
 
 

 

 

 

 

 
Ph.D. DEGREE IN 

Industrial Engineering 

Cycle XXXV 

 
 
 

TITLE OF THE Ph.D. THESIS 

Development of monitoring and control systems for biotechnological 

processes  

Scientific Disciplinary Sector(s) 

ING-IND/26 

 
 

Ph.D. Student: Silvia Lisci 
 

Supervisor Prof. Ing. Massimiliano Grosso 
 

Co-Supervisor Prof.ssa Ing. Stefania Tronci 
 
 

 
  Final exam. Academic Year 2021/2022  

Thesis defence: April 2023 Session 



 
 

   
 

 

  

 

 

 

 

 

“Silvia Lisci gratefully acknowledges the Sardinian Regional Government for the financial 

support of her/his PhD scholarship (P.O.R. Sardegna F.S.E. - Operational Programme of the 

Autonomous Region of Sardinia, European Social Fund 2014-2020 - Axis III Education and 

training, Thematic goal 10, Investment Priority 10ii), Specific goal 10.5”. 

 

   



 
 

i 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Questa Tesi può essere utilizzata, nei limiti stabiliti dalla normativa vigente sul Diritto d’Autore 

(Legge 22 aprile 1941 n. 633 e succ. modificazioni e articoli da 2575 a 2583 del Codice civile) 

ed esclusivamente per scopi didattici e di ricerca; è vietato qualsiasi utilizzo per fini 

commerciali. In ogni caso tutti gli utilizzi devono riportare la corretta citazione delle fonti. La 

traduzione, l'adattamento totale e parziale, sono riservati per tutti i Paesi. I documenti depositati 

sono sottoposti alla legislazione italiana in vigore nel rispetto del Diritto di Autore, da 

qualunque luogo essi siano fruiti. 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I would like to express my deep gratitude to Prof. Massimiliano Errico for hosting me during 

my time abroad at the University of Southern Denmark (SDU), for his generous help and 

constant guidance.   



iii 
 

Contents 

 

Abstract ...................................................................................................................................... 1 

Chapter 1: Introduction .............................................................................................................. 3 

1.1 Motivations....................................................................................................................... 4 

1.2 Thesis outline ................................................................................................................... 6 

1.3 Participation in conferences and publications in Journals ............................................... 8 

Bibliography ......................................................................................................................... 10 

Chapter 2: The issue of bioprocess monitoring ....................................................................... 14 

2.1 Overview of standard variables monitored in bioprocesses ........................................... 16 

2.1.1 Physical variables .................................................................................................... 17 

2.1.2 Chemical variables .................................................................................................. 17 

2.1.3 Biological variables ................................................................................................. 18 

2.2 Overview of state estimate techniques ........................................................................... 18 

2.2.1 Luenberger-based observers .................................................................................... 21 

2.2.2 Finite-dimensional system observers....................................................................... 22 

2.2.3 Bayesan estimators .................................................................................................. 22 

2.2.4 Disturbance and fault detection observers ............................................................... 22 

2.2.5 Artificial intelligence-based observers .................................................................... 23 

2.2.6 Hybrid observers...................................................................................................... 23 

2.3 A geometric observer-assisted approach to tailor state estimation in a bioreactor for 

ethanol production ................................................................................................................ 24 

2.3.1 Process model .......................................................................................................... 24 

2.3.2 State estimation problem ......................................................................................... 31 

2.3.3 Results ..................................................................................................................... 36 

2.4 Conclusions .................................................................................................................... 48 

Bibliography ......................................................................................................................... 49 



iv 
 

Chapter 3: Control strategies for biotechnological processes .................................................. 59 

3.1 General aspects of bioprocess control problem .............................................................. 61 

3.2 Overview of bioprocess control techniques ................................................................... 61 

3.3 Different control strategies for a yeast fermentation bioreactor .................................... 66 

3.3.1 Bioreactor model ..................................................................................................... 67 

3.3.2 Control system design ............................................................................................. 68 

3.3.3 State Estimation ....................................................................................................... 71 

3.3.4 Performance Indexes ............................................................................................... 72 

3.3.5 Results ..................................................................................................................... 73 

3.4 Conclusions .................................................................................................................... 81 

Bibliography ......................................................................................................................... 82 

Chapter 4: A typical biotechnological process: the valorization and exploitation of waste 

biomass to produce bioethanol................................................................................................. 85 

4.1 Overview of general characteristics/properties and possible applications of BSG ........ 88 

4.1.1 Chemical composition of BSG ................................................................................ 90 

4.1.2 Potential applications of BSG.................................................................................. 90 

4.2 Second generation ethanol production from BSG ......................................................... 95 

4.2.1 Materials and Methods ............................................................................................ 95 

4.2.2 Design of experiments ............................................................................................. 97 

4.2.3 Results ..................................................................................................................... 98 

4.2.4 Conclusions ........................................................................................................... 112 

Bibliography ....................................................................................................................... 113 

Chapter 5: Development of a Raman spectroscopy-based soft-sensor for monitoring a 

fermentation process .............................................................................................................. 124 

5.1 Overview of spectroscopic sensors .............................................................................. 126 

5.1.1 UV/Vis Spectroscopy ................................................................................................ 126 

5.1.2 IR Spectroscopy ..................................................................................................... 127 

5.1.3 Fluorescence Spectroscopy.................................................................................... 127 



v 
 

5.1.4 Raman Spectroscopy ............................................................................................. 128 

5.2 Materials and Methods ................................................................................................. 129 

5.2.1 Chemicals and Reagents ........................................................................................ 129 

5.2.2 Fermentation .......................................................................................................... 129 

5.2.3 Raman spectra ........................................................................................................ 131 

5.2.4 Design of experiments (DOE) for ideal fermentation solutions ............................ 132 

5.2.5 Statistical analysis.................................................................................................. 135 

5.3 Results .......................................................................................................................... 140 

5.3.1 Ideal fermentation solutions .................................................................................. 141 

5.3.2 Not-ideal fermentation solutions ........................................................................... 155 

5.4 Conclusions .................................................................................................................. 166 

Bibliography ....................................................................................................................... 168 

Chapter 6: Conclusions .......................................................................................................... 173 

Acknowledgements ................................................................................................................ 176 

 

 
 



 
 

1 
 

Abstract 
 

The field of biotechnology represents an important research area that has gained increasing 

success in recent times. Characterized by the involvement of biological organisms in 

manufacturing processes, its areas of application are broad and include the pharmaceuticals, 

agri-food, energy, and even waste treatment. The implication of living microorganisms 

represents the common element in all bioprocesses. Cell cultivations is undoubtedly the key 

step that requires maintaining environmental conditions in precise and defined ranges, having 

a significant impact on the process yield and thus on the desired product quality.  The apparatus 

in which this process occurs is the bioreactor. Unfortunately, monitoring and controlling these 

processes can be a challenging task because of the complexity of the cell growth phenomenon 

and the limited number of variables can be monitored in real-time.  

The thesis presented here focuses on the monitoring and control of biotechnological processes, 

more specifically in the production of bioethanol by fermentation of sugars using yeasts. The 

study conducted addresses several issues related to the monitoring and control of the bioreactor, 

in which the fermentation takes place. First, the topic concerning the lack of proper sensors 

capable of providing online measurements of key variables (biomass, substrate, product) is 

investigated. For this purpose, nonlinear estimation techniques are analyzed to reconstruct 

unmeasurable states. In particular, the geometric observer approach is applied to select the best 

estimation structure and then a comparison with the extended Kalman filter is reported. Both 

estimators proposed demonstrate good estimation capabilities as input model parameters vary. 

Guaranteeing the achievement of the desired ethanol composition is the main goal of bioreactor 

control. To this end, different control strategies, evaluated for three different scenarios, are 

analzyed. The results show that the MIMO system, together with an estimator for ethanol 

composition, ensure the compliance with product quality.  

After analyzing these difficulties through numeric simulations, this research work shifts to 

testing a specific biotechnological process such as manufacturing bioethanol from brewery’s 

spent grain (BSG) as renewable waste biomass. Both acid pre-treatment, which is necessary to 

release sugars, and fermentation are optimized. Results show that a glucose yield of 18.12 per 

100 g of dried biomass is obtained when the pre-treatment step is performed under optimized 

conditions (0.37 M H2SO4, 10% S-L ratio). Regarding the fermentation, 𝑇 = 25°𝐶, 𝑝𝐻 = 4.5, 

and inoculum volume equal to 12.25% 𝑣/𝑣 are selected as the best condition, at which an 
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ethanol yield of 82.67% evaluated with respect to theoretical one is obtained. As a final step, 

the use of Raman spectroscopy combined with chemometric techniques such as Partial Least 

Square (PLS) analysis is evaluated to develop an online sensor for fermentation process 

monitoring. The results show that the biomass type involved significantly affects the acquired 

spectra, making them noisy and difficult to interpret. This represents a nontrivial limitation of 

the applied methodology, for which more experimental data and more robust statistical 

techniques could be helpful.  
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Chapter 1: Introduction 

This chapter provides the motivations for the thesis work here presented. In addition, the 

outline of the chapters is also shown, with a brief description for each of them. Conference 

participations and journal papers written during the Ph.D. program are listed at the end.   
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 1.1 Motivations 
  

The term biotechnology refers to the scientific discipline that has been particularly successful 

in recent decades as the main area of technological research and development, in which 

microbiology, biochemical, and molecular biology play a key role. As reported by Buchholz 

(2007), biotechnology (BT) can be defined as the “application of biological organisms or 

processes to the manufacturing industry”. Biotechnological processes, also known as 

bioprocesses, have gained so much importance that they have become essential to any economy 

that aims to maintain a competitive status/condition in future markets. The areas of application 

are several and range from pharmaceuticals to agri-food, food processing, energy, to 

wastewater and biowaste treatment (Lourenço et al., 2012). Consequently, a substantial amount 

of different products and services such as antibiotics, therapeutic proteins, vaccines, value-

added foods, food additives, vitamins, amino acids, and agricultural products, as well as fuels 

and industrial chemicals can be manufactured by bioprocesses (Gomes et al., 2019; Lòpez et 

al., 2020). Obviously, each individual process can be considered as a system by itself, and such 

as differs from the others even in terms of the goals and price of the final product. However, 

there is one common element to all bioprocesses, which is the involvement of microorganisms. 

As stated by Lourenço et al. (2012), the cultivation of microorganisms represents a crucial 

phase of the bioprocess that must necessarily be carried out under controlled conditions, since 

it is the result of a complex combination of physical (equilibrium and transport), chemical, and 

biological phenomena. The bioproduction platform includes several unit operations between 

upstream and downstream (Rathore et al., 2021), but the most important one is definitely the 

bioreactor, or fermenter, where cell cultivation takes place (Gomes et al., 2019). Since the yield 

of bioprocesses depends essentially on the performance of the cells, it is by controlling the 

bioreactor that the desired process profitability can be achieved. The control objective/goal/aim 

is generally the achievement of consistent production (yield) at a defined quality of the desired 

product (Gomes et al., 2019). Therefore, monitoring and maintaining, but also optimizing and 

efficiently controlling the bioprocess are fundamental and essential steps. This can be achieved 

by having a good control system that allows for automatic and frequent control of the 

bioprocess at its optimum point, in terms of efficiency, productivity, and reproducibility. All 

this would have positive impacts economically with significant cost reductions, but also in 

terms of maintaining industrial competitiveness (Alford, 2006; Gargalo et al., 2020, 2022; 

Lourenço et al., 2012).  Unfortunately, the bioreactor also represents the most difficult unit 

operation to monitor and control because of the complex phenomena that occur during cell 
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growth. In particular, features that make monitoring and controlling bioprocessing, such as 

fermentation, challenging are the batch or fed-batch nature of various commercial processes, 

their being multiphase systems characterized by nonlinearity, the high interaction and 

correlation among process variables, as well as the nonstationary nature of the process  

(Gargalo et al., 2020; Stanke & Hitzmann, 2012; Veloso & Ferreira, 2017). Real-time 

monitoring of unit operations such the bioreactor is an essential element for the purpose of 

control and achievement of those objectives mentioned above. Indeed, it provides information 

regarding the bioprocess and its evolution that is useful for failure identification, and thus for 

possible corrective control actions. In this scenario, Process Analytical Technology (PAT) can 

help in the real-time understanding of the investigated bioprocess. It is defined as a system or 

tool for the design, analysis and control of production through measurements of quality and 

performance attributes aimed at ensuring the quality of the final product (Wechselberger et al., 

2010). However, the main problem when considering bioreactors concerns the limited number 

of variables that can be measured online. Generally, only process variables, also known as 

engineering data, such as temperature, pressure, stirring speed, dissolved oxygen and so on, 

can be monitored in real-time (Lourenço et al., 2012; Schügerl, 2001). Regarding chemical 

components such as substrate, products or intermediates, which are usually monitored off-line 

with well-established but also time-consuming techniques such as HPLC, it is not always 

possible to get their measurement online due to the lack of adequate sensors. For this reason, 

offline monitoring is still performed. Samples are regularly taken from the bioreactor medium, 

and then analyzed. Obviously, offline measurements have unquestionable reliability. However, 

it is the time required to perform them that makes them unsuitable for process automation 

purposes (Gomes et al., 2019). Several efforts have been made in recent years to improve 

strategies for real-time monitoring bioprocesses by developing optical sensor, chemosensors, 

and biosensors (Gargalo et al., 2022; Goker et al., 2020; Gomes et al., 2019; Ulber & Sell, 

2007). Despite the progress in the field of sensor technology, some online sensors for 

monitoring bioprocesses still have characteristics such as high price, frequent maintenance 

needs, and single-property analysis capabilities that limit their manufacturing-scale 

application. A possible and promising solution to overcome this problem is the design of tools 

known as observers or estimators in order to estimate state variables describing the internal 

state of the process, which is difficult to access, using the few available measurements. These 

observers are known also as software sensors or soft-sensors and represent advanced online 

process monitoring strategies. Although this concept was introduced in the 1990s, it is still a 

popular topic in both academia and industry, in fact several reviews and papers can be found 
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in the literature (Cabaneros Lopez et al., 2019; Chéruy, 1997; Gargalo et al., 2022; Gustavsson, 

2018; Kadlec et al., 2009; Kadlec & Gabrys, 2009; Luttmann et al., 2012; Randek & 

Mandenius, 2018; Veloso & Ferreira, 2017). The process parameters or variables that are thus 

estimated can consequently be used to monitor the process online or even be integrated into 

control loops (Ajbar & Ali, 2017; Arndt & Hitzmann, 2004; Gargalo et al., 2022; Petre et al., 

2021). As reported by Lourenço et al. (2012), the features that an ideal bioprocess online 

monitoring sensor must exhibit are several, but in particular it should be fast, sensitive, robust, 

and non-destructive. In this scenario, spectroscopy has attracted considerable interest in the 

area of bioprocess monitoring and control (Beutel & Henkel, 2011; Claßen et al., 2017; 

Lourenço et al., 2012). Several papers have been published in recent years concerning the 

potential applications of spectroscopic techniques such as UV/Vis, Near Infrared (NIR), Mid 

Infrared (NIR), Fluorescence, and Raman spectroscopy in the context of bioprocesses (Iversen 

et al., 2014; Ödman et al., 2009; Roychoudhury et al., 2007; Sarraguça et al., 2009; Schenk et 

al., 2007). The combination of large data sets collected in the form of spectra through these 

spectroscopic methods, with multivariate data analysis techniques (PCA, PLS, etc.) and other 

mathematical tools, i.e., chemometrics (Rathore et al., 2011), allow essential information to be 

extracted for the purpose of process understanding and its monitoring and control. Raman 

spectroscopy due to significant characteristics such as flexibility to the sample type, no sample 

preparation, good resolution, and no sensitivity to water presence, has proven to be a valuable 

tool for obtaining information about the compounds present in the bioreactor medium, and 

consequently for the development of quantitative analysis. Although encouraging and 

satisfactory results have been obtained in the monitoring of microbial cultivations as reported 

by several works in the literature, its application in this research area is still limited (Ávila et 

al., 2012; Hirsch et al., 2019; Picard et al., 2007; Schalk et al., 2017).  

 

1.2 Thesis outline 

The thesis presented here focused on the problem of monitoring and control of biotechnological 

processes. The manufacturing of bioethanol by fermentation of sugars carried out by was 

chosen as case study. Different issues related to the monitoring and control of the bioreactor, 

in which this process takes place, were addressed and investigated during the PhD programme. 

Particularly, the problem related to the lack of proper sensors to measure key process variables 

was analzyed and the development of a model-based soft-sensor for estimate the unmeasured 
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states was proposed as a possible solution. Since the quality of the final product is an essential 

parameter to control, different control strategies were proposed in order to ensure the 

achievement of the desired ethanol composition. After exploring these challenges theoretically 

by means of simulations, the focus shifted to a typical biotechnological process such as the 

process of bioethanol production from waste biomass, which was conducted experimentally 

and optimization of both acid pre-treatment and fermentation conditions was realized. 

Regarding this process, subsequently Raman spectroscopy was investigated, in combination 

with chemometric tools, in order to develop a quantitative analysis system for ethanol produced 

and glucose consumed during the process. 

The thesis work will be presented in the following order given below, where a brief summary 

of each chapter is given: 

Chapter 2 describes issues related to the monitoring of biotechnological processes. After an 

overview of key variables generally monitored during such processes, it focuses on state 

estimators as a possible solution. A fermentation process for bioethanol production for 

bioethanol production using Saccharomyces cerevisiae is taken as case study and the 

mathematical model of the process taken as reference is described in detail. A state observer to 

reconstruct the states of the system that cannot be measured is developed and implemented. 

Different situations were analyzed depending on the available measurements.  

Chapter 3 addresses the problem of bioprocess control by first providing a general overview of 

the state of the art. Always considering the fermentation bioreactor for ethanol production as 

case study, three different control strategies were investigated: a direct temperature control 

(SISO), a cascade control where the primary loop exploits delayed ethanol composition 

measurements, and a MIMO control system with an inferential control for product 

concentration. The results of the simulations are reported and compared as the operating 

conditions change.  

Chapter 4 focuses on one biotechnological process, i.e., the production of biofuels from waste 

biomass. The biomass investigated is the brewery’s spent grain (BSG), and it is described in 

detail, both in terms of its chemical composition and possible applications in different areas. 

Experimental work carried out during the abroad research period is presented, particularly 

those related to the optimization of the operating conditions of the acid pre-treatment and 

fermentation phases.  
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Chapter 5 deals again with the problem of monitoring bioprocesses but proposing the 

development of a sensor based on Raman spectroscopy as a possible solution. This 

methodology is briefly explained along with the other main spectroscopic techniques. The case 

study analyzed is once again the fermentation process of waste biomass to produce second-

generation ethanol. Data from Raman spectra of fermentation samples, derived from the 

process described in the previous chapter, were combined with chemometric techniques to 

develop a real-time quantitative analysis system.  

Chapter 6 summarizes the conclusions. 

 

1.3 Participation in conferences and publications in Journals 

Some of the work presented in this thesis has been presented in national and international 

conferences and published in international journals.  

Presentations at national and international conferences 

Monitoring and control of a bioreactor for yeast fermentation. GRICU 2022 national 

conference, Ischia (Italy), July 3-9, 2022.  

Brewer's Spent Grain: its Value as Renewable Biomass and its Possible Applications. 

IConBM2022 International Conference, Naples (Italy), June 5-8, 2022. 

Different control strategies for a yeast fermentation bioreactor. ADCHEM2021 International 

Conference, fully virtual, June 13-16, 2021.  

Modeling a Biological Reactor using Sparse Identification Method. ICheaP15 International 

Conference, fully virtual, May 23-26, 2021.  

Publications in international journals 

Lisci, S., Tronci, S., Grosso, M., Karring, H., Hajrizaj, R., & Errico, M. (2022). Brewer's Spent 

Grain: its Value as Renewable Biomass and its Possible Applications. Chemical Engineering 

Transactions, 92, 259-264. IConBM2022 International Conference, Naples (Italy). 

Lisci, S., Grosso, M., & Tronci, S. (2021). Different control strategies for a yeast fermentation 

bioreactor. IFAC-PapersOnLine, 54(3), 306-311. ADCHEM2021 International Conference.  
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Lisci, S., Gitani, E., Mulas, M., & Tronci, S. (2021). Modeling a Biological Reactor using 

Sparse Identification Method. Chemical Engineering Transactions, 86, 901-906. ICheaP15 

International Conference.  

Lisci, S., Grosso, M., & Tronci, S. (2020). A Robust Nonlinear Estimator for a Yeast 

Fermentation Biochemical Reactor. In Computer Aided Chemical Engineering (Vol. 48, pp. 

1303-1308). Elsevier. ESCAPE30 European Symposium.  

Lisci, S., Grosso, M., & Tronci, S. (2020). A geometric observer-assisted approach to tailor 

state estimation in a bioreactor for ethanol production. Processes, 8(4), 480. 
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Chapter 2: The issue of bioprocess monitoring 

This Chapter addresses the problem of monitoring biotechnological processes, first describing 

an overview of the most measured variables and estimation techniques available in the 

literature. The estimation problem of a fermentation reactor will be presented as case study, 

the results of which will be reported and discussed.  
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The increasing development in recent years of biotechnological processes (BTP) and their 

industrial applications have confirmed the importance of adequately monitoring and 

controlling them in order to guarantee profitability and quality. Generally, the success of 

process monitoring and control depends significantly on proper/appropriate and functioning 

measurement and monitoring techniques (Sonnleitner, 2012). The development of a fully 

automated monitoring and control system represents a fundamental element in such processes, 

particularly in those operating in continuous mode, in which possible deviations/malfunctions 

must be identified and corrected in time, leading to robust production with constant 

performance. However, in the context of bioprocesses, the demands on measurements represent 

a challenging task. Indeed, although physic-chemical parameters such as temperature, pH, 

aeration, agitation, and dissolved oxygen are easily measurable, the same cannot be said for 

critical biological variables such as the concentration of biomass, substrate, products, or by-

products (Liu et al., 2001). These represent so-called product quality indices that must be 

measured in order to meet the mandatory requirements, and the reason why it is often difficult 

to measure these variables in real-time can be found in two main causes. First, biological 

processes/systems are characterized by a certain complexity resulting from the involvement of 

living organisms, which have a complex nature that is difficult to analyze and understand. On 

the other hand, it is also necessary to consider the systematic lack of measuring devices capable 

of providing measurements for understanding the functioning of the bioprocesses (Holzberg et 

al., 2018; Lyubenova et al., 2021). This means that the application of the continuous production 

mode, to which biotechnological processes are also beginning to convert, cannot be considered 

unless an adequate monitoring and control system can be implemented, and this cannot be 

satisfied if appropriate sensors are not available.                                                                                                                                 

A possible solution can be the design and the implementation of nonlinear estimators, also 

known as model-based software sensors and state observers. These are estimation techniques 

obtained from the combination of a measurement processor and the mathematical model of the 

process. Indeed, they rely on first principles process models, i.e., balance equations for mass 

and energy as well as constitutive equations, and also on an estimation algorithm that reconciles 

the available measurements with the prediction of the model (Cabaneros Lopez et al., 2019a). 

In this way, it is possible to estimate those variables whose measurements are not simple to 

obtain or that are too time-consuming (Veloso & Ferreira, 2017), from secondary measurements 

that are more accessible such as the environmental ones (temperature, pH, dissolved oxygen 

concentration, ect.) (Lyubenova et al., 2021). Although soft sensor strategy has been used for 

decades in chemical industries, in biochemical ones it is quite recent and still under 
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development. In any case, remarkable applications and reviews of soft sensing can be found in 

the literature, confirming that this is certainly a strategy that generates interest in research, and 

that is able to reconstruct the evolution of key variables over time, despite the process-model 

mismatch, nonlinear dynamic and measurement noise, which usually make its development 

challenging ( Gargalo et al., 2022; Cabaneros Lopez et al., 2019;Holzberg et al., 2018; Lopez 

et al., 2020; Lourenço et al., 2012; Mauricio-Iglesias et al., 2015; Ödman et al., 2009). Among 

the various estimation techniques proposed in the literature, both for chemical and biochemical 

processes, those that have proved to have a strong potential for the online estimation of 

nonlinear systems are the following: extended Kalman filter (EKF) (Jazwinski, 2007); high 

gain observer (Ciccarella et al., 1993); sliding mode observer (G.-B. Wang et al., 1997); 

geometric observer (Alvarez & López, 1999; Zeitz, 1987). However, many of the strategies to 

estimate unmeasurable states and disturbances for partially known systems are based on the 

extended Kalman filter (EKF) being its design quite simple and its application accepted by 

relevant industries (Dewasme et al., 2013; Longhi et al., 2002).                                                           

In this chapter the problem of real-time monitoring bioprocesses will be addressed/discussed. 

A brief presentation of the main variables usually monitored in processes like these will be 

described, as well as the techniques mainly used, also focusing on the most difficult to measure. 

Later, an overview of the principal estimation techniques is presented, dwelling on the 

geometric observer and the Kalman filter algorithms since they are the estimation strategies 

applied in the case study presented here. Regarding this, the problem of state estimation in a 

bioreactor for ethanol production is addressed. The geometric observer estimation algorithm is 

used to select the best estimation configuration in terms of states and measured outputs. Then, 

the Kalman filter algorithm is applied in the validation phase. A series of simulations are carried 

out in order to evaluate the performance of the designed estimation structures, the results of 

which are shown and discussed.  

 

2.1 Overview of standard variables monitored in bioprocesses 

As stated in the introduction, the greatest difficulty in implementing a proper control system 

for a bioprocess is the real-time monitoring, since there is a lack of valid sensors providing 

real-time information about the concentration of products, substrate, and biomass employed 

(Edwiges et al., 2022). The few variables commonly measured online in bioreactors are 

temperature, pressure, dissolved oxygen, pH, stirring speed, and liquid flow rate. These are 

usually referred to as process variables or engineering data as reported by Lourenço et al. 
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(2012). In recent years, there has been considerable effort in developing efficient monitoring 

strategies for bioprocesses such as fermentation, including the development of biosensors, 

optical sensor, and chemosensors (Holzberg et al., 2018). Although such online sensors 

developed for bioprocess monitoring can boast features such as reliability and advanced 

performance, their application at the industrial level still seems to be far off due to their high 

price and frequent maintenance (Mitra & Murthy, 2022).                                                      

The techniques commonly used to monitor the variables involved in bioprocesses will be 

described below, classified into physical, chemical, and biological variables.  

2.1.1 Physical variables 

Among the physical variables, surely the one that is always monitored and determined directly 

is temperature which plays a key role in the growth of the microorganisms involved, thus 

influencing the production rate and the evolution of the bioprocess. The temperature 

measurement is preferably carried out using resistance thermometers (PT-100 or PT-1000) due 

to their accuracy and reproducibility (Pörtner et al., 2017). Alternatively, thermocouples can 

also be used, which are certainly cheaper but also less accurate (A. Doyle & Griffiths, 1998; 

Ozturk & Hu, 2005). The pressure, which is usually not measured on very small scales, is 

mainly measured for safety reasons. However, it plays an important role in the media 

sterilization, contributing to its maintenance. The standard measurement sensors are membrane 

pressure gauges based on capacitance or strain measurements (Caramihai & Severi, 2013).  

