraint on:

whether making this move will cause unwanted loops (in the mail order

protocol of Figure 3.3 such a loop will be caused if the manufacturer

selects order in state s0 and the supplier selects reorder in state s1);

this is described in Listing 3.23. This is the case as the program check-

ing for the competency of the agent might be trapped inside the loop

and not look at the other moves that the agent could possibly make.

Furthermore, these loops might cause undesired effects from a business

perspective, i.e., in the previous example the supplier is constantly ac-

cumulating goods since he is reordering all the time (as there is one role

instance for each role, we can also use the player identifiers as senders

and receivers instead of the role identifiers).
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1 [select(p1, order,p2), select(p2, reorder,p1)]

Listing 3.23: Loop Example in Situation Calculus

In order to deal with such loops, we first identify them in the protocol

and then we demand that the chosen move is acceptable. The acceptable

predicate will check the current situation of the game, i.e., the history of

moves made so far against the move selected by the valid predicate and

decide if it forms part of an unwanted loop. The definition of acceptable

is shown in Listing 3.24.

1 acceptable(sit(_,_,Narrative), Move):-

2 \+ cyclic(sit(_,_,[Move|Narrative])).

Listing 3.24: Acceptable Predicate

The cyclic predicate is, then, defined in Listing 3.25. It starts by in-

corporating the move selected to the current game situation and then

checks whether that situation creates any undesirable loops.

1 cyclic(sit(_,_,Moves)):-

2 cyclic_pattern(CyclicPattern),

3 check_list( CyclicPattern , Moves).

Listing 3.25: Cyclic Predicate

We should note here that cyclic pattern/1 is a domain specific assertion

that the developer of the protocol has to provide. In the mail order

protocol described in Section 3.3, an example of a cyclic pattern would

be [select(p1, order,p2), select(p2, reorder,p1)] (again, player identifiers

correspond to role identifiers). That is, the merchant agent is order-

ing goods and the supplier agent is reordering them. The predicate

check list/2 checks whether the list of moves follows the pattern. The

definition of check list/2 is given in Appendix G.

3.12 Summary

In this chapter we presented the formal framework of our approach.

We, also, presented a representation based on games that can be used

to represent protocols in both a centralised way and as a distributed

collection of player roles. Furthermore, we discussed how this represen-

tation can be specified describing both games that have no concurrency

requirement using the framework of Situation Calculus as well as games

with such requirements with the use of Event Calculus. The two frame-

works are used for modelling the state of the game. Finally, we gave a
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formal definition of the concept of competence and commented on how

competence influences protocol completion.

The next step would be to produce the algorithms that given a protocol

representation of the kind described in this chapter will generate its

role components as well as detect any problems (states where the agent

players would have to make a choice as to what to do next, but will not

have the necessary information). In these cases, we will need algorithms

that describe how to go about remedying these situations. Furthermore,

we need to ensure that in protocols where multiple instances of one role

are present - for example in an auction with multiple bidders, all role

instances will have access to all the moves prescribed by the protocol for

the bidder role. This is the subject of the next chapter.
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Chapter 4

Decomposing the protocol

into roles

4.1 Introduction

In this chapter, we present two algorithms for manipulating protocols.

The first one decomposes a protocol into separate role-specific descrip-

tions, ensuring that agents are provided with all the information they

require for performing their role and only that. The second algorithm

attempts to repair protocols that cannot be decomposed into roles. Fi-

nally we show how these algorithms can be extended for protocols where

a role may have multiple instances participating.

4.2 The Need for Decomposing Protocols

This section looks at the inverse problem of that in Section 3.5, i.e.,

how to produce the individual role descriptions for a protocol that is

given in its full LTS form. In order to achieve this, we need to compute

role descriptions like those in Section 3.4, starting from the protocol

descriptions of Section 3.3.

This is the case as once the agent is accepted into the society, there is a

need for providing it with the protocols it will be using (as determined

by the role(s) it applied for). One solution would be to give it the full

protocol, so that it has complete knowledge of what is happening. This

is, however, inappropriate for a number of reasons, namely:

• security - there might be sensitive information in the protocol
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that should not be revealed to all agents. As an example, we can

think of a protocol that involves online payment; the merchant

should not see the number of the customer’s credit card, but an-

other role (gateway) needs to see it and process that information.

• information overload - the agent might not need all the infor-

mation in the protocol as it is of no relevance to its role. If the

agent is overloaded with information, or if it is required to pro-

cess much more information than it needs to, then the process of

running the protocol becomes more error-prone and comes at the

cost of a high overhead. In addition, if the system in consideration

is distributed, then the cost of everyone receiving all messages is

even higher.

As a result, the optimal solution would be for every agent to receive

only the messages related to the role(s) it plays in the protocol. As our

basic representation of a protocol is that of an LTS, essentially we want a

smaller LTS that will contain only the relevant information for the agent

in hand. By relevant, we mean that we need to keep enough information

for the agent to be able to enact its role and nothing more, nothing that

it will provide it with more information than what is strictly needed.

In other words, we want a smaller and equivalent LTS to the original

protocol that will contain only the moves that are relevant for a specific

role; a minimal protocol with regards to the role’s knowledge. States and

actions that the role knows about should be kept intact and we should

look at whether any actions that do not have the role as a sender or a

recipient affect its knowledge on deciding on the next action to perform.

This new protocol will have to be equivalent to the original one in terms

of the traces that it can produce if we only take into account the role’s

knowledge and everything else is considered a silent (τ) action. As we

are using an LTS description of the protocols, the notion of bisimulation

can be used to that effect - Section 4.2.1 provides a brief overview of the

notion.

We discussed the relationship between Event Calculus and Situation

Calculus with the LTS representation of the protocol in Section 3.8.

Both frameworks can be used to model the state of the game. As a

result, we can represent the evolution of a game as an LTS by labelling

each state with the sequence of moves the player has made in order to

reach that state. This, however, would be difficult as - e.g. in the case

of loops, there could be an infinite number of possible evolutions that
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lead to the same state. On the other hand bisimulation runs on LTSs, is

well-researched, optimised algorithms have been developed, the process

is fully automated and well-developed and tested toolsets, e.g. CADP

and µCRL2, exist.

4.2.1 Bisimulation

Bisimulation [73, 113] is a way of minimising labelled transition systems

on abstract (silent) actions (state minimisation technique) while at the

same time preserving the properties of the original model. It, also,

has the property of been computed automatically without any manual

involvement [40].

We can define bisimulation as follows [92]: A binary relation R on the

states of a Labelled Transition System is bisimulation if whenever s1R s2:

for all s′1with s1
µ
Ð→ s′1, there is s′2 such that s2

µ
Ð→ s′2 and s′1Rs

′
2

(∀s′1.s1
µ
Ð→ s′1⇒ ∃s

′
2∶ s2

µ
Ð→ s′2, s

′
1Rs

′
2);

the converse, on the transitions emanating from s2

(∀s′2.s2
µ
Ð→ s′2⇒ ∃s

′
1∶ s1

µ
Ð→ s′1, s

′
2Rs

′
1).

(4.1)

Bisimulation can also be defined along the same lines on Mealy automata

which are similar to LTSs but have no initial and/or final states [92]. An-

other definition of bisimulation can be obtained using relations, fixpoints

and game theory [74, 84]. In this case the interest is on the concept of

fixed point operators where bisimulation is defined as the greatest fixed

point of a relation involving the actions that can be observed depending

on the type of bisimulation that we are looking at.

For the purposes of bisimulation, we consider that the state of a system

at any point in time is given by the actions that can be executed at that

time point, as well as the actions that can follow that choice. If we,

therefore, want to call two systems bisimilar it should be true that for

every evolution of one of them through a sequence of actions, the same

evolution should be possible for the second one using the same actions

[75] and vice-versa.
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We are especially interested in transition systems where some transitions

are not observable by an external observer of the system. In a system

describing a business transaction, the merchant has to talk to the bank

in order to get the transaction authorised but that is not observable by

the customer. As a result, we want to check whether the two systems

are equivalent or not on the basis of the actions that we can observe -

this is done by defining a family of actions that we can observe on the

LTSs and checking if they match the criterion in Equation 4.1.

In producing a new transition system that will have the same behaviour

as the original one, it is important to decide on how we are going to deal

with silent actions. Depending on the chosen way, we can distinguish

between a number of different bisimulation types, which we analyse next.

4.2.2 τ⋆α Bisimulation

In this notion of bisimulation [111], any sequence of silent actions (τ)

preceeding an observable action (α) can be replaced by the observable

action, i.e., τ⋆α ≃ α.

In the context of LTS, we can distinguish between two types of actions:

visible (observable) actions and invisible (silent) actions that are internal

and, as such, not observable. Those actions are substituted with τ

and, according to [73], one or multiple instances of them cannot be

distinguished by observing the system. As a result of this, any visible

action preceded by any number of silent actions will be equivalent to

one instance of the visible action. More formally, the τ⋆α equivalence

is denoted as ≈τα and is the equivalent of the bisimulation relation (see

Section 4.2.1) for the {τ⋆α ∣ α ∈ A} set of actions.

This is a convenient way of defining equivalence (τ⋆α = α, all silent

actions omitted), however it does not preserve always the structure of

the transition system we are looking at.

In order to overcome that, branching bisimulation was introduced; this

is discussed next.

4.2.3 Branching Bisimulation

In branching bisimulation we not only worry about the silent actions, but

also in preserving the branching structure of the LTS. In other words,

although there are τ actions, these cannot be removed always as the
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structure of the LTS will need to be preserved.

Two LTSs P and Q are branching bisimilar if there is a symmetric

relation R between their states such that [111]:

• the initial states are related by R;

• If r and s are related by R and r
α
Ð→ r′, then either α = τ or there

exists a path s ⇒ s1
α
Ð→ s2 ⇒ s′ such that r and s1, r′ and s2 as

well as r′ and s′ are related by R.

4.2.4 From Protocols To Individual Roles - The Al-

gorithm

The next decision to be made is the type of bisimulation to be used. We

assume that any action not involving the role as either a sender or one of

the recipients is represented as a silent τ (tau) action. The simplest form

is the τ⋆α one [111], in which every silent action preceding a non-silent

action is ignored.

A −> B: a

C −> B: b

C −> B: c

A −> B: d

A −> B: e

3

0 1 2

4

(a) Full Protocol

A −> B: a
A −> B: d

A −> B: e

τ

0 1 2

4

3

τ

(b) Protocol with τ

A −> B: e

A −> B: a

A −> B: d

0 1 2

(c) τ⋆α Bisimulation

A −> B: a
A −> B: d

A −> B: e

τ

0 1 2

4

3

τ

(d) Branching Bisimulation

Figure 4.1: Non-implementable protocol due to incomplete knowledge

In Figure 4.1a, we have a protocol with three roles, namely A, B and

C. Role A can perform actions a, d and e, all messages going to role B.

Role C can perform actions b and c, with both messages again going to

role B. If the only knowledge that roles are allowed to have is the actions
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they have performed and received and we replace non-observable actions

for role A with τ , then the resulting role LTS is shown in Figure 4.1b.

As we can see there, role A will need to decide what message to send to

role B (d or e), but this decision will need to be based on what message

C sent to B (b or c) and that is knowledge that role A does not have.

This is true for two reasons. First, role A cannot know whether role C

has already acted so that it can follow it with its last action. Second,

role A cannot know what action role C has performed in order to follow

it with the correct response. Instead, we need a bisimulation relation

that will detect this problem and will not remove a silent action if it

may cause lack of knowledge to perform further actions in the course of

the protocol, e.g. in the case of branching in the previous protocol.

For this, we use branching bisimulation [111]. In Figure 4.1c, we see

the result of τ⋆α bisimulation been employed. The silent actions are

removed and it looks like role A will have to make a choice between

sending messages d and e to role B. This choice, however, is not entirely

its own; it depends on a previous exchange of messages for which A

has no knowledge about - therefore, the silent actions should remain in

the protocol. Applying branching bisimulation gives the result shown

Figure 4.1d.

At the top level, our approach is as follows (followed for every role in

the protocol):

(A) the global protocol is transformed into a role specific one, where

any action for which the agent in question is neither the sender

nor one of the receivers of the message is replaced with the silent

τ (tau) action;

(B) we compute the branching bisimilar LTS;

(C) if no τ transitions, we have a minimal role specific behaviour spec-

ification.

Section 4.3 presents different algorithms for repairing protocols. They

differ in the number of silent transitions that are repaired as well as on

the criteria that we use to decide on which transitions to repair.

Given a game protocol P, the process we need to follow to derive the

component roles is described by the derive role procedure shown in List-

ing 4.1. The protocol we obtain in the first pass might contain silent
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(τ) actions, in which case repair is needed. We do not commit to any

particular repair algorithm, as any of the ones in Section 4.3 can be

used.

1 // r - role name, g - game protocol

2 derive_role(r, g) {

3 ng = copy(g);

4 // relabel irrelevant transitions to tau

5 foreach (tr in ng.transitions) {

6 if (r ∉ {tr.sender} ∪ tr.receivers)

7 tr.label = tau;

8 }

9 // try to repair the protocol

10 do {

11 old_ng = copy(ng);

12 ng_r = branching_bisimulation(ng);

13 foreach (tr in ng_r.transitions) {

14 if (tau == tr.label) ∧ is_problematic(tr))

15 ng = repair(ng, tr.initialState, r);

16 break;

17 }

18 } while ( ng != old_ng );

19 return compute_role_attributes(r, ng_r, g);

20 }

Listing 4.1: Deriving a role from a protocol

The algorithm starts by looking at each transaction in the game protocol

and checks to see if the role in question is either the sender or amongst

the recipients of a move. If that is not the case, then the role transition

label , i.e., move, becomes τ to indicate that the user is not participating

in this message exchange. Branching bisimulation is then applied to

the resulting protocol and that produces a new game protocol ng r.

The algorithm will, then, go through all transitions in the new game

protocol and check if the label of the transition is τ or not. If it is, and

the silent action is a problematic one (this depends on the algorithm

from Section 4.3 that we choose to implement), it will call the repair

algorithm (see Section 4.3 for the details) for that specific label (one

repair might solve more than one problematic transitions). Once the

transition is repaired, it moves on to check the next transition. We do

not want to commit to any particular interpretation of repair in this

case, so we are just stating that repair is needed. The loop will run until

the protocol we start the loop with is the same as the protocol after the

loop has run, i.e., either there are no silent transitions or if there are

they do not cause lack of knowledge for the role. The attributes of the

role are then returned.

The algorithm for computing the specification attributes of a role after

resolving any lack of knowledge problems in the original protocol is de-

scribed in Listing 4.2. The resulting LTS will have a higher number of

transitions (as it is unlikely that no silent transitions needed repair) and
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possibly the set of the roles that the agent communicates with will get

augmented by new roles as a result of the repair process. The number

of states would, most likely, be lower as a number of the original LTS

states would have been merged into the same equivalence class.

1 // r - role name, rg - role graph, g - game protocol

2 compute_role_attributes(r, rg, g) {

3 roleset=states=actions=moves=valid=effects=∅;
4 foreach (tr in rg.transitions) {

5 m = tr.move; a = m.action;

6 sndr = m.sender; rcvrs = m.receivers;

7 s = tr.startState; f = tr.finalState;

8 roleset = roleset ∪ {sndr} ∪ rcvrs;

9 actions = actions ∪ {a};

10 moves = moves ∪ {m};

11 valid = valid ∪ {(s, m)};

12 effects = effects ∪ {(s, m, f)};

13 }

14 foreach (s in rg.states)

15 states = states ∪ {s};

16 initial = equivalence_class(g.initialState, rg);

17 foreach (s in g.FinalStates)

18 finals += equivalence_class(s, rg);

19 return ( <r, roleset, states, initial, finals,

20 actions, moves, valid, effects> );

21 }

Listing 4.2: Computing the attributes for a role

It starts by setting all role attributes (roleset, states, actions, moves,

valid moves and effects) to the empty set (∅). In order to compute the

role attributes, there are two pieces of information that we need to look

at - one is the role protocol transitions from which we can gather infor-

mation about the roleset, actions, moves, valid and effects components

and the second one is the set of states and final states from which we can

gather information about the initial and final states of the role protocol.

For each transition in the role protocol, we can read the move of the

transition (in the form (Sender, Action, Recipients)) as well as the start

state and the final state of it. From the move we can extract the sender,

action and recipients of the action. The sender and receivers will need

to be added to the roleset of the role, as they represent roles that engage

in communication with it. Similarly, the action part of the transition is

added to the available actions component of the role, as it is an action

that the role can choose to execute. The move as a whole will be added

to the set of available moves for the role, while the initial state and the

move components as a pair will be added to the valid moves set of the

role. Finally, the whole transition will be added to the effects set.

The last two components that need to be specified are the initial state

and the final state(s) of the role LTS. As the resulting LTS was produced

using bisimulation, the states of the original role LTS are equivalence
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classes of the states of the protocol LTS so the initial state of the role LTS

is the one that contains the initial state of the protocol LTS. Similarly,

all states of the role LTS that contain a state designated as final in the

protocol specification are designated as final states for the role as well.

4.3 Repairing non-enactable game proto-

cols

If, after running branching bisimulation on the role’s LTS, there are still

silent (τ) moves, then that role’s description may not be implementable

due to lack of knowledge - the agent may arrive at a state where it

will have to make a choice for which it will need to take into account

information that it cannot observe.

In that case, if we want to produce a protocol that can be decomposed

into roles, we will have to add the missing knowledge to the role in ques-

tion. The following Sections describe possible approaches for repairing

the silent moves.

4.3.1 Updating all silent moves

One approach is to find the equivalent states in the original protocol

of the problematic states in the bisimulated one and add the role as a

recipient to any messages originating from these states in the protocol.

The algorithm is described in the Listing 4.3.

1 // Legend: Game Protocol variables start with GP,

2 // Role Protocol variables start with RP

3 repair(GP, RP_badState, GP_role) {

4 GP_class= equivalence_class(RP_badstate, GP);

5 // Add role to the receipients of the moves of these states

6 foreach (GP_state in GP_class)

7 foreach (GP_tran from GP_state.transitions)

8 GP_tran.move.receivers = GP_tran_move.receivers ∪ GP_role;

9 }

Listing 4.3: Updating all silent transitions

This algorithm repairs the protocol by adding the extra information

that was missing and was causing the occurrence of the τ move, i.e.,

adds the role in question to the recipients of the communication act. At

the beginning, we calculate all states from the original protocol that are

in the equivalence class of the originating state of the transition with the

69



silent move in the bisimulated protocol. Once these are found, for every

transition that starts from these states in the original protocol, the set

of receivers is updated with the inclusion of the role whose LTS we are

calculating. This, of course, is a rudimentary approach that results in

large protocols as a number of transitions that need no updating do get

updated.

4.3.2 Updating frontier silent moves

Another approach would be to repair a few transitions of the original

protocol, those that start from any state in the original protocol that

belongs to the same equivalence class as the original state of the silent

action in the bisimulated protocol and finish in any of the states belong-

ing to the same equivalence class as the end state of the same transition.

C1 C2

τ

s6

s8

s1 s2

s4
s7

s5

s3

τ

τ

τ

τ

τ

τ

Figure 4.2: Branching Bisimulation Equivalence Classes

In Figure 4.2 after running branching bisimulation we have states s1

and s2 linked with a τ transition. However, as branching bisimulation

is an equivalence relation placing states into equivalence classes, each

of these two states would belong to an equivalence class of states from

the original LTS. In this case, we have two equivalence classes C1 =

{s3, s4, s5} (represented by s1) and C2 = {s6, s7, s8} (represented by s2).

By looking at the transitions, we can see that the transitions from states

belonging to class C1 to states belonging to class C2 are all τ transitions

that need to be repaired. The benefit, however, in comparison with the

approach described in Section 4.3.1 is that we do not repair any silent

transitions internal to the class , i.e., the transitions from s3 to s4, s4 to

s5 and s5 to s3.
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The algorithm that performs the repair is described in Listing 4.4:

1 //Legend: Game Protocol variables start with GP,

2 // Role Protocol variables start with RP

3 repair(GP, RP_Transition, GP_role) {

4 RP_initial_state = RP_Transition.initial_state;

5 RP_end_state = RP_Transition.final_state;

6 GP_equiv_initial_states = equivalence_class(initial_state,

7 GP);

8 GP_equiv_end_states = equivalence_class(RP_end_state,GP);

9 //Add role in the recipients of the moves

10 //of those transitions that start in

11 //GP_equiv_initial_states, end in GP_equiv_end_states

12 //and is a silent transition in the original protocol

13 foreach (GP_tran from GP_state.transitions) {

14 GP_initial_state = GP_tran.initial_state;

15 GP_final_state = GP_tran.final_state;

16 GP_m = GP_tran.move;

17 GP_recipients = GP_tran.recipients;

18 if (GP_initial_state ∈ GP_equiv_initial_states ∧

19 GP_final_state ∈ GP_equiv_end_states ∧

20 GP_role ∉ GP_recipients)

21 GP_tran.move.recipients = GP_tran.move.recipients ∪

22 GP_role;

23 }

24 }

Listing 4.4: Updating silent actions by looking at equivalence groups

4.3.3 Updating selected silent moves

Our approaches to protocol repair so far, have considered silent actions

as something that needs to be removed from the role’s final LTS- their

presence would imply lack of knowledge and failure in implementation.

However, this is not always true. A silent action in a role’s protocol needs

to be repaired only if it is causing problems in the role’s action selection

process. Assuming a branch where the first move in both leaves is τ , the

following combinations exist for the follow-ups:

• the two actions following the silent ones are both receive actions

for the role - in that case, we do not need to repair the transition

as the role has no decision to make and just waits to receive a

message;

• the two actions following the silent ones are both send actions for

the role and they are different in terms of either the move or the

recipients of the move (or both); in this case repair is needed so

that the role will have the required information to decide on which

move to pursue;
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• one of the following moves is a send, while the second one is a

receive; we need to repair the protocol in this case too, as the role

in question will need the extra information to decide whether it

will wait to receive the prescribed message or go ahead and send

a message.

If such moves are found in a role’s LTS, then they need to be repaired.

This presents the overhead of having to examine a much larger section of

the protocol every time we come across a silent move, but gives smaller

final protocol sizes.

The algorithm for repairing a protocol in this way is shown in Listing 4.5

(this time we have to include the role LTS as well, as it is been used to

check for the moves that need to be repaired),

1 //Legend: Game Protocol variables start with GP,

2 // Role Protocol variables start with RP

3 repair(GP, RP_Transition, GP_role, RP) {

4 RP_initial_state = RP_Transition.initial_state;

5 RP_end_state = RP_Transition.final_state;

6 // check if the transition needs to be repaired

7 RP_outgoing_transitions = find_outgoing(RP_initial_state);

8 forall ( t ∈ RP_outgoing_transitions,k ∈ RP_outgoing_transitions, k ≠ t)

{

9 if ( t.Move == "tau" ∧ k.Move == "tau"){

10 final_state_t = t.FinalState;

11 final_state_k = k.FinalState;

12 outgoing_transitions_newt = find_outgoing(final_state_t);

13 outgoing_transitions_newk = find_outgoing(final_state_k);

14 forall (r ∈ outgoing_transitions_newt ∧ s ∈

outgoing_transitions_newk){

15 Move1 = r.Move; Move2 = s.Move;

16 sender1 = r.Sender; sender2 = s.Sender;

17 Recipients1 = r.Recipients; Recipients2 = s.Recipients;

18 if ((sender1 == sender2 == GP_Role) ∧ ((Move1 ≠Move2) ∨ (

Recipient1 ≠ Recipient2)) ∨

19 (Sender1 == GP_Role ∧Sender2 ≠ GP Role∧GP Role ∈ Recipient2)){

20 // repair process

21 initial_equiv =equivalence_class(RP_initial_state,GP);

22 end_equiv = equivalence_class(RP_end_state,GP);

23 forall (v ∈ GP.Transitions) {

24 initial_state = v.InitialState;

25 final_state = v.FinalState;

26 if (initial_state ∈ initialequiv ∧

27 final_state ∈ endequiv)

28 v.Recipients = v.Recipients ∪ GP_Role;

29 }

30 }

31 }

32 }

33 }

Listing 4.5: Updating selected silent transitions for role R
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4.4 Protocols with multiple instances of

the same role

In the protocols we have considered so far, there was only one instance

of each role. However, in some cases more than one instance of some

roles are required for the protocol to make sense or to be complete. In

an auction protocol if there is only one participant assuming the role of

bidder, some messages will not be uttered as they are only applicable

when there are multiple bidders. In this case, we need to produce a

version of the protocol with more than one participants playing the role

of bidder to ensure the exchange of all possible messages.

Furthermore, as all LTSs describe the behaviour of the same role, we

would expect them to be equivalent. The idea, thus, is that if we de-

compose the protocol instance and compare the LTS generated for each

of the multiple instances of the same role, these LTSs will have to de-

scribe the “same” behaviour, i.e., be bisimilar.

4.4.1 Verification

Once the protocol is in the format specified in Section 3.3 on page 31, we

can apply bisimulation to decide if the LTSs produced by bisimulation

are the “same” (really, bisimilar as state number(s) might have been

changed by the bisimulation tool) or not. Also, we need to use branching

bisimulation as the auction protocol does have a number of branches

and we need to maintain that structure. If we use τ⋆α instead, branches

in the protocol would be eliminated as any sequence of silent actions

would be condensed with the next known action to the role. If the

LTSs for the two bidder role instances prove to be the “same”, then the

auction protocol prescribes the same moves for both of them. If not,

it might be the fault of the protocol or it could be that the auction

house differentiates between different bidders (e.g. on the basis of their

participation order) and this is reflected in the protocol.

The algorithm for checking whether LTSs from multiple role instances

exhibit the same behaviour or not is described in Listing 4.6.

The first step would be to identify the number of role instances partici-

pating in the protocol; in the case of the auction protocol this number is

equal to two. Before running branching bisimulation, we need to create

the role specific LTSs for the individual role instances where any action
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1 check_role_automata(GP,R) {

2 // GP is the Game Protocol

3 // R is the role in GP with multiple instances

4 n = number_of_role_instances(R);

5 for (i = 1 . . . n)

6 {

7 automatoni = create_role_automaton(GP, Ri);

8 }

9 run_branching_bisimulation(automaton1, . . . , automatonn);

10 if (branching_bisimilar(automaton1, . . . , automatonn))

11 {

12 return true;

13 }

14 else

15 {

16 return false;

17 }

18 }

Listing 4.6: Verifying multiple LTSs of the same role instance

not having the role instance as a sender or one of the recipients will be

renamed to a silent (τ) action.

This will provide us with a role LTS for each role instance. Once

we create all LTSs, we check to see if they are branching bisimilar

to confirm that they are exhibiting the same behaviour. If they are

check role automata returns true. Otherwise, it returns false and we

need to check whether the business rules justify this difference in be-

haviour or whether the LTSs need to be repaired using one of the ap-

proaches in Section 4.3 on page 69.

4.5 Summary

In this chapter, we have discussed how to decompose a protocol into

role LTSs and how to check, using the concept of bisimulation, if these

role LTSs are implementable or the protocol needs to be repaired. We

have presented three different repair techniques, each time decreasing

the amount of extra information that we provide to a role in order for

an agent to be able to implement it. Finally, we have presented an

approach that deals with protocols where there are multiple instances

of one (or more) role(s) during its execution. This is used to check if all

LTSs for the same role instance describe the same behaviour, i.e., are

bisimilar.

The next chapter provides examples of this approach in both frameworks

(Event and Situation Calculi) described in Chapter 3. We, also, provide

an example of an auction with two bidders and how the bidder LTSs for

the two role instances can be checked for bisimilarity.
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Chapter 5

Case Studies

5.1 Introduction

In this chapter we demonstrate our approach by the use of examples.

We show how the competence of an agent can be assessed using both

the Event and Situation Calculi approaches, both for acyclic and cyclic

protocols. We, then, show how a protocol can be decomposed into its

constituent roles and how the decomposition of a protocol with multiple

role instances can be checked for correctness with the use of bisimulation.

5.2 Setting the Scene - an acyclic protocol

5.2.1 The protocol

We will be using the mail order protocol that was partially described

in Section 3.6.6 to demonstrate an acyclic protocol. In this protocol, a

merchant is interacting with a supplier for the purchase of goods. The

merchant makes an order, that the supplier can refuse, in which case

the protocol terminates. On the other hand, if the supplier confirms the

order and supplies an invoice, then the merchant can withdraw in which

case the protocol terminates again. If the merchant accepts the offer,

then the supplier agent notifies the merchant agent of the order details.

The protocol, in the form of an automaton, is shown in Figure 5.1.

In Sections 5.2.2 and 5.2.3, we describe how to formalise this game in

terms of initial and terminating situations, valid moves, effects of moves

and how to write the game predicate that will be checking the progress of
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Figure 5.1: A mail order protocol

the game and decide whether it reached a terminating point or not. The

formalisation will be in both frameworks (Event and Situation Calculi).

5.2.2 Protocol Rules in Situation Calculus

5.2.2.1 Game Situations

As described in Section 3.6, a game situation is represented by the

predicate sit(Name, Id, Moves). In the example, we are describing a

mail order protocol so the situation narratives will be of the form:

1 sit(mail_order, buy1, Moves).

Listing 5.1: Situation Narratives

5.2.2.2 Initial and terminating situations

The initial situation describes what holds initially in the game, i.e., in-

formation about the roles that participants play as well as any additional

information regarding facts that are true when the game starts.

In the mail order protocol example, the initial situation will describe

the roles of the players as in Listing 5.2. We assume that the name of

the merchant is john and the name of the supplier is paul and use the

predicate role of(X, Y) to assign roles to agents (agent X has role Y ). In

76



an initial situation, no moves have been made so the Moves component

is an empty list.

1 initially(sit(mail_order,buy1,[]),role_of(john, merchant)).

2 initially(sit(mail_order,buy1,[]),role_of(paul, supplier)).

