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Abstract

There is increasing interest in applying more advanced control strategies to biological processes
in order to optimise the operation of these complex systems. In the past years, the major
increases in product titre have been achieved mainly by genetic engineering approaches, which
has lead to highly optimised industrial host strains. The focus of this project is instead on en-
gineering of the process. The question to be answered in this thesis is, given a highly optimised
industrial host strain, how can we operate the fermentation process in order to maximise the
productivity of the system?

In order to develop control strategies a significant effort must be invested into developing process
models and establishing process understanding. Both data-driven modelling and mechanistic
modelling approaches are considered in this work. Firstly, multivariate analysis is applied to
production scale data from Novozymes A/S in order to predict the product concentration which
is measured at the end of the batch. This is achieved with an average prediction error of 7.4%.
The purpose of developing the model, is mainly in order to identify key process parameters which
show variance relevant to the product concentration, and to identify process trends which lead
to higher titres. The application of multivariate methods, in order to provide process insights,
creates value from the vast datasets which are collected in industry.

A mechanistic model approach is then considered, based on previous work by Albaek et al
(2012). This model describes the fungal processes operated in the fermentation pilot plant at
Novozymes A/S. This model is investigated using uncertainty analysis methods in order to as-
sess the applicability to control applications. A mechanistic model approach is desirable, as it is
a predictive method which is able to be extrapolated outside of the conditions used to develop
the model. For this reason, the mechanistic model approach is further investigated in this work.

The mechanistic model analysis showed that it provided a robust description of the physi-
cal system, however there was a relatively high uncertainty in the description of the biological
processes. For control applications the model is applied on-line, and therefore it is investigated
whether the model prediction may be improved by incorporating available measurement data.
A stoichiometric balance approach is applied in order to estimate model parameters including
the rate of biomass formation and the rate of product formation. This leads to an increased
prediction accuracy in the biological part of the model. The mechanistic model may then be
applied as a valuable on-line monitoring tool.

The control strategy development follows on from the on-line model application. The aim
of the control strategy is to maximise the total product achieved per batch. There is a demand
to maximise the total product in each batch in industry, in order to meet increasing product
demands with a limited capacity. The control algorithm is then defined in order to maximise
the mass in the system, subject to the oxygen transfer rates in the system. Since the aim is to
control to a target fill in a target time, a predictive model-based control algorithm is developed
where by the model is simulated to the end of batch time at each model iteration. This provides
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a prediction of the future trajectory of the process, so that it is possible to guide the system to
the desired target mass. The control strategy is applied on-line at 550L scale in the Novozymes
A/S fermentation pilot plant, and the method is challenged with four different sets of process
operating conditions. The controller reliably reaches the desired maximum tank fill, with a
maximum error of under 5% of the target in eight experimental runs. The product concen-
tration is not affected by the control strategy when compared to batches utilising a reference
controller. This method has the benefit of reducing the variance in the final fill, which not only
allows for a more reproducible product mass in a batch operation, but also aids downstream
process scheduling and resource allocation activities in the industrial setting.



Dansk resume

Der er en stigende interesse i at anvende avancerede kontrol strategier til biologiske processer
for at kunne optimere driften af disse komplekse systemer. I de senere ar har genteknologi
veeret den primeere kilde til hgjere produkt koncentrationer, hvilket har resulteret i steerkt
optimerede veertsstammer. Dette projekt vil i stedet fokusere pa opseetningen af processen.
Spgrgsmalet, der vil blive sggt besvaret i denne afhandling, er: Givet en steerkt optimeret
industriel veertsstamme, hvordan kan vi operere fermenteringsprocessen for at maksimere sys-
temets produktivitet?

For at veere i stand til at udvikle kontrolstrategier, skal der laegges en betydelig indsats i
udviklingen af palidelige procesmodeller samt at etablere en god procesforstaelse. Bade data-
drevne samt mekanistiske modelleringsmetoder har veeret anvendt i dette arbejde. Initialt er
multivariant analyse anvendt pa et datasset med industriel fermenteringsdata fra Novozymes
A/S. Malet var at veere i stand til at forudsige produkt koncentrationen, der er malt i slutnin-
gen af processen. Dette er opnaet med en gennemsnitlig forudsigelsesfejl pa 7.4%. Formaélet
med at udvikle denne model er hovedsagligt at identificere procesparametre, der udviser en
hgj varians, der er relevant for den endelige produktkoncentration, samt at identificere pro-
cesmgnstre, der resulterer i hgje produktkoncentrationer. Brugen af multivariate metoder til at
give procesindsigt abner dgrene for at skabe vaerdi af de utallige dataseet, der samles i industrien.

En tilgang, baseret pa mekanistisk modellering, er siden anvendt, hvilket bygger pa tidligere
forskning fra Albaek et al (2012). Denne model beskriver den svampe baserede proces, der
kores i fermenteringspilothallen pa Novozymes A/S. Denne model er undersggt ved at anal-
ysere af model usikkerheden, for at vurdere anvendeligheden i kontrolhenseender. En tilgang
baseret pa mekanistisk modellering er hensigtsmaessig, da mekanistiske modeller i deres natur er
fremskrivende, hvilket abner for muligheden for at ekstrapoleere uden for de procesbetingelser,
der blev brugt til udvikling af modellen. Af denne grund, er en tilgang baseret pa mekanistisk
modellering videre brugt afdsekket i denne afhandling.

Analysen af den mekanistiske model viser at den etablerer en robust beskrivelse af det fy-
siske system, hvorimod usikkerheden vedrgrende de biologiske processer er relativt hgj. Til
proceskontrol anvendes modellen ’on-line’; og derfor undersgges det hvorvidt model usikkerhe-
den kan forbedres ved at inkorporere tilgeengelig malbar data fra processen. En stgkiometrisk
balance er anvendt til at estimere en rackke model parametre, inklusiv hastigheden af biomasse
dannelse, samt hastigheden af produkt dannelse. Dette leder til en gget ngjagtighed i proces-
fremskrivningen af den biologiske del af modellen. Den mekaniske model kan saledes blive brugt
som et veerdifuldt ‘on-line’ moniteringsveerktaj.

Udviklingen af en kontrolstrategi er bygget pa brugen af ‘on-line’ moniteringsvaerktgjet til ud-
vikling af en praediktiv modelbaseret styrings algoritme. Formalet med kontrol strategien er
at maksimere den totale produktivitet opnaet per batch. Industrien tilstreeber at maksimere
produktformationen for hver enkel batch for at imgdekomme den stigende produkt efterspgrgsel
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med begraenset kapacitet. Kontrolalgoritmen er saledes indstillet pa at maksimere massen i sys-
temet underlagt begraensninger fra hastigheden af iltoverfersel til systemet. Malet er at styre
systemet til en defineret fyldningsgrad inden for en afgraenset tid, hvilket lgses med en praedik-
tiv modelbaseret styrings algoritme. Denne model simuleres til slutningen af processen i hver
model iteration. Dette resulterer i en fremskrivning af proces udviklingen, og saledes er det
muligt at guide systemet til den pre-definerede fyldningsgrad. Kontrol strategien er anvendt pa
‘on-line’ pa 550L fermenteringer i Novozymes pilothal, hvor metoden er testet under fire forskel-
lige procesbetingelser. Med hgj palidelig styrer kontrol algoritmen systemet til den definerede
fyldningsgrad med en maksimal afvigelse pa under 5%, malt ud fra otte eksperimentale forsgg.
Produktkoncentrationen er ikke forringet af den nye kontrolstrategi hvilket ses ud fra sammen-
ligninger med reference eksperimenter. Metoden har den fordel, at den reducerer variansen i
den endelige fyldningsgrad, hvilket ikke kun er brugbart i form af en mere reproducerbar proces,
men ogsahar en gavnlig effekt paefterfolgende produktionstrin i forhold til ressource allokering
samt planleegning.
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Nomenclature

The following nomenclature is valid for this work, unless otherwise specified in the text. For
example, in the literature review chapter, other nomenclature may be used, but in this case this
is specifically explained in the text.

Roman letters

a kra equation fitted parameter

b kra equation fitted parameter

c kra equation fitted parameter

CER Carbon dioxide evolution rate (mol/h)
C1 Viscosity equation parameter (-)

c kra equation parameter (-)

D Impeller diameter (m)

D? Second derivative

DO Dissolved oxygen concentration (mol/kg)
DO vz Maximum DO profile (%)

DOmin Minimum DO profile (%)

DOeasured Measured DO (%)

DOprofite Dissolved oxygen profile (%)

DOyt Dissolved oxygen setpoint (%)

DO, Dissolved oxygen concentration (mol/L)

DO* Dissolved oxygen saturation concentration (mol/kg)
DO} Dissolved oxygen saturation concentration (mol/L)
d kla equation fitted parameter

F Feed rate (L/h)

Fy Nominal value feed controller (L/h)

Fevap Evaporation rate (kg/h)

FOuimit Maximum F/OUR (L/mol)
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Fprofile
Fsupervisory
G

HSP

Mena
M,
Miarget
M=o
me

ms

NHs

OUR
024y

P

Px
Pugitation
Poir
Patm
Pyroth
Priectrode
Py/P,
Phead
Po

P,

Feed rate model trajectory (L/h)

Feed rate from supervisory layer (L/h)

Substrate concentration (g/kg)

Headspace pressure (barg)

Number of basis functions (-)

Controller proportional gain ((L/h)/%)
Volumetric oxygen mass transfer coefficient (h~1)
Shear rate constant

Mass (kg)

End mass prediction from model trajectory (kg)
Molecular mass (g/mol)

Target end mass (kg)

Starting mass (kg)

Maintenance oxygen consumption (mologygen/gpiomassih)
Maintenance substrate consumption (gsupstrate/Gbiomassn)
Ammonia addition (mol/h)

Stirrer speed (rpm)

Number of impellers

Oxygen uptake rate (mol/h)

Mole fraction oxygen (mol/mol)

Product concentration (g/kg)

Saturated vapour water pressure (Pa)

Power dissipated by agitation (kW)

Power dissipated by aeration (kW)

Atmospheric pressure (bar)

Total power input to broth (kW)

Pressure at electrode (bar)

Relative power during aeration (-)

Pressure at headspace (bar)

Impeller power number

Product concentration (g/L)



Nomenclature

PH Hydrogen content of product (mol H/cmol P)
PN Nitrogen content of product (mol N/cmol P)
PO Oxygen content of product (mol O/cmol P)
Po Impeller power number

Quair Air flowrate (NL/min)

Qe Modelled carbon evolution rate (mol/h)

g Modelled substrate uptake rate (mol/h)

Qo Modelled oxygen uptake rate (mol/h)

ap Modelled product formation rate (mol/h)

Gz Modelled biomass formation rate (mol/h)

Gw Modelled water formation rate (mol/h)

R Universal gas constant (J/mol.K)

S Substrate concentration (g/L)

S Feed substrate concentration (g/L)

Steed Concentration of feed (g/kg)

T Temperature (K)

tend End time (h)

L Volume (m?3)

Vg Actual superficial gas velocity (m/s)

Vgn Superficial gas velocity at normal temp. and pressure (m/s)
X Biomass concentration (g/kg)

Xy Biomass concentration (g/L)

XH Hydrogen content of biomass (mol H/cmol X)
XN Nitrogen content of biomass (mol N/cmol X)
X0 Oxygen content of biomass (mol O/cmol X)
Yzo Yield coefficient (molO2/g X)

Yus Yield coefficient (g substrate/gX)

Yso Observed yield of COy on substrate (g/g)
Yso Observed yield of O on substrate (g/g)

Ysp Observed yield of product on substrate (g/g)

Ysx Observed yield of biomass on substrate (g/g)
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Z Liquid height (m)

Greek letters

ay Viscosity equation fitted parameter
51 Viscosity equation fitted parameter
Yzo Stoichiometric coefficient (mol O2/g biomass)
Yes Stoichiometric coefficient (g substrate/g biomass)
A Shear rate (s~1)

W Biomass growth rate (h~1)

Happ Apparent viscosity (Pa.s)

Hp Plastic viscosity constant (mPa.s)
p Broth density (g/L)

PR Feed density (g/L)

T Shear stress (Pa)

To Yield stress (Pa)

o Basis function

Abbreviations

ANN Artificial neural network

CER Carbon evolution rate

DO Dissolved oxygen concentration
DOT Dissolved oxygen tension

HSP Headspace pressure

MPC Model predictive control

OTR Oxygen transfer rate

OUR Oxygen uptake rate

PCA Principal component analysis
PCR Principal component regression

PENSSE Penalised sum of squared errors
PLS Projection to latent structures
RMSSE Root mean sum of squared errors

SPC Statistical process control
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Introduction






1 Introduction to the project

This aim of this project is to develop a novel control strategy to maximise the total product
achieved by an industrial fermentation process at Novozymes A /S. In order to develop a control
strategy, a significant amount of time must be invested into developing process understanding.
One way to expand and consolidate process understanding is by developing process models. This
thesis therefore covers topics in modelling and monitoring, with a focus on control applications.
The result of this thesis is a novel model-based control strategy of industrial relevance which is
tested on-line at pilot scale.

1.1 Structure of the thesis

Part I: Introduction

The first part of this thesis introduces the project and the field of study. Industrial fermentation
processes are described, and in doing so, the scope of this work is clearly defined, which is
focussed on pilot scale, fed-batch filamentous fungus processes for enzyme production. The
current state of the art for fermentation control is described in the literature review, which is
focussed on feed rate manipulation for fed-batch operation.

Part II: Modelling

Part II of the thesis deals with modelling of fed-batch fermentation processes. Firstly a data-
driven method is investigated in order to characterise production scale data from Novozymes
A/S. Due to the challenges of dealing with industrial scale batch process data, a novel method-
ology is proposed in order to aid model development in the future.

A mechanistic approach is also investigated, based on the prior work of Albaek et al. (2011) and
Albaek et al. (2012). This pilot scale model is investigated, and additional uncertainty analysis
is conducted in order to assess the model limitations. A mechanistic model is desirable as it rep-
resents the current system understanding, and in this way consolidates the process knowledge
in an industrial environment. It is also more flexible than a data driven approach, and may be
applied to multiple systems by adaptation of certain model parameters. Mechanistic models
are also more suited to extrapolation outside of the conditions used to develop the model. For
these reasons, a mechanistic model approach is preferred for future work in this project.

Part ITI: Monitoring

The mechanistic model is further developed for on-line application. Since the ultimate goal
of this work is to develop a control strategy, which will be applied in real time, it is assessed
if the model prediction may be improved by utilising available measurement data. This then
leads to a monitoring tool, based on the mechanistic process model, coupled to a parameter
estimation which takes inputs from the on-line process. This allows for successful modelling



of key parameters including the biomass concentration and the product concentration. These
parameters are otherwise only available off-line, and with time delay on the order of a day.

Part I'V: Control

The final section of the thesis describes the development of a novel control strategy, based
upon the mechanistic process model. The objective of the control strategy is to maximise the
total product achieved in a fed-batch operation, and to achieve this reliably. To this end, the
objective of the control strategy is to maximise the mass in the system subject to the oxygen
limitations, which are defined by a set of process operating conditions. This represents an
industrial problem, which is applicable to large fed-batch processes. The control strategy is
successfully implemented on-line in the 550L scale pilot plant facilities at Novozymes A/S.



2 Industrial fermentation processes

A fermentation process may be described as a process where a substrate is converted into a
valuable product by a biological system. The biological system is typically a pure bacteria or
fungus, which is often genetically modified in order to optimise the expression of the desired
product. The typical industrial fermentation process is operated in a mechanically mixed stain-
less steel fermenter. For aerobic processes, air is supplied at the bottom of the vessel, and the
mechanical mixing dissipates the gas, and enhances oxygen transfer from the gas to the liquid
phase. A carbon substrate is required, and this may be supplied in bulk at the start of the
process, or may be added to the system over time depending on the type of operation employed.

2.1 Industrial fermentation process operation

Batch fermentations are the most simple to operate, where all carbon source and media compo-
nents are added in bulk at the start of the fermentation, and the batch then runs until carbon
source is depleted. The conditions are highly dynamic, with the substrate concentration de-
creasing over time, and the biomass and product concentrations increasing. This operation has
the advantage that it is simple to operate, and the risk of a contamination is greatly reduced by
the closed operation. However, the method requires a long downtime for batch turnaround due
to the sterilisation requirements. It is also inefficient, with changing substrate concentrations,
and does not allow for control of the growth rate or the product formation rates.

An alternative is continuous operation, where feed is added, and the product stream removed,
at an equal rate. The aim is to maintain the system at a steady state with high product forma-
tion. This can result in a highly productive process, with a comparably low operational cost. It
can allow for the production of products which otherwise become catabolised at high concentra-
tions [Villadsen et al., 2011], or may be inhibitory at high concentrations. However, there are
operational challenges, especially at industrial scale, as it requires tightly controlled conditions
and robust monitoring methods. There may also be scheduling challenges as the downstream
operations cannot always be operated continuously. In addition, this long operation demands
a genetically stable production host system, and there is also a higher risk of contamination.

A majority of industrial fermentation processes employ a fed-batch operating mode in a stirred
tank [Birol et al., 2002, Bodizs et al., 2007]. The first stage of the fermentation is operated in
batch mode with a bulk of carbon source to promote biomass accumulation. Once this bulk
is depleted, feeding begins in order to supply the system with carbon source for both product
formation and biomass growth and maintenance. This allows for significantly greater biomass
and product concentrations than batch operation. In addition, processes can be operated for
significantly longer meaning that the down-time is reduced in relation to the process time, to
increase equipment utilisation. There is a need for improved monitoring and control of the
process in order to supply the feed at a suitable rate, and to monitor the tank fill which is con-



tinuously increasing over the process time. This work focusses entirely on fed-batch operation.

2.2 Industrial fermentation products

Industrial fermentation processes are applied for the production of a wide range of industrial
products, including alcohols, amino acids, vitamins and enzymes [Deloitte, 2014, Lee and Kim,
2015, Doran, 1995]. Table 2.1 shows a summary of some fermentation products and an example
host organism. By far the largest share of the industrial fermentation industry is now attributed
to bioethanol, which is 94% of the industry by volume and 87% in terms of value [Deloitte, 2014].

Industrial biotechnology is becoming increasingly attractive due to many desirable process
characteristics. Biological processes offer more sustainable production routes for a variety of
products as they are low temperature, low pressure systems, which utilise organic and more
sustainable raw materials. There is therefore an increasing trend towards chemical production
using biotechnological routes, due to sustainibility concerns of traditional chemical processes.
For example 1,3-propanediol which is traditionally produced using fossil fuels, is now produced
commercially by DuPont Tate & Lyle Bio Products by a fermentation process. This consumes
40 percent less energy and reduces greenhouse gas emissions by 20 percent versus petroleum-
based propanediol [DuPont Tate & Lyle Bio Products, 2006]. With the current environmental
pressures, biological processes become increasingly important as we aim to reduce our depen-
dence on fossil fuels, and reduce our emissions, so it is expected that this list of fermentation
products will continue to grow in the coming years.

In addition, fermentation products may be used as replacements to chemical alternatives in
order to make other industrial processes more sustainable. As an example, enzymes, produced
by fermentation, are applied in a range of industries in order to replace chemical catalysts, or
avoid the need for harsh processing conditions. It is an enzyme production process which is
considered in this work.

2.2.1 Enzymes and Novozymes A/S

In 1952, Novozymes A/S brought to market the world’s first enzyme produced by fermentation.
Since then it has grown to be the world’s largest enzyme producer, with 48% of the global
market for industrial enzymes in 2015 [Novozymes A/S; b]. Novozymes supplies to five ma-
jor markets, namely household care, food and beverages, bioenergy, agriculture and technical
products and pharmaceutical. In these markets, the application of enzymes allows for more
sustainable processes, for example through reduced water consumption, reduced energy con-
sumption, and reduced waste generation.

The application of industrial enzyme products, has a beneficial impact to a wide range of
industries. For example, enzymes from Novozymes are supplied to the bioenergy market for
production of bioethanol, reducing dependency on fossil fuels. In the textile industry, applica-
tion of enzymes can save 70,000 liters of water and one ton of CO2 per ton of knitted fabric
in comparison to using traditional chemicals [Novozymes A/S, a]. That equals savings of 20-
30 liters of water and a reduction of 0.3 kg CO; for each t-shirt produced [Novozymes A/S,
a]. Novozymes produces a range of household care products, including enzymes for washing
powder, which allows improved performance at reduced temperatures [Novozymes A/S, b]. For
these reasons, Novozymes A/S is consistently ranked high in sustainability indices, for example
the Dow Jones Sustainability index [Novozymes A/S, b].
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Table 2.1: A summary of fermentation products, and an example host organism.

on [Doran, 1995, Waites et al., 2001]

Product
Alcohols

Producing strain

Ethanol
Butanol
Acetone
Amino acids

Saccharomyces cerevisiae
Clostridium acetobutylicum
Clostridium acetobutylicum

L-Glutamic acid

L-Lysine
L-Tryptophan
Enzymes

Corynebacterium glutamicum
Brevibacterium flavum
Klebsiella aerogenes

Cellulase
Protease
a-amylase

Glucose isomerase

Pectinase
Lipase

Organic acids

Trichoderma reesei
Bacillus licheniformis
Bacillus subtilis
Strepotomyces olivaceus
Aspergillus niger
Candida cylindraceae

Citric acid
Lactic acid
Acetic acid
Polymers

Aspergillus niger
Lactobaccilus delbrueckii
Acetobacter zylinum

Dextran
Xanthan
Vitamins

Leuconostoc mesenteroides
Xanthomonas campestris

Vitamin C
Vitamin B2
Vitamin B12
Antibiotics

Acetobacter suboxydans
Eremothecium ashbyii
Pseudomonas denitrificans

Penicillins
Tetracycline

Penicillium chrysogenum
Strepotomyces aureofaciens

Produced based



2.3 Industrial fermentation hosts

Table 2.1 provides examples of production hosts for industrial fermentation products, which
covers both microbial and fungal strains. These two host types have some general character-
istics which affect the process operations. Within these groups, each strain will have its own
specific characteristics, however some generalities can be made.

