Implementation of second-life batteries as energy storage systems enhancing the interoperability and flexibility of the energy infrastructure in tertiary buildings

Abstract

The main focus of this project is to evaluate the implementation of second-life batteries for a building stock enabling the energy flexibility schemes like Demand Response (DR). This project will focus particularly on how the building stock and its energy infrastructure (energy storage systems, legacy-assets, communication devices and grid architecture, among others) can participate as innovative energy solutions of the next generation of smart-grids, acting as virtual power plants (VPP) in order to deploy the distributed generation (DG) concept in the actual energy field and paving the way to unlock the demand response (DR) market in the distribution energy network. In addition, the implementation of these technologies will led to plan different business models and the scalability of them in the tertiary building sector. Battery energy storage systems (BESSs) are already being deployed for several stationary applications in a techno-economical feasible way. This project focuses in the study to obtain potential revenues from BESSs built from EVs lithium-ion batteries with varying states of health (SoH). For this analysis, a stationary BESS sizing model is done, using the parameters of a 14 kWh new battery, but also doing a comparison with parameters if the same battery would be 11.2 kWh second-life battery. The comprehensive sizing model consists of several detailed sub-models, considering battery specifications, aging and an operational strategy plan, which allow a technical assessment through a determined time frame. Therefore, battery depreciation and energy losses are considered in this techno-economic analysis. Potential economical feasible applications of new and second-life batteries, such the integration of a Building Integrated Photovoltaics (BIPV), self-consumption schemes, feed-in-tariff schemes and frequency regulation as well as their combined operation are compared. The research includes different electricity price scenarios mostly from the current Spanish energy market. The operation and integration of ICT-IoT technology upgrades is found to have the highest economic viability for this specific case study. A detailed study for this project will enhance the relevant importance of these topics in the energy field and how it will be a disruptive solution for the initial problem statement. A general context is given in order to introduce the main and specific objectives thus to trace an adequate way to follow and achieve them. The development of this master thesis will be coupled with the Demand Response Integration technologies (DRIvE) [10] H2020 EU funded project, currently on-going, considering some of the energy consumption data and initial parameters from the selected case study at COMSA Corporación office building in Barcelona, Spain

    Similar works