Listing 5.2: What holds initially in the protocol (Situation Calculus)

For the mail order protocol to terminate, there are three options:

• the supplier refuses to provide the items requested;

• the supplier notifies the merchant that he accepts the order;

• the merchant withdraws his order.

Listing 5.3 specifies these terminating conditions using the predicate

last move(X) that indicates whether the last move selected by a par-

ticipant in the protocol is X. The first rule covers the cases where the

supplier terminates the protocol with a refuse or a notify move and cor-

responds to the first two conditions, while the second rule covers the case

that the merchant terminates the protocol with a withdraw message.

1 terminating(Situation, Situation):-

2 holds(Situation,last_move(select(P1,Act,P2))),

3 member(Act, [refuse,notify]),

4 holds(Situation,role_of(P1,supplier)),

5 holds(Situation,role_of(P2,merchant)).

6

7 terminating(Situation, Situation):-

8 holds(Situation,last_move(select(P1,Act,P2))),

9 holds(Situation, role_of(P1, merchant)),

10 holds(Situation,role_of(P2,supplier),

11 Act = withdraw.

Listing 5.3: Terminating conditions for the protocol in SC

5.2.2.3 Valid Moves

Valid moves are the moves that can be selected by a player in a certain

state of the game. The conditions on the state will be expressed as a

sequence of holds/2 predicates and valid moves in every state will be a

subset of available moves, i.e., the moves that the game protocol makes

available to its players.

In the mail order protocol of Figure 5.1, the available moves are shown in

Listing 5.4. Any player can select any move, as there are no constraints

upon their selection. The players can select them at any time with the

only constraint being that they have to be participating in a mail order

protocol.

77



1 available(sit(mail_order,buy1,Moves),select(_,order,_)).

2 available(sit(mail_order,buy1,Moves),select(_,refuse,_)).

3 available(sit(mail_order,buy1,Moves),select(_,confirm,_)).

4 available(sit(mail_order,buy1,Moves),select(_,withdraw,_)).

5 available(sit(mail_order,buy1,Moves),select(_,accept,_)).

6 available(sit(mail_order,buy1,Moves),select(_,notify,_)).

Listing 5.4: Available Moves in Situation Calculus

The second filter for the validity of a move is to decide whether it is legal

or not, i.e., determine if it can be selected in a specific situation. The

example we are looking at is a shallow protocol [35], in that the next

move only depends on the type of the previous move and not on the

contents of the message (e.g. the supplier can select the confirm move

irrespective of what the customer ordered). As a result, the criteria we

will be using to determine validity are the roles of the player (by using

the role of/2 predicate) and the last move that has been selected by the

other participant(s) (by using the last move/2 predicate).

The rules applicable to this protocol are as in Listing 5.5. For example,

the first rule specifies that it is legal for a player to select the order

move if its role is that of merchant and no last move has been selected

previously in the game.

1 valid(sit(mail_order,buy1,N), select(P1, order,P2)):-

2 holds(sit(mail_order,buy1,N),role_of(P1,merchant)),

3 holds(sit(mail_order,buy1,N),role_of(P2,supplier)),

4 \+ holds(sit(mail_order,buy1,N),last_move(_)).

5

6 valid(sit(mail_order,buy1,N), select(P1,confirm,P2)):-

7 holds(sit(mail_order,buy1,N),role_of(P1,supplier)),

8 holds(sit(mail_order,buy1,N),role_of(P2,merchant)),

9 holds(sit(mail_order,buy1,N),last_move(select(P2,order,P1))).

10

11 valid(sit(mail_order,buy1,N), select(P1, refuse,P2)):-

12 holds(sit(mail_order,buy1,N),role_of(P1,supplier)),

13 holds(sit(mail_order,buy1,N),role_of(P2,merchant)),

14 holds(sit(mail_order,buy1,N),last_move(select(P2,order,P1))).

15

16 valid(sit(mail_order,buy1,N), select(P1, withdraw,P2)):-

17 holds(sit(mail_order,buy1,N),role_of(P1,merchant)),

18 holds(sit(mail_order,buy1,N),role_of(P2,supplier)),

19 holds(sit(mail_order,buy1,N),last_move(select(P2,confirm,P1))).

20

21 valid(sit(mail_order,buy1,N), select(P1, accept,P2)):-

22 holds(sit(mail_order,buy1,N),role_of(P1,merchant)),

23 holds(sit(mail_order,buy1,N),role_of(P2,supplier)),

24 holds(sit(mail_order,buy1,N),last_move(select(P2,confirm,P1))).

25

26 valid(sit(mail_order,buy1,N), select(P1, notify,P2)):-

27 holds(sit(mail_order,buy1,N),role_of(P1,supplier)),

28 holds(sit(mail_order,buy1,N),role_of(P2,merchant)),

29 holds(sit(mail_order,buy1,N),last_move(select(P2,accept,P1))).

Listing 5.5: Valid Moves in Situation Calculus
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5.2.2.4 Effects of Moves

As the players select moves, the state of the game - as saved in the

situation/3 predicate changes. These changes are captured by effects,

effect and abnormal rules. The effect rules can be summarised as follows:

• when a player makes a move, this is prepended to the last argument

of the situation predicate; thus, the list of moves grows by one

element, the last move (effects);

• when a player makes a move in the protocol, this automatically

becomes the last move (effect).

The first item can be captured by the rule in Listing 5.6; if john makes

an order move with paul as the recipient in the initial situation, then

this move is added to the list of moves (in fact, it is the first move made

in the protocol). In Listing 5.7 when john makes the same move in the

initial situation, the effect of that move for the last move predicate is

that its value will have to change to reflect that this is the last move

made in the game.

1 effects(sit(mail_order, buy1, []), select(john,order,paul),

2 sit(mail_order, buy1, [select(john,order,paul)])).

Listing 5.6: Move effects in situations

1 effect(last_move(select(john,order,paul)),select(john,order,paul),

2 sit(mail_order,buy1,[])).

Listing 5.7: Local Move Effects

Finally, we need to define abnormality conditions, i.e., conditions where

a property holds when it should not hold. In our case, it would be

abnormal for the last move property to have the value of the old move,

when a new one is selected. This is shown in Listing 5.8.

1 abnormal(last_move(select(john,order,paul)), select(paul,confirm,john),

sit(mail_order, buy1, [select(john,order,paul)])):-

2 \+ OldMove = NewMove.

Listing 5.8: Abnormal situations in Situation Calculus

5.2.2.5 An example run

By executing the rules specified in the previous sections, we obtain the

possible outcomes shown in Listing 5.9.
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R = sit(mail_order, buy1,

[select(john, withdraw, paul),select(paul,confirm, john),

select(john, order, paul)]) ;

R = sit(mail_order, buy1,

[select(paul, notify, john),select(john, accept,paul),

select(paul, confirm, john),select(john, order, paul)]) ;

R = sit(mail_order, buy1,

[select(paul, refuse, john),select(john, order,paul)]) ;

false.

Listing 5.9: Game Results in Situation Calculus

This list represents all the runs that an agent can realise on the basis

of the competencies it supplied the Authority Agent with at the appli-

cation process. These will have to be compared against the competence

requirements of the society to decide the agent will be allowed entry or

not. Essentially we assemble all the runs that the agent can realise, e.g.

by using the findall/3 predicate and then compare the result with

the runs that the AA of the society is requiring the agent to realise.

5.2.3 Protocol Rules in Event Calculus

The alternative formulation in which we can specify the protocol rules

is that of Event Calculus, as discussed in Section 3.7.1. As before, we

will be describing the different components of the protocol viewed as a

game. In this example, we could have selected either formulation but

in the case that we had to take time into account when developing the

game rules, an Event Calculus formulation would be more appropriate

as it is a more natural way of representing time.

5.2.3.1 Game Situations

The description of a situation in Event Calculus is very similar to the

one in Situation Calculus, but with an added time component. The

time component is needed as in some protocols (e.g. an auction pro-

tocol), moves have to be selected within a pre-defined period of time

or time is an important component of the game (e.g. the auction runs

for a pre-defined amount of time). The general form of a situation in

Event Calculus is sit(Name, Id, Time, Narrative). In the mail order pro-

tocol example, at time point 2, the predicate describing the situation

could be:

sit(mail_order, buy1, 2, [at([select(paul,confirm,john)],1),at([select(

john, order,paul)],0)]).
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This situation predicate describes a mail order protocol with an Id of

buy protocol that is at time point 2. The moves that have been made

so far are an order move from the merchant agent (john) and a confirm

move by the supplier (paul).

5.2.3.2 Initial and Terminating Conditions

We need to define what holds true at the beginning of the protocol as

well as what would terminate it. For the mail order protocol, what holds

initially is information regarding the roles that the protocol participants

play. These would be expressed by the statements in Listing 5.10.

1 initially(sit(mail_order,buy1,0,[]),role_of(john,merchant)).

2 initially(sit(mail_order,buy1,0,[]),role_of(paul,supplier)).

Listing 5.10: Initial episodes in Event Calculus

The protocol can terminate by two actions of the supplier (notify and

refuse) and one of the merchant (withdraw). In Event Calculus this is

described as in Listing 5.11.

1 terminating(sit(mail_order,buy1,T,N),sit(mail_order,buy1,T,N)):-

2 holds(sit(mail_order,buy1,T,N),last_moves([select(P1,X,P2)])),

3 holds(sit(mail_order,buy1,T,N), role_of(P1,supplier)),

4 holds(sit(mail_order,buy1,T,N), role_of(P2,merchant)),

5 member(X, [notify,refuse]).

6

7 terminating(sit(mail_order,buy1,T,N),sit(mail_order,buy1,T,N)):-

8 holds(sit(mail_order,buy1,T,N),last_moves([select(P1,X,P2)])),

9 holds(sit(mail_order,buy1,T,N), role_of(P1,merchant)),

10 holds(sit(mail_order,buy1,T,N), role_of(P2,supplier)),

11 member(X, [withdraw]).

Listing 5.11: Terminating conditions in Event Calculus

5.2.3.3 Valid Moves

As in Section 5.2.2.3, we describe what the agent can do in the current

state of the game in the form of valid moves. They are expressed as

mostly a sequence of holds constraints and, at every state, they form a

subset of the moves that the protocol makes available to the players.

Listing 5.12 describes the moves that the mail order protocol makes

available to its players. These moves can be selected by any player at

any time over the course of the protocol.

For a move to be selected, it needs not only to be available but the player

should be able to select it on the basis of the current state of the game
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1 available(sit(mail_order,buy1,_,_),select(_,order,_)).

2 available(sit(mail_order,buy1,_,_),select(_,confirm,_)).

3 available(sit(mail_order,buy1,_,_),select(_,refuse,_)).

4 available(sit(mail_order,buy1,_,_),select(_,withdraw,_)).

5 available(sit(mail_order,buy1,_,_),select(_,accept,_)).

6 available(sit(mail_order,buy1,_,_),select(_,notify,_)).

Listing 5.12: Available moves in Event Calculus

and its role, e.g. the supplier agent can select refuse only if the merchant

agent has selected order immediately before. In contrast with Situation

Calculus , we are now using lists to store the moves players make as

a number of them might choose to move at the same time point. For

example, an auctioneer makes a call for bids and all bidders will have

to reply by the next time point; their collective moves will be stored

in a list. For the mail order protocol we are considering, the rules are

specified in Listing 5.13.

1 valid(sit(mail_order,buy1,T,N), select(P1, order,P2)):-

2 holds(sit(mail_order,buy1,T,N),role_of(P1,merchant)),

3 holds(sit(mail_order,buy1,T,N), role_of(P2,supplier)),

4 \+ holds(sit(mail_order,buy1,T,N),last_moves(_)).

5

6 valid(sit(mail_order,buy1,T,N), select(P1,confirm,P2)):-

7 holds(sit(mail_order,buy1,T,N),role_of(P1,supplier)),

8 holds(sit(mail_order,buy1,T,N), role_of(P2,merchant)),

9 holds(sit(mail_order,buy1,T,N),last_moves([select(P2,order,P1)])).

10

11 valid(sit(mail_order,buy1,T,N), select(P1, refuse,P2)):-

12 holds(sit(mail_order,buy1,T,N),role_of(P1,supplier)),

13 holds(sit(mail_order,buy1,T,N),role_of(P2,merchant)),

14 holds(sit(mail_order,buy1,T,N),last_moves([select(P2,order,P1)])).

15

16 valid(sit(mail_order,buy1,T,N), select(P1, withdraw,P2)):-

17 holds(sit(mail_order,buy1,T,N),role_of(P1,merchant)),

18 holds(sit(mail_order,buy1,T,N),role_of(P2,supplier)),

19 holds(sit(mail_order,buy1,T,N),last_moves([select(P2,confirm,P1)])).

20

21 valid(sit(mail_order,buy1,T,N), select(P1, accept,P2)):-

22 holds(sit(mail_order,buy1,T,N),role_of(P1,merchant)),

23 holds(sit(mail_order,buy1,T,N),role_of(P2,supplier)),

24 holds(sit(mail_order,buy1,T,N),last_moves([select(P2,confirm,P1)])).

25

26 valid(sit(mail_order,buy1,T,N), select(P1, notify,P2)):-

27 holds(sit(mail_order,buy1,T,N),role_of(P1,supplier)),

28 holds(sit(mail_order,buy1,T,N),role_of(P2,merchant)),

29 holds(sit(mail_order,buy1,T,N),last_moves([select(P2,accept,P1)])).

Listing 5.13: Valid Moves in the Event Calculus Representation

5.2.3.4 Effects of the Moves

When a player selects to make a move, the state of the game will need

to change and this will need to be recorded. We are using the effects/4
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predicate (Listing 5.14) to define how:

• the time of the game increases by one after each move;

• the list of moves that have already been selected in the game is

updated;

• the value of the last moves predicate (as well as any other pred-

icates recording other parts of the game state - e.g. the running

price of the auction, if required) is updated.

The code is as follows - the second line indicates that the supplier chose

to perform move confirm at time point one after the merchant agent has

selected to make an order move:

1 effects(sit(mail_order, buy1, 0, []),

2 at([select(john,order,paul)], 1),

3 sit(mail_order,buy1,1,[[select(john,order,paul)] |[]])).

Listing 5.14: Effects of a move (or moves) in a game episode

5.2.3.5 An example run

By executing the rules specified in the previous section, we obtain the

outcomes in Listing 5.15.

R = sit(mail_order, buy1, 2,

[at([select(paul,refuse,john)],1),at([select(john,order,paul)],0)]);

R = sit(mail_order, buy1, 3,

[at([select(john,withdraw,paul)],2),at([select(paul,confirm,john)],1),

at([select(john, order, paul)],0)]) ;

R = sit(mail_order, buy1, 4,

[at([select(paul,notify,john)],3),at([select(john,accept,paul)],2),

at([select(paul,confirm,john)],1),at([select(john,order,paul)],0)]);

false.

Listing 5.15: Game Results in Event Calculus

This has, again, to be checked against the competence requirements set

by the Authority Agent so that the approval (or rejection) of the agent’s

application can be decided.

5.3 Setting the scene - a cyclic protocol

The protocol in Section 5.2 is a simple acyclic one. However, this is

not always the case and our formalism should allow to consider complex

protocols that contain cycles. As an example, we will be looking at
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an electronic negotiation protocol in Figure 5.2 adapted from [35]. This

protocol has a number of cases of moves that can form part of an infinite

loop - for example (this is not a comprehensive list, as other cases of loops

exist):

• the customer selects challenge and the merchant selects justify ;

• the customer selects certify and the merchant selects not-understood ;

• the customer selects inform and the merchant selects not-understood ;

• the customer selects certify, the merchant selects not-understood,

the customer selects inform and the merchant selects not-understood ;

• the customer selects inform, the merchant selects not-understood,

the customer selects certify and the merchant selects not-understood.

A:justify

A:retract

A:authenticate

A:not-understoodA:not-understood

B:inform B:certify

B:refuse

A:request

B:accept
A:justifyB:challenge

A:rejectA:reject

A:justify

Figure 5.2: An electronic negotiation protocol

The occurrence of any of these cycles could possibly result in an infinite

loop and the protocol will never terminate but will keep looping between
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these states. As we are assuming that the agent selection strategy is

private, we have no way of knowing whether it will accommodate exiting

from the loop itself or not, so we have to make allowance for it in the

processing of protocol moves. In the next Sections, we describe how we

deal with this kind of situation in both Event Calculus and Situation

Calculus by discussing the cyclic/1 predicate; the rest of the formalism

is exactly the same.

5.3.1 Specifying cycles in Situation Calculus

In order to check for cycles, we need to check the representation of the

state of the game for the occurrence of these moves. In other words, as

the state of the game is represented by a list, it is sufficient to check if

the specified moves exist in that list in the same sequence. This is done

by the cyclic/1 predicate, defined in Listing 5.16.

1 cyclic(sit(_,_,Moves)):-

2 cyclic_pattern(CyclicPattern),

3 check_list( CyclicPattern , Moves).

Listing 5.16: Identifying cyclic moves in Event Calculus

Intuitively, a move causes a cyclic problem, if a certain pattern is matched

against the moves already made and the newly selected move. In the

protocol of Figure 5.2, such a pattern could be two occurrences of the se-

quence select(paul,challenge,john), select(john,justify,paul). This would

be specified as a cyclic pattern and every new move selected by the

agents assuming the roles of supplier and merchant in the protocol will

have to be checked against that pattern. If adding the new move will

result in a loop, the agent’s choice will be rejected and it will have to

make another one. We should note here that the validity of the move is

not affected and an agent using the protocol is allowed to use that move

as many times as it chooses to do so.

We are imposing this limitation only on the grounds of been able to

check the agent’s ability to terminate the protocol and as there is no

control over the agent’s selection strategy the only option is to intro-

duce a new layer of filtering for the moves it selects. Furthermore, by

using that version of cyclic, we can easily adapt it to cater for cases

where we want to apply patterns like periodic occurrences of the cyclic

moves (e.g. cases like (LoopMoves, ,LoopMoves,. . . )). The specification

of problematic moves for the protocol in Figure 5.2 via the specifica-

tion of cyclic patterns in Situation Calculus is shown in Listing 5.17. If
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Move is selected, then all cyclic patterns are examined against the list

of current moves enhanced with Move.

1 cyclic(sit(mail_order,_,Moves), Move):-

2 Move = select(B,challenge,A),

3 sublist([select(B,justify,A),select(A,challenge,B),

4 select(B,justify,A),select(A,challenge,B)],Moves).

5 cyclic(sit(mail_order,_,Moves), Move):-

6 Move = select(B,authenticate,A),

7 sublist([select(A,challenge,B),select(B,justify,A),

8 select(A,challenge,B),select(B,justify,A)], Moves).

9

10 cyclic(sit(mail_order,_,Moves), Move):-

11 Move = select(B,challenge,A),

12 sublist([select(B,justify,A),select(A,certify,B),

13 select(A,certify,B)], Moves).

14

15 cyclic(sit(mail_order,_,Moves), Move):-

16 Move = select(A,challenge,B),

17 sublist([select(B,justify,A),select(A,inform,B),

18 select(B,notunderstood,A),select(A,certify,B)],Moves).

19 cyclic(sit(mail_order,_,Moves), Move):-

20 Move = select(A,challenge,B),

21 sublist([select(B,justify,A),select(A,certify,B),

22 select(B,notunderstood,A),select(A,inform,B)],Moves).

23

24 cyclic(sit(mail_order,_,Moves), Move):-

25 Move = select(A,challenge,B),

26 sublist([select(B, justify, A), select(A,certify,B),

27 select(B, notunderstood, A), select(A, certify, B),

28 select(B, notunderstood, A),elect(A,inform,B)],Moves).

29 cyclic(sit(mail_order,_,Moves), Move):-

30 Move = select(A,certify,B),

31 sublist([select(B,notunderstood,A),select(A,certify,B),

32 select(B,notunderstood,A),select(A,certify,B)],Moves).

33 cyclic(sit(mail_order,_,Moves), Move):-

34 Move = select(A,inform,B),

35 sublist([select(B,notunderstood,A),select(A,inform,B),

36 select(B,notunderstood,A),select(A,inform,B)],Moves).

37

38 cyclic(sit(mail_order,_,Moves), Move):-

39 Move = select(A,challenge,B),

40 sublist([select(B,justify,A),select(A,inform,B),

41 select(B,authenticate,A)],Moves).

42 cyclic(sit(mail_order,_,Moves), Move):-

43 Move = select(A,challenge,B),

44 sublist([select(B,justify,A),select(A,certify,B),

45 select(B,authenticate,A)],Moves).

46

47 cyclic(sit(mail_order,_,Moves), Move):-

48 Move = select(A,certify,B),

49 sublist([select(B,notunderstood,A),select(A,inform,B),

50 select(B,notunderstood,A)],Moves).

51 cyclic(sit(mail_order,_,Moves), Move):-

52 Move = select(A,inform,B),

53 sublist([select(B,notunderstood,A),select(A,inform,B),

54 select(B,notunderstood,A)],Moves).

Listing 5.17: cyclic pattern examples
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5.3.1.1 An example run

After running the code for the electronic negotiation protocol, we get

the following results for the possible paths of the protocol that can be

realised on the basis of the competence information supplied by the par-

ticipant agents. The results shown in Listing 5.18 are not comprehensive,

but the first few paths that we get from running the code. They will

have to be matched against the societal competence requirements.

-> [ select(paul,accept,john), select(john,request,paul)]

-> [ select(paul,refuse,john), select(john,request,paul)]

-> [ select(paul,accept,john), select(john,justify,paul),

select(paul,challenge,john), select(john,request,paul)]

-> [ select(paul,refuse,john), select(john,justify,paul),

select(paul,challenge,john), select(john,request,paul)]

-> [ select(paul,accept,john), select(john,justify,paul),

select(paul,challenge,john), select(john,justify,paul),

select(paul,challenge,john), select(john,request,paul)]

-> [ select(paul,refuse,john), select(john,justify,paul),

select(paul,challenge,john), select(john,justify,paul),

select(paul,challenge,john), select(john,request,paul)]

-> [ select(john,retract,paul), select(paul,challenge,john),

select(john,justify,paul), select(paul,challenge,john),

select(john,request,paul)]

-> [ select(paul,accept,john), select(john,justify,paul),

select(paul,certify,john), select(john,authenticate,paul),

select(paul,challenge,john), select(john,justify,paul),

select(paul,challenge,john), select(john,request,paul)]

Listing 5.18: Electronic negotiation protocol specified in SC

5.3.2 Cyclic Rules in Event Calculus

We use cyclic/2 to check for cycles in the Event Calculus formulation

as well. In the case of Event Calculus , as a number of moves can be

made by multiple agents at the same time, the definition of cyclic (as

part of the definition of the acceptable 2 predicate) is moved inside the

assume/3 predicate as in Listing 5.19.

1 assume(Valid, sit(N,Id,T,Ns), E, at(Es,T)):-

2 findall(E, Valid, All),

3 member(Es, All),

4 acceptable(sit(N,Id,T,Ns),at(Es,T)).

Listing 5.19: Assuming a move in Event Calculus
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In Listing 5.19, we find all moves that are valid (for all players) and

check to see if the move we are selecting is a sublist of them (so that we

can capture all different combinations of the moves that can be made

from one or more players). The next step is to check if the aggregate

move selected is acceptable or not (where acceptable is equivalent to the

move not introducing a cycle).

The definition of the cyclic predicate is shown in Listing 5.20:

1 cyclic(sit(_,_,_,Ns),at(Es,T)):-

2 cyclic_pattern(CyclicPattern),

3 sublist(CyclicPattern, Ns).

Listing 5.20: Definition of a cyclic move

Listing 5.21 shows examples of the specification of cyclic moves in Event

Calculus .

1 cyclic_pattern([at(select(B,justify,A),_),at(select(A,challenge,B),_),

2 at(select(B,justify,A),_),at(select(A,challenge,B),_)]).

3

4 cyclic_pattern([at(select(B,challenge,A),_),at(select(B,justify,A),_),

5 at(select(A,challenge,B),_),at(select(B,justify,A),_)]).

6

7 cyclic_pattern([at(select(B,justify,A),_),at(select(A,certify,B),_),

8 at(select(A,certify,B),_)]).

9

10 cyclic_pattern([at(select(B,justify,A),_),at(select(A,certify,B),_),

11 at(select(B,notunderstood,A),_),at(select(A,certify,B),_),

12 at(select(B,authenticate,A),_),at(select(A,challenge,B),_),

13 at(select(B,justify,A),_)]).

14

15 cyclic_pattern([at(select(B, justify,A),_),at(select(A,inform,B),_),

16 at(select(B,notunderstood,A),_),at(select(A,inform,B),_),

17 at(select(B,authenticate,A),_),at(select(A,challenge,B),_),

18 at(select(B,justify,A),_)].

19

20 cyclic_pattern([at(select(B,justify,A),_),at(select(A,inform,B),_),

21 at(select(B,notunderstood,A),_),at(select(A,certify,B),_)]).

22

23 cyclic_pattern([at(select(B,justify,A),_),at(select(A,certify,B),_),

24 at(select(B,notunderstood,A),_),at(select(A,inform,B),_)]).

25 . . .

Listing 5.21: Example of cyclic patterns

We are making use of the same rules as in the case of Situation Calculus,

but with the difference that in the case of having two or more players

making a move at the same time, our moves for each time point will

have to be represented as lists (in this example, there is a single move

at every time point, but this does not have to be the case in general).
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5.3.2.1 An example run

Running the program in Event Calculusproduces the following results -

Listing 5.22 is a small sample to demonstrate the outcome to be checked

against the competence requirements:

-> [at(select(paul,accept,john),1),

at(select(john,request,paul),0)]

-> [at(select(paul,refuse, john),1),

at(select(john,request,paul),0)]

-> [at(select(paul,accept,john),3),at(select(john,justify,paul),2),

at(select(paul,challenge,john),1),at(select(john,request,paul),0)]

-> [at(select(paul,refuse,john),3),at(select(john,justify,paul),2),

at(select(paul,challenge,john),1),at(select(john,request,paul),0)]

-> [at(select(john,retract,paul),4),at(select(paul,challenge,john),3),

at(select(john,justify,paul),2),at(select(paul,challenge,john),1),

at(select(john,request,paul),0)]

-> [at(select(paul,retract,john),4),at(select(paul,challenge,john),3),

at(select(john,justify,paul),2),at(select(paul,challenge,john),1),

at(select(john,request,paul),0)]

Listing 5.22: Results for the electronic negotiation protocol in EC

5.4 Entering the society - Role Assignment

Once an agent is judged to be competent to join a society by been able

to realise at least the essential protocols (defined by the AA), it needs to

know the protocol(s) it will be engaging in. In this Section, we provide

an example of the algorithm for decomposing a protocol into constituent

roles. In this case study, we consider a gateway agent who wants to enter

a society of merchant and customer agents in order to handle payments

on the merchant agent’s behalf for purchases made by customer agents.

This society is making use of a variant of the NetBill protocol, described

in Figure 3.1 on page 30, in order to process orders and payment. This

is the standard NetBill protocol [25, 46], with a number of variations

(for a full description of the protocol, see Section 3.2). Although this is

a high-level description, NetBill is a protocol widely used in the area of

e-commerce applications and transactions.

The formal representation of the protocol is:

<N ,R, S , I , F ,A, M , V , E >,
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where:

N = NetBill-v1

R = {c,m, g}

S = {0,1,2,3, . . . ,8}

F = {5}

A = {rq, pq, oa, dg, sepo, ssepo, sr, dgk, dga, dgb}

M = {(c, rq,{m}), . . . , (c, oa,{m})}

V = {(0, (m,dga,{c})), . . . , (0, (c, rq,{m}))}

E = {(0, (m,dga,{c}),1), . . . , (0, (c, rq,{m}),8)}

The NetBill protocol is described by the protocol predicate in List-

ing 5.23. We will use the gateway role for illustrating the derivation

process as it is the role that enjoys the most benefits from the process.

1 protocol(netbill1,

2 [c,m,g],

3 [0,1,2,3,4,5,6,7,8],

4 0,

5 5,

6 [rq,pq,oa,dg,sepo,ssepo,sr,dgk,dga,dgb],

7 [(c,rq,m), (m,pq,c), (c,oa,m), (m,dg,c), (c,sepo,m),

8 (m,ssepo,g), (g,sr,m), (m,dgk,c), (m,pq,c), (m,dg,c),

9 (c,oa,m)],

10 [(0, (m,dga,c)), (1,(c,sepo,m)),(2,(m,ssepo,g)),

11 (3, (g,sr,m)),(4,(m,dgk,c)), (6, (m,dg,c)),(8,(m,dgb,c)),

12 (8, (m,pq,c)), (7,(c,oa,m)), (0, (c,oa,m)), (0,(m,pq,c)),

13 (0, (c,rq,m))],

14 [(0, (m,dga,c),1),(1,(c,sepo,m)),2),(2,(m,ssepo,g),3),

15 (3,(g,sr,m),4),(4,(m,dgk,c),5),(6, (m,dg,c),1),

16 (8,(m,dgb,c), 1),(8,(m,pq,c), 7),(7,(c,oa,m), 6),

17 (0, (c,oa,m), 6),(0,(m,pq,c), 7), (0, (c,rq,m), 8)]).

Listing 5.23: Representation of the NetBill protocol

The next step is to calculate the role-specific LTS from the protocol.

After processing the transitions, we obtain the result in Listing 5.24.

Every transition where the gateway agent g is not a sender or a recipient

of the message involved in the original protocol is replaced with a silent

action (denoted by tau). The top line of the representation denotes the

initial state of the LTS (0 ), the number of transitions in it (12 ) and the

number of states (9 ). Each of the other lines describe a transition of the

LTS in the form of (InitialState, Move, FinalState), e.g. the third line

describes a transition from state 2 to state 3 via the move (m, ssepo,

g). Most of the moves are tau, as the involvement of the gateway agent
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is minimal.