Microbial strains grow as single cells which multiply by cellular division, and therefore have
faster growth rates and a more simple cellular structure. They are typically spherical or rod
shaped, with a size of a few pum in length. Due to both their size, and a strong external cell
wall, they are typically highly robust cells which tolerate high shear rates [Doran, 1995]. These
benefits are balanced by some limitations to the complexity of the products they can produce, as
they lack the ability to carry out some of the post-translational modifications [Villadsen et al.,
2011] which are required for many therapeutic products for example.

Fungi may be characterised by their growth form; either single celled yeast or hyphae form-
ing filamentous strains. Yeast strains have a simple spherical structure, and exist as single
cells. They reproduce by budding from a parent cell. They are able to produce more complex
post-translational modifications to a protein than microbial strains can, for example glycosyla-
tion. There are strains available which are generally regarded as safe (GRAS), for example the
commonly used Saccharomyces cerevisiae [U.S. Food and Drug Administration, 2015].

Filamentous fungal strains are characterised by the morphology of the cells. On a microscopic
level the hyphae extensions result in a complex branched morphology. Over the process time,
these filaments may become entangled and create a complex structure, resulting in mycelial
clumps and aggregates. In some cases the clumps may become dense and form distinct pellets
of cells. Due to these complex cellular structures, the rheological behaviour of a filamentous
fermentation broth is challenging to characterise [Posch et al., 2013, Quintanilla et al., 2015].
The rheological properties of the broth have implications for the oxygen transfer in the system.
This means that many filamentous fungal processes have issues with oxygen transfer, and may
be oxygen transfer limited [Posch et al., 2013]. Despite this disadvantage, filamentous fungus
strains are desirable due to very high levels of protein secretion [Villadsen et al., 2011]. In this
work, the host strain of interest is a filamentous fungus producing extracellular enzymes.

2.4 Bioprocess development

Bioprocess development is an interdisciplinary challenge, which encompasses a range of activ-
ities. This includes strain development, process optimisation, and process transfer between
scales, as described in Figure 2.2. Many industrial fermentation processes utilise highly engi-
neered production host strains. Major increases in productivity are through genetic engineering
of the strain of interest. For example, a review by Cherry and Fidantsef (2003) describes how
wild type strains may produce up to 10g/L of enzymes product, however current engineered
strains are in excess of 40g/L, and for example cellulases may be produced at concentrations
over 100g/L [Cherry and Fidantsef, 2003]. These major improvements are required in order to
create commercially viable products. Other important areas of focus for strain development, in
addition to product titre, includes strain stability and removal of by-product formation path-
ways [Lee and Kim, 2015]. A thorough summary of metabolic engineering activities is provided
in Lee and Kim (2015).

Once a strain is developed, the task is then to develop a process with suitable growth con-
ditions to maximise the productivity of the strain. This begins with lab scale trials, where
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Table 2.2: A summary of operations for development of an industrial fermentation process

Strain development Lab scale Pilotscale Production scale
+ Hostselection + Strain + Optimisation of process + Process optimisation
characterisation operating conditions

« Metabolic pathway + Quality control

construction . Idelrzitlfy process . geedlstrateg}tf - Product testing
. g yields evelopmen

By-product removal Anal irai P ort d » Process scheduling
. + Analyse strain + Process monitoring an

f;;?;?;:ngdox robustness control + Resource allocation
. Increased product + Media optimisation + Process modelling * Process monitoring

and control
tolerance + Identify optimal « Scale-up studies
i + Equipment testing and

+ Optimisation of opergtllng + Scale-down studies q. p &

metabolic fluxes conditions malntenance

+ Collaboration with . On-line

« Carbon source downstream processing troubleshooting

» Product extracellular and formulation

release + Academic studies + Fullproduction

process overview

the strain is characterised, to identify the process yields, product titres, and maximum specific
growth rates of the organism. At this stage, media is also optimised based on the requirements
of the strain, and process optimisation is initiated. A screening study of operating conditions
is conducted to determine suitable operating conditions for the organism, in particular temper-
ature and pH of the process. These processes can be conducted in small shake flasks or may be
conducted in small scale parallel bioreactors. There is increasing interest in high throughput
screening methods (HTPS) in order to increase speed and efficiency of these initial screening
activities [Long et al., 2014]. It is also necessary at this stage to assess the robustness of the
strain, and the industrial applicability of the strain, for example with respect to foaming, strain
morphology or shear sensitivity. It may be possible to identify areas of concern for the future
process development, before large scale testing is conducted.

Once a strain has been characterised at lab scale, it will continue to pilot scale testing, where
the process knowledge obtained at the lab scale is further developed in order to design a pro-
cess operation which achieves the desired yields, and has application to production scale. It is
desirable that the final production process is optimal, however it is prohibitively expensive to
conduct optimisation studies at the full production scale, which may be around 100m? [Stocks,
2013]. For this reason, pilot scale facilities are important for optimisation and scale-up studies,
in order to take a lab scale experiment successfully into a production scale operation. This re-
quires a consideration of the translation of the process parameters between scales. As discussed
in Stocks (2013) this scale dependent understanding is equally a matter of scale-down studies,
as it is scale-up. If there is an understanding of the limitations of the final production scale
process, it is possible to design a pilot scale operation which best represents these operating
conditions [Stocks, 2013]. This should aid scale up activities, as the process conditions are
comparable.

It is also necessary at pilot scale to develop monitoring and control methods. After the ini-
tial strain development, where large increases in titre are obtained, it is the optimisation of
process control which allows for further increases in productivity. This includes feed addition
algorithms, and control of the process operating conditions. It is this which is the area of focus
of this work.
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A successful process in the pilot scale is then transferred to a production scale process. Once a
production scale process is established there is still continued collaboration between pilot and
production scale, in order to ensure the process is running optimally, and to continually develop
the process. This is possible for products of industrial biotechnology, which are not subject
to the same stringent regulations as pharmaceutical processes, where there are restrictions on
the changes which can be made to an established process. There are additional challenges at
production scale, especially in multi-product sites, regarding process scheduling, and resource
allocation where a production schedule must be planned for both upstream and downstream
operations in order to meet the required product quantities. This requires strict time manage-
ment of all operations, including also downtime and sterilisation, and materials preparation. In
order to minimise deviations from the planned schedule, all processes must be tightly monitored
to identify issues in a timely manner, and intervene where necessary. There is also a need to
identify equipment faults, for example in sensor calibration or measurement errors. This ensures
not only that the schedule can be maintained, but that the processes are reproducible, and the
product is of equal quality.

There are additional challenges specific to process development activities in an industrial set-
ting. Industrial fermentations are often difficult to replicate across production sites or between
facilities as the small operating differences in the equipment affect the way the batches should
be optimally run. In addition, batches run in the same facility can also be affected by batch
variations in the growth characteristics of a specific cultivation. For these reasons, it is vital to
have optimal control of the process to achieve the desired product quality and yields. There
is demand therefore to research strategies to continually monitor the performance of a fermen-
tation which is universal across equipment, and to design control systems which maintain the
process to an optimal operation. As a majority of the operations are operated as fed-batch,
feed rate regulation is of importance for the process optimisation.



3 Literature review of fed-batch fermentation feed
rate control strategies

This literature review provides an introduction to the current state of the art for control of fed-
batch fermentation processes, and is therefore an introduction to the problem being addressed
in this work. This chapter is published in the following article:

A review of control strategies for manipulating the feed rate in fed-batch fermentation processes
Mears L., Stocks S. M., Sin G., Gernaey K. V.
Journal of Biotechnology 245:34-46. (2017)

3.1 Introduction

A majority of industrial fermentation processes are operated in fed-batch mode. In this case,
the rate of feed addition to the system is a focus for optimising the process operation, as it
directly impacts metabolic activity, as well as directly affecting the volume dynamics in the
system. This review covers a range of strategies which have been employed to use the feed rate
as a manipulated variable in a control strategy. This provides an introduction to the problem
of control for fed-batch processes and defines the current state of the art for this field. The
feed rate is chosen as the focus for this review, as it is seen that this variable may be used
towards many different objectives depending on the process of interest, the characteristics of
the strain, or the product being produced, which leads to different drivers for process optimi-
sation. This review summarises the methods, as well as focusing on the different objectives for
the controllers, and the choice of measured variables involved in the strategy. The conclusion
includes a summary of considerations for control strategy development. This then forms the
basis for this project in fermentation control strategy development.

3.1.1 Definition of the control problem

This review focusses on control methods for fed-batch fermentation processes, specifically for
feed rate control. The challenge is not only to maintain the optimal feed rate, but first to iden-
tify how the optimal feed rate is defined. This is a complex issue, which is dependent on the
process and product. The feed rate applied to a fermentation system is such a central process
parameter, as may be seen in Figure 3.1.

The feed rate directly affects the fermentation process in two ways; metabolic changes and
volume dynamics. The substrate concentration affects the metabolic rates; namely the growth
rate, specific product formation rate, specific by-product formation rates and oxygen uptake
rate. In addition, the concentrations of all elements in the system are affected by the changing
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Figure 3.1: Feed flow rate effects in the fed-batch fermentation process.

volume, which is a direct effect of the feed addition. There is also an impact on the oxygen
dynamics, through both the oxygen uptake rate, and also the changing oxygen transfer rate,
which is partly due to a changing viscosity, as a consequence of a changing biomass concentra-
tion. Overall, the feed rate is seen to impact the system in many ways. The control objective is
dependent on the process of interest and the economic drivers for the process. Some examples
of possible control objectives by manipulating the feed rate include:

e Maximise product concentration
e Minimise by-product formation
e Process yield

e Productivity

Maximise biomass concentration

e Maintain an oxygen concentration profile

Once a control objective is defined, there are great challenges in how to meet the objective.
For example, the final product concentration may be the key driver. In this case, a feed rate
must be found which saturates the pathway for product formation. If too little is fed, then the
process is not at its maximum productivity. However overfeeding is also a significant problem
as this leads to overflow metabolism which can result in by-product formation [Villadsen et al.,
2011]. The feed rate which will achieve this optimal point is constantly changing, with non-
linear dynamics, due to exponential growth rates, metabolic shifts, volume dynamics, as well
as possible feed disturbances. The non-linear dynamics and the disturbances make any control
problem implementation challenging in these fed-batch processes.
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3.1.2 Measured variables

There are a limited number of probes for industrial scale fermentation applications. The stan-
dard probes which are routinely used in industrial scale fermentation allow measurement of the
temperature, pH, and dissolved oxygen tension (DO), and in addition there are on-line measure-
ments of the stirrer speed, back pressure and flow rates [Alford, 2006]. Often, off gas composition
will also be measured as this provides a vital insight into the metabolic state. Other advanced
sensors are available, for example spectroscopic techniques [Cervera et al., 2009], however they
are not routinely employed for industrial operation. There is a lack of robust measurements
which define key state variables in the fermenter, such as substrate concentration, or biomass
concentration.

3.1.3 Soft sensors

A challenge which is often discussed in relation to industrial fermentation technology is the lack
of measurements for key variables which define the process [Luttmann et al., 2012, Montague
et al., 1989]. A parameter must be robust and without significant time delay if it is to form the
basis for a control strategy. Due to the lack of available measurements for key parameters, soft
sensors can provide additional control variables for new control methodologies. For example,
on-line data can be processed in real-time to calculate the expected value of a variable which
is otherwise only measured off-line. This method sees particular applicability in fermentation
where a number of key control variables are not measured accurately on-line, or are subject
to large time delay [Montague et al., 1989]. Current developments lead to examples of multi-
ple metabolite estimation using soft sensing techniques [Luttmann et al., 2012]. Soft sensing
can be a powerful tool for industrial application as part of a framework for QbD and PAT
principles since it provides a method for on-line monitoring of the process [Sagmeister et al.,
2013, Luttmann et al., 2012].

3.1.4 Control system design aspects

A control strategy is considered to consist of manipulated variables, and controlled variables.
In this review, the manipulated variable to be considered will be the feed flow rate. The issue
is how to define the controlled variable, since there is a lack of on-line sensors for the variables
which would be considered directly applicable to feed rate (such as substrate concentration). As
previously discussed, it may be necessary to utilise soft sensors. Control strategies may involve
one controlled variable, or in the case of multivariable control, there may be multiple variables
controlled using the same controller algorithm. When testing a control strategy it is important
to consider system disturbances. For an industrial fermentation process this may include for
example batch-to-batch variations in feed concentration, initial biomass concentration and noise
in the process measurements.

For each strategy in this review, the manipulated variables, the controlled variables and dis-
turbances considered will be summarised, in addition to the basis for the control strategy. The
purpose is to analyse the current state of the art, and discuss the applicability of the control
strategies in an industrial context.

3.2 Control methods review

3.2.1 Open-loop control

Many industrial carbon-limited fermentation processes are operated in open loop [Oliveira et al.,
2004]. Open loop control may be employed in order to apply a predefined feed rate to the
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process, which is based upon the initial conditions for the process and the defined operating
conditions. This method requires no on-line measurements, but as a result is not able to reject
any disturbances to the system. Predetermined exponential feed profiles are often discussed
for the initial growth phase in a process [Henes and Sonnleitner, 2007, Jenzsch et al., 2006a,
Wechselberger et al., 2012], where an exponential profile can be calculated based on the initial
conditions, and strain specific parameters such as the maximum specific growth rate (tmaz)-
In the work of Jenzsch et al. (2006) this method is used for the purpose of reducing variability
between batches caused primarily by variations in initial biomass concentration [Jenzsch et al.,
2006a]. Equation 3.1 is applied, where piser < fimas sSuch that the batches are reproducible by
the end of this exponential growth phase, since the pse; restriction counteracts the disturbance
in starting biomass concentration. By operating piset < fimar max this achieves the goal of the
study which is reproducibility, however it should be noted that it is not generally favourable to
operate at this point. In Equation 3.1, Yxg is the yield of biomass on substrate.

(NsetXOMO)

)= (Yxs(Sf — S0))

elttset (3.1)

In open loop control there is no adaptation to disturbances. This may be especially problematic
for feed rate control strategies, where any batch-to-batch variation in feed concentration is not
accounted for. The benefit of the method is however the simplicity of its application and the
fact that there is no reliance on measured variables.

3.2.2 Adaptive control

Adaptive control strategies are non-linear controller algorithms, where the controller parameters
are adapted over the operation. Adaptive strategies cover a wide range of methods, but the
common element is that certain parameters of the controller change in order to better respond
to non-linear dynamics or uncertainties in the operation of a system. The method used for this
adaption separates the controller types. Due to non-linear dynamics, adaptive strategies are
interesting for fermentation processes [Smets et al., 2004].

Gain scheduling is one method of adaptive control. In this case, the controller gain is not
constant, but adapted based on prior knowledge of the system, in order to account for changing
dynamics. The pre-programmed tuning, can be carried out based on data analysis from past
batches and analysis of the response of the controller over time. Hisbullah and Ramachandran
(2002) applied gain scheduling to the feed rate control for a simulated S. cerevisiae, as shown
in Equation 3.2, where Kc and K; are controller parameters which are changed based on a
fixed profile. The controller achieved a decreased offset and increased response time compared
to when a constant gain was applied [Hisbullah and Ramachandran, 2002]. However, it also
caused oscillatory behaviour at certain times when the tuning was not appropriate.

At
AFt+1 = Kc (et — €t—1 + ?et) (32)
i

An improvement to gain scheduling is on-line adaption of the controller parameters based on
available measurement data. The controller is therefore able to adapt to non-predictable system
dynamics. In some cases the available measurement data is first processed in order to predict
a system parameter or state of interest, which in turn is used in an adaption algorithm. An
example of this is hybrid adaptive -Artificial Neural Network (ANN) methods which have been
applied to fermentation feed rate control [Duan et al., 2006, Jenzsch et al., 2006b, Jenzsch et al.,
2007]. The trained ANN allows estimation of state variables which are otherwise not able to
be measured in-line. The ANN output is then used to directly adapt a control law, relating
the feed rate to the state variables. As an example, Jenzsch et al. (2006) used a simple control
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law as shown in Equation 3.3, where the biomass concentration, X, ;, was found by an ANN
trained on 26 batches [Jenzsch et al., 2006b]. In this case, « is the adaptive variable which is
solved for by Equation 3.4.

MS@tXt*otul
P = totat 3.3
(YL& - a)Sf ( )
t
a=kKAX +K2 | AXdt where —0.15 < a < 0.15 (3.4)

ts
The value of « is used to adapt the yield of biomass on substrate to account for the current state
of the system in order to tune the feed rate, F. This is an example of a self-tuning controller,
since the state of the system is used to directly calculate the new manipulated variable response.

In the adaptive control methods described, the control law is updated, either based on a pre-
determined gain, or based on updates to the process model, where the process model directly
influences the control law. In a different approach, it is possible to define the optimal control
action which would be desired in order to control a process variable. The control action then
aims to minimise the error between this ideal model, and the process outputs. This method
refers to model reference adaptive control (MRAC), and has been applied to the problem of feed
rate control [Oliveira et al., 2005, Oliveira et al., 2004, Soons et al., 2006]. In this method, the
desired response of the system is defined by a model, which would provide the optimal response
to input disturbances. This model output, y,,, is then compared to the system output, y, to
define an error between the actual response and the desired response. It is this error which is
used to tune the controller parameters, by minimising the error term [Landau et al., 2011].

MRAC methods are defined as direct or indirect depending on how the tuning is achieved.
In direct adaptive control, the controller variables are adapted based on direct measurements
in the system. The error is then calculated directly based on true system variables, and the ref-
erence model variables. If the controller parameter values are recalculated based on estimated
system parameters, and a model is updated to solve for the desired controller action, then the
adaptive control is achieved indirectly. An example of this is described by Oliveira et al. (2004)
where a state identification model is used to determine states/outputs of the process from the
measured variables. Then the output state is used to define the error from the reference model,
and subsequently define the control parameter response [Oliveira et al., 2004].

A challenge for MRAC methods is to determine the Parameter Adaption Algorithm (PAA)
to apply in order to adapt the control parameters to achieve not only an optimal response but,
importantly, ensure a stable response is given. The original method for this is the MIT rule,
which defines how the error changes with the tuning parameters based on the concept of aiming
to minimise the squared error [Astrém and Wittenmark, 2008]. The MIT rule is an example of
a gradient method of adaption. Equation 3.5 shows how the controller parameter 6, is tuned
based on the error, e, between the model output and the actual process output. It requires a
user defined adaption gain, v, to be specified, and there is a description of how to determine
this value in the literature [Astrém and Wittenmark, 2008].

% = —’}/6% (3.5)
Another method for adaption is based on stability theory, where methods such as Lyapunov’s
theory can be used to determine the optimal response of the system and therefore adapt the
control response. More details of the MIT method, Lyapunov theory and other PAA methods

are given in [Landau et al., 2011, Zeng et al., 1993, Astrém and Wittenmark, 2008].

Adaptive control is highly applicable to dynamic systems with high levels of disturbances in
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the control parameters. Where other control methods reject disturbance variables, adaptive
control inherently adapts for disturbances in the control parameters [Landau et al., 2011]. This
is therefore applicable to fermentation systems with unpredictable system dynamics, and unpre-
dictable disturbances. A summary of the adaptive control strategies considered in this review
are shown in Table Al.

3.2.3 Model predictive control

Model predictive control (MPC) is a widely used control technique (Forbes et al., 2015), due
to its ability to handle complex multivariate systems. Originating in the petrochemical indus-
try, it has now been adopted in a wide range of industries [Qin and Badgwell, 2003], however
less so in the biotechnology sector, compared to the chemical industries. MPC requires that
a robust predictive process model is in place. The model is simulated up to a time horizon
in the future in order to predict the current output, as well as the future development of the
system. The prediction is evaluated to define the action required at the current time, based on
optimisation of a cost function over the full process time [Stanke and Hitzmann, 2013]. This
may be to maximise the production or to minimise the cost, or to follow a trajectory for a
certain variable [Seborg et al., 2003]. This optimisation is carried out up to a predetermined
point in the future; a defined time-horizon, however only the first step of the optimal solution is
implemented. The optimisation is then repeated at the next time interval. In end point MPC,
the method is applied to the end point of the batch and then the trajectory along the prediction
is monitored on-line [Laurf et al., 2014]. The whole optimisation is also subject to predefined
constraints which are built in to the optimisation problem [Seborg et al., 2003].