2.1.2 Chemical variables 

In terms of chemical variables, pH represents definitely the most important one, and for this 

reason it must be kept with a very constrained range. Usually, the pH is controlled manually 

by adding proper amounts of acidic or basic solutions, depending on the evolution of the pH 

trend. The measuring device used for pH consists of a combination in one body of both glass 

and reference electrodes (Pörtner et al., 2017). The concentration of dissolved oxygen is also 

critical to monitor, especially for fermentation processes that evolve in an aerobic mode. 

Indeed, it is essential that the value of this variable does not fall below a specified minimal 

level. Galvanic electrodes are usually used for its measurement in small fermenters, while in 

the case of pilot or production bioreactors, polarographic electrodes are employed.  
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2.1.3 Biological variables 

Biological variables refer to biomass, substrates used for the microorganism growth, and finally 

products and/or by-products. Although these represent the most crucial variables when 

evaluating the evolution of bioprocesses, their online monitoring still seems to be a very 

difficult goal to achieve. Standard offline reference methods such as gas chromatography (GC), 

liquid chromatography (LC), and optical density (OD) measurements appear as the most trusted 

ones. However, research has made many strides in this area. As reported by Holzberg et al. 

(2018) in their review, several sensors have been developed on a laboratory scale for real-time 

monitoring of these variables. These are mainly electrochemical and optical sensors that have 

been developed to detect analytes such as organic compounds (glucose, glutamine, and lactate) 

but also cell biomass, products (ethanol), and by-products (ammonia and protein products). 

These have been classified according to their potential application in continuous production 

processes, where precisely their presence is essential. From this analysis it was found that 

electrochemical sensors are not suitable for monitoring in this type of processes as they are 

unable to provide continuous online measurements, require high-frequency sampling and 

destructive analysis (Bäcker et al., 2013; Derfus et al., 2010; Mross, Fürst, et al., 2015; Mross, 

Zimmermann, et al., 2015; Schlueter et al., n.d.; Weltin et al., 2014). However, optical sensors 

have proven to have good potential. They include different types of spectroscopy, generally 

couples with optical fibers, which cover different wavelength ranges such as visible-ultraviolet 

(UV-Vis), near infrared (NIR), mid infrared (MIR), Raman, and fluorescence spectroscopy 

(Lourenço et al., 2012). Their use has been investigated in various in situ applications (Abu-

Absi et al., 2011; Esmonde-White et al., 2017; Lindner et al., 2014; Luttmann et al., 2012; 

Ohadi et al., 2015; Rowland-Jones et al., 2017; Tamburini et al., 2014; Theuer et al., 2017), 

and what has emerged is that they represent certainly rapid, non-invasive, non-destructive 

techniques, with high accuracy and precision, and good stability. Obviously, they have some 

limits, strictly connected to the performance of the instrumentation available. Indeed, if the 

signal is weak, it is very likely that it is susceptible to interference. However, this can also be 

influenced by other factors such as the growth medium of the process which could create 

problems in terms of robustness and accuracy of the probes. 

2.2 Overview of state estimate techniques 

The lack of reliable online information about process state variables, and in particular those 

more informative such as metabolic products or intracellular metabolites that can provide a 
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deeper understanding of the process, represents a significant limiting factor for an effective 

control of bioreactors (Venkateswarlu, 2004). This is a very common issue in the process 

industry in which, in addition to the more common situation where key variables cannot be 

measured in real time and at frequent intervals, other situations can occur such as the total 

absence of available measurements on a regular basis, or again when measurements can be 

taken only very infrequently or when samples are sent to the laboratory for analysis. In these 

last two cases, the result is a measurement affected by significant delay, which are therefore 

not indicative of the present time in which one is interested but refer to some undefined instant 

in the past. In any case what is difficult/challenging is the implementation of feedback control 

strategy based on measurements (Ogunnaike & Ray, 1994).   As explained in the introduction, 

an efficient monitoring system of the process represents a key element in ensuring the success 

of the bioprocess operation. Online estimation of process variables and parameters that are not 

directly accessible is a valuable and interesting solution/tool to fill this gap and improve 

monitoring and control of the operating units involved. Methods that can meet this task, thus 

providing an estimate of the value of unmeasurable process variables, are usually known as 

state estimators. In Figure 1 the block diagram of the estimation scheme is reported. The main 

idea behind this operation is to reconstruct reliably and in real time the trends of process 

variables and parameters that define the process, exploiting the process knowledge given by 

the model together with a limited set of available process measurements (Dochain, 2003; 

Venkateswarlu, 2004). In other words, the state estimator can thus be defined as an estimation 

algorithm whose task is to “observe” the value of unmeasured state variables, and that is why 

it is also known as state “observer” (Ogunnaike & Ray, 1994). More recently, they have also 

been referred to as soft sensors, highlighting the fact that these are tools composed of a software 

part because the sensor signal evaluation models are usually computer programs, and these 

models are carrying information similar to their hardware counterpart (Kadlec et al., 2009; 

Luttmann et al., 2012).  
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Figure 1. Block diagram of state observer. 

 

State estimation has been a quite active area of research for several decades (F. J. Doyle, 1997). 

Indeed, suffice it to say that the concept of state observer and Kalman filter-based observer 

were introduced by Luenberger (Luenberger, 1964, 1966, 1967, 1971) and Kalman (Welch & 

Bishop, 1995.) in the 1960s. Over the years, several advances have been made in this area but 

obviously, the implementation of observers has become an increasingly challenging task as a 

consequence of the higher requirements in terms of accuracy, cost-effectiveness (or 

convenience), and performance (Mohd Ali, Ha Hoang, et al., 2015). Most of today’s observers 

are merely extended versions and modifications of the classical Luenberger and Kalman 

approaches/structures. The study and the applications of state estimation strategies continues 

to be a still-discussed topic. Indeed, several types of observers have recently been developed 

for applications concerning nonlinear chemical processes as well. In some cases, their 

application has involved not only the theoretical aspect but also the practical aspect in real 

plants. Their applications are not limited only to chemical processes, but also to 

biotechnological processes. Indeed, several examples of applications in this area are available 

in the literature (Dochain & Rapaport, 2018; García-Mañas et al., 2019; Hernandez et al., 2013; 

Krämer & King, 2019; Quintero et al., 2008; Semcheddine & Bouchareb, 2019; Simutis et al., 

2013) .  As clearly reported in Mohd Ali et al. (2015), it is possible to classify observers into 

six main groups: Luenberger-based observers, finite-dimensional system observers, Bayesan 

estimators, disturbances and fault detection observers, artificial intelligence (AI)-based 

observes, and finally hybrid observers.  
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Table 1. Classification of major classes of observers according to Mohd Ali et al. (2015). 

Main Categories Specific observers 

Luenberger-based 

observers 

1. Extended Luenberger observer 

(ELO) 

2. Sliding mode observer (SMO) 

3. Adaptive state observer (ASO) 

4. High-gain observer 

5. Zeitz nonlinear observer  

6. Discrete-time nonlinear recursive 

observer (DNRO) 

7. Geometric observer 

8. Backstepping observer  

Finite-dimensional 

system observers 

1. Reduced-order observer 

2. Low-order observer 

3. High gain observer 

4. Asymptotic observer (AO) 

5. Exponential observer 

6. Integral observer 

7. Interval observer 

Bayesian estimators 

1. Particle filter (PF) 

2. Extended Kalman filter (EKF) 

3. Unscented Kalman filter (UKF) 

4. Ensemble Kalman filter (EnKF) 

5. Steady state Kalman filter (SSKF) 

6. Adaptive fading Kalman filtering 

(AFKF) 

7. Moving horizon estimator (MHE) 

8. Generic observer  

9. Specific observer  

Disturbance and 

fault detection 

observers 

1. Disturbance observer (DOB) 

2. Modified disturbance observer 

(MDOB) 

3. Fractional-order disturbance 

observer  

4. Bode-ideal cut-off observer 

5. Unknown input observer (UIO) 

6. Nonlinear unknown input observer 

7. Extended unknown input observer 

8. Modified proportional observer 

AI-based observers 
1. Fuzzy Kalman filter 

2. Augmented fuzzy Kalman filter 

3. Differential neural network observer 

4. EKF with neural network model  

Hybrid observers 

1. Extended Luenberger-asymptotic 

observer 

2. Proportional-integral observer 

3. Proportional-SMO 

4. Continuous-discrete observer 

5. Continuous-discrete-interval observer  

6. Continuous-discrete-EKF 

7. High-gain-continuous-discrete 

 

 

In this section, the main types of observers will be briefly illustrated following the order shown 

in Table 1.  

2.2.1 Luenberger-based observers 

As stated before, the concept of observer was first introduced by Luenberger (Luenberger, 

1964, 1966, 1967, 1971) and for this reason these tools are usually known as Luenberger’s 

observers. To this category belong the observers designed based on Luenberger’s approach, 

and thus its extensions. Hence, the extended Luenberger observer (ELO) (Méndez-Acosta et 

al., 2008), sliding mode observe (SMO) (de Battista et al., 2011; Gonzalez et al., 2001; 

Hajatipour & Farrokhi, 2010; Picó et al., 2009), adaptive state observer (ASO) (Sheibat-

Othman et al., 2008; Zhang & Guay, 2002), and the geometric observer (GO) (López & 

Alvarez, 2004; Schaum et al., 2019; Tronci et al., 2005), to name only a few, fall into this 

category. 



22 

 

2.2.2 Finite-dimensional system observers 

The category of finite-dimensional systems includes those of reduced order, low order, high 

gain, asymptotic and exponential. Several examples of their applications to bioprocesses can 

be found in the literature (Biagiola & Figueroa, 2004; el Assoudi et al., 2002; Kazantzis et al., 

2005; Salehi & Shahrokhi, 2008). They are characterized by a quite simple implementation and 

usually are designed for chemical processes with dynamics described by ordinary differential 

equations. In addition, they are suitable for nonlinear systems, and it is worth noting that they 

require high-quality models (Dochain, 2013).  

2.2.3 Bayesan estimators 

Among the Bayesian estimators, it is worth mentioning the Extended Kalman Filter (EKF), the 

particle filter (PF), and the moving horizon estimator (MHE). In general, their operation is 

based on the assumption that all state variables are stochastic, and they allow to obtain the 

estimation of the probabilistic distribution of these variables by exploiting the available 

measurements. In this way they represent a consistent and versatile approach that makes 

possible to achieve an estimation in a short time. In addition, they also represent one of the 

most widely used methods for determining model parameters, as reported by Ogunnaike & Ray 

(1994). Several examples of applications concerning this category, and involving 

biotechnological processes, can be found in the literature (Chitralekha et al., 2010; Raïssi et 

al., 2005; J. Wang et al., 2010).  

2.2.4 Disturbance and fault detection observers 

This is a very specific category of observers, which can actually be regarded as the union of 

two distinct classes incorporated into one since they have the common aim to estimate all the 

possible irregularities, in terms of disturbances or failures, that may occur in a process. Among 

these, it is possible to find the disturbance observer (DOB), the modified disturbance observer 

(MDOB), the unknown input observer (UNIO), and also the nonlinear unknown input observer 

(NUIO). Therefore, they are useful for detecting disturbances or faults during the variable 

estimation process or for estimating the disturbances of faults themselves. In both cases they 

have important roles, but in the last one in particular they play a preventive role by 

warning/alerting operators to possible problems in process units. Some applications to 

bioprocesses can be found in literature (Aguilar-López & Martinez-Guerra, 2005; Avilés et al., 

2022; Rocha-Cózatl & Wouwer, 2011; Safaeipour et al., 2021).  
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2.2.5 Artificial intelligence-based observers 

As reported by Mohd Ali et al. (2015b), artificial intelligence (AI) can be defined as the ability 

of computers or other machines to perform activities for which human intelligence is required. 

It is a widely used method and recently is interest in applications concerning not only to process 

model and control, but also the estimation of states and parameters that are difficult to measure. 

So-called artificial intelligence (AI)-based observers or estimators are thus useful 

computational algorithms that can predict states or parameters that are not accessible (but that 

are important to develop feedback control law for a system). Algorithms such as artificial 

neural networks (ANN), fuzzy logic, expert system (ES) and genetic algorithm (GA) fall into 

this category. Although conventional observers such as the Luenberger observer and the 

extended Kalman filter provide good estimation performance, AI-based estimators have as 

advantages the ability to retune more easily in the presence of parameter variations/changes 

and to avoid time delays. Many papers can be found in the literature concerning the application 

of these estimators alone (Aziz et al., 2000; Fortuna et al., 2005; Hussain et al., 2002.; Patnaik, 

1997) or combined with other estimation approach (Chairez et al., 2007; Porru et al., 2000; 

Prakash & Senthil, 2008; Senthil et al., 2006) as will be explained in the next section. 

2.2.6 Hybrid observers 

The last category is that of so-called hybrid observers resulting from the combination of more 

than one observer. It can be considered as a solution that is usually applied when a single 

observer has limitations in its operation, so to improve performance in terms of estimation 

another more suitable observer is combined. Several examples exist in the literature. Hulhoven 

et al. (2006) developed a hybrid “Luenberger-asymptotic” observer that combines the 

advantages of the former of converging by having an accurate model, and the latter of providing 

state estimates having no kinetic model information. Another example is that provided by 

Sheibat-Othman et al. (2008), where an adaptive observer was coupled/associated with a 

discrete continuous one to monitor online the evolution of the molecular weight of a polymer 

over time, identifying model parameters. In particular, the concentration of radicals was 

estimated through the adaptive observer using the monomer concentration measurement, while 

the termination rate coefficient using a continuous-discrete observer exploiting the off-line 

measurements of the polymer molecular weight. Other possible combinations have been 

developed in the past (Bogaerts, 1999; Hulhoven & Bogaerts, 2002), and all of them have 

demonstrated that the end result is an improved observer. However, beyond the advantage 
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overcoming the possible functioning limitations, choosing the most viable and appropriate 

combination can be a tedious and time-consuming practice (Mohd Ali et al., 2015a).  

 

2.3 A geometric observer-assisted approach to tailor state estimation in a 

bioreactor for ethanol production 

In this section, the design and implementation of a model-based soft sensor for the estimation 

of non-measurable states in a fermentation process for ethanol production will be shown. The 

results of different simulations will be reported and analysed.  

2.3.1 Process model  

 

 

Figure 2. Schematization of a continuous fermentation bioreactor.  

 

The biochemical process considered in this thesis work is a fermentation bioreactor for ethanol 

production, which is shown in Figure 2. The model has been carefully developed by Nagy 

(2007) and subsequently extended by other authors (Imtiaz et al., 2013; Ławryńczuk, 2008). 

The reactor is obtained as a continuous stirred tank (CSTR) with a constant feed rate. The 

device contains three different components: the biomass (𝐶𝑥), namely a yeast suspension fed 

to the system and continuously removed from it; the substrate (𝐶𝑠), which is the glucose that 

feeds the microorganisms; the product (i.e., the ethanol 𝐶𝑃) that is removed from the reactor 

together with other components. Dissolved oxygen is also present in the reactor (𝐶𝑂2
) and it is 

consumed during the fermentation. A low dilution rate (𝐹𝑒/𝑉) is necessary in order to have a 

quasi-stationary state for biomass and the consequence is the quite slow dynamics of the 

process. Along with microorganisms (Saccharomyces cerevisiae), the addition of salts was also 

considered. These represent the source of inorganic nitrogen and play an important role in yeast 
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growth, but especially in the formation of coenzymes. Moreover, they have a significant 

influence on the equilibrium concentration of oxygen in the liquid phase due to the so-called 

salting-out effect. The balance equations describing this influence, but also those modelling the 

dynamics of the three main components (𝐶𝑋, 𝐶𝑆, 𝐶𝑃), reactor temperature (𝑇𝑟), and coolant 

temperature (𝑇𝑎𝑔) are given in detail below. The values of the model parameters and nominal 

operating conditions of the process are given in Table 1 and 2. 

Dissolved oxygen model  

Mass concentrations of ions in the reaction medium were calculated by the following equations, 

considering that the chloride ion is contained in the two salts 𝑁𝑎𝐶𝑙 and 𝑀𝑔𝐶𝑙2: 

𝐶𝑁𝑎 =
𝑚𝑁𝑎𝐶𝑙

𝑀𝑁𝑎𝐶𝑙

𝑀𝑁𝑎

𝑉
 (1) 

𝐶𝐶𝑎 =
𝑚𝐶𝑎𝐶𝑂3

𝑀𝐶𝑎𝐶𝑂3

𝑀𝐶𝑎

𝑉
 (2) 

𝐶𝑀𝑔 =
𝑚𝑀𝑔𝐶𝑙2

𝑀𝑀𝑔𝐶𝑙2

𝑀𝑀𝑔

𝑉
 (3) 

𝐶𝐶𝑙 = (
𝑚𝑁𝑎𝐶𝑙

𝑀𝑁𝑎𝐶𝑙
+ 2

𝑚𝑀𝑔𝐶𝑙2

𝑀𝑀𝑔𝐶𝑙2

)
𝑀𝐶𝑙

𝑉
 (4) 

𝐶𝐶𝑂3
=

𝑚𝐶𝑎𝐶𝑂3

𝑀𝐶𝑎𝐶𝑂3

𝑀𝐶𝑂3

𝑉
 (5) 

𝐶𝐻 = 10−𝑝𝐻 (6) 

𝐶𝑂𝐻 = 10−(14−𝑝𝐻) (7) 

 

The ionic strength of the generic ion was evaluated by the following equation:  

𝐼𝑖 =
1

2
𝐶𝑖𝑧𝑖

2 (8) 

 

Consequently, it can be applied to all ions present:  

𝐼𝑁𝑎 = 0.5𝐶𝑁𝑎(1)2 (9) 

𝐼𝐶𝑎 = 0.5𝐶𝐶𝑎(2)2 (10) 

𝐼𝑀𝑔 = 0.5𝐶𝑀𝑔(2)2 (11) 

𝐼𝐶𝑙 = 0.5𝐶𝐶𝑎(−1)2 (12) 

𝐼𝐶𝑂3
= 0.5𝐶𝐶𝑂3

(−2)2 (13) 
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𝐼𝐻 = 0.5𝐶𝐻(1)2 (14) 

𝐼𝑂𝐻 = 0.5𝐶𝑂𝐻(−1)2 (15) 

 

The overall effect of ionic forces was expressed by the following equation: 

∑ 𝐻𝑖𝐼𝑖 = 𝐻𝑁𝑎𝐼𝑁𝑎 + 𝐻𝐶𝑎𝐼𝐶𝑎 + 𝐻𝑀𝑔𝐼𝑀𝑔 + 𝐻𝐶𝑙𝐼𝐶𝑙+. . +𝐻𝐶𝑂3
𝐼𝐶𝑂3

+ 𝐻𝐻𝐼𝐻 + 𝐻𝑂𝐻𝐼𝑂𝐻 (16) 

 

Where Hi is the specific ionic constant of the i-th ion. The final expression can be derived from 

the Eq. (16):  

∑ 𝐻𝑖𝐼𝑖 = 0.5𝐻𝑁𝑎

𝑚𝑁𝑎𝐶𝑙

𝑀𝑁𝑎𝐶𝑙

𝑀𝑁𝑎

𝑉
+ 2𝐻𝐶𝑎

𝑚𝐶𝑎𝐶𝑂3

𝑀𝐶𝑎𝐶𝑂3

𝑀𝐶𝑎

𝑉
+ 2𝐻𝑀𝑔

𝑚𝑀𝑔𝐶𝑙2

𝑀𝑀𝑔𝐶𝑙2

𝑀𝑀𝑔

𝑉

+ 0.5𝐻𝐶𝑙 (
𝑚𝑁𝑎𝐶𝑙

𝑀𝑁𝑎𝐶𝑙
+ 2

𝑚𝑀𝑔𝐶𝑙2

𝑀𝑀𝑔𝐶𝑙2

)
𝑀𝐶𝑙

𝑉
+ 2𝐻𝐶𝑂3

𝑚𝐶𝑎𝐶𝑂3

𝑀𝐶𝑎𝐶𝑂3

𝑀𝐶𝑂3

𝑉
+ 0.5𝐻𝐻10−𝑝𝐻

+ 0.5𝐻𝑂𝐻10−(14−𝑝𝐻) 

(17) 

 

The influence of temperature in distillate water on the equilibrium concentration of oxygen can 

be described by means of the following empirical equation derived by Sevella (1992):    

𝐶𝑂2,0
∗ = 14.6 − 0.3943𝑇𝑟 + 0.007714𝑇𝑟

2 − 0.0000646𝑇𝑟
3 (18) 

 

Since the salts are dissolved in the reaction medium, the equilibrium concentration of oxygen 

was calculated by the Eq.(19) (Sevella, 1992):  

𝐶𝑂2

∗ = 𝐶𝑂2,0
∗ × 10− ∑ 𝐻𝑖𝐼𝑖 (19) 

 

Mass transfer coefficient for oxygen can be expressed as a function of temperature (Sevella, 

1992):  

(𝑘𝑙𝑎) = (𝑘𝑙𝑎)0(1.024)𝑇𝑟−20 (20) 

 

While the rate of oxygen consumption is:  

𝑟𝑂2
= 𝜇𝑂2

1

𝑌𝑂2

𝐶𝑋

𝐶𝑂2

𝐾𝑂2
+ 𝐶𝑂2

 (21) 
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Finally, the dissolved oxygen concentration in the reaction medium can be considered as the 

result of the amount entering the reaction medium due to mass transfer, expressed by the first 

term of Eq. (22), and the amount consumed for the fermentation process (last term) as showed 

below:  

𝑑𝐶𝑂2

𝑑𝑡
= 𝑘𝑙𝑎 (𝐶𝑂2

∗ − 𝐶𝑂2
) − 𝑟𝑂2

 (22) 

 

Where 𝐶𝑂2

∗  and 𝐶𝑂2
 are the equilibrium concentration of dissolved oxygen and the oxygen 

concentration in the liquid phase, respectively. 𝑟𝑂2
 is the consumption rate of oxygen and 𝑘𝑙𝑎 

is the product of mass transfer coefficient for oxygen and the gas-phase specific area.    

Fermentation process model   

Denoting 𝐹𝑖 and 𝐹𝑒 as the flow rate of substrate entering the reactor and the outlet flow rate 

respectively, the variation rate of the total reaction volume 𝑉 was expressed as follows:  

𝑑𝑉

𝑑𝑡
= 𝐹𝑖 − 𝐹𝑒 (23) 

 

Since 𝐹𝑖 and 𝐹𝑒 are equal and therefore the volume 𝑉 remains constant, the mass balance for 

the biomass and the product can be written as follows:  

𝑑𝐶𝑋

𝑑𝑡
= 𝜇𝑋 𝐶𝑋  

𝐶𝑆

𝐾𝑆1 + 𝐶𝑆
𝑒−𝐾𝑃1𝐶𝑃 −

𝐹𝑒

𝑉
𝐶𝑋 (24) 

𝑑𝐶𝑃

𝑑𝑡
= 𝜇𝑃𝐶𝑋

𝐶𝑆

𝐾𝑆1 + 𝐶𝑆
𝑒

−𝐾𝑃1 𝐶𝑝 −
𝐹𝑒

𝑉
 𝐶𝑃 (25) 

 

The first terms in Eqs. (24) and (25) represent the amount of biomass and ethanol produced 

during the fermentation reaction, while the second terms describe the amount of yeast and 

ethanol leaving the reactor, respectively. It is possible to observe that the maximum specific 

growth rate is present in the mass balance for the biomass, and it is expressed as a temperature 

function:  

𝜇𝑋 = 𝐴1𝑒−(𝐸𝑎1 𝑅(𝑇𝑟+273)⁄ ) − 𝐴2𝑒−(𝐸𝑎2 𝑅(𝑇𝑟+273)⁄ ) (26) 
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Whereas µ𝑃 is the maximum specific fermentation rate, 𝐶𝑋 is the biomass (yeast) concentration, 

𝐶𝑆 is the substrate (glucose) concentration, 𝐶𝑃 is the product (ethanol) concentration, 𝐾𝑆1is the 

constant in the substrate term for ethanol production, and 𝐾𝑃1 is the constant of fermentation 

inhibition by ethanol. The mass balance of substrate (glucose) is expressed by the following 

equation:  

𝑑𝐶𝑆

𝑑𝑡
= −

1

𝑅𝑆𝑋
𝜇𝑋𝐶𝑋

𝐶𝑆

𝐾𝑆 + 𝐶𝑆
𝑒−𝐾𝑃𝐶𝑃 −

1

𝑅𝑆𝑃
𝜇𝑃𝐶𝑋

𝐶𝑆

𝐾𝑆1 + 𝐶𝑆
 𝑒−𝐾𝑃1𝐶𝑃 +

𝐹𝑖

𝑉
𝐶𝑆,𝑖𝑛 −

𝐹𝑒

𝑉
𝐶𝑆 (27) 

 

Where 𝑅𝑆𝑋 is the ratio of cell produced per glucose consumed for growth, with 𝑅𝑆𝑃 is indicated 

the ratio of ethanol produced per glucose consumed for fermentation, 𝐾𝑆 is the constant in the 

substrate term for growth, and 𝐶𝑆,𝑖𝑛 is the substrate (glucose) concentration in the feed flow. 

The first term of the Eq. (27) represents the substrate amount consumed by biomass for the 

growth, whereas the second term describes the amount of glucose consumed by biomass for 

the ethanol production. Instead, the third and the last one represents the glucose amount 

entering the bioreactor through the fresh substrate feed and the amount of substrate leaving the 

reactor, respectively.  

Temperature model  

The energy balance for the bioreactor allows to define the variation rate of the temperature of 

the reactor by means of the following equation:   

𝑑𝑇𝑟

𝑑𝑡
= (

𝐹𝑖

𝑉
) (𝑇𝑖𝑛 + 273) − (

𝐹𝑒

𝑉
) (𝑇𝑟 + 273) +

𝑟𝑂2
 ∆𝐻𝑟

32 𝜌𝑟 𝐶ℎ𝑒𝑎𝑡,𝑟
−

𝐾𝑇𝐴𝑇 (𝑇𝑟 − 𝑇𝑎𝑔)

𝑉 𝜌𝑟 𝐶ℎ𝑒𝑎𝑡,𝑟
 

(28) 

 

The energy balance was also written on the cooling jacket (Eq. (29)):   

𝑑𝑇𝑎𝑔

𝑑𝑡
= (

𝐹𝑎𝑔

𝑉𝑗
) (𝑇𝑖𝑛,𝑎𝑔 − 𝑇𝑎𝑔) +

𝐾𝑇𝐴𝑇(𝑇𝑟 − 𝑇𝑎𝑔)

𝑉𝑗𝜌𝑎𝑔𝐶ℎ𝑒𝑎𝑡,𝑎𝑔
 

(29) 

 

Where 𝐹𝑎𝑔 is the flow of the cooling agent, 𝑉𝑗 is the jacket volume, 𝑇𝑖𝑛,𝑎𝑔 is the temperature of 

the cooling agent entering to the jacket, 𝜌𝑎𝑔 and 𝐶ℎ𝑒𝑎𝑡,𝑎𝑔 are the density and the specific heat 

of the coolant, respectively. The values of the model parameters of the examined bioreactor are 
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given in Table 2, whereas the initial nominal operating conditions of the process are reported 

in Table 3 (Imtiaz et al., 2013; Ławryńczuk, 2008; Nagy, 2007).  