1 des(0,12,9)

2 (0,"tau",1)

3 (1,"tau",2)

4 (2,"(m, ssepo, g)",3)

5 (3,"(g, sr, m)",4)

6 (4,"tau",5)

7 (6,"tau",1)

8 (8,"tau",1)

9 (8,"tau",7)

10 (7,"tau",6)

11 (0,"tau",6)

12 (0,"tau",7)

13 (0,"tau",8)

Listing 5.24: Role-specific representation for the gateway in the NetBill

protocol

We can, now, run the branching bisimulation reduction on this LTS.

As this role is only involved towards the end stages of the protocol,

most of its transitions are silent. Branching bisimulation will tell us

if the silent transitions in the LTS can be removed without any loss

of knowledge on the role’s side. Indeed, in this case, the result of the

bisimulation algorithm as shown in Listing 5.25 allows us to reduce the

initial protocol (consisting of nine states and twelve transitions) to one

of three states, two transitions and no silent transitions.

1 des(0,2,3)

2 (0,(m, ssepo, g),1)

3 (1,(g, sr, m),2)

Listing 5.25: The role-specific representation for gateway after the bbe

reduction

As a by-product of the process we also obtain the mapping between

the states in the original LTS and those in the new one as shown in

Listing 5.26. Every line of this representation is a pair of the form

(OldStateNumber, NewStateNumber). For example states 0, 1, 2, 6, 7

and 8 are all merged into state 0 - these are the states with the silent

transitions that were merged into a single state.

1 (0,0)

2 (1,0)

3 (2,0)

4 (3,1)

5 (4,2)

6 (5,2)

7 (6,0)

8 (7,0)

9 (8,0)

Listing 5.26: Equivalence between LTS states
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The agent assuming the role of the payment gateway service is not in-

volved in the message-passing when the protocol is in these states and

does not need to know about them when assuming its role.

The results obtained for all roles in the original Netbill protocol are

shown in Figure 5.3 (the bisimulation is performed by using the ltsmin

tool of the µCRL2 toolset [15]). For the merchant agent, there is no
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Figure 5.3: Branching bisimulation results for NetBill roles

change and it is receiving the full protocol. This is to be expected as the

merchant is involved in all protocol communications and is communi-

cating both with the gateway and the customer agent. As a result, since

there is no communication that does not involve the merchant agent

(either as the sender of the message or as one of its recipients), the pro-

tocol that it is receiving is the full one. The protocol for the customer
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agent is not that much smaller from the original protocol, but it does not

include the conversations involving the gateway agent. This is informa-

tion that the customer should not have access to. It is at the merchant

agent’s discretion how to handle payment and which gateway (or any

other way) to choose in order to receive payment for the order. Also,

if the customer agent knew about these interactions there might be the

danger that it would try and alter the amount due for the purchase or

any other order related information. The real benefit, however, lies with

the gateway agent. An agent representing the gateway service needs not

know the negotiations that have already happened between the mer-

chant and the customer agent. Furthermore, it only needs to interact

with the merchant agent and it does not need to talk to the customer

agent at all. As a result, the protocol for the gateway agent after the

branching bisimulation reduction is made up only of three states while

the original one has nine. To complete the role specification of the gate-

way according to the definitions in Section 3.4, we need to compute the

remaining components, i.e., roleset, initial and final states etc.This is

shown in Table 5.1.

Role name = g
RR = {m }
SR = {0, 1, 2}
IR = 0
FR = {2}
AR = {ssepo, sr }
MR = {(m,ssepo,{g}), (g, sr,{m}) }
V R = {(0, (m,ssepo,{g})), (1,(g, sr,{m}))}
ER = {(0, (m,ssepo,{g}), 1), (1, (g, sr,{m}),2)}

Table 5.1: Gateway Role Specification

The gateway agent is only interacting with the merchant agent, so this

is the only value added to the roleset of the gateway agent. The initial

state of the new LTS is the state that is bisimilar to the initial state of

the full protocol (that is state 0) and the final state is state 2, which

is the bisimilar state of the final state of the original protocol for the

gateway role (that is state 5 and, as we can see from Listing 5.26, its

equivalent state is state 2). The moves for the role are the moves that

have the gateway agent as either the sender or among the recipients of

the message and these are (m,ssepo,{g}) and (g, sr,{m}). The actions

in these moves are the available actions for the role from the original

protocol (in this case ssepo and sr). The valid actions (as well as the

effects relationship) for the role in question are obtained by looking at
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the valid moves in the original LTS, matching the states to the new

states in the bisimilar LTS and rewrite the moves and effects rules. As

an example, the initial state of the gateway LTS is the class of states in

which the initial state (0) of the original LTS belongs - this is the class

of states represented by 0.

5.4.1 From Roles back to Protocols

In this Section, we consider whether the parallel composition of the role

LTSs we get after running branching bisimulation and performing any

necessary repairs on the protocol will give us the original protocol. This

is not true; we get neither the original protocol nor one that is branching

bisimilar to it. As an example, consider the protocol in Figure 5.4; for

brevity, we only show the message names. The protocol begins by role R1

sending itself one of the messages d or e. After that, and depending on

what was the first message that R1 sent itself, it sends role R2 message

a or b and the protocol terminates.

b

d

e

a

Figure 5.4: From role LTS to the whole protocol - counterexample

The LTS for the two roles where silent actions for the roles are replaced

with τ are shown in Figure 5.6.

R2

d

e

a

b

a

b

τ

τ

R1

Figure 5.5: Role LTS for roles R1 and R2

Branching bisimulation will make no changes to the LTS for role R1 as

no silent actions exist. It will, also, make no changes to the LTS for role
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R2 as the τ actions will be kept in the LTS to preserve the branching

structure.

Because of the τ actions in the second LTS, we need to repair the proto-

col. If the repair algorithm in Section 4.3.3 is used, no repair is performed

because both silent actions are followed by receive moves for the role.

R2 does not need to know what message R1 sent itself, it just waits to

receive the next message.

We, now, need to compose the LTSs for the two roles and check the

result against the original protocol (or the LTS for role R1 as they are

the same). The parallel composition of the two LTSs will produce the

result shown in Figure 5.6.

Figure 5.6: Parallel Composition of the LTSs for roles R1 and R2

The ltscompare tool of the µCRL2 suite reports that the two LTSs

are not branching bisimilar.

5.5 Games with multiple instances of the

same role

All the protocols we looked at so far were requiring a single instance of

each participant role. There are, however, cases when multiple instances

of the same role might be required. We will use the English auction pro-

tocol of Section 5.5.1 on page 96 with one seller, one auctioneer and two

bidders to demonstrate this. The seller provides the auctioneer with the

items to be auctioned and the auctioneer conducts the auction. There

are two bidders competing for the items and the description of the pro-

tocol, in the form of an FSP specification, can be found in Section 5.5.1

on page 96 - we use this as it is an easy and compact way to give a

high-level specification of the protocol without overwhelming the user

with the full list.
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The following Sections describe first the FSP specification of an English

auction protocol with two role instances of bidders, how we can convert

the protocol from the FSP specification into an LTS one on which we

can run bisimulation, as well as the steps involved in the algorithm for

checking that the two LTSs describing the behaviour of the two bidders

are branching bisimilar.

5.5.1 The English auction protocol

The model is described by a specification written in FSP [6]. Without

loss of generality the model considers that there are only two bidders,

but it can easily be extended to cover for more bidders. The full FSP

specification for the Bidder agent as well as the composition of the Bid-

der agents processes are given in Listing 5.27.

1 const N = 2

2

3 Bidder = (register -> BidderRegister

4 | inform -> Bidder

5 | end -> Bidder),

6 BidderRegister= (accept_registration -> BidderBid

7 | reject_registration -> Bidder

8 | end -> Bidder),

9 | BidderBid = (bid -> WaitBid

10 | cancel_bid -> Bidder

11 | inform -> BidderBid

12 end -> Bidder) ,

13 WaitBid = (accept_bid -> Wait

14 | reject_bid -> BidderBid

15 | inform -> BidderBid

16 | end -> Bidder),

17 Wait = (inform -> BidderBid

18 | end -> Bidder).

19

20 ||BidderI(I=1) =

21 Bidder/{ bid[I]/bid,

22 reject_bid[I]/reject_bid,

23 accept_bid[I]/accept_bid,

24 inform[I]/inform,

25 cancel_bid[I]/cancel_bid,

26 register[I]/register,

27 accept_registration[I]/accept_registration,

28 reject_registration[I]/reject_registration}.

29

30 ||Bidders = (forall [i:1..N]

31 BidderI(i))/{{win[b:1..N],no_win[1..N],no_win}/end}.

Listing 5.27: FSP code for the two bidder auction - Bidder

The constant N is used to identify the number of bidders participating

at the auction. We set this to two for convenience, but can easily be
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changed to accommodate any number of buyers. At the initial state,

the bidder can choose between register, inform and end messages. An

inform or end message will take the agent back to the beginning of the

process, while a register message will cause transition to the BidderReg-

ister process.

At this state, the registration can be accepted via an accept registration

message that takes the agent to the BidderBid state. If the registration

is rejected (via a reject registration message) or the bidder quits (via

an end message), then the bidder agent goes back to the initial state.

In the BidderBid state, the bidder can place a bid (bid), cancel a bid

(cancel bid), be informed about a bid (inform) or quit the auction (end).

If the bid is cancelled or the bidder quits the auction, then the agent goes

back to the first state in the process. On the other hand, placing a bid

will take the agent to the WaitBid state. In this state, the bidder agent

can have the bid accepted (accept bid), rejected (reject bid), receive an

inform message (inform) or quit the auction (end). A reject bid or

inform message will take the agent back to the BidderBid state, while

an end message will cause transition to the initial state of the process.

If the bid is accepted (accept bid), the system transitions to the Wait

state. In this state, the agent can either receive an inform message that

takes it back to the BidderBid state from which it can place more bids,

or an end message which takes the agent back to the initial state.

The specification we have looked at so far, describes the behaviour of a

single bidder agent. In our model we are representing two agents; there-

fore we need to create the parallel composition of two bidder processes.

This is done by action interleaving, where any non-shared, i.e. not with

the same name, actions of the two processes can be interleaved arbitrar-

ily but shared, i.e. with the same name, actions of the two processes

must be executed at the same time. Furthermore, we will need to be

able to determine where the move came from, i.e., which agent placed

the bid. This is done by combining the bidder agent with an index i

and is defined as renaming the bidder actions to include the index i. As

an example, the bid message will be renamed to bid[1] if the first bidder

placed the bid. Then, we compose all bidder processes. In doing so, we

need to rename the messages that are common between the Auctioneer

and Bidder agents as well as cater for all possible ways of ending an

auction (e.g. the bid message will come up as bid[1] and bid[2] because

of the composition; these are renamed to bid to achieve synchronisation

with the Auctioneer process). As a result, we create the Bidders pro-
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cess by composing all individual Bidder processes and renaming all end

messages to win and no win ones with an index to indicate the agent

that has won (or not) the auction. The no win message with no indices

covers the case where there is no winner at the auction.

The seller (Listing 5.28) and auctioneer (Listing 5.29) agents have a

common action, init, that they perform. This takes the seller to the

state WaitInit where it can receive accept init messages. On receipt of

this message, the seller goes to the WaitEnd state, in which it receives

the end message when the auction comes to an end. Finally, if the

init message is rejected, i.e., a reject init message is received, then the

process terminates.

1 Seller = (init -> WaitInit),

2 WaitInit = (accept_init -> WaitEnd

3 | reject_init -> STOP),

4 WaitEnd = (end -> STOP).

Listing 5.28: FSP code for the two bidder auction - Seller

The auctioneer agent can accept an init message that starts off the

process. It takes the agent to the AnswerInit state where it can choose

between the accept init and reject init messages.

1 Auctioneer = (init -> AnswerInit),

2 AnswerInit = (accept_init -> AuctioneerBid[0][0][0]

3 | reject_init -> Auctioneer),

4 AuctioneerBid[chb:0..N][i1:0..1][i2:0..1] = (

5 | when i1 == 1 bid[1] -> AnswerBid[1][chb][i1][i2]

6 | when i1 == 0 register[1] -> AnswerReg[1][chb][i1][i2]

7 | when i2 == 1 bid[2] -> AnswerBid[2][chb][i1][i2]

8 | when i2 == 0 register[2] -> AnswerReg[2][chb][i1][i2]

9 stop -> AuctioneerAgreement[chb]),

10 AnswerReg[b:1..N][chb:0..N][i1:0..1][i2:0..1] =

11 (when b == 1 accept_registration[1] ->AuctioneerBid[chb][1][i2]

12 | when b == 2 accept_registration[2] ->AuctioneerBid[chb][i1][1]

13 | reject_registration[b] -> AuctioneerBid[chb][i1][i2]),

14 AnswerBid[b:1..N][chb:0..N][i1:0..1][i2:0..1] =

15 (accept_bid[b] -> InformBidders[b][i1][i2]

16 | reject_bid[b] -> AuctioneerBid[chb][i1][i2]),

17 InformBidders[b:1..N][i1:0..1][i2:0..1]=

18 InformBidders[b][1][i1][i2],

19 InformBidders[b:1..N][i:1..N][i1:0..1][i2:0..1]=

20 if (i==1 && i!=b && i1==1) then (inform[1] ->

21 InformBidders[b][2][i1][i2])

22 else if (i==1 && (i==b || i1==0)) then

23 InformBidders[b][2][i1][i2]

24 else if (i==2 && i!=b && i2==1) then

25 (inform[2] ->AuctioneerBid[b][i1][i2])

26 else AuctioneerBid[b][i1][i2],

27 AuctioneerAgreement[0] = (no_win -> Auctioneer),

28 AuctioneerAgreement[chb:1..N] =

29 (win[chb] -> Auctioneer

30 | no_win[chb] -> Auctioneer).

Listing 5.29: FSP code for the two bidder auction - Auctioneer
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In the case that the reject init is chosen, the agent goes back to the

beginning, as the initiation of the auction is denied (e.g. because the

seller agent does not want to sell the goods any more).

On the other hand, if the accept init message is chosen, the process

moves to the AuctioneerBid[i][j][k] state. The state description uses

three indices, i for holding the winning bidder and j and k to hold

information about whether the buyer agents are registered or not (a

value of one means they are registred). This is the state where the

auctioneer agent can receive registration (register[i]), bidding (bid[i])

and stop messages. Both register[i] and bid[i] messages need to have an

index, as we need to differentiate between the two bidders and be able to

check who has registered/bid and who has not. A register message will

cause transition to the AnswerReg[i][j][k][l] state with four indices. The

first index stores the index of the bidder who has requested registration,

the second one holds the index of the current winning bidder and the

last two take the values zero (if the respective agent is not registered)

or one (if it is). A bid message causes the auctioneer process to progress

to the AnswerBid[i][j][k][l], where the semantics of the indices are the

same as for the AnswerReg state.

The auctioneer, once in the AnswerReg state, can respond with an ac-

cept registration or reject registration message (both of them need an

index to identify the agent who has applied for registration). If the

application for registration is successful from the first (second) bidder

agent, the second (third) index of the AnswerReg state will change to

one. If the auctioneer declines the application, there is no change in

the indices. The same rules hold for the AnswerBid state (instead of

accept registration and reject registration messages, there would be ac-

cept bid and reject bid messages). If the bid is rejected, then nothing

needs to be done and the auctioneer will go back to the AuctioneerBid

state, where it can receive bid messages.

If the bid is accepted, the bidders participating in the auction will need

to be informed of this development. However, it is only the registered

bidders different than the one who made the bid that will receive an

inform message. The InformBidders initially has three indices - the first

one about the bidder who is the winning bidder (the bidder who just

placed the bid) and the second and third ones are one or zero depending

on whether the agent is registered or not.
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In order to inform all bidders, we need to keep track of the bidder who

was informed last. This calls for an additional index to be added to the

InformBidders process holding the id of the bidder to be informed about

the new bid. As an example, InformBidders[2][1][1][1] means that the

winning bidder is the second one, the first bidder is the next one to

be informed of the bid and both bidders are registered bidders. In our

example if the second index is one and the first bidder is not the one

who make the bid (first index different than one) and the first bidder is

registered (third index is one) then the inform[1] message is sent. The

process, then, stays in the InformBidders state, but the second index

changes to two. If the second agent is the one who made the bid or it

is not registered, the process sends no inform message and moves on to

the next bidder. When the last bidder is informed, the auctioneer moves

again to the AuctioneerBid state where the agent can accept new bids.

In the event that the auctioneer agent receives a stop message, it moves

to the AuctioneerAgreement state. This state takes only one index that

describes the winning bidder. A value of zero would indicate that there

is no winner and the process goes back to the initial state so that another

auction can begin. If there is a winning bidder, then a win or nowin

message is sent to the bidders and the auctioneer agent goes back to

the initial state for the next auction. The FSP specification for the

auctioneer is specified in Listing 5.29.

To obtain the full protocol we need to compose together the processes

of all role instances. In doing so, the end message in the Seller agent

specification will need to be renamed in accordance with the renaming

in Listing 5.27. This is so that the seller will receive the information

about who won (not won) the auction as well as the no win message

in the case that there was no winner. The FSP specification for the

composition of the full system is given in Listing 5.30.

1 ||System = (Auctioneer ||

2 Seller/{{win[b:1..N],no_win[1..N],no_win}/end} || Buyers).

Listing 5.30: FSP code for the two bidder auction - System

So far, we have built the system in FSP for describing the auction with

two bidders, an auctioneer and a seller. Our aim, however, is to use

this model to decide if the protocol provides all instances of the same

role (in this case bidder) with the same behaviour. We need to check

this, as the specification might specify different rules for different role

instances. As an example, if an instance represents a “trusted” bidder,

its registration requested is automatically accepted, otherwise the auc-
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tioneer might need to run some tests before accepting it. In order to

achieve that, we need a formalism similar to that of describing messages

in Section 3.2, i.e., in the form (Sender, Move, Recipients).

In our case the different components of a move are separated by , e.g.

the renaming of bid[1] to b1 bid1 a will imply that b1 sent the message

bid1 to a. If the last component has the value of all, this indicates that

all agents receive the message, i.e., the auctioneer (a), the seller (s) and

all bidder agents (b1,b2 ).

The FSP code for the renaming is provided in Listing 5.31, e.g. the

first line will rename transition labels of bid[1] to b1 bid1 a. The non-

bidder actions have no index associated with them as there is a single

agent participant for each of the roles of auctioneer and seller. Some

of these actions (the ones concerning the outcome of the auction) are

broadcasted to all agent participants. These are the ones that have all

as the value of the Recipients field.

1 || Auction = System /{

2 b1_bid1_a/bid[1],

3 b2_bid2_a/bid[2],

4 a_rejectbid1_b1/reject_bid[1],

5 a_rejectbid2_b2/reject_bid[2],

6 a_acceptbid1_b1/accept_bid[1],

7 a_acceptbid2_b2/accept_bid[2],

8 a_inform1_b1/inform[1],

9 a_inform2_b2/inform[2],

10 b1_cancelbid1_a/cancel_bid[1],

11 b2_cancelbid2_a/cancel_bid[2],

12 b1_register1_a/register[1],

13 b2_register2_a/register[2],

14 a_acceptregistration1_b1/accept_registration[1],

15 a_acceptregistration2_b2/accept_registration[2],

16 a_rejectregistration1_b1/reject_registration[1],

17 a_rejectregistration2_b2/reject_registration[2],

18 a_win1_all/win[1],

19 a_win2_all/win[2],

20 a_nowin1_all/no_win[1],

21 a_nowin2_all/no_win[2],

22 a_nowin_all/no_win,

23 a_acceptinit_all/accept_init,

24 s_init_a/init,

25 a_rejectinit_s/reject_init,

26 a_stop_a/stop

27 }.

Listing 5.31: FSP code for the two bidder auction - Auction
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5.5.2 Verifying the correctness of the description

As already mentioned, we are trying to determine if the LTSs describing

the two bidders are describing the same behaviour by checking if they

are bisimilar. In this case the protocol is not given in the form of an

LTS but in FSP so we need to convert it before applying the algorithm.

The process followed for converting from FSP format to LTS cannot be

fully automated, as there is information we need that will have to come

from outside the protocol and sometimes might be uncertain. As an

example, we do not know in advance how many instances of each role

we need in order to capture all messages. This might be achieved by a

trial and error approach (trying to increase the number of role instances

and seeing if the new trace contains any additional messages).

5.5.3 Preparation

This is an example of the verification algorithm specified in Section 4.4.1.

The protocol specification given is not in our framework but in FSP, so

we need to convert it once we get the full protocol. As the protocol is

given in terms of individual FSP processes, we need to compose them

to get the full protocol. However, as multiple role instances from the

same role are involved, we need to index their actions so we know which

role instance is performing which move. As a result, the composition of

bidder processes for the two role instances in Listing 5.27 includes an

index (i) that carries this information. Furthermore, the moves specified

in the FSP format will need to be changed to reflect the specification

of moves in our framework ((Sender, Act, Recipients)). Finally, the

transitions we will get from the LTSA tool will need to be converted

into a format the tool that performs the bisimulation (µCRL2) uses,

i.e., in the form of (InitialStateNumber, Move, FinalStateNumber).

The steps we need to take therefore for bringing the model to a format

on which bisimulation can be applied are - this would correspond to step

one from Listing 4.6:

(A) index the actions of each process with multiple role instances (e.g.

the Bidder process in FSP is specified as the composition of two

Bidder(i) processes);

(B) compose all role processes to obtain the full protocol;
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(C) change the name of moves so that they comply with our framework

(e.g. bid[1] becomes b1 bid1 a);

(D) convert the representation of the transitions from the FSP format

to that of our framework (e.g. Q1 = (a rejectinit s → Q2 should

become (1,(a,rejectinit,s),2);

(E) as we will be checking the LTSs for branching bisimulation, the

transition names should be the same in both LTSs, otherwise the

check will fail. Role or move elements of transitions can be re-

named as long as they do not appear in the same role’s LTS with

multiple indexes (as is the case of win1 and win2 that appear in

both bidder LTSs).

5.5.4 Converting the protocol specification

The first step is to produce the game LTS from the FSP specification

(part (i), line 7 from Listing 4.6). From the Transitions menu of the

LTSA tool, we can get the transitions of the LTS as specified in FSP. A

small sample of them is shown in Listing 5.32.

1 Process:

2 Auction

3 States:

4 70

5 Transitions:

6 Auction = Q0,

7 Q0 = (s_init_a -> Q1),

8 Q1 = (a_rejectinit_s -> Q2

9 |a_acceptinit_s -> Q3),

10 Q2 = STOP,

11 Q3 = (a_stop_a -> Q4

12 |b2_register2_a -> Q5

13 |b1_register1_a -> Q69),

14 Q4 = (a_nowin_all -> Q2),

15 . . .

Listing 5.32: Output of LTSA for the auction model with two bidders

The next step is to convert this information into a format that can

be read by the branching bisimulation tool ( i.e. (InitialStateNumber,

Move, FinalStateNumber)). This is done by reading the transitions

line by line and making the necessary conversions. As an example, the

state Q0 should become 0 and s init a should become (s,init,a). Any

move that has all as the designated recipient should have it expanded to

[s,b1,b2]. This is the case as these messages have the auctioneer agent

a as the sender, so they need to be sent out to the other agents. The

first line is stating that this LTS has 162 transitions, 70 states and that
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the initial state is 0. The results, again a small sample, are shown in

Listing 5.33.

1 des(0,162,70)

2 (0,(s,init,a),1)

3 (1,(a,rejectinit,s),2)

4 (1,(a,acceptinit,s),3)

5 (3,(a,stop,a),4)

6 (3,(b2,register2,a),5)

7 (3,(b1,register1,a),69)

8 . . .

Listing 5.33: Conversion of the output of LTSA to aut

In parallel, we need to create the protocol representation as specified in

Section 5.4 on page 89. This is handled by the same code that converts

the output of the LTSA Transitions menu into the role LTS. The result

is shown in Listing 5.34.

1 protocol(auction2,

2 [s,a,b2,b1],

3 [0,1,2,3,4,5,40,6,7,16,29,30,8,9,10,11,15,12,13,14,17,18,19,20,21,

4 22,28,23,24,25,27,26,31,32,35,37,39,33,34,36,38,41,42,44,47,43,

5 45,46,. . .],

6 0,

7 2,

8 [init,rejectinit,acceptinit,stop,register2,register1,nowin,

9 . . .],

10 [(s,init,a),(a,rejectinit,s),(a,acceptinit,[s,b1,b2]),(a,stop,a),

11 . . .],

12 [(0,(s,init,a)),(1,(a,rejectinit,s)),(1,(a,acceptinit,[s,b1,b2])),

13 . . .],

14 [(0,(s,init,a),1),(1,(a,rejectinit,s),2),. . .]).

Listing 5.34: Protocol representation for the auction protocol

We, now, need to prepare the role-specific representations for the two

bidder role instances (still part (i) of Listing 4.6). This is done by

looking at the effects component of the protocol definition and reading

and processing each element. If the role for which we are producing the

LTS is not the sender or amongst the recipients of the message, then the

move component is substituted by tau.

The representations for the two role instances,small samples, are shown

in Listings 5.35 and 5.36.

1 des(0,162,70)

2 (0,tau,1)

3 (1,tau,2)

4 (1,tau,3)

5 (3,tau,4)

6 (3,tau,5)

7 (3,(b1,register1,a),69)

8 . . .

Listing 5.35: Role-specific LTS for the first bidder
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1 des(0,162,70)

2 (0,tau,1)

3 (1,tau,2)

4 (1,tau,3)

5 (3,tau,4)

6 (3,(b2,register2,a),5)

7 (3,tau,69)

8 . . .

Listing 5.36: Role-specific LTS for the second bidder

Before we move on to the second step, checking the LTSs for bisimilarity,

we need to make sure all transitions have the same names, as the check

will fail if they are different (not only the structure has to be the same,

but the action names have to match). As an example, a transition called

(b1, bid1, a) in the first bidder’s LTS and one called (b2, bid2, a) in the

second bidder’s LTS denote exactly the same thing; the bidder is placing

a bid for the auctioned item, but the bisimulation check will fail because

of the difference in the names. All actions with an index need to be

renamed before we run the check for bisimulation, i.e., b1 will become

b, bid1 will become bid and so on (this applies to messages going to

multiple recipients; b1 and b2 will be replaced by b). However, there

are messages (win1,nowin1,win2,nowin2 ) that need to be treated in a

different way than simply renaming them to win, nowin. This is because

their meaning is special and depends on whose bidder LTS we are looking

at. As an example, win1 appearing in the first bidder’s LTS will mean

that it won the auction, whereas when appearing in the second bidder’s

LTS it will mean that the other bidder won the auction. For this reason,

we rename them as follows: win1, nowin1 becomes winme, nowinme in

the first bidder’s LTS and winyou, nowinyou in the second bidder’s LTS,

while win2, nowin2 becomes winyou, nowinyou in the first bidder’s LTS

and winme, nowinme in the second bidder’s LTS (so winme means that

the bidder whose LTS we are looking at won the auction).

After applying the name changes in Listings 5.35 and 5.36 we get the

LTSs for the first and second bidder role instance shown in Listings 5.37

and 5.38 respectively.

1 des(0,162,70)

2 (0,tau,1)

3 (1,tau,2)

4 (1,tau,3)

5 (3,tau,4)

6 (3,tau,5)

7 (3,(b,register,a),69)

8 . . .

Listing 5.37: Role-specific representation for the first bidder
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1 des(0,162,70)

2 (0,tau,1)

3 (1,tau,2)

4 (1,tau,3)

5 (3,tau,4)

6 (3,(b,register,a),5)

7 (3,tau,69)

8 . . .

Listing 5.38: Role-specific representation for the second bidder

5.5.5 Checking the protocol role instances for bisim-

ilarity

We can, now, run step two (line 9) of Listing 4.6, branching bisimulation.

The ltscompare tool from the µCRL2 tool reports that indeed the two

LTSs are branching bisimilar (step 3, line 10 of Listing 4.6) and the

check role automata algorithm returns true.

This means that the two bidders exhibit the same behaviour. If this

was not the case, the business protocol should explicitly specify it. As

an example, consider the case that two bidder place the same bid and

that is the final bid of the auction. The auction house might have a rule

specifying that the bidder who is registered with them wins the item.

This should have been explicitly specified in the protocol specification.

The representation for the first bidder instance is shown in Listing 5.39.

It now contains sixty-one transitions and twenty-six states rather than

the starting a hundred and sixty-two and seventy respectively. Any silent

actions that were not repaired remain in the bidder’s file as τ actions and

indicate that further repair might be needed on the auction protocol.

1 des (0,61,26)

2 (1,"(b,bid,a)",14)

3 (4,"(a,acceptregistration,b)",1)

4 (14,"(a,rejectbid,b)",1)

5 (3,"(a,inform,b)",1)

6 (2,"(a,inform,b)",1)

7 (17,"tau",2)

8 . . .

Listing 5.39: Final LTS for the first bidder

As the representation contains tau actions, we need to repair the role

specification to make it implementable. As we already know that the

LTSs are bisimilar we only need to repair one of the two; we choose

to do it for the first bidder. The repair is done using the approach in

Section 4.3.3 on page 71.
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After repairing the role LTS for the first bidder, we get the representation

shown in Listing 5.40 where some moves have been extended to include

the bidder agent among their recipients so as to provide it with extra

knowledge about the current state of the protocol.

1 des(0, 162, 70)

2 (53,"(a,rejectbid1,[b1, b2])",52)

3 (68,"(a,acceptregistration1,[b1, b2])",52)

4 (52,"(b1,bid1,[a, b2])",53)

5 (21,"(b1,cancelbid1,[a, b2])",6)

6 (68,"(a,rejectregistration1,[b1, b2])",6)

7 (6,"(b1,register1,[a, b2])",68)

8 . . .

Listing 5.40: Protocol representation after the repair of silent transitions

For example the result of move register1 from the first bidder is now

sent to the second bidder as well or the fact that the first bidder placed

a bid is now communicated to the second bidder apart from just the

auctioneer.

Following that, we need to check if further repairs of the protocol are

required. Thus, we create the new role-specific LTS for the first bidder

from the updated protocol by replacing any action it is not involved in

by a silent τ action, run branching bisimulation on the resulting protocol

LTS and check if it still contains silent actions. The generated data for

the protocol after the addition of recipients to certain moves because of

the repair algorithm is displayed in Listing 5.41 and is the file for the

first bidder generated, this time, from the updated protocol.