The key difference between the MPC methods implemented for fermentation applications is
the choice of optimisation function. Like traditional control methods, some aim to follow a
set point trajectory for a specific variable, such as biomass concentration [Kuprijanov et al.,
2013, Zhang and Lennox, 2004] or substrate concentration [Craven et al., 2014].

t+N

J= z:(y;C —wy)? + yAud for t+ N <tend (3.6)
k=1
tend

J= Z(yk —wi)? + yAu2 for t+ N > tena (3.7)
k=1

Zhang and Lennox describe the application of MPC for a fed-batch penicillin process, in order
to follow a predefined biomass trajectory [Zhang and Lennox, 2004]. In Equation 3.6, the ob-
jective function, J, is to be minimised, where t is the current sample time, N is the length of
the prediction horizon, wy, is the desired biomass concentration at sample time, k, and y;C is the
predicted biomass concentration from the model. Then A wy is the change in the manipulated
variable, the feed rate, which is made at time k, and v is a tuning parameter. This equation
shows a typical MPC objective function, where the function acts to minimise an error, whilst
also achieving the change in a constrained manner, due to the penalisation on large changes in
the manipulated variable.

An alternative objective function is to maximise a certain process variable [Santos et al.,
2012, Kovdrové-Kovar et al., 2000, Chang et al., 2016], rather than follow a trajectory. This
is appropriate to situations where the optimal value is not known, but the optimal will be to
maximise, subject to operational constraints, which are always an integral part of the MPC
problem formulation. A typical example is to maximise product concentration.
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Model predictive control is a powerful technique, as decisions are optimal for the full pro-
cess time, not only at the current time instant, and the impact of disturbances on the system
is modelled as part of the optimisation problem. MPC is based on a model, which may be
mechanistic or data driven, however part of the success of the method depends on the accuracy
of the model, and the ability of the method to deal with disturbances in the system [Laurf
et al., 2014]. It is also clear to see that when data driven modelling methods are used, there is a
requirement for a higher number of measurement variables [Kovdrova-Kovar et al., 2000, Zhang
and Lennox, 2004], which is a consideration for the robustness of the method. MPC is con-
sidered to be computationally expensive in comparison to other control methods, especially if
the optimisations are run for each time point [Laurf et al., 2014]. Although it is a standard
method employed in other industries, it seems as though there is a large step change needed
if the method is to be applied more widely to biological processes, and work should therefore
be invested to produce robust process models. If this is done, it will provide a powerful and
flexible control method, which can optimise the process as a whole, and be applied for a range
of control objectives. Table A2 provides examples of MPC applied to fermentation systems for
feed rate manipulation.

3.2.4 Fuzzy control

Fuzzy control is based on the principles of fuzzy logic, which is designed to deal with uncer-
tainties in systems without utilising complex models. This uncertainty arises in fermentation
processes due to the non-linear behaviour of batch and fed-batch processes [Lee et al., 1999].
Quite a different approach to the other model based methods, fuzzy logic requires no initial
knowledge of the dynamics of the system. Instead the user’s experience with the process is
utilised in order to control the process based on an evaluation of the current state of the process.

The principle of fuzzy control is the conversion of quantitative data into qualitative param-
eters. The procedure is clarified with the following definitions:

Fuzzy set: A linguistic term to define the properties of a numerical variable

Membership function: A value between 0 and 1 which defines the degree to which a certain
variable fits a fuzzy set.

The basis of the method is the conversion of numerical data into 'membership functions’ based
on the degree to which they fit a fuzzy set. For each input variable, a range of values which are
possible for that variable are first defined to provide a form of scale to which the data value can
be compared. The variable can then be described qualitatively and assigned into a ’fuzzy set’
which describes the condition of that variable. As an example, a temperature measurement of
19°C may be compared to a range of 15-27°C and assigned to the fuzzy set ’Cold’” with a mem-
bership function of 0.7, and ’OK’ with a membership function of 0.3. Note that membership
functions must always add to 1. The fuzzy set is defined as a matrix consisting of the original
value of the variable, and the degree to which it is described in that category, on a scale of 0-1.
This assigning of variables into fuzzy sets is based on a defined 'membership function” which is
designed to assign each input variable into a set. This process is called fuzzification.

The fuzzy sets are then used to interpret the current state of the system. The basis of fuzzy
control is a set of rules based on the condition of the system, which are described from expe-
rience with the process. This is in the form of conditional statements using terms such as ’if’
and ’then’. From the previous example of temperature, you could define a fuzzy rule such as :
If X is ’hot’ then Y is ’high’ Eg. Where X is the input variable, Temperature, and Y is a flow
variable The output of the rules is called defuzzification [Seborg et al., 2003]. This is how the
user experience with the process is incorporated into the controller.
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Due to the rule base, and the definitions of the fuzzy sets, it can be argued that fuzzy control
methods provide some insight into the dynamics of the complex non-linear systems without the
need for model identification [Babuska and Verbruggen, 1996]. The outcome of fuzzy control is
to identify the current state of the system, and it therefore provides information to the user.
This is in contrast to black box models, or artificial neural networks which are specific to certain
data they are trained on, and since they provide no real insight into the system, are not adapt-
able by the user. Fuzzy control can be considered to combine user knowledge and trends, with
past data and is therefore somewhat more intuitive to the user. This may be suitable to apply
to established biological processes, which have been historically controlled by a more manual
approach- where the operators experience with the process has been the primary form of process
control [Horiuchi and Hiraga, 1999]. Since the method is based on linguistic rules rather than
mathematical systems, they are more simple for users to adapt, which may also make it more
applicable to different processes or scales, by minor adaptions to the rule base [Babuska and
Verbruggen, 1996]. Despite these benefits, there are limited examples of fuzzy logic applied
to the problem of feed rate control, and those references which are available are not the most
recent [Hisbullah and Ramachandran, 2003, Horiuchi and Hiraga, 1999, Zhang et al., 1994]. It
is clear that there is certainly not a trend towards fuzzy control despite the named benefits.
Table A3 provides a summary of the control strategies covered in this section.

3.2.5 Artificial Neural Networks

An Artificial Neural Network (ANN) is a data driven modelling technique which can describe a
complex non-linear system without the need for explicit model equations. The method requires
past process data, in order to train a network to predict outcomes from inputs to the system.
The method is applicable to industrial applications where there is past data, but there may
be limited time for model development [Glassey et al., 1994]. It is relatively fast to construct
an ANN and it shows good performance for such multivariate problems [Liibbert and Simutis,
1994).

The name is given to this type of control strategy based on the storage of data in nodes and
‘neurones’ in a similar manner to biological networks. A large input vector of multivariate data
is processed via weighted functions to produce a predicted output. The output for each node is
defined by the transfer function and a weighting. The functions may, for example, be sigmoidal
for smooth output values, or a step function for discrete on/off outputs [Stanke and Hitzmann,
2013]. There are discussions in more detail about types of structures and network algorithms
used [Lee et al., 1999]. Based on the selected structure, the network is then trained on process
data in order to determine appropriate weighting values for the network. The back propagation
algorithm [Rumelhart et al., 1986] is commonly used in ANN training, as shown by [Boskovié
and Narendra, 1995, Peng et al., 2013].

A trained network describes the output variables, based on a set of input variables. In or-
der to utilise this knowledge for a control strategy it must be possible then to determine an
optimal value of input, in order to achieve a desired output. The genetic algorithm [Holland,
1984] can be used to solve this optimisation problem, by optimising the output of the ANN
for a given set point, for example a target biomass concentration. This method is applicable
to such ANN problems as it is applicable to cases where the objective function is non-linear,
which is not suitable for many optimisation algorithms. The method is based on the principle
of natural selection.

ANNSs have been shown to successfully predict fermentation system behaviour based on mea-
sured variables, and this has been applied for control applications. It is possible to apply the
ANN as a predictor for a variable of interest, and then incorporate this in to a feedback control
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algorithm [Ferreira et al., 2001], however this limits the objective of the control system to set
point tracking. An alternative is to utilise the ANN directly in an optimisation algorithm to
solve for optimal control solutions [Chen et al., 2004a, Peng et al., 2013]. When an optimisation
algorithm is used, it is possible to optimise the system over the full process time, in order to
maximise total product or biomass formation [Chen et al., 2004a, Peng et al., 2013]. Table A4
shows examples of feed rate control based on artificial neural networks. A disadvantage of this
method in comparison to other control techniques is that the resulting network cannot be inter-
preted in order to understand relationships between variables, so limited process knowledge is
gained [Babuska and Verbruggen, 1996]. It should also be noted that the network is trained on a
single scale and operation of the process, and there is limited ability for extrapolation [Liibbert
and Simutis, 1994], and it is therefore not scalable, and must be retrained for different scales
and processes [Babuska and Verbruggen, 1996].

3.2.6 Probing control

The principle of probing control is to apply perturbations in the manipulated variable, and
assess the response in the controlled variable, in order to make decisions of the next set point
for the manipulated variable. For instance, when considering feed rate control in fermentation
processes, a perturbation in the feed flow rate is applied to the system and the response in the
dissolved oxygen signal is analysed to determine the next set point for the feed rate [Akesson
et al., 1999]. There are examples of this method successfully applied on-line for fermentation
feed control [Henes and Sonnleitner, 2007, Johnsson et al., 2013, Velut et al., 2007].

For fermentation systems, if an increase in the feed rate causes a drop in the DO concen-
tration, then there is capacity in the system for increased feed. The response of the controller
is therefore to increase the feed rate. This process is repeated until there is not a response
in the measured variable. The system is then operating at full capacity and feed should be
reduced slightly. This strategy is a very interesting approach to the feed control problem, since
it is hard to define a set point for the feed which is optimal. This method is considered to be
‘self-optimising’ in the sense that it is not provided with a set point, but instead finds the opti-
mal point and adapts as the optimal changes. This is interesting when applied to fermentation
where a key goal is to feed at the maximal feed rate, however without over feeding and inducing
the crab-tree effect [Henes and Sonnleitner, 2007, Johnsson et al., 2013, Dewasme et al., 2011].
It also takes into account disturbances in the system, including disturbances in the feed itself,
and adapts to different starting biomass concentrations. It also has the benefit of only requiring
a single on-line measurement, DO.

Johnsson et al. (2013) implemented a control law to control the feed based on the frequency
content of the DO signal. In this way it is possible to interpret the perturbation in the mea-
sured variable into a useful on-line measure of the system (frequency content). A low frequency
content means that the system is operating close to its oxidative capacity.

F(t) = %(Cset — Ck) + % Z (Cset - Cj) (3.8)

b i<k

In Equation 3.8, C refers to the calculated frequency content of the DO response, with sampling
rate, h. This equation can be considered in the form of a PI controller, with integral time T;
and gain K. This method also employs gain scheduling as explained in Table A4.

For successful implementation it is important to consider the limitations in oxygen transfer.
This method is applied to the exponential growth phase, where the growth is substrate lim-
ited. Once the oxygen limitation of the system is reached, this method is no longer applicable,
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and then traditional DO control is suitable. A DO control system can be run alongside, or be
incorporated into the probing controller strategy [Johnsson et al., 2013].

3.2.7 Statistical process control

The concept of statistical process control (SPC) is to analyse the current process operation based
on analysis of past batch performance. The implementation requires no process knowledge, only
past batch data from which to form an empirical model [Nomikos and MacGregor, 1994]. It is
a monitoring tool which can be applied in order to control the process by identifying deviations
from an optimal operation in real time. By identifying correlations between key variables, it is
possible to identify early in a process if the operation is deviating from the optimal in a way
which is not possible by observation or univariate analysis methods [Albert and Kinley, 2001].
It is also possible to identify if the deviation is likely to cause an impact in final performance, or
if it has a low impact. Multivariate analysis techniques are able to identify correlation between
variables. Two important methods for analysis of process data are multivariate principle com-
ponent analysis (PCA) as described in detail in [Nomikos and MacGregor, 1994] and partial
least squares (PLS) [Nomikos and MacGregor, 1995]. These multiway techniques are able to be
applied to multivariate batch data after decomposition of the three dimensional matrices into
two dimensional matrices [Nomikos and MacGregor, 1994].

In PCA a dataset is analysed by transforming the original variables in terms of new princi-
pal components, in order to expose relationships between the variables. These new principal
components capture the greatest variance in the dataset, such that it is possible to reduce the
number of new variables. This shows how the data can be compressed in this method. As an
example, applied to fermentation data, Albert and Kinley (2001) showed that PCA based on
only 5 variables was sufficient to represent their dataset comprising 17 on-line variables and 53
off-line variables.

In order to evaluate the PCA model, methods can be employed to determine the accuracy
of the model. The Hotelling T? statistic can be used to measure the variability on the model,
and the squared prediction error (SPE) evaluates the error between the model and the data
values.

Although there are many literature examples where multivariate methods are applied for process
modelling and monitoring [Doan and Srinivasan, 2008, Ferreira et al., 2007, Glassey, 2013, Mears
et al., 2016], there are few examples found where statistical methods are directly applied for
control [Duran-Villalobos et al., 2016, Albert and Kinley, 2001]. This may be due to some of the
disadvantages of the method. For example there is poor extrapolation outside of the conditions
used to develop the model, and models must be developed separately for each process and scale.

Despite this, a benefit unique to multivariate analysis is that all variables are monitored, rather
than selecting specific variables to control. In this way it allows faults to be detected in all
on-line measured variables, which does not just mean deviations from optimal, but includes
probe failures or other operational errors, which could otherwise have a large impact on process
performance. It can be integrated with a user interface in order to alert operators to deviations
from optimal operation in real time. This is valuable for industrial applications, where this
could otherwise not be detected until it was too late to return the process to a state where it
will achieve the desired titre. For industrial application this method can utilise valuable past
data in order to optimise future operations. Table A6 shows the methods discussed.
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3.3 Conclusions

Manipulation of the substrate feed rate to a fed-batch fermentation process is an area of focus
for process optimisation, as it is an important process input, affecting metabolic rates, and
affecting the volume dynamics. It has been shown in the review, that it is a manipulated
variable which may be used towards multiple objectives. This review has covered a range of
control methods from simple open loop control, to data driven methods, and model predictive
control. The aim of the review is to present a summary of the available tools developed for
manipulation of the feed rate, and to draw some conclusions on the benefits and disadvantages
of such approaches. This may guide future control strategy development. When reviewing the
literature surrounding fermentation feed rate control there are many aspects to consider in order
to make a constructive conclusion;

e The number of measured variables

e The industrial applicability of the required measurements
e Model requirements

e Historical data requirements

e Tuning requirements

e How generic is the method? Process specific tuning?
e Does the method provide process understanding?

e Intuitive for users?

e Requirement for user intervention

e Development time and cost

e Cost/ benefit

These points may be divided into two categories; variable choice, and method choice. These
factors will be discussed below with relation to the works cited.

3.3.1 Discussion of control and manipulated variables

This work is focussed on strategies which may find application in industrial processes, and there-
fore the number and type of measured variables required is of interest. There are works cited
in this review including measured variables which may not be applicable to industrial scales,
for example spectroscopy [Craven et al., 2014]. However, this work was applied to mammalian
cell culture where the process scale of production is much smaller than industrial biotechnology
products, so it could be conceivable to use such a technology in production also. Other control
variables include the biomass concentration [Kuprijanov et al., 2013, Zhang and Lennox, 2004]
and product concentration [Chang et al., 2016, Kovédrova-Kovar et al., 2000] for which there is
no reliable on-line probes. It is seen in this review, that ANNs are the most common choice
for use as a soft sensor, to obtain on-line values for control variables which are not able to be
measured [Duan et al., 2006, Jenzsch et al., 2006b, Jenzsch et al., 2007, Kovarova-Kovar et al.,
2000]. This is likely to be due to the speed of model development, however this method is not
useful for increasing process understanding. PLS has also been applied for this purpose [Zhang
and Lennox, 2004].
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The reliable on-line measurements on which to base a control strategy are subject to opin-
ion, but there are some clear generalities which can be made. Dissolved oxygen is a relatively
robust measurement which is considered fairly standard in industrial fermentation [Sonnleitner,
2013] and has been utilised widely in the literature. In addition, when we consider industrial
scale processes, it is of interest to consider the variables which are not subject to heterogeneity
issues, for example, off gas measurements which are not representative of a single point in the
vessel. In-line probes provide information about a single location in the system, however there
is increasing consideration for the inhomogeneities which can occur at larger scales [Neubauer
and Junne, 2010, Wechselberger et al., 2012, Formenti et al., 2014]. For this reason, variables
which are derived from on-line gas data are interesting, and they provide important physi-
ological information [Sonnleitner, 2013]. This includes CER, OUR and therefore RQ. Other
parameters have also been developed which are able to quantify the metabolic state based on
off-gas analysis, namely FQ and OQ [Riisgaard and Andersson, 2013]. FQ is the ratio of carbon
moles released as CO2 to carbon moles added as feed. OQ is the same, but for oxygen moles
released compared to carbon moles added as feed.

The feed flow rate was the manipulated variable of focus for this review, however in some mul-
tivariate control problems, other variables where controlled in unison. For instance where tem-
perature is also controlled, it may be in order to reduce temperature in order to reduce growth
rate, and therefore reduce feed consumption, allowing a reduced feed rate to be applied [Velut
et al., 2007]. Where the stirrer speed is also manipulated, this is in order to increase the oxygen
transfer rate, which is then balanced with the feed which impacts the oxygen uptake rate, al-
lowing regulation of the dissolved oxygen concentration [Johnsson et al., 2013, Velut et al., 2007].

3.3.2 Discussion of methods

Figure 3.2 shows a general comparison of the control types considered in this review. This is in
order to aid control strategy development, by comparing the benefits of the methods, in com-
parison to their requirements for implementation. Although not an exhaustive list, it may be
possible to guide decision making about an appropriate method to consider based on the current
competencies regarding available process models, or the amount of past data, for example. For
each strategy discussed in this review, the basis of the control strategy is assigned to either
historical data, a process model or user experience. Of course this is also open to interpreta-
tion, for example all methods require a certain level of experience with the process in order to
develop the objectives and the method, however this aims to show the main requirement for
each controller type. From the chart, probing control and fuzzy control are highly valuable since
the methods do not directly require a developed model, or a vast amount of historical data in
order to develop, but is able to deal with unpredictable dynamics and process disturbances. If
a process model is available, MPC is desirable as it achieves all the named benefits.

With respect to the benefits of the method, it is case specific how important they are con-
sidered to be. Probing control, fuzzy control, model predictive methods, and statistical process
control achieve all the mentioned benefits in this summary, since they also provide insight into
the process. In industry, this insight into the process is highly valuable, both for future process
development, but also for an operator to be able to interpret the control output.

Another aspect to consider, which is not covered in Figure 3.2 is the control objective. From
Table A5 it is seen that the objective for the probing control strategy is fixed, as it is integral
to the method. However model-based methods may be applied for a wide range of control
objectives depending on the process of interest, as can be seen from the range of objectives for
the model predictive control applications in Figure A2.
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If a process model is available, it is most valuable to utilise this knowledge and develop a
control strategy which is flexible, and also may be developed over time as the model develops,
such as adaptive control or model predictive control. This is also a very valuable way to con-
solidate process knowledge. MPC is a method which provides all the named benefits, and also
allows for complete freedom in the choice of objective function for the controller. If model-based
methods are to be applied more widely in industry, there must continue to be a focus on process
model development, and uncertainty analysis, so that there are robust models available which
are applicable to control problems in industrial biological processes. This will also require pilot
scale testing, of which there is in general limited reference to in the literature.

Open
loop

Fuzzy Gain |Adaptive

MPC ANN SPC
control |schedule| control

Probing

Deals with
non-linear
dynamics
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Figure 3.2: Summary of the benefits and requirements of the control strategies covered in this review.
For each controller type, one fundamental requirement was selected, to show whether the controller is
primarily based on historical data, a process mode, or user experience. Methods are grouped by this
requirement.

3.3.3 Considerations for applying a control strategy in industry

For an advanced control system to be applied in industrial situations it must increase the per-
formance such that the cost of implementation is less that the benefit it brings. Bioreactor
performance can be quantified by a benefit/cost ratio [Liibbert and Jgrgensen, 2001]. It takes
time and resources to implement an advanced strategy, especially if models are required. It costs
money to buy software licenses, and implement new strategies in existing control software. The
benefit must come through an increased profit, for example an increased product yield. Given
the physical constraints of the equipment, and the operational constraints of the strain, the aim
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is to maximise the productivity [Liibbert and Jorgensen, 2001]. In this work, for example, the
objective may be to optimise the manipulation of feed rate in order to increase the product
output from each batch.

By tight control of the entire process, the aim of an advanced process control strategy is ideally
to reduce the variance in the control variables. By decreasing the variance, the process can be
operated nearer to the optimal [Latour et al., 1986]. This can therefore prove a mathemati-
cal cost benefit for a given process, and show that just a small increase in average operation
by reduced variance, can provide profits. Since this is a trade-off, the cost of implementation
should be minimised as much as possible. This means therefore the method should not be so
complex, that it requires user intervention, and additional man hours, as this also increases
the cost of the control strategy. This should also be a consideration when deciding on a novel
control strategy.
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4 Data-driven modelling of fermentation processes

In order to gain an understanding of the industrial process of interest in this work, a large
historical dataset is analysed. From this, it is possible to gain an initial understanding of the
process operation and the control strategies implemented. There is also the possibility to apply
data-driven modelling methods in order to gain a more in depth understanding of the process.
In this chapter, multivariate analysis is applied to a production scale dataset. This chapter of
the thesis is based upon the following article:

Functional unfold principal component regression methodology for analysis of industrial batch
process data.

Mears L., Ngrregard R., Sin G., Gernaey K. V., Stocks S. M., Albaek M. O., Villez K.