The model presented here was used to simulate a real process and to develop the model-based 

soft-sensor (estimator). Since the purpose of this work is to mimic a real situation, the 

simulation using the model parameters taken from Nagy (2007), and reported in Table 2, was 

considered as the real plant (hereafter referred to as the virtual plant). On the other hand, in 

order to simulate what usually occurs in a real situation and make the estimation problem more 

demanding and more representative of an industrial plant, two sources of error were included. 

The first is an additive white noise which behaves like a uniformly distributed random number 

and that corrupts the available measurements. The precision of the respective sensors is 

reported in Table 4. The second source is responsible for a model mismatch, which implies that 

the model used in the estimator algorithm is different from the model used to simulate the 

“virtual plant”. In particular, it is assumed that the kinetic parameters used in the estimator 

(Table 5) are different from the ones taken from Nagy (2007) and reported in Table 2. All other 

parameters were left unchanged, and the same nominal operating conditions were used as 

reported in Table 3.  

 

 

Table 2. Parameters of the bioreactor model. 

A1 = 9.5 × 108 (kla)0 = 38 h−1 MMg = 24 g/mol 

A2 = 2.55 × 1033 KO2
= 8.86 mg/l MMgCl2

= 95 g/mol 

AT = 1 m2 Kp = 0.139 g/l MNa = 23 g/mol 

Cheat,ag = 4.18 J g−1K−1 Kp1
= 0.07 g/l 𝑀NaCl = 58.5 g/mol 

Cheat,r = 4.18 J g−1K−1 Ks = 1.03 g/l R = 8.31 J mol−1K−1 

Ea1 = 55 J/mol  Ks1
= 1.68 g/l RSP = 0.435 

Ea2 = 220 J/mol KT = 3.6 × 105 Jh−1m−2K−1 RSX = 0.607 

HCa = −0.303 mCaCO3
= 100 g Vj = 50 l 

HCl = 0.844 mMgCl2
= 100 g YO2

= 0.97 mg/mg 

HCO3
= 0.485 mNaCl = 500 g ∆Hr = 518 kJ/mol O2 

HH = −0.774 MCa = 40 g/mol μO2
= 0.5 h−1 

HMg = −0.314 MCaCO3
= 90 g/mol μp = 1.79 h−1 

HNa = −0.550 MCl = 35.5 g/mol ρag = 1000 g/l 

HOH = 0.941 MCO3
= 60 g/mol ρr = 1080 g/l 
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Table 3. Nominal operating conditions of the process. 

CO2
= 2.5 mg/l  pH = 6 

Cp = 13 g/l Tag = 29 °C 

Cs = 27 g/l Tin = 25°C 

Cs,in = 60 g/l Tin,ag = 15°C 

Cx = 1 g/l Tr = 26°C 

Fag = 18 l/h V = 1000 l 

Fi = Fe = 51 l/h  

 

Table 4. Noise for the different measuring sensors with respect to the corresponding nominal values. 

𝑪𝑿 𝑪𝑺 𝑪𝑶𝟐
 𝑻𝒓 𝑻𝒂𝒈 

±2.5% ±2.5% ±2.5% ±0.1°C ±0.1°C 

 

 

Table 5. Modified model parameters for estimator sensors. 

𝝁𝑷 [𝒉−𝟏] 1.7465 

𝑲𝑺 [𝒈/𝒍] 1.0248 

𝑲𝑷 [𝒈/𝒍] 0.1281 

𝑲𝑺𝟏 [𝒈/𝒍] 1.8090 

𝑲𝑷𝟏 [𝒈/𝒍] 0.0692 

𝑹𝑺𝑿 [−] 0.6274 

𝑹𝑺𝑷 [−] 0.4549 

 

 

For the purpose of this work, it is important to specify that all simulation tests were performed 

by considering step variations on three inputs of the model. More specifically, in the results 

concerning the structure of the full-order estimator, the temperature of feed entering the 

bioreactor (𝑇𝑖𝑛) was changed after 100 h of simulation, the concentration of substrate inlet 

(𝐶𝑆,𝑖𝑛) after 150 h, and finally the coolant inlet temperature (𝑇𝑖𝑛,𝑎𝑔) after 250 h (Table 6). 

 

Table 6. Step changes of input variables. 

𝑻𝒊𝒏 [°𝑪] 25 30 

𝑪𝑺,𝒊𝒏 [𝒈/𝒍] 60 75 

𝑻𝒊𝒏,𝒂𝒈 [°𝑪] 15 10 
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On the other hand, as for the analysis of the reduced-order estimator, step changes on the 

same three inputs were considered but individually, as described in Table 7.  

 

Table 7. Step changes of input variables. 

 Input t = 0 h t = 100 h t = 200 h 

T1 𝐶𝑆,𝑖𝑛 [g/l] 60 45 75 

T2 𝑇𝑖𝑛,𝑎𝑔   [°C] 15 10 20 

T3 𝑇𝑖𝑛 [°C] 25 20 30 

 

2.3.2 State estimation problem 

As reported in Cabaneros Lopez et al. (2019), the current real-time monitoring methods used 

in ethanol production generally consist of secondary measurements such as pH, turbidity, gas 

composition and temperature. Even if such variables provide important information about the 

process, they do not directly relate to the state of the system, making it difficult to apply 

advanced control strategies. Furthermore, even the best process measurements are corrupted 

by some amount of signal noise and their true values are somewhat uncertain. States estimation 

technique can be used to improve the output signal of measured process states in the presence 

of uncertainty and when it is not possible to directly measure all the variables of interest.                                                                  

The estimation problem consists in jointly designing the estimation structure (i.e., estimator 

model, sensors, innovated states and data assimilation mechanism), and the estimation 

algorithm (i.e., the dynamic data processor), to infer some or all the states of the bioreactor on 

the basis of the available model in conjunction with available measurements, according to a 

specific estimation objective. In the present fermentation reactor estimation study, the emphasis 

has been placed on: (i) the detection of the more adequate measured outputs leading to the best 

performance, (ii) the selection of the innovated states, meaning the states which are updated by 

using the available measurement. For simplifying the formulation of the problem, the model 

described in the previous paragraph can be written in compact form as reported in Eqs. (30):  

𝒙̇ = 𝒇(𝒙, 𝒖), 𝒙(𝑡0) = 𝒙0 
(30a) 

𝒚 = 𝒉(𝒙) (30b) 

 

where x is the n-dimensional state vector, equal to x0 at the initial time t0, u is the p-dimensional 

input vector, f is the n-dimensional vector fields, y is the m–dimensional vector of the measured 
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outputs and h is the map relating states and measurements. The dimension of the measured 

outputs is less than the number of states, that is m < n. As reported in Salas et al. (2019), it is 

possible to consider a non-linear map ϕ, the components of which are the measured outputs 

and some of their directional derivatives.  

𝛷(𝑥, 𝑢) = [𝛷1, … , … , 𝛷𝑖 , … , … , 𝛷𝑚]𝑇 (31a) 

𝛷𝑖 = (ℎ𝑖(𝑥), 𝐿𝑓
1ℎ𝑖(𝑥), … , … , 𝐿𝑓

𝜅𝑖−1
ℎ𝑖(𝑥)) (31b) 

where 𝐿𝑓
𝑗

ℎ𝑖(𝑥) are the recursive 𝑗𝑡ℎ Lie derivatives of the time varying scalar field ℎ𝑖(𝑥) along 

the vector field time variant 𝒇(𝑥, 𝑢(𝑡)), 𝜅𝑖 is the observability index of the 𝑖𝑡ℎ output and 𝜅 is 

the estimator order defined by the following Equation:  

𝜅1 + 𝜅2 + ⋯ + 𝜅𝑚 = 𝜅 = 𝑛 (32) 

If this condition is verified, that is the sum of the m observability indices κi is equal to the 

dimension of the state vector, and the map 𝜱(𝒙, 𝒖) is invertible with respect to x, it is possible 

to relate the measured outputs to the states and to reconstruct the system dynamics. This can 

be assessed by evaluating the rank of the matrix 𝜕𝑥𝜱(𝒙, 𝒖) for given trajectories, meaning that 

the system is observable if:  

𝑟𝑎𝑛𝑘(𝜕𝑥𝛷(𝑥, 𝑢)) = 𝑛 (33) 

 

In this way the states can be reconstructed using the available model and a proper measurement 

process algorithm (Dewasme et al., 2013). It is important underline that the robust observability 

matrix can be detected by evaluating the condition number 𝜎 of the observability matrix and 

its minimum singular value 𝜅. Such metrics are important tools for choosing the best estimator 

structure (López & Alvarez, 2004; Salas et al., 2019).  

Robust estimability and robust detectability  

If all states can be fully observable, the observability matrix should be full-rank, but practical 

observability can be assessed if the condition number of the observability matrix (𝚺) is small 

(Dochain et al., 1997). Furthermore, a small singular value of the observability matrix implies 

the worst estimate of the states (Long et al., 2008): 

𝑟𝑎𝑛𝑘(𝜰) = 𝑛, 𝚼 = 𝜕𝑥𝝓(𝑥, 𝑢) (34a) 

𝜎(𝚼)

𝜎(𝚼)
= Σ < Ξ (34b) 
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𝑎𝑣𝑔
𝑡

𝜎(𝚼) ≥ 𝜀0 (34c) 

where Ξ and ε0 are, respectively, the selected thresholds. On the other hand, if matrix 𝚼 is rank 

deficient and the unobservable states are stable, it is necessary to distinguish between states 

that can be innovated (distinguishable states) and states that cannot (undistinguishable states). 

In this case, the dimension of the map in Equation (31) is equal to the dimension of the 

distinguishable states, and robust detectability can be assessed if the following conditions are 

satisfied (Equation (35)): 

𝜎(𝚼𝑝)

𝜎(𝚼𝑝)
= Σ𝑖 < Ξ𝑝 (35a) 

𝑎𝑣𝑔
𝑡

𝜎(𝚼𝑝) ≥ 𝜀p0 (35b) 

𝚼𝑝 = 𝜕𝑥𝝓p(𝑥, 𝑢) (35c) 

𝝓𝑝 = (ℎ𝑖, 𝐿𝑓ℎ𝑖 , … , 𝐿𝑓
𝜅𝑖−1

ℎ𝑖 ) (35d) 

𝜅1 + 𝜅2 + ⋯ + 𝜅𝑚 = 𝜅 = 𝑝 (35e) 

 

The constants Ξ𝑝 and 𝜀p0 are, again, the selected thresholds. 

 

Selection of the Estimator Structure  

The performance of an estimator is obviously strongly affected by the model of the process and 

the quality of the available measurements. Biological processes are complex systems, therefore 

the presence of model uncertainty in terms of parameters and neglected dynamics are in general 

to be expected. This means that the complete reconstruction of the states requires, in general, 

a combination of different measurements (Cabaneros Lopez et al., 2019a). Within this 

framework, it is important to underline that there is still a gap between the sensors for 

laboratory use and large-scale monitoring in real-time (Cabaneros Lopez et al., 2019a). The 

selection of the estimator structure is therefore focused on the choice of the best monitoring 

strategies, by considering which are the most representative measured outputs and the presence 

of parameter errors in the model used in the estimator. It is considered that system monitoring 

can be expensive, in terms of both fixed and operation costs, therefore it could be useful to 

optimize performance with the least number of sensors. This analysis has been carried out 

comparing condition number and minimum singular values of the observability matrix. The 
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performances have been also evaluated by simulating different trajectories, from which the 

convergence rate, presence of off-set and signal noise have been evaluated.  

Geometric observer algorithm  

In this work, the geometric observer in the form developed by López and Alvarez (2004) was 

selected and applied as the estimation algorithm, which is formally connected with the 

observability properties reported in the previous section. Then, the observer can be constructed 

in the following way: 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥̂, 𝑢(𝑡)) + 𝛷𝑥

−1 𝐾 (𝑦 − ℎ(𝑥)) (36a) 

 

𝑦 = ℎ(𝑥, 𝑟) (36b) 

 

where 𝛷𝑥
−1is the inverse of the Jacobian 𝛷𝑥 of the map calculated with respect to system states, 

𝐾 is the observer gain matrix, the components of which are tuning parameters, and their values 

are calculated using the procedure suggested in Alvarez and Fernández (2009). The block 

diagonal matrix K is calculated as reported below:  

𝑲 = (

𝑩𝟏 𝟎
𝟎   𝑩𝟐

… 𝟎
… 𝟎

⋮ ⋮
𝟎 𝟎

   … ⋮
   … 𝑩𝒎

),    𝑩𝟏 = [

𝑘11

⋮
𝑘1𝜈1

],    𝑩𝟐 = [

𝑘21

⋮
𝑘2𝜈2

], 𝑩𝒎 = [

𝑘𝑚1

⋮
𝑘𝑚𝜈𝑚

] 
(37) 

𝜈𝑖 = 𝜅𝑖−1 

 

Where the matrices that compose it are column matrices and whose components are set in such 

a way that the error dynamics become stable. Tuning guidelines for the geometric observer 

provided by Álvarez & Fernández (2009) proved that a set of tuning parameters is necessary 

for each measurement. For observability indexes equal to 1 or 2 (𝜅𝑖 = 1,2), the proportional 

gains can be obtained by considering Eq. (38).  

𝑘𝑖1 = 2𝜁𝜔0, 𝑘𝑖2 = 𝜔0
2 (38a) 

𝜔0 ∈ [10𝜔𝑐 , 30𝜔𝑐], 𝜁 = [1, 3] (38b) 

 

Where 𝜔0 is the characteristic frequency and 𝜁 is the attenuation factor, and they can assume 

values in the ranges shown in Eq. (38b).  
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If the observability condition given in Eq. (33) is not verified, and thus the rank of the 

observability matrix will not be maximum (𝑛), it is not possible to construct a full order 

observer. In this case, it is possible to evaluate a not-complete observability structure in which 

there will be unobservable states, which can be consequently deduced from the estimation 

model in open-loop mode. States that are not corrected by the estimator, usually indicated as 

𝒙𝒖, are distinguished from observable or innovated states (𝒙𝒊). Hence, the state vector of the 

system will assume the following form:  

𝑥 = [𝑥𝑖, 𝑥𝑢]𝑇 (39) 

  

Therefore, the geometric observer algorithm will be structured as follows:  

𝒙̇̂𝒊 = 𝒇̂𝒊(𝒙̂, 𝒖) + (𝛛𝒙𝒊
𝝓(𝒙̂, 𝒖))

−𝟏
𝑲(𝒚 − 𝒉(𝒙̂)),   𝒙𝒊𝟎 = 𝒙𝒊(𝒕𝟎) 

(40a) 

𝒙̇̂𝒖 = 𝒇̂𝒖(𝒙̂, 𝒖),   𝒙𝒖𝟎 = 𝒙𝒖(𝒕𝟎) (40b) 

 

Where it is assumed that some states are not innovated, and so they are only predicted by the 

model, while for the innovated states the dynamic predicted by the model are adjusted by means 

of the available measurements. Regarding the construction of the observer gain matrix K, the 

tuning guidelines reported in Eqs. (37) and (38) are followed.  

 

Kalman filter algorithm  

The geometric observer (GO) has been then compared with the Extended Kalman Filter (EKF), 

which is the most used estimator algorithm in industry, because of its straightforward 

construction (Álvarez & Fernández, 2009). Even if the EKF is usually applied to complete 

observability systems, in this investigation it has been used also when the choice of 

measurements leads to a rank deficient observability matrix. The EKF algorithm has been 

applied in the continuous form, reported in the following equations (41). 

 

𝒙̇̂𝒊 = 𝒇̂𝒊(𝒙̂, 𝒖) + 𝑲𝑬𝑲𝑭(𝒚 − 𝒉(𝒙̂)), 𝒙𝒊𝟎 = 𝒙𝒊(𝒕𝟎) (41a) 

𝒙̇̂𝒖 = 𝒇̂𝒖(𝒙̂, 𝒖), 𝒙𝒖𝟎 = 𝒙𝒖(𝒕𝟎) (41b) 

𝑲𝑬𝑲𝑭 = 𝑷(𝒕)𝑯𝑻𝑹−𝟏 (41c) 
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𝑷̇(𝒕) = 𝑷(𝒕)𝑭(𝒕) + 𝑭𝑻(𝒕)𝑷(𝒕) + 𝑸(𝒕) − 𝑲𝑬𝑲𝑭𝑯𝑷 ,   𝑷(𝒕𝟎) = 𝑷𝟎 (41d) 

 

𝑭(𝑡) is the Jacobian of the vector field 𝒇̂𝒊, calculated with respect to the innovated states, 𝑷 is 

the error covariance matrix of the innovated states, 𝑯 is the matrix of the derivative of the map 

𝒉 with respect to the states, 𝑸 and 𝑹 are, respectively, the covariance matrix of the model and 

measurements errors (Jazwinski, 2007). The constant matrix 𝑸, 𝑹, and 𝑷𝟎 are tuning 

parameters of the estimation model and they have been calculated minimizing the error 

between the states calculated with the simulated plant and the estimator along a reference 

trajectory. 

2.3.3 Results  

Full order estimator  

The choice of the estimation structure has been carried out considering: (i) condition number 

and the minimum singular value of the Jacobian matrix 𝛷𝑋 for a different choice of 

measurements and innovated states and (ii) evaluating the responses of the reconstructed states 

for a given trajectory.  As first case, the hypothetical ideal situation in which five measurements 

(𝐶𝑋 , 𝐶𝑆, 𝐶𝑂2
, 𝑇𝑟 , 𝑇𝑎𝑔) are available while the product (𝐶𝑃) is not measured was analyzed. 

Temperature and dissolved oxygen measurements have been always considered available, 

according to the laboratory and industrial practice (Randek & Mandenius, 2018). On the other 

hand, sensors suited for ethanol measurements as well as substrate and biomass are not always 

available for large scale real-time applications (Cabaneros Lopez et al., 2019). The choice of 

considering substrate and biomass as measured variables has been accomplished by 

considering the literature on sensors for biomanufacturing (Holzberg et al., 2018). In more 

detail, robustness, stability, and costs have been considered. This first scenario considering five 

measured outputs is certainly the less demanding because almost all variables can be monitored 

online. In this case, observability property is satisfied with two configurations:  

𝛷1 = [𝐶𝑥, 𝐿𝑓𝐶𝑥, 𝐶𝑠, 𝐶𝑂2
, 𝑇𝑟, 𝑇𝑎𝑔] (42a) 

𝛷2 = [𝐶𝑥, 𝐶𝑠, 𝐿𝑓𝐶𝑠, 𝐶𝑂2
, 𝑇𝑟, 𝑇𝑎𝑔] (42b) 

 

The best structure between (42a) and (42b) can be selected by considering the minimum 

singular value and condition number of the Jacobian matrix for the two maps. The mean values 

of the selected indexes calculated along a reference trajectory are reported in Table 8, and they 
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indicate that the second configuration should be the better choice in terms of robustness (lower 

condition number) and the relationship between measured outputs and states (highest minimum 

singular value). 

Table 8. Minimum singular values and condition number with five measurements. 

 𝛷1 𝛷2 

κ 133.29 28.9358 

σ 0.0076 0.069 

 

The choice based on Table 8 has been confirmed by the dynamic simulation, where it is evident 

that the second configuration allows a better reconstruction of the product composition, which 

is the only unmeasured state (Figure 3 and 4). Indeed, the nonlinear estimator (red dash-dotted 

line) is able to reduce the mismatch between the model without correction (magenta dashed 

line), indicated as open-loop model, and virtual plant (blue continuous line). The response is 

highly corrupted by noise, because of the amplification of the measurement error due to the 

high gain values used to reduce the offset in the ethanol composition estimation.  

The same procedure can be used to select the best configuration when only four measured 

outputs are available. According to the analysis reported in Holzberg et al. (2018), two possible 

scenarios have been considered: (i) biomass concentration in the reactor is measured on-line or 

(ii) substrate concentration in the reactor is measured on-line. Using the representation in 

Cabaneros Lopez et al. (2019), the considered cases are reported in Eqs. (43): 

𝒚 = (𝐶𝑥 , 𝐶𝑂2
, 𝑇𝑟, 𝑇𝑎𝑔) (43a) 

𝒚 = (𝐶𝑠, 𝐶𝑂2
, 𝑇𝑟, 𝑇𝑎𝑔) (43b) 

 

where 𝒚 represents the measured output vector.                   

According to Eq. (34), it is easy to demonstrate that no combination of indexes 𝜅𝑖 satisfies the 

observability property for the output vector in Eq. (43a). This implies that a full order observer 

is possible if the substrate concentration is measured online, therefore when using the output 

configuration reported in Eq. (43b). In this case, the nonlinear estimation maps satisfying Eq. 

(34a) are reported in Eqs. (50). 

𝛷3 = [𝐶𝑆, 𝐿𝑓𝐶𝑆, 𝐶𝑂2
, 𝐿𝑓𝐶𝑂2

, 𝑇𝑟 , 𝑇𝑎𝑔] (44a) 

𝛷4 = [𝐶𝑆, 𝐿𝑓𝐶𝑆, 𝐶𝑂2
, 𝑇𝑟, 𝐿𝑓𝑇𝑟, 𝑇𝑎𝑔] (44b) 
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The means of condition number and minimum singular value for the Jacobian of the maps (44a) 

and (44b) along the reference trajectory are reported in Table 9. The structure 𝛷4 seems to be 

more robust (lower condition number), but it shows a lower minimum singular value, indicating 

that changes in the states should affect the outputs to a lesser extent.  

Table 9. Condition number and minimum singular value with four measurements. 

 𝛷3 𝛷4 

κ 1814.8 54.29 

σ 0.0842 0.0332 

 

 

Figure 3. Comparison of the ethanol dynamic behavior between virtual plant (blue continuous line), open loop 

model (magenta dashed line) and estimator (red dash-dotted line) for structure with map  𝛷1. 
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Figure 4. Comparison of the ethanol dynamic behavior between virtual plant (blue continuous line), open loop 

model (red dashed line) and estimator (magenta dash-dotted line) for structure with map  𝛷2. 

 

 

Figure 5. Comparison of the biomass dynamic behavior between virtual plant (blue continuous line), open loop 

model (magenta dashed line) and estimator (red dash-dotted line) for structure with map  𝛷3. 
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Figure 6. Comparison of the ethanol dynamic behavior between virtual plant (blue continuous line), open loop 

model (magenta dashed line) and estimator (red dash-dotted line) for structure with map  𝛷3. 

 

 

Figure 7. Comparison of the biomass dynamic behavior between virtual plant (blue continuous line), open loop 

model (magenta dashed line) and estimator (red dash-dotted line) for structure with map  𝛷4. 
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Figure 8. Comparison of the ethanol dynamic behavior between virtual plant (blue continuous line), open loop 

model (magenta dashed line) and estimator (red dash-dotted line) for structure with map  𝛷4. 

 

The reconstructed dynamic behaviour for the two unmeasured states (𝐶𝑋 and 𝐶𝑃) is reported in 

Figures 5-8.  It is worth noticing that also the state values calculated only with the model used 

in the estimation algorithm (open-loop model), but without innovation are reported in order to 

better highlight the correction provided by the estimation algorithm.                                                                                         

It is possible to observe that using the map 𝛷3, allows a good reconstruction of the biomass 

behavior (Figure 5), while there is a large mismatch between the ethanol concentration obtained 

with the virtual plant and the reconstructed one (Figure 6).                                                                                                                                                    

When using the second configuration results worsen, both for biomass (Figure 7) that for 

ethanol (Figure 8) concentration. It is worth noticing that the state’s values estimated with map 

𝛷4 are more corrupted by the measurement noise because in this case a greater observer gain 

has been used to decrease the offset. 

Low-Order Estimator  

The two full order structures 𝛷3 and 𝛷4 are not able to adequately estimate the product of the 

reactor, therefore a different solution is required to improve ethanol concentration. Using the 

same measured outputs, it is possible to improve estimation performance by reducing the order 

of the observer using only one Lie’s derivative (Salas et al., 2019). The maps reported in Eqs. 

(45a-b) lead to five observable states and one only detectable. 
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𝛷𝑝5 = [ 𝐶𝑠, 𝐶𝑂2
, 𝑇𝑟, 𝐿𝑓 𝑇𝑟 , 𝑇𝑎𝑔] (45a) 

𝛷𝑝6 = [ 𝐶𝑠, 𝐿𝑓𝐶𝑠, 𝐶𝑂2
, 𝑇𝑟 , 𝑇𝑎𝑔] (45b) 

 

The rank of the Jacobian of the maps 𝛷𝑖 (i=3,4) depends on the choice of the not-innovated 

state (𝑥̂𝑢) between the two that are not measured, which are ethanol and biomass concentration. 

It can be verified that the map 𝛷𝑝5 can be inverted only if Cx is innovated and CP is not. On the 

other hand, the Jacobian of map 𝛷𝑝6 has always rank equal to five, regardless of the choice of 

the innovated states. Recalling Eq. (40), the following partitions are considered:  

𝒙𝑖 = [𝐶𝑥, 𝐶𝑠, 𝐶𝑂2
, 𝑇𝑟 , 𝑇𝑎𝑔], 𝑥𝑢 = [𝐶𝑝] (46a) 

𝒙𝑖 = [𝐶𝑝, 𝐶𝑠, 𝐶𝑂2
, 𝑇𝑟, 𝑇𝑎𝑔], 𝑥𝑢 = [𝐶𝑥] (46b) 

 

The map 𝛷𝑝5 can be used with the partition (46a), while the map 𝛷𝑝6 can be used with both 

partitions (46a-b). Therefore, two different solutions are identified: 𝛷6,1 for partition (46b) and 

𝛷6,2 for partition (46a). A first analysis of the possible configurations can be obtained by 

considering the minimum singular values and condition number reported in Table 10. The 

indexes’ values are comparable; therefore, the evaluation of the best structure has been 

performed analysing the reconstruction performance.  Figures (9-12) represent the estimation 

of the unmeasured states (ethanol and biomass concentration) for the input step change T1 and 

T2 described in Table 7. The best reconstruction capabilities are shown by configuration 𝛷𝑝5 

for both the states. This result may suggest that conditions calculated with Eqs. (35) are 

informative when the magnitude between the different configurations is significantly different, 

otherwise, it is necessary to evaluate the estimations capabilities by evaluating the estimator 

response for given input changes.  

 

Table 10. Mean condition number and minimum singular value for low order structures. 

 𝛷𝑝5(𝐶𝑃 open-loop) 𝛷𝑝6,1 (𝐶𝑋 open-loop) 𝛷𝑝6,2 (𝐶𝑃 open-loop) 

𝛴 2.15 8.75 1.53 

𝜎 0.47 0.12 0.99 
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Figure 9. Dynamic response of biomass concentration calculated with the virtual plant (blue continuous line), 

GO with map 𝛷𝑝5 (magenta dashed line), GO with map 𝛷𝑝6,1 (green dotted line), GO with map 𝛷𝑝6,2 (red 

dashed-dotted line) along the trajectory T1. 

 

Figure 10. Dynamic response of biomass concentration calculated with the virtual plant (blue continuous line), 

GO with map 𝛷𝑝5 (magenta dashed line), GO with map 𝛷𝑝6,1 (green dotted line), GO with map 𝛷𝑝6,2 (red 

dashed-dotted line) along the trajectory T2.  
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Figure 11. Dynamic response of ethanol concentration calculated with the virtual plant (blue continuous line), 

GO with map 𝛷𝑝5 (magenta dashed line), GO with map 𝛷𝑝6,1 (green dotted line), GO with map 𝛷𝑝6,2 (red 

dashed-dotted line) along the trajectory T1.