1 des(0, 162, 70)

2 (53,"(a,rejectbid1,[b1, b2])",52)

3 (68,"(a,acceptregistration1,[b1, b2])",52)

4 (52,"(b1,bid1,[a, b2])",53)

5 (21,"(b1,cancelbid1,[a, b2])",6)

6 (68,"(a,rejectregistration1,[b1, b2])",6)

7 (6,"(b1,register1,[a, b2])",68)

8 . . .

Listing 5.41: The first bidder after making repair changes

The LTS produced after running branching bisimulation on the repaired

LTS of Listing 5.41 is shown in Listing 5.42.

1 des(0,61,26)

2 (1,(b1, bid1, a),14)

3 (4,(a, acceptregistration1, b1),1)

4 (14,(a, rejectbid1, b1),1)

5 (3,(a, inform1, b1),1)

6 (2,(a, inform1, b1),1)

7 (17,tau,2)

8 . . .

Listing 5.42: First bidder after repairs and bbe
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As we see from the first bidder’s LTS, there are still some remaining silent

actions; however, they do not influence the decision-making process of

the first bidder. If it goes from state 10 to state 3, then it can only

receive a message from the auctioneer about another bidder placing a

bid so there is no conflict.

5.6 Summary

In this chapter, we provided examples for the framework representation

and algorithms described in Chapters 3 and 4. We looked at how pro-

tocols can be described as games in both Situation Calculus and Event

Calculus notation, as well as demonstrated how cyclic patterns can be

established so that we can filter them out of protocol runs. These pro-

cesses can be used to prove (or refute) competence of an agent with

regards to a specific protocol. We also showed how to provide an agent

with the minimal necessary information for it to play its role in a pro-

tocol as well as decide on the correctness of a protocol description if

it involves multiple instances of the same role. We accommodate this

by creating the role-specific LTSs for the different instances, renaming

the role and action names so that we have equal grounds for comparing

them and demanding that they are branching bisimilar, as they ex-

hibit the same behaviour. If that is not the case, then the protocol is

not correct in that different instances of the same role do not exhibit the

same behaviour. The next chapter will be comparing and contrasting

our approach to other approaches to agent competence as well as protocol

decomposition for providing the agent with the role-specific information

it should receive.
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Chapter 6

Discussion

6.1 Introduction

In this chapter, we review other approaches on competence checking and

protocol decomposition and compare them with our approach that was

covered in Chapters 3, 4 and 5. We focus on these two concepts as they

are the main contributions of the work and briefly look at different ways

for describing agent interaction either in the form of games or not. The

approaches are grouped by the main contributors. In order to make the

presentation in this chapter self-contained, we summarise the necessary

features of the approaches to aid the comparison with our work.

6.2 Competence Checking

In the area of competence checking, dealing with whether an agent can

enact a given protocol or not, there seems to be a general consent that

if an agent is found to be competent (able to enact it), then it should

be found to be interoperable as well (if enacting the protocol, it should

be able to reach the terminating states without causing deadlocks) [4,

7, 10, 24]on the grounds of the other agents acting exactly as prescribed

by the protocol. If two agents can engage in conversation that can

possibly lead to a terminating state, they should be able to actually

reach that state when they take on their roles in the context of the

protocol specified. This, in general, is achieved by looking at the agent’s

private strategy (essentially, the way it selects its next move), as well

as the protocol. The protocol is, then, transformed to take into account

actions from the private strategy of the agent likely to prevent the agents
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from terminating the protocol, which are discarded. Any extra actions

that are not going to cause any deadlocks are incorporated into the

protocol by creating trap states, i.e., states from which the agent can

only transition to the same state. The final protocol that is given to

the agents is the modified one so the agents are made interoperable by

design.

6.2.1 Singh et al.

In [24], Singh et al. address the issue of competence as well as that of

conformance. The idea is to examine whether the agent in consideration

can produce some (or all) of the computations predicted by the protocol.

The representation of the protocol is that of a transition system from

which paths are defined as a series of transitions that take an agent from

an initial state to a final one and a run as only the sequence of states in

the aforementioned transition. Furthermore, the t-span of a transition

system T, [T ], is defined as the set of all paths in the transition system,

i.e., all sequences of paths that take the agent from an initial state to a

final one.

They also address the issue of how to deal with cases where the agent

does not follow the rules of the protocol strictly, but is allowed some

deviations from it as long as the main goals of the protocol are not

affected; e.g. in a purchase protocol, if the customer requests an invoice

before making payment and the original protocol does not prescribe

this behaviour. Rather than disallowing this action on the basis that it

is not supported by the protocol, they choose to allow it as the basic

commitment that the customer pays and then the merchant ships the

goods is not affected. On the other hand, if the customer requested the

goods to be shipped before payment is made, it would have been a major

violation of the pay-before-ship commitment and not allowed.

As the authors allow for deviations from the original protocol, a decision

has to be made as to what constitutes a minor (major) violation. The

idea is that we want to allow for deviations in which the current and the

resulting states of the protocol remain unchanged on the grounds of a

similarity function - in this case, the state similarity one, which, as an

example, can be based on the notion of commitments [71]. Formally, we

say that si ≈f sj if the same set of commitments holds in both states;

if the non-anticipated move does not cause any change in what both

agents are supposed to deliver, then it is deemed to be a minor violation
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and, thus, allowed.

Furthermore, a temporal relation is defined as follows: s ≻τ s′ if s occurs

before s′ in the run τ . In this context, we would say that run τj subsumes

run τi (τj ≫f τi) if for every state si in τi there is a state sj in τj such

that sj ≈ si and for all si′ in τi if it is true that si ≻τi si
′ then there is sj ′

in τj such that sj ≻τj sj
′ and sj ′ ≈f si′. In other words, a run subsumes

another one if we can relate them through a state-similarity function

and we can rank the similar states in the same order using the temporal

relation ≻ as in the original run.

The other important element is the concept of closure for a protocol

which is defined as [[P]]f = {τ ∣∀τ ′ ∈ [P]∶ τ >>f τ ′}, i.e., all the runs that

subsume the runs provided by the set of original runs for the protocol so

that we can extend the initial protocol rules. The span of the agent α

([α]) will be the paths in the protocol transition system that the agent

can realise.

Following that, we define the terms conformance and coverage of an

agent α with respect to a protocol P and a state-similarity function f :

• the agent is conformant with the protocol if [a] ⊆ [[P]]f , i.e., the

agent cannot produce interactions that break the commitments

holding in similar states.

• the agent is covering the protocol if for every run in the protocol

span (τ ∈ [P]), there is another run τ ′ in the agent’s span (τ ′ ∈ [α])

that subsumes it (t′ >>f t), i.e., the agent can subsume all proto-

col runs, at least matching them or adding extra states without

modifying the commitments).

Following from these definitions, all we have to do to make sure that

two agents will be interoperable is work out the parallel composition of

their individual specifications and rule out, by the use of trap states, the

paths that can cause problems - these are:

• deadlock paths, i.e., paths when both agents have to execute a

receive action but the send actions for both messages have not

been taken;

• blocking paths, i.e., paths when some receive actions have to be

performed by the agent, but the send action for that message has

not been performed;
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• out-of-order paths, i.e., the agent receives the messages in a dif-

ferent order than the one they were sent.

As there is no control over how the interactions will be co-ordinated,

no restriction is placed on them (e.g. forcing rendezvous style or any

other).

In order to develop interoperable agents, we need to take their individ-

ual transition systems and rule out any problematic combinations, i.e.,

deadlock, blocking and out-of-order paths.

In another paper [112], it is claimed that a big class of protocols - espe-

cially those used in electronic commerce applications, can be looked at

from the viewpoint of commitments and operations (creation, manipu-

lation, delegation) on them.

They claim that in order to check compliance one cannot adopt a local

view, due to the heterogeneity of the agents that comprise the system,

but has to look at it externally as an observer (as not knowing the inter-

nal workings of the member agents will make only observable behaviour

meaningful). In order to observe the moves of the agents, a central point

of reference is needed (in the case of a distributed system no local view

would be reliable). Thus, a global clock is used with its starting value

set to
Ð→
0 △ ⟨0, . . . ,0⟩.

It considers local models, which are nothing more than a collection of

messages sent and received by the agent (the timestamp will reference

the time for each agent that the message was sent or received).

In this model, every state is identified with a message and at every state

a set of messages holds, i.e., Q = {m∶m is a message} ∪ {
Ð→
0 }, i.e., all

the messages that have been sent in the protocol so far as states are

identified with messages, as well as
Ð→
0 , which is the starting point.

6.2.1.1 Comparison

In [24] the notion of conformance used could correspond to our notions

of either Competent under Adversity or Competent under Co-operation

assuming that the agent does not do any action that breaks the protocol.

This is the case as in all degrees of competence, we require that the agent

selects valid moves. Regarding the properties of the agent, assuming it

selects only valid moves, if the agent is conformant then it would be

at least Competent under Co-operation; the agent span is a subset of
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the protocol span and the agent can not realise all protocol actions. If

the agent is covering the protocol (again on the assumption that it is

always selecting valid moves), then it is Fully Competent as it can match

all protocol runs.

This approach has a number of limitations, namely (these constraints

are mainly imposed due to the approach for checking interoperability):

• it accepts only one action per transition;

• an agent is not allowed to play twice ;

• we cannot have two different transitions that take you to the same

state;

• actions can only occur once in every path.

In our approach, we can represent concurrent actions with the use of

Event Calculus.

In [112] our concept of competence in this approach relates to that of

compliance to protocol rules, as long as the agent does not select a move

that is not specified by the protocol (regardless of whether any base-

level commitment is broken or not). They are, also, making assumptions

about the agents’ behaviour, i.e., agents are benevolent and they do not

forge message timestamps. Our approach makes no such assumptions.

The use of the global clock for ensuring a central point of reference is

similar to our approach where the Authority Agent of the society has

full knowledge of the protocol and does the checking on the basis of the

information submitted by individual agents. However, although they

present a technique for flagging violations based on commitments, they

offer no classification of the agents in terms of compliance levels. Some

suggestions are adopted, but no formal classification is made.

The way they represent states is equivalent to the way we represent them

in Situation Calculus (set of all actions happened so far in the game)

and Event Calculus(set of properties that can be verified by looking at

the actions so far carried out in the game). It is a run-time approach in

contrast with ours, which checks competence at design time. This means

that they check the agent’s competence when the protocol is actually

running, without having any knowledge of the agent strategies or any

other information regarding their skills.
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6.2.2 Baldoni et al.

Baldoni et al. in [7] recognise the similarities between web services and

multi-agent systems in that they both comprise of heterogeneous, pro-

active and independent components operating in open, dynamic and

unpredictable environments with no form of central control. Therefore

rules are required in order to govern the interactions between the in-

volved parties - these would be protocols in the case of agent societies

and choreographies in the case of web services.

Moreover, due to the heterogeneity of the components as well as the

dynamic nature of the environment in which they interact we cannot

rely on internal constructs such as beliefs and intentions to do the ver-

ification. Instead, we will have to use the observable behaviour of the

parties involved.

As the membership of the MAS or web services will be changing con-

stantly, we need to reason about which applicant will be allowed entry

and whose application should be rejected. This reasoning can be per-

formed either a priori or at runtime and will be associated with whether

the agent’s behaviour is in line with the behaviour specified by the pro-

tocols for the role(s) it is interested in taking on in the new societal

settings.

The authors expect the agents (web services) to fully respect the rules

of the protocol (choreography) and not deviate from the specified inter-

actions. They are, also, expecting two agents who have independently

be proven conformant to the protocol to be interoperable as well - if we

can prove that they can follow the protocol, then we expect them to do

so if asked to participate in it.

They restrict their attention to protocols that can be represented by

Finite State Automata; in fact it is required that both the specification

of the protocol as well as its implementation (policy) is specified by a

Finite State Automaton. These protocols can easily be described by our

approach as we are using the same representation. This is a property

that many protocols from the area of Multi-Agent Systems satisfy so

it is a general approach in this respect. Furthermore, the expression of

the agent’s policy rules in a logic-based declarative language makes the

transformation to a Finite State Automaton even easier.

The basic concept is to look at the problem as a problem of relating two

languages: that of the protocol Pspec and that of the agent’s policy Pag

lang
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(where lang is the language in which the policy is specified and ag is the

identifier of the agent).

The protocol specification defines a set of legal conversations - as a

result, a conversation is legal if it belongs in the language defined by

the protocol specification language. In our approach, this conversation

will be a sequence of valid moves. Thus, the agents will be labelled

conformant if they can produce a legal conversation with respect to an

extended automaton that is derived from Pag

lang and Pspec.

The protocol specification defines a set of legal conversations - as a

result, a conversation is legal if it belongs in the language defined by

the protocol specification language. Thus, the agents will be labelled

conformant if they can produce a legal conversation.

The proposed algorithm aims at fulfilling the following expectations:

• the policy should be able to deal with any possible incoming mes-

sage that the protocol foresees and do nothing if the policy foresees

a message that is not supposed to be received at that point accord-

ing to the protocol;

• the agent’s policy should not utter a message that is not expected

at this stage according to the protocol;

• the agent’s policy allows it to utter at least one of the messages

foreseen by the protocol (it is not necessary to cater for all legal

messages, but at least one should be catered for);

The solution proposed is to start with the automaton that accepts the

intersection of the two languages (agent and protocol) and then extend

it so that it includes all conversations we want to allow. This is done

via an IO automaton [70]. The automaton is defined as follows: Eq

is the set that consists of messages that cause a transition from state

p to state q; formally Eq = {m ∣ δ(p,m) = q}for p,q ∈ Q, where Q is

the set of the automaton states. Then, the automaton from which the

states p and q are drawn will be an IO-automaton for agent ag iff for

every q ∈ Q,Eq consists of only incoming or only outgoing messages with

regards to agent ag.

Starting with the automaton that accepts the intersection of the lan-

guages accepted by the agent and the protocol specification, it is suffi-

cient to apply the following transformations:
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• a state q that has only incoming messages coming into it and leads

to a final state for the agent’s policy but does not for the protocol

specification, is made a trap state (the transition function always

stays in the same state) and is added to the final states of the

automaton. This would cover the case in which the agent’s policy

allows, at a certain state, a message that is not prescribed by

the protocol. Assuming that the other protocol participants are

following the rules, any paths originating from that state can be

safely ignored;

• a state that has only incoming messages coming into it and leads

to a final state for the protocol specification but not for the agent’s

policy, is made a trap state (for every state, the resulting state is

the same) and there is no change for the set of final states. This

covers the case in which, at a certain state, the protocol allows for

a message to be received that the agent can not receive. If the

agent receives this message, all paths originating from that state

will be rejected by Mconf ;

• a state that has only outgoing messages coming out and leads to

a final state for the agent’s policy but not for the protocol spec-

ification is made a trap state (all transitions are self-transitions)

and there is no change to the set of final states. This rule handles

the case where the agent can utter a message that is not allowed

according to the specification of the protocol. As a result, all

conversations originating from that state will not be accepted by

Mconf ;

• a state that has only outgoing messages coming out and leads to

a final state for the protocol specification but not for the agent’s

policy is made a trap state (all transitions lead to the same state)

and is added to the set of final states. This is the case where the

protocol allows for a message to be uttered at a certain state, but

the agent policy does not. All conversations up to this state should

be accepted by Mconf , but it will have to be turned into a final

state as the conversation can not progress any further.

Before checking for conformance and interoperability, we need to intro-

duce the concept of a complete automaton. An automaton is complete

if for all the common states in the agent’s policy and the protocol spec-

ification there is at least one message that will lead to an alive state

(state leading to a final state). If that message (from the agent policy)
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is substituted in the specification policy it is still possible to reach an

alive state in the specification automaton.

In terms of conformance an agent is labelled conformant to a protocol

specification if the automaton, whose construction is described above, is

complete, i.e., a message will always be uttered, when one is expected)

and it should accept the union of the two languages (the agent’s L(P ag

lang)

and the protocol’s specification L(Pspec)).

Their approach works using the same concept as Singh in that they want

to turn the states resulting from moves that can prevent the agents from

terminating the protocol into trap states (states that are not final and

the agent can only transition to the same state). However, what they are

really interested in is to show that conformant agents will also be

interoperable. According to the authors, for every common conversa-

tion (viewed as a path in the Finite State Automaton) t′, there is another

one t′′ such that the resulting conversation t = t′t′′ (effectively the path

that results from joining the two initial paths) is in the intersection of

the two agent policy languages.

This approach entails interoperability by design without imposing re-

strictions on the conversations allowed, i.e., agents need not alternate

or an action can be used more than once in a dialog, unlike the ap-

proach in Section 6.2.1. On the other hand, it links interoperability

with conformance, while the approach in Section 6.2.3 does not (in fact,

they discuss conformance without making any reference to the concept

of interoperability).

In [10], the authors look at conformance verification of logic-based agents

whose policies are specified in a Prolog-like language (in this case Dy-

LOG) and distinguish between three degrees of conformance as shown

below. The problem of verifying conformance is treated (for the first

two degrees) as a inclusion problem between the set of conversations

that can be generated from the agent’s specification in DyLOG given

an initial state of beliefs for the agent (Σ0) (for the first case) or the set

of conversations independent of the initial state of agent beliefs and the

language generated by the AUML specification of the protocol (second

case). In the third degree we want the agent’s conformance to be proved

independent of the speech acts semantics and their implementation (e.g.

an inform message might mean that once an agent knows about a fact,

it informs the others immediately or it does that only if its belief base

contains the proposition that the other agent does not know about that
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fact; we would like to be able to prove conformance no matter what the

semantics of the inform message are for the agent).

In this context, the following degrees of conformance are defined (higher

versions imply the lower level ones):

a. an agent is conformant if any conversation generated by the policy

language of the agent on the basis of an initial state of beliefs Σ0

(equivalent to the initial state in our approach) is in the set of

languages generated by the grammar that the AUML specification

of the protocol is transformed in.

b. an agent is strongly conformant if any conversation generated by

the policy specification of the agent independent of its belief base

is also generated by the language generated by the grammar of

the AUML specification of the protocol (definition a. is obviously

satisfied, so a strongly conformant agent is also conformant).

c. an agent is protocol conformant if the language generated by the

agent policy specification is a subset of the language generated

by the AUML protocol specification (regardless of how the inform

message, for example, is realised). Again, due to the definition

of protocol conformance implies strong conformance and confor-

mance.

The problem of verifying conformance is treated (for the first two de-

grees) as an inclusion problem. In the case of conformance, it will be

between the set of conversations generated from the agent’s DyLOG

specification and the protocol’s AUML specification, given Σ0. In the

second one we check the protocol specifications against the agent con-

versations independent of the initial state of the agent beliefs Σ0. In the

protocol conformance case, the agent’s conformance has to be proved

independent of the speech acts semantics and their implementation (e.g.

an inform message might mean that once an agent knows about a fact,

it informs the others immediately or it does that only if its knowledge

tells it that the other agent does not know about this fact).

Finally, in [11], the authors talk about open systems that can be realised

by new components been dynamically added to the system. Before that,

however, we need to perform some sort of reasoning regarding the be-

haviour of the new component once inserted into the system. Finally,

they make the analogy between agents and Multi-Agent Systems on one

hand and web services and choreographies on the other. Agents and web
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services form the local view of the interaction, they are the component

units. Multi-Agent Systems and choreographies are about the global

viewpoint, specifying how the building blocks of the interactions should

behave. A variety of representations exist for each viewpoint and the key

question that both have to answer is the following: given a choreography

(MAS) can a web service (agent) join the system? The decision will

be based on whether the agent (or the web service) can participate in

conversations with the other member agents or services; if it is capable

of doing that, then membership is granted.

The authors also consider bisimulation [111] as a means for testing con-

formance of an agent wishing to interact with other agents on the basis

of a choreography and the agent’s policy. In [8], they conclude that this

cannot be treated as a test of whether the conversations generated by the

policy are a subset of what the choreography allows (as it could be the

case that the agent is able to handle more messages than the choreogra-

phy prescribes) or a test of whether the automata of the role as specified

by the choreography and the agent’s policy are bisimilar (as the pres-

ence of extra messages or messages with different names will generate a

negative result). On the basis of these observations, they require that

the bisimulation restriction is replaced with another simulation relation

(conformant simulation) that treats incoming and outgoing messages in

different ways. This captures the intuition that the policy should be

able to handle all incoming messages according to the choreography and

utter at least one of the messages that the choreography expects the role

to utter in any given situation over the course of the protocol. Thus, it

will correspond to a Competent under Adversity agent in our approach.

The conformant simulation relation is defined as follows: Assuming two

FSA’s A1 and A2, we say that A1 is a conformant simulation of A2 and

write it as A1 < A2, iff there is a binary relation R between A1 and A2

such that (we consider the case that A1 is the agent’s private policy and

A2 is the specification of the role in the protocol that we compare the

policy against):

a. A1.s0RA2.s0, i.e., the two initial states of the automata should be

linked by the relationship R);

b. for every outgoing message m! ∈ A1.L and for every state si ∈ A1.S,

for every sj ∈ A2.S such that siRsj and (si,m!, si+1) ∈ A1.T , then

there is a state sj+1 ∈ A2.S such that (sj,m!, sj+1) ∈ A2.T and

si+1Rsj+1. This means that for every outgoing message predicted
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by the agent’s policy that is related to the role specification via

R there is a corresponding state in the policy’s automaton that is

also related to the initial state of the transition. The same tran-

sition exists in the role automaton and the end states are related

through R - this ensures that the outgoing messages which are also

prescribed by the role specification would be legal;

c. for every incoming message m? ∈ A2.L and for every state sj ∈

A2.S, for every si ∈ A1.S such that siRsj and (sj,m?, sj+1) ∈ A2.T ,

then there is a state si+1 ∈ A1.S such that (si,m?, si+1) ∈ A1.T and

si+1Rsj+1. This means that for every incoming message that the

role specification accounts for and for all states from the agent’s

policy automaton that are linked to the initial state of the in-

coming message in the role specification, the final states of the

corresponding transitions should also be linked via the relation R.

6.2.2.1 Comparison

In [7] the authors are concerned with conformance interpreted as Com-

petent under Co-operation. The agents are expected to fully respect

the rules of the protocol and not deviate from the specified interactions.

This is achieved by comparing the agent’s policy language and the proto-

col specification against a specially constructed specification that takes

both the protocol and the policy into account. They require that the

agent’s policy should be able to deal with all incoming messages and

plan a response for at least one of them.

They make the following assumptions:

• protocols with concurrent operations are not supported - this is

because the approach relies on finite state automata that do not

accommodate concurrency;

• the conversation will be between two agents.

The completeness of the automaton (for every state with outgoing mes-

sages there is at least one message that leads to a path with a termi-

nating state) they produce from the protocol specification language and

the agent policy’s language guarantees the property of competence. At

least the agent is Competent under Co-operation due to the process of

constructing the protocol automaton). This is the case as no matter
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what state the agents are in, a path taking them to a terminating state

can always be reached. In this case, we only know that the agent is

at least Competent under Co-operation as the other participant might

select a move for which the agent in consideration has no response.

In [10], we have the following associations between the degrees of con-

formance specified by the authors and the ones in our approach:

• a conformant agent would be equivalent to an Competent under

Adversity agent in our approach, as all generated conversations

(on the basis of the agent’s selection process) will be in the set of

conversations that the protocol allows;

• a strongly conformant agent can be either Competent under Adver-

sity as now there is no assumption on Σ0 or even fully competent

according to whether it can realise all actions or part of them;

• a protocol conformant agent implies a fully competent agent if the

agent policy can generate the full protocol specification or a Com-

petent under Adversity if that is not the case.

Furthermore, in this approach, the Initial Beliefs set Σ0 can be linked to

the initial state of the game. However, the higher degrees of conformance

that relate to the agent’s internal policies, cannot be represented in our

approach.

In [11], the addition of an agent (web service) to the system (choreog-

raphy) will only take place on the basis of respecting the rules of the

society - this is the same idea behind our motivation in [105]. Further-

more, a notion similar to the notion of agent skills is used in [9] where a

web service is considered to be a component available over the web that

has several interaction capabilities that it makes available through its

interface. Finally, the notion of conformance that they use is equivalent

to the notion of competence we are using.

6.2.3 Endriss et al.

Endriss and colleagues in [36–38] are looking at the problem of confor-

mance from the viewpoint of Multi-Agent Systems. They look at agent

communication protocols as specifying rules of encounter and been de-

signed independently of the agent policies. If we want to truly verify

that an agent follows a protocol, we would need to have access to the
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internal mental states of the agent, which is not possible. This means

that we need to use the agent’s observable behaviour in order to do the

verification.

The protocols that the authors look at are protocols that can be rep-

resented by deterministic finite state automata where the next state

depends solely on the previous one (shallowness), mainly to avoid con-

currency. The representation of the moves in general is of the form

act(Utterer,Receiver,DialogueID,Subject,Time).

Further to shallowness, the following constraints apply to the protocols:

1. at least one rule has the special performative START that signals

the beginning of the interaction and START can never occur on

the right-hand side of a rule. This means that we cannot start

nested executions of the protocol and the protocol specification

does not cover sub-protocols;

2. any move - other than STOP that signals the end of the dialogue

- that occurs on the right-hand side also occurs on the left-hand

side of another rule. This means that there are no dead states; no

matter what state we are in, we can always make a move;

3. it is not possible to perform two different moves in the same dia-

logue at the same time; formally tell(X,Y,S1, T,D)∧tell(X,Y,S2,

T,D) ∧ S1 ≠ S2⇒⊥. This means that no concurrency is allowed;

4. for every rule in the interaction other than START and STOP, if

on the left-hand side X is the utterer and Y is the receiver on the

right-hand side Y should be the utterer and X the receiver. This

means that all messages are used;

5. all dialogue moves on the left-hand side, i.e., the triggers of the

dialogue moves, should be distinct from one another (so that non-

deterministic automata are excluded).

In terms of conformance levels, a distinction is made between:

• weak conformance; the agent should never utter any dialogue move

that is not expected for the state of the dialogue it is in. The

protocol, however, might not allow the agent to not make a move

and prescribe that the agent will always have to choose a move to

make;
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• exhaustive conformance; the agent should be weakly conformant

and it should utter at least one legal move that is expected for the

state of the dialogue it is in.

• robust conformance; the agent is exhaustively conformant and if

the other agent utters any move that is not expected in the state of

the dialogue it is in, it should react by uttering a special dialogue

move (e.g. not-understood).

They, also, identify the decomposition of a protocol into role skeletons,

i.e., the agent’s view of the protocol, although the discussion is by ex-

ample.

The authors do not deal with the issue of interoperability as it would

involve agents revealing their private strategy.

6.2.3.1 Comparison

In [36–38] the authors look at shallow protocols, i.e., protocols in which

the next state depends only on the previous one. We make no such

assumption and our approach can accommodate any type of protocol as

long as it is represented by an LTS.

Furthermore, they impose a set of rules that allows no concurrency and

discards non-deterministic automata. We make no such assumptions;

concurrent moves are accommodated by the use of Event Calculus for

the representation of the game state and non-deterministic automata

can be represented as a sequence of different valid moves.

Regarding conformance levels, the following equivalence exists between

their approach and ours:

• weak conformance would correspond to Competent under Adver-

sity or Competent under Co-operation in our approach, as long as

the agent does not make a move that is not valid. In the case that

it chooses not to do anything (or make an invalid move) there is

no comparison with our competence levels.

• exhaustive conformance would correspond to Competent under Ad-

versity or Fully Competent as it will always make a valid move.

• robust conformance would correspond to either a Competent under

Adversity or Fully Competent agent depending on whether it can
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make all protocol prescribed moves or not. This applies as long as

the not-understood reply to invalid moves is part of the protocol

(otherwise there is no comparison).

6.2.4 Alberti et al.

Alberti and colleagues in [3] observe the similarities between Multi-

Agent Systems and Service Oriented Computing in that they both re-

quire the co-operation of autonomous and independent components (same

observation as the one made by Baldoni). These components are de-

veloped independently of one another and they have to work together

according to rules specified in the protocol (in the case of Multi-Agent

Systems) or the choreography (in the case of web services composition).

In order for this approach to work, we need to ensure that, if com-

bined, the agents (web services) will be able to work together and

produce meaningful output. This is achieved by checking the inter-

action capabilities of the agents/web services with reference to the pro-

tocol/choreography that they want to join. The authors make use of a

formal language for defining multi-agent protocols specified in [2, 4] and

the proof-procedure g-SCIFF [1] to deal with protocol properties.

In this context, the Abductive Logic Webservice Specification (AιLoWS)

framework represents the specifications of both the choreography and the

web service as abductive logic programs [50] with happened events (H)

and expectations (E) as the abducibles. The idea is that if the speci-

fications of the web service and the choreography are put together, we

should be able to work out the set of all possible interactions between the

web service and the choreography (HAP⋆) on the basis of the following

assumptions:

• any message that the web service is expected to send, it will actu-

ally send it;

• any message that the choreography expects to be sent from other

web services (not the one we are checking for conformance), will

actually be sent as well.

On the basis of that set, we can distinguish between two types of con-

formance:
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1. feeble conformance - in this case the events in the set HAP⋆ will

be such that put together with the expectations and the knowledge

base of both the choreography and the web service will model the

goal and the integrity constraints of the two components. Further-

more, the happened events along with the expectations will model

every expectation that the web service has as well as any expec-

tation that the choreography has. This method of conformance

ensures that all messages from the web service will be expected by

the choreography, but does not cover the ones that the choreogra-

phy is not prescribing.

2. strong conformance - for that, the interaction will have to be feeble

conformant, but this time all the events should be expected by

both the web service and the choreography.

This work is inspired by the work of Baldoni in that they look at the

problem of conformance as a problem of comparing two formal specifi-

cations; finite state automata in the case of Baldoni and abductive logic

programs in the case of AιLoWS.