AIChE Journal 62, 6:1986-1994. (2016)

4.1 Introduction

There is increasing interest in the use of big data concepts in order to interpret large datasets
and identify trends. Data-driven modelling describes a process where a model is developed by
fitting a model structure to available data. Since these methods require no prior knowledge of
the system, they may provide a faster approach to model development. This may be especially
relevant in an industrial setting, where there is past data available, but there may be limited
time available for model development. Although the methods are well established, and applied
routinely in other industries, the methods are not yet routinely applied to large scale biopro-
cesses [Glassey, 2013].

Data-driven modelling covers a wide range of methods which may roughly be divided into two
groups; statistical methods (non-linear regression, multivariate analysis) and machine learning
methods (artificial neural networks (ANN), support vector machines). Since there is such a
large scope to cover, it is decided to focus of multivariate analysis techniques, as they have
previously been applied successfully to fermentation process data.

Multivariate analysis methods may be applied on-line as a monitoring tool [Lennox et al.,
2000, Zhang and Lennox, 2004, Albert and Kinley, 2001], or off-line in order to obtain process
knowledge and identify batch trends [Ferreira et al., 2007, Mercier et al., 2013]. If the model is
used as a monitoring tool, this may be in order to identify deviations from a reference batch
performance [Lennox et al., 2000, Albert and Kinley, 2001] in order to identify when the process
deviates from the optimal path, in a way which is difficult to identify from univariate charts.
Alternatively, the monitoring tool may aim to utilise available on-line data in order to predict a
variable of interest which is not available on-line in a soft-sensor approach [Zhang and Lennox,
2004]. When applied off-line, to a historical dataset, the aim is to identify trends in the process
data which may lead to desirable operating conditions [Ferreira et al., 2007].
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4.1.1 Data-driven modelling of batch processes

Modelling of batch processes is of interest for process monitoring and optimisation. A common
problem is a lack of available measurements for key process parameters, and modelling tools are
therefore desirable to monitor the progress of a batch. Models can also aid process optimisa-
tion and may be used in control strategy development. The limitation to model development,
especially for batch processes, is a lack of understanding of the system dynamics [Nomikos and
MacGregor, 1995]. This can limit the application of mechanistic models, since the non-linear
process dynamics are difficult to identify. There is therefore an interest in black-box modelling
approaches for batch process data.

Multivariate methods are of growing interest in order to analyse the large datasets which are
routinely collected from processing facilities. Multivariate methods such as principal compo-
nent regression (PCR) and partial least squares (PLS) can be applied to identify trends within
a dataset of multiple historical batches in order to provide leads for future process optimisation
or as a tool for process modelling [Nomikos and MacGregor, 1994].

Multivariate methods specific for application to batch process data were developed by Nomikos
and MacGregor [Nomikos and MacGregor, 1995, Nomikos and MacGregor, 1994]. In this work,
a method was developed for structuring the three-dimensional dataset so that it is appropriate
for use with the standard multivariate modelling algorithms, such as PLS and PCR. Although
multivariate methods are well established for analysis of large datasets, their application to
batch processes is less common due to the additional challenges associated with data dimen-
sionality, as well as high measurement noise. There are applications of these methods to batch
data [Camacho and Picé, 2006a, Cunha et al., 2002], with a majority of references focussed on
online applications, and monitoring [Louwerse and Smilde, 2000, Camacho and Picd, 2006b].
Data mining of such a complex dataset requires additional pre-processing stages, however the
importance of these steps prior to modelling is often underappreciated [Gurden et al., 2001].

4.1.2 The challenges of industrial batch process datasets

The challenges surrounding appropriate data handling and pre-processing, are especially rele-
vant to complex industrial data. Industrial scale process data is a combination of on-line and
off-line measurements and quality attributes, which are often stored in different databases. In
the case of on-line measurements, probes are almost continuously reading new values, however
there is a need to limit the volume of data which is actually stored by the data acquisition sys-
tem. There are therefore data compression algorithms, which are required in order to maintain
the maximum information in a data series whilst restricting the data dimensionality [Thornhill
et al., 2004]. Different data compression algorithms are implemented in commercial data acqui-
sition software to manage the data that is stored. One such example is that a value is logged
only after a specified magnitude of change and in addition after a set amount of time. In the
dataset discussed in this chapter, some on-line data series consisted of up to 10,000 data points,
whilst others contained less than 200, over the same batch time. This poses a challenge for initial
data handling. Datasets can become large, when multiple measurements are logged continu-
ously over a batch running for many days. This means that any proposed data handling tools
must consider efficiency as an important factor if it is to become a routine operation in industry.

In addition, variables can be measured with varying degrees of precision, meaning that mea-
surements exhibit different levels of noise. The level of noise captured is also dependent on the
data compression algorithm used by the acquisition software [Thornhill et al., 2004]. In the
literature there are different methods used to approach this issue ranging from manual outlier
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removal [Albert and Kinley, 2001}, moving average filters [Le et al., 2012], and data interpola-
tion, showing that there is no consensus on the optimal approach. In many filtering methods
used for noise reduction, manual inspection is recommended initially in order to specify a suit-
able level of filter. This means that a filtering method is applied subjectively, and different
users are likely to obtain different results. If a methodology is to be applied in an industrial set-
ting, it is desirable that the tools implemented are flexible and generic across multiple batches
and process types, the methods are well documented for consistency, and there are only a few,
preferably objective, choices to be made by the modeller.

An additional challenge specific to batch processes, is the occurrence of uneven batch lengths.
This may be due to differences between the initial conditions, and process disturbances. It is
therefore necessary to decide if the data series should be cut, or alternatively scaled, in order
to deal with different end times [Wan et al., 2014]). In this chapter, a methodology is proposed
which can be applied when working with large, industrial batch process datasets. Multiple
pre-processing methods are discussed in the methods section, which are each applied to an
industrial dataset, in order to meet the following challenges:

e Different batch lengths
e Different data dimensionality between batches and between variables in a batch
e Different levels of noise captured between variables

e Appropriate variance scaling prior to multivariate analysis

4.2 Methods

In order to apply multivariate methods, pre-processing is required. The following section de-
scribes the methods of pre-processing applied in this chapter.

4.2.1 Time Scaling Methods

The simplest method is to cut all batch data to the length of the shortest batch, however this
is only applicable if the batches show only small variations in duration, otherwise key data may
be lost. There is also the option to cut the data from the beginning, so that the data which
is removed is only lag phase data which contains limited relevant dynamics. If time cutting is
applied, then the time index remains in its original scale.

Alternatively there is the option to linearly scale the time, so that the index of a time unit
is scaled such that all batches have the same dimensionality, but with different absolute times.
This maintains all data, however it affects the interpretation of certain derivative variables such
as rates or cumulative values, since time scaling also scales the value of such derived variables.

More advanced methods are available for time scaling or time series alignment, including dy-
namic time warping [Kassidas et al., 1998, Keogh and Ratanamahatana, 2004], qualitative
representation of trends [Villez et al., 2008], and the use of indicator variables [Cinar et al.,
2003, Undey and Cinar, 2002]. These methods are valid extensions to the methodology if time
cutting or linear time scaling is not sufficient for a certain application, however they were not
applied in this work.
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4.2.2 Functional analysis
Functional data analysis (FDA)

Functional data analysis is applied as a method to take a large, unevenly sampled dataset
of discrete time points, and produce a smooth functional output. The method is selected as
a computationally efficient tool utilising matrix algebra, which is applicable to thousands of
data points [Ramsey and Silverman, 2005], and therefore complies with the aim of creating a
methodology suitable for industrial datasets. By applying this method it is possible to filter
noise from the data, reduce the dimensionality and deal with outliers in a single step [Baert
et al., 2012, Chen and Liu, 2001].

In analysis of functional data it is assumed that the data points are discrete and noisy samples
of a continuous time series, which can be described by a function, meaning that the data points
are interdependent [Ramsey and Silverman, 2005]. The standard model for signal-plus-noise is
then applicable, as shown in Equation 4.1, where the data vector, y, is described by a function,
x, and subject to noise €.

y==x(t)+e (4.1)

Functional data analysis, defines this function z(t), using a basis function system, known as a
functional basis. A functional basis is a set of basis functions, ®(¢), which are independent of
each other [Hastie et al., 2009]. The function z(¢) is defined as a linear combination of these
basis functions. In Equation 4.2, K is the number of basis functions, ¢; is the i*” coefficient,
and ®;(t) is the corresponding basis function.

K
o(t) =Y eii(t) (4.2)
i=1

The function x(t) gains its complexity from the number and type of basis functions used. The
type of basis functions are chosen in order to concisely represent dynamics in the dataset.
Fourier basis functions are often chosen to represent periodic data, while spline basis functions
are the most common choice for open ended non-periodic data. Using spline basis functions,
x(t) becomes a spline function. Spline functions are piece-wise polynomial between specified
points usually referred to as knots [Ramsey and Silverman, 2005]. The order of the polynomial
and the number and position of knots are the key design parameters for the spline functional
basis. This work only considers a spline functional basis for FDA.

The coefficients, c, for the spline function are fitted to the data using an ordinary least squares
method with an additional term to penalize roughness in the function output [Ramsey and
Silverman, 2005], as shown in Equation 4.3. The penalized sum of squared errors (PENSSE)
method is applied since we believe that the time trajectories of the measured variables un-
derlying the noisy measurements are smooth. This property is described mathematically in
terms of the second derivative [Ramsey and Silverman, 2005]. This is represented in Equation
4.4 by D?, referring to the second derivative of the function, x, of a continuous time series, t.
The aim of obtaining a smooth function relates to the objective to represent the process dy-
namics realistically whilst minimising the effect of noise. Equation 4.3 contains the roughness
penalty coefficient, A, which must be defined for the fitting procedure. The optimal value of A
was determined by means of the leave-one-out procedure discussed in Ramsey and Silverman
(2005).

PENSSE = (y — ®c)'(y — ®c) + (A\PEN(z)) (4.3)

PEN = / (D?x(s))%ds (4.4)
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It is important to have a sufficient number of knots in the spline function to ensure that the
smoothing effect is due to the roughness penalty and not a result of the least squares fitting. In
this work, the knots were evenly spaced, and the number of knots was decided on by inspection
of the FDA fit to samples of the dataset. The method of functional data analysis is compatible
with the possibility of time scaling, as previously described. If the raw data is analysed by
FDA, and an equal number of evenly spaced knots is applied for each batch, then time scaling
is automatically implemented. This is shown in Figure 4.1.
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Figure 4.1: Functional analysis, showing a sample of the raw data (top), Functional data analysis
result (middle), and the results of time scaling using functional data analysis (bottom). Axis labels are
excluded for confidentiality reasons. The different colors show different batches.



32

Data interpolation

An alternative method of functional analysis is linear interpolation of the data series. Here
the data points are linearly interpolated based on a new time series of evenly distributed time
points. For comparison, this method is equivalent to a second order spline function with a knot
at each data point if the fitting is applied without a roughness penalty. The method of linear
interpolation is used as a reference method to assess the success of the FDA procedure using
the spline functions presented in the previous section.

4.2.3 Data unfolding

For most multivariate statistical methods, it is required that the data is available as a 2-
dimensional matrix. Therefore, given a 3-dimensional matrix with ¢ batches, j time indices,
and k variables, as shown in Figure 4.2, dataset unfolding is required [Nomikos and MacGregor,
1995]. Unfolding refers to taking slabs from the dataset to create multiple 2-dimensional ma-
trices of size [i x j]. These are aligned to give a 2-dimensional matrix [i x jk]. This was the only
unfolding method applied in this work, since it is the most applicable method for regression of
end of batch quality variables [Baert et al., 2012, Glassey, 2013, Mercier et al., 2013].
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Figure 4.2: Representation of the original data matrix with different sampling frequencies for each
batch and each variable (A). The data is then pre-processed by either time cutting and then applying
FDA or by time scaling using FDA to create an even and smaller dimension of data for each variable
and each batch (B). Unfolding is then implemented (C).
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4.2.4 Mean centring

It is necessary to mean centre the data prior to multivariate analysis. In this case, a separate
mean is computed and subtracted for each time point within the (warped) batch time span.

4.2.5 Variable Scaling Methods

Commonly used variance scaling methods include column scaling and single-slab scaling (Gurden
et al. 2001). Column scaling is applied to each time index, so that each time point has
equal variance. In single-slab scaling, all time points for a single variable are scaled for equal
cumulative variance. Figure 4.3 shows the effect of the variable scaling method on the data
profiles.
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Figure 4.3: Column scaling (top) and single-slab scaling (bottom) applied to three variables which have
been mean centred and unfolded. The different colors show different batches. Variable names and time
indexes are excluded for confidentiality reasons.

4.2.6 Multivariate analysis

Two commonly used 2-dimensional multivariate analysis methods are PCR and PLS. In this
work a comparison is made between the two methods.

Principal component regression (PCR)

The concept of principal component analysis (PCA) is to transform a [i x jk] data matrix, X,
by choice of a new linear basis in the form of principle loadings and scores. The principal
loadings constitute the new basis, while the scores represent the data points using this new
basis. The principal loadings are defined in order for the first to represent the direction of max-
imum variance in the data, and the second to represent the direction of second most variance,
etc. The dataset is fully represented using min(i,jk) loadings with corresponding scores. By
not including all principal loadings and scores, it is possible to reduce the dimensionality of
the data, which then introduces an approximation error. This is represented in Equation 4.5,
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where ¢ components are included. Here, the matrix of scores, T, is transformed into the orig-
inal data matrix, X, by the transpose of the principle loadings matrix, P, with a certain error, E.

(&
X=) tip] =TP"+E (4.5)
=1

In this work singular value decomposition was used to obtain the scores and loadings. Principal
component regression is an extension to PCA whereby the matrix of scores is used in a regression
against a response, y. The regression coefficients, (3, corresponding to the scores are obtained
by fitting using ordinary least square regression. In Equation 4.6, § denotes the estimate of the
response.

j=T8" (4.6)

Partial least squares (PLS)

Partial least squares, also known as projection to latent structures, is a similar method of
subspace analysis. The fundamental difference between PCR and PLS is that PCR seeks the
direction in X which maximises variance, whereas PLS seeks directions which maximize variance
and have a high correlation with the response [Hastie et al., 2009]. It therefore identifies variance
which is relevant to the regression more directly than PCR methods.

X=TPT+E (4.7)
Y =UQ" +F (4.8)
U('v C) = 6CT(~7 C) (49)

PLS algorithms are implemented to maximise the covariance between U and T, where U rep-
resents the scores for the response, Y. A review of the algorithms can be found in [Andersson,
2009]. In this work the modified kernel algorithm is applied [Dayal and MacGregor, 1997].

4.2.7 Model validation methods

Model validation is required in order to determine the number of principal components (for
PCR) or latent variables (for PLS) which should be included in the model. A simple validation
method is leave-one-out, whereby every batch is used once as a validation batch. Alternatively,
the full dataset can be split into calibration and validation sets, however, the results are then
dependent on the division of the dataset. Leave-one-out validation is suitable for regression
applications, since it is then possible to see the effect of individual batches on the model pre-
diction at each calibration stage by analysis of the regression coefficients. For this reason, only
leave-one-out validation was implemented in this work.

For concluding on the success of a certain model, two metrics are defined. The average er-
ror of prediction is calculated as the root mean sum of squared errors (RMSSE) as a percentage
of the mean, as shown in Equation 4.10, where § denotes the mean value of y, and n is the
number of response variables. The standard deviation of the regression coefficients on the mean
is also calculated as shown in Equation 4.11, where o denotes the standard deviation. The
average prediction error indicates the accuracy of the model, while the standard deviation of
the regression coefficients is a measure of the model robustness. Both values are reported in
this paper based on the mean for confidentiality reasons.

(v—9)"(y—9)
RMSSE(%) = +—-— 1 (4.10)

stdg; = % fori=1,..,n (4.11)
1



4. Data-driven modelling of fermentation processes 35

4.3 Development of a methodology for multivariate analysis of
batch process data

A methodology is proposed for analysis of multivariate datasets in order to cover the methods
discussed. The input to the methodology is a raw dataset containing multiple time series, of
multiple variables, from multiple batches. If time cutting is applied, all data is cut to the
length of the shortest batch. If time scaling is applied, the raw data is used for the functional
data analysis. Prior to functional data analysis, the order of the function and the locations
of the knots must be defined. The data is then smoothed by functional data analysis using
a leave-one-out validation procedure. This results in a dataset which has an equal dimension
in all variables and for all batches. Unfolding can then be applied, before mean centring and
variable scaling. The multivariate method is then applied, using a leave-one-out procedure to
determine the number of principal components in the model. The model results are evaluated,
and the methodology can be repeated for different choices of pre-processing, and variable choice.
Variables are removed if they have low influence on the resulting model, which is shown by a
regression coefficient of zero. Figure 4.4 shows the general methodology for applying the methods
discussed, such that the methods are implemented in a systematic way.
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4.4 Case study: Production data from Novozymes A/S

The case study used in this work, was a production scale fermentation dataset of 30 batches
from Novozymes A/S. The dataset was obtained from a fed-batch production process utilising
a filamentous fungus strain as the host organism, containing both on-line and off-line measured
variables. The aim of the analysis is to predict the final product concentration, which was only
measured at the end of the batch.

4.4.1 Results and discussion

The dataset has been analysed by implementing the methodology as shown in Figure 4.4. Mul-
tiple iterations were applied in order to implement the different data pre-processing methods,
and assess the effect on the resulting regression. The methodology was also applied iteratively
for different variable selections. The accuracy of the model was greatly improved by removal
of some variables. This shows that certain variables, although showing high variability, did
not show variance relevant to the product concentration prediction. The final model included
only five on-line variables, making the model interpretation more straightforward for process
optimisation.

For the final model, time cutting from the end time to the shortest batch length was found
to be most effective. Then FDA was applied, using order 4 spline functions, and applying knots
at every 25" time index (no units due to confidentiality). Functions were fitted using a rough-
ness penalty, where the roughness penalty coefficient, A, was determined by a leave-one-out
fitting procedure. After unfolding, mean centring was applied, followed by single-slab scaling,
and PCR. This resulted in the regression model shown in Figure 4.5, when each batch is used
as the validation batch in a leave-one-out procedure.

By implementing the methodology it has been shown that the choice of applied pre-processing
methods has a great effect on the final model result. Starting with this final model, individual
elements of the model identification procedure were changed, one at a time, in order to assess the
effect of each applied method, with the comparison between methods shown in Table 4.1. In Ta-
ble 4.1, the result of the final model is compared to the result when one method is changed alone.

Table 4.1 shows that the choice of variance scaling method has the greatest effect on the pre-
diction accuracy, with column scaling increasing both the mean error of the prediction, and
the standard deviation of the regression coefficients. Figure 4.6 shows the resulting model fit
when only the variance scaling method is changed, in comparison to Figure 4.5 showing the
final model regression. This method of scaling is commonly used, however there is the risk
that noise is amplified in variables where the overall trend in the data is important but there is
high background noise present. For example for a cumulative flow profile, implementing column
scaling may amplify noise at the start of the batch, where the variance in the values is lower,
and lose important information on the final cumulative flow profile as the variance is scaled
equally at each time index. This effect is clearly seen in Figure 4.3 when applied to this dataset.
It is likely that this problem is common to many batch process datasets, since the collection of
such data is a frequent occurrence.

Table 4.1 also shows the effect of FDA in comparison to linear interpolation. In both cases
all other aspects of the modelling work is the same, and since the same interval was used for
interpolation and for the positioning of the knots in the FDA method, the results are considered
comparable in terms of the information content extracted from the original dataset. Even if a
greater dimension of data is included in the interpolation method, it still gives a poor regression
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Table 4.1: Average prediction error as a percentage of the mean (%) (Top) and two times the standard
deviation of the regression coefficients on the mean (bottom). Final model, refers to the best model
found, utilizing time cutting, FDA (order 4 function, knots every 25 time index), single-slab scaling, and
PCR. One aspect of the final model was changed at a time in order to assess the effect of the method on
the prediction. These changes were; column scaling, interpolation (25 time index), interpolation (5 time
index) and PLS. All described time index values have no units due to confidentiality of batch length.

Interpolation

, Column

Final model PLS (5 time interval) (25 time interval) scaling
RMSSE (%) 74 79 105 10.9 12
2 sdy; 039 0.72 0.74 0.80 118

performance in comparison to the FDA result, as shown by the result when interpolation is
carried out at every 5" time index. This suggests that the smoothing achieved using the FDA
method, results in a reliable estimation of the underlying trends in this industrial dataset, by
filtering noise in the measurements.

The FDA method is highly suited to process datasets, which comprise multiple variables, each
showing different profiles in the data. It allows flexibility in the function output so that the
same method can be applied in series to multiple variables, without modifying the procedure. It
is able to capture different dynamics in the different variables with a single basis function type
defined. It is also compatible in the methodology when considering time scaling. If the raw data
with different batch lengths is analysed by FDA with a fixed number of knots per batch, this will
automatically implement time scaling. In addition, it is computationally efficient when dealing
with highly complex data series, since an analytical solution is available for the spline function
coefficients estimates. It is therefore considered a highly valuable addition to the methodology,
and an efficient processing tool for industry. It also gives an objective solution to the problem
of noise filtering and outlier removal. The limitation is the need to define the number of knots
which will be used for fitting, which in this methodology is done by inspection. This may be
an area of future work for the methodology, in order to create a completely systematic procedure.