 

Figure 12. Dynamic response of ethanol concentration calculated with the virtual plant (blue continuous line), 

GO with map 𝛷𝑝5 (magenta dashed line), GO with map 𝛷𝑝6,1 (green dotted line), GO with map 𝛷𝑝6,2 (red 

dashed-dotted line) along the trajectory T2. 
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Validation 

The analysis carried out in the previous section leads to find the best estimation structure with 

four measured outputs. In order to validate the obtained results, a new test was carried out 

considering as reference trajectory the variation of the input temperature (𝑇𝑖𝑛) as shown in 

Table 7 (Case T3). Figures 13 and 14 show the dynamic behavior of biomass and product 

concentration respectively and confirm that the proposed structure can effectively reconstruct 

the unmeasured states also with different process conditions. It is worth noticing that the 

ethanol concentration is not innovated, but the correction of the other states has a positive 

impact also on its estimation.                                                                                                                                                

Using the same number and choice of measured outputs (43b) and partition between innovated 

and not innovated states (46a), the estimation task has been addressed using the extended 

Kalman filter (Figures 15-16). The main reason for using another algorithm as a measurement 

processor is to demonstrate that the estimator performance depends on the structure selection 

rather than estimation algorithm. EKF has been preferred for this validation because it is 

usually preferred in the industrial practice being it easy to implement and robust if adequately 

calibrated (Leu & Baratti, 2000; Salas et al., 2019). Results show that EKF can effectively 

reconstruct the unmeasured states, revealing that estimator structure design is the key step for 

a successful achievement of the estimation goals. The only difference between the two 

approaches is that the biomass calculated with the geometric observer is more affected by noise. 

This behavior can be explained by the presence of the Lie derivative in GO, which implies a 

higher sensitivity to measurement noise with respect to the EKF. 
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Figure 13. Dynamic response of biomass concentration calculated with the virtual plant (blue continuous line), 

open-loop model (magenta dashed line) and GO (red dashed-dotted line) for structure 𝛷𝑝5 along trajectory T3. 

 

 

Figure 14. Dynamic response of ethanol concentration calculated with the virtual plant (blue continuous line), 

open-loop model (magenta dashed line) and GO (red dashed-dotted line) for structure 𝛷𝑝5 along trajectory T3.  
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Figure 15. Dynamic response of biomass concentration calculated with the virtual plant (blue continuous line), 

open-loop model (magenta dashed line) and extended Kalman Filter (EKF) (red dashed-dotted line) for structure 

𝛷𝑝5 along trajectory T3. 

 

Figure 16. Dynamic response of ethanol concentration calculated with the virtual plant (blue continuous line), 

open-loop model (magenta dashed line) and extended Kalman Filter (EKF) (red dashed-dotted line) for structure 

𝛷𝑝5 along trajectory T3. 
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2.4 Conclusions  

In this chapter, the problem of monitoring biotechnological processes was addressed by 

providing a quick overview of the state variables generally monitored, and of the corresponding 

measurements techniques, but also the estimation methods that can be applied to compensate 

the lack of some of the measurements. Later, a focus was placed on a fermentation process for 

the production of ethanol, and in particular on the development of a soft sensor for estimating 

the unmeasurable states of the bioprocess. It was demonstrated that the estimation performance 

relies on an appropriate structure selection rather than the chosen measurement processor 

algorithm. An adjustable-structure geometric estimation approach was used, and the estimator 

structure constituted a design degree of freedom to improve its performance versus robustness 

behavior. The estimation structure design was based on estimability and detectability properties 

used together with a geometric approach. The analysis of the estimability measures showed the 

ill and well-conditioned structures (condition number of the observability matrix), and the 

poorest estimation performance for the given structure (minimum singular value of the 

observability matrix). From the implementation stage with simulations, it was found that the 

results agreed with the ones of the structural assessment when estimability measure values 

calculated for the different structures were significantly different. The used estimation 

algorithm was the geometric observer with proportional innovation, which offers simplicity of 

tuning and implementation. With the aim of showing that the proposed procedure for choosing 

the estimation structure can be applied to other estimation techniques, the extended Kalman 

filter was also used as measurement processor algorithm. The obtained results showed that the 

two estimators lead to good estimation performance, with the only difference that the geometric 

observer estimation is more sensitive to measurement noise, probably because of the presence 

of the Lie derivative in the correction term. Summarizing, the systematic geometric approach 

led to the best solution for the estimation problem, giving a structure that did not depend on the 

correction algorithm. The latter can be chosen according to the wishes of the personnel of the 

plant or developer experience. It is worth noticing that the systematic tuning procedure of the 

geometric approach was very useful for comparing the reconstruction capabilities of the 

different structures. The results here presented in terms of methodology could be applied to 

more complex biotechnological processes, as the obtainment of ethanol from cellulosic 

material, where the measurement devices for real-time application in the industry are still 

missing. In this case, the proposed approach can be used to detect which are the measurements 

that lead to the best reconstruction capabilities and invest in them. 
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Chapter 3: Control strategies for biotechnological 

processes 

After the bioprocess monitoring problem, possible control strategies will be discussed in this 

chapter. A brief overview of the state of the art is given. Next, simulation results regarding the 

implementation of control techniques for a fermentation bioreactor will be reported and 

discussed.  
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In order to develop a bioprocess that can meet the strict requirements imposed on product 

quality, along with the various constraints related to performance and productivity, it is 

necessary to have adequate control strategies. Unfortunately, designing a control system for 

processes like these is not an easy task for a variety of reasons such as the nonlinear 

characteristic of the system dynamics, the slow dynamic responses, the complex nature of the 

process due to the involvement of microorganisms, the lack of online sensors for measuring 

key process variables (i.e., biomass, substrate, product), and also the model uncertainties. As 

stated by Stanke & Hitzmann (2012), there are three basic phases that distinguish bioprocesses: 

i. Up-streaming, where filling, sterilization, and mixing represent the main operations 

that must be performed. 

ii. Cultivation/Fermentation, where cell growth, bioconversion, and production occur. 

iii. Downstreaming, where collection, separation, and concentration are generally 

required.  

Certainly, the step where it is most complicated to implement an automatic control is the 

cultivation phase, during which a combination of complex transport processes and numerous 

dynamical biochemical reactions occur. For this reason, it is absolutely critical to make sure 

that the environmental conditions in terms of pH, temperature, and dissolved oxygen are 

optimal so that the microorganisms can grow, multiply, and produce the desired product. 

Control of environmental variables is usually accomplished since there are sensors that proved 

measurements. Instead, the control of biological variables is difficult to carry out because there 

are no available measurements or, if there are, they are affected by significant delays. This 

represents a very discussed issue in literature. Indeed, biological variables represents the most 

informative ones, the trend of which help to understand if the process is evolving in the right 

direction and have a great influence on the efficiency of subsequent units, and thus on the target 

achievement. For this reason, the bioreactor represents undoubtedly the most difficult 

operational unit to control, but also the most important.                                                                                                                      

This chapter focuses on the problem of controlling bioprocesses, for this purpose a brief review 

of the control strategies of the most analyzed/controlled variables among the physical, 

chemical, and biological ones will be presented. Next, the result of the examined case study 

will be reported. Indeed, to complete the analysis conducted in the previous chapter, the 

implementation of different control strategies for a fermentation bioreactor will be evaluated. 

In addition, the obtained performance will be assessed considering both dynamic state trend 

and controller performance indexes.  
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3.1 General aspects of bioprocess control problem 

The main purposes of implementing a control strategy in a bioprocess are the following:  

• Overcome any form of malfunction 

• Maximize the process yield  

• Maximize the productivity and the product quality  

• Prevent the product inhibition minimizing the formation of unwanted by-products 

• Maintain/Ensure an optimal environment for the growth of microorganisms, and thus 

for product formation 

• Ensure that the final product meets the regulatory standards imposed, as well as the 

necessary levels of quality and safety 

Some of these goals can be guaranteed/achieved by implementing standard control algorithms. 

For example, bioreactors are generally equipped with probes for automatic control of 

temperature, pH, dissolved oxygen, and even the addition of antifoaming agents (Stanke & 

Hitzmann, 2012). However, these are not always sufficient solutions. The next section will 

present a brief state of the art of bioprocess control, along with recent advances reported in the 

literature.  

3.2 Overview of bioprocess control techniques 

T control  

As already explained, temperature is one of the variables usually controlled in a bioprocess, 

and through which indirect control of key unmeasurable variables such as product composition 

can be realized. Typically, the control of bioreactor temperature is realized by manipulating the 

flow rate of water in the cooling jacket using a pump. The opening of the valve allows the flow 

to be regulated, maintaining the required temperature. However, since bioprocesses like 

fermentation exhibit a strongly nonlinear nature, temperature control can become a challenging 

task. Several efforts have been made over the years in order to obtain improvements, as 

demonstrated by the following papers on this topic. Nagy (2007) developed a detailed 

analytical model describing the dynamic performance of a continuous fermentation bioreactor 

for ethanol production. This model simulating the real process was then used to generate so-

called training data to develop a feedforward artificial neural network (ANN). This ANN model 

was then implemented as an internal model in a MPC control algorithm to predict control 

actions. The performance of the so-called Neural Network model based predictive control 
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(NNMPC) was compared with that of Linear Model Predictive Control (LMPC) and 

proportional-integral-derivative (PID) control, and the results obtained have demonstrated the 

inadequacy of the traditional controllers. Moreover, the robustness of the proposed NNMPC 

was evaluated not only against set-point change, but also against temperature measurements 

affected by noise. Based on the same model, an efficient nonlinear MPC together with 

Nonlinear Prediction and Linearisation (MPC-NPL) was developed by Ławryńczuk (2008) to 

control the temperature of the yeast fermentation bioreactor. The MPC-NPL algorithm showed 

a good control accuracy and good disturbance rejection abilities in presence of noisy 

measurements and process disturbances. An inverse neural network (INN) controller for the 

temperature profile in an ethanol production process was studied (Imtiaz et al., 2013). Its 

performance evaluated by the mean square error (MSE) criterion was found to be better than 

that of conventional PID controller, which also resulted in a higher amount of ethanol 

produced. In order to overcome the problem related to the significant offset error that 

characterizes fractional order IMC-PID (FOIMC-PID) controllers for nonlinear processes such 

as fermentation, Pachauri et al. (2017) designed a modification. Indeed, an extra proportional 

feedback loop was added, which increases the overall gain of the system and leads to the 

modified control structures (MFOIMC-PID). A metaheuristic optimization algorithm (water 

cycle algorithm, WCA) was subsequently implemented to tune the controller parameters, 

leading to the final WMFOIMC-PID control structure. Fonseca et al. (2013) developed a fuzzy-

PI controller together with a split range control strategy to regulate the fermentation 

temperature. Its performance was compared with that of a conventional PI, and a reduction in 

control effort and total demand of utilities were observed. A MIMO control system was 

proposed by Imtiaz et al. (2014), which involves an auto regressive moving average (NARMA) 

neuro controller for temperature control, and a two degree of freedom PID (2DPF-PID) was 

used to control pH and dissolved oxygen. The performance of the controllers was also tested 

at rapid set-point change, and satisfying results were obtained in terms of response time, 

residual error reduction and delay time. Instead, a temperature control algorithm based on 

Takagi-Sugeno approach was designed by Flores-Hernández et al. (2018). They also proposed 

a new nonlinear representation of the fermentation process, by means of a T-S model, that can 

better reproduce/describe the nonlinear dynamics, allowing a wider range of applications of the 

control algorithms. Recently, Kumar et al. (2019) successfully designed and tested an internal 

model control based proportional-integral-derivative (IMC-PID) controller for a fermentation 

bioreactor and Bakošová et al. (2019) studied the implementation of a robust model-based 

predictive control with integral action (RMPC-IA) to control a biochemical reactor. The 
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performances were compared with those of NN predictive control, and the results showed that 

it was outperformed by RMPC-IA, which guaranteed maximum product yield and minimum 

energy consumption.  

 

DO control  

The dissolved oxygen (DO) concentration is another important process parameter influencing 

the cell viability and the process yield. It is one of the most controlled variables and this task 

is usually accomplished by regulating the mixture agitation in the bioreactor, and in particular 

by manipulating the stirrer speed. Several studies have been carried out over the years on this 

topic, trying to design an efficient DO concentration controller. An important contribution is 

that of Gomes & Menawat (2000), who developed a Model-Based Geometric Algorithm 

(MGA) to control the DO concentration in fermentation processes. Two different components 

can be identified in this approach: the predictor, whose task is to estimate the DO concentration 

one time step ahead based on the profile of state variables in time; the controller, which 

calculates the control action using the estimated values. Its performance was evaluated and 

compared with that of IMC and PI controllers, both through simulations and through the online 

implementation for DO control during the manufacturing process of an antibiotic. Ertunc et al. 

(2009) implemented conventional PID and self-tuning generalised minimum variance (GMV) 

control algorithms to track the dissolved oxygen concentration in a batch reactor. Two set-point 

variations were examined to evaluated performance of the two algorithms in comparison. The 

results showed that better performance can be obtained with the self-tuning generalised 

minimum variance (STGMV) algorithm than the conventional PID.  Chitra et al. (2018) 

proposed a Model Reference Adaptive Control (MRAC) scheme to control DO in an aerobic 

fermentation process. The comparison between the performance of the proposed MRAC 

strategy and a conventional PI controller revealed that the former provides better tracking 

performance than the PI controller. Butkus et al. (2021) developed an adaptive control system 

for controlling the set-point and rejecting disturbances of the dissolved oxygen concentration. 

The gain scheduling of PID (PI) controller is used, which is based on the controller input and 

output signals eliminating the need for online measurements of process variables to develop 

gain scheduling algorithms. The authors also designed control algorithm for set-point tracking 

and disturbance rejection during DO concentration control for the bioreactor, which operated 

both in batch and fed-batch mode. The performance of this control system was evaluated 



64 

 

considering extreme operating conditions, and the results showed significant advantages of the 

proposed control solution compared to conventional PI control.  

 

pH control 

As reported by Najafpour (2006), pH is generally kept constant during the fermentation process 

since it could change with the metabolic product of the microorganism and significantly affect 

cell growth and product formation. For this reason, it is necessary to control it, and this is 

usually done by regulating the flow rate of acid/base. Together with the temperature, it belongs 

to those variables that are chosen first to be controlled during a bioprocess. As explained by 

Gnoth et al. (2010), the reason for this is that pH and temperature affect both the specific growth 

rate and the product formation rate. However, the impact that the temperature has on the 

specific growth rate is greater, and therefore pH control does not receive the same attention 

(Simutis & Lübbert, 2015). Indeed, only few papers can be found in the literature that have 

investigated its control.  Mészáros et al. (2004) proposed the use of ANN models to identify 

and control pH, together with DO concentration, for a fermentation process with a 

Saccharomyces cerevisiae-based culture. An adaptive term was added to the control scheme, 

resulting in more robust regulatory and tracking performance. Another work worth mentioning 

is that of Gnoth et al. (2010), who proposed an adaptive controller for the pH of the 

fermentation of a recombinant protein production process. Reductions in the pH value and 

corresponding decreases in the base consumption signal were observed during the whole 

process by means of the application of the gain scheduling technique. This represents a PID 

control technique suitable for nonlinear processes with dynamics influenced by operating 

conditions such as biotechnological production process and that allows the controller 

parameters to dynamically adapt to changes due to process dynamics.   

Biomass, substrate, and product control 

During a bioprocess, in addition to physical and chemical parameters, biological parameters 

such as biomass, substrate and product concentration must also be collected. However, the lack 

of reliable biological sensors makes it poorly possible to obtain feedback of biological 

information. This is undoubtedly the main obstacle to the introduction of advanced controls. 

As seen in the previous chapter, the issue of lack of measurements, needed to implement control 

strategies, is usually handled with estimation techniques, which are a cheaper alternative to 

biosensors.  Although bioprocesses with a deficiency of available online sensors represent the 
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majority, there are still few works in the literature on this topic. Some of them are reported 

below. Ajbar & Ali (2017) proposed an advanced Nonlinear Model Predictive Control 

(NLMPC) strategy to control a continuous fermentation process. The Kalman filter estimation 

algorithm was applied to reconstruct the output states, which were also corrected by the 

additive disturbances estimates. Ethanol concentration, productivity, and the inverse of 

productivity were chosen as controlled variables. Simulation results revealed that satisfactory 

closed-loop performance can be obtained for both servo and regulatory control problems. A 

standard PI controller was also investigated for comparison and found to be reasonable when 

the product concentration was used as the controlled variable, but it couldn’t work properly 

when the productivity was the controlled output. In all cases, and regardless of control 

algorithm used, the closed-loop responses suffered from slow dynamic. The robustness of 

NLMPC algorithm in the face of model-plant mismatch was also tested and results showed that 

it is able to reach the control objectives even in presence of parametric errors in the model. 

Arndt & Hitzmann (2004) presented a substrate control system which demonstrated to be able to 

control Saccharomyces cerevisiae cultivations also at low glucose concentration. The glucose 

concentration measurements were determined using a special flow injection analysis (FIA). An 

extended Kalman filter (EKF) was applied for smoothing glucose measurements as well as for 

the prediction of glucose and biomass concentration, the maximum specific growth rate, and 

the volume of the culture broth. Then, the predicted values were used for feedforward/feedback 

control. The results obtained showed that the combination of a rapid glucose measurement 

method with an estimation technique makes it possible to control glucose composition even at 

low setpoint levels. Petre et al. (2021) developed an advanced control strategy for a 

fermentation bioreactor for ethanol production. The proposed control scheme included two 

control loops, one for temperature and the second for substrate concentration. Moreover, a state 

observer for reconstructing biomass composition, a sliding mode observer (SMO) for 

estimating substrate concentration, and an estimator for reconstructing specific reaction rate 

were also included. Both loops were based on adaptive control laws. The results obtained are 

encouraging, and despite the disturbances and uncertainties evaluated to test control 

performance, the adaptive control structure has proved to achieve the control objective, i.e., a 

substantial amount of ethanol and a low level of residual substrate. In other works, the 

possibility of having both online and offline measurements of biological variables has been 

considered. Persad et al. (2013) designed a decoupled input-output linearizing controller 

(DIOLC) as an alternative advanced control strategy for controlling a fermentation process 

where Saccharomyces cerevisiae were used. In order to achieve defined ethanol and biomass 
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production, control of substrate and dissolved oxygen was realized by manipulating glucose 

feed and air flow rate, respectively. It was assumed that only substrate and oxygen 

concentrations could be measured online, while biomass and ethanol compositions were 

available as offline measurements. The performance of the proposed controller was then 

compared with that of a PID controller. The results showed that DIOLC performance was better 

in tests where an accurate response to simultaneous changes in substrate and dissolved oxygen 

trajectories was required. Moreover, it has demonstrated better performances even in the 

presence of perturbations of significant parameters of the process model. Dewasme et al. (2010) 

presented an adaptive Reference Signal Tracking (RST) control scheme for regulating ethanol 

concentration in a fed-batch culture of Saccharomyces cerevisiae. The main objective of this 

work was to demonstrate the efficiency and robustness of this controller in experimental 

applications from laboratory to industrial scales. The basic law of the controller was to regulate 

ethanol composition by manipulating the inlet flow rate to the fed-batch system. The ethanol 

concentration was measured online by a specific probe, while other offline measurements by 

gas chromatography were available for validation reasons. Regardless of the bioreactor scale, 

the investigated controller showed good performance and reliability under different conditions. 

Compared with conventional open-loop operations and other closed-loop PID-like control 

strategies, this particular closed-loop control scheme provided robust ongoing control and 

significant productivity.  

 

 

3.3 Different control strategies for a yeast fermentation bioreactor  

In this section, the problem of controlling a fermentation bioreactor for ethanol production will 

be addressed. A classic PI algorithm was applied for its resolution, which was proved to achieve 

the same results obtainable with more sophisticated techniques such as neural networks. 

Moreover, it was decided to implement a control system also for the product concentration by 

following two different approaches. First, a cascade control was developed in which the master 

is the ethanol composition controller that determines the temperature set-point. In this case, 

ethanol measurements affected by time delay were considered available, with the aim of 

improving the control system performance and making sure that it can achieve the target 

product composition, even in presence of disturbances. Then, the implementation of a MIMO 

system, where reactor temperature and product composition are both controlled, was evaluated. 
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An inferential control was used for ethanol concentration, thanks to the presence of an estimator 

that reconstructed the composition of unmeasurable ethanol.  

3.3.1 Bioreactor model  

The system here investigated is the same for which, in the previous chapter (2.3.1), the 

monitoring problem was discussed. The model taken as a reference was developed in detail by 

Nagy (2007) and it describes the dynamic behaviour of the following six states: biomass 

concentration (𝐶𝑋), ethanol concentration (𝐶𝑃), substrate concentration (𝐶𝑆), dissolved oxygen 

concentration (𝐶𝑂2
), reactor temperature (𝑇𝑟), and jacket temperature  (𝑇𝑎𝑔). For the sake of 

clarity, only the mass and thermal energy balances of the analyzed system will be reported 

(Eqs. 47-52), omitting the values of model parameters and nominal operating conditions, as 

well as all the other relationships, for which the reader is referred to the previous chapter.  

𝑑𝐶𝑋

𝑑𝑡
= 𝜇𝑋 𝐶𝑋  

𝐶𝑆

𝐾𝑆 + 𝐶𝑆
𝑒−𝐾𝑃𝐶𝑃 −

𝐹𝑒

𝑉
𝐶𝑋 (47) 

𝑑𝐶𝑃

𝑑𝑡
= 𝜇𝑃𝐶𝑋

𝐶𝑆

𝐾𝑆1 + 𝐶𝑆
𝑒

−𝐾𝑃1 𝐶𝑝 −
𝐹𝑒

𝑉
 𝐶𝑃 (48) 

𝑑𝐶𝑆

𝑑𝑡
= −

1

𝑅𝑆𝑋
𝜇𝑋𝐶𝑋

𝐶𝑆

𝐾𝑆 + 𝐶𝑆
𝑒−𝐾𝑃𝐶𝑃 −

1

𝑅𝑆𝑃
𝜇𝑃𝐶𝑋

𝐶𝑆

𝐾𝑆1 + 𝐶𝑆
 𝑒−𝐾𝑃1𝐶𝑃 +

𝐹𝑖

𝑉
𝐶𝑆,𝑖𝑛 −

𝐹𝑒

𝑉
𝐶𝑆 (49) 

𝑑𝐶𝑂2

𝑑𝑡
= 𝑘𝑙𝑎 (𝐶𝑂2

∗ − 𝐶𝑂2
) − 𝜇𝑂2

1

𝑌𝑂2

𝐶𝑋

𝐶𝑂2

𝐾𝑂2
+ 𝐶𝑂2

 (50) 

𝑑𝑇𝑟

𝑑𝑡
= (

𝐹𝑖

𝑉
) (𝑇𝑖𝑛 + 273) − (

𝐹𝑒

𝑉
) (𝑇𝑟 + 273) − 𝜇𝑂2

1

𝑌𝑂2

𝐶𝑋

𝐶𝑂2

𝐾𝑂2
+ 𝐶𝑂2

 ∆𝐻𝑟

32 𝜌𝑟 𝐶ℎ𝑒𝑎𝑡,𝑟

−
𝐾𝑇𝐴𝑇 (𝑇𝑟 − 𝑇𝑎𝑔)

𝑉 𝜌𝑟  𝐶ℎ𝑒𝑎𝑡,𝑟
 

(51) 

𝑑𝑇𝑎𝑔

𝑑𝑡
= (

𝐹𝑎𝑔

𝑉𝑗
) (𝑇𝑖𝑛,𝑎𝑔 − 𝑇𝑎𝑔) +

𝐾𝑇𝐴𝑇(𝑇𝑟 − 𝑇𝑎𝑔)

𝑉𝑗𝜌𝑎𝑔𝐶ℎ𝑒𝑎𝑡,𝑎𝑔
 (52) 

 

Introducing the state vector in the following form:  

𝒙 = [𝐶𝑋 , 𝐶𝑃, 𝐶𝑆, 𝐶𝑂2
, 𝑇𝑟 , 𝑇𝑎𝑔] (53) 

 

But also output measured vector y defined later, and the input vector:  

𝒖 = [𝐹𝑖, 𝐹𝑎𝑔] (54) 
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Then, the system dynamics can be compactly written as:  

𝑑𝒙

𝑑𝑡
= 𝒇(𝒙, 𝒖) (55) 

𝒚 = 𝒉(𝒙) (56) 

 

Where 𝒇(𝒙, 𝒖) is the vector field of the system and 𝒉(𝒙) is the vector relating states and 

measured outputs. 

 

3.3.2 Control system design  

As seen so far, the quality of the final products represents an essential parameter to be 

controlled in the bioreactor. The objective of the controller is to achieve the desired 

concentration as early as possible in the presence of disturbances and noise. This task has been 

solved by studying different situations with respect to measured outputs. First, only 

temperature measurements (reactor and cooling agent) are considered available, then the output 

vector is the following: 

𝒚𝐼 = [𝑇𝑟(𝑡), 𝑇𝑎𝑔(𝑡)] (57) 

As second possible options, ethanol concentration is available with delay (𝑡𝑑) due to the time 

required by the analyser to perform the measurement, with output vector described by Eq. (58): 

𝒚𝐼𝐼 = [𝐶𝑃(𝑡 − 𝑡𝑑), 𝑇𝑟(𝑡), 𝑇𝑎𝑔(𝑡)] (58) 

 

The final case is when substrate and oxygen concentration can be measured online along with 

temperature, and the output vector is:  

𝒚𝐼𝐼𝐼 = [𝐶𝑆(𝑡), 𝐶𝑂2
(𝑡), 𝑇𝑟(𝑡), 𝑇𝑎𝑔(𝑡)] (59) 

 

Substrate and dissolved oxygen concentration measurements have been considered online, 

without delay, according to the precious chapter and a review on the available sensors for 

biosystems (Holzberg et al., 2018). 
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Controllability 

Controllability of a n-dimensional linear system, m inputs and l outputs in the form (66) can be 

assessed by considering the controllability matrix 𝑳𝑐 (61) 

𝑑𝒙

𝑑𝑡
= 𝐀𝒙 + 𝐵𝒖, 𝒚 = 𝐶𝒙 , 𝒙 ∈ ℜ𝑛, 𝒖 ∈ ℜ𝑚, 𝒚 ∈ ℜ𝑙 (60) 

𝐿𝑐 = [𝐁 𝐀𝐁 𝐀2𝐁 … 𝐀n−1𝐁] (61) 

 

This definition can be used to assess local controllability of a nonlinear system if A is the 

Jacobian matrix calculated at the reference conditions and the coefficients of B are the 

derivative of the functions describing the dynamics of the states with respect to the inputs. 

Controllability is verified if the rank of matrix 𝐋𝑐 is equal to the dimension of the state vector. 

By taking the Jacobian matrix of (47-52), it is possible to verify that the system is locally 

controllable when coolant and inlet flow rates,  𝐹𝑎𝑔 and 𝐹𝑖, can be both manipulated. The system 

is still locally controllable when only 𝐹𝑎𝑔 is manipulated because kinetic parameters and mass 

transfer coefficient depends on reactor temperature.  