6.2.4.1 Comparison

The model of Alberti et al. in [3] reflects the social context of our model

in terms of the requirement for adding a web service to a choreography.

It will need to meet the expectations, i.e., be able to understand and

utter a set of messages pertinent to the role it wants to occupy in the

choreography.

They describe two types of conformance, which correspond to our ap-

proach as follows:

• feeble conformance could correspond to a Fully Competent, Com-

petent under Adversity or Competent under Co-operation agent, as

we know nothing about whether the agent can realise all messages

or whether at any point it depends on the other web services to

send it a specific message, so that the choreography can progress.

This applies in the case that no invalid moves are made, as this

would render the comparison impossible.

• strong conformance could correspond, again, to a Fully Competent,

Competent under Adversity or Competent under Co-operation, as
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we do not have enough information to classify it in one of the cate-

gories. In this case no invalid moves are allowed by the definition.

6.2.5 Giordano et al.

Another popular approach for representing protocols is that of temporal

logic [34, 42, 45]. Giordano et al. are using this representation to reason

about agent’s interoperability [43], i.e., they maintain that if a number of

agents A1, A2,⋯,Ak are proved interoperable then they should be able to

produce traces that are foreseen by the protocol. Their notion of agent

interoperability entails weak conformance - as described by Endriss in

Section 6.2.3 - at least. They make use of temporal logic operators like

◯ for the next operator and ◊ for the eventually one.

A protocol is described by the following components:

• action laws (ALag); these represent the effects of execution of ac-

tions on the state.

• causal laws (CLag); these represent dependencies between fluents.

• precondition laws (PLag); these represent conditions about when

an action can run.

They, also, define an initial state that provides the initial values for all

fluents.

The criterion which is used for deciding whether the protocol run is a

good one or not is whether all commitments - used in the same way as

in Section 6.2.1 - are fulfilled or not. The protocol itself is composed by

the constituent protocols via synchronous composition and the benefit of

using temporal logic (more specifically Dynamic Linear Time Temporal

Logic) is that infinite protocols can be represented. In fact, all protocols

are considered to run infinitely by setting the agent to perform a special

operation noop that has no effect on the running of the protocol.

Every agent participating in the protocol will have a choice function,

through which it will be making the choice of which move to select at

any given state. The notion of interoperability used is the same as in

the other approaches - one of the participating agents should be able to

send a message and another one should be able to receive it.

The notion of conformance is built on top of that of interoperability.
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The agents will have to be interoperable and the runs that the protocol

composition will produce should all be runs allowed by the protocol P.

Finally, for an agent a to be conformant with a protocol P the following

three requirements have to be met:

1. the agent should be interoperable with the other agents that take

part in the protocol, i.e., no deadlocks should be possible, no sit-

uation in which the agent supposed to be making a move cannot

make one;

2. correctness - any runs produced are actual runs of the protocol. In

other words, if the agent can send messages that are not allowed by

the protocol, then these messages should not be sent as they will

create paths outside of the protocol (even if another agent happens

to be able to understand and receive the message). This means

that an agent can select any message as long as it is supported by

the protocol (consistent with the idea that the agent needs not be

able to entertain all outgoing messages, but at least one of them).

3. completeness - any message that an agent chooses to send and

is allowed by the protocol, the agent(s) that communicate with

should be able to receive it. In other words, the agent should be

able to do at least all the receptions that the protocol prescribes

(doing more is not a problem, as if the agents are interoperable,

no message not supported by the protocol will be uttered). This

is consistent with the idea that the agent can be able to receive

more messages than the protocol allows for. If the other agents

participating in the protocol are interoperable, there will not be a

case where a message not expected will be uttered.

The test of whether the agents are interoperable or not is based on

moving from a Büchi automaton to a finite automaton that is checked

against the existence of at least one alive state, i.e., a state that lies on a

path to a final state. That state also belongs to the original automaton

M and the cut-down version has at least one outgoing message that

is a valid choice according to the protocol. Furthermore, the tests for

correctness and completeness will happen in a similar way but this time

looking at two different automata. The first one is the protocol where the

participants are the role specifications. The second one is the automaton

where the ith agent, whose properties we are checking, has been replaced

by the specification of the agent itself rather than its role specification.
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The protocol itself can be composed from a number of protocols via

synchronous composition.

6.2.5.1 Comparison

The benefit of this approach is that it can represent protocols with in-

finite (non-terminating) paths. In fact, all protocols are considered to

run infinitely by setting the agent to perform a special operation noop

at the final state of the protocol. This is something that can easily be

replicated in our approach by introducing the noop at the terminating

states of the protocol, although it will not make any difference with

regards to the agent’s competency classification or its ability to join a

society.

The notion of interoperability used is the same as in the other ap-

proaches. At each state, at least one agent can send and at least one

can receive. This would correspond to a Competent under Adversity (or

even fully competent) agent in our approach.

6.3 Protocol Decomposition

6.3.1 Desai et al.

In [30], Desai et al. identify the dangers of moving from the global view of

a choreography (or protocol) to a local view of a single role (or agent) in

either web service or multi-agent systems applications. This is important

as the shift of viewpoint and the respective limitations on what the web

service (or agent) can observe might mean that in the isolated agent

view, there might be not enough information to implement their role

specification in the choreography (or protocol). As an example, they

provide the rule α⇒ β where α and β are known to roles ρ1 and ρ2 but

not to role ρ3. If ρ3 is supposed to send message β, then it will not be

possible to send the message as it will not have knowledge of α. As a

result, certain constraints need to be put in place so that this will not

happen.

These constraints are as follows (every rule will be of the form α ⇒ β

with α been the antecedent and β been the consequent):

• for any rule other than the beginning of the protocol, every prepo-
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sition on the consequent of the rule should be part of another rule’s

antecedent (so that no rule can be used without been asserted be-

fore);

• every proposition in any rule’s head should be reachable from the

beginning of the protocol (so that it can be used as an enabler for

a message exchange without deadlocks);

• for every rule of the protocol and every proposition α in the body

of the rule, there should be a proposition β in the head such that

if a role ρ initiates β, then it should send or receive α as well. In

other words, the occurrence of β would mean that the same role

is able to observe α as well.

Because of these properties, there will be no missing information for any

of the roles (since each time a role will have to decide whether to send

a message or not, it will be able to verify all the information it needs

to make the decision). As a result, all protocols will be enactable, i.e.,

there will be no case where any of the protocol roles will have to make a

decision about which path to take and not know the truth value of any

of the conditions.

Furthermore, since they look at protocols as distributed entities and as

a composition of roles, they provide an algorithm for deriving a role

skeleton, i.e., the local view of the interaction that a role will have of

the protocol including its own message exchanges. As their description

of protocols is based on commitments, the role will need to know the

messages it can send and receive, as well as any facts that enable them

and lead to the creation (or discharge) of commitments. The main idea

in the algorithm for working out the role skeleton for a certain role is

that if the role does not have knowledge of the immediate proposition

needed to make a decision as to how to proceed, it should be possible

to backtrack and find another one that leads with certainty to the one

been examined, i.e. if the role needs to know α but it does not, then the

role should go back in history and find β so that the role knows it and

β → α.

The process for deriving the skeleton of a role in this process is as follows:

• find all messages that role ρ is sending or receiving and save them

in a set S;

• the rules for sending a message m ∈ S would involve checking if a

number of propositions α hold or not. This means that the role

129



in question should be able to observe these propositions (e.g. if a

shipping agent cannot observe - or be notified - that payment has

been made it cannot ship the goods to the customer). As a result,

we have to look for another proposition α′ that the role knows

about and its observance will definitely lead to occurrence of α.

This would involve looking at all the protocol rules that generate

the proposition α and looking at what the role in question knows

that, if added to the knowledge base, it will guarantee occurrence

of the proposition α.

6.3.1.1 Comparison

The algorithm by Desai et al. works as the protocol is supposed to be en-

actable. However, in the case it is not there are no steps in the algorithm

to remedy the situation. Furthermore, it does not take into account any

branching structure of the resulting protocol and just goes back until

a suitable match is found, resembling a τ⋆α bisimulation process. We

do not assume that and provide algorithms for repairing the protocol

(see Section 4.3) if that is not the case. The algorithm they propose

does take into account the branching structure of the protocol. This

is because when looking for the proposition β if there is a branch that

knowledge of β could lead to α or γ, it would not meet our requirements.

We require that knowledge of β leads with certainty to knowledge of α

and it would not be possible to conclude that in the previous case.

6.3.2 Bouaziz

Bouaziz [18] uses XML and XSD schemas to describe a protocol ontology

and views role as a component that can be fully specified by the Role

Profile and Role Behaviour elements, as specified in [17].

A role is represented in a meta-model by its profile and behaviour. The

behaviour comprises of the allowed actions it can assume. In terms of

describing an action, we will need to specify its type, data field, a set of

input events and the output events.

In this model, an action will be executed only if an event occurs. More-

over, the new state of the role will be determined by looking at the

relevant transition in the meta-model. Bouaziz accommodates condi-

tional transitions, i.e., transitions with different effects depending on

certain conditions.
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In order to provide a full description of a role in the form of an XML

document, the following process is used:

1 find all actions from the protocol that involve role R - either in-

coming or outgoing messages;

2 for every action from the set created in step 1:

(a) find the current node in the role XML document and create

a new node with a new element;

(b) if the action activates the initial state in the role schema, then

this element becomes the initial element.

(c) if the action activates the final state in the role schema, then

this element becomes the final element;

(d) append the node just created to the current node;

(e) find all actions that succeed action a;

(f) while the set created in the previous step is not empty

i. fetch the next element a′;

ii. find the current node and create a new node that contains

a transition from a to a′;

iii. append that node as a child node to the current one;

(g) create a new node in the role schema with the role states;

(h) find the role state from the protocol ontology that activates

action a;

(i) create a new state node with the information and append it

to the current node.

First, the actions relating to the role in question are compiled. The

authors check to see whether each action from the set containing the

role actions activate the initial (final) state, so that they can be placed

as the top (bottom) element in the role XML description.

6.3.2.1 Comparison

Step 2b of the algorithm for etxracting the role skeleton is equivalent to

our bisimulation algorithm setting as initial state of the new automaton

the equivalent state of the initial state of the original automaton (same

for the final state). Also, the role schema will contain actions that

the role in question is not directly involved in as in step 2e we are
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just selecting all actions succeeding action a from the protocol ontology,

rather than the set of actions that the role is involved in. Only if the

protocol is not enactable, additional knowledge will have to be inserted.

6.3.3 Blanc and Haumerlain

Blanc and Haumerlain [99] tackle the issue of generating a role skele-

ton for the purposes of separating the participatory from the strategic

part of the agent. In their approach, a moderator agent will regulate all

interactions between the agents engaged in the course of the protocol.

They raise the issue of the agent been overloaded with big protocols if

all the information is provided, and suggest the separation of knowledge

in two different aspects. These would be the strategic aspect which is

generated by the agent itself and consists of generating a strategy for

the protocol (e.g. in an auction how should the agent bid) and the par-

ticipation aspect that is about the agent actually participating in the

protocol. The Participation component handles the protocol conversa-

tion, so that the agent’s strategy can actually be realised. This is the

aspect that the moderator agent will be seeing and interacting with as

it will be receiving its utterances.

They define a protocol in terms of the following components:

• variables making up the conversation objective or characterising

its state with respect to the objective;

• roles the agents can assume in the protocol;

• types of intervention the agents can use in a conversation ;

• initial state of the conversation;

• the final state of the conversation;

• casting constraints - these are the requirements that the agent

should fulfill to take on the role in that protocol;

• behaviour constraints that specify when an agent can carry out an

intervention.

The authors appoint a moderator agent to be an arbitrator for a conver-

sation, once it begins. This means that every protocol run will need a
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new instance of the moderator agent that will be overlooking the conver-

sation and making sure that all moves are in accordance with the rules of

the protocol. Effectively, the moderator acts as an umpire making sure

that actions taken would follow the rules of the protocol. Furthermore,

it will decide whether a conversation has ended or not, thus terminating

the protocol.

In terms of the actual protocol run, each agent is represented by a par-

ticipation component. This component will have the responsibility of

choosing amongst the protocol rules, those that implement best the

agent’s strategy. Every participation in a protocol will require a new

instance of the participation component. The authors also look at the

issues behind the agent’s selection - why the agent would choose to par-

ticipate in one conversation and not another.

This means that in order to study the behaviour of the agent, we need

to look at the participation component. It is represented as a transition

system and every time a choice is made, the result is sent back from the

moderator.

The task in hand, now, is to extract the rules relevant to the strategy of

the agent from the protocol rules. The first step will be to get anything

related to the role from the protocol rules (these are messages that the

role in question is either the sender or amongst the recipients). How-

ever, as the participation component will be implementing a particular

strategy set by the strategy component, some rules although pertinent

to the role should not be included in it (e.g. if a purchase protocol gives

the option of paying using either Visa or Mastercard and the strategy

of the agent says that Visa should always be preferred, then there is no

reason for the participation component to know about the Mastercard

option - strategy dictates that it will never be uttered).

The protocol rules are defined as a Petri Net [76]; in order to retrieve

the rules pertinent to the role, we replace any actions in which the role

is not involved with ǫ. The idea is that every state in the Petri net will

be characterised by a marking, i.e., the number of tokens on each place

of the Petri net. This way we do not look to places and transitions as

the building blocks of the net, but to the changes they bring to token

distribution.

The following steps are, then, applied to the resulting Petri Net for

producing the final role transition system:
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• the initial markings will make up the initial state and the transition

relation is an empty set (∅);

• apply the algorithm Graphe with the first argument been an empty

list and the second one been the initial state.

The Graphe algorithm works as follows:

1 if the second argument M is equal either to the first item of

the list representing the first argument (as in this case we will

have the formation of an ǫ-loop) or it has already been looked at

(M1 = {µ1, µ2,⋯, µn} and M = µ1 or M ∈M1), then unify M with

the corresponding M1 (as we use the Petri Net’s markings as the

criterion for deciding on the states, if the state in question has the

same markings, then it is the same state) and exit;

2 if the state represents a dead transition, i.e., a transition that takes

you nowhere, then we are ignoring it and exiting the algorithm.

Even if the participation component selected this move, no change

is going to happen to the course of the protocol;

3 in any other case find all t such that M
t
Ð→M ′

(a) for each t identified in step 3

i. if the label of the marking is not ǫ, λ(t) ≠ ǫ, i.e., it is

pertinent to the role we are looking at, then add the

resulting marking as a new state and add the transition

to the transitions set. Then, go back to the top and

re-run the Graphe algorithm;

ii. if that is not the case, then add M to the list of states

reached by an ǫ transition and re-run the Graphe algo-

rithm with M ′ as the second argument and the first ar-

gument will comprise of all the states previously making

the first argument with the addition of M.

6.3.3.1 Comparison

Blank and Haumerlain in [99] produce a role skeleton that might not

include all the actions pertinent to the role. This is the case as the

strategic aspect of the agent might discard some actions not fitting the

agent’s strategy. If, for example, the agent’s role can make a payment
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using Paypal or Visa and its strategy dictates a preference for card

payments, then the action of paying by Paypal will not be included in

the role skeleton.

They represent actions not involving the role (after the initial filtering

by the strategic aspect) with ǫ. This is equivalent to the τ actions in our

framework.

In the Graphe algorithm they use markings as the equivalence criterion.

If two states have the same markings, then they are the same. It is a

similar concept to bisimulation, in which we demand equivalence over a

relation R.

Finally, their method seems to be similar to τ⋆α bisimulation. They are

merging all ǫ-transitions, as they bring no change to the markings of a

state.

6.3.4 Giordano et al.

Giordano et al. [43] consider the representation of a local view (or role

skeleton), as they look at the alphabet of each agent (Σi) separately.

They are specifically interested in the actions that agent i can under-

stand (send or receive). Any other action taken in the protocol will

have a local equivalent that might be the empty action if the agent in

question is not involved in it, either as a sender or a receiver. Also, the

way that the local view of the agent is constructed is essentially by the

use of τ⋆α bisimulation, as any actions not relevant to the agent are dis-

carded. This leads to problems, especially for protocols with a branching

structure as it is not taken at all into consideration (see Section 4.2.3).

6.4 Summary of Competence Checking and

Role Skeleton approaches

Table 6.1 summarises the approaches mentioned in Sections 6.2 and 6.3

regarding the concepts of competence viewed in the domains of Multi-

Agent Systems and Web Services Choreography and Orchestration in

terms of the approach used for representing the protocol as well as for

its support for protocol decomposition:
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Name of the ap-
proach

Protocol Rep-
resentation
Method

Different Degrees
of Competence

Role Skeleton

Singh et al.
Transition Sys-
tems & Tempo-
ral Logic

✓ ✓

Baldoni et al.
Finite State Au-
tomata

✓ ✗

Endriss et al.
Deterministic
Finite State
Automata

✓ ✓

Alberti et al.
Abductive Logic
Programming

✓ ✗

Giordano et al. Temporal Logic ✓ ✓

Table 6.1: Comparison of different approaches to competence

As we can see, a number of ways have been used to represent proto-

cols accommodating all different types, i.e., finite and infinite protocols.

Furthermore, all approaches introduce a way of distinguishing between

different types of agents on the basis of their ability to cope with the pro-

tocol. The term competence is not used in any of the works; instead the

authors use terms such as conformance, interoperability and coverage.

In the papers, however, they are used in the same way to look into what

part of the protocol the agent can cover on the basis of the messages it

can exchange. A subset of the approaches, also, use information from

the agent’s strategy in order to ensure that any additional moves that

might be present in their strategy will not cause problems and will not

be selected instead of a move that the protocol would allow. Finally, a

few identify the need for a local view of the protocol rules by the agent,

a role skeleton as it is called.

6.5 Protocol description languages for ap-

proaches supporting competence/pro-

tocol decomposition

6.5.1 Desai et al.

The way that Desai et al. represent protocols in [30] resembles our

game-based representation in Section 3.6. In Sections 5.2 and 5.3 we

only looked at cases where the last move was the only constraint on the
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state of the game, e.g. a reply move follows a request one. However,

other constraints on the state of the game (e.g. the running price of

an auction) can be easily accommodated by appropriate holds events.

We are basing the protocol representation on the concept of validity of

moves so that any constraints can be expressed (either on the last move

or, in general, on the state of the game). As an example, we can use as

a constraint the running price on an item in an auction; if it is above a

threshold, the next bigger bid wins the item.

A move will be deemed valid as long as the properties specified are true

(valid(M1) ← property1 ∧ property2 ∧ . . . ∧ propertyn). A set of values

from the properties will identify a state. The authors express the same

properties in the form of commitments. A move might create - or dis-

charge - a commitment and the protocol proceeds on the basis of existing

commitments. This representation can be more flexible in dealing with

exceptions, i.e., moves that are not prescribed by the protocol but do not

break the commitments. The only requirement is that no commitments

are broken in the course of the interaction. On the other hand, it could

be the case that although no commitment is broken, there might be

other problems, e.g. insufficient resources or access privileges. If that is

the case, then the protocol will freeze, or the violation could be flagged

and not allowed through a commitment operation.

6.5.2 Bouaziz

The behaviour comprises of the allowed actions a role can assume. These

correspond to the available actions component in our framework. In

terms of describing an action, one needs to specify:

• its type (this corresponds to the name of the action in the game-

based framework);

• data field (no direct correspondence in our approach, but it could

be incorporated if we allow for the name of the action to be pa-

rameterised);

• a set of input events (representing the constraints to the valid

predicate in our approach); and the

• output events (depending on their nature, these could be either the

effects of the action or a set of initiates and terminates events).
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In this model, an action will be executed only if an event occurs. The

possible sequence of actions that can follow a role action will be deter-

mined by looking at the relevant transition in the meta-model. In our

model, there is no direct correspondence as that would involve revealing

actions which are not actions of the role in question. Bouaziz accom-

modates conditional transitions, i.e., transitions with different effects

depending on certain conditions. Our model can accommodate this by

adding rules to effects predicates. Also, if the next move depends not

only on the previous one but in parameters of the message itself - e.g.

the value of the bid, we can represent it by adding further constraints

to the valid predicate.

6.5.3 Blanc and Haumerlain

They define a protocol in terms of the following components:

• variables making up the conversation goal(s) or characterising its

state with respect to the goal(s) (in our approach, these are the

states of the LTS);

• roles the agents can assume in the protocol (same in our approach);

• types of intervention the agents can use in a conversation (these

are the actions of the agent);

• initial state of the conversation (the initial values of certain pred-

icates captured by initially statements);

• the final state of the conversation (final values of predicates cap-

tured in the terminating conditions of the protocol);

• casting constraints - these are constraints relating to role conflict

or any other constraints relating to the agent playing the role in

the protocol (e.g. the auctioneer cannot be a bidder in the same

auction or a bidder participating in an auction should have a min-

imum credit rating). Our approach does not consider role conflict,

but this forms part of future work. The remaining constraints

can be expressed as part of the social qualifications information

that the agent has to provide when applying for membership to a

society;

138



• behaviour constraints that specify when an agent can carry out an

intervention. These are represented by valid move predicates in

the game-based approach.

The authors appoint a moderator agent to be an arbitrator for a con-

versation, once it begins. This means that every protocol run will need

a new instance of the moderator agent that will be overlooking the con-

versation and making sure that all moves are in accordance with the

rules of the protocol (essentially this is the umpire role in [104]). Ef-

fectively, the moderator plays the role of the valid component in the

game-based framework. Furthermore, it will decide whether a conversa-

tion has ended or not, a role assumed by the terminating conditions in

our framework.

In order to study the behaviour of the agent, we need to look at the

participation component. It is represented as a transition system and

an action on behalf of it equates to a select statement in our framework.

Moreover, the result sent back from the moderator is the equivalent of

an effects statement.

6.5.4 Baldoni et al.

In [7], the authors restrict their attention to protocols that can be rep-

resented by Finite State Automata. These protocols can easily be de-

scribed by our approach as we are using the same representation.

In this case, the alphabet Σ will correspond to actions, s0 will be the

initial state, the transition function δ will be the effects relationship,

states can be represented as a sequence of valid moves and the final

state(s) F will correspond to the final state component.

6.5.5 Giordano et al.

In [43], there is a correspondence between the components they use to

describe a protocol and our approach:

• action laws (ALag): these represent the effects of execution of ac-

tions on the state. In our theory, we use the effects predicate.

• causal laws (CLag): these represent dependencies between fluents.

In our model these are represented by terminates or initiates pred-

icates.
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• precondition laws (PLag): these represent conditions about when

an action can run. We use them as components of valid predicates.

• initial state that provides the initial values for all fluents: this

corresponds to our initially predicate.

Every agent participating in the protocol has a choice function, which

is equivalent to the select statements in our approach.

Finally, there is no direct computational equivalent of translating the

logical formulae used in DLTL into a program, although for finite proto-

cols (protocols with finite runs that do terminate) their expressive power

is the same as our game-based approach. These protocols can, however,

be converted in a Büchi automaton.

6.6 Roles & Skills

A role is viewed as a restriction on what an agent (or an actor, in general)

can do in a given situation, namely the expected behaviour within a given

context [13]. As a concept, it has been exhaustively used in an number of

areas in Computing: an example is the field of Agent-Oriented Software

Engineering (AOSE) dealing with how to engineer societies of agents

where access to resources and coordination between member agents are

important issues. There are methodologies that focus mainly on the

agent level [100, 101], describing mainly the agent setup. On the other

hand, we have methodologies that try to develop an integrated approach

that can be used in both the analysis and design stages of the system

[20, 22, 29, 44, 49, 51, 53, 55, 56, 58, 80, 81, 83, 100, 101, 117–122].

Finally, there are methodologies that promote the use of formal tools

and techniques for the design of agent organisations such as role algebra

[51]. Another field where role theory has proven popular with respect to

defining access to resources is in the field of Databases, where role-based

access control policies are specified [69].

In some methodologies (e.g. Gaia [119, 122] and MaSE [20, 29, 49, 58,

117, 118]) the concepts of role (or compound role, where a number of roles

are composed to form a more complex one) and social position are taken

to be the same, however there are objections to this. Skarmeas [100]

differentiates between the two. The former is a computational concept

that relates to groupings of roles that an agent needs to assume, while

the latter is a social construct that encompasses features like culture,

140



respect and so on. It describes more the perception that other member

agents have for the given agent rather than simply the role that it has to

assume. The majority of the methodologies, also, do not look in depth

at the notion of skill and in some of them (e.g. Prometheus [83]), there

is no distinction between what needs to be done (roles) and how it is

going to be done (skills or competencies).

Table 6.2 summarises the different approaches mentioned so far, in terms

of their support for the concepts of role, skill and protocol as well as the

definition of a role. We should note here that most of these works refer

to full methodologies for developing mutli-agent systems and, as such,

outside the scope of this work.
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Name Role Skill Protocol Remarks

Gaia

[119, 122]
✓ ✓ ✓

Role is seen as a 1st class entity and equates to social position. It is

defined in terms of responsibilities (≃ skills), permissions, activities

and protocols.

MaSE

[20, 29, 49,

58, 117, 118]

✓ ✓ ✓

Roles are mapped to one or more system goals and are attached

to agent classes . The skills are similar to the concept of simple

messages in tasks and protocols are present in the form of conver-

sations. However, skills are defined within the roles.

Skarmeas

[100, 101]
✓ ✓ ✓

Skarmeas is mainly looking at case studies of office environments.

Skills can be thought of as simple, i.e. atomic, tasks - they can

not be further broken down into smaller (simpler) tasks. Protocols

can be related to contracts & there is no analytical definition of

role (maybe as the approach is geared towards implementation).

However, the concept is present in the approach and a number of

different types of roles are considered.
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Name Role Skill Protocol Remarks

Kendall

[53–56]
✓ ✓ ✓

Skills can be related to the agent’s actions for achieving a goal &

protocols can be linked to co-ordination. A role is described by the

role model which it is made of, responsibilities, collaborator roles,

external interfaces for access to resources, relationship to other role

models, expertise of the agent (skill evaluation), co-ordination and

collaboration as well as how fast the agent can learn about the en-

vironment and the actions required for achieving its goal (≃ skills).

However, all descriptions are in natural language.

RoMAS

[120, 121]
✓ ✓ ✗

Skills are defined as behaviours bound to the agent. The concept

of role is defined in the Z language as a set of goals, attributes

and services. The importance of protocols is recognised (in [120] it

seems to be represented by use cases as there is no reference to it

by name). There is no formal definition as the paper focuses on the

definition of agents, role and role organisations.
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Name Role Skill Protocol Remarks

SODA [80,

81]
✓ ✓ ✓

SODA is a full life-cycle methodology for engineering agents, agent

societies and agent environments. Roles are associated with tasks.

A task is defined by responsibilities, competencies (≃ skills) and

resources (although at the analysis stage only the responsibilities

item is defined). The protocols are defined in interaction models.

Roles are mapped to agent classes at the design stage.

Prometheus

[83]
✓ ✓ ✓

This is a full life-cycle methodology as well. Roles are defined in

terms of functionalities, i.e., by the following attributes: name,

short natural language descriptor, list of relevant percepts, data

used, data produced and interactions with other functionalities.

These are been assigned to agent classes at the architectural de-

sign state. Skills are present as agent capabilities, described by a

name, input events, events produced, natural language descriptor,

interactions with other capabilities and reference to data read and

written by the capability. Protocols are described as interaction

protocols at the Architectural Design stage.
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Name Role Skill Protocol Remarks

TROPOS

[22, 44]
✓ ✓ ✓

TROPOS is a full life-cycle methodology as well. The concept of

role is covered by that of actor and the concept of capability is

close to that of skill (also the individual actions from the agent’s

plan). Protocols can be represented by AUML Agent Interaction

Diagrams in the detailed design phase [21].

ZEUS [51] ✓ ✓ ✓

ZEUS views an agent society as a collection of agents. The role

is defined as a position, along with a set of characteristics (each

of them has a set of attributes). These characteristics are: role

model(s) that it belongs to (≃ protocol(s)), goals/responsibilities,

tasks (≃ skills), capabilities/privileges and performance character-

istics. The exchange of messages happens according to interaction

protocols.

Table 6.2: Comparison of different AOSE approaches
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In our research, we focus on the concept of role within Multi-Agent

Systems applications and, more specifically, in the context of interaction

protocols. In this context the messages than an agent can utter depends

on the role it is assuming and the state of the protocol that it is in.

Once the role is described, we will need to look at the communicative acts

of the agent within the context of the protocol. These communicative

acts will determine the competence of the participating agents.

6.7 Summary

In this chapter, we considered different approaches to ours, concerning

the concepts of competence and protocol-to-role decomposition. The fo-

cus was on assessing the agent’s ability to join an artificial society on

the basis of the conversations it might engage in given its communicative

skills. Approaches in this area seem to be using the term conformance

to describe different degrees of competence. There is also the require-

ment that agents who are found to be conformant to a protocol, need

to be able to use that effectively. As a result, interactions between the

agents are engineered in order to ensure that only conversations that do

not lead to deadlocks can occur. This has the benefit of ensuring that

there would be no problematic runs when the protocol executes at the

expense of requiring the agent to reveal its private strategy which might

not always be possible (or desirable).

On the other hand, our approach does not guarantee interoperability.

It focuses on verifying that the agents can hold a conversation without

making any claims that they will indeed have one. Furthermore, the

idea of using the concept of bisimulation for breaking up a protocol into

roles has not received much attention and was used in its simplest form

(τ⋆α) under the assumption that the design of the protocol is correct.

There are, however, a number of open issues regarding extensions of

the research, most notably subgames. These are discussed in the follow-

ing chapter, along with a short evaluation of the work and concluding

remarks.
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Chapter 7

Conclusions and Further

Work

7.1 Introduction

This chapter briefly evaluates and summarises the research conducted

in this work. It covers the game-based approach to evaluate an agent’s

competence to join an artificial agents society and the process followed

to provide it with an enactable protocol description if it is allowed entry.

Furthermore, we describe possible extensions and future directions of the

concepts developed in the thesis.