In this work the choice of multivariate method has very little impact on the accuracy of the
prediction, however this prediction is achieved with one less principal component for the PLS
method, with four principal components compared to five for the PCR algorithm. The lowest
absolute error was achieved with the PCR method, as shown in Figure 4.7, and this also gives
the lowest standard deviation of the regression coefficients, showing a more robust model.
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titre prediction

titre measurement

Figure 4.5: Results of the case study, applying the statistical modelling methodology to production
scale data from Novozymes A/S. PCR titer regression model for a 30 batch production scale dataset at
Novozymes A/S, using 5 variables. Results show prediction when each batch is used as the validation
batch. Time cutting from end of batch time, functional data analysis pretreatment (order 4 function,
knots every 25 time index), and single slab scaling. The PCR model uses 5 principal components. Axis
labels are excluded for confidentiality reasons.

titre prediction

titre measurement

Figure 4.6: PCR titer regression model for a 30 batch production scale dataset at Novozymes A/S,
using 5 variables. Results show prediction when each batch is used as the validation batch. Model is
identical to the final model, other than the method used for variance scaling, which in this case was
column scaling. (Time cutting from end of batch time, functional data analysis pretreatment (order 4
function, knots every 25 time index), and column scaling). The PCR model uses 5 principal components.
Axis labels are excluded for confidentiality reasons.
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Figure 4.7: Average prediction error as a percentage of the mean (%) against the number of principal
components when either PCR or PLS is applied as the multivariate method in the final model, where
the model utilizes time cutting from end of batch time, functional data analysis pretreatment (order 4
function, knots every 25 time index), and single slab scaling. Line added to the graph trend for clarity.
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Model interpretation

The result of the methodology is a model which can predict the final product concentration with
an average error of 7.4%. Once a final model is defined using the methodology, it is then possible
to analyse the regression coefficients for the prediction, in order to understand the trends which
result in a higher prediction. Figure 4.8 shows the regression coefficients for this model, which
correspond to the five variables. It is especially valuable, that the results show time dependent
trends, such that desirable conditions over time are identified. Although the details of this
optimisation procedure are not discussed for confidentiality, the concept of applying such tools
for the purpose of process modelling and optimisation is shown. For example, understanding
the cause for the high impact of Variable 1 on the prediction near the end of the batch is
shown to be a lead for process optimisation. The end conditions for Variable 2 and 3 are also
important, with a higher than average value for Variable 2, and a lower than average value for
Variable 3, giving a greater prediction. By analysing the average batch trend in these variables,
and identifying which operating conditions lead to this result, future batches can be optimised
based on this knowledge.

Variable 1I V;ariable 2 : Varilab]e 3 : Varialble 4 ’ Variablle 5

Regression coefficients

Figure 4.8: Regression coefficients for the 5 variables used in the final model against time index. The
black line shows the average regression coefficient, and the red shows the standard deviation as each batch
is used as a validation batch. The larger the regression coefficient, the larger impact on the regression.
Zero shows that the value of the variable at that time has no impact on the prediction.

Since the goal of the methodology is process optimisation, the predictive capability of the model
is of vital importance for the applicability. It is therefore interesting to assess the accuracy of
the model, if the two highest titre batches are excluded from the dataset for model building, and
the resulting model is applied to these batches. This has been implemented, with the results
shown in Figure 4.9. The prediction accuracy is within the range of the calibration batches,
which shows that the model is robust to this type of optimisation procedure.
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Figure 4.9: PCR titer regression model for a 30 batch production scale dataset at Novozymes A/S,
using 5 variables. Black data points used also for model calibration, grey data points only used for model
validation. Time cutting from end of batch time, functional data analysis pretreatment (order 4 function,
knots every 25 time index), and single slab scaling. The PCR model uses 5 principal components. Axis
labels are excluded for confidentiality reasons.

4.5 Conclusions and future work

Multivariate analysis tools were successfully applied in order to model a production scale dataset,
and a methodology is developed due to the practical challenges faced when applying conven-
tional multivariate analysis tools to an industrial dataset. The aim of the methodology is to
provide a new framework for approaching multivariate analysis of batch process data. A struc-
tured approach becomes increasingly important due to the wide range of alternative methods
for both multivariate analysis and pre-processing. The methodology is then valuable, in order
to investigate a range of these methods for each stage of the pre-processing, and provide an ob-
jective solution to noise reduction. The methodology also provides an outline for documentation
of the resulting model. This is considered highly valuable for application in an industrial setting.

This chapter discusses how pre-processing is an important and integral stage in multivariate
analysis of batch process data. The choice of methods has an effect on the accuracy of the re-
sulting multivariate model, which is investigated using an industrial fermentation dataset from
Novozymes A/S. The final product concentration is predicted from a production scale dataset
with an average prediction error of 7.4%. The success of the model is dependent on the data
pre-processing applied, more than the choice of multivariate method. This result may be espe-
cially relevant to those using commercial modelling tools, as it is important that users are aware
of the pre-processing applied in the software, and consider the implications. This is especially
true of the variance scaling method, as it is shown to have a large effect on the resulting model.

The focus for future developments is now on data management and accessibility, to allow such
tools to become applied more widely in industry for process optimisation. It can take a sig-
nificant amount of time to access the data, both on-line and off-line. Such tools may be more
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readily applied if more focus was put also on database management and coordination of data
from different sources.

In this work, the modelling tool was applied for the purpose of identifying possible optimi-
sation leads, and for this purpose it has been successful. As discussed in Chapter 3, statistical
modelling methods may also be applied for the purpose of control. For control applications, the
purpose is usually to follow a fixed batch trajectory of the best performing batch. This may
then be applicable to a process, for example producing a pharmaceutical product, where the
process operation is very fixed, and there are strict requirements for control of the process to
meet product quality requirements. In the field of industrial biotechnology, the drivers for the
control strategy are not the same in this way; it is possible to continually improve a process also
in the production scale. It is therefore not ideal to consider statistical process control methods
in this work. However, it has been shown that statistical modelling tools are highly valuable for
the purpose of gaining valuable process insights from the vast amount of process data which is
available in an industrial setting.
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5 Mechanistic modelling of fermentation processes

The previous chapter has described the development of a data-driven model for the industrial
batch process. This has been useful in order to gain process insights, but it is not the ideal
platform for control strategy development. In this chapter, a mechanistic model approach is
investigated. This is based upon a model which was developed by Albaek et al. (2011) and
Albaek et al. (2012). In this chapter the model is described, and uncertainty and sensitivity
analysis is conducted.

5.1 Introduction

Mechanistic models provide a mathematical description of the current understanding of a dy-
namic system, and are therefore important tools for process development [Fernandes et al.,
2013]. By constructing a mechanistic model it can aid with consolidating the current process
understanding, and they may be developed over time as additional process insights are obtained.
There is increased interest in mechanistic modelling due to the Process Analytical Technology
(PAT) guidance and the principles of Quality by Design (QbD) which are of focus in the phar-
maceutical industry [Gernaey et al., 2010]. Mechanistic models are therefore powerful in this
industry due to the information they can provide.

A mechanistic model is formulated based on first principles, where the system is described
by a series of equations which are defined deterministically, and have a physical meaning. For
bioprocesses, this requires an understanding of the metabolic processes which underpin the
system, although the model equations are often heavily simplified. The model can also be
extended to include physical relationships for oxygen transfer, heat transfer and mixing. The
model should capture the dynamics of the system, however if it is too complex the number of
variables to determine becomes infeasible, and can lead to parameter estimation issues.

Mechanistic models for fermentation processes can be described as structured /unstructured and
segregated /unsegregated based on the treatment of the cell population in the model [Gernaey
et al., 2010]. If the cells are treated as a multi-component system, then the model is described
as structured. Although much more simplified, unstructured models are commonly used. If the
cell population is treated as a single entity then the model is described as unsegregated, and is
therefore more simple in construction. In segregated models, the individual cells are considered
heterogeneous. This adds vast complexity to the modelling problem.

When evaluating a mechanistic model it is important to carry out model uncertainty and sensi-
tivity analysis, in order to determine the uncertainty of the parameters [Fernandes et al., 2013].
This can also provide insight into model parameter correlations, and also indicate if the model
structure is suitable. Mechanistic modelling can be used to investigate a design space for a sys-
tem of interest, however it is vital to conduct a thorough analysis of the limitations of the model.

45
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5.1.1 Application of mechanistic models to fermentation processes

Mechanistic models require a significant investment of time, and resources, however their appli-
cation to multiple stages of the process development and operation can make this investment
highly valuable. It is possible to re-use an established mechanistic model to different stages
of fermentation process development; planning, process design, monitoring and control. For
example, a single mechanistic model structure can be adapted for the following applications:

Off-line applications:
e Definition of process conditions and sensitivity analysis
e Definition of batch initial conditions and start fill
e Off-line control strategy testing
On-line applications:
e On-line state estimation
e On-line control

Although there is a longer development time for such modelling methods in comparison to
black-box techniques, the wide range of applications makes them a highly valuable tool for
fermentation research and development. There may also be additional benefits, for example
Albaek et al. (2012) showed that mechanistic models may be relatively simple to adapt to
different host organisms by changing the model parameters [Albaeck et al., 2012, Albaek et al.,
2011]. In addition, a range of different control strategies may be tested for feasibility prior
to on-line testing, including multivariable control. Finally, in a research environment, where
collaboration is important, developing mechanistic models provides a platform for knowledge
sharing and consolidation of existing understanding.

Structure | Applications
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Planning process conditions
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Figure 5.1: Summary of possible mechanistic model structures and their applications. U indicates
input variables.
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Off-line applications

Definition of process conditions Planning of processes operated at different locations is
an industrial challenge, since it is desirable to create a reproducible process operation, despite
potential differences in equipment. The different equipment may also have different physical op-
erating limits, for example headspace pressure, aeration rates or stirrer speeds, which are known
to be important parameters for fermentation processes [Albaek et al., 2011]. It is important to
account for these differences in the batch planning stage, in order to allow for processes which
are as reproducible as possible. In order to properly design scale down studies, it is also impor-
tant to have an understanding of equipment limitations at different scales of operation [Stocks,
2013]. Models are applicable at this stage to assess the process sensitivity to changes in the
process conditions, and also assess the effect of different reactor dimensions or technologies, for
example impeller types [Alback et al., 2011]. It is possible, for example, to assess the change in
heat and mass transfer rates in different tanks, under different process operating conditions.

Definition of batch initial conditions Industrial fermentation systems are often operated
in fed-batch mode which poses specific challenges for planning and scheduling. The batch phase
of the process may vary considerably in length due to variations in the lag time, as well as
other inherent batch-to-batch variation in initial conditions [Cinar et al., 2003]. Deviations in
batch duration, and also variations in final batch fill, lead to variation in product mass achieved
in each batch operation. It is desirable to always achieve full vessel capacity to maximise the
productive volume of each tank in every fermentation run, within a given process time. A
mechanistic model may be applied in order to predict a suitable start fill for a process. Other
relevant initial conditions include substrate concentration and biomass concentration. The effect
of these initial conditions may also be investigated by means of a mechanistic process model.

Off-line control strategy testing A major benefit of a mechanistic model over a data
driven model is that it is dynamic and predictive, and that it better extrapolates outside of
the conditions used to develop the model [von Stosch et al., 2014]. For these reasons, mecha-
nistic models are applicable for testing of different control strategies. By addition of a control
algorithm coupled to the dynamic process model, it is possible to simulate different controller
algorithms prior to on-line implementation [Birol et al., 2002]. Typical controlled variables for
a fermentation process include the temperature, pH and dissolved oxygen concentration [De
Leon et al., 2001, Alford, 2006]. These are typically controlled using PID controllers. For exam-
ple, the dissolved oxygen concentration may be controlled using the feed rate as manipulated
variable [Bodizs et al., 2007, Lee et al., 1999, Albaek et al., 2011}, or the air flowrate as the
manipulated variable [Gnoth et al., 2008, Gomes and Menawat, 2000]. The control algorithm
for off-line implementation would then be a simple PID control implementation utilising the
dynamic model output of the DO vs a reference DO set point trajectory in order to define the
manipulated variable in a closed loop. By implementing this off-line, it allows tuning to be sim-
ulated rather than utilising resources with on-line testing and tuning. Although fine tuning may
still be required on-line, this will greatly reduce the cost and time of control strategy tuning.

On-line applications

On-line monitoring There is a lack of robust, on-line sensors for key parameters of interest
in the field, such as substrate, product and biomass concentration [Sonnleitner, 2013], due
to challenges specific to the development of in-line sensors which are applicable to industrial
fermentation systems. There is therefore an interest in state estimators which utilise reliable
and available on-line measured variables to predict the unknown states in real-time [Sagmeister
et al., 2013, Luttmann et al., 2012]. Mechanistic models provide a basis for development of
on-line monitoring tools.
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On-line control Mechanistic process models may be applied on-line for the purpose of con-
trol. These model-based control strategies may be beneficial due to the multivariate nature of
the control problem. By decoupling the control problem into multiple closed loops it does not
consider the full control objective as can be done with a model-based approach. There are also
a wide range of control objectives which can be met by application of a model-based control
strategy, as discussed in Chapter 3.

Figure 5.1 provides a summary of the applications described, and the model structure em-
ployed in each case. Due to the wide range of applications, mechanistic model development
may be highly valuable in an industrial environment, as they may be applied for a range of
applications.

5.2 Methods

5.2.1 Model description

A mechanistic model has been developed to describe industrial fermentation processes operated
at the pilot scale facility at Novozymes A/S [Albaek et al., 2011]. This model was originally
developed to describe an Aspergillus oryzae process [Albaek et al., 2011], and was then adapted
in order to describe a Trichoderma reesei process [Albaek et al., 2012]. The following section
describes the model, however for full details the publications by Albaek et al. may be consulted.
The model is implemented in MATLAB [The MathWorks Inc., 2013] and solved using the built
in solver, ode23s.

The model of interest is from the following publication:

Evaluation of the energy efficiency of enzyme fermentation by mechanistic modeling.
Albaek M. O., Gernaey K. V., Hansen M. S., Stocks S. M.
Biotechnology and Bioengineering 109:950-61. 2012.

Volume balance

The total liquid volume in the system is described by the following ordinary differential equation,
taking into account mass loss due to evaporation and dissolution and evolution of gases from
the liquid phase.

dV _ prF' —1000Feyap + prYsoF' — ppYsc '

= ; [L/h] (5.1)

Feed rate

The feed rate is applied to the system using a PI controller, where the dissolved oxygen is the
measured variable, and the feed rate is the manipulated variable. This results in an additional
state in the model for the integral term, I, which is cumulative over the process time. The feed
is subject to maximum and minimum feed rates, which is the same as in the process operation.

F =Fy+ K. * (DOget — DOpeasured) + 1 [L/h] (5.2)

Biomass concentration

The biomass concentration is modelled using a growth rate term. The growth rate is calculated
in an unconventional way, by assuming no accumulation of substrate in the system. In this way
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the growth rate is solved by assuming all feed is consumed for either biomass accumulation or
maintenance. This assumption is made in relation to the feed rate control, which is added based
on a dissolved oxygen profile. The assumption is then that the feed is consumed immediately
as it is added, and is as such the limiting rate factor.

av
dxX, dt
o =uXy, — X, v [g/L.h] (5.3)
dv
SpF dt
27 g dt
W,
b= e 1) (5.4

Viscosity

Viscosity is calculated in the same manner as discussed in Albaek et al. 2012 [Albaek et al.,
2012], where the parameter fitting is also described. The viscosity is a function of the biomass
concentration, and the stirrer speed, which is important in this non-newtonian fluid. ks is the
shear rate constant [Metzner and Otto, 1957], which is defined as 11.

fiapp = C1X (k,N)CX =1 [Pas] (5.5)

Mass transfer coefficient

The mass transfer coefficient, kpa, is calculated in the same manner as discussed in Albaek et al.
2011, where the parameter fitting is also described. The mass transfer coefficient is a function
of the apparent viscosity, as described in equation 5.5. It is also a function of the power input
to the broth per liquid volume, as well as the superficial gas velocity at actual temperature and
pressure, vg.

Poroth "™ 015 _0.50 -1
kLazCT Vg Happ [h™7] (5.6)

The power input per unit volume is required for this empirical formula. This is also a term
which is commonly applied to define the mixing in a fermentation process. Power consumption
from agitation is given by the following power number relation. In this relation, the unaerated
impeller power number is defined by Albaek et al. 2011. The term P,/P, defines the gassed
power input in relation to the ungassed power input, and this is determined to be 0.8 [Albaek
et al., 2008]. The density of the broth is a constant, p, and the number of impellers is given by
n.

Pagitation = 0.001nPopN3D?(P,/P,)  [kW] (5.7)

In addition, power is dissipated by aeration [Roels and Heijnen, 1980]. The power dissipated
by aeration, P,;, is calculated as discussed in Roels and Heijnen (1980). In this equation, vgn,
is the superficial gas velocity at normal temperature and pressure, g is gravitational force, and
Z is the ungassed liquid height. The scaling factor of 22.4 (L/mol) refers to the volume of one
mole of gas at standard temperature and pressure.

_ VognRT p9Z
Puir = 0.001 59 47 in (1 —+ P (kW] (5.8)

The value of Py.op is then the sum of the power input by aeration and the power input from
mixing.
Pbroth = Pair + Pagitation [kW} (59)



50

Dissolved oxygen concentration

The dissolved oxygen is calculated based on a mass balance between oxygen in the inlet gas
which dissolves into the liquid phase, and the oxygen consumption from the liquid phase due
to respiration. This requires knowledge of the driving force for oxygen transfer into the liquid
phase. This is approximated based on a logarithmic mean basis. In Equation 5.10, DO*
represents the saturation concentration of oxygen, and this is given at the inlet and outlet
conditions, based on the pressure and the oxygen content of the air.

dDO’U (DO:'m_DOv) - (DO:out _DOU) DOU dVv
= : - - o ) Xv - L
a e . (D03, —DO,) (t1z0+ o) voar  molO/LA
¥ (DO py — DO)
(5.10)

Product concentration

The product concentration is calculated based on the biomass growth and the yield of product
from substrate. In this way the product formation is assumed to be only growth associated.

av
arP 1 dt
s MXHYSX Ysp — P, v [g/L.h] (5.11)

5.2.2 TUncertainty analysis

In order to critically evaluate a model, and identify the robustness of a model, it is important
to conduct uncertainty analysis. Since the model is defined with a number of parameters which
are then fitted to experimental data, it is important to identify the accuracy of the model
structure and the uncertainty in the parameters. In the work of Albaek (2012), expert review
in combination with Monte Carlo simulations were used to assess the model uncertainty. In this
work, this method is compared to the bootstrap method for uncertainty analysis. This provides
two different perspectives on the expected uncertainty in the model.

Expert review process

A commonly used method for parameter uncertainty analysis is expert review, whereby the
uncertainty is estimated subjectively [Sin et al., 2009]. This is the method used in the case
study in order to define which parameters were expected to show low, medium or high levels
of uncertainty, corresponding to a variation of 10%, 30% and 50% respectively. This method
is the most simple to implement for a model with many parameters, but, apart from available
process knowledge, there is limited justification for the level assigned, and there is also an as-
sumption made about parameter distribution. This method assumes a normal distribution, and
no correlation between the parameters. In many cases this is likely to be an oversimplification.
The expert review process is followed by Monte Carlo simulations in order to assess the model
uncertainty due to the parameter uncertainty levels defined.

Bootstrap sampling

The bootstrap method [Efron, 1979] is a method of parameter estimation including parameter
estimation uncertainty. The data points are assumed to be function of a set of true parameters,
and noise, as described in Equation 5.12. The model output, f(6), is first fitted to the dataset
(v), by minimising the sum of squared errors when normalised by the mean of the data to
account for the different scales, as shown in Equation 5.13. The residuals, €, between the model
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output and the data are identified.

yi = fi(0) + & (5.12)
6: miniomize I m 2 (5.13)
e=f0)—vy (5.14)

In the method, the vector of residuals, &, between the model fit and the data are sampled, by
a method of random sampling with replacement. This re-sampling creates a new dataset for
fitting, and the model parameters are fitted again. 100 iterations of re-sampling with replace-
ment were carried out. Each new dataset which is generated provides a new parameter set ,0;,
such that the final mean, standard deviation and correlation of the parameters is defined. This
method assumes that the residuals between the model prediction and the experimental data
is due to measurement errors, therefore it is only applied to variables which this is applicable
for. Bootstrap sampling is applied to the biomass, product, viscosity, mass transfer coefficient
and the weight data. Growth rate is not used, because it is already captured indirectly in the
biomass data, and feed and dissolved oxygen are not used as these are control parameters and
this assumption does not hold for our model prediction. The bootstrap method is applied as a
comparison to the expert review process.

Monte Carlo simulations

The expert review process and the bootstrap method both provide an estimate of the parameter
uncertainty. In order to assess the impact of the parameter uncertainty on the model output,
Monte Carlo simulations are used to simulate the model for the parameter space defined. The
parameter space is found by application of Latin Hypercube sampling [Helton and Davis, 2003]
where 100 samples are selected. For the expert review process it is assumed that there is
no correlation between the parameters, and for the bootstrap method the correlation matrix
obtained from the parameter fitting is applied. The Monte Carlo simulations then show the
model output for the parameter space defined.

5.3 Results and discussion

Uncertainty analysis was carried out on the model described in the methods section. A summary
of the model structure is provided in Figure 5.2. The model has ten parameters, five state
variables and eight outputs. As previously discussed, in the original model implementation, an
expert review process was carried out which resulted in the parameter uncertainties, as shown
in Figure 5.2.