 

Observability 

Real-time information about concentration of product, substrate and biomass is the key to 

controlling and optimizing the bioreactor.  When these variables are not measured online, soft 

sensors can be used to obtain information on their dynamics if observability is satisfied.   

Observability of a n-dimensional linear system, m inputs and l outputs in the form (60) can be 

assessed by considering the observability matrix 𝑳𝑜 in Eq. (62): 

𝑳𝑜 = [𝐂 𝐂𝐀 𝐂𝐀2 … 𝐂𝐀n−1]𝑇 (62) 

 

In case that only temperature measurements are available, the system is not observable 

therefore it is not possible to reconstruct the dynamics of all the states. Local observability is 

satisfied when the output vector 𝒚𝐼𝐼𝐼 is considered, as demonstrated by the results shown before.   

 

Temperature control  

Because of the controllability property, it is theoretically possible to drive the system to the 

required conditions for all the six states by using only one manipulated variable. When 
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considering that only temperature measurements are available, the first proposed solution is to 

design a temperature controller using the coolant flow rate as manipulated variable. 

Temperature set-point is selected such that the required product composition is obtained. A 

schematization of the proposed control structure is shown in Figure (17). A PI from IMC 

algorithm (Skogestad, 2003) is used to control the output and a step-response identification 

method is used to obtain the input-output model. 

 

 

Figure 17. Configuration of feedback temperature control.  

 

Cascade control with concentration delayed measurements 

Even if controllability is satisfied, some changes in the process conditions (disturbances) may 

cause a discrepancy between the desired species concentration and actual values even if 

temperature is maintained at set-point. In this case it could be useful to add another control 

loop that guarantees the respect of product quality. Indeed, this variable generally influences 

the successive separation process. As it can be observed in Figure (18), the delayed ethanol 

concentration measurement has been used in a cascade arrangement, where the outer loop 

exploits a discrete regulator to keep the product concentration around a desired value, while 

the inner loop guarantees that the bioreactor temperature was maintained at a predetermined 

set-point. The delay in the composition measurements of the product has been included in the 

simulation so that the updated 𝐶𝑃 value was available only after 18 minutes. The use of a 

cascade control guarantees a faster response because temperature measurement is continuously 

available, while the outer loop reduces, when necessary, the offset for the ethanol 

concentration.   

 

Figure 18. Configuration of cascade control, with ethanol concentration delayed measurements. 
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Inferential control  

When ethanol concentration measurement is not available online, but the system is observable, 

that is the case of measured output 𝒚𝐼𝐼𝐼, inferential control can be used to ensure product 

quality. This strategy is based on the state estimator reported in the previous chapter. The 

ethanol concentration has been inferred by applying the extended Kalman filter, which is one 

of the most widely used estimation techniques for monitoring bioprocesses (Dewasme et al., 

2013).  The estimated value has been used in a classical feedback control strategy manipulating 

the inlet flow rate. This control solution involves two loops, one for ethanol composition and 

the other for reactor temperature (Figure (19)).  

 

 

Figure 19. Configuration of MIMO control (2x2 system), with estimation of ethanol composition 

measurements. 

 

3.3.3 State Estimation 

The development of a state estimation for the bioreactor in (53-58) has been discussed in the 

previous chapter. To facilitate understanding, the obtained estimator structure is reported here 

again. The estimated states have been partitioned in innovated (𝒙̂𝑖) and not innovated (𝒙̂𝑢) 

states (69-72), defined in (73), following the procedure reported in Salas et al. (2019). Here it 

is reminded that the innovated states are dynamic states of the estimation model whose changes 

are captured by the secondary measurements (69), while the not innovated states are inferred 

by the estimation model in an open-loop mode (Porru & Özkan, 2017).  
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𝑑𝒙̂𝑖

𝑑𝑡
= 𝒇𝑖(𝒙̂𝑖, 𝒙̂𝑢, 𝒖) + 𝑲(𝒚 − 𝒚̂), 𝒙̂𝑖(𝑡0) = 𝒙̂𝑖,0 (69) 

𝑑𝑥̂𝑢

𝑑𝑡
= 𝒇𝑢(𝒙̂𝑖, 𝒙̂𝑢, 𝒖), 𝒙𝑢(𝑡0) = 𝒙̂𝑢,𝑜=0 (70) 

𝐾 = 𝑷(𝑡)𝑯𝑇𝑹−𝟏 (71) 

𝑷̇(𝑡) = 𝑷(𝑡)𝑭(𝑡) + 𝑭𝑻(𝑡)𝑷(𝑡) + 𝑸(𝑡) −  𝑲(𝑡)𝑯(𝑡)𝑷(𝑡), 𝑷(𝑡0) = 𝑷0 (72) 

𝒙̂𝑖 = [𝐶̂𝑋 , 𝐶̂𝑆, 𝐶̂𝑂2
, 𝑇̂𝑟 , 𝑇̂𝑎𝑔], 𝒙𝑢 = [𝐶̂𝑃] (73) 

 

𝑭(𝑡) is the Jacobian of the vector field 𝒇𝒊( 𝒙̂𝒊, 𝒙̂𝒖, 𝒖), calculated with respect to the innovated 

states, 𝑷(𝑡) is the error covariance matrix of the innovated states, 𝑯(𝑡) is the matrix of the 

derivative of the map h with respect to the states, Q and R are, respectively, the covariance 

matrix of the model and measurements errors (Jazwinski, 2007). The constant matrix Q, R, and 

P0 are tuning parameters of the estimation model and they have been calculated minimizing 

the error between the states calculated with the simulated plant and the estimator along a 

reference trajectory.  

As demonstrated in the previous chapter, the estimator is more robust and efficient with the 

selected configuration with respect to the use of a full order structure, in which all states are 

innovated. It has been proved that ethanol concentration trajectory is well reconstructed by the 

EKF even if it is not innovated and it can be used to design an inferential control.  

 

3.3.4 Performance Indexes  

In order to optimize the choice of the best control structure among those proposed here, the 

time-integral performance criteria have been used. In particular, the integral of the squared 

error (ISE), the integral of the absolute value of the error (IAE) and the integral of the time-

weighted absolute error (ITAE) have been calculated to compare the performance of the 

analysed control structures. The indexes have been calculated using the following equations 

(74-76):  

𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡
∞

0

 (74) 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
∞

0

 (75) 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
∞

0

 (76) 
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Since the goal of the control structure is to obtain the desired ethanol concentration, e(t) is the 

error signal obtained as the difference between the required ethanol concentration and the 

output signal. As showed in Eq. (74), the ISE error criterion integrates the square of the error 

over time. It penalizes large errors relative to small errors, since their square is significantly 

bigger. The ITAE (Eq. (76)) integrates the absolute error, multiplied by time, over time. This 

criterion obviously weights more significantly the errors that occur after a long period of time 

than those occurring at the beginning of the system response. Instead, the IAE (Eq. (75)) 

minimizes the error calculated by the previous two criteria since it integrates it over time, 

without adding any weight to the errors in the system response. 

3.3.5 Results 

This section analyses and compares the performance of different designed controllers for 

disturbance rejection. Three control strategies are compared: 

i. Reactor temperature control (SISO system) 

ii. Cascade control using ethanol delayed measurements where temperature control is the 

secondary loop 

iii. Inferential control for ethanol concentration and reactor temperature control (2x2 

MIMO system). 

In the simulations, step variations of the following three inputs have been considered as 

disturbances: the inlet temperature (𝑇𝑖𝑛); the substrate inlet concentration (𝐶𝑠,𝑖𝑛); the biomass 

specific growth rate (µ𝑋), which could change due to a pH variation or the presence of possible 

inhibitors. The steps used to excite the system are reported in Figure 20. 

SISO control configuration 

The results of the SISO configuration as the three inputs vary are reported in Figures 21-23. In 

detail, Figures 21(a) and 21(b) show the simulated closed-loop response of the bioreactor 

temperature 𝑇𝑟 and the product concentration 𝐶𝑝 respectively, with only temperature feedback 

control, along with the manipulated variable 𝐹𝑎𝑔, when a step-change in 𝑇𝑖𝑛 is introduced. It 

can be observed that changes in inlet temperature have a small effect on ethanol composition 

(Figure 21(b)) compared the other two disturbances.  Indeed, when 𝑇𝑖𝑛 varies, the SISO 

configuration with only feedback temperature controller is able to maintain the ethanol 

concentration at the required set-point. Figures 22(a)-(b) and 23(a)-(b) represent the simulated 
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closed-loop trend of the variables 𝑇𝑟 and the ethanol concentration 𝐶𝑝, along with the 

manipulated variable 𝐹𝑎𝑔, when varying 𝐶𝑠,𝑖𝑛  and 𝜇𝑋, respectively.  

 

Figure 20. Disturbance trajectories used to analyse the control for three runs: inlet temperature (a), substrate 

inlet concentration (b), and biomass growth factor (c). 

 

 

Figure 21. SISO control performances when 𝑇𝑖𝑛 vary: (a) controlled reactor temperature; (b) ethanol 

concentration (open-loop); (c) manipulated coolant flow rate. 
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Figure 22. SISO control performance when 𝐶𝑆,𝑖𝑛 vary: (a) controlled reactor temperature; (b) ethanol 

concentration (open-loop); (c) manipulated coolant flow rate. 

 

 

Figure 23. SISO control performance when 𝜇𝑋 vary: (a) controlled reactor temperature; (b) ethanol 

concentration (open-loop); (c) manipulated coolant flow rate. 
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 In all three cases, results show that temperature controller cannot guarantee the desired value 

of ethanol composition and an offset is registered (Figs. 21(b), 22(b), and 23(b)). The offset is 

significantly higher when the reactor conditions imply a change in the biomass growth rate, as 

it may happen when 𝜇𝑋 varies. These results are confirmed by the performance index values 

reported in Table 11. 

SISO 

 IAE ISE ITAE 

𝑻𝒊𝒏 62.87 1.42 9.91E+04 

𝑪𝒔,𝒊𝒏 340.32 115.39 4.62E+05 

𝝁𝑿 1.76E+03 2.44E+03 2.98E+06 

Table 11. Controller performance indexes for SISO control structure. 

 

Cascade control configuration 

In Figures 24, 25, and 26 the results obtained when cascade control is used are reported. As 

expected, this control structure has proven to be more effective despite the time delay of ethanol 

composition measurements. This can be confirmed by evaluating the error indices shown in 

Table 11 and 12. The cascade controller is more performing than the SISO system, thus 

determining a smaller error and a faster achievement of the desired ethanol composition. It is 

possible to observe, in presence of disturbances, how the ethanol composition can quite well 

follow the setpoint value by the action of outer loop (Figs. 24(b), 25(b), 26(b)). In this way, the 

set-point of 𝑇𝑟 is modified in order to ensure the required product concentration. The 

temperature controller is effective to follow the set-point variations.  

 

Cascade 

 IAE ISE ITAE 

𝑻𝒊𝒏 5.85 0.04 9.10E+03 

𝑪𝒔,𝒊𝒏 44.12 7.52 6.08E+04 

𝝁𝑿 216.04 106.79 3.76E+05 

Table 12. Controller performance indexes for cascade control structure. 
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Figure 24. Cascade control performances when 𝑇𝑖𝑛 vary: (a) controlled reactor temperature; (b) ethanol 

concentration (open-loop); (c) manipulated coolant flow rate. 

 

 

Figure 25. Cascade control performance when 𝐶𝑆,𝑖𝑛 vary: (a) controlled reactor temperature; (b) ethanol 

concentration (open-loop); (c) manipulated coolant flow rate. 
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Figure 26. Cascade control performance when 𝜇𝑋 varies: (a) controlled reactor temperature; (b) ethanol 

concentration (open-loop); (c) manipulated coolant flow rate. 

 

MIMO control configuration 

In Figures 27, 28, and 29 the trends obtained with MIMO configuration are reported, where an 

inferential control is used for the ethanol composition. In this case, the inferred concentration 

control loop allows to maintain the product close to the set-point. As it can be observed in Figs. 

27(b), 28(b), and 29(b), in correspondence to the variations of 𝜇𝑋 factor, it can be observed that 

𝐶𝑝 moves further away from the setpoint value than when 𝐶𝑆,𝑖𝑛 disturbance is applied. 

However, the controller brings it back quickly enough to the desired value compared to the 

cascade control configuration. Therefore, the MIMO control system handles the situation of 

bioreactor temperature and composition control more effectively compared to other designed 

structures when disturbances include inlet temperature, substrate concentration, or conditions 

affecting the growth of microorganisms. The quality indexes reported in Table 13 confirm such 

considerations. 
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MIMO 

 IAE ISE ITAE 

𝑻𝒊𝒏 4.12 0.02 6.62E+03 

𝑪𝒔,𝒊𝒏 34.34 1.73 4.99E+04 

𝝁𝑿 164.02 27.38 3.04E+05 

Table 13. Controller performance indexes for MIMO control structure that used the inferential control for the 

ethanol concentration. 

 

 

 

Figure 27. MIMO control performances when 𝑇𝑖𝑛 vary: (a) controlled reactor temperature; (b) ethanol 

concentration (open-loop); (c) manipulated coolant flow rate; (d) manipulated inlet flow rate. 
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Figure 28. MIMO control performance when 𝐶𝑆,𝑖𝑛 vary: (a) controlled reactor temperature; (b) ethanol 

concentration (open-loop); (c) manipulated coolant flow rate; (d) manipulated inlet flow rate. 

 

Figure 29. Cascade control performance when 𝜇𝑋 vary: (a) controlled reactor temperature; (b) ethanol 

concentration (open-loop); (c) manipulated coolant flow rate; (d) manipulated inlet flow rate. 
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3.4 Conclusions 

The implementation of an adequate control system for biotechnological processes represents a 

particularly discussed topic. In this chapter, it has been shown that its presence is critical in 

order to meet the standards imposed by the industry in terms of quantity and quality. However, 

this is a difficult task due to the nonlinear nature of the process and the lack of sensors that 

provide real-time measurements of process variables. Analysis of the state of the art has made 

it clear that so-called biological variables are the most difficult to control. Regarding this, the 

case study presented here focused on the design and implementation of different control 

strategies for a fermentation bioreactor in order to achieve efficient and precise control of 

temperature and product composition. Performance comparison of the controllers designed 

showed that the temperature control was not able to maintain the ethanol concentration at the 

required set-point when disturbances varied substrate concentration in the bioreactor or when 

process conditions, such as pH or presence of inhibitors, affected the biomass growth rate. 

Thus, when significant disturbances are present, as the ones considered here, it is necessary to 

develop different control strategies that can efficiently eliminate disturbances effect on the 

product concentration.  In order to improve system performance, two different scenarios were 

considered: (i) online analyser for measuring ethanol concentration with significant delay; (ii) 

estimation of ethanol by means of secondary available measurements. In the first case, a 

cascade control was proposed, where temperature control received the set-point from ethanol 

concentration control loop. In this way, the offset on the product composition was reduced with 

respect to using only temperature controller. In the second scenario, an inferential control for 

the ethanol concentration in conjunction with the temperature controller was implemented. The 

2x2 MIMO control system outperformed the cascade structure, but the successful of this 

solution is due to the good performance of the estimation system and its robustness.   
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Chapter 4: A typical biotechnological process: the 

valorization and exploitation of waste biomass to produce 

bioethanol 

In this chapter, the production of second-generation ethanol from a waste biomass is 

investigated as a case study. Experimental results related to pre-treatment and fermentation 

processes will be reported and discussed.  
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The depletion of fossil resources and the growing economic and demographic pressures are 

major problems facing humankind. One of the most concerning consequences is the large 

environmental impact caused by significant greenhouse gas (GHG) emissions. Researchers are 

working to find sustainable solutions that can help reduce this impact, while also providing a 

constant supply of energy and goods encouraging a more sustainable economic model that 

moves away from the established fossil-based one (Guerrero et al., 2013; Nizami et al., 2017). 

In this scenario, lignocellulosic biomass waste, such as forestry residues, agricultural and food 

processing waste, represents a promising renewable source that can be exploited to produce 

energy, biofuels, and bioproducts. This is the idea behind the circular economy, which was 

proposed by the European Community in order to promote the use of biomass-based feedstocks 

and to create a sustainable model of economic growth. This approach involves integrating the 

principles of sustainability, circular economy, and bioeconomy, by converting renewable 

resources and waste into bioenergy and valuable products. In addition, by optimizing the 

biomass value in an integrated multi-output production chain (biorefinery), the circular 

economy aims to create a sustainable and more efficient way of revalorizing apparently low-

value materials (Nagarajan et al., 2021; Stegmann et al., 2020). At the same time, this can be 

helpful to the critical problem of waste disposal management. Indeed, although their organic 

nature, an improper disposal can lead to serious health and environmental damage (Alatzas et 

al., 2019; Cho et al., 2020). Food wastes and food industry wastes contribute significantly to 

this concern. As reported by Uisan et al. (2020), 1.3 billion tonnes are the amount of food 

wastes (FW) generated annually in the world, corresponding to an equivalent amount of 3.3 

billion tons of CO2, and is expected to increase as a result of continuous population growth and 

economic development. In recent decades the scientific community has made large efforts in 

improving waste management or otherwise reducing the accumulation of food waste by 

recycling it as a raw material to produce high value bioproducts. This is made feasible by the 

particularly attractive chemical composition. Although they can come from different sources, 

food industry waste boasts a composition rich in carbon and nitrogen. In particular, they show 

high level of carbohydrates (33%) such as starch, cellulose, hemicellulose, or lignin, proteins 

(10%), and lipids (15%) (Uisan et al., 2020), but also organic acids and smaller inorganic part 

(Cecilia et al., 2019). Food waste is generally exploited to produce high value bioproducts 

trough microbial fermentation (Gmoser et al., 2019; Mensah & Twumasi, 2017a, 2017b; Nair 

et al., 2015; Negro et al., 2014; Sadh et al., 2018), for the extraction of antioxidant compounds 

such as phenolics, vitamins, and carotenoids, but also functional groups such as functional 

lipids, proteins, and starches (Battistella Lasta et al., 2019; Bengardino et al., 2019; Catalkaya 
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& Kahveci, 2019; de Andrade Lima et al., 2019; Gopinatha Kurup et al., 2019; Phongthai et 

al., 2016; Wu et al., 2017). In addition, many works can be found in the literature regarding 

their use for the production of biogas (Xiong et al., 2019) through the more conventional 

approach of anaerobic digestion (Atelge et al., 2020; Oh et al., 2018; Pramanik et al., 2019; Xu 

et al., 2018) or through the recent electro-fermentation (Liu et al., 2019; Shanthi Sravan et al., 

2018; Sravan et al., 2018), biodiesel and biofuels (Bušić et al., 2018; Dhiman & Mukherjee, 

2021; Li & Yang, 2016), biochar (Novak & Johnson, 2018; Pahla et al., 2018), and immobilized 

enzymatic bioconversion (Feng et al., 2020; Ladole et al., 2018; Ma et al., 2014; Nadar & 

Rathod, 2019).                                                                                                                  

Noteworthy industrial food waste certainly includes brewery’s spent grain (BSG), which 

represents the main by-product of beer production and in particular the 85% of the total by-

products as reported by Contreras et al. (2021). Several papers and reviews are of interest to 

this lignocellulosic matrix (Bachmann et al., 2022; Contreras et al., 2021; Emmanuel et al., 

2022; Leite et al., 2019; Mathias et al., 2017; Mitri et al., 2022; Outeiriño et al., 2019), 

especially concerning its sustainable use as substrate for bioethanol production (Akermann et 

al., 2022; Barampouti et al., 2022; da Silva et al., 2020; Pinheiro et al., 2019; Rojas-Chamorro 

et al., 2018, 2020a; Wagner et al., 2022). Indeed, the production of second-generation ethanol 

represents one of the main targets/goals when considering alternative applications of cellulose-

hemicellulose-lignin composed feedstocks like this (Chiaramonti et al., 2012; Contreras et al., 

2021). Owing to its availability, low cost, renewable characteristics along with low levels of 

CO2 released during combustion, bioethanol is considered an attractive alternative to gasoline 

and has gained worldwide interest in recent decades (Anwar Saeed et al., 2018; Gupta & 

Verma, 2015). The high moisture content, which requires the involvement of drying processes, 

and the need to use chemical compounds to carry out a pre-treatment step in order to modify 

the complex recalcitrant lignocellulosic structure represent the main difficulties in developing 

a low-cost bioprocess for BSG valorization (Contreras et al., 2021). In this chapter, a way to 

exploit the brewer’s spent grain as a renewable waste biomass will be discussed. In particular, 

its origin, composition and a general outline of all its possible applications are reported. In 

more detail, my experimental work carried out during the abroad research period will be 

presented, which is divided into a first phase of pre-treatment and a second phase of 

fermentation. Supported by the various examples available in the literature, the chemical 

approach, and in particular dilute acid hydrolysis, was chosen as the most adopted pre-

treatment to increase the digestibility of the starting matrix as reported in the literature 

(Saravanan et al., 2022). For both steps, a design of experiments (DOE) was carried out, which 
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allowed to optimize the operating conditions under which to conduct the process. Experimental 

results for both steps will be shown and analyzed.  

4.1 Overview of general characteristics/properties and possible applications 

of BSG 

It is well known that beer is one of the oldest and most widely consumed beverages in the 

world, in particular is the third after water and tea as reported by Mitri et al. (2022). The 

brewing process represents one of the most economically significant since its world production 

has reached 1.94 billion hectolitres, while in Europe it is around 531 million hectolitres 

(Barthhaas_report_2020_en, n.d.). Although this work will not report in detail on the steps 

involved in brewing beer, for the purposes of the discussion it is enough to know that BSG 

(Figure 30) is derived from the wort preparation, after its filtration (Mussatto et al., 2006). As 

reported by Ikram et al. (2017), the amount of BSG produced annually by the brewing industry 

in the European Union is about 3.4 million tons, while global production reaches 39 million 

tons (Birsan et al., 2019). 100 kg of malt gives approximately 100-130 kg of fresh BSG, with 

a moisture content of 70-80%, equivalent to around 20 kg of BSG per 100 L of brewed beer. 

As reported by Mussatto (2014), this insoluble part generally made up of the husks of the barley 

malt grain along with the pericarp and the seed coat layer. However, depending on the type of 

the beer, it is possible that in addition to the barley malt grain there may be other cereal 

additions such as corn, rice, wheat, oats, rye, or sorghum. The next section will discuss and 

analyse in detail its chemical composition and possible applications of this valuable raw 

material. 
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Figure 30. Fresh brewer's spent grain (BSG). 

 

Table 14. Chemical composition of brewer’s spent grain (BSG) on a dry weight basis. 

Components           

[g kg-1] 

(Mussatto & 

Roberto, 2006) 

(Xiros et al., 

2008) 

(Waters et al., 

2012) 

(Meneses et al., 

2013) 

Cellulose 167.8 120 260 217.3 

Hemicellulose 

  Xylan 

  Arabinan  

284.2 

199.4 

84.8 

402 

NR 

NR 

222 

NR 

NR 

192.7 

136.3 

56.4 

Lignin 277.8 115 NR 194.0 

Proteins 152.5 142 221.3 246.9 

Ashes 46.0 33 11 41.8 
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4.1.1 Chemical composition of BSG 

Brewery’s spent grain consists of a heterogeneous mixture of cereal grain husks, pericarp, 

residual amounts of endosperm depending on the brewing regime applied, and the original 

barley grain coating layer (Steiner et al., 2015a). Table 14 summarises the chemical 

composition of BSG. Independently of the variations that can be observed in its composition 

in terms of the individual component concentration, this residue is predominantly composed of 

fiber (cellulose, hemicellulose and lignin) since barley malt husk is a lignocellulosic material. 

Hemicellulose and cellulose are fractions composed of sugars, of which xylose, arabinose and 

glucose are the most abundant mono-glycans as stated by Mussatto & Roberto (2006), 

comprising around 50% (w/w) of the BSG composition. Lignin and proteins are also significant 

constituents of BSG. In particular, lignin is a polyphenolic macromolecule responsible for 

maintaining the structural integrity and rigidity of the cell wall. Moreover, it contains several 

phenolic compounds, the most important of which are ferulic, p-coumaric, syringic, vanillic 

and p-hydroxybenzoic (Mussatto et al., 2007). Protein generally comprises 15% to 25% of the 

composition of BSG. The study conducted by Santos et al. (2003) showed that the protein 

fraction in oven dried BSG can be 15% to 24.2% and includes globulins, albumins, glutelins 

and hordeins. BSG also contains significant amounts of minerals, the most abundant being 

calcium, followed by magnesium, phosphorus and sodium (Meneses et al., 2013). Still, it is 

possible to find also iron, copper, potassium and manganese (Mussatto, 2009). Vitamins are 

also present in noteworthy quantities, in particular biotin, niacin, folic acid, choline, thiamine, 

pantothenic acid, riboflavin and pyridoxine  (Chetrariu & Dabija, 2020; Ikram et al., 2017). 

Finally, there are extractives formed by waxes, resins, tannins, essential oils, and lipids, among 

which triglycerides and fatty acids are the most abundant (Chetrariu & Dabija, 2020; Ikram et 

al., 2017; Mussatto, 2009). 

4.1.2 Potential applications of BSG 

Being a low-cost raw material, many efforts have been made to investigate BSG possible 

application in the field of animal and human nutrition, as feedstock for biofuels production, 

and in biotechnological processes through the extraction of value-added compounds. The most 

relevant studies in the literature are presented and discussed in the following paragraphs. 

BSG in animal feed 

Due to BSG low cost, availability, high protein and fiber content, spent grain has always been 

mainly used for different animals (cattle, fish, chickens, pigs and ruminants) feed, either in wet 
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or dried form (Mussatto, 2014), creating an output for this material and solving the problem of 

its disposal (Aliyu & Bala, 2011). It has been demonstrated that the combination of BSG with 

nitrogen sources such as urea can provide ideal nutrition for ruminants with all essential amino 

acids (Huige, 2006). As reported by Tang et al. (2009), the consumption of BSG or its 

derivatives by rats is responsible for beneficial effects on intestinal digestion, which are related 

to the glutamine-rich protein content, to a high content of non-cellulosic polysaccharides and 

small amounts of β-glucans. Other important benefits have been observed in other animals such 

as fish. A study conducted by Kaur & Saxena (2004) revealed that the substitution of rice with 

spent grain resulted in greater body weight gain attributed to the high-quality protein and 

essential amino acid content of a BSG-based diet. Aliyu & Bala (2011) examined the effect of 

BSG on the nutritional value of milk yield in dairy cattle observing that, compared to a maise-

based diet (45% w/w), an integration of BSG (45% w/w) leads to an increase in current milk 

yield, milk total solids content and milk fat yield. Although the major nutritional benefits of 

BSG consumption have been observed especially in dairy cattle, several efforts have been made 

to exploit all or part of this raw material in mixed forms and in different animals. In fact, as 

reported in Mussatto (2014), it is used as part of the poultry diet. However, most of the 

polysaccharides in the BSG cell walls, such as arabinoxylan and β-glucans cannot be digested 

by these animals. This problem is due to the lack of enzymes required for hydrolysis of the 

polymer chains and has been solved simply by adding the missing enzymes (xylanase and β-

glucanase) to the feed. 