7.2 Overall Evaluation

The way we use computers in applications such as those envisaged by

ubiquitous computing raises a number of issues regarding how we design,

specify and implement the interactions between people, devices and ser-

vices. More specifically, there are important issues of how to structure

the interactions and how do we provide access to the various services on

offer.

We propose to organise the services around the concept of semi-open

artificial agent societies. These are defined on the basis of the protocols

they make available, which specify the rules of interaction as well as the

roles participating in them. The agents, if interested in the protocol(s),

apply for admittance to the society. They are admitted if they are

competent users of the societal protocol(s) for the role(s) they apply for,

either by been able to enact the full protocol or by been able to enact
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part of it, with or without the need for cooperation by the other agent

participants.

We use the game-based metaphor as our conceptual framework because

it is an intuitive way of describing interactions and most (if not all)

protocol designers or end users are familiar with it. The representation

framework resulting from the games metaphor is a game-based represen-

tation of the protocols. Every move in the protocol is treated as a move

made in the context of a game with a number of constraints attached to

it. This ensures it can be made at that state of the interaction, i.e., it is

a valid move. The effects of the move are applied to the current state

of the game to produce the new state and, unless it is a terminating

state, the interaction continues in the same way. There is no winner or

looser as in the traditional sense of a game, just the end of a business

transaction.

As we look at protocols as games, we need a representation and imple-

mentation framework for the state of the game, which will integrate well

with that for the protocol. In this work, we use the Event and Situa-

tion Calculi both as a representation framework and an implementation

framework to describe the evolution of the state.

We should note the seamless integration between the different implemen-

tation frameworks for the protocol (game) and state (Event & Situation

Calculi). We can keep the representation of the protocol the same, while

changing the representation of the state from Event Calculus to Situa-

tion Calculus (or destructive assignment or commitments or any other

state representation). This makes the approach modular and any other

implementation framework for the evolution of the state can be chosen

and used instead. All that is required to integrate it with the game-

based representation of protocols is to rewrite the holds events so that

they use the new state representation. In [102] the update of the state is

done by destructive assignment, i.e., by assert and retract clauses. We

could have followed this approach, explicitly adding (removing) infor-

mation about what holds in the game, but that would have rendered

our approach non-declarative.

Furthermore, the choice of Event and Situation Calculi was based on

our choice of seeking executable specifications (Normal Logic Programs

that can produce executable specifications). For this reason we provided

our own version of the Event and Situation Calculi specified as Normal

Logic Programs. We did not employ any other formalism (e.g. modal or
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temporal logic) as we focused on using a specification which is directly

executable.

In addition, the formal framework defined in Section 3.3 is methodolog-

ical, easily extensible and facilitates the addition of extra game moves.

This can be done by:

• adding the action to the available actions (A) component of the

protocol definition;

• adding the moves that this action is involved in to the moves (M )

component;

• specifying the states for which the moves will be valid and adding

them to the valid actions (V ) component;

• updating the effects relationship, i.e., specifying what state the

agent finds itself in after executing the move. This is done by

updating the effects (E ) relationship.

Our approach does not currently deal with complex interactions in the

form of subgames. This affects the modularity of the protocols we can

run it on as each protocol has to specify the full interactions between the

participants and we can not make use of smaller protocols as building

blocks. We plan to address this as part of our future work.

Furthermore, as our focus is on specifications that are directly exe-

cutable, we did not employ formalisms with potentially higher expres-

sivity, e.g., modal logic. However, the employed formalism is proven

sufficient for the protocols we are addressing as well as for the high-level

view of interactions that we are employing.

The two representations that we use for protocols, i.e., the game-based

and the LTS one are strongly related and share the key concepts of the

framework, e.g., the notions about available and valid moves. In ad-

dition, for small protocols or protocols whose FSP specification can be

provided, a direct conversion between the two representations is possi-

ble. This fully unifies the whole process for assessing the agent’s com-

petence and providing it with the information it needs to enact its role

in the protocol. For protocols with more states, or for protocols with no

FSP representation there is no tool support at the moment, making the

transition from one representation to the other time-consuming. This

will be dealt with in our future work, as a number of ideas is explored
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regarding how to convert from a logic-based representation to an LTS

representation.

The concept of bisimulation is well studied in a number of different areas,

e.g., modal logic, calculus of communicating systems, formal verification

and as a means of checking equivalence between transition systems. A

number of tools, both commercial and open source, exist that can fully

automate the process. The CADP1 and mCRL2 2 are probably the two

most notable examples. As a large number of protocols in the area

of E-Commerce and Multi-Agent Systems can be described using Finite

State Automata or formalisms that can eventually be transformed into a

transition system, bisimulation is a good approach for minimising them.

It is, also, a suitable approach when treating a role as a component that

has to fit within a larger system - a protocol or a choreography, and we

need to make sure that substituting the protocol with the bisimulated

role will produce the same overall behaviour. In addition, as we are

interested in the behavioural part of the societal components, transition

systems are a well established mechanism for describing it. Behavioral

(bisimulation) equivalences are usually employed to perform reasoning

on LTS and determine their equivalence. The approaches for deriving

the role skeleton for an agent that were reviewed in Section 6.3 use

concepts very similar to bisimulation, but most of them make no direct

reference to the concept.

7.3 Evaluation of the research aims

In this section, we review and evaluate the research aims of the work.

(RA 1) The first aim of the research was to establish a framework based

on the games metaphor that will represent protocols in an artificial

agent society and will use social concepts in this representation,

namely the concepts of role and skills.

This aim was fully achieved by the games framework described

in Section 3.3. The game is represented as an LTS and one of

the components of the description is R that represents the roles

participating in the protocol.

We treat protocols as first-class entities in which agents will have

to participate assuming one of the roles that the protocol makes

1http://www.inrialpes.fr/vasy/cadp/
2http://www.mcrl2.org/mcrl2/wiki/index.php/Home
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available. The protocol is defined as a set of messages passing

between the participants, where each message will be characterised

by a sender, a number of recipients and a move (the content of

the message). The move component will comprise a skill of the

agent, i.e. an utterance that it can send or understand. The

representation of the move could be enhanced to include various

parameters relevant to the message (e.g. the price of an auctioned

item on which the agent bids as well as its id) or, even, the level

at which the agent possesses the skill (e.g. an agent might be able

to send call-for-bids message, but not in encrypted form).

(RA 2) The second aim dealt with the provision of a computational frame-

work for assessing the application of an agent wishing to join an

artificial agent society. This is achieved by the computational ver-

sion of the LTS for the representation of protocols and follows

closely the framework of [102].

The protocol is represented as a game/2 predicate in Prolog,

which we initially check if it is in a terminating state or not. If it

is, the game ends and the result is returned. If not, the next valid

move is chosen, its effects are assumed and we follow the cycle

again to check if that move terminated the game.

It amounts to verifying the runs that the agent can produce on the

basis of its competency profile are all the possible runs the proto-

col prescribes (in the case of fully competent agents) or the runs

to meet the minimum requirements set by the Authority Agent

(for Competent under Adversity or Competent under Co-operation

agents). The current framework works well for atomic - i.e., with-

out subgames, games but it would be interesting to extend it to

introduce a specification for compound games that include sub-

games. In this richer framework, we would be able to express con-

straints like label some sub-protocols as essential or some others

as indifferent. It will also provide a more abstract and fine-grained

way of representing protocols as well as help building a library of

protocols that can be re-used and form more complex ones through

the process of composition.

(RA 3) The provision of a framework for decomposing the protocol into

smaller ones that contain the minimal amount of information per-

taining to all of its roles was the next aim of the work. As the

representation of the protocol is that of an LTS, we chose to use

the concept of bisimulation for breaking the protocols.
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Every action that the role does not “understand”, i.e. it is neither

the sender nor amongst the recipients of the message, is replaced by

a silent (τ) action. Branching bisimulation is run on the resulting

LTS and, if no τ actions remain or those that remain do not make

the protocol non-enactable, the role skeleton LTSs are generated.

In the light of the previous aim, it would be interesting to look

at the properties of compound protocols. As an example, if an

agent is found to be competent, would the role skeleton that it

should receive be the product (with the appropriate constraints

in place) of the role skeleton of the protocols that make up the

compound one? Or, the inverse question, if the agent is found to

be competent in the smaller constituent protocols, can we gather

that it will be competent in the compound one as well?

(RA 4) The final aim refers to ways of repairing a protocol in the case

that is not enactable. In this case, we will need to give certain

roles access to additional information than the one they already

have - they will need to be added as recipients to certain messages

that they do not know about in the current implementation of the

protocol.

We present three different approaches to repairing protocols, rang-

ing from repairing every move that relates to a state that is the

originator of a silent (τ) action to repairing only selected τ moves

and only if they are causing the protocol to be non-enactable. This

significantly reduces the volume of additional information that the

agent assuming the role receives, a very important property for

protocols containing sensitive information.

Again, it would be interesting to research the case of compound

protocols. If repairs are made on the constituent protocols, will

the composition of the repaired protocols be the same protocol as

if we took the original compound protocol and repaired it?

7.4 Thesis Summary

In this thesis, we looked at the various phases that an agent has to

go through when applying for a position in an artificial agent society.

This application will be driven by its need to fulfill a goal - resources

which are available within the society in consideration - and its societal

life cycle (if admitted) will be divided in three phases. These would be
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application, evolution whilst a member of the society and exiting the

society. We do not look at the processes of how the agent evolves once

in the society or how it leaves it (whether having its goal fulfilled or been

expelled from it) in detail other than simply sketching how they should

be processed in terms of activities. UML activity diagrams are used for

this purpose.

Instead, we concentrate on the part where the agent applies for entry and

provides the society’s Authority Agent with its communication skills,

i.e., the communicative acts that it can understand and engage in. This

forms the competency profile of the agent, which is then incorporated It

does not provide any other aspect of its personal strategy, only that it

can understand certain messages and it is able of sending or receiving

them. We then present an algorithm with the use of which the agent’s

competency can be assessed both in cases where we focus on changes

of the global state (with the use of Situation Calculus) as well as in

cases where concurrency is a domain requirement (with the use of Event

Calculus). The choice of Event Calculus is done on the basis that it is a

natural way of representing time, although versions of Situation Calculus

that can deal with time and concurrent moves have been developed. The

Situation Calculus and Event Calculus frameworks (used to describe the

state of the protocol) are combined with the game representation of the

protocol (used to present the protocol evolution) in order to describe

how it evolves from its initial state to a terminating one. The evolution

happens through selection of a series of valid moves from the moves

that the protocol makes available by checking constraints on the current

state of the game to ensure the agent can make the move. The move

will, in turn, change the state of the protocol. The changes are assumed

via effects rules and a check is made to see if the game has reached a

terminating state or not. If not, the same process is followed again.

In the case studies considered in Chapter 5, we look at both acyclic

and cyclic protocols, as well as cases where the protocol might involve

more than a single instance of the same role (e.g. an auction with two

bidders). The conditions we impose on a move for it to be valid in

these examples refer to the last move made in the game, leaving out any

additional constraints relating to other elements of the game state. We

can add more constraints to a move by extending the valid predicate.

The Authority Agent of the society will use these descriptions (as well

as the initial set-up of the protocol) in order to make the decision of

whether to allow entry to the applicant agent or not, on the basis of
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the competence requirements of the society. In other words, the

Authority Agent will have a set S of paths that the applicant agent will

need to be able to follow and generate the paths Q that it can assume on

the basis of its competence profile. If Q ⊆ P , then the agent is accepted

into the society.

Assuming the agent is accepted into the society, the next step is to con-

sider what kind of information to provide it with. The full protocol

might be too big to be treated by the agent or there could be security

concerns for which we do not wish to reveal the whole protocol. Thus,

the best solution is to provide the applicant agent with exactly the in-

formation that it needs to participate in the protocols prescribed by the

role(s) it subscribes to. In other words, we need a new protocol that can

simulate the behaviour of the original one minus the unknown actions

to the agent. These would comprise the messages that the agent is not

involved in, either as a sender or as a recipient.

As our initial game-based approach is resulting into an LTS for repre-

senting the different paths that the protocol execution can take, we want

an LTS that simulates the original one discarding (possibly) the actions

that the agent is not engaged in. Effectively, we want two LTSs that

one simulates the other; thus, we employ bisimulation to achieve the

reduction by looking at the τ⋆α and branching bisimulation equivalence

relations. The first one is unsuitable as it does not take into account the

branching structure of the protocol. It reduces all sequences of unknown

actions before a known one, without reasoning about the effects this will

have, while the latter reduces only those unknown actions that do not

break the branching structure. We represent the protocol in the form

of an LTS, which is translated into a Prolog program for the implemen-

tation. The unknown actions are substituted by silent ones (τ) and the

branching bisimulation algorithm is run on the resulting protocol. The

resulting protocol should have no silent actions or those present should

not affect the outcome by creating non-enactable branching structures.

These are structures where the agent has a choice of taking two actions

but not the knowledge to decide on what to do.

By the use of bisimulation, we can also check if a protocol decomposition

into role behaviours for a protocol containing multiple role instances of

the same role is correct or not. If it is, then the LTSs that we produce for

those instances should be bisimilar, as they represent the same role, only

different instances. This is assuming the protocol does not differentiate

between different role instances, but prescribes the same behavior for all

of them.
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7.5 Further Research

7.5.1 Framework Extension

A number of possibilities exist regarding the extension of the work pre-

sented here both at the theoretical and the implementation levels - we

present them in relevance with the issues mentioned in Chapter 1.

The first issue to consider concerning the game-based representation

of the competence framework is that of protocol representation in the

competence assessment and role allocation phases. At the moment, the

protocol representation for checking whether the agent will be admitted

to the society and decomposing the protocol to its role(s) are different

(although they are different viewpoints of looking at the same informa-

tion). A better approach would be to have a unique representation or a

way of converting between the two. This is the case as some protocols

(e.g. chess) are easier to describe through valid moves, as the state space

is huge whereas others (e.g. netbill) can easily be described using their

entire state space.

One way of doing that could be to decide on a set of properties that

will uniquely characterise a state (in the chess protocol, this could be

the positions of the various pieces on the chess board). Once the set of

properties is decided, we use these values in the valid predicate to decide

on the next state. The value of the next state will be the collective value

of all these properties. This will give us the LTS representation needed

for running the bisimulation algorithm.

If we have an FSP model of the protocol roles, another way of dealing

with the same issue is to compose and convert them into a format that

is accepted by the protocol predicate in our approach. This will be

done using the steps in the preparation phase in Section 5.5.3.

The concept of subgames [104] could, also, be explored in the repre-

sentation of protocols for the application phase when the agent requests

access to an artificial agent society as it allows for higher modularity

and granularity when describing protocols. As an example, if we look

at a protocol describing a Dutch auction and the result is a tie, then

the auctioneer will need to run another auction that follows the English

auction format to decide the winner. These are two separate protocols

that can exist independently of one another, but in this context one can

be embodied in the other. This is an example of a sub-protocol that
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can only start at a specific point in the current protocol and has to

complete before returning to the main protocol and the main protocol

cannot terminate if the sub-protocol does not terminate. On the other

hand, if the agent is involved in a number of auctions running at the

same time independently of one another, then the moves can interleave.

This means that they can be executed in any order and we can get in

and out of the different sub-protocols at will. The termination of one of

the protocols might have implications for the others, e.g. if the agent

is bidding for a similar item in all running auctions, or not, e.g. if the

bids are placed for different items. This change in representation will

not affect the bisimulation algorithm as it can be applied to any tran-

sition system - in fact, for non-interleaving protocols, we might be able

to run bisimulation separately on the protocols involved. It will, also,

allow us to run multiple instances of the same protocol (with the neces-

sary amendments in the computational representation, e.g. the addition

of an id to be able to differentiate between different runs of the same

protocol).

The work presented in this thesis could, also, be extended in new di-

rections to cover issues that were not considered here. A question that

we did not look at in this work has been the case of a conditional re-

ply from the society to the agent. Our model needs to be augmented

to cover conditional criteria on which to base the agent’s admission to

the society. As an example, the society might consider that an agent

accepted for a role involving protocols p1, p2, . . . , pn shall be able to do

all moves in p1, reach certain terminating states of p2 and we are not

concerned with what it can do for pn. Alternatively, this issue can be

resolved by on the spot training of the agent, i.e., ad hoc addition of the

missing protocol rules to its knowledge base.

The second and third phase of the agent’s life cycle within the society will

involve activities like revising its status and (possibly) dynamic update of

the protocols and roles it will be involved in. In our current approach, the

assignment of roles to the agent is done in a static way at entry time. We

need a way of modelling the dynamic re-assignment of roles, including

dealing with any potential role conflicts that might arise. This issue

has been tackled to some extent in [100], but in a centralised way with

an agent acting as a database of all other member agents abilities and

roles. Any request for a particular service could be redirected through

that agent. This is an approach that is computationally expensive and

error-prone as a failure of the database agent will result in a complete
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failure of the whole system.

We could, also, look into how our approach can be enriched and what

is the minimum extra set of information that needs to be requested in

order to ensure and enforce competence between agents when they are

found in the same society. At the moment, our test is solely based on

the skills of the agents, but we do not look at the element of their private

strategies. As an example, we might have two agents who both have the

skill to greet, but that is only invoked if the agent is greeted first by

another agent. If these two agents are put together in a society, their

engagement would end up in a deadlock situation in which no agent can

(or wants to) make a move.

The idea of linking the skills of the agent with part of its selection

strategy in order to classify it with regards to a competence level is

present in [35]. However, the authors look at a specific class of protocols

(shallow). We intend to look at this as part of further work.

Another area of improvement could be the phase where the agent gets

the protocol pertinent to its role. The agent could get a personalised

version of its role LTS rather than the generic role description. At the

moment, we are using branching bisimulation on the original protocol

ignoring any paths that the agent might not be able to make because of

insufficient skills or because these paths are not in its individual maximal

strategy. In this, after deploying the equation in Section 3.9 to compute

its maximal strategy, the resulting LTS for the role could be further

pruned to take that into account.

As an example, consider an agent A with the following set of skills

Ag(Skills) = {order, acceptorder} participating in the protocol in Fig-

ure 7.1.

s6s0 s1 s2 s3

s4 s5

m:initiatepay:{g}m:acceptorder:{c}c:order:{m}

c:pay:{g}

m:ship:{c}

m:cancelpay:{g}

Figure 7.1: Order protocol

On the basis of the protocol rules and the agent’s competencies, it is

competent under co-operation. At the moment, the agent will receive

a role protocol that contains actions pay and ship, which it cannot un-
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derstand. A better approach would be to combine the protocol decom-

position algorithm along with the agent’s maximal strategy algorithm.

This will provide it with a protocol that will contain actions and paths

that it can reach ruling out the problematic ones either due to agent’s

incompetence or not been part of the agent’s maximal strategy.

7.5.2 Technical Improvements

An issue with the Prolog representation of the process at the moment

is that we need to calculate the truth value of a number of properties

through holds and happens predicates repeatedly. In that process the

same predicates would be called over and over again as the game pro-

gresses. The current implementation does not account for any caching

or saving the information in any way and this can prove to be a per-

formance bottleneck for big and complex protocols. An approach for

tackling this issue could be to use a Prolog with abilities of caching and

tabling results, like XSB-Prolog [108, 114]. We could, also, look at ver-

sions of Event Calculus that are designed to run with better efficiency

[23].

The protocol predicate will need to be extended to include the struc-

tural relations between the top-level protocol and its sub-protocols.

Also, the definition of a number of initiates and terminates

predicates will need to change in order to account for the fact that

some moves might be starting a new subgame or that moves can be

made outside the subgame’s context even if it is still active. Finally,

all protocol-relating predicates will need to carry an id as they will be

evaluated in multiple instances of protocol runs.
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Appendix A

Prolog Code for the Situation

Calculus Representation

1 :- use_module(library(lists)).

2 :- use_module(library(system)).

3

4 % Frame axioms

5 holds(sit(Name,Id,[]),F):-

6 initially(F,sit(Name,Id,[])).

7 holds(sit(Name,Id,[Move|Moves]),F):-

8 effect(F,Move,sit(Name,Id,Moves)).

9 holds(sit(Name,Id,[Move|Moves]),F):-

10 holds(sit(Name,Id,Moves),F),

11 \+ abnormal(F,Move,sit(Name,Id,Moves)).

12

13

14 % What holds initially at s0

15 initially(role_of(kostas,initiator),sit(query,s0,[])).

16 initially(role_of(george,client),sit(query,s0,[])).

17

18 % Available Moves

19 available(sit(query,_,_),select(_,query,_)).

20 available(sit(query,_,_),select(_,inform,_)).

21 available(sit(query,_,_),select(_,failure,_)).

22 available(sit(query,_,_),select(_,refuse,_)).

23 available(sit(query,_,_),select(_,notunderstood,_)).

24

25 %Effect axioms

26 effects(sit(Name,Id,Ms),M,sit(Name,Id,[M|Ms])).

27

28 effect(last_move(M), M, sit(query,_,_)).

29

30 % Abnormality conditions in various situations

31 abnormal(last_move(M_old), M_new, sit(_, _, _)).

32

33 % What players can do

34 can(sit(query, _, _), select(john,query,_)).

35 can(sit(query, _, _), select(paul,inform,_)).

36 can(sit(query, _, _), select(paul,failure,_)).

37 can(sit(query, _, _), select(paul,refuse,_)).

38 can(sit(query, _, _), select(paul,notunderstood,_)).

39
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40 % run it as game(sit(query,s0,[]),R).

41 game(Sit, Result):-

42 terminating(Sit, Result).

43 game(Sit, Result):-

44 \+ terminating(Sit, _),

45 valid(Sit,Move),

46 effects(Sit,Move,NewSit),

47 game(NewSit, Result).

48

49 % terminating conditions

50 terminating(Sit, Sit):-

51 holds(Sit,last_move(select(_,X,_))),

52 member(X, [inform,failure,refuse,notunderstood]).

53

54 valid(Game, Move):-

55 available(Game, Move),

56 legal(Game, Move),

57 can(Game, Move).

58

59 legal(sit(query,Id,N), select(P1, query,_)):-

60 holds(sit(query,Id,N),role_of(P1,initiator)),

61 \+ holds(sit(query,Id,N),last_move(_)).

62 legal(sit(query,Id,N), select(P1,inform,_)):-

63 holds(sit(query,Id,N),role_of(P1,client)),

64 holds(sit(query,Id,N),last_move(select(_,query,_))).

65 legal(sit(query,Id,N), select(P1, failure,_)):-

66 holds(sit(query,Id,N),role_of(P1,client)),

67 holds(sit(query,Id,N),last_move(select(_,query,_))).

68 legal(sit(query,Id,N), select(P1,refuse,_)):-

69 holds(sit(query,Id,N),role_of(P1,client)),

70 holds(sit(query,Id,N),last_move(select(_,query,_))).

71 legal(sit(query,Id,N), select(P1,notunderstood,_)):-

72 holds(sit(query,Id,N),role_of(P1,client)),

73 holds(sit(query,Id,N),last_move(select(_,query,_))).

Listing A.1: Situation Calculus Prolog Program
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Appendix B

Prolog Code for the Event

Calculus Representation

1 :- use_module(library(lists)).

2 :- use_module(library(system)).

3

4 holds(sit(N,Id,Tn,Nn), P):-

5 0 =< Tn,

6 initially(sit(N,Id,Ti,Ni), P),

7 \+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

8 holds(sit(N,Id,Tn,Nn), P):-

9 happens(E, Ti, Ni, Nn),

10 Ti < Tn,

11 initiates(E, P, sit(N,Id,Ti,Ni)),

12 \+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

13

14 clipped(P, sit(N,Id,Ti,_), sit(N,Id,Tn,Nn)):-

15 happens(Estar, Tj, Nj, Nn),

16 Ti < Tj,

17 Tj < Tn,

18 terminates(Estar, P, sit(N,Id,Tj,Nj)).

19

20 happens(at(En,Tn), Tn, [at(En,Tn)|Sn], [at(En, Tn)|Sn]).

21 happens(at(Ei,Ti), Ti, [at(Ei,Ti)|Si], [at(_, _)|Sn]):-

22 happens(at(Ei, Ti), Ti, [at(Ei,Ti)|Si], Sn).

23 happens(E, Tn, [at(En, Tn)|Sn], [at(En, Tn)|Sn]):-

24 member(E, En).

25 happens(E, Ti, [at(Ei,Ti)|Si], [at(_, _)|Sn]):-

26 happens(E, Ti, [at(Ei,Ti)|Si], Sn).

27

28 effects(sit(Name, Id, T, N),at(Es,T),sit(Name,Id,NewT,[at(Es,T)|N])):-

29 T >= 0,

30 NewT is T + 1.

31

32 % run it as game(sit(auc,s0,0,[]),R).

33 game(Sit, Result):-

34 terminating(Sit, Result).

35 game(Sit, Result):-

36 \+ terminating(Sit, _),

37 Sit = sit(_,_,_,Nar),

38 writelist([->, Nar],nl),

39 assume(valid(Sit, Move), Sit, Move, Episode),
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40 effects(Sit, Episode, NewSit),

41 game(NewSit, Result).

42

43 assume(Valid, sit(N,Id,T,Ns), E, at(Es,T)):-

44 findall(E, Valid, All),

45 sublist(Es, All),

46 acceptable(sit(N,Id,T,Ns), Es).

47

48 acceptable(Sit, Es):-

49 \+ cyclic(Sit, Es).

50

51 cyclic(sit(_,_,T,Ns), Es):-

52 member(select(P,bid,_), Es),

53 happens(select(_,cfp,_), Ti, _, Ns),

54 Ti =< T,

55 happens(select(P,bid,_), Tj, _, Ns),

56 happens(select(P,bid,_), Tk, _, Ns),

57 Tj < Ti,

58 Tk < Ti,

59 \+ Tj = Tk.

60

61 valid(sit(N,Id,T,Es), M):-

62 available(sit(N,Id,T,Es), M),

63 legal(sit(N,Id,T,Es), M),

64 can(sit(N,Id,T,Es), M).

65

66 incompatible(select(P, bid,_), C):-

67 member(select(P, nobid,_), C).

68 incompatible(select(P, nobid,_), C):-

69 member(select(P, bid,_), C).

70

71 initially(sit(auc,s0,0,[]), role_of(john, auctioneer)).

72 initially(sit(auc,s0,0,[]), role_of(paul, bidder)).

73 initially(sit(auc,s0,0,[]), role_of(chris, bidder)).

74

75 terminating(sit(auc,Id,T,N), sit(auc, Id, T, N)):-

76 holds(sit(auc,Id,T,N), last_moves([select(_,X,_)])),

77 member(X, [adjudicate,withdraw]).

78

79 initiates(at(Es, T), last_moves(Es), sit(auc,_,T,_)).

80 terminates(at(_, T), last_moves(_), sit(auc,_,T,_)).

81

82 available(sit(auc,_,_,_),select(_,start,_)).

83 available(sit(auc,_,_,_),select(_,cfp,_)).

84 available(sit(auc,_,_,_),select(_,bid,_)).

85 available(sit(auc,_,_,_),select(_,adjudicate,_)).

86 available(sit(auc,_,_,_),select(_,withdraw,_)).

87

88 legal(sit(auc,Id,T,N), select(P1, start,_)):-

89 holds(sit(auc,Id,T,N),role_of(P1,auctioneer)),

90 \+ holds(sit(auc,Id,T,N),last_moves(_)).

91 legal(sit(auc,Id,T,N), select(P1,cfp,_)):-

92 holds(sit(auc,Id,T,N),role_of(P1,auctioneer)),

93 holds(sit(auc,Id,T,N),last_moves([select(P1,start,_)])).

94 legal(sit(auc,Id,T,N), select(P1,cfp,_)):-

95 holds(sit(auc,Id,T,N),role_of(P1,auctioneer)),

96 holds(sit(auc,Id,T,N),last_moves(Es)),

97 once(member(select(P,bid,_), Es)),

98 holds(sit(auc,Id,T,N),role_of(P,bidder)).

99

100
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101 legal(sit(auc,Id,T,N), select(P1, bid,_)):-

102 holds(sit(auc,Id,T,N),role_of(P1,bidder)),

103 holds(sit(auc,Id,T,N),last_moves([select(P2,cfp,_)])),

104 holds(sit(auc,Id,T,N),role_of(P2,auctioneer)).

105 legal(sit(auc,Id,T,N), select(P1,withdraw,_)):-

106 holds(sit(auc,Id,T,N),role_of(P1,auctioneer)),

107 holds(sit(auc,Id,T,N),last_moves([])),

108 (

109 \+ happens(select(Pi,bid,_), Ti, Ni, N)

110 ;

111 (once(happens(select(Pi,bid,_), Ti, Ni, N)),

112 happens(select(Pj,bid,_), Ti, Ni, N),

113 \+ Pi=Pj

114 )

115 ).

116 legal(sit(auc,Id,T,N), select(P1,adjudicate,_)):-

117 holds(sit(auc,Id,T,N),role_of(P1,auctioneer)),

118 holds(sit(auc,Id,T,N),last_moves([])),

119 once(happens(select(Pi,bid,_), Ti, Ni, N)),

120 forall(

121 (holds(sit(auc,Id,T,N),role_of(Pj,bidder)), \+ (Pj = Pi))

,

122 \+ happens(select(Pj,bid,_), Ti, Ni, N)

123 ).

124 legal(sit(auc,Id,T,N), select(P1,adjudicate,_)):-

125 holds(sit(auc,Id,T,N),role_of(P1,auctioneer)),

126 holds(sit(auc,Id,T,N),last_moves([])),

127 once(happens(select(Pi,bid,_), Ti, Ni, N)),

128 forall(

129 (holds(sit(auc,Id,T,N),role_of(Pj,bidder)), \+ (Pj = Pi))

,

130 \+ happens(select(Pj,bid,_), Ti, Ni, N)

131 ).

132

133 can(sit(auc, _, _, _), select(john,start,_)).

134 can(sit(auc, _, _, _), select(john,cfp,_)).

135 can(sit(auc, _, _, _), select(john,adjudicate,_)).