5.3.1 Expert review

Firstly, the uncertainty analysis was carried out using the expert review uncertainties. This has
already been completed in the work of Albaek et al. (2012), but by repeating this, it ensures
that the model implementation is correct in this work, and the results are reproducible. The
results of the 100 Monte Carlo simulations, as shown in Figure 5.6, are the same as shown in
the work of Albaek et al. (2012). There is a relatively high uncertainty in the model output.
This is especially prominent in the product concentration and the biomass concentration. The
general trend captured in the model is in agreement with the experimental data, however there



52

Parameters Expertreview Outputs
¥xs G substrate/g DCW (stoichiometric) 50% Weight

Vio Mol 02/g DCW (stoichiometric) 50% Biomass
m, g oxygen/g DCW.h (maintenance) 50% Model Growth rate
m, g substrate /g DCW. h (maintenance) 50% dv,/dt, Product

C constant for k;a calculation 30% dx, /dt, bo

c1 constant for viscosity calculation 30% —> dP/dt ——> E‘fed ﬂpw rate
Ysp g product /g substrate (observed) 10% dDo./dt, k;slcoswy
Ysx g DCW/g substrate (observed) 10% di/dt

Yso g oxygen /g substrate (observed) 10%

Ysc¢ g CO, /g substrate (observed) 10%

Figure 5.2: Albaek et al. 2012 model representation, showing the model parameters (left), model
states (centre box) and outputs (right). The parameters described as (observed) are estimated from
experimental data by a regression fit. An expert review is conducted for the parameter estimation in the
work by Albaek (2012), and these values are also provided next to the parameters

is relatively high uncertainty.

The parameter uncertainty estimates defined in the expert review process were in some cases
data-based, for example the observed yields. This means that the uncertainty defined by the
expert review process covers both model parameter uncertainty and data uncertainty and batch-
to-batch variations in the parameters. In this way, a large parameter uncertainty estimate is
relevant, as it represents the parameter uncertainty when applied to multiple batches and at
different conditions. The large model output uncertainty is not only due to the magnitude of
the parameter uncertainties, but also due to the fact that the correlation between variables is
neglected. This means that a wider parameter space is sampled than is relevant for the model
uncertainty analysis.

5.3.2 Bootstrap method

The uncertainty analysis was then repeated, but this time using the bootstrap method to ob-
tain the model parameter uncertainties. Figure 5.3 shows the results of the bootstrap sampling,
where 100 iterations of parameter fitting were completed. The grey lines show the residual re-
sampling, and the red line shows the average model fit obtained when re-sampling. Firstly, it is
noted that the average parameter values obtained from the bootstrap method provide a better
overall fit to the data than the values defined from the original expert review process. This can
be seen by comparing the average fit obtained from the original Monte Carlo method in the top
figure of Figure 5.6 to the average fit of the bottom figure, where the average parameter values
are applied to the model. This is especially true of the biomass and product concentration
profiles.

The exact parameter values can not be disclosed for confidentiality reasons, however it is im-
portant to identify if the new set of fitted parameters lies within the expected range for the
parameters, to ensure that they still have the same physical meaning in the model. This can be
shown by comparing the original parameter values, with the average value obtained from the
bootstrap method. The average parameter values obtained by fitting were all within the ranges
defined in the original expert review process, other than Ysc which was just 7% greater than
the upper limit from the expert review process. The fact that the average values are within the
expected parameter ranges shows that the relevance of the parameters is maintained, and the
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Figure 5.3: 100 bootstrap samples of the model residuals (grey) and the model output using the average
parameter values (red) showing that the objective function for parameter fitting was successful.

values of the parameters have physical meaning in the mechanistic model.

The distribution of the parameter estimates indicate the uncertainty on the parameter esti-
mates. Figure 5.4 shows the distribution profiles for the ten parameters. The percentages show
two times the standard deviations as a percentage of the mean value. This can therefore be
directly compared to the variation range applied to the Monte Carlo simulations in the bench-
mark uncertainty analysis. A benefit of applying the bootstrap method is that the correlation
between the coefficients can also be analysed. This information is provided in Figure 5.5. A
summary of the parameter uncertainty estimates obtained from expert review, and from boot-
strap sampling is given in Figure 5.7.

The observed yield parameters, Ysx, Ysp, Yso and Ysc, were estimated to be in the low un-
certainty class in the original expert review process, meaning an expected uncertainty range of
10%. Figure 5.7 shows that in all cases the bootstrap uncertainty is over double this value, and
for Yso the uncertainty reaches 77%. The parameters Yso and Ysc are applied in the volume
balance, in order to account for dissolution and evolution of gases into the liquid phase. It is
likely to be that the high uncertainty in these two parameters is due to the trade-off between
the two parameters; an increase in one may be balanced by a decrease in the other. This can
also be seen in the negative correlation coefficient of -0.3 in Figure 5.5.

The observed yields for the biomass and product on substrate also have higher uncertainty
levels than expected in the expert review process, but more importantly it is observed that
these parameters have a correlation coefficient of 0.97. Both parameters are only involved in
the calculation of the product concentration. By analysis of Equation 5.11 it is clear that this
correlation is due to the equation structure, where the product concentration is proportional to
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Figure 5.4: Parameter distributions after 100 bootstrap samples shown relative to the mean value. 2
standard deviations as a percentage of mean is shown for each parameter.

Ysx Ysp Yso Ysc VXS VX0 ms mo C1 C
Ysx 1 0.97 -0.19 0.07 -0.01 -0.03 -0.17 -0.23 -0.43 -0.42
Ysp 1 -0.22 0.07 0.02 -0.01 -0.08 -0.08 -0.46 -0.48
Yso 1 -0.30 0.25 0.15 -0.29 -0.20 -0.04 -0.05
Ysc 1 0.32 0.10 -0.32 -0.10 -0.25 -0.25
yXs 1 0.41 -0.85 -0.19 -0.04 -0.12
yxo 1 -0.37 -0.67 -0.10 -0.18
ms 1 0.54 0.03 0.07
mo 1 0.03 0.06
c1 1 0.98

C 1

Figure 5.5: Correlation coefficients for the ten parameter distributions after 100 bootstrap samples.
The greatest correlation coefficients are highlighted in bold.

Ysp but inversely proportional to Ysx. This means that an increase in one is simply balanced
by an increase in the other.

The stoichiometric yield parameters, yxo and yxs, in the model have a low level of uncertainty,
despite them being assigned the greatest uncertainty level in the expert review process. This
was since the parameters are difficult to determine, since the experiments are carried out at low
growth rates. It has been shown by the bootstrap method however, that the average parameter
values are well defined for this process. They also have no highly significant correlation to other
parameters and so it is concluded that these terms are well parametrised in the model.

The greatest relative error is seen in the substrate maintenance parameter, ms. This parameter
was in the highest uncertainty class in the original expert review process, meaning an expected
uncertainty range of 50%, however the results of the bootstrap method show not only is this
parameter very uncertain, it also does not follow a Gaussian distribution. This suggests that
the parameter may be poorly defined in the model, and possibly a constant for this parameter
is not appropriate. The parameter, ms, is only present in calculation of the growth rate. It is
unclear why the parameter distribution is so skewed.

Other than the biological parameters, there is also a strong positive correlation between C,
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Figure 5.6: 100 Monte Carlo simulations using parameter uncertainty estimate by expert review process
from Albaek et al. 2011 (top) compared to parameter uncertainty obtained from bootstrap method and
Latin hypercube sampling (bottom).

in the mass transfer coefficient calculation, and C1 from the viscosity prediction. From the
sensitivity analysis provided in Albaek et al. (2012) it is seen that both C and C1 have positive
regression coefficients for the viscosity meaning greater C and C1 values mean greater viscosity.
However for the kpa calculation C has a positive correlation and C1 a negative correlation. This
then shows the interplay between viscosity and kpa; a greater viscosity means a lower kra.
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Parameter Original Bootstrap Change
Ysx g DCW/ g substrate (observed) 109% 25% +15%
Ysp g product / g substrate (observed) 10% 24% +149%
Yso g oxygen / g substrate (observed) 109 77% +67%
Ysc g CO; / g substrate (observed) 109% 57% +47%
Ve g substrate/g DCW (stoichiometric) 50% 119% -39%
Vo mol 0,/g DCW (stoichiometric) 50% 12% -38%
m. g substrate / g DCW /h (maintenance) 50% 114% +649%
m, g0, /g DCW /h (maintenance) 500 340% -169%
c1 constant for viscosity 30% 28% -29%

C constant forlk;a 3009 159% -159%

Figure 5.7: Summary of parameter uncertainty estimates.

5.4 Conclusions and future work

Mechanistic models are applicable to many stages of fermentation process development, and
also provide a summary of the process understanding. For this reason they are valuable tools
for pilot scale fermentation studies. In this chapter, an established mechanistic process model is
analysed using uncertainty analysis methods in order to gain an understanding of the parameter
uncertainty estimates.

The choice of parameter estimation method is shown to have a great effect on the resulting
model uncertainty, which gives a different conclusion about the model robustness. It is not
the purpose to conclude on the most suitable approach to parameter uncertainty estimates,
but to compare different methods for the purpose of understanding the model. The bootstrap
method gave a lower model uncertainty than was originally described in Albaek et al. (2011),
despite the fact that some parameter uncertainty estimates were increased with the bootstrap
method, whilst others were decreased. This is also due to the consideration for the parameter
correlations, which reduces the parameter space which is sampled. The model parameter set
provided by the bootstrap method provided an improved model prediction.

Figure 5.6 compares the expert review parameter uncertainty and the bootstrap defined pa-
rameter uncertainty by simulating both using Monte Carlo simulations after Latin hypercube
sampling. The uncertainty estimate obtained from the bootstrap method is lower in all model
outputs, and especially for the weight, biomass, viscosity, and feed flow rate predictions. The
method of parameter fitting has also resulted in an improved parameter set, as shown by com-
paring the average model prediction in the top of Figure 5.6 with the lower figure. Especially
with the product prediction, the average model prediction is much improved. This indicates
that a process of mechanistic modelling followed by parameter fitting by bootstrap sampling is
suitable for obtaining a set of model parameters, and analysing the resulting parameter distribu-
tions. It is also highly valuable for future model development, that the parameter distribution
and correlations are understood. This could lead to better parameter estimates, and lead to
identification of areas for model improvement.

The uncertainty analysis shows that the greatest model uncertainty is in the product con-
centration prediction. This is due to the high uncertainty in the maintenance terms, and the
observed yield coefficients for both product and biomass, since the product formation is also
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dependent on the growth rate of biomass as shown in equation 5.11. In this way the uncertainty
in the biomass concentration has an effect on the uncertainty in the product concentration. It
may be that the assumption of growth associated product formation is not valid, and this area
of the model should be a focus of future work. It is shown that the maintenance term for
substrate consumption is poorly defined in the model, and it would be of interest to focus on
the use of the yield parameter and maintenance terms, to find a structure where the parameter
estimates showed a lower uncertainty and a normal distribution.

The substrate balance should also be considered in future application of the model. Currently,
there is assumed to be no accumulation of substrate, and the feed rate is solved by application
of a PI controller. The data shows the fluctuating feed rate as it is applied for control of the
dissolved oxygen concentration. In the model all feed is consumed at every time instance, and
therefore it is not possible to recreate the reality which is shown, where by the feed rate oscil-
lates due to slight over, and under feeding. For the purpose of modelling the general trends in
the data, the assumption of no feed accumulation is valid, since all the model data has been
operated in well controlled conditions. However if the model is to be applied for control ap-
plications, it will be very important to account for the situation of overfeeding. If this is not
considered the dynamics of the process due to an excess of substrate will not be accounted for.
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6 Development of a stoichiometric state estimator

Chapter 5 describes a robust mechanistic model which has previously been developed to describe
the pilot scale fermentation process operated at Novozymes A/S [Albaek et al., 2011, Albaek
et al., 2012]. In this chapter, the model is applied on-line, and therefore there is available mea-
surement data which may be utilised in order to improve the model prediction. This chapter of
the thesis is based upon the following article:

Application of a Mechanistic Model as a Tool for On-line Monitoring of Pilot Scale Filamentous
Fungal Fermentation Processes- The Importance of Evaporation Effects

Mears L., Stocks S. M., Albaek M. O., Sin G., Gernaey K. V.

Biotechnology and Bioengineering 114, 3: 589-599. (2017)

6.1 Introduction

Chapter 5 describes a robust mechanistic model [Albaek et al., 2011, Albaek et al., 2012] which
has previously been developed to describe the pilot scale fermentation process operated at
Novozymes A/S. The model includes both a physical process description with mass transfer
relations, as well as a description of the metabolic rates in the system by means of yield pa-
rameters and maintenance terms for substrate consumption. Although the model describes the
trends seen in the data, it has been shown in section 5.3 that there is a high level of uncer-
tainty in some of the parameters used in the mechanistic model, and this uncertainty mainly
concerns maintenance and yield parameters. The term describing the substrate consumed for
maintenance is not well defined and has an unacceptably high uncertainty. The greatest relative
error of prediction is in the product concentration, as shown in Figure 5.6, which is related to
the uncertainty in the yield parameters. It is considered that the model describes the physical
processes well, however the metabolic changes over the course of the fermentation are not well
captured. This is due to a lack of understanding of how the physical environment affects the
metabolic activity, and this is outside the scope of the model. The prediction accuracy is very
good for application to planning operations, and studying the physical system, which was the
application of interest for the model when it was developed. However, it is not considered ac-
curate enough for the purpose of on-line monitoring, which is of interest in this work.

For monitoring and control applications the model will be applied on-line. This means that
there is then the opportunity to utilise available on-line measurement data, in order to improve
the model prediction, by using a state estimation approach. In this case the aim of the state
estimator is to predict the biomass and product concentration, as these are currently poorly
defined in the model and are otherwise available only off-line. The aim is to incorporate avail-
able measurement data on-line into a state estimator, which is coupled to the physical process
model. In this way it is possible to obtain a greater prediction accuracy when the model is
applied on-line, which will aid process monitoring, and ultimately process control.
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6.1.1 Bioprocess monitoring

Monitoring of bioprocesses requires reliable on-line measurements, however there is a lack of
on-line sensors for key parameters of interest in the field, such as substrate, product and biomass
concentration [de Assis and Filho, 2000, Sagmeister et al., 2013, Alves-Rausch et al., 2014], which
are applicable to pilot and production scale. There are challenges specific to the development
of in-line sensors for industrial fermentation systems. These include the need for the probe to
be robust to sterilisation, and to be stable over long operation times [Alford, 2006]. In addition,
there is also the issue of regulation, and the need to obtain approval for changes made to the
hardware used in a process operating under good manufacturing practices (GMP) [Gernaey,
2015]. A practical issue is also the limited number of ports for in-line probes on the stainless
steel vessels. This lack of on-line state measurement, limits the ability to monitor the progres-
sion of fermentation systems.

There are many causes of batch-to-batch variation in biological systems, based on physiologi-
cal differences, metabolic shifts, or disturbances, for example small differences in raw materi-
als [Villadsen et al., 2011]. If on-line estimates of key performance indicators, such as product
concentration, were available, it allows for better process monitoring, and also allows for imple-
mentation of advanced control. With the process analytical technology (PAT) guidelines being
introduced (FDA, 2004), there is also an additional drive towards increasing process knowledge
and monitoring capabilities [Gernaey et al., 2010].

6.1.2 Soft sensors applied to fermentation systems

Due to the current limitations in process monitoring, there is an interest in soft sensors, which
utilise on-line measured variables to predict the unknown states in real-time [Luttmann et al.,
2012, Sagmeister et al., 2013]. However, a report by Luttman et al. (2012) states that there
is limited application of soft sensors in industry, despite the advantage of real-time process
understanding, and the fact that there is no need for investment in additional hardware. Some
of the challenges associated with implementation of a soft sensor in an industrial context are
cited in the report. These include data availability for model development at industrial scales,
and data quality, which may contain outliers or have issues with sensor drift. Another challenge
is the requirement for additional computer hardware where there is connectivity to the on-line
measured data. Finally, the need for re-calibration of the model is perceived as limiting the
practical applicability. These factors must be considered in the development of a soft sensor if
it is to be applied in practice.

State estimator models may be developed based on first principles understanding, data-driven
methods or by hybrid modelling. Data driven methods do not require an understanding of the
system, and may therefore be considered a faster approach to model development. Data-driven
methods may, for example, be based upon artificial neural networks [Chen et al., 2004b, Linko
et al., 1999], fuzzy logic [Araizo-Bravo et al., 2004, Luttmann et al., 2012], or multivariate sta-
tistical modelling approaches such as principal component analysis [Yuan et al., 2014, Zhang and
Lennox, 2004].These methods have the disadvantage that they are unreliable when extrapolat-
ing outside the range of the data used to develop the model. For production scales this may be
less of a problem, where process conditions are generally defined. For application at pilot scale
however, this is undesirable since new processing conditions are investigated. The development
of a data-driven model also provides little insight into the process, since the model parameters
have no physical meaning. Hybrid modelling approaches combine some of the benefits of data
driven models, with the more robust basis of a mechanistic model. It is not necessary to have a
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full understanding of the process of interest and therefore the model development is faster, and
the resulting model may have enhanced extrapolation capabilities [von Stosch et al., 2014].

In contrast, first principles soft sensor models are based on a fundamental understanding of
the system [Sagmeister et al., 2013, Sundstréom and Enfors, 2008]. Their development is based
on existing process understanding, and the model parameters have a physical meaning. Pa-
rameter values therefore provide information about the process of interest, for example yield
coefficients, which may be used to compare between strains. Soft sensor models incorporat-
ing stoichiometric balances are valuable, since they are scale independent, and based on the
fundamental biochemical reactions. Since it is observed that yield coefficients change over the
course of a fermentation [Golabgir et al., 2015, Jenzsch et al., 2006¢], this method is interesting
as it allows for this adaption within a mechanistic model structure. In addition, stoichiometric
balances utilise flow rates as input variables, which then avoids the need for in-line probe mea-
surements, which may be highly dependent on their position in the vessel, and the calibration
accuracy. The mechanistic model approach also has the benefit of being more generic to new
processes which may require a small adaption to the model, but in general should be applicable
to different strains and processes.

This work discusses the application of a first principles soft sensor model to pilot scale fila-
mentous fungal fermentation systems operated at Novozymes A/S. The model comprises of an
on-line parameter estimation block, coupled to a dynamic model of the system. The parame-
ter estimation block is based on a stoichiometric balance, where the current rates of product
and biomass and water formation and feed consumption are identified from available off gas
measurements and ammonia addition. This parameter estimate is then used as an input to a
mechanistic process model, which describes the mass transfer capabilities of the system based on
the operating conditions, including stirrer speed, aeration rate, headspace pressure and temper-
ature. The model is developed and calibrated using a historical dataset as described by Albaek
et al (2011). The model is then implemented at the fermentation pilot plant of Novozymes A/S
and validated on-line using fourteen new batches at 550L scale, utilising a different host strain
and product. With implementation of a robust soft sensor, it is possible to incorporate the
state estimate into a control structure, and open up possibilities for achieving more advanced
process control.

6.2 Methods

6.2.1 Model description
Adaptations to the mechanistic model

The model is an adaptation of the model developed by Albaek et al. (2012), as described in
detail in Chapter 5. The fundamental changes to the model are described.

Mass basis
A fundamental change is made to the model in order to define the system on a mass basis
rather than a volume basis. This factor is considered important to the model accuracy
at this scale. Modern processes in industrial biotechnology cannot be treated as dilute
systems. Fungal fed-batch systems are reported to produce up to 30g/L biomass [Riley
et al., 2000, Tolan and Foody, 1999], and may also produce 100g/L product, in the ex-
ample of Trichoderma reesei producing cellulases [Cherry and Fidantsef, 2003, Schuster
and Schmoll, 2010]. In addition, gas hold up changes with time in a process [Hofmeester,
1988]. These factors make estimates of density and volume somewhat difficult; with den-
sities in the range 1.05 to 1.3 kg/L there is the potential for errors in concentration in the
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range 5 to 30%. This means that estimates of state based on volume measures can only
be validated by accurate measurements of broth density or gas hold up, the latter being
far from trivial. Based on these factors it is considered that modelling of concentrations
on a unit mass basis instead of volume is a more accurate approach, as it is independent
of density or gas hold up.

Evaporation rate calculation

The mass prediction accounts for the feed added, as well as the evaporation rates, which
are significant in a pilot scale system of over 0.5m3. The rate of evaporation, Fevap,
was a constant in the mechanistic model. This is now represented by a model equation,
where the outside air temperature and relative humidity must be defined, in addition
to accounting for the operating conditions. For a given batch, the evaporation rate is
dependent on the air humidity and air temperature, as well as the processing conditions
for aeration rate, headspace pressure and process temperature.

Yield parameters

It was shown in Section 5.3 that there was high uncertainty in some of the mechanistic
model parameters. This was mainly surrounding the use of yield coefficients and mainte-
nance terms. In order to avoid the use of these terms, a mass balance approach will be
assessed, where by the rates of formation of biomass and product are determined from
measured data. This method avoids the need for fixed model yield parameters or growth
rates, which are typically incorporated in unstructured fermentation models. Similarly,
the substrate concentration is calculated based on the feed added, and the estimated con-
sumption rate from the state estimator. This requires a known substrate concentration in
the feed.

Model structure

The model comprises of two compartments. The first unit is a stoichiometric balance which
is used for on-line parameter estimation based on the available measured data. The second
compartment is a dynamic fermentation model, which utilises the parameters estimated in the
previous block. The output is a state vector, x, and outputs, y.

