842 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Improved control strategies for the environment within cell culture bioreactors

    Get PDF
    This paper describes the development of improved control strategies for the standard environmental conditions in a fed-batch bioreactor used for monoclonal antibody cell culture. The consequences of relying on fixed parameter PID based controllers are considered and poor performance is demonstrated as a consequence of non-linearity and loop interactions. The benefits from adopting a more sophisticated control strategy are considered. Model Predictive Control (MPC) relies on a process model that can be identified from small system perturbations. It considers the predicted longer-term response and consequently can deliver improved control and satisfy user defined constraints. Results from experimental trials demonstrate the capability of MPC and the merits are discussed with regards to industrial application

    Bioprocess Monitoring and Control

    Get PDF
    Process monitoring and control are fundamental to all processes; this holds especially for bioprocesses, due to their complex nature. Usually, bioprocesses deal with living cells, which have their own regulatory systems. It helps to adjust the cell to its environmental condition. This must not be the optimal condition that the cell needs to produce whatever is desired. Therefore, a close monitoring of the cell and its environment is essential to provide optimal conditions for production. Without measurement, no information of the current process state is obtained. In this book, methods and techniques are provided for the monitoring and control of bioprocesses. From new developments for sensors, the application of spectroscopy and modelling approaches, the estimation and observer implementation for ethanol production and the development and scale-up of various bioprocesses and their closed loop control information are presented. The processes discussed here are very diverse. The major applications are cultivation processes, where microorganisms were grown, but also an incubation process of bird’s eggs, as well as an indoor climate control for humans, will be discussed. Altogether, in 12 chapters, nine original research papers and three reviews are presented

    Novel strategies for control of fermentation processes

    Get PDF

    Development of monitoring and control systems for biotechnological processes

    Get PDF
    The field of biotechnology represents an important research area that has gained increasing success in recent times. Characterized by the involvement of biological organisms in manufacturing processes, its areas of application are broad and include the pharmaceuticals, agri-food, energy, and even waste treatment. The implication of living microorganisms represents the common element in all bioprocesses. Cell cultivations is undoubtedly the key step that requires maintaining environmental conditions in precise and defined ranges, having a significant impact on the process yield and thus on the desired product quality. The apparatus in which this process occurs is the bioreactor. Unfortunately, monitoring and controlling these processes can be a challenging task because of the complexity of the cell growth phenomenon and the limited number of variables can be monitored in real-time. The thesis presented here focuses on the monitoring and control of biotechnological processes, more specifically in the production of bioethanol by fermentation of sugars using yeasts. The study conducted addresses several issues related to the monitoring and control of the bioreactor, in which the fermentation takes place. First, the topic concerning the lack of proper sensors capable of providing online measurements of key variables (biomass, substrate, product) is investigated. For this purpose, nonlinear estimation techniques are analyzed to reconstruct unmeasurable states. In particular, the geometric observer approach is applied to select the best estimation structure and then a comparison with the extended Kalman filter is reported. Both estimators proposed demonstrate good estimation capabilities as input model parameters vary. Guaranteeing the achievement of the desired ethanol composition is the main goal of bioreactor control. To this end, different control strategies, evaluated for three different scenarios, are analzyed. The results show that the MIMO system, together with an estimator for ethanol composition, ensure the compliance with product quality. After analyzing these difficulties through numeric simulations, this research work shifts to testing a specific biotechnological process such as manufacturing bioethanol from brewery’s spent grain (BSG) as renewable waste biomass. Both acid pre-treatment, which is necessary to release sugars, and fermentation are optimized. Results show that a glucose yield of 18.12 per 100 g of dried biomass is obtained when the pre-treatment step is performed under optimized conditions (0.37 M H2SO4, 10% S-L ratio). Regarding the fermentation, T=25°C, pH=4.5, and inoculum volume equal to 12.25% v/v are selected as the best condition, at which an ethanol yield of 82.67% evaluated with respect to theoretical one is obtained. As a final step, the use of Raman spectroscopy combined with chemometric techniques such as Partial Least Square (PLS) analysis is evaluated to develop an online sensor for fermentation process monitoring. The results show that the biomass type involved significantly affects the acquired spectra, making them noisy and difficult to interpret. This represents a nontrivial limitation of the applied methodology, for which more experimental data and more robust statistical techniques could be helpful

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems
    • …
    corecore