136 can(sit(auc, _, _, _), select(john,withdraw,_)).

137 can(sit(auc, _, _, _), select(paul,bid,_)).

138 can(sit(auc, _, _, _), select(chris,bid,_)).

139

140 forall(G1, G2):-

141 \+ (call(G1),

142 \+ call(G2)).

143

144 combinations(List, [H|T]):-

145 append([H|T], _, List).

146 combinations(_, []).

147

148 writelist([],nl):-nl,!.

149

150 writelist([],sl):-!.

151

152 writelist([H|B],L):-

153 write(H),

154 write(’ ’),

155 !,

156 writelist(B,L).

157

158 sublist([H | T], [H | U]):-

159 initialsublist(T, U).
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160 initialsublist([], L).

161 initialsublist([H | T], [H | U]):-

162 initialsublist(T, U).

Listing B.1: Prolog Program for Event Calculus Representation
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Appendix C

Prolog Code for Bisimulation

1 :- use_module(library(lists)).

2 :- use_module(library(system)).

3 :- set_prolog_flag(double_quotes,string).

4 % allow the redefinition of the role_def predicate.

5 :- dynamic role_def/3.

6 % load the file with the protocol information.

7 :-consult(’protocolfile.pl’).

8

9 % run it as protocol_to_roles(auction,[], Z).

10 protocol_to_roles(Name, BisimulatedList, FinalProtocol):-

11 protocol(Name,Roles,States,_,_,_,_,_,OriginalProtocol),

12 create_aut(Roles, Name,OriginalProtocol, States),

13 shell("./runbisimulation"),

14 process_roles(Roles, Name, OriginalProtocol, NewProtocol,BisimulatedList),

15 protocol_to_roles_internal(Roles,NewProtocol,NewBisimulatedList,FinalProtocol,

16 States,Name),

17 count(FinalProtocol, Y),

18 max_list(States, MaxV),

19 MaximumValue is MaxV + 1,

20 append([des(0, Y, MaximumValue)], FinalProtocol, LastProtocol),

21 write_list_to_file(protocol, LastProtocol),

22 !.

23

24 protocol_to_roles_internal(Roles, FinalProtocol, RoleList,FinalProtocol,_,_):-

25 \+ RoleList = [],

26 !.

27 protocol_to_roles_internal(Roles,InitialProtocol,BisimulatedRoleList,FinalProtocol,

28 States,Name):-

29 shell("./cleanup"),

30 create_aut(Roles, Name, InitialProtocol, States),

31 shell("./runbisimulation"),

32 process_roles(Roles, Name, InitialProtocol, NewProtocol, UpdatedList),

33 \+ BisimulatedRoleList = [],

34 \+ BisimulatedRoleList = UpdatedList,

35 protocol_to_roles_internal(Roles,NewProtocol,UpdatedList,NewUpdatedList,FinalProtocol,

36 States,Name).

37

38 process_roles([], _, EndProtocol, EndProtocol, NewList).

39 process_roles([RoleOne|RoleRest],Name,Protocol,NewProtocol,EndBisimRoleList):-

40 process_role(Name,Protocol,RoleOne,NewRoleOneList,NewWholeProtocol),

41 append(NewRoleOneList,[],BisimListOne),

42 !,
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43 process_roles(RoleRest,Name,NewWholeProtocol,NewProtocol,NewListRest),

44 append(BisimListOne,NewListRest,EndBisimRoleList).

45

46 process_role(ProtocolName, ProtocolTransitions,Role,NewRoleList,NewProtocol):-

47 atom_concat(’bb’,Role,NewRole),

48 read_content_file(NewRole,RoleTransitionList),

49 process_role_transitions(ProtocolTransitions,Role,RoleTransitionList,NewRoleList,

50 NewProtocol).

51

52 process_role_transitions(Final, _, [], _, Final):-!.

53 process_role_transitions(Protocol,Role,[RoleTransitionListOne|RoleTransitionListRest],

54 NewRoleProtocol,FinalProtocol):-

55 process_role_transitions_one(Protocol,Role,RoleTransitionListOne,NewRoleProtocolOne,

56 InterimProtocol),

57 process_role_transitions(InterimProtocol,Role,RoleTransitionListRest,NewRoleProtocolRest,

58 FinalProtocol),

59 append(NewRoleProtocolOne, NewRoleProtocolRest, NewRoleProtocol).

60

61 process_role_transitions_one(Protocol, Role, Transition, [],Protocol):-

62 Transition = des(_,_,_).

63 process_role_transitions_one(Protocol, Role,Transition,Transition],Protocol):-

64 Transition = (InitialState, (Role, Action, Receiver), FinalState).

65 process_role_transitions_one(Protocol,Role,Transition,[Transition],Protocol):-

66 Transition = (InitialState, (Sender, Action, Role), FinalState).

67 process_role_transitions_one(Protocol,Role,Transition,[Transition],Protocol):-

68 Transition = (InitialState, (Sender, Action, Receivers), FinalState),

69 is_list(Receivers),

70 member(Role, Receivers).

71 process_role_transitions_one(Protocol,Role,Transition,NewRoleTransition,NewProtocol):-

72 repair_transition(Protocol, Role, Transition, NewRoleTransition,Protocol).

73

74 backwards_tau_transitions(State, TransitionList, AllStateList):-

75 calculate_incoming_list_transitions(TransitionList,State,IncomingListTransitions),

76 process_incoming_list_transitions([IncomingListTransitionsOne|IncomingListTransitionsNext],

77 AllStateList).

78

79 process_incoming_list_transitions([IncomingListTransitionsOne|IncomingListTransitionsNext],

80 States,RoleTransitionList):-

81 process_incoming_list_transitions_one(IncomingListTransitionsOne,State1,

82 RoleTransitionList),

83 process_incoming_list_transitions(IncomingListTransitionsRest,StatesRest,

84 RoleTransitionList),

85 append(State1, StatesRest, States).

86 process_incoming_list_transitions([], [], []).

87

88 process_incoming_list_transitions_one(TransitionOne,StateOne,TransitionList):-

89 Transition1 = (InitialState, ’tau’, FinalState),

90 backwards_tau_transitions(InitialState, RoleTransitionList,AllStates).

91

92 repair_transition(Protocol, Role, Transition, NewRoleTransition,NewProtocol):-

93 Transition=(InitialState,tau,FinalState),

94 calculate_outgoing_list_transitions(Protocol,InitialState,ListOfTransitions),

95 fix_transitions(Protocol,ListOfTransitions,Role,NewRoleTransition,NewProtocol).

96

97 calculate_outgoing_list_transitions([], _, []).

98 calculate_outgoing_list_transitions([ProtocolOne|ProtocolRest],StateOne,ListOfTransitions):-

99 calculate_outgoing_list_transitions_state_one(ProtocolOne,StateOne,ListOfTransitionsOne),

100 calculate_outgoing_list_transitions(ProtocolRest,StateOne,ListOfTransitionsRest),

101 append(ListOfTransitionsRest, ListOfTransitionsOne, ListOfTransitions).

102

103 calculate_outgoing_list_transitions_state_one([], _, []).
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104 calculate_outgoing_list_transitions_state_one(ProtocolOne,State,[ProtocolOne]):-

105 ProtocolOne = (State, (_, _, _), _).

106 calculate_outgoing_list_transitions_state_one(ProtocolOne,State,[ProtocolOne]):-

107 ProtocolOne = (State, tau, _).

108 calculate_outgoing_list_transitions_state_one(ProtocolOne, State,[]):-

109 ProtocolOne = (X, (_, _, _), _),

110 \+ X = State.

111 calculate_outgoing_list_transitions_state_one(ProtocolOne,State,[]):-

112 ProtocolOne = (X, tau, _),

113 \+ X = State.

114

115 calculate_incoming_list_transitions([], _, []).

116 calculate_incoming_list_transitions([ProtocolOne|ProtocolRest],StateOne,ListOfTransitions):-

117 calculate_incoming_list_transitions_state_one(ProtocolOne,StateOne,ListOfTransitionsOne),

118 calculate_incoming_list_transitions(ProtocolRest,StateOne,ListOfTransitionsRest),

119 append(ListOfTransitionsRest, ListOfTransitionsOne, ListOfTransitions).

120

121 calculate_incoming_list_transitions_state_one([], _, []).

122 calculate_incoming_list_transitions_state_one(ProtocolOne,State,[ProtocolOne]):-

123 ProtocolOne = (_, (_, _, _), State).

124 calculate_incoming_list_transitions_state_one(ProtocolOne,State,[ProtocolOne]):-

125 ProtocolOne = (_, tau, State).

126 calculate_incoming_list_transitions_state_one(_, _, []).

127

128 find_problematic_tau_actions(Role,RoleTransitionList,

129 [ListOfTransitionsOne|ListOfTransitionsRest],

130 ProblematicTransitions):-

131 find_problematic_tau_actions_one(Role,RoleTransitionList,ListOfTransitionsOne,

132 ProblematicTransitionsOne),

133 find_problematic_tau_actions(Role,RoleTransitionsList,ListOfTransitionsRest,

134 ProblematicTransitionsRest),

135 append(ProblematicTransitionsOne,ProblematicTransitionsRest,ProblematicTransitions).

136

137 find_problematic_tau_actions_one(Role,RoleTransitionList,RoleList,Transition,[Transition]):-

138 Transition = (InitialState, ’tau’, FinalState),

139 calculate_outgoing_list_transitions(RoleTransitionList,FinalState,OutGoingTransitionsList),

140 member(Transition1, OutGoingTransitionsList),

141 Transition1 = (FinalState, (Role, Action1, Receiver1), NewFinalState1),

142 Transition2 = (InitialState, (Role, Action2, Receiver2), NewFinalState2),

143 \+ Action1 = Action2.

144 find_problematic_tau_actions_one(Role,RoleTransitionList,RoleList,Transition,[Transition]):-

145 Transition = (InitialState, ’tau’, FinalState),

146 calculate_outgoing_list_transitions(RoleTransitionList,FinalState,OutGoingTransitionsList),

147 member(Transition1, OutGoingTransitionsList),

148 Transition1 = (FinalState, (Role, Action1, Receiver1), NewFinalState1),

149 Transition2 = (InitialState, (Role, Action2, Receiver2), NewFinalState2),

150 \+ Receiver1 = Receiver2.

151 find_problematic_tau_actions_one(Role,RoleTransitionList,RoleList,Transition,[Transition]):-

152 Transition=(InitialState,’tau’,FinalState),

153 calculate_outgoing_list_transitions(RoleTransitionList,FinalState,OutGoingTransitionsList),

154 member(Transition1, OutGoingTransitionsList),

155 Transition1=(FinalState,(Role,Action1,Receiver1),NewFinalState1),

156 member(Transition2, OutGoingTransitionsList),

157 Transition2 = (FinalState, ’tau’, NewFinalState2),

158 Transition3 = (NewFinalState2, (Role, Action2, Receiver2),NewFinalState2),

159 \+ Action1 = Action2,

160 \+ Receiver1 = Receiver2.

161 find_problematic_tau_actions_one(Role,RoleTransitionList,RoleList,Transition,[Transition]):-

162 Transition=(InitialState,’tau’,FinalState),

163 calculate_outgoing_list_transitions(RoleTransitionList,FinalState,OutGoingTransitionsList),

164 member(Transition1, OutGoingTransitionsList),
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165 Transition1=(FinalState,(Role,Action1,Receiver1),NewFinalState1),

166 member(Transition2, OutGoingTransitionsList),

167 Transition2 = (FinalState, ’tau’, NewFinalState2),

168 Transition3 = (NewFinalState2, (Role, Action2, Receiver2),NewFinalState2),

169 \+ Action1 = Action2.

170 find_problematic_tau_actions_one(Role,RoleTransitionList,RoleList,Transition,[Transition]):-

171 Transition=(InitialState,’tau’,FinalState),

172 calculate_outgoing_list_transitions(RoleTransitionList,FinalState,OutGoingTransitionsList),

173 member(Transition1, OutGoingTransitionsList),

174 Transition1=(FinalState,(Role,Action1,Receiver1),NewFinalState1),

175 member(Transition2, OutGoingTransitionsList),

176 Transition2 = (FinalState, ’tau’, NewFinalState2),

177 Transition3 = (NewFinalState2, (Role, Action2, Receiver2),NewFinalState2),

178 \+ Receiver1 = Receiver2.

179

180 repair_transition3(Protocol, Role, Transition,NewRoleTransition,NewProtocol):-

181 Transition = (InitialState, tau,FinalState),

182 equivalent_states(InitialState,ListOfStates,Role),

183 calculate_list_transitions(Protocol,ListOfStates,ListOfTransitions),

184 fix_transitions(Protocol,ListOfTransitions,Role,NewRoleTransition,NewProtocol).

185

186 repair_transition2(Protocol, Role, Transition,NewRoleTransition,NewProtocol):-

187 Transition = (InitialState, tau,FinalState),

188 equivalent_states(InitialState,InitialStateEquivalents,Role),

189 equivalent_states(FinalState,FinalStateEquivalents,Role),

190 calculate_list_transitions2(Protocol,InitialStateEquivalents,FinalStateEquivalents,

191 ListOfTransitions),

192 fix_transitions(Protocol,ListOfTransitions,Role,NewRoleTransitions,NewProtocol).

193

194 equivalent_states(OriginalState, ListOfStates, Role):-

195 atom_concat(’r’,Role,NewResultsFile),

196 read_content_file(NewResultsFile, AllEquivalentStates),

197 find_equivalent_states(OriginalState, AllEquivalentStates, ListOfStates).

198

199 find_equivalent_states(_, [], []).

200 find_equivalent_states(State, [ PairOne | PairRest], FinalList):-

201 find_equivalent_states_one(State, PairOne, FinalListOne),

202 find_equivalent_states(State, PairRest, FinalListTwo),

203 append(FinalListTwo, FinalListOne, FinalList).

204

205 % The results file is in the form (OriginalAut,BisimulatedAut)

206 find_equivalent_states_one(BisimulatedState,(OriginalState,BisimulatedState),

207 [OriginalState]):-

208 !.

209 find_equivalent_states_one(BisimulatedState, (AState, AnotherState), []).

210

211 calculate_list_transitions_one(ProtocolOne, State, [ProtocolOne]):-

212 ProtocolOne = (State, (Sender, Action, Receiver), FinalState),

213 !.

214 calculate_list_transitions_one(ProtocolOne, State, []).

215

216 calculate_list_transitions2([], _,_, []).

217 calculate_list_transitions2([ProtocolOne|ProtocolRest],InitialEquivalentStates,

218 FinalEquivalentStates, ListOfTransitions):-

219 calculate_list_transitions2_protocol_one(ProtocolOne,InitialEquivalentStates,

220 FinalEquivalentStates,ListOfTransitionsOne),

221 calculate_list_transitions2(ProtocolRest,InitialEquivalentStates,FinalEquivalentStates,

222 ListOfTransitionsRest),

223 append(ListOfTransitionsRest, ListOfTransitionsOne, ListOfTransitions).

224

225 calculate_list_transitions2_protocol_one([],_, _, []).
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226 calculate_list_transitions2_protocol_one([ProtocolOne|ProtocolRest],InitialStateEquivalent,

227 FinalStateEquivalent,ListOfTransitions):-

228 calculate_list_transitions2_one(ProtocolOne,InitialListStates,FinalListStates,

229 TransitionsListOne),

230 calculate_list_transitions2_protocol_one(ProtocolRest,InitialListStates,FinalListStates,

231 NewTransitionList),

232 append(NewTransitionList, TransitionsListOne, ListOfTransitions).

233

234

235 calculate_list_transitions2_one(ProtocolOne,InitialStateList,FinalStateList,[ProtocolOne]):-

236 ProtocolOne = (State, tau, FinalState),

237 member(State, InitialStateList),

238 member(FinalState, FinalStateList),

239 !.

240

241 calculate_list_transitions2_one(ProtocolOne, _, _, []).

242

243 update_transitions(Protocol,[OriginalTransitionOne|OriginalTransitionRest],Role,

244 NewTempRoleProtocol):-

245 update_transitions_one(Protocol, OriginalTransitionOne,Role,TempProtocol),

246 update_transitions(Protocol,OriginalTransitionRest,Role,RestTempProtocol),

247 append(TempProtocol,RestTempProtocol , NewTempRoleProtocol).

248

249

250 fix_transitions(Protocol, [], _, _, Protocol).

251 fix_transitions(Protocol,[OriginalTransition|Rest],Role,NewRoleTransition,FinalProtocol):-

252 fix_transitions_one(Protocol,OriginalTransition,Role,NewRoleTransitionOne,InterimProtocol),

253 fix_transitions(InterimProtocol,Rest,Role,NewRoleTransitionRest,FinalProtocol),

254 append(NewRoleTransitionOne, NewRoleTransitionRest, NewRoleTransition).

255

256 fix_transitions_one(Protocol, (_, (_, _, Role),_), Role, _, Protocol).

257 fix_transitions_one(Protocol, (_, (Role, _, _),_), Role, _, Protocol).

258 fix_transitions_one(Protocol,OriginalTransitionOne,Role,NewTransition,InterimProtocol):-

259 OriginalTransitionOne=(InitialState,(Sender,Action,Receiver),FinalState),

260 is_list(Receiver),

261 \+ member(Role, Receiver),

262 append([Role], Receiver, NewReceiver),

263 sort(NewReceiver,SortedReceiver),

264 append([(InitialState,(Sender,Action,SortedReceiver),FinalState)],[],NewTransition),

265 delete(Protocol,OriginalTransitionOne,IntermediateProtocol),

266 append(IntermediateProtocol, NewTransition, InterimProtocol).

267

268 fix_transitions_one(Protocol, OriginalTransitionOne, Role, [], Protocol):-

269 OriginalTransitionOne =(InitialState,(Sender,Action,Receiver),FinalState),

270 is_list(Receiver),

271 member(Role, Receiver).

272

273 fix_transitions_one(Protocol,OriginalTransitionOne,Role,NewTransition,InterimProtocol):-

274 OriginalTransitionOne=(InitialState,(Sender,Action,Receiver),FinalState),

275 \+ is_list(Receiver),

276 append([Role], [Receiver], NewReceiver),

277 sort(NewReceiver,SortedReceiver),

278 append([(InitialState,(Sender,Action,SortedReceiver),FinalState)],[],NewTransition),

279 delete(Protocol,OriginalTransitionOne,IntermediateProtocol),

280 append(IntermediateProtocol, NewTransition, InterimProtocol).

281

282

283 write_list_to_file(FileName, [ListOne | Rest]):-

284 tell(FileName),

285 write_list_to_file_one(ListOne),

286 write_list_to_file_rest(Rest),
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287 told.

288

289 write_list_to_file_one(Content):-

290 Content = des(_, _, _),

291 write(Content),

292 nl.

293

294 write_list_to_file_one(Content):-

295 Content = (InitialState, (Sender, Message, Receiver), FinalState),

296 write(’(’),

297 write(InitialState),

298 write(’,\"(’),

299 write(Sender),

300 write(’,’),

301 write(Message),

302 write(’,’),

303 write(Receiver),

304 write(’)\",’),

305 write(FinalState),

306 write(’)’),

307 nl.

308

309 write_list_to_file_rest([]).

310

311 write_list_to_file_rest([RestOne | Remaining]):-

312 write_list_to_file_one(RestOne),

313 write_list_to_file_rest(Remaining).

314

315 read_content_file(File, List):-

316 open(File, read, Str),

317 list_of_terms(Str, List).

318

319

320 list_of_terms(Str, []):-

321 at_end_of_stream(Str) .

322 list_of_terms(Str, List):-

323 read_line_to_codes(Str,Codes),

324 string_to_list(String, Codes),

325 string_to_atom(String,Atom),

326 term_to_atom(Term, Atom),

327 list_of_terms(Str, NewList),

328 append([Term], NewList, List),

329 !.

330

331 create_aut([RoleHead | RoleTails], Name, Protocol, States):-

332 create_aut_one(RoleHead, Name, Protocol, States),

333 create_aut(RoleTails, Name, Protocol, States).

334 create_aut([], _, _,_):-!.

335

336 create_aut_one(X, Name, Protocol, States):-

337 pl2aut(Name,X,X, Protocol, States).

338

339 pl2aut(ProtocolName,Role,FileName, Protocol, States):-

340 count(Protocol,X),

341 count(States,Y),

342 tell(FileName),

343 write(’des(0,’),

344 write(X),

345 write(’,’),

346 write(Y),

347 write(’)’),
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348 nl,

349 check_transition(Protocol, Role, FileName),

350 change_filename(FileName).

351

352 change_filename(FileName):-

353 file_name_extension(FileName,aut,X),

354 rename_file(FileName,X).

355

356 check_transition([Head |Tails], Role, FileName):-

357 check_one(Head, Role, FileName),

358 !,

359 check_transition(Tails, Role, FileName).

360 check_transition([],_,_):-

361 told.

362

363 check_one(Transition, Role, FileName):-

364 Transition = (InitialState,Move, EndState),

365 Move = (Sender, _, _),

366 Role = Sender,

367 tell(FileName),

368 write(’(’),

369 write(InitialState),

370 write(’,"(’),

371 write(Move),

372 write(’)"’),

373 write(’,’),

374 write(EndState),

375 write(’)’),

376 nl.

377

378 check_one(Transition, Role, FileName):-

379 Transition = (InitialState,Move, EndState),

380 Move = (_, _, Receiver),

381 Role = Receiver,

382 tell(FileName),

383 write(’(’),

384 write(InitialState),

385 write(’,"(’),

386 write(Move),

387 write(’)"’),

388 write(’,’),

389 write(EndState),

390 write(’)’),

391 nl.

392

393 check_one(Transition, Role, FileName):-

394 Transition = (InitialState,Move, EndState),

395 Move = (_, _, Receiver),

396 member(Role,Receiver),

397 tell(FileName),

398 write(’(’),

399 write(InitialState),

400 write(’,"(’),

401 write(Move),

402 write(’)"’),

403 write(’,’),

404 write(EndState),

405 write(’)’),

406 nl.

407

408 check_one(Transition, Role, FileName):-

189



409 Transition = (State1,_, State2),

410 tell(FileName),

411 NewTransition = (State1,’tau’,State2),

412 write(’(’),

413 write(State1),

414 write(’,"tau",’),

415 write(State2),

416 write(’)’),

417 nl.

418

419 count(List,N):-

420 length(List,N).

421

422 writelist([],nl):-nl,!.

423 writelist([],sl):-!.

424 writelist([H|B],L):-

425 write(H),

426 write(’ ’),

427 !,

428 writelist(B,L).

429

430 runaut(Name):-

431 protocol(Name,Roles,States,_,_,_,_,_,Protocol),

432 create_aut(Roles, Name, Protocol, States).

Listing C.1: Prolog Code For Bisimulation
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Appendix D

Event Calculus

Implementation for the Mail

Order Protocol

1 holds(sit(N,Id,Tn,Nn), P):-

2 0 =< Tn,

3 initially(sit(N,Id,Ti,Ni), P),

4 \+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

5 holds(sit(N,Id,Tn,Nn), P):-

6 happens(E, Ti, Ni, Nn),

7 Ti < Tn,

8 initiates(E, P, sit(N,Id,Ti,Ni)),

9 \+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

10

11 clipped(P, sit(N,Id,Ti,_), sit(N,Id,Tn,Nn)):-

12 happens(Estar, Tj, Nj, Nn),

13 Ti < Tj,

14 Tj < Tn,

15 terminates(Estar, P, sit(N,Id,Tj,Nj)).

16

17 happens(at(En,Tn), Tn, [at(En,Tn)|Sn], [at(En, Tn)|Sn]).

18 happens(at(Ei,Ti), Ti, [at(Ei,Ti)|Si], [at(_, _)|Sn]):-

19 happens(at(Ei, Ti), Ti, [at(Ei,Ti)|Si], Sn).

20 happens(E, Tn, [at(En, Tn)|Sn], [at(En, Tn)|Sn]):-

21 member(E, En).

22 happens(E, Ti, [at(Ei,Ti)|Si], [at(_, _)|Sn]):-

23 happens(E, Ti, [at(Ei,Ti)|Si], Sn).

24

25 effects(sit(Name,Id,T,N),at(Es,T),sit(Name,Id,NewT,[at(Es,T)|N])):-

26 T >= 0,

27 NewT is T + 1.

28

29 game(Sit, Result):-

30 terminating(Sit, Result).

31 game(Sit, Result):-

32 \+ terminating(Sit, _),

33 Sit = sit(_,_,_,Nar),

34 assume(valid(Sit, Move), Sit, Move, Episode),

35 effects(Sit, Episode, NewSit),

36 game(NewSit, Result).
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37 assume(Valid, sit(N,Id,T,Ns), E, at([Es],T)):-

38 findall(E, Valid, All),

39 sublist2(Es, All),

40 acceptable(sit(N,Id,T,Ns), [Es]).

41

42 acceptable(Sit, Es):-

43 \+ cyclic(Sit, Es).

44

45 cyclic(sit(mail_order, _, T, Ns), Es):-

46 Es=[select(paul,reorder,_)],

47 sublist([at([select(john,order,_)],_),

48 at([select(paul,reorder,_)],_),

49 at([select(john,order,_)],_)],Ns).

50

51 valid(sit(N,Id,T,Es), M):-

52 available(sit(N,Id,T,Es), M),

53 legal(sit(N,Id,T,Es), M),

54 can(sit(N,Id,T,Es), M).

55

56 incompatible(select(P, bid,_), C):-

57 member(select(P, nobid,_), C).

58 incompatible(select(P, nobid,_), C):-

59 member(select(P, bid,_), C).

60

61 initially(sit(mail_order,s0,0,[]), role_of(john, merchant)).

62 initially(sit(mail_order,s0,0,[]), role_of(paul, supplier)).

63

64 terminating(sit(mail_order,Id,T,N), sit(mail_order, Id, T, N)):-

65 holds(sit(mail_order,Id,T,N), last_moves([select(P,X,_)])),

66 holds(sit(mail_order,Id,T,N), role_of(P,supplier)),

67 member(X, [notify,refuse]).

68 terminating(sit(mail_order,Id,T,N), sit(mail_order, Id, T, N)):-

69 holds(sit(mail_order,Id,T,N), last_moves([select(P,X,_)])),

70 holds(sit(mail_order,Id,T,N), role_of(P,merchant)),

71 member(X, [withdraw]).

72

73 initiates(at(Es, T), last_moves(Es), sit(mail_order,_,T,_)).

74 terminates(at(_, T), last_moves(_), sit(mail_order,_,T,_)).

75

76 available(sit(mail_order,_,_,_),select(_,order,_)).

77 available(sit(mail_order,_,_,_),select(_,reorder,_)).

78 available(sit(mail_order,_,_,_),select(_,refuse,_)).

79 available(sit(mail_order,_,_,_),select(_,confirm,_)).

80 available(sit(mail_order,_,_,_),select(_,withdraw,_)).

81 available(sit(mail_order,_,_,_),select(_,accept,_)).

82 available(sit(mail_order,_,_,_),select(_,notify,_)).

83

84 legal(sit(mail_order,Id,T,N), select(P1, order,_)):-

85 holds(sit(mail_order,Id,T,N),role_of(P1,merchant)),

86 \+ holds(sit(mail_order,Id,T,N),last_moves(_)).

87 legal(sit(mail_order,Id,T,N), select(P1, order,_)):-

88 holds(sit(mail_order,Id,T,N),role_of(P1,merchant)),

89 holds(sit(mail_order,Id,T,N),last_moves([select(P2,reorder,_)])),

90 holds(sit(mail_order,Id,T,N),role_of(P2,supplier)).

91 legal(sit(mail_order,Id,T,N), select(P1,reorder,_)):-

92 holds(sit(mail_order,Id,T,N),role_of(P1,supplier)),

93 holds(sit(mail_order,Id,T,N),last_moves([select(P2,order,_)])),

94 holds(sit(mail_order,Id,T,N),role_of(P2,merchant)).

95 legal(sit(mail_order,Id,T,N), select(P1,confirm,_)):-

96 holds(sit(mail_order,Id,T,N),role_of(P1,supplier)),

97 holds(sit(mail_order,Id,T,N),last_moves([select(P2,order,_)])),
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98 holds(sit(mail_order,Id,T,N),role_of(P2,merchant)).

99 legal(sit(mail_order,Id,T,N), select(P1, refuse,_)):-

100 holds(sit(mail_order,Id,T,N),role_of(P1,supplier)),

101 holds(sit(mail_order,Id,T,N),last_moves([select(P2,order,_)])),

102 holds(sit(mail_order,Id,T,N),role_of(P2,merchant)).

103 legal(sit(mail_order,Id,T,N), select(P1, withdraw,_)):-

104 holds(sit(mail_order,Id,T,N),role_of(P1,merchant)),

105 holds(sit(mail_order,Id,T,N),last_moves([select(P2,confirm,_)])),

106 holds(sit(mail_order,Id,T,N),role_of(P2,supplier)).

107 legal(sit(mail_order,Id,T,N), select(P1, accept,_)):-

108 holds(sit(mail_order,Id,T,N),role_of(P1,merchant)),

109 holds(sit(mail_order,Id,T,N),last_moves([select(P2,confirm,_)])),

110 holds(sit(mail_order,Id,T,N),role_of(P2,supplier)).

111 legal(sit(mail_order,Id,T,N), select(P1, notify,_)):-

112 holds(sit(mail_order,Id,T,N),role_of(P1,supplier)),

113 holds(sit(mail_order,Id,T,N),last_moves([select(P2,accept,_)])),

114 holds(sit(mail_order,Id,T,N),role_of(P2,merchant)).

115

116 can(sit(mail_order, _, _, _), select(john,order,_)).

117 can(sit(mail_order, _, _, _), select(john,withdraw,_)).

118 can(sit(mail_order, _, _, _), select(john,accept,_)).

119 can(sit(mail_order, _, _, _), select(paul,reorder,_)).

120 can(sit(mail_order, _, _, _), select(paul,confirm,_)).

121 can(sit(mail_order, _, _, _), select(paul,refuse,_)).