Dynamic model
DO=f (XM, HSP, N, Qair)
M= f(Ffeed, HSP, Qair)
P= f(g,M)

m 9 X= f(g,M)

Parameter
U—> Process —> .
estimation

<R

Fcon=f (le ""’f)
Fevap=/ (HSP, Qair)
kia= f(N, M, u, Qair)
u= SXN)

Figure 6.1: Representation of the model structure showing the parameter estimation block coupled to
the dynamic process model

U= OUR |gn= -0 |x=| 5 |y=|F"
con
AMM Ge X Frvnp
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One of the benefits of this model structure, is that the number of model parameters has been
reduced. From the original model parameters in the full dynamic model, only two are still
applied, for the kpa and viscosity prediction. This is since the other eight parameters which
were yield and maintenance parameters are now replaced by on-line calculated rates of formation
for biomass and product. There are additional model parameters however, which correspond to
the compositions of biomass and product. The total number of model parameters is therefore
eight.

Parameter estimation

The stoichiometric balance was defined using a single carbon source and assuming no additional
by-products are formed.

qeCH20 + ¢o02 + ¢n NH3 = ¢;CHxyOxoNxn + ¢CHprOpoNpn + ¢.CO2 + ¢,,H20 (6.1)

In Equation 6.1, g, ¢o, Gns Gz Gp» de, and gy, are seven molar rates of formation (mol/h), and
XH, XO, XN and PH, PO, and PN are the hydrogen, oxygen, and nitrogen molar quanti-
ties of the biomass and product respectively. This equation can be solved by use of a carbon,
nitrogen, hydrogen and oxygen balance.

Given that there are four equations and seven parameters, we must define three terms. This
will be the ¢, g, and ¢.. In a pilot scale operation, ¢, is a measured flow rate and ¢, and g,
are calculated in real time from high quality gas measurements to give the oxygen uptake rate,
OUR and the carbon dioxide evolution rate, CER. It is not desirable to use the substrate feed
rate as an input as it is subject to batch-to-batch variations in concentration.

0 1 1 1
3 XH PH 0
0 XO PO 2
1 XN PN 0

O = N =
oSN OO
O = NN O

quw

Given E and a column vector of rate coefficients, q, the solution is found as Eq=0. Since
we have defined three measured rates, we can instead define the problem by separating the
measured rates, qm, and the calculated rates, qc.

Eqm + Ecqge =0 (62)
00 1 - 1 1 1 0 —qq 0
300 i 2 xm opE 2y e | |0
02 2 o 1 X0 PO 1 e e )
100 Qe 0 XN PN 0 an 0
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—qq
qx -1
= - (Ec) E.gm
dp
dh

Dynamic model compartment

Rates of formation The molecular mass of all species in the system can be defined. This
means we have a fully characterised stoichiometric balance of the system, which can now be
used as a state estimator, and to solve for other physical parameters. This is based on a known
composition of biomass and product. These parameters are referred to as XH, XO, XN, PH,
PO and PN.

Mry

%;’Z 100 1 1 10\ /12
Mo | Z 208 XH PH 0 2| [1
o 120 X0 PO 2 1 16
P 001 XN PN 0 0 14
Mr,.

Mry,

Mass balance The current state of biomass and product is calculated in terms of concentration
with respect to mass rather than volume. The differential change in mass is calculated as a
mass balance formulation.

dM  SpF

& T 1000 Lever

qoMr, _ qeMr,
1000 1000

[kg/h] (6.3)

The rate of evaporation is not defined as a model constant, but instead a function of the pressure
and airflow rate as well as the current air relative humidity and temperature. In this work, the
air conditions are defined once for a batch operation, and are assumed constant over the batch.

If available, it is desirable to have an on-line input of these air measurements.
oo Py Mry, Puim _ PpMry
evap 1000RT (Patm + HSP)  1000RT

006Qaw [kg/h] (64)

Biomass and product formation It is then possible to solve for the system states of biomass
concentration, X (g/kg) and product concentration, P (g/kg).

dM
dX  q:Mrg “dt
e Y Sy l9/kg.h] (6.5)
dM
dP  qMr, dr
— = - P . .
o 7 i lg/kg.h] (6.6)
Dissolved oxygen concentration
dDO (DO}, — DO) — (DO}, — DO) g, dM
pr kra o (DOr —DO) “ M dr [mol/kg.h] (6.7)
(DOGy — DO)
Substrate balance
dM

dG  SpF —q,Mr, “dt
x=- - % l9/kg.h] (6.8)
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6.2.2 Implementation algorithm

Figure 6.2 shows a detailed description of the on-line implementation algorithm. The on-line
data is read directly from the OPC server every 30 seconds using MATLAB® timer objects.
The parameters are updated every 5 minutes, using the input data which is simply averaged,
assuming Gaussian noise. The updated parameters are input to the dynamic model which is
then also solved using this 5 minute window. The new state estimate is then overwritten as the
initial condition for the next modelling iteration. This results in a low computational demand,
by only modelling at five minute intervals. The user may plot the results at any time, and
the results will be updated to within a five minute sampling interval. For model calibration, a
dataset was used whereby the on-line data was available at one hour intervals. This means that
the same implementation algorithm was applied, except for the parameter update occurring
once every hour instead of once every five minutes.

U Establish OPC server connection

U Initialise MATLAB® timer object for reading and saving online data (30 seconds)
U Initialise MATLAB® timer object for running soft sensor model (300 seconds)

U Load batch conditions, and model parameters (HSP, Qair, N, Sy RH, T )

U Define initial conditions for states (Do, Xi—g, Pieg, Gieo, Mi—p)

U Start timers

—> [ Every 30 seconds: Read data timer

U Read and save OUR (mol/h)

U Read and save CER (mol/h)

U Read and save ammonia flowrate (mol/h)
U Read and save feed flowrate

l Qo 9 qn; Ffeed

|_> O Every 300 seconds: Soft sensor timer

U Take average of past 300 seconds of online data (10 data points)

U Update parameter estimation (q, gx q, Qn)

U Solve dynamic model (DO, X, P, G, M, k;a, Feuap, I, PPco2)

U Save soft sensor predictions (DO, X, P, G, M)

O Save current state as initial conditions for next iteration
(DO=DO0g, X=Xy, P=P g, G=Gp, M=M )

U Manually stop timers at end of batch and save dataset

Figure 6.2: Implementation algorithm for the mechanistic model-based monitoring tool using
MATLAB® timer objects

6.2.3 Off-line sample analysis

The biomass concentration was measured by dry mass determination, by drying at 105°C for
48 hours. The biomass sample was washed twice with deionised water to remove soluble media
components. The product concentration was determined based on a generic protein assay used
at Novozymes A /S. Viscosity was measured off-line in an AR-G2 rheometer from TA instruments
using a vane-and-cup geometry. The vane consists of four blades at right angles (14 mm x 42
mm), the cup had a 15 mm radius, and the gap between the vane and cup was 4000 pm.
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Measurements were taken in the interval of 10 to 600 1/s and the Bingham plastic model was
applied to describe the rheological behaviour [Bingham, 1916]. The shear rate for apparent
viscosity determination was found by the approach of Metzner and Otto, ksN, where ks is 11.
The kra was determined by the direct method [Villadsen et al., 2011] also assuming a log mean
driving force, as described in equation 6.7.

6.2.4 The historic dataset

The stoichiometric model parameters (XH, XO, XN, PH, PO, PN) were obtained by least square
fitting to a historical dataset of eleven batches. This dataset is designed as a full factorial design
including two levels for three process variables, namely specific power input (1.5-15kW/m?),
aeration rate (96-320NL/min) and headspace pressure (0.1-1.3 bar) as described by Albaek et al.
(2011). The processing conditions affect the biomass concentration and product concentration
achievable, due to oxygen mass transfer limitations. This makes this dataset ideal for calibration
of the model parameters, as there is significant deviation in these states between the batches.

6.2.5 Validation batches

The model was then validated on-line for fourteen new batches. These batches are also operated
at different stirrer speeds, aeration rate and headspace pressure which is the reason for the
different biomass and product concentrations achieved. The conditions were mostly within the
design space as described by Albaek et al. (2011), however some are also just outside of this
range. In this newer process, media optimisation has led to the inclusion of partially soluble
compounds in the media. Due to the solid content in the media, it has not been possible to
quantify biomass concentration in these batches.

6.2.6 Statistical assessment of model fit

When assessing the goodness of fit for the model, the root mean sum of squared errors (RMSSE)
was applied, as defined in equation 6.2.6, where Y(meqs,) is one of, n, measurement points, and
Ui is a model prediction of the same variable. This is expressed as a percentage of the average
measured value, for confidentiality reasons. In addition, to assess the calibration model fit
compared to the validation model fit, the Janus coefficient, J2, was used, as discussed in Sin et
al. (2008). In this work, the model prediction of product concentration is the primary focus, as
this is a key process performance indicator which otherwise takes considerable time to obtain
analytically.

1 .
\/g Z:L (ymeas,i - yi)2

I <
- Zz ymeas,i
n

RMSSE =

(%] (6.9)
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Neal

6.2.7 Parameter estimation uncertainty

In order to conclude on the uncertainty of the fitted stoichiometric parameter values, bootstrap
sampling is applied [Efron, 1979], as described in more detail in Section 5.3.2. In this method,
the residuals between the model and the data are sampled in order to create simulated datasets
for fitting. The errors are sampled from the biomass concentration, the product concentration,
the dissolved oxygen concentration and the mass. The method for sampling is random sampling
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of 100 residuals with replacement. By fitting to each of the simulated datasets, a distribution of
parameter values is identified, which provides an indication of the parameter uncertainty. The
parameter uncertainty in this work is provided as two standard deviations as a percentage of
the mean.

6.3 Results and discussion

6.3.1 Calibration using historic dataset

The soft sensor model was applied off-line to an eleven batch pilot scale dataset, as described in
Section 6.2.4. The purpose was to fit the model parameters for the stoichiometric model (XH,
X0, XN, PH, PO, PN). The measured on-line data for carbon evolution rate (g.), oxygen uptake
rate (¢,) and ammonia addition rate (gy,) are used as input to the parameter estimation block in
order to simulate the system as would be done on-line. The parameter update occurs every hour.

Figure 6.3 shows the results of the dynamic model for one batch of data. This batch was
chosen as it shows measured data which has previously been published (Albaek et al., 2011).
There is a very good agreement between the model prediction and the measured data for all
variables. The dynamics in the dissolved oxygen profile as shown in Figure 6.3 are due to the
oxygen uptake rate. This measured oxygen uptake rate has fluctuations corresponding to the
feed rate applied, however in the real system this direct impact is not seen. This suggests
a limitation in the model description which should be considered when the model is applied.
In addition, the final substrate concentration is seen to go negative, which may be explained
by uncertainty in the initial substrate concentration in the batch phase, variations in the feed
concentration between batches, as well as consumption of additional media components which
are not considered in the stoichiometric balance methods. This is a limitation in the model, as
of course this is not physically possible. The consumption rate of substrate is independent of
the substrate concentration, as it is entirely based on the stoichiometric balance. The substrate
balance is certainly an area of future work for the model. Overall, the qualitative trends are
captured well in the model, and the prediction accuracy is considered acceptable.
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Figure 6.3: Model prediction for one calibration batch. Data scaled for confidentiality reasons.

The product concentration prediction and the biomass concentration prediction for all eleven
batches is shown in Figure 6.4. Across the eleven batches, the mean deviation between the
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model prediction and the data for product concentration ranges from 4.3% to 26.2%, and a
summary of the results for all 11 batches is shown in Table 6.1. The mean deviation between
the model prediction and the data for biomass concentration ranges from 6.2% to 21.8%. The
model results are considered robust to the different operating conditions, and the accuracy of
the model prediction across the batches operated in such different physical conditions is very
encouraging for future application as a monitoring tool.
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Figure 6.4: Biomass concentration prediction (top) and product concentration prediction (bottom) for
11 batches of pilot scale data, as discussed in Albaek et al. 2011
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6.3.2 On-line validation in Novozymes A/S pilot plant

Once the model parameters have been fitted to the calibration batches, it is possible to imple-
ment the model on-line. Focusing on the product concentration as the fundamental measure of
process performance, it is shown that the model predicts the current product concentration well,
with an average RMSSE of 16.6% in fourteen new validation batches. Table 6.1 summarises the
assessment of model fit for the validation batches. It is seen from Table 6.1 that the Janus co-
efficient is close to one for all batches, which suggests that the model accuracy in the validation
batches is comparable to that of the calibration batches, with an average Janus coefficient of
1.5. Batches 8 and 11 show the greatest Janus coefficient, due to a significant underprediction
of the product concentration at the end of the batch. The high Janus coefficient in Batch 6 may
be partly due to measurement error, as it is seen one data point does not follow the trend. The
greatest RMSSE is in Batch 2. Although the absolute error of the prediction is comparable to
the other batch predictions as shown by the Janus coefficient, the percentage error is greater
due to the lower average product concentration. This shows the importance in utilising more
than one assessment of model fit, where in this case the Janus coefficient shows that the model
fit is no worse based on absolute errors.

Table 6.1: Statistical analysis of model fit of product concentration for 11 calibration batches, and 14
on-line validation batches. Root mean sum of squared errors, RMSSE (%), and the Janus coefficient, .J?
is shown.

Calibration 1 2 3 4 5 6 7 8 9 10 11 mean
RMSSE (%) 21.8 6.4 6.0 26.2 10.7 87 103 11.8 244 43 145 13.2

Validation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mean

RMSSE (%) 20.5 484 88 9.3 145 183 11.9 16.6 121 16.7 233 155 54 114 16.6
J? 1.3 1.1 04 05 20 27 07 35 17 15 35 15 01 06 1.5

Overall the results show that the model provides acceptable prediction accuracy of product
concentration, and that the model is calibrated successfully, such that the model errors seen
in the validation batches are of a similar degree to those obtained from the calibration set.
An on-line measure of product concentration is a valuable monitoring parameter which allows
operators to compare between batches on-line, and intervene in the case of poor performance.
The complete model output is shown in Figure 6.5 for one of the fourteen additional batches,
which was selected since the results are comparable to the results reported in the calibration
batch. This full model output provides important monitoring information to operators, includ-
ing the viscosity measurements, which are of high importance in industrial filamentous fungal
processes [Olsvik and Kristiansen, 1994].
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Figure 6.5: Coupled parameter estimator and dynamic model applied on-line in Novozymes A/S fer-
mentation pilot plant. Model prediction (grey), off-line measured data (black). Scaled axis labels for

confidentiality reasons.
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Figure 6.6: Product concentration prediction for fourteen validation pilot scale batches. Batches were
performed using different operating conditions for headspace pressure, acration rate and stirrer speed,
resulting different levels of product formation. Model prediction (grey), off-line measured data (black).
Scaled axis labels for confidentiality reasons.
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Evaporation

It is also important to note that the mass prediction model is accurate, utilising the evaporation
term in the model. This is an important addition to a pilot scale fermentation model, which
is not often discussed in literature focussed on smaller scale experimentation. The evaporation
rates calculated are significant, when considering fungal fermentation processes are operated
for approximately one week. At the maximum rate of 40 kg/week, this equates to roughly 10%
of the final mass at this scale over a week operation. The complication of implementing an
evaporation model is that it depends on the relative humidity and temperature of the incoming
air, as this defines the water content incoming to the system, in addition to the air flow rate,
headspace pressure and temperature of the system, which defines the rate of water stripping.
The environmental conditions are seen to vary significantly over a year period, as shown in Fig-
ure 6.7, and this fact must be accounted for in the model. Currently this is done by manually
changing air inlet conditions, but this could become integrated as a measured parameter also,
which is part of the future work for this model.

Relative humidity (%)

Temperature (°C)

Days

Figure 6.7: Temperature and relative humidity data obtained from the 2001-2010 Design Reference
Year for Denmark dataset from the Danish Meteorological Institute [Grunnet Wang et al., 2013]. The
correlation coefficient is -0.53.

It is also seen in Figure 6.7 that the temperature of the air and the relative humidity of the air
are correlated, with a correlation coefficient of -0.53. With this understanding of the expected
variation in inlet conditions, it is possible to simulate the range of expected evaporation rates
over a year period. Latin Hypercube Sampling [Helton and Davis, 2003] is used to simulate 250
data points which represent this year of data, taking into consideration the correlation in input
variables using the method of Iman and Conover [Iman and Conover, 1982, Sin et al., 2009].
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These 250 sample points were then simulated by Monte Carlo simulations in order to show the
variation in evaporation rate, for a fixed set of processing conditions, as shown in Figure 6.8.
This shows the importance of accounting for evaporation in this pilot scale model, and further
work will include validating the different evaporation rates over the year by applying the state
estimator and assessing the mass prediction.

Relative humidity (%)
(3joam/8y) uonetodeay

0 5 10 15 20 25 30

Temperature (°C)

Figure 6.8: Evaporation rate model, for a pilot scale process operated at 300NL/min and 0.7 bar
headspace pressure. Effect of the inlet air relative humidity and temperature is shown. The Monte Carlo
simulations are applied to 250 sample points, which are generated using Latin Hypercube Sampling
(Helton and Davis, 2003) taking into consideration the correlation coefficient of -0.53 which is obtained
from the data in Figure 6.7. Coloured surface plot of the results is shown, with colours corresponding to
evaporation rate (kg/week).
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6.3.3 Model uncertainty analysis

In order to understand the uncertainty of the model prediction we assess two scenarios: The
effect of measurement quality on the model prediction, and an assessment of model parameter
uncertainty.

The effect of measurement quality

Since this modelling method relies on process measurements as input parameters it is important
to understand how the accuracy of these measurements affects the model prediction. In Table
6.2, a constant 5% deviation is applied to the input measurements, and the effect on the model
output is shown, for the same batch as shown in Figure 6.5. Table 6.2 shows the results for
the relative change in the final model prediction compared to the base case for four scenarios;
5% increases are applied in each of the input parameters individually, as well as a simultaneous
5% error in both the CER and OUR. This is also assessed since these off gas measurements are
utilising the same equipment, and therefore it is likely that there could be an equal error in
both measurements. This may be, for example, due to an incorrect gas flow rate measurement,
which affects both the OUR and CER calculation equally. The results show that the balance
between the OUR and the CER is very important for the prediction, meaning that if there is an
error in both CER and OUR, then the prediction is not significantly affected, however an error
in only one of them means that unacceptable errors are observed. This shows the importance of
the respiratory quotient (RQ=CER/OUR) for the model prediction, especially for the biomass
prediction. The deviation in the ammonia flow rate affects both the final biomass concentration
and final product concentration by less than 10%.

Table 6.2: Sensitivity analysis of the model prediction to process measurement errors. The results are
given for the batch shown in Figure 6.5. The table provides the relative change in the model prediction
for biomass concentration and product concentration compared to when no measurement error is applied.

+5% NH3 +5% CER +5% OUR +5% CER +5% OUR
Change in final 3.1% 63.8% -58.4% 5.5%
biomass prediction
Change in final 93% -10.7% 8.9% 13%

product prediction

Model parameter uncertainty

In addition to the model sensitivity to the input measured data, it is also important to assess
the confidence in the fitted parameter values. In this case, the bootstrap method was chosen in
order to provide an indication of model parameter uncertainty. The states are used for sampling
model errors, meaning model outputs for weight, biomass concentration, product concentration
and dissolved oxygen concentration are sampled. The results of the sampling are shown in
Figure 6.9.

The parameter uncertainty can be analysed by the distribution of the parameter values, where
in this case we consider two standard deviations as a percentage of the mean, for confidential-
ity. The bootstrap method provides a mean, standard deviation and correlation matrix for a
parameter set, as shown in Table 6.3. In this case, the parameter set is the composition of
product and biomass, given by the parameters PH, PO, PN, XH, XO,and X N. When all six
stoichiometric parameters are fitted simultaneously, it is found that the parameter uncertainties
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Figure 6.9: 100 bootstrap samples of model residuals for the states

for parameters XH, XO, XN, PH, PO, and PN are 16.6%, 15.6%, 41.4%, 7.2%, 16.6%, and 5.9%
respectively.

There is a low uncertainty in all parameters, other than XN where 2 standard deviations
is 41% of the mean value. The greatest correlation between parameters is seen with X N and
PN, and XN and PO. This means that not only is there the greatest uncertainty in the
X N parameter it is also highly correlated to other parameters. This is related to the model
structure, since parameter estimation is based on the stoichiometric balance. There is a single
nitrogen source, and so the nitrogen content of the biomass is therefore highly influential in the
model, since it defines the distribution of nitrogen source between biomass and product. This
is shown by the strong negative correlation between X N and PN.

The relatively high uncertainties are due to high correlation between the parameter values,
which is expected in this simple stoichiometric model. If, for example, the product stoichiome-
try is fixed, and only the stoichiometric parameters for the biomass are fitted, the uncertainty
is below 5.5% for all parameters, as shown in Table 6.4.