BSG in human diet 

Several beneficial effects have been observed in the use of BSG or its components in the human 

diet, including accelerated transit time, increased faecal volume, reduced cholesterol and 

postprandial glucose levels (Mussatto, 2014). Further positive effects are associated with a 

significant reduction in contracting type II diabetes, obesity, diverticulitis, cardiovascular 

problems, or colorectal cancer (Steiner et al., 2015). This is due to the presence of biologically 

active compounds such as β-glucans which play an important physiological role in the body 

(Chetrariu & Dabija, 2020). This has led to increased interest in developing BSG fortified 

foods, which are considered functional food offering health benefits when combined with a 

balanced diet. The incorporation of spent grain in the manufacturing of bakery products such 

as bread, biscuits and snacks, was also evaluated in order to increase the fiber content. To make 

this possible, BSG is usually converted into flour as its grainy nature may alter the final 

product’s physical properties. In this way, the particle size is reduced, which is important to 
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make the final product acceptable to the consumer (Mussatto, 2014). BSG incorporation in 

food products was analysed by Lynch et al. (2016) at different levels (10-40% on a dry weight). 

The main effects observed were an increase in protein, fiber and amino acids content and a 

decrease in the starch level and calories. However, it is important to consider the possible 

sensory alterations that may occur. In fact, since it has a brown colour, it is recommended to 

use BSG only in colored products (bread, biscuits, etc.) to prevent colour alteration of the 

product. For a BSG addition higher than 20%, the colour is not the only property to be affected, 

but also the product structure, the volume, and the texture. According to Steiner et al. (2015), 

these problems can be prevented by replacing only 10% of normal flour with BSG. Besides 

bakery products, Özvural et al. (2009) investigated the production of Frankfurters sausages 

using BSG as a fat substitute to produce a meat product with high fiber and low-fat content. 

Other than a direct application of BSG as a substitute for other ingredients in food preparation, 

the extraction of phenolic compounds as additives represents a feasible valorisation route. As 

suggested by McCarthy et al. (2013), the addition of BSG extracts to food drinks such as fruit 

juices and smoothies can significantly improve the total phenolic content in the case of 

important differences with the originals. Further studies were conducted on the use of 

polyphenols and flavonoids extracted from BSG for the preparation of fish burgers using 

various bioactive powders (Spinelli, Conte, & del Nobile, 2016), and on the possibility of 

strengthening food products such as pasta and infant formulas using the extracted proteins 

(Nazzaro et al., 2018). 

BSG for ethanol production 

Biofuels obtained from the conversion of lignocellulosic materials are a viable alternative to 

fossil fuels since they are considered carbon neutral. Cellulosic bioethanol has received 

considerable global attention as a transport fuel for several benefits, among which its potential 

to reduce greenhouse gas emissions by 86% certainly stands out (M. Wang et al., 2007). Several 

studies were performed to obtain ethanol from the biological conversion of SBG using different 

pre-treatment techniques and fermentation conditions, leading to significantly different results 

in terms of ethanol yield.  White et al. (2008) compared the results obtained from acid pre-

treatment with HNO3, H2SO4 and HCl at different concentrations and found the former to be 

the most suitable for performing this step. The hydrolysate pre-treated with 0.16 N HNO3 and 

subjected to enzymatic hydrolysis, was subsequently fermented for 48 h at 30°C using two 

different yeast strains, Pichia stipitis NCYC 1540 and Kluyveromyces marxianus NCYC 1425, 

obtaining respectively 8.3 and 5.9 g L-1 ethanol, which correspond to 0.32 and 0.23 g ethanol 
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(g substrate-1) and 63% and 45% in terms of theoretical conversion.  Liguori et al. (2015) 

obtained a higher concentration of ethanol, combining an acid pre-treatment with H2SO4 with 

an alkaline treatment. The fermentation step was performed using the strain Saccharomyces 

cerevisiae NRRL YB 2293 and a comparison between the ethanol yield obtained using the 

BSG hydrolysate as a growth substrate with and without a supplement of yeast extract was 

shown. In the first case, an ethanol concentration of 12 gL-1 corresponding to 0.26 g ethanol 

(g substrate-1) was obtained, compared to 12.79 gL-1 ethanol and 0.28 g ethanol (g substrate-1) 

when the hydrolysate was enriched with nutrients. Therefore, the authors demonstrated that in 

both cases, similar concentrations of ethanol were achieved. The only difference is that 

enriching the medium with a nitrogen source improves performance in reducing fermentation 

time.  Mata et al. (2015) optimised the acid and enzyme BSG pre-treatments carried out 

sequentially by evaluating different combinations of reaction times and enzyme/BSG ratio 

values but keeping the acid amount and concentration constant. The maximum total sugar 

conversion obtained was 22.24%. Fermentation was then conducted at 30°C for 72 h using 

both a synthetic growth medium and BSG hydrolysates in order to evaluate the potential 

presence of inhibitors from the previous pre-treatment steps. Two different strains were used 

in this case as well, Pichia stipitis NCYC 1541 and Kluyveromyces marxianus NCYC 2791. In 

both cases the results showed that the fermentation efficiency is much higher in the case of 

synthetic medium (around 80%), and only 45.10% for P.stipitis and 36.58% for K.marxianus. 

The theoretical ethanol yield was 0.27 and 0.19 g ethanol (g substrate-1) respectively for 

P.stipitis and K.marxianus, while the actual was 0.0856 and 0.0308 g ethanol (g substrate-1). 

The low values of these yields compared to those obtained by White et al. (2008), were justified 

as a consequence of the presence of fermentation inhibitors form the pre-treatment steps.                                                                                                                                                                                

Overall, BSG represents a valuable raw material with potential for ethanol production. 

However, research efforts are still necessary to optimise the process conditions, develop green 

technologies for the pre-treatment steps, develop cheap enzymatic routes, and invest in 

genetically modified strains to improve the sugar-ethanol conversion. 

Extraction of value-added compounds from BSG 

As already mentioned, BSG represents an important and inexpensive source of value-added 

components such as carbohydrates, proteins, and lipids but it contains also phenolic compounds 

that have recently gained considerable interest for their valuable health-benefiting properties. 

In particular, due to their role in the prevention of chronic disorders, cancer and intracellular 

oxidative stress their recovery is attractive for manufacturers and scientists (Ikram et al., 2020). 
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Different levels of phenolic compounds have been found in BSG, but usually the 

hydroxybenzoic acids (HBA) content of BSG is lower than hydroxycinnamic acids (HCA). 

The most abundant among HBA is the syringic acid but their quantity can vary depending on 

the barley variety, the harvesting time, and the characteristics of the growing region. Regarding 

the HCA, those present in higher quantities are ferulic acid (FA) and p-coumaric acid (p-CA) 

(Mussatto et al., 2007), which are both contained in the outer layers of grain and remain in 

BSG after the entire brewery’s process. The recovery process of phenolic compounds can be 

summarised in the following steps: pre-treatment, extraction, isolation, and purification. The 

pre-treatment can include maceration, homogenisation, grinding and milling leading to the 

disruption of the cellular structure improving the recovery of bioactive compounds and 

increasing the mass transfer between the solvent and the biomass. In addition to the pre-

treatment techniques already mentioned, other methods such as autohydrolysis, acid, alkaline, 

and enzymatic pre-treatments can be useful in the breakdown of the biomass structure and 

access to the cell vacuole where the phenolics are contained. Among the different extraction 

techniques used to recover phenolic compounds, a differentiation can be made between 

conventional and non-conventional methods. The solid-liquid extraction (SLE) together with 

Soxhlet (SE) are the most common and well-established techniques used due to their simplicity, 

efficiency and wide industrial applicability. The former is usually combined with alkaline 

hydrolysis to increase extraction efficiency by degrading lignin and cellulose and releasing 

unbound HCA (FA and p-CA). Although this technique ensures a good recovery of phenolics 

(Meneses et al., 2013), there are drawbacks such as the important amounts of solvent required, 

the long extraction time but also the possible need for additional procedures to remove 

unwanted non-phenolic compounds thus increasing the process cost, which led to consider 

alternative methods. Alternative extraction methods, also called green techniques because they 

follow the standards set by the Environmental Protection Agency (USA), have recently been 

proposed. Supercritical fluid extraction and pressurised fluid extraction belong to this category. 

In recent decades, they have caught the interest of researchers due to the reduced extraction 

time, reduced solvent use, higher extraction yield and enhanced quality of extracts. Ultrasound 

and microwave-assisted extraction can be considered in the same way if combined with a 

conventional method using inorganic solvents or with pressure liquid extraction. The advantage 

of their use is the obtainment of cleaner extracts without presence of residues, which would 

occur when extracting with organic solvents. Although there are still few works involving their 

application on BSG, a significant progress has been made (Herbst et al., 2021; Spinelli, Conte, 
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Lecce, et al., 2016; X. J. Wang et al., 2013) and, they are very encouraging, offering an 

interesting starting point for further research into possible a possible scale-up. 

Energy production from BSG 

As an agri-food biomass, BSG represents a valid raw material that can be used effectively in a 

waste-to-energy process due to its ability to produce energy. This approach includes 

technologies such as aerobic digestion and thermochemical conversion processes (combustion, 

pyrolysis and gasification). Important requirements for a valid energy valorisation are calorific 

values over 15 MJ kg-1 and humidity in the range 10-15 % (Gil-Castell et al., 2022). 

Considering the BSG composition, a drying phase is certainly necessary in order to reach the 

desired moisture value. Following the circular economy principle, it is worth noting the 

possibility of reusing the spent grain energy content within the beer industry, allowing a 

reduction in energy consumption. However, mature strategies are not yet available and further 

studies in this direction are required. 

 

4.2 Second generation ethanol production from BSG 

The aim of the work presented in this section was to evaluate the possibility of exploiting BSG 

as biomass for the production of second-generation ethanol. The bioconversion to ethanol was 

carried out by considering an initial step of acid hydrolysis, followed by fermentation of the 

released sugars performed by Saccharomyces cerevisiae yeasts. These two steps were 

optimized within a specific range of operative conditions by designs of experiments. In 

particular, a central two-factor composite design was applied for acid pre-treatment, where the 

sulfuric (0.065-0.37 M) and nitric (0.01-0.5 M) acid concentration, along with the liquid-solid 

ratio (8-12 w/w %) were selected as independent factors. The fermentation process was also 

optimized by using the Behnken-box design and considering temperature (25-37°C), inoculum 

volume (5-15 v/v %), and pH (4.5-6.5) as investigated factors.   

4.2.1 Materials and Methods 

Chemicals and reagents 

Sulfuric (98%) and nitric (65%) acids used for acid hydrolysis were purchased from Merck 

(Darmstandt, Germany). 1 M NaOH (Reagecon, Co.Clare, Ireland) was used for the 

neutralization of hydrolysates. For the preparation of yeast growth inoculum, yeast extract from 

brand, glucose from brand, salts and anti-foam purchased from Sigma-Aldrich were used. 
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Standard solution for HPLC analysis were prepared using 70% ethanol (Merck, Darmstadt, 

Germany), glucose (brand), L-(+)-Arabinose (99%, Sigma-Aldrich) and D-(+)-Xylose (99%, 

Sigma-Aldrich).  

BSG, yeast, and inoculum 

The BSG used in this work was kindly donated by the Vestfyen brewery (Assens, Denmark). 

After collection it was stored at -20°C, fresh BSG was oven dried at 60°C for 24 h in a 

humidity-controlled oven (Memmert HCP 108). To ensure that no further evaporation 

occurred, BSG samples were weighed three separate times during the end of the 24 h. Before 

weighing, BSG was placed in a dessicator with silica gel to reach ambient temperature. 

Weighing was done in 1h intervals and the time spent in the dessicator was not included in the 

24h drying time. A commercial strain of Saccharomyces cerevisiae (Malteserkors, Denmark) 

was grown overnight at 30°C in an orbital shaker at 150 rpm using a growth medium containing 

the following compounds: 20 gL-1 glucose, 6 gL-1 yeast extract, 0.23 gL-1 CaCl2·2H2O, 4 gL-1 

(NH4)2SO4, 1 gL-1 MgSO4, 1.5 gL-1 KH2PO4 (Sivakesava et al., 2001). The medium was stored 

at 4°C until use.  

Dilute acid hydrolysis  

The experiments were carried out by autoclaving (SHP Laboklay ECO 135M, SHP 

Steriltechnik AG, Germany) the dried BSG with 200 mL of acid solutions in 250 mL flasks, at 

120°C for 20 min. The liquid phase was separated from the solid part by centrifugation at 4500 

rpm and 25°C for 20 min (Avanti J-HC, Beckman Coulter, United States), and then vacuum 

filtration (brand), and characterized in terms of sugar compositions.  

Fermentation of BSG 

In order to evaluate the time required by the yeast to consume the substrate, preliminary 

fermentation experiments were conducted in duplicate in 1 L fermentation flasks working in 

anaerobic conditions at 30°C in a orbital shaker (IKA KS 4000 i control, Germany) at 150 rpm 

for 24 h. The working volume of acid hydrolysate for both flasks was approximately 170 mL. 

Before being inoculated, the fermentation medium was neutralized using 0.1 M NaOH until a 

pH of 5.5 was reached, then 10% (v/v) of inoculum was added. The run was conducted for 24 

h, during which samples were taken at different times, filtered, and stored for sugars and 

ethanol determination. Subsequent experiments for process optimization were performed in 

500 mL fermentation flasks using approximately 200 mL of hydrolysate. Each of them was 
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carried out for 9 h under different conditions in terms of temperature, inoculum volume, and 

pH.  

Sugars and ethanol quantification 

Liquid samples from acid hydrolysis and fermentation steps were centrifuged and filtered 

through 0.20 µm membranes (Sartorius, Germany), and then analyzed by HPLC. The HPLC 

system (Ultimate 3000, Thermo Fisher) was equipped with a refractive index detector (Dionex 

Softrom GmbHm Germany), and a Phenomenex Rezex RHM-Monosaccharide H+ (8%) 

analysis column working at 79°C with ultrapure water as mobile phase (0.6 mL/min). Glucose, 

xylose, arabinose, and ethanol were identified using standard solutions and quantified through 

calibration curves. The limits of the curves were [0.1-50 g/L] for glucose, [1-10 g/L] for xylose, 

[1-10 g/L] for arabinose, and [0.15-81 g/L] for ethanol, with a R2
Glucose=0.9993, 

R2
Xylose=0.9917, R2

Arabinose=0.9997, and R2
Ethanol=0.9995.  

4.2.2 Design of experiments  

The use of waste biomass for the obtainment of valuable products is strongly dependent on the 

raw material. For this reason, it is crucial to properly design the experimental campaign in such 

a way that the description and understanding of the variation in the data is simplified and it is 

statistically evident the impact of each considered factors. Different procedures for an optimal 

design of experiment (DoE) have been used for the hydrolysis and fermentation of the BSG 

and they are described in the following.  

Acid hydrolysis 

In order to determine the optimal conditions at which to carry out the acid pre-treatment, and 

experimental design based on Central Composite Design (CCD) methodology was applied. 

The acid concentration and liquid-solid ratio were selected as design factors, while the 

temperature and process time were kept constant. In particular, the following ranges were 

investigated: [8-12 w/w %] for the L-S ratio, [0.065-0.37 M] and [0.01-0.5 M] as the 

concentration range for H2SO4 and HNO3, respectively. Table (number) shows the design of 

experiments obtained as a function of the two independent variables investigated. One 

noteworthy aspect is that the axial conditions were removed from the experimental plan as well 

as the combination between the mildest treatment in terms of acid concentration and the highest 

L-S ratio. The reason for this choice is related to an expected low glucose yield under such 

conditions. Therefore, only 8 experimental conditions were evaluated which is equivalent to 
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16 runs since each condition was carried out in duplicate. The efficiency of the pre-treatment 

performed with the two acids was assessed by determining the glucose yield defined as g of 

glucose per 100 g of dry BSG present in the liquors.   

Table 15. DOE for sulfuric and nitric acid pre-treatment. 

 H2SO4 HNO3 

 Cacid [M] L-S ratio [w/w] Cacid [M] L-S ratio 

run real coded real coded real coded real coded 

1 0.065 -1 12 -1 0.01 -1 12 -1 

2 0.37 1 12 -1 0.5 1 12 -1 

3 0.37 1 8 1 0.5 1 8 1 

4 0.18 0 10 0 0.1 0 10 0 

 

Fermentation of the hydrolysate 

The Box-Benken experimental design was applied to identify the conditions under which to 

conduct the fermentation process. Temperature (25, 30, 37 °C), inoculum volume (5, 10, 15% 

v/v) and pH (4.5, 5.5, 6.5) are the three key process variables chosen as factors for the 

experimental design. A total of 14 experimental combinations were obtained, including two 

points in the center of the experimental domain. The uncoded and coded values of these factors 

are shown in Table 6 (number).  

4.2.3 Results 

Acid hydrolysis 

The first experimental campaign was aimed at investigating the effect of acid concentration 

and liquid-solid ratio on the recovery of sugars from BSG. Figure 31 shows the hydrolysates 

for each experimental run set by the DoE (Table 15) performed in duplicate. The efficiency of 

acid pre-treatment was evaluated by considering the glucose release via the hydrolysis of 

cellulose and hemicellulose and the glucose yield has been evaluated as grams of glucose on 

dry biomass basis (gglucose/gdry BSG).  Glucose recovery mean values and standard deviations of 

each experimental run conducted in duplicate are reported in Tables 7 and 8 when used, 

respectively, H2SO4 and HNO3. This comparative analysis allows the identification of the acid 

that leads to the highest amount of glucose. It is worth noting that fractions of other monomeric 
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sugars such as xylose and arabinose are contained in the biomass, but glucose yield was chosen 

as process response because the Saccharomyces Cerevisiae’s strain used for the fermentation 

step is highly selective toward such sugar.   

 

Table 16. Experimental conditions for the fermentation process of BSG. 

 Temperature (°C) Inoculum volume (% v/v) pH 

run real coded real coded real coded 

1 25 -1 5 -1 5.5 0 

2 25 -1 15 1 5.5 0 

3 37 1 5 -1 5.5 0 

4 37 1 15 1 5.5 0 

5 25 -1 10 0 4.5 -1 

6 25 -1 10 0 6.5 1 

7 37 1 10 0 4.5 -1 

8 37 1 10 0 6.5 1 

9 30 0 5 -1 4.5 -1 

10 30 0 5 -1 6.5 1 

11 30 0 15 1 4.5 -1 

12 30 0 15 1 6.5 1 

13 30 0 10 0 5.5 0 

14 30 0 10 0 5.5 0 
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Figure 31. Acid hydrolysis samples for different DOE runs. 

 

 

Table 17. Results of sulfuric acid pre-treatment in terms of glucose yield and its standard deviation. 

 H2SO4 

run Cacid [M] L-S ratio [g/g] GR [gglucose/100 g dry BSG] 

1 0.065 12 10.10 ± 0.19 

2 0.37 12 15.98 ± 0.076 

3 0.37 8 14.71 ± 0.322 

4 0.18 10 15.14 ± 0.37 

 

 

Table 18. Results of nitric acid pre-treatment in terms of glucose yield and its standard deviation. 

 HNO3 

run Cacid [M] L-S ratio [g/g] GY [gglucose/100 g dry BSG] 

1 0.01 12 2.53 ± 0.04 

2 0.5 12 15.19 ± 0.26 

3 0.5 12 11.14± 0.18 

4 0.1 10 12.04 ± 0.015 
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Surface response methodology has been applied to mathematically describe the effects of 

process conditions on the glucose recovery and to identify the optimum condition of acid pre-

treatment. From the experimental data obtained for H2SO4 (Table 17) and HNO3 (Table 18), 

the following second-order regression models which describe the interaction between the 

factors have been derived (Eqs. (77) and (78)): 

𝐺𝑌𝐻2𝑆𝑂4
= −50.91 + 12.98 𝐿𝑆 + 15.103 𝐶𝐻2𝑆𝑂4

− 0.6639 𝐿𝑆2 (77) 

𝐺𝑌𝐻𝑁𝑂3
= −127.23 + 28.517 𝐿𝑆 + 17.565 𝐶𝐻𝑁𝑂3

− 1.4766 𝐿𝑆2 (78) 

 

where LS is the liquid-solid ratio expressed as gram of liquid per gram of BSG, 𝐶𝐻2𝑆𝑂4
and 

𝐶𝐻𝑁𝑂3
 are the concentration of sulfuric and nitric acid, and GY is the glucose yield expressed 

as gram of glucose recovered per 100 g of BSG. Figures 32 and 33 show the resulting surface 

plot for H2SO4 (Fig. 32) and HNO3 (Fig. 33), compared with the experimental results (blue 

dots). It is possible to observe that both regression models well describe the experimental data 

obtained and in both cases the glucose yield exhibits a positive linear trend with the acid 

concentration and a quadratic relationship with L-S ratio, as it can be also observed from Eqs. 

(77) and (78). The models predicted the optimal pre-treatment conditions for BSG in terms of 

concentration and liquid solid ratio at 0.37 M and 10 g/g for sulfuric acid, and 0.5 M and 10 

g/g for nitric acid, resulting in an estimated optimal glucose recovery of 18.12 g/g in the former 

and 19.24 g/g in the latter case. Although the highest glucose recovery can be achieved by 

conducting acid hydrolysis with HNO3, this also represents the condition under which a higher 

acid concentration is required. This would mean a greater possibility of formation of inhibitory 

compounds such as furfural and hydroxymethylfurfural (HMF), which result from the 

decomposition of pentose and hexose sugars, and that could affect the fermentation reaction 

(Rojas-Chamorro et al., 2020b).  In addition, analyzing the monomeric sugars released during 

this preliminary step, it was found that sulfuric acid shows greater selectivity to glucose than 

nitric acid. This is a relevant detail since the yeast used to ferment the hydrolysates prefers 

glucose over other monomeric sugars in solution.                                                                                                   

Figure 34 shows a comparison between the surface plot of the two acids, and it can be easily 

observed that the surface of H2SO4 is above that of HNO3 in its concentration range (0.065 M-

0.37 M). For the mentioned reasons, the experimental condition involving 0.37 M as H2SO4 

concentration and 10 % (g/g) as liquid-solid ratio was selected as the optimal one for carrying 

out the acid hydrolysis pre-treatment on the BSG. According to these conditions, the identified 

model was validated in order to compare the predicted response with the experimental one. The 
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experimental recovery value was 𝑌𝐺𝐻2𝑆𝑂4

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 18.3 ± 0.1 𝑔/𝑔, that is quite close to the 

glucose recovery calculated with the model reported in Eq. (78), 𝑌𝐺𝐻2𝑆𝑂4

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 18.1 𝑔/𝑔, 

indicating excellent performance of the model within the investigated conditions.  

 

 

Figure 32. Glucose yield as a function of H2SO4 concentration and liquid-solid ratio. The blue dots represent the 

experimental conditions, and the red bars the corresponding standard deviations. 
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Figure 33. Glucose yield as a function of HNO3 concentration and liquid-solid ratio. The blue dots represent the 

experimental conditions, and the red bars the corresponding standard deviations. 

 

Figure 34. Comparison of the surface plot for H2SO4 and HNO3.  
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Fermentation of optimized hydrolysate 

Two different types of experiments were carried out for studying the fermentation of the 

hydrolysis product. The first set of experiments was aimed at evaluating the time required for 

obtaining the maximum ethanol production from the fermentable sugars, that means that it 

corresponds to monitor the process until steady state is detected for ethanol concentration. The 

profile of sugars and ethanol concentration during the fermentation is reported in Figures 35-

38, using logarithmic scale for the time coordinate in order to facilitate the visualization of the 

changes before and after glucose depletion. It is worth noting that both fermentation runs had 

been conducted at the same conditions, but the amount of pentoses at the beginning of the 

experiments is slightly different. This depends on the previous hydrolysis step which did not 

lead to the same production of arabinose and xylose. This aspect was not further investigated 

because the yeast used in this work is highly selective toward glucose.  Indeed, the yeast 

completely consumed glucose after almost 4 h (Figure 34), whereas arabinose and xylose were 

slightly consumed, and the consumption rate increased only after the total depletion of glucose. 

The evidence that ethanol is obtained also from pentoses is given by the increase in ethanol 

concentration after 9 h, that is almost 13% in run 1 and circa 10% in run 2. Furthermore, the 

final ethanol concentration is higher when starting from a reactant mixture containing a higher 

amount of pentoses. It is worth noting that arabinose and xylose had not been completely 

transformed to ethanol, because the amount theoretically obtainable from the consumption of 

pentoses is higher than the quantity produced in the time interval 9 – 24 hours. Anyway, the 

production of ethanol from xylose and arabinose is quite scarce in presence of Saccharomyces 

Cerevisiae’s strain, confirming previous results (Rojas-Chamorro et al., 2020b). For this 

reason, experiments aimed at finding the best condition for glucose fermentation was chosen 

equal to 9 h, because sufficient for a complete depletion of glucose consumption by S. 

Cerevisiae yeasts. 
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Figure 35. Glucose consumption during the fermentation process for run 1 (red circle) and run 2 (blue circle). 

Time is in logarithmic scale. 

 

Figure 36. Xylose consumption during the fermentation process for run 1 (red circle) and run 2 (blue circle). 

Time is in logarithmic scale. 
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Figure 37. Arabinose consumption during the fermentation process for run 1 (red circle) and run 2 (blue circle). 

Time is in logarithmic scale. 

 

Figure 38. Ethanol production during the fermentation process for run 1 (red circle) and run 2 (blue circle). 

Time is in logarithmic scale 

 

Optimal condition for ethanol production 

Figures 39 and 40 show the hydrolysate samples for the different experimental runs provided 

by the DoE (Table 16). Table 19 reports the results of the experimental campaign for the 

fermentation in terms of the calculated ethanol yield (Y*
EtOH) with respect to the theoretical one 

(YEtOH,theoretical = 51 %) obtained varying the independent factors: temperature (T), inoculum 

volume (iv)  and pH.  A response surface relating the yield to the factors have been estimated 
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by exploiting a backward elimination procedure with a significance level α=0.05. The final 

second-order regression model is reported in Eq.79 and exhibits a determination coefficient 

R2=88.3% and R2
pred=65.6%. Model adequacy is confirmed in Figure 41, which shows that 

experimental measurements and computational predictions are in excellent agreement. 

  

Table 19. Results of DoE for the fermentation step. 

Run T [°C] iv [% v/v] pH Y*
EtOH [%] 

1 37 15 5.5 78 

2 30 10 5.5 83 

3 30 10 5.5 79 

4 37 10 4.5 78 

5 30 15 4.5 80 

6 30 15 6.5 79 

7 37 5 5.5 68 

8 30 5 4.5 71 

9 25 15 5.5 80 

10 30 5 6.5 66 

11 37 10 6.5 81 

12 25 10 4.5 86 

13 25 10 6.5 73 

14 25 5 5.5 59 

 

𝑌𝐸𝑡𝑂𝐻
∗ = 152.7 − 3.42 𝑇 + 7.21 𝑖𝑣 − 21.64 𝑝𝐻 − 0.2942 𝑖𝑣2 + 0.644 𝑇 ∙ 𝑝𝐻 (79) 

 

As can be deduced from the coefficients of Eq. (79), temperature and 𝑝𝐻 exerts a negative 

influence on ethanol yield even though these influences are slightly attenuated by the 

positive interaction between both factors. The influence of inoculum volume is positive 

for low values, but it adversely affects ethanol production when it is greater than 24.51 

% v/v. The condition required for the obtainment of the maximum yield can be predicted 

by the model (79) and it is 𝑝𝐻 = 4.5, 𝑇 =  25°𝐶 and 𝑖𝑣 =  12.25 % 𝑣/𝑣, meaning that the 

optimal condition is at the lowest extreme of the investigate 𝑝𝐻 and temperature ranges. 