122 can(sit(mail_order, _, _, _), select(paul,notify,_)).

123

124 writelist([],nl):-nl,!.

125 writelist([],sl):-!.

126 writelist([H|B],L):-

127 write(H),

128 write(’ ’),!,

129 writelist(B,L).

130

131 sublist([H | T], [H | U]):-

132 initialsublist(T, U).

133

134 initialsublist([], _).

135 initialsublist([H | T], [H | U]):-

136 initialsublist(T, U).

137

138 sublist2(X, Y):-

139 member(X,Y).

140 sublist2([],[]).

Listing D.1: Event Calculus Representation for the Order Protocol
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Appendix E

Mail Order Protocol in

Situation Calculus

1 :- use_module(library(lists)).

2 :- use_module(library(system)).

3

4 holds(sit(Name,Id,[]),F):-

5 initially(F,sit(Name,Id,[])).

6 holds(sit(Name,Id,[Move|Moves]),F):-

7 effect(F,Move,sit(Name,Id,Moves)).

8 holds(sit(Name,Id,[Move|Moves]),F):-

9 holds(sit(Name,Id,Moves),F),

10 \+ abnormal(F,Move,sit(Name,Id,Moves)).

11

12 initially(role_of(john,merchant),sit(mail_order,s0,[])).

13 initially(role_of(paul,supplier),sit(mail_order,s0,[])).

14

15 available(sit(mail_order,_,_),select(_,order,_)).

16 available(sit(mail_order,_,_),select(_,confirm,_)).

17 available(sit(mail_order,_,_),select(_,refuse,_)).

18 available(sit(mail_order,_,_),select(_,withdraw,_)).

19 available(sit(mail_order,_,_),select(_,accept,_)).

20 available(sit(mail_order,_,_),select(_,notify,_)).

21

22 effects(sit(Name,Id,Ms),M,sit(Name,Id,[M|Ms])).

23

24 effect(last_move(M), M, sit(mail_order,_,_)).

25

26 abnormal(last_move(M_old), M_new, sit(_, _, _)).

27

28 can(sit(mail_order, _, _), select(john,order,_)).

29 can(sit(mail_order, _, _), select(john,withdraw,_)).

30 can(sit(mail_order, _, _), select(john,accept,_)).

31 can(sit(mail_order, _, _), select(paul,reorder,_)).

32 can(sit(mail_order, _, _), select(paul,confirm,_)).

33 can(sit(mail_order, _, _), select(paul,refuse,_)).

34 can(sit(mail_order, _, _), select(paul,notify,_)).

35

36

37 % run it as game(sit(mail_order,s0,[]),R).

38 game(Sit, Result):-

39 terminating(Sit, Result).
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40 game(Sit, Result):-

41 \+ terminating(Sit, _),

42 valid(Sit,Move),

43 effects(Sit,Move,NewSit),

44 game(NewSit, Result).

45

46 terminating(Sit, Sit):-

47 holds(Sit,last_move(select(_,X,_))),

48 member(X, [refuse,notify,withdraw]).

49

50 valid(Game, Move):-

51 available(Game, Move),

52 legal(Game, Move),

53 can(Game, Move),

54 \+ cyclic(Game, Move).

55

56 cyclic(sit(_,_,Moves), Move):-

57 Move = select(paul,reorder,_),

58 sublist([select(john,order,_),select(paul,reorder,_),

59 select(john,order,_)],Moves).

60

61 legal(sit(mail_order,Id,N), select(P1, order,P2)):-

62 holds(sit(mail_order,Id,N),role_of(P1,merchant)),

63 holds(sit(mail_order,Id,N),role_of(P2,supplier)),

64 \+ holds(sit(mail_order,Id,N),last_move(_)).

65 legal(sit(mail_order,Id,N), select(P1,confirm,P2)):-

66 holds(sit(mail_order,Id,N),role_of(P1,supplier)),

67 holds(sit(mail_order,Id,N),last_move(select(P2,order,P1))),

68 holds(sit(mail_order,Id,N),role_of(P2,merchant)).

69 legal(sit(mail_order,Id,N), select(P1, refuse,P2)):-

70 holds(sit(mail_order,Id,N),role_of(P1,supplier)),

71 holds(sit(mail_order,Id,N),last_move(select(P2,order,P1))),

72 holds(sit(mail_order,Id,N),role_of(P2,merchant)).

73 legal(sit(mail_order,Id,N), select(P1, withdraw,P2)):-

74 holds(sit(mail_order,Id,N),role_of(P1,merchant)),

75 holds(sit(mail_order,Id,N),last_move(select(P2,confirm,P1))),

76 holds(sit(mail_order,Id,N),role_of(P2,supplier)).

77 legal(sit(mail_order,Id,N), select(P1, accept,P2)):-

78 holds(sit(mail_order,Id,N),role_of(P1,merchant)),

79 holds(sit(mail_order,Id,N),last_move(select(P2,confirm,P1))),

80 holds(sit(mail_order,Id,N),role_of(P2,supplier)).

81 legal(sit(mail_order,Id,N), select(P1, notify,P2)):-

82 holds(sit(mail_order,Id,N),role_of(P1,supplier)),

83 holds(sit(mail_order,Id,N),last_move(select(P2,accept,P1))),

84 holds(sit(mail_order,Id,N),role_of(P2,merchant)).

85

86 sublist([H | T], [H | U]):-

87 initialsublist(T, U).

88

89 initialsublist([], _).

90 initialsublist([H | T], [H | U]):-

91 initialsublist(T, U).

Listing E.1: Situation Calculus Representation of the Order Protocol
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Appendix F

Prolog code in Situation

Calculus for a protocol with

loops

1 :- use_module(library(lists)).

2 :- use_module(library(system)).

3

4 holds(sit(Name,Id,[]),F):-

5 initially(F,sit(Name,Id,[])).

6 holds(sit(Name,Id,[Move|Moves]),F):-

7 effect(F,Move,sit(Name,Id,Moves)).

8 holds(sit(Name,Id,[Move|Moves]),F):-

9 holds(sit(Name,Id,Moves),F),

10 \+ abnormal(F,Move,sit(Name,Id,Moves)).

11

12 initially(role_of(john,merchant),sit(negotiation,s0,[])).

13 initially(role_of(paul,customer),sit(negotiation,s0,[])).

14

15 available(sit(negotiation,_,_),select(_,request,_)).

16 available(sit(negotiation,_,_),select(_,accept,_)).

17 available(sit(negotiation,_,_),select(_,refuse,_)).

18 available(sit(negotiation,_,_),select(_,challenge,_)).

19 available(sit(negotiation,_,_),select(_,justify,_)).

20 available(sit(negotiation,_,_),select(_,retract,_)).

21 available(sit(negotiation,_,_),select(_,authenticate,_)).

22 available(sit(negotiation,_,_),select(_,certify,_)).

23 available(sit(negotiation,_,_),select(_,notunderstood,_)).

24 available(sit(negotiation,_,_),select(_,inform,_)).

25 available(sit(negotiation,_,_),select(_,reject,_)).

26

27 effects(sit(Name,Id,Ms),M,sit(Name,Id,[M|Ms])).

28

29 effect(last_move(M), M, sit(negotiation,_,_)).

30

31 abnormal(last_move(M_old), M_new, sit(_, _, _)).

32

33 can(sit(negotiation, _, _), select(john,request,_)).

34 can(sit(negotiation, _, _), select(john,justify,_)).

35 can(sit(negotiation, _, _), select(john,retract,_)).

36 can(sit(negotiation, _, _), select(john,authenticate,_)).
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37 can(sit(negotiation, _, _), select(john,notunderstood,_)).

38 can(sit(negotiation, _, _), select(john,reject,_)).

39 can(sit(negotiation, _, _), select(paul,accept,_)).

40 can(sit(negotiation, _, _), select(paul,refuse,_)).

41 can(sit(negotiation, _, _), select(paul,challenge,_)).

42 can(sit(negotiation, _, _), select(paul,certify,_)).

43 can(sit(negotiation, _, _), select(paul,inform,_)).

44 % run it as game(sit(negotiation,s0,[]),R).

45 game(Sit, Result):-

46 terminating(Sit, Result),

47 !.

48 game(Sit, Result):-

49 \+ terminating(Sit, _),

50 valid(Sit,Move),

51 effects(Sit,Move,NewSit),

52 game(NewSit, Result).

53

54 terminating(Sit, Sit):-

55 holds(Sit,last_move(select(_,X,_))),

56 member(X, [refuse,accept,retract,reject]),

57 Sit = sit(_, _, Moves),

58 writelist([->,Moves],nl).

59

60 valid(Game, Move):-

61 available(Game, Move),

62 legal(Game, Move),

63 can(Game, Move),

64 \+ cyclic(Game, Move).

65

66 cyclic(sit(_,_,Moves), Move):-

67 Move = select(paul,challenge,john),

68 sublist([select(john,justify,paul),select(paul,challenge,john),

69 select(john,justify,paul),select(paul,challenge,john)],

70 Moves).

71 cyclic(sit(_,_,Moves), Move):-

72 Move = select(john,authenticate,paul),

73 sublist([select(paul,challenge,john),select(john,justify,paul),

74 select(paul,challenge,john),select(john,justify,paul)],

75 Moves).

76 cyclic(sit(_,_,Moves), Move):-

77 Move = select(paul,challenge,john),

78 sublist([select(john,justify,paul),select(paul,certify,john),

79 select(paul,certify,john)],

80 Moves).

81 cyclic(sit(_,_,Moves), Move):-

82 Move = select(paul,challenge,john),

83 sublist([select(john,justify,paul),select(paul,certify,john),

84 select(john,notunderstood,paul),select(paul,certify,john),

85 select(john,authenticate,paul),select(paul,challenge,john),

86 select(john,justify,paul)],

87 Moves).

88 cyclic(sit(_,_,Moves), Move):-

89 Move = select(paul,challenge,john),

90 sublist([select(john,justify,paul),select(paul,inform,john),

91 select(john,notunderstood,paul),select(paul,inform,john),

92 select(john,authenticate,paul),select(paul,challenge,john),

93 select(john,justify,paul)],

94 Moves).

95 cyclic(sit(_,_,Moves), Move):-

96 Move = select(paul,challenge,john),

97 sublist([select(john,justify,paul),select(paul,inform,john),
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98 select(john,notunderstood,paul),select(paul,certify,john)],

99 Moves).

100 cyclic(sit(_,_,Moves), Move):-

101 Move = select(paul,challenge,john),

102 sublist([select(john,justify,paul),select(paul,certify,john),

103 select(john,notunderstood,paul),select(paul,inform,john)],

104 Moves).

105 cyclic(sit(_,_,Moves), Move):-

106 Move = select(paul,challenge,john),

107 sublist([select(john,justify,paul),select(paul,certify,john),

108 select(john,notunderstood,paul),select(paul,certify,john),

109 select(john,notunderstood,paul),select(paul,inform,john)],

110 Moves).

111 cyclic(sit(_,_,Moves), Move):-

112 Move = select(paul,certify,john),

113 sublist([select(john,notunderstood,paul),select(paul,certify,john),

114 select(john,notunderstood,paul),select(paul,certify,john)],

115 Moves).

116 cyclic(sit(_,_,Moves), Move):-

117 Move = select(paul,inform,john),

118 sublist([select(john,notunderstood,paul),select(paul,inform,john),

119 select(john,notunderstood,paul),select(paul,inform,john)],

120 Moves).

121 cyclic(sit(_,_,Moves), Move):-

122 Move = select(paul,challenge,john),

123 sublist([select(john,justify,paul),select(paul,inform,john),

124 select(john,authenticate,paul)],Moves).

125 cyclic(sit(_,_,Moves), Move):-

126 Move = select(paul,challenge,john),

127 sublist([select(john,justify,paul),select(paul,certify,john),

128 select(john,authenticate,paul)],Moves).

129 cyclic(sit(_,_,Moves), Move):-

130 Move = select(paul,certify,john),

131 sublist([select(john,notunderstood,paul),select(paul,inform,john),

132 select(john,notunderstood,paul)],Moves).

133 cyclic(sit(_,_,Moves), Move):-

134 Move = select(paul,inform,john),

135 sublist([select(john,notunderstood,paul),select(paul,inform,john),

136 select(john,notunderstood,paul)],Moves).

137

138 legal(sit(negotiation,Id,N), select(P1, request,P2)):-

139 holds(sit(negotiation,Id,N),role_of(P1,merchant)),

140 holds(sit(negotiation,Id,N),role_of(P2,customer)),

141 \+ holds(sit(negotiation,Id,N),last_move(_)).

142

143 legal(sit(negotiation,Id,N), select(P1,accept,P2)):-

144 holds(sit(negotiation,Id,N),role_of(P1,customer)),

145 holds(sit(negotiation,Id,N),last_move(select(P2,X,P1))),

146 member(X, [request,justify]),

147 holds(sit(negotiation,Id,N),role_of(P2,merchant)).

148 legal(sit(negotiation,Id,N), select(P1,refuse,P2)):-

149 holds(sit(negotiation,Id,N),role_of(P1,customer)),

150 holds(sit(negotiation,Id,N),last_move(select(P2,X,P1))),

151 member(X, [request,justify]),

152 holds(sit(negotiation,Id,N),role_of(P2,merchant)).

153 legal(sit(negotiation,Id,N), select(P1, challenge,P2)):-

154 holds(sit(negotiation,Id,N),role_of(P1,customer)),

155 holds(sit(negotiation,Id,N),last_move(select(P2,X,P1))),

156 holds(sit(negotiation,Id,N),role_of(P2,merchant)),

157 member(X, [request, justify]).

158 legal(sit(negotiation,Id,N), select(P1, retract,P2)):-
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159 holds(sit(negotiation,Id,N),role_of(P1,merchant)),

160 holds(sit(negotiation,Id,N),last_move(select(P2,challenge,P1))),

161 holds(sit(negotiation,Id,N),role_of(P2,customer)).

162 legal(sit(negotiation,Id,N), select(P1, authenticate,P2)):-

163 holds(sit(negotiation,Id,N),role_of(P1,merchant)),

164 holds(sit(negotiation,Id,N),last_move(select(P2,challenge,P1))),

165 holds(sit(negotiation,Id,N),role_of(P2,customer)).

166 legal(sit(negotiation,Id,N), select(P1, certify,P2)):-

167 holds(sit(negotiation,Id,N),role_of(P1,customer)),

168 holds(sit(negotiation,Id,N),last_move(select(P2,X,P1))),

169 member(X,[authenticate,notunderstood]),

170 holds(sit(negotiation,Id,N),role_of(P2,merchant)).

171 legal(sit(negotiation,Id,N), select(P1, inform,P2)):-

172 holds(sit(negotiation,Id,N),role_of(P1,customer)),

173 holds(sit(negotiation,Id,N),last_move(select(P2,X,P1))),

174 member(X,[authenticate,notunderstood]),

175 holds(sit(negotiation,Id,N),role_of(P2,merchant)).

176 legal(sit(negotiation,Id,N), select(P1, notunderstood,P2)):-

177 holds(sit(negotiation,Id,N),role_of(P1,merchant)),

178 holds(sit(negotiation,Id,N),last_move(select(P2,X,P1))),

179 member(X,[inform,certify]),

180 holds(sit(negotiation,Id,N),role_of(P2,customer)).

181 legal(sit(negotiation,Id,N), select(P1, reject,P2)):-

182 holds(sit(negotiation,Id,N),role_of(P1,merchant)),

183 holds(sit(negotiation,Id,N),last_move(select(P2,X,P1))),

184 member(X,[inform,certify]),

185 holds(sit(negotiation,Id,N),role_of(P2,customer)).

186 legal(sit(negotiation,Id,N), select(P1, justify,P2)):-

187 holds(sit(negotiation,Id,N),role_of(P1,merchant)),

188 holds(sit(negotiation,Id,N),last_move(select(P2,X,P1))),

189 member(X,[challenge,inform,certify]),

190 holds(sit(negotiation,Id,N),role_of(P2,customer)).

191

192 sublist([H | T], [H | U]):-

193 initialsublist(T, U).

194 sublist([H | T], [A | U]):-

195 sublist([H | T], U).

196 sublist([], []):-

197 false.

198

199 initialsublist([], _).

200 initialsublist([H | T], [H | U]):-

201 initialsublist(T, U).

202

203 writelist([],nl):-nl,!.

204 writelist([],sl):-!.

205 writelist([H|B],L):-

206 write(H),

207 write(’ ’),!,

208 writelist(B,L).

Listing F.1: Situation Calculus Representation of the Order Protocol
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Appendix G

Prolog Code in Event

Calculus for a protocol with

loops

1 :- use_module(library(lists)).

2 :- use_module(library(system)).

3

4 holds(sit(N,Id,Tn,Nn), P):-

5 0 =< Tn,

6 initially(sit(N,Id,Ti,Ni), P),

7 \+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

8 holds(sit(N,Id,Tn,Nn), P):-

9 happens(E, Ti, Ni, Nn),

10 Ti < Tn,

11 initiates(E, P, sit(N,Id,Ti,Ni)),

12 \+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

13

14 clipped(P, sit(N,Id,Ti,_), sit(N,Id,Tn,Nn)):-

15 happens(Estar, Tj, Nj, Nn),

16 Ti < Tj,

17 Tj < Tn,

18 terminates(Estar, P, sit(N,Id,Tj,Nj)).

19

20 happens(at(En,Tn), Tn, [at(En,Tn)|Sn], [at(En, Tn)|Sn]).

21 happens(at(Ei,Ti), Ti, [at(Ei,Ti)|Si], [at(_, _)|Sn]):-

22 happens(at(Ei, Ti), Ti, [at(Ei,Ti)|Si], Sn).

23 happens(E, Tn, [at(En, Tn)|Sn], [at(En, Tn)|Sn]):-

24 member(E, En).

25 happens(E, Ti, [at(Ei,Ti)|Si], [at(_, _)|Sn]):-

26 happens(E, Ti, [at(Ei,Ti)|Si], Sn).

27

28 effects(sit(Name,Id,T,N),at(Es,T), sit(Name,Id,NewT,[at(Es,T)|N])):-

29 T >= 0,

30 NewT is T + 1.

31

32 game(Sit, Result):-

33 terminating(Sit, Result),

34 !.

35 game(Sit, Result):-

36 \+ terminating(Sit, _),
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37 Sit = sit(_,_,_,Nar),

38 assume(valid(Sit, Move), Sit, Move, Episode),

39 effects(Sit, Episode, NewSit),

40 game(NewSit, Result).

41

42 assume(Valid, sit(N,Id,T,Ns), E, at(Es,T)):-

43 findall(E, Valid, All),

44 member(Es, All),

45 acceptable(sit(N,Id,T,Ns),at(Es,T)).

46

47 acceptable(Sit,at(Es,T)):-

48 \+ cyclic(Sit,at(Es,T)).

49

50 cyclic_pattern([at(select(john,justify,paul),_),

51 at(select(paul,challenge,john),_),

52 at(select(john,justify,paul),_),

53 at(select(paul,challenge,john),_)],

54 select(paul,challenge,john)).

55 cyclic_pattern([at(select(paul,challenge,john),_),

56 at(select(john,justify,paul),_),

57 at(select(paul,challenge,john),_),

58 at(select(john,justify,paul),_)],

59 select(john,authenticate,paul)).

60 cyclic_pattern([at(select(john,justify,paul),_),

61 at(select(paul,certify,john),_),

62 at(select(paul,certify,john),_)],

63 select(paul,challenge,john)).

64 cyclic_pattern([at(select(john,justify,paul),_),

65 at(select(paul,certify,john),_),

66 at(select(john,notunderstood,paul),_),

67 at(select(paul,certify,john),_),

68 at(select(john,authenticate,paul),_),

69 at(select(paul,challenge,john),_),

70 at(select(john,justify,paul),_)],

71 select(paul,challenge,john)).

72 cyclic_pattern([at(select(john,justify,paul),_),

73 at(select(paul,inform,john),_),

74 at(select(john,notunderstood,paul),_),

75 at(select(paul,inform,john),_),

76 at(select(john,authenticate,paul),_),

77 at(select(paul,challenge,john),_),

78 at(select(john,justify,paul),_)],

79 select(paul,challenge,john)).

80 cyclic_pattern([at(select(john,justify,paul),_),

81 at(select(paul,inform,john),_),

82 at(select(john,notunderstood,paul),_),

83 at(select(paul,certify,john),_)],

84 select(paul,challenge,john)).

85 cyclic_pattern([at(select(john,justify,paul),_),

86 at(select(paul,certify,john),_),

87 at(select(john,notunderstood,paul),_),

88 at(select(paul,inform,john),_)],

89 select(paul,challenge,john)).

90 cyclic_pattern([at(select(john,justify,paul),_),

91 at(select(paul,certify,john),_),

92 at(select(john,notunderstood,paul),_),

93 at(select(paul,certify,john),_),

94 at(select(john,notunderstood,paul),_),

95 at(select(paul,inform,john),_)],

96 select(paul,challenge,john)).

97
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98 cyclic_pattern([at(select(john,notunderstood,paul),_),

99 at(select(paul,certify,john),_),

100 at(select(john,notunderstood,paul),_),

101 at(select(paul,certify,john),_)],

102 select(paul,certify,john)).

103 cyclic_pattern([at(select(john,notunderstood,paul),_),

104 at(select(paul,inform,john),_),

105 at(select(john,notunderstood,paul),_),

106 at(select(paul,inform,john),_)],

107 select(paul,inform,john)).

108 cyclic_pattern([at(select(john,justify,paul),_),

109 at(select(paul,inform,john),_),

110 at(select(john,authenticate,paul),_)],

111 select(paul,challenge,john)).

112 cyclic_pattern([at(select(john,justify,paul),_),

113 at(select(paul,certify,john),_),

114 at(select(john,authenticate,paul),_)],

115 select(paul,challenge,john)).

116 cyclic_pattern([at(select(john,notunderstood,paul),_),

117 at(select(paul,inform,john),_),

118 at(select(john,notunderstood,paul),_)],

119 select(paul,certify,john)).

120 cyclic_pattern([at(select(john,notunderstood,paul),_),

121 at(select(paul,inform,john),_),

122 at(select(john,notunderstood,paul),_)],

123 select(paul,inform,john)).

124

125 cyclic(sit(_,_,_,Ns),at(Es,T)):-

126 cyclic_pattern(CyclicPattern,Es),

127 sublist(CyclicPattern, Ns).

128

129 valid(sit(N,Id,T,Es), M):-

130 available(sit(N,Id,T,Es), M),

131 legal(sit(N,Id,T,Es), M),

132 can(sit(N,Id,T,Es), M).

133

134 initially(sit(negotiation,s0,0,[]), role_of(john, merchant)).

135 initially(sit(negotiation,s0,0,[]), role_of(paul, customer)).

136

137 terminating(sit(negotiation,Id,T,N), sit(negotiation, Id, T, N)):-

138 holds(sit(negotiation,Id,T,N), last_moves([select(P1,X,_)])),

139 holds(sit(negotiation,Id,T,N), role_of(P1, merchant)),

140 member(X, [retract,reject]),

141 writelist([->,N],nl).

142 terminating(sit(negotiation,Id,T,N), sit(negotiation, Id, T, N)):-

143 holds(sit(negotiation,Id,T,N), last_moves([select(P1,X,_)])),

144 holds(sit(negotiation,Id,T,N), role_of(P1, customer)),

145 member(X, [accept,refuse]),

146 writelist([->,N],nl).

147

148 initiates(at(Es, T), last_moves([Es]), sit(negotiation,_,T,_)).

149 terminates(at(_, T), last_moves(_), sit(negotiation,_,T,_)).

150

151 available(sit(negotiation,_,_,_),select(_,request,_)).

152 available(sit(negotiation,_,_,_),select(_,accept,_)).

153 available(sit(negotiation,_,_,_),select(_,refuse,_)).

154 available(sit(negotiation,_,_,_),select(_,justify,_)).

155 available(sit(negotiation,_,_,_),select(_,challenge,_)).

156 available(sit(negotiation,_,_,_),select(_,retract,_)).

157 available(sit(negotiation,_,_,_),select(_,authenticate,_)).

158 available(sit(negotiation,_,_,_),select(_,inform,_)).
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159 available(sit(negotiation,_,_,_),select(_,certify,_)).

160 available(sit(negotiation,_,_,_),select(_,notunderstood,_)).

161 available(sit(negotiation,_,_,_),select(_,reject,_)).

162

163 can(sit(negotiation,_,_,_), select(john,request,_)).

164 can(sit(negotiation,_,_,_), select(john,justify,_)).

165 can(sit(negotiation,_,_,_), select(john,retract,_)).

166 can(sit(negotiation,_,_,_), select(john,authenticate,_)).

167 can(sit(negotiation,_,_,_), select(john,notunderstood,_)).

168 can(sit(negotiation,_,_,_), select(john,reject,_)).

169 can(sit(negotiation,_,_,_), select(paul,challenge,_)).

170 can(sit(negotiation,_,_,_), select(paul,accept,_)).

171 can(sit(negotiation,_,_,_), select(paul,refuse,_)).

172 can(sit(negotiation,_,_,_), select(paul,inform,_)).

173 can(sit(negotiation,_,_,_), select(paul,certify,_)).

174

175 legal(sit(negotiation,Id,T,N), select(P1, request,P2)):-

176 holds(sit(negotiation,Id,T,N),role_of(P1,merchant)),

177 holds(sit(negotiation,Id,T,N),role_of(P2,customer)),

178 \+ holds(sit(negotiation,Id,T,N),last_moves([_])).

179 legal(sit(negotiation,Id,T,N), select(P1, accept,P2)):-

180 holds(sit(negotiation,Id,T,N),role_of(P1,customer)),

181 holds(sit(negotiation,Id,T,N),last_moves([select(P2,X,P1)])),

182 holds(sit(negotiation,Id,T,N), role_of(P2,merchant)),

183 member(X, [request,justify]).

184 legal(sit(negotiation,Id,T,N), select(P1, refuse,P2)):-

185 holds(sit(negotiation,Id,T,N),role_of(P1,customer)),

186 holds(sit(negotiation,Id,T,N),last_moves([select(P2,X,P1)])),

187 holds(sit(negotiation,Id,T,N), role_of(P2,merchant)),

188 member(X, [request,justify]).

189 legal(sit(negotiation,Id,T,N), select(P1, justify,P2)):-

190 holds(sit(negotiation,Id,T,N),role_of(P1,merchant)),

191 holds(sit(negotiation,Id,T,N),last_moves([select(P2,X,P1)])),

192 holds(sit(negotiation,Id,T,N), role_of(P2,customer)),

193 member(X, [inform,certify,challenge]).

194 legal(sit(negotiation,Id,T,N), select(P1, challenge,P2)):-

195 holds(sit(negotiation,Id,T,N),role_of(P1,customer)),

196 holds(sit(negotiation,Id,T,N),last_moves([select(P2,X,P1)])),

197 holds(sit(negotiation,Id,T,N), role_of(P2,merchant)),

198 member(X, [request,justify]).

199 legal(sit(negotiation,Id,T,N), select(P1, retract,P2)):-

200 holds(sit(negotiation,Id,T,N),role_of(P1,merchant)),

201 holds(sit(negotiation,Id,T,N),last_moves([select(P2,X,P1)])),

202 holds(sit(negotiation,Id,T,N), role_of(P2,customer)),

203 X = challenge.

204 legal(sit(negotiation,Id,T,N), select(P1, authenticate,P2)):-

205 holds(sit(negotiation,Id,T,N),role_of(P1,merchant)),

206 holds(sit(negotiation,Id,T,N),last_moves([select(P2,X,P1)])),

207 holds(sit(negotiation,Id,T,N), role_of(P2,customer)),

208 X = challenge.

209 legal(sit(negotiation,Id,T,N), select(P1, certify,P2)):-

210 holds(sit(negotiation,Id,T,N),role_of(P1,customer)),

211 holds(sit(negotiation,Id,T,N),last_moves([select(P2,X,P1)])),

212 holds(sit(negotiation,Id,T,N), role_of(P2,merchant)),

213 member(X, [authenticate, notunderstood]).

214 legal(sit(negotiation,Id,T,N), select(P1, inform,P2)):-

215 holds(sit(negotiation,Id,T,N),role_of(P1,customer)),

216 holds(sit(negotiation,Id,T,N),last_moves([select(P2,X,P1)])),

217 holds(sit(negotiation,Id,T,N), role_of(P2,merchant)),

218 member(X, [authenticate, notunderstood]).

219

204



220 legal(sit(negotiation,Id,T,N), select(P1, notunderstood,P2)):-

221 holds(sit(negotiation,Id,T,N),role_of(P1,merchant)),

222 holds(sit(negotiation,Id,T,N),last_moves([select(P2,X,P1)])),

223 holds(sit(negotiation,Id,T,N), role_of(P2,customer)),

224 member(X, [inform, certify]).

225 legal(sit(negotiation,Id,T,N), select(P1, reject,P2)):-

226 holds(sit(negotiation,Id,T,N),role_of(P1,merchant)),

227 holds(sit(negotiation,Id,T,N),last_moves([select(P2,X,P1)])),

228 holds(sit(negotiation,Id,T,N), role_of(P2,customer)),

229 member(X, [inform, certify]).

230

231 writelist([],nl):-nl,!.

232 writelist([],sl):-!.

233 writelist([H|B],L):-

234 write(H),

235 write(’ ’),!,

236 writelist(B,L).

237

238 sublist([H | T], [A |U]):-

239 sublist([H | T],U).

240 sublist([], []):-

241 false.

242 sublist([H | T], [H | U]):-

243 initialsublist(T, U).

244

245 initialsublist([], _).

246 initialsublist([H | T], [H | U]):-

247 initialsublist(T, U).

248

249 check_list([H | T], [H1 | T1]):-

250 check_list_one(H, H1),

251 check_list(T, T1).

252 check_list([H | T], [H1 | T1]):-

253 check_list([H | T], T1),

254 !.

255 check_list([],_):- !.

256

257 check_list_one(A, B ):-

258 A = B.

Listing G.1: Loops Protocol in Situation Calculus
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