The effect of the investigated parameters on the ethanol yield can be better appreciated 
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by observing contour plots evaluated at the optimal 𝑖𝑣 value (Figure 42) and at the 

optimal 𝑇 value (Figure 43).  It is interesting to note that the production of ethanol is 

favored by low 𝑝𝐻 and 𝑇 or high 𝑝𝐻 and 𝑇 and that maintaining  𝑇 =  25°, the maximum 

yield decreases as 𝑝𝐻 increases. Considering the ethanol yield versus the inoculum 

volume (Figure 44) at different values of temperature and 𝑝𝐻, it is evident that there is a 

small difference in ethanol production when considering one extreme of the range (𝑝𝐻 =

4.5, 𝑇 =  25°𝐶) and the other (p𝐻 = 6.5, 𝑇 = 37°𝐶). On the other hand, there is a 

significant decrease of the yield if at high 𝑝𝐻, temperature is decreased, obtaining a 

minimum when   𝑇 =  25°𝐶. Such results are extremely important from the operative 

point of view, because they evidenced that the interaction between temperature and pH 

is not trivial and that effects of eventually not controlled 𝑝𝐻 could be partially 

compensated by proper temperature variation.                                                                                       

The validation of the regression model has been also carried out by performing a further 

experiment at intermediate conditions i.e., 𝑇 =  33.4°𝐶, 𝑝𝐻 = 6 and 𝑖𝑣 =  12 %𝑣/𝑣. The 

measured yield is YEtOH,exp =82.67% that is quite close to the model prediction 

YEtOH,pred=81.84%, confirming the model effectiveness. It is worth noting that the obtained 

results agree with previous investigation on valorization of BSG (Rojas-Chamorro et al., 

2020b), where a theoretical yield equal to 78% had been obtained when using a 

simultaneous saccharification and fermentation in presence of microorganism able to 

convert xylose to ethanol.  
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Figure 39. Fermentation samples for DoE. 

 

           

Figure 40. Sample detail for fermentation DoE (left panel) and inoculation moment (right panel).  
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Figure 41. Comparison between experimental values and values predicted from the model. 

 

Figure 42. Contour plot of the yield response at the optimal conditions (𝑝𝐻 = 4.5, 𝑇 = 25°𝐶, and 𝑖𝑣 = 12.25). 

Isolevel curves with respect to T and pH, inoculum volume is set to 12.879.  
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Figure 43. Contour plot of the yield response at the optimal conditions (𝑝𝐻 = 4.5, 𝑇 = 25°𝐶, and 𝑖𝑣 = 12.25). 

Isolevel curves with respect to pH and iv, T is set to 25°C.  

 

 

Figure 44. Ethanol yield vs inoculum volume at 𝑝𝐻 = 4.5, 𝑇 = 25°𝐶 (red), at 𝑝𝐻 = 6.5, 𝑇 = 37°𝐶 (blue), at 

𝑝𝐻 = 6.5, 𝑇 = 25°𝐶 (black). 
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4.2.4 Conclusions 

Waste recycling has become a popular practice as it addresses management problems while 

exploiting waste materials as valuable resources. This chapter focused on the brewer ‘spent 

grain (BSG), which represents a valuable by-product of the brewing industry due to its 

chemical composition and low-cost availability. Its composition and possible applications were 

reported and analyzed. Recently, efforts have been made to use BSG in alternative ways other 

than as animal feed. Indeed, successful results have been found from incorporating it into 

human diets, highlighting the value of its chemical composition. BSG proved to have a 

potential in the chemical and biotechnology area, particularly as substrate for biofuel 

production and for the extraction of valuable bioactive compounds for use in the chemical, 

pharmaceutical, and cosmetic production. The study here reported specifically examined the 

potential use of BSG as a fermentation substrate for ethanol production. An initial phase of 

acid hydrolysis was performed to maximize the sugars release, i.e., finding the condition where 

the maximum released amount was realized. A glucose yield of 18.12 g per 100 g of dried BSG 

was obtained performing the acid pre-treatment under optimized conditions (0.37 M H2SO4, 

10% S-L ratio). The hydrolysed biomass was then fermented by Saccharomyces cerevisiae 

yeasts, and the results achieved showed that the best condition was found at 𝑇 = 25°𝐶, 𝑝𝐻 =

4.5 (lowest extremes in the investigated intervals), and 𝑖. 𝑣. = 12.25% 𝑣/𝑣. At the optimal 

condition, a yield of 81.03% evaluated with respect to theoretical one was obtained.  
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Chapter 5: Development of a Raman spectroscopy-based 

soft-sensor for monitoring a fermentation process 

In this chapter, the development of a spectroscopic sensor for monitoring a fermentation 

process will be investigated. Results from the combination of Raman spectroscopy with 

chemometric methods will be reported and analyzed.  
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The goal of Industry 4.0 is to create a connection between the digital word and traditional 

industrial processes in order to develop a more efficient manufacturing system, achieving 

fundamental goals such as greater flexibility, sustainability, and competitiveness. In this 

scenario, the development of smart technologies seems even more necessary for 

biomanufacturing. Process monitoring is a key tool for achieving the goals set by the smart 

industry, as it guarantees safe operations, product quality control and minimization of energy 

consumption (Gargalo et al., 2020; Udugama et al., 2020). However, in several processes there 

are still serious difficulties in measuring key variables, and this happens particularly in the 

biomanufacturing sector. As discussed in the previous chapters, most biotechnological 

processes include the cultivation of microorganism, during which different combined 

phenomena occur involving several phases and concentration gradients. Although it is easy to 

monitor in situ common parameters such as temperature, oxygen partial pressure and pH, this 

cannot be said for information concerning cell count, substrate and product concentration, or 

metabolic activity. Thus, there is the necessity for a reliable and consistent analytical system 

to monitor process conditions at all bioprocess stages (Pachauri et al., 2017). The process of 

bioethanol production by biomass fermentation is certainly a good example of bioprocess 

where the presence of an analytical method, capable of providing real-time system status 

information, is required (Ávila et al., 2012). Among the various innovative methods proposed 

in the literature, spectral analysis technologies are the ones that can meet the basic requirements 

for implementing rapid monitoring and control of fermentation processes. These optical 

methods, such as near-infrared spectroscopy or multiwavelength fluorescence, have been 

widely applied to develop new techniques for monitoring processes like these (Claßen et al., 

2017). In particular, Raman spectroscopy represents a promising methodology in monitoring 

biotechnological systems due to important features such as speed, high signal-to-noise ratio, 

good resolution, ability to provide a stable signal, and also low water interference. In addition, 

no destructivity and no sample pre-treatment requirements must be mentioned (Ávila et al., 

2012; Claßen et al., 2017; Esmonde-White et al., 2017; S. K. Oh et al., 2013).                                                                                             

This chapter investigated the development of a Raman spectroscopy-based sensor for the 

quantitative analysis of products obtained from a fermentation process. Specifically, the 

analyses reported here were performed on fermentation samples from the previously reported 

case study (Chapter 4). As proved in Chapter 3, the rejection of disturbances was possible only 

in presence of a product composition controller. One possible solution involved available 

online measurements of ethanol concentration, while as an alternative the presence of a 

nonlinear estimator to infer ethanol composition was evaluated. In either scenario, achieving 
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the desired product quality depends on knowledge of the reacting medium composition. The 

first experimental results of the development of a fully automated monitoring system will be 

presented and analyzed. For this purpose, offline Raman spectra were collected for several 

samples having known ethanol and glucose concentration, but also of fermentation samples 

related to the Case Study reported in Chapter 4. Combining Raman spectra with chemometric 

tools, what is intended to be developed are predictive models for product and substrate 

concentration, and to accomplish this task spectra of samples of ideal and non-ideal 

fermentation mixtures were recorded off-line. A data-driven modelling approach was applied 

in order to correlate the information contained in the Raman spectra to the concentration of 

investigated compounds. The Variable Importance in Projection (VIP) method was used to 

identify and select the most significant spectral wave regions, then partial least squares (PLS) 

regression models for both ethanol and glucose were developed and validated.  

5.1 Overview of spectroscopic sensors 

As reported by Lourenço et al. (2012), spectroscopy was originally defined as the study of the 

interaction between electromagnetic radiation and matter as a function of wavelength. 

Successively, this definition was expanded to include measurements of any property 

considered a function of either wavelength or frequency. In the review proposed by Claßen et 

al. (2017), it is clearly explained that there are three different types of effects arising from the 

interaction between matter and light: absorption, emission, and scattering. These three different 

types of interactions can be investigated by different spectroscopic methods operating in 

different wavelength ranges. However, for the purpose of the discussion, only those techniques 

operating in the spectral ranges between UV and mid-infrared (MIR) will be discussed. Indeed, 

these include Raman spectroscopy, the exploitation of which was investigated in the work here 

presented.  

5.1.1 UV/Vis Spectroscopy 

UV/Vis spectroscopy represents a sensitive molecular spectroscopy that uses ultraviolet and 

visible light in the wavelength range 200-780 nm. As reported by Beutel & Henkel (2011), new 

developments involving this technique have resulted in improved applicability in 

biotechnological process monitoring. Indeed, UV/Vis spectrophotometers show excellent 

measurement performance not only in the UV region, but also in the range between UV and 

near-infrared (NIR). Sensitivity, high scanning speed, low cost, and robustness are the main 

features that make these devices valuable analytical tools for different applications such as the 
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bioprocess monitoring (Langergraber, Fleischmann, et al., 2004; Langergraber, Gupta, et al., 

2004; Noui et al., 2002; Pons et al., 2004; Roberts et al., 2018; Sarraguça et al., 2009).  

5.1.2 IR Spectroscopy 

Based on the wavelength range, IR spectroscopy can be differentiated into Far-Infrared (FIR) 

(10-400 cm-1 or 25-1000 µm), Mid-Infrared (MIR) (200-4000 cm-1 or 2500-25000 nm), and 

Near Infrared (NIR) (4000-12500 cm-1 or 800-2500 nm). FIR is generally not applied in this 

area, unlike NIR, which seems to be more widely adopted. Indeed, as reported by Lourenço et 

al. (2012), recently NIR has been widely used with the pharmaceutical industry for testing raw 

materials, product quality control, and process monitoring. Several examples of its application 

can be found in the literature (Arnold et al., 2002, 2003; Nordon et al., 2008; Roychoudhury et 

al., 2007; Tosi et al., 2003). This growing interest can be attributed to its interesting 

characteristics such as the absence of sample pre-treatment, no alteration of samples (which 

can be used for further analysis), as well as the rapidity in acquiring spectra. MIR spectroscopy 

has also been used for quantitative analysis of fermentative process (Fayolle et al., 2000; 

Schenk et al., 2007). In general, the greatest drawback of this spectroscopy is the significant 

absorbance of water in the infrared region. This represents a non-trivial problem, since the 

water absorption could cover the characteristic peaks of other compounds, reducing the 

information level of the spectra.  

5.1.3 Fluorescence Spectroscopy 

Fluorescence spectroscopy, also known as fluorimetry, exploits the characteristics of particular 

chemical compounds called fluorophores. These, when subjected to light excitation, are able 

to re-emit light. This occurs at specified wavelength, in correspondence of which fluorophores 

absorb visible or UV light. Thus, electrons are excited, and they relax to their ground electronic 

state emitting light of lower energy (Claßen et al., 2017). In the context of bioprocesses, some 

molecules such as proteins, certain amino acids, co-enzymes, and even vitamins can exhibit 

the same behaviour. Fluorescence measurements can be carried out both in situ and online 

using spectrophotometers. Several examples of applications concerning this spectroscopic 

technique are available in the literature, since it has been used for more than 30 years for 

monitoring bioprocesses, and in particular for the analysis of key compounds such as biomass, 

glucose, and ethanol (Eliasson Lantz et al., 2006; Jain et al., 2011; Ödman et al., 2009; Rhee 

& Kang, 2007; Surribas et al., 2006).  
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5.1.4 Raman Spectroscopy 

Unlike IR spectroscopy, Raman spectroscopy is a technique that relies on the inelastic 

scattering of light onto interaction with the sample (Claßen et al., 2017). It represents a useful 

tool since it provides information regarding vibrational and rotational transitions in molecules 

whose polarizability varies upon excitation. When monochromatic light, generally from a laser, 

is incident on molecules, and thus interacts with their vibrational frequencies, most of the 

photons are scattered elastically (Raylegh scattering). Instead, a small amount of the scattered 

light shifts in energy from its original wavelength to on o more different wavelengths (Raman 

scattering). The wavelength shift, i.e., the difference in energy between the laser (incident) light 

and the scattered light, is a function of the chemical bounds that caused the Raman scattering. 

By plotting the intensity of the scattered light as a function of the frequency (Raman shift 

wavenumber), it is possible to obtain the Raman spectrum of the analyzed sample. The 

scattered Raman photons carry with them information about the chemical structure and the 

nature of the material. In addition, from the spectra obtained it is possible to gain both 

qualitative and quantitative information (Lourenço et al., 2012). Indeed, the band areas are 

proportional to the concentration and for this reason this technique can be implemented for the 

purpose of quantitative analysis. As stated by Claßen et al. (2017) and Lourenço et al. (2012), 

Raman spectroscopy has several advantages such as the flexibility of the sample type that can 

be analyzed (solid, liquid, gases, or combinations), no sample preparation, a high signal-to-

noise ratio, sufficient resolution, and no sensitivity of the spectra to water. This makes it 

suitable for monitoring operating units such as bioreactors, of which useful information can be 

obtained.  In general, the Raman signal tends to be weak, and the possible presence of 

biological molecules could cause fluorescence in the Raman scattering band, creating 

interference in the signal. As explained by Beutel & Henkel (2011), when this phenomenon 

occurs, the strong fluorescent activity of the possible biological molecules could overlap with 

the Raman bands. The intensity recorded is very high even though in absolute terms it may not 

be, but this is because Raman spectrometers are constructed to read only weak signals. In this 

case, what is obtained is a noisy spectrum difficult to interpret, where the Raman bands appear 

as small and narrow peaks on a high-intensity background. Although Raman spectroscopy 

represents a valuable analytical tool that can be applied in various fields, its application in 

bioprocess monitoring is still circumscribed. In several cases, its potential in monitoring 

microbial cultivations has been evaluated and demonstrated, along with the use of statistical 
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tools (Ávila et al., 2012; Hirsch et al., 2019; Iversen et al., 2014; S.-K. Oh et al., 2012.; Picard 

et al., 2007; Schalk et al., 2017). 

5.2 Materials and Methods  

This section will report only the chemical and reagents used for the preparation of ideal 

mixtures, regarding those related to pre-treated BSG fermentation, including yeast cultivation 

and acid hydrolysis, refer the reader to chapter 4.  

5.2.1 Chemicals and Reagents 

Samples of ideal mixtures 

Ethanol (absolute for analysis, Carlo Erba reagents), glucose (highly pure, Microbial 

Diagnostic), acetic acid (≥99%, Sigma-Aldrich) and formic acid (85%, Carlo Erba reagents) 

were used for the preparation of standard aqueous solutions for calibration of PLS models.  

5.2.2 Fermentation 

The fermentation process was performed in duplicate in 2 L reactors (Applikon Biotechnology 

BV, Nieuwpoortweg, The Netherlands) anaerobically at 50 rpm, T=33.6 °C, pH=5.3, and 

i.v.=12.25% for 9 h. These do not represent the optimized conditions identified in the previous 

chapter, but they are intermediate conditions of the investigated domain.  The working volume 

of the acid hydrolysate for each reactor was about 1.7 L. Before being inoculated, the 

fermentation medium was neutralized using 0.1 M NaOH until a pH of 5.3 was reached, then 

12.25% (v/v) of inoculum was added. During the experimental run, samples were taken at 

different times, filtered and stored at 4°C for determination of ethanol and sugars by HPLC, 

and Raman spectroscopy analysis. Figures 45-46 show the bioreactors used to conduct the run. 
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Figure 45. The two bioreactors used to conduct the experiments. 

 

Figure 46. Detail of the second bioreactor.  



131 

 

5.2.3 Raman spectra 

Raman spectra of ideal and not-ideal fermentation solutions were collected/recorded by using 

a Cora 5X00 Raman spectrophotometer from Anton Paar, with a 532 nm laser probe. The 

Raman equipment available in the laboratory covers the wavelengths between 197.7 cm-1 and 

3500 cm-1. Since Raman spectroscopy appears to be very sensitive to light, the measurements 

were conducted in a dark environment. In Figure 47 it is possible to observe the dark 

room/camera for the laser probe, and in which the sample to be analyzed was placed. Instead, 

Figure 48 shows the entire apparatus.  

 

 

Figure 47. Detail of the dark camera for the laser probe.  

 

Figure 48. Cora 5X00 Raman spectrophotometer equipment.  
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The values of the measurement parameters at which the samples were analyzed are reported in 

the following Table 20. The only parameters that could be changed were the integration time 

and the number of averaged spectra, while the laser power remained constant at 50 mW for the 

532 nm laser probe. In addition, the spectra acquisitions were made by choosing the 

background subtraction mode, which helps eliminate the background noise present, the 

smoothing mode, useful in the case of turbid samples such as the not-ideal ones analyzed here, 

and finally the baseline correction. It is important to highlight that baseline correction was 

carried out in all spectra. Indeed, this represents a crucial and necessary step to eliminate 

background signals generated by residual Rayleigh scattering or fluorescence, which would 

obscure the acquired Raman spectrum.  

 

Table 20. Values of measurement parameters. 

Laser power 50 mW 

Integration time 3000 ms 

Average spectra 30 

 

 

5.2.4 Design of experiments (DOE) for ideal fermentation solutions 

As stated by de Luca et al. (2009), the prediction capabilities of a regression model are 

significantly affected by the design of the mixtures for the construction of the calibration set. 

For this reason, it is appropriate to carefully select the reference solutions by means of an 

experimental campaign, in order to maximize the effectiveness of the model by improving the 

information that can be derived from the calibration set. For this purpose, the design of 

statistical experiments represents a useful tool to choose the concentrations of the components 

of interest in order to minimize the total number of samples considering the entire experimental 

range. In this work, the Simplex-lattice design was considered and implemented on Minitab®. 

This software returned as result a table in which the combinations of the components 

considered (ethanol, glucose, acetic and formic acids) are shown, the proportions of which are 

indicated with values between 0 and 1. It is worth noting that each combination shown 

represents the composition of a specific mixture, the total sum of which must equal to 1. The 

composition values of each component returned by DOE in coded form were multiplied by the 

corresponding maximum concentration value selected, considering this limit as the 

concentration of the component when the mole fraction is equal to 1. The maximum values 
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considered are the following: 15% (v/v) for ethanol, 20 g/L for glucose, 0.5 g/L for formic acid, 

and 2 g/L for acetic acid. The table 21 reported below shows all the combinations of the 

analyzed mixture, together with those of ethanol and glucose only evaluated in a primary phase 

of sensor calibration, and for which the following composition ranges were considered: 

𝐶𝐸𝑡𝑂𝐻 = [1 − 15% (𝑣/𝑣)], 𝐶𝑔𝑙𝑢𝑐𝑜𝑠𝑒 = [1 − 30 𝑔/𝐿].  
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Table 21. Compositions of the analyzed solutions. 

 Glucose [g/L] Ethanol 

[%(v/v)] 

Formic 

Acid[g/L] 

Acetic Acid 

[g/L] 

1 0.5 - - - 

2 1 - - - 

3 1.5 - - - 

4 2.5 - - - 

5 5 - - - 

6 5 3.75 0.25 - 

7 5 3.75 - 1 

8 5 11.25 - - 

9 7 - - - 

10 10 - - - 

11 10 - - 1 

12 10 - 0.25 - 

13 10 7.5 - - 

14 15 - - - 

15 15 3.75 - - 

16 20 - - - 

17 30 - - - 

18 - 1 - - 

19 - 2.5 - - 

20 - 5 - - 

21 - 7.5 - 1 

22 - 7.5 0.25 - 

23 - 10 - - 

24 - 15 - - 

25 - - 0.5 - 

26 - - - 2 

27 - - 0.25 1 
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5.2.5 Statistical analysis 

The complexity of the samples analyzed often results in a complex spectrum. In complicated 

systems such as fermentation, it can be challenging to identify which bands belong to specific 

components. This task becomes even harder when other substances are present, such as water 

or substrate, that have a higher concentration and they may overpower the signal of the interest 

compounds. In order to overcome these difficulties and to perform an accurate and robust 

analysis, it is necessary to use statistical tools such as chemometric methods. This term refers 

to the use of mathematical or statistical methods to analyze data about a chemical system, to 

extract information about a system state, to characterize the behavior of a system, and also to 

facilitate in the identification of processes occurring in an analyzed system, as reported by 

Lourenço et al. (2012). Generally, monitoring of bioprocesses by spectroscopic techniques 

provides a set of spectra that constitute consistent data sets, characterized by less information 

content than data volume, and from which significant information should be extracted quickly. 

The application of multivariate data analysis, which combines spectroscopy with statistical 

techniques, to spectral data enables to reduce data complexity and to get significant information 

out of the spectra. This information is usually distributed over an entire spectroscopic data set 

and is not restricted to a specific part of the spectrum or to just one spectrum (Rathore et al., 

2011). Among the most widely used chemometric methods for the analysis of spectral data in 

the bioprocess monitoring is possible include/mention dimension reduction, latent variable 

methods such as principal component analysis (PCA), principal component regression (PCR), 

and partial least-square (PLS). The reason for their widespread use is their efficiency in 

extracting information, their simplicity, and the stability over time and interpretability of their 

models (Lourenço et al., 2012). In this work, the PLS regression technique was applied to 

extract information regarding ethanol and glucose composition from the collected Raman 

spectra. A brief overview of this method is provided below.  

Partial Least Square (PLS) regression method 

As reported by Lourenço et al. (2012), regression methods are usually applied to obtain a 

relationship between the collected spectra and the quantifiable properties of the analyzed 

samples. More specifically, the regression problem consists of modeling one or more 

independent variables, known as responses and denoted by Y, by means of a set of predictor 

variables, X. It represents undoubtedly the most common data-analytic problem. As stated by 

Wold et al. (2001), modeling of Y by X is usually accomplished using multiple linear 

regression (MLR), whose performance is good as long as X variables are few and uncorrelated. 
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However, in data derived from modern measurement instruments such as spectrometers or 

chromatographs, the X variables tend to be too many and highly correlated. In these situations, 

PLS-regression (PLSR) allows more complex problems to be investigated and the available 

data to be analized more realistically.  This approach represents a variation of traditional 

multiple linear regression (MLR), from which it differs in its ability to analyze data having 

strong collinearity (correlated), noise, and numerous independent variables (X). Additionally, 

it allows for the simultaneous modeling of several dependent variables (Y) (Wold et al., 2001). 

It was developed in 1975 by Herman Wold for analyzing complex data sets, grouped in chains 

of matrices (blocks), using a method called NIPALS (Non.linear Iterative PArtial Least 

Squares), from which the acronym PLS was derived for these models.                                                        

Also known as projection to latent structures, the PLSR method is one of the most widely 

applied multivariate calibration methods that allows to construct a mathematical model though 

matrices of X (e.g., spectra) and Y (sample properties such as concentration) from a set of 

reference samples (de Luca et al., 2009). In other words, it can be defined as a guided 

decomposition model in which the dependent variables directly intervene in the decomposition 

of the independent ones (Lourenço et al., 2012). The aim of this method is to establish a small 

number of latent variables that are able to predict the properties of the samples (e.g., compounds 

concentration) through the spectral data that should be used in an efficient way. There are 

several methods for calculating the terms of the PLSR model, but the one most widely used is 

the NIPALS algorithm. The next section will discuss the development of the PLSR model.   

PLSR model  

The PLS regression model can be obtained from a training set composed of N observations 

with L X-variables, denoted by xl (l=1,…, L) and M Y-variables denoted by ym (m=1,…, M). 

As showed in Figure 49, these data form two matrices X and Y of dimension (𝑁 × 𝐿) and 

(𝑀 × 𝐿).   
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Figure 49. Graphical representation of descriptor matrices (X-variables, Raman spectra) and measurements (Y-

variables, compositions).  

 

The following Equations 80-82 show how the PLS regression model is developed, more 

specifically how the matrices X and Y are decomposed into the smaller score T, loadings P 

and Q, and error E and F matrices. Consequently, a linear relationship between the scores can 

be established as reported below. 

𝐗 = 𝐓𝐏𝑇 + 𝐄 = ∑ 𝑡𝑖𝑝𝑖
𝑇 + 𝐄

𝐴

𝑖=1
 (80) 

𝐘 = 𝐓𝐐𝑇 + 𝐅 = ∑ 𝑡𝑖𝑞𝑖
𝑇 + 𝐅

𝐴

𝑖=1
 (81) 

𝐓 = 𝐗𝐖(𝐏𝑇𝐖)−1 (82) 

 

As already said, E and F are error matrices of size (𝑁 × 𝐿) and (𝑁 × 𝑀), respectively. They 

contain the part of X and Y which the model does not explain. The score matrix T (𝑁 × 𝐴) is 

composed of the column vector ti, and pi and qi are the column vectors, so-called the loadings, 

that compose the matrices P (𝐿 × 𝐴) and Q (𝑀 × 𝐴).   Moreover, W (𝐿 × 𝐴) is the weight 

matrix obtained by the PLS model regression and A is the number of latent variables chosen to 

explain the significative variance of the data. It is worth noting that, during the matrix X 

decomposition, information contained in matrix Y is considered in order to increase the 

variance between these two matrices. Usually, the NIPALS algorithm is responsible for the 

decomposition step.  

In this work, PLS regression models were obtained through the Matlab ® function plsregress 

that uses the Statistically Inspired Modification of the Partial Least Squares (SIMPLS) 

algorithm (de Jong, 1993). NIPALS and SIMPLS algorithms represent the most widely used 

algorithms for PLS analysis. However, the latter differs from the first one because it is not an 
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iterative algorithm, and the latent variables calculation is performed directly on the basis of 

singular value decomposition (SVD) of the data. From a computational point of view, this 

algorithm is certainly faster than NIPALS, but it is also less robust and for this reason NIPALS 

algorithm is usually used. Nevertheless, SIMPLS is particularly useful for the analysis of data 

particularly affected by noise or when the number of predictors is greater than the samples 

number. Indeed, in these situations the NIPALS algorithm could be too time consuming (Alin, 

2009).  

Variable selection methods 

As already stated, the complexity of the samples analyzed results in complexity of the spectrum 

acquired, and thus this has a significant impact on the data to be analyzed. When talking about 

samples derived from online monitoring, one must think of the raw, untreated samples, and 

particularly if they derive from fermentation mixtures as in the case discussed here, they will 

surely also contain other compounds in addition to those of interest. Among these is certainly 

biomass, the presence of which tends to bring/add considerable noise into the spectrum, 

complicating its interpretation. Therefore, in order to minimize the influence of noisy variables 

such as this, data reductions are usually necessary, which can be realized either through 

projection or variable selection methods, or through a combination of both (Mehmood et al., 

2012).  

Variable selection methods turn out to be highly adopted in Partial Least Squares regression 

(PLSR), as they do not only reduce the noise generated by irrelevant variables as mentioned 

above, but also improve estimation/prediction performance, model interpretation and 

understanding of the investigated system. There are numerous methods for variable selection 

in the literature, which can be grouped according to the classification proposed by Mehmood 

et al. (2012), and later also adopted by Cocchi et al. (2018). It involves the distinction into three 

main groups: filter methods, wrapper methods, and embedded methods. In the first one, it is 

possible to find those methods according to which the variable selection takes place through 

two fundamental steps: firstly, the PLSR model is fitted to the data, and secondly the variable 

is selected through the introduction of a threshold value on some measure of relevance obtained 

from the PLS model. These techniques are usually quick and easy to implement. In the wrapper 

methods, the feature selection takes place using the filter methods in an iterative way. These 

are techniques based on some supervised learning approach, where the refitting of the model 

is included in the variable search algorithm. In addition, a measure of model performance is 
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used to determine the best subset of the variables. Finally, the embedded methods are those in 

which variable selection is included with model derivation in a single one-step procedure. In 

this case, the optimal subset of variable is sought for each component of PLS model. 

Furthermore, relying on a single iterative procedure, these techniques are usually faster than 

the wrapper methods.  

Among the categories of variable selection methods listed above, one of the most popular is 

certainly the variable importance in PLS projections (VIP) which was introduced by Wold et 

al. (1993) as “Variable influence on projection” and known also as “Variable importance in 

projection score” or VIP scores (Eriksson et al., 2006). In this work it was used to identify the 

wavelengths at which the absorption signal appears to have a greater influence on the Y 

variations (i.e. concentrations), thus discriminating them with respect to those without any 

discrimination power. VIP scores are useful in understanding the X space predictor variables 

that best explain Y variance. For each j-th variable of X, VIP scores can be defined as the sum, 

over the latent variables, of its PLS-weight value (𝑤𝑗) weighted by the percentage of explained 

Y variance (SSY) by each specific latent variable, as reported in the following formula:  

𝑉𝐼𝑃𝑗 =
√

∑ (𝑆𝑆𝑌𝑎 (
𝑤𝑗𝑎

‖𝑤𝑎‖
)

2

) 𝐿𝐴
𝑎=1

𝑆𝑆𝑌𝑡𝑜𝑡𝐴
 

 

(83) 

Where SSYa is the percentage of variance explained by the ath component, wja are the elements 

of the weight matrix found by the model, and L is the number of variables in X. The VIP 

criterion, as it was first suggested, had a set range for its parameters since the total of the 

squared VIP for all variables equals the number of variables. For this reason, it is common to 

consider a threshold of VIP greater than 1, which indicates that the chosen variable has a more 

influence on the model predicting Y than the average of the squared VIP values. This technique 

is useful for eliminating unimportant variables, but it may have limitation when determining 

the significance of features. This selection criterion has been shown to be a suitable option, 

even when the X variables are spectral data as reported by study of Chong & Jun (2005). Other 

possible options include applying a threshold of 2/3 or using the average of VIP values as the 

threshold (Cocchi et al., 2018).  

In this work, the VIP variable selection method was also implemented on Matlab®. After 

performing the PLS regression on the complete data, as shown in the previous section, a 
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reduced number of variables are selected by means of the VIP technique. On the new data 

matrix, decomposed only by the variables that are considered significant and thus having a VIP 

index greater than 1, the PLS regression is again carried out.  

Another important statistical parameter that was calculated at each simulation, in order to 

assess the quality of the model, is the coefficient of determination 𝑅2. As explained by de Luca 

et al. (2009) in their work, 𝑅2 can be defined as a significant quality index in fitting all data to 

a straight line and represents the fraction of the total variance explained by the model. It can 

be calculated as follows (Eq. 84).  

𝑅2 = 1 − 
(𝑦̂𝑖 − 𝑦𝑖)

2

(𝑦𝑖 − 𝑦)2
 (84) 

 

Where 𝑦𝑖 are the observed data, 𝑦 their mean, and 𝑦̂ are the values predicted by the regression 

model.  

PLSR model validation 

It is common for the training set to produce accurate predictions, but this does not guarantee 

that the method can predict properly unknown data. To confirm the prediction quality, it is 

usually recommended to use a test set. This represents a set of samples that were not included 

in the original calculations, thus can be defined as a “blind test”. These samples are initially 

considered as unknown. The evaluation of the prediction quality by using a test set can be 

considered as a form of validation. This step can be accomplished in several ways, and cross-

validation represents one of them. This method requires only one training set and it consists of 

removing one or a group of samples, and then determining the model using the remaining 

samples. In the work presented here, it was decided to opt for leave-one-out cross-validation, 

which represents the most common approach. According to this technique, one sample is left 

out at a time, and then the same sample is predicted using the calibration constructed with the 

other reference samples. The process is repeated until all samples have been left out in turn 

(Brereton, 2007; de Luca et al., 2009).  

 

5.3 Results 

This section will report the results obtained. Since the study of the development of a Raman-

based spectroscopy sensor to monitor ethanol and glucose composition was divided into two 
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stages, the results will be shown in the following order: firstly, ethanol and glucose regression 

models obtained from the statistical analysis of Raman spectra recorded for ideal solutions, 

prepared ad hoc at known concentration of both investigated compounds, will be analyzed. In 

this case, the presence of secondary compounds and their possible influence on the predictive 

capabilities of the models was also evaluated. Secondly, the results related to the analysis of 

samples obtained from the fermentation of pre-treated BSG will be discussed. In this case, the 

results of the model calibration step will be followed by the cross-validation step using the 

leave-one-out (LOO) technique.  

5.3.1 Ideal fermentation solutions 

All spectra recorded in this first phase of analysis were pretreated by normalizing them with 

respect to a reference wavelength value, i.e., by subtracting from each Raman shift value the 

one corresponding to the peak at 2446 cm-1. This value was selected because it did not 

correspond to any significant peak, and since its corresponding intensity value was very low, 

its influence on other peaks was assumed to be unremarkable. Moreover, starting from a full 

Raman shift range between 197.7 cm-1 and 3500 cm-1, it was decided to evaluate a reduced 

range between 400 cm-1 and 3020 cm-1 being the lower wavelengths less informative and more 

affected by noise.  

Ethanol 

Figure 50 shows the spectra of ethanol solutions at different concentration values [1-15% 

(v/v)], where it is possible to clearly identify its characteristic peaks:  

• Stretching vibrations C-C at 886 cm-1.  

• Librations of the CH3 groups at 1100-1116 cm-1. 

• Torsion and rotational vibrations of the CH2 groups near to 1280 cm-1. 

• Bending vibration of CH3 and CH2 groups at 1454 cm-1. 

• Stretching symmetric and asymmetric vibrations of the CH3 groups between 2880 and 

2980 cm-1, with the most evident peak approximately at 2934 cm-1.  
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Figure 50. Raman spectra of aqueous ethanol solutions at different concentrations. 

 

Figure 51. Comparison of predicted and measured values of ethanol with 1 LV PLSR model.  

Figure 51 represents the result of the PLS regression model calculated with only one latent 

variable (LV) and using all available data. In this case, an R2 value of 0.9945 is obtained.  
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Figure 52. VIP scores for ethanol (73 selected variables). 

 

Application of the VIP method revealed that 73 predictor variables (shown in red in Figure 52) 

had a VIP score greater than 1, and thus had a greater influence on ethanol composition (y). 

These selected data constituted the new X data matrix, which was used to build a new PLSR 

model as shown in Figure 53. It can be observed that the result obtained with the reduced data 

set was equal to previous one calculated with the whole data set. This was also confirmed by 

the R2 value obtained (0.9945). Therefore, in the case of ethanol, the selection of the most 

significant predictor variables did not bring any improvement in the predictive capabilities of 

the model. In any case, this represents a very satisfactory result, since the Raman spectra used 

confirmed to have a high informative content for the purpose of evaluating ethanol composition 

and obtaining an excellent predictive model.  
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Figure 53. Comparison of predicted and measured values of ethanol with 1 LV PLSR model obtained with the 

reduced data set.  

Glucose 

Regarding glucose, the Raman spectra for different concentration values are reported in Figure 

54. As can be observed, its characteristic peaks are significantly weaker in terms of intensity 

and also overwhelmed by those of water, especially at 1633 cm.1, which represents the 

characteristic peak of H-O-H bending. However, some of its characteristic peaks can be 

identified, such as the one at 451 cm-1 of the C-CO bending, and the one at 1063 cm-1 of the C-

O bending. An anomalous and particularly intense peak was recorded around 2000 cm-1. The 

literature was not helpful, but it interesting to note that this peak is present in all the solutions 

analyzed.  

Figure 55 shows the comparison between measured and predicted glucose compositions from 

the PLS regression model obtained with 3 latent variables. In this case, the 𝑅2 coefficient was 

0.9807. Figure 56 represents the distribution of selected predictor variables from the VIP 

method. Those considered significant were 131, which were then used to build the new PLSR 

model (Figure 57). With the reduction of the data set, the  𝑅2 coefficient decreased to 0.9567. 

This means that, unlike what was observed for ethanol, for glucose composition the variable 

selection resulted in a loss of information that led in loss of predictive ability of the model, as 

confirmed by the  𝑅2 value. Therefore, although a decrease in the total variance explained by 

the model of about 2.4% was recorded, the results obtained showed that the information 
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contained in the evaluated spectra was significant and allowed for the construction of a 

statistical model with satisfactory performance.  

 

Figure 54. Raman spectra of aqueous glucose solutions at different concentrations. 

 

Figure 55. Comparison of predicted and measured values of glucose with 3 LV PLSR model. 
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Figure 56. VIP scores for glucose (131 selected variables).  

 

Figure 57. Comparison of predicted and measured values of glucose with 3 LV PLSR model obtained with the 

reduced data set. 
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Ethanol in presence of glucose and secondary substances 

In this section, the construction of a PLSR model for ethanol was evaluated in the case where 

glucose and secondary substances, such as acetic acid and formic acid are present in the 

analyzed mixture. Therefore, in addition to the Raman spectra acquired for the previously 

investigated ethanol solutions, the not pure ethanol solutions shown in Table 21 were also 

included in this case. Thus, a total of 12 samples were analyzed. Figure 58 shows the 

corresponding Raman spectra recorded for these solutions. The evaluation of a model with only 

one latent variable (Figure 59) returned an 𝑅2 value of 0.8827, which changed to 0.8819 

(Figure 61) after the data set was reduced due to the selection of significant predictor variables 

(Figure 60). By adding a latent variable, improvements were achieved. Indeed, the total 

variance explained by the model reached a value of 0.9930 (Figure 62). Then, the application 

of VIP method allowed for the selection of 79 significant variables (Figure 63), compared to 

73 with only one latent variable. The model built with the reduced data set enabled a further 

improvement to be achieved, in fact the 𝑅2 value was 0.9939 (Figure 64). The results obtained 

demonstrate once again that Raman spectra are highly informative for estimating the 

composition of ethanol. A performant model with more input data, but still a low value of 

components, was developed, which allowed for performance almost equal to the first one 

obtained (with only aqueous ethanol solutions). It is worth noting that compared to the case 

just mentioned, the model with 2 latent variables identified 6 more predictor variables. These 

included wavelengths between 810 and 820 cm-1 where characteristic peaks can be found due 

to C-C stretch, around 1090 cm-1 where peaks can be found due to CH3 oscillations, around 

2868 cm-1 for CH2 vibrations, and finally approximately at 2957 cm-1 for CH3 stretch. These 6 

variables proved to be significant, it is true that 𝑅2 increased by only 0.09%, but still it 

represents an improvement.  
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Figure 58. Raman spectra of aqueous ethanol solutions in presence of glucose, acetic and formic acid at 

different concentrations. 

 

Figure 59. Comparison of predicted and measured values of ethanol with 1 LV PLSR model. 
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Figure 60. VIP scores for ethanol (73 selected variables). 

 

Figure 61. Comparison of predicted and measured values of ethanol with 1 LV PLSR model obtained with the 

reduced data set. 
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Figure 62. Comparison of predicted and measured values of ethanol with 2 LV PLSR model. 

 

Figure 63. VIP scores for ethanol (79 selected variables). 
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Figure 64. Comparison of predicted and measured values of ethanol with 2 LV PLSR model obtained with the 

reduced data set. 

 

 

Glucose in presence of ethanol and secondary substances 

In this section, the development of the glucose prediction model was investigated in the case 

where, in addition to glucose-only solutions, combined solutions of the same were included 

along with ethanol, acetic acid, and formic acid. Again, the reader considers the combinations 

shown in Table 21. In this case, there were 17 total solutions analyzed.  

Figure 66 shows the comparison of the measured glucose with that predicted by the model 

obtained with 4 latent variables. In this case, an 𝑅2 coefficient of 0.9587 was obtained. In 

Figure 67, the trend of the most significant predictor variables is reported. The identification 

of 147 variables, and the consequent model built on them, resulted in a decreasing in terms of 

the total variance explained by the model (Figure 68). Similar result was obtained in the case 

of glucose-only solutions. Considering one more latent variable, the model construction 

resulted in an increase of 0.01 of 𝑅2 (Figure 69). In this case, 148 significant variables were 

identified (Figure 70), and the regression model calculated on the reduced data set gave an 𝑅2 

coefficient of 0.9574 (Figure 71). Compared with the case of glucose-only solutions (Figure 

54), 17 more significant variables were identified. Looking at the graph in Figure 70, it is 

possible to observe that the differences are especially around 600 and 700 cm-1, and then 
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between 2800-2900 cm-1. In the first mentioned area it is possible that the method considered 

the presence of acids as significant, while in the second area it selected the characteristic peaks 

of ethanol due to CH3 stretch, which in contrast to those of glucose are particularly intense.  

 

Figure 65. Raman spectra of aqueous glucose solutions in presence of ethanol, acetic and formic acid at 

different concentrations. 

 

Figure 66. Comparison of predicted and measured values of glucose with 4 LV PLSR model. 
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Figure 67. VIP scores for glucose (147 selected variables). 

 

Figure 68. Comparison of predicted and measured values of glucose with 4 LV PLSR model obtained with the 

reduced data set. 
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Figure 69.  Comparison of predicted and measured values of glucose with 5 LV PLSR model. 

 

Figure 70. VIP scores for glucose (148 selected variables). 
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Figure 71. Comparison of predicted and measured values of glucose with 5 LV PLSR model obtained with the 

reduced data set. 

 

 

5.3.2 Not-ideal fermentation solutions 

This section will discuss the results obtained from the Raman analysis of the fermentation 

samples. In particular, it is important to note that samples taken from both bioreactors were 

used to develop the regression model. Therefore, a total of 20 samples were used to develop 

the PLSR model of both ethanol and glucose. The Raman spectra of these samples are reported 

in Figure 72. As can be seen, the spectra were considered in the full Raman shift range, as a 

reduction of it proved to have a negative effect on the predictive capabilities of the models.  

Ethanol (with only fermentation solutions)  

First, the model development for ethanol composition with 5 latent variables was evaluated. 

Figure 73 shows the comparison between the measured ethanol compositions and those 

predicted by the model. An 𝑅2 coefficient of 0.6567 was obtained. Then, 149 variables were 

selected as significant (Figure 74). The regression conducted on the reduced data set improved 

the performance of the model by 7.63%. Indeed, the new 𝑅2 value was 0.7330. This means that 

the VIP method selected precisely the most significant variables. This is an encouraging result, 

because as can be observed in Figure 75, the points fall close to the straight line. However, the 

same cannot be said in validation. The results regarding this step are shown in Figure 76. The 
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validation was carried out on the previously reduced data set by means of VIP method. The 

new regression model obtained exhibited poor predictive ability, having a negative  𝑅2 

coefficient and equal to -0.3544. Although from the graph some points appear to be quite close 

to the straight line, the negative 𝑅2 value may be due to the presence of a negative predicted 

value of composition, which certainly affects it significantly.  

 

Figure 72. Raman spectra recorded for the 20 fermentation samples.  

 

Figure 73. Comparison of predicted and measured values of ethanol with 5 LV PLSR model. 
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Figure 74. VIP scores for ethanol (149 selected variables).  

 

Figure 75. Comparison of predicted and measured values of ethanol with 5 LV PLSR model obtained with the 

reduced data set. 
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Figure 76. Comparison of predicted and measured values of ethanol with 5 LV PLSR model obtained with the 

reduced data set in validation phase. 

 

Because of the results obtained with 5 variables, the regression model for ethanol was 

developed considering one more latent variable. The results obtained are shown in Figure 77-

80. In this case, the PLSR model provided a slightly higher 𝑅2 coefficient in calibration 

(0.6890) than in the previous case (0.6567). As also noted above, the regression performed on 

the reduced data set as a result of selecting the most significant variables (Figure 78), 

determined an improvement in 𝑅2 value of about 7.6%. The comparison of measured values 

and those predicted by this model are depicted in Figure 79. Again, moving on to the validation 

step, substantial decreases were recorded in terms of model performance. The total variance 

explained by the model was found to be 0.3141. In comparison with the case of 5 latent 

variables, it is possible to state that the model appears to be more capable of predicting ethanol 

composition values (Figure 80). The information contained in the reduced data set used in this 

validation phase allowed for a better, but still not satisfactory result.  
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Figure 77. Comparison of predicted and measured values of ethanol with 6 LV PLSR model. 

 

Figure 78. VIP scores for ethanol (152 selected variables). 
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Figure 79. Comparison of predicted and measured values of ethanol with 6 LV PLSR model obtained with the 

reduced data set. 

 

Figure 80. Comparison of predicted and measured values of ethanol with 6 LV PLSR model obtained with the 

reduced data set in validation phase. 
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Glucose (with only fermentation solutions)  

Similarly to the case of ethanol, a model was first developed for glucose by evaluating 5 latent 

variables. The 𝑅2 obtained at the calibration phase (0.7187), both before and after VIP selection 

(120 selected variables), was lower than the one obtained from the analysis of ideal solutions. 

This can be clearly observed from graphs reported in Figure 81 and 83, where the comparison 

of measured and predicted values, with and without the reduced data set, is reported. Although 

the selection of 120 significative variables (Figure 82) resulted in an increase in 𝑅2 (0.7664), 

this is still insufficient. As a confirmation of this, the comparison between measured and 

predicted values obtained in the validation step is reported in Figure 84. In this case, 𝑅2 

coefficient was significantly negative (-0.9844).  

 

Figure 81. Comparison of predicted and measured values of glucose with 5 LV PLSR model. 
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Figure 82. VIP scores for glucose (120 selected variables). 

 

Figure 83. Comparison of predicted and measured values of glucose with 5 LV PLSR model obtained with the 

reduced data set. 
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Figure 84. Comparison of predicted and measured values of glucose with 5 LV PLSR model obtained with the 

reduced data set in validation phase. 

 

Due to the results obtained with 5 latent variables, a regression model with 6 latent variables 

was also developed for glucose. The results in calibration and validation are reported below. 

𝑅2 coefficient under calibration assumed a slightly higher value than the previous case 

(0.7324). The model still showed difficulties in predicting glucose composition. Indeed, as can 

be seen in Figure 85, only some values fall close to the straight line, while others deviate 

significantly assuming even negative values. 123 significant variables were selected as shown 

in Figure 86. The regression conducted on the reduced data set allowed for a better 𝑅2 and 

equal to 0.8056 (Figure 87). The validation conducted in the same reduced data set did not give 

the hoped-for results. An 𝑅2 coefficient of 0.0256 was obtained. Although compared to the 

previous case, the improvement is evident, from Figure 88 it is possible to see that the glucose 

model still has significant limitations.  
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Figure 85. Comparison of predicted and measured values of glucose with 6 LV PLSR model. 

 

Figure 86. VIP scores for glucose (123 selected variables). 
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Figure 87. Comparison of predicted and measured values of glucose with 6 LV PLSR model obtained with the 

reduced data set. 

 

Figure 88. Comparison of predicted and measured values of glucose with 6 LV PLSR model obtained with the 

reduced data set in validation phase. 
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5.4 Conclusions 

Monitoring of key variables in a biotechnological process is certainly a key step in control. As 

outlined in previous chapters, this represents a nontrivial task. The benefits to be gained from 

implementing a monitoring system are diverse, such as improvements in product quality, 

improved safety, and lower operating costs. The lack of sensors capable of providing real-time 

information represents the greatest limitation to this goal. In recent decades, the use of 

spectroscopic analyzers has become increasingly popular in the context of bioprocess 

monitoring. The ability to provide near-real-time results, the fact that no chemicals are needed 

to operate, and the low maintenance required, along with the fact that they do not require time 

for sample preparation represent the main advantages of these instruments. In this chapter, the 

application of Raman spectroscopy was investigated and discussed as a monitoring tool for 

bioethanol production in fermentation bioreactors. The goal was to develop a reliable and 

accurate sensor to measure ethanol and glucose composition. Chemometric techniques were 

evaluated and applicated in order to determine a relationship between the recorded Raman 

spectra and the concentrations of the investigated compounds. The study was first conducted 

on ideal solutions of ethanol and glucose at known concentrations. Additional combined 

solutions of ethanol, glucose, and acetic and formic acid were added to these in order to assess 

the presence of possible undesirable compounds. Subsequently, samples of fermentation 

solutions were analyzed using BSG as biomass. Raman data from all considered samples were 

statistically analyzed using the PLS technique. With regard to the ad hoc prepared solutions, 

the results are encouraging. Even in the presence of undesirable compounds that might disturb 

the reading of the peaks characteristic of those investigated, both the ethanol and glucose 

models were shown to have good predictive capabilities. In the case of nonideal fermentation 

solutions, however, the evaluation was far from trivial. Regarding ethanol, its predictive model 

with 5 latent variables recorded an R2 value of 0.6567 at the calibration stage. The application 

of the regression on the range of wavelengths considered most significant (179) by the VIP 

method did not provide the expected results. Indeed, the R2 obtained was slightly higher 

(0.7330). In validation, as expected, the predictive performance of the model decreased 

significantly reaching a negative value of R2 (-0.3544). Considering one more latent variable, 

it was possible to obtain better results but still not satisfactory. At the calibration phase, a 

slightly higher R2 (0.6890) was obtained. By performing the regression on the reduced dataset, 

selected by the VIP method, an R2 of 0.7656 was achieved. However, at the validation, the 

model continued to show difficulties reconstructing the ethanol concentration. Indeed, the 
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value of R2 is still low (0.3141) meaning that the model has limitations and beyond it cannot 

go. Glucose analysis proved to be even more complicated. The regression model built with 

fermentation data has significant limitations in predicting glucose concentration, particularly 

when only 5 latent variables were evaluated. Indeed, in the validation phase an R2 of -0.9844 

was found. Considering one more latent variable, the predictive capabilities of the model were 

improved a little. The R2 was found to be equal to 0.7324 in calibration with the full dataset, 

0.8056 with the reduced dataset, but in validation it dropped to 0.0256. Thus, the analysis of 

these data shows that the predictive ability of the sensor is strongly related to the solutions 

analyzed. Limpid solutions such as those evaluated in the first phase yielded satisfactory 

results. Torpid solutions such as those derived from a real process generate noisy spectra that 

are difficult to interpret, and from which it is complicated to extract useful information. A 

possible solution to this problem would be to have more experimental data and to use more 

robust statistical analysis tools, but also add a further filtering step of the analyzed solutions in 

order to obtain more interpretable spectra. 
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Chapter 6: Conclusions 

This chapter summarizes the main conclusions. 
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In this thesis, the problem of monitoring and control of biotechnological processes was 

addressed. Particularly, the focus was on the fermentation process in which living 

microorganisms (yeasts) use the substrate present in the bioreactor medium to produce ethanol. 

The involvement of microbial cultures represents the factor in common to all bioprocesses and 

is also the main reason why the bioreactor is the most difficult unit operation to control. The 

issue may become more intricate when considering the production of biochemicals or biofuels 

derived from waste biomass, since the type of feedstock and pre-treatment selected to obtain 

fermentable sugars have a significant effect on the growth of microorganisms involved, and 

consequently on the desired product quality. The problem had been first addressed considering 

the detailed mathematical model of a continuous fermentation bioreactor as a virtual plant. This 

model, previously developed by other researchers, was selected for the purpose of the work 

here presented because it contained all the nonlinear and complex characteristics of the process, 

offering a useful tool to test nonlinear estimation and control methods. The monitoring problem 

was addressed by means of an adjustable-structure geometric estimation approach, where the 

estimator structure represented a design degree of freedom to improve its performance versus 

robustness behavior. The investigated estimation algorithm was the geometric observer with 

proportional innovation, which offers simplicity of tuning and implementation. In order to 

demonstrate that the proposed procedure for choosing the estimation structure could be applied 

to other estimation techniques, the extended Kalman filter was also implemented as 

measurement processor algorithm. The results analysis showed good estimation performance 

for both estimators, although regarding the geometric observer a higher sensitivity to 

measurement noise, attributable to the presence of the Lie derivatives in the correction term, 

was noted. In summary, the geometric method demonstrated to be the most effective solution 

to address the estimation problem. It provided a structure independent of the correction 

algorithm, allowing flexibility in the choice of the latter based on the preferences of the plant 

personnel or developer experience. The results of this study, in terms of methodology, can be 

applied to more advanced biotechnological processes. Moreover, it can be helpful to identify 

the most crucial measurements for optimal reconstruction and invest in them.  

Subsequently, the research work focused on the control of the fermentation bioreactor, using 

the detailed mathematical model with the estimators previously developed to accomplish the 

task. Analysis of the control performance indices and the evaluation of the dynamic trends 

pointed out that when product composition measurements were not available, the only 

temperature controller was not able to ensure the achievement of product composition set point. 
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Evaluating the case where ethanol measurements were affected by delay, the proposed cascade 

structure performed better even in presence of variations in model input parameters. However, 

it was the configuration of the MIMO system, together with the estimator for ethanol 

concentration, that guaranteed compliance with product quality. Results from dynamic trend 

analysis was also demonstrated by the performance index values calculated. It worth noting 

that the excellent result achieved with this configuration was mainly due to the good 

capabilities of the estimator, and its robustness.  

The proposed solutions for monitoring and controlling the fermentation process were initially 

developed using numeric simulations. However, these were based on the assumption that the 

fermentation was performed in an ideal reactor, using a pure glucose solution without 

considering the presence of possible inhibitory compounds. This does not reflect the conditions 

of a real plant, especially when using waste biomass as a renewable source of fermentable 

sugars. An experimental study was conducted to gain a deeper understanding of the 

fermentation process evaluating its sensitivity to process conditions and design an effective 

monitoring tool. The exploitation and valorization of waste biomass such as brewery’s spent 

grain (BSG) to produce second-generation biofuels was investigated as a valid and concrete 

example of a biotechnological process. Using proper statistical techniques for the design of 

experiments, the bioconversion of BSG to ethanol was investigated in a wide range of operating 

conditions, and the main variables affecting the process were identified. Raman spectroscopy 

in combination with chemometric tools were applied for the obtainment of real-time 

quantitative analysis of products during fermentation of sugars for ethanol production. The 

results indicated that the proposed approach was successful when using sample specially 

prepared containing only glucose, ethanol, and traces of acids. When turbid solutions obtained 

from the fermentation experiments were analysed, it was not possible to obtain informative and 

interpretable spectra, evidencing a limit in this technology. 
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