Table 6.3: Parameter distribution and correlations for product and biomass stoichiometry based on
100 bootstrap samples

PH PO PN XH X0 XN

Mean 0.9 0.2 0.2 1.8 0.3 0.1

Std 0.03 0.02 0.01 0.15 0.02 0.03

2 std/mean 72 16.6 59 16.6 15.6 414
PH 1 0.46 -0.26 -0.10 0.39 0.49

PO 1 -0.58 0.75 0.09 0.81

PN 1 -0.50 -0.19 -0.91

XH 1 0.24 0.63

X0 1 0.29

XN 1
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Table 6.4: Parameter distribution and correlations for biomass stoichiometry based on 100 bootstrap
samples

XH X0 XN
Mean 1.9 0.3 0.1
Std 0.01 0.004 0.003
2 std/mean 0.9 28 5.4
XH 1 0.27 -0.05
X0 1 -0.73
XN 1

Uncertainty analysis: Monte Carlo method

The uncertainty obtained from the bootstrap method can be investigated using Monte Carlo
simulations in order to determine the effect of the parameter uncertainty and correlation on
the model outputs. The standard deviations, and correlations from Table 6.3 (X and P pa-
rameters) and Table 6.4 (X parameters only) will be used for this purpose. Latin hypercube
sampling [Helton and Davis, 2003] is applied for determining the parameter space as shown in
Figure 6.10, which is simulated by Monte Carlo simulations [Metropolis and Ulam, 1949]. The
methods are implemented as described by Sin et al. (2009), to give the model uncertainty as
shown in Figure 6.11.
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Figure 6.10: Latin hypercube sampling using bootstrap results

The results of the Monte Carlo simulations are shown in Figure 6.11 for when the biomass and
product uncertainties are applied, and in Figure 6.12 when only the biomass composition was
analysed by bootstrap sampling. Figure 6.11 shows that there is a very high uncertainty in the
biomass concentration and there is a failure in the model for the dissolved oxygen prediction,
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giving in some cases negative dissolved oxygen concentrations. The high uncertainty in the ap-
parent viscosity is a propagation of the errors in the biomass prediction, as shown in Equation
5.5. The model is shown to be very sensitive to the parameter estimate. In contrast, the very
low parameter uncertainty obtained by only fitting the biomass composition shows very low
model uncertainty estimates.

It is valuable to conduct such an uncertainty analysis in order to understand the model struc-
ture, and the interactions of the parameters during fitting. It is now known that the nitrogen
content of the biomass is the key parameter for model fitting, as it showed the greatest vari-
ability when the data was sampled. It is also known that the model fit is reliant on the balance
between the biomass composition and the product composition.
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Figure 6.11: 100 Monte Carlo simulations using the the mean, 2 standard deviations and correlation
matrix from the bootstrap method for PH, PO, PN, XH, XO and XN. Sampling is implemented using
Latin hypercube sampling with correlation matrices. The 95 percentile is shown in red dashed lines.

08
0.6
04
0.2

0.250
0.200
0.150
0.100

[Pa.s]

0.050

Weight Biomass concentration Product concentration DOT (%)
1 1 100
08 08 80
0.6 0.6 60
S B 04 40
0z 0.2 20
0
Time Time Time Time
Apparent viscosity 1I\|"Iass transfer coefficient 1Substrate concentration 1 pCO2
08 0.8 0.8
0.6 0.6 0.6
0.4 0.4 04
o 028 U-i PN 02 ﬁ%%e@
0 Q0D 0S
Time Time Time Time

Figure 6.12: 100 Monte Carlo simulations using the the mean, 2 standard deviations and correlation
matrix from the bootstrap method for XH, XO, and XN. Sampling is implemented using Latin hypercube
sampling with correlation matrices. The 95 percentile is shown in red dashed lines.
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6.4 Conclusions and future work

In this work, a soft sensor has been developed for 550L filamentous fungal fermentations oper-
ated at Novozymes A/S. The parameter estimation uses only standard on-line measurements,
of oxygen uptake rate, carbon dioxide evolution rate and ammonia flow rate, which are con-
sidered robust measurements, not subject to drift, and without the need for calibration. It
is therefore considered that the model should be applicable to other strains, other scales, and
other processes, and this provides an area for future work. The flexibility of the method and
the simplicity of implementation make this a valuable tool for industrial application.

It is considered important to introduce the evaporation term into the model, and define the
states on a mass basis, rather than a volume basis. This accuracy in the mass prediction avoids
large errors propagating to the state estimates, and aids prediction accuracy. Further future
work includes validating the evaporation rate model over the year under different air conditions.

The model uncertainty analysis showed that the model is generally robust to measurement
errors, other than when there is an error in either the CER or the OUR data, but not both.
This is due to the the importance of the respiratory quotient (RQ) in the stoichiometric balance.
This should be an area for future work, in order to identify when the OUR or the CER measure-
ment is not in the expected range, so that it is possible to identify when the model prediction
may not be valid. In addition, it was shown that the model has an unacceptable uncertainty
range when we consider the parameter uncertainty to be from fitting the six stoichiometric
parameters simultaneously. However, if one set of parameters is fixed, for the product concen-
tration for example, and the others are fitted, the model parameter uncertainty is less than 5.5%.
This is due to the high correlation between the parameters in this stoichiometric balance model.

An area of future work for this method, could also be to consider the impact of product glyco-
sylation patterns on the resulting stoichiometric balance. For fungal systems, it is known that a
significant proportion of the product mass is due to glycosylation [Hui et al., 2002, Gérka-Nie¢
et al., 2010]. Therefore it is interesting to investigate the product composition with respect to
the level of glycosylation. This is an extension to the uncertainty analysis carried out in this
work. Similarly, the biomass composition may also be affected by changing cell wall composi-
tion [Gérka-Nieé et al., 2010].

A weakness of the model structure is the separation of the substrate concentration from the
stoichiometric balance, which results in the possibility of a negative substrate concentration.
As discussed, there may be valid explanations for a negative substrate concentration, due to an
error in the assumed feed substrate concentration, an incorrect starting substrate concentration
from the batch phase, or consumption of other media components which contain carbon source.
This however cannot be validated without further data available, so future work includes fur-
ther investigation of these factors. Another possibility is to limit the consumption of feed in
the stoichiometric balance when the substrate concentration is below a threshold level, however
this is not desirable as the biomass and product profiles fit the experimental data well, and this
would lead to cases of under prediction of these states. The substrate concentration balance is
the greatest area of uncertainty in this modelling work and must be further investigated.

With respect to the dissolved oxygen concentration in the system, the model shows signifi-
cant fluctuations, which are in correlation with the oxygen uptake rate, however this is not
reflected in the data. The dissolved oxygen prediction should therefore be further investigated
in the model.
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In order to apply more advanced optimisation and control strategies to industrial fermenta-
tion processes there is a need for robust state estimators in order to identify key performance
indicators in real time. The future work for this project is to further develop this monitoring
tool, investigate further the model robustness, and work towards on-line control and optimisa-
tion at pilot and production scales.
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Part IV

Control
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7 Control strategy development

The overall aim of this thesis is to develop a control strategy to maximise the product produced
from a fed-batch fermentation process. The previous chapters have focussed on the develop-
ment of modelling tools in order to aid control strategy development. A mechanistic model
for off-line application has been developed into an on-line monitoring tool. This allows on-line
estimation of parameters which are otherwise not available in real time. This final part of the
thesis describes the application of the modelling and monitoring tools in order to improve the
process by development of a control strategy. This chapter provides a summary of the control
objectives, and describes the control strategy development. This control part of the thesis is
based upon the following article:

A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation pro-
cesses

Mears L., Stocks S. M., Albaek M. O., Cassells, B., Sin G., Gernaey K. V.

Biotechnology and Bioengineering, Accepted, doi:10.1002/bit.26274 (2017)

7.1 Control objectives and motivation

The aim of this project is to reconsider the control approach for fed-batch fermentation pro-
cesses. This includes a move away from single-input-single-output (SISO) feedback control
systems, and towards a model-based approach, allowing improved control and monitoring ca-
pabilities for the process. By utilising models, this allows for a range of control objectives to be
defined, as opposed to being limited to set point tracking, as applied in feedback systems. It is
therefore possible to define freely the controller objective.

The overall objective for an industrial fed-batch fermentation process is to maximise profit.
If the system boundary is considered to be the fermentation operation alone, then the following
aspects are to be considered:

e Total product mass per batch

Value of product

Cost of power for agitation

Cost of power for aeration

Cost of power for air compressor
e Cost of power for reactor cooling

e Cost of raw materials
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For high viscosity filamentous fungal processes, oxygen can become the limiting substrate as
the process develops [Posch et al., 2013]. Oxygen limited conditions reduce the productivity
of the processes, and therefore this should be avoided. For this reason, it is not of interest in
this work to try to account for the cost of power to the system inherently in the optimisation
problem, as it is known that the maximum vales are required in order to achieve the necessary
oxygen transfer rates. In addition, it has been shown that the dominating operating cost for
such processes is raw materials, rather than power [Albaek, 2012]. Albaek (2012) shows that
with a similar process, the cost of raw materials was 5-7 times higher than the cost of electricity
due to aeration, agitation and cooling. In this way the impact on cost is limited. For the
purpose of this project, the optimal process is therefore considered to be that which maximises
the total product mass per batch, given a scheduled batch time.

This control objective also relates to the continued pressure in industry to maximise available
production capacity [Stocks, 2013]. Increasing product demand must be met by an increase
in capacity, however investing in new stainless steel vessels is costly. It is important first to
make full use of the available capacity. This requires that the maximum product is achieved
consistently in every batch.

In order to maximise the product mass, it is possible to either increase the product concentration
or to increase the mass in the system. There are many control strategies which specifically aim
to increase the product concentration obtained from a fed-batch fermentation process [Chang
et al., 2016, Kovarové-Kovar et al., 2000,Peng et al., 2013]. Increasing the product concentration
is often focused on reducing by-product formation, which is a waste of substrate, and a burden
for the process. However, in industrial fermentation processes, the host strains are highly en-
gineered and optimised, and many of the pathways associated with by-product formation are
removed to optimise productivity [Cherry and Fidantsef, 2003]. This is the situation with the
industrial strain of interest in this work. For this reason, it is considered that the final mass
in the system is the factor which can most greatly impact the total product mass. It is also
subject to variation between batches.

7.1.1 Maximising batch fill

Maximising the fill of a fed-batch process is not a trivial problem. The system must be initi-
ated at a level which means the target is reachable, given the oxygen transfer conditions of the
system. This is since the oxygen transfer rate in the system at a given time, limits the feed
rate which may be applied, in order to maintain aerobic process conditions. This rate is con-
stantly changing due to the dynamic conditions in the batch process; the biomass concentration
increases, the viscosity increases, the total mass increases and therefore the power input per
volume decreases, and these factors all contribute to a reduction in the oxygen availability. This
means that if the start fill of the batch is too low, it will not be possible to achieve the target
in a fixed batch time without over feeding the system. This dependence on the rheological
properties of the broth, as well as the specific substrate uptake rates, means that the optimal
start fill is therefore strain specific.

For a given strain, the start fill is also dependent on the process operating conditions for the
batch. This is, for example, with respect to the headspace pressure, the agitation rate, aeration
rate, and temperature, all of which affect the rate of oxygen transfer to the broth. This means
that the start fill is not only strain specific, but also dependent on the process operating condi-
tions. This issue may be exemplified by analysis of the mass profiles for the eleven batches used
for model development, as described by Albaek et al. (2012). In Figure 7.1, the mass profiles for
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the eleven batches are shown, when each of the eleven batches had different process operating
conditions, corresponding to a full factorial design of two levels for three process parameters;
power input, aeration rate and headspace pressure [Albaek, 2012]. This shows that there is a
major difference in the feed capacity due to the different operating conditions tested, and that
this must be accounted for in the batch planning phase, in order to make full use of the available
productive capacity.

The start fill is also dependent on the equipment used. Different tank dimensions, and dif-
ferent impeller types, the number of impellers and configurations will result in a system with
different oxygen transfer rates. It is therefore not correct to assume the optimal start fill is
equivalent between equipment, without first an assessment of the physical conditions in each
system. Similarly, it is not possible to apply the same relative start fill to two different scales
of tank. This is related to the well documented issues of process scale up, as described in detail
in Stocks (2013). If a start fill is defined for a pilot scale process, the same relative fill is not
directly applicable to a larger scale process, as the physical conditions do not scale linearly with
size. For example, the additional hydrostatic pressure in a large process increases the oxygen
solubility, and improves oxygen transfer. The Reynolds number is also greater at scale, due
to the proportionality to the square of the agitator diameter, resulting in turbulent mixing at
lower stirrer speeds [Stocks, 2013]. Overall, it is clear that the start fill is dependent on the
strain, the process conditions, the scale of operation, and the equipment used.
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Figure 7.1: Mass profiles for the eleven batches of data used for mechanistic model development
as described in Albaek et al. (2012), employing different process operating conditions for headspace
pressure, aeration rate and stirrer speed.

Assuming an appropriate start fill is identified for a fermentation process, it is also not pos-
sible to guarantee that the target fill is reliably achieved in the system. This is due to many
batch-to-batch uncertainties which may be experienced:

e The batch phase of a fed-batch process may vary in length due to different initial biomass
concentration, age of the inoculum culture, or other batch-to-batch variations. This means
that the feeding time may not be equal in every batch.

e The feed concentration is subject to batch-to-batch variation, meaning the total mass
added for a given mass of substrate is not equal in every batch.
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e Physiological parameters, for example mean growth rates, yields and maintenance require-
ments are slightly different between batches, resulting in different metabolic rates.

e Evaporation rates are dependent on the outside air conditions and are therefore not con-
stant between batches.

Therefore, for a given process, it is expected that even with the same start fill, there will be
a considerable variation in the final fill. This variation may be reduced by means of a control
strategy which aims to target a maximum batch fill.

The concept of this work is to reduce the variance in the final batch fill and consistently achieve
maximum tank capacity. This control objective has been defined in order to maximise the
product mass in a batch operation, however this objective also brings additional benefits when
considering the full industrial processes. The fermentation process is just one step in the pro-
duction train, which includes product recovery, and formulation. In batch process operations, it
is challenging to schedule operations in order to meet a certain demand due to uncertainties in
the batch which can have a large impact on the full downstream process. In this case, having a
very well defined final product mass from the upstream process can aid planning and scheduling
operations downstream.

7.2 Controller development

The aim is to reduce the variance in final mass, and target the maximum mass in the pro-
cess, however, if we reduce the variance in one process parameter (tank fill) there must then
be variation in another processing parameter. In order to assess this trade off, it is possible
to analyse the relationships between the process variables. Figure 7.2 shows a representation
of the system being considered. Focussing on the mass in the system as the control target,
there are two major influencing variables, namely the feed rate and the evaporation rate. In
this work, it is considered that a set of operating conditions are provided for a given process,
meaning that the stirrer speed, aeration rate and headspace pressure are defined. This means
that the feed rate is the variable which may be adapted in order to reach the desired mass target.

The feed rate is also highly influential in the process, affecting both the mass dynamics, and
the oxygen dynamics through the metabolic processes. It is seen from Figure 7.2, that the feed
flow rate affects the substrate concentration in the system, which then affects the metabolic
rates in the system. One of these rates is the oxygen uptake rate, which directly affects the
dissolved oxygen concentration. In addition, the biomass concentration is affected, which causes
an increase in the viscosity of the system. This then affects the oxygen transfer into the liquid,
and therefore also affects the dissolved oxygen concentration. This shows how the feed rate is
such a highly influencing variable to a fed-batch process, affecting the mass dynamics and the
metabolic processes and therefore the oxygen dynamics.

The controller objective is to target the final mass, whilst avoiding oxygen limitation in the
system. Therefore the feed rate manipulation is considered a trade off between achieving the
final fill, and avoiding oxygen limitation. By use of a predictive model, it may be possible to
guide the process to the target mass whilst also accounting for the oxygen dynamics.

This strategy assumes that the process operating conditions are fixed. In this work, the process
will have a fixed maximum level for the operating conditions, however it is possible to operate
under this maximum value if it is desirable. Usually this would not be desirable, as this reduces
the oxygen transfer to the system. However, it is possible to manipulate the evaporation rate by
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use of the process operating conditions for the headspace pressure and the aeration rate. It is
therefore conceivable that these parameters may be down regulated in response to fill. However
at this stage in controller development, the focus is on manipulating the feed rate.
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Figure 7.2: Process diagram showing the feed flow rate effects on the process. In order to control the
mass, the feed flow rate is manipulated, when the aeration rate and the headspace pressure are fixed for
a given process.

In this work a control strategy is described for controlling a fed-batch process to achieve max-
imum fill capacity subject to the oxygen transfer limitations of the system. This also includes
a start fill calculation which is found by use of a mechanistic process model. There is no
known reference to such a control objective described in the literature, so this proposes a novel
approach.
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8 Model-based batch planning

8.1 Introduction

In Chapter 7, the problem statement for the control strategy is described in detail. The control
objective is to target a maximum tank fill, reproducibly, whilst avoiding oxygen limitations.
This approach requires a batch planning phase where the start fill for the batch is defined,
followed by an on-line control strategy. This chapter describes the methods and results of the
batch planning phase, and the following chapter then discusses the application of the planned
start fills with the on-line control algorithm. The separation is made clear as the planning is an
off-line task which applies the model in a form which is suitable for off/line application. The
control algorithm is run on-line and also uses the model in the form for on-line application.

In this chapter the mechanistic model is solved in order to define appropriate start fills de-
pending on the process conditions. The model is challenged with four different sets of operating
conditions. This is a test of the robustness of the method. It is difficult to make conclusions
on the suitability of the start fill if it is run in collaboration with the on-line control strategy,
as it is the purpose of the controller to target the maximum fill and reduce variance in this
way. Instead the start fill is tested with a reference control operation; namely dissolved oxygen
control using the feed rate as a manipulated variable using a PI controller. A full description
of the methods and the results for the model-based batch planning is provided.

8.2 Methods

8.2.1 Mechanistic process model

The mechanistic model applied for the purpose of batch planning, is not the same as the model
developed in Chapter 6, as the model must be applied off-line. The model structure is the
same, and the mass basis is used, rather than a volume basis as discussed in Chapter 5, however
instead of the parameter estimation, the yields and maintenance terms are used as described
in the original model description, described in detail in Section 5.2.1. This is since there is no
available measurement data when applied off-line in order to make the parameter estimates.

The necessary process variables to define for the model are the maximum operating condi-
tions for the headspace pressure, aeration rate and the stirrer speed. In addition it is necessary
to define the relative humidity and temperature of the outside air. This must be estimated,
and was defined as a constant for each of the batch times, although in reality it is known that
these parameters are time dependent. The operating conditions used are described in the next
section.
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8.2.2 Process operation

The process was run in Novozymes pilot plant facility using a proprietary filamentous fungus
production strain in 550L stirred tank bioreactors. Frozen spores were seeded onto agar plates,
before inoculating a seed tank. The seed tank conditions are proprietary. In order to ensure the
same initial conditions for the batches, despite different start fills, the main fermentation tanks
were inoculated from this seed tank with approximately 10% volume. The calculated start fill
for the main tanks was then made up of 90% media and 10% inoculum resulting in the same
biomass concentration in the initial batch phase. The batch phase for all four tanks have the
same operating conditions for stirrer speed, aeration rate and headspace pressure, where the
minimum set points are applied (- - - as referenced in Table 8.1). No absolute values for the
conditions are provided in this work due to confidentiality.

The feed was started once the batch phase carbon source was depleted. Feed addition was
implemented using a dissolved oxygen PI controller. At the point of feed start, the process con-
ditions ware then changed from the minimal values to the set points shown in Table 8.2, over a
fixed number of hours, in order to make a gradual transition to the new set points. Maximum
feed rate constraints were also applied.

The maximum tank fill was defined as 410 kg, and the total batch time was fixed for all tanks
and all experiments. The total batch time consists of a batch phase of operation, followed by
a feeding phase. In order to estimate the expected feeding phase length from the total process
time, past batches of data are analysed to determine the average batch phase duration.

8.2.3 Process conditions

Four sets of process operating conditions were used in this work in order to challenge the methods
developed. These are shown in Table 8.1. The exact values of the processing conditions are
not provided for confidentiality reasons. In an industrial setting, different production sites may
have different constraints on the operating conditions. This is due to different ages and design
of equipment in different locations. This is another rationale for the use of different operating
conditions, as in an industrial context it is desirable to account for these differences in the
planning phase. For consistency, the different process conditions are always referred to as tank
numbers 1-4, as provided in Table 8.1.

Table 8.1: Experimental design showing the four different process conditions applied. Absolute values
of the process conditions are not provided for confidentiality reasons. Tank numbers are referenced
throughout this work as shown in this table, and plot colours are also consistent.

Plot colour  Tank  Stirrer speed  Aeration rate Pressure
1 + + +
2 + - -

3 - + -
4 - - +

8.2.4 Batch planning methods

Two different methods were applied in order to solve the desired start fill; optimisation of the
feed rate only, and optimisation of the feed rate and the operating conditions.
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Feed rate optimisation

A non-linear optimisation problem is defined where the model is solved every hour in order to
follow a predefined dissolved oxygen set point, by manipulation of the feed rate to the system.
The unconstrained non-linear optimisation problem was solved using MATLAB [The Math-
Works Inc., 2013], and applying the fminsearch algorithm. A reference dissolved oxygen profile
was used in order to solve the feed rate addition. This profile may be seen in Figure 8.1. This
also requires an estimate of the batch phase duration, prior to feed start. This was approxi-
mated by analysis of past batch data for this strain.

mini}gnizo (DO(F) - DOset)2 (81)

Simultaneous feed rate and operating condition optimisation

An alternative batch planning tool was developed, where the feed rate is solved in addition to
the set point for the operating condition at each time point. This is in order to allow for the
set points to increase only as necessary based on the current oxygen transfer limitations. It also
avoids issues of overfeeding in the initial batch time. This was done by a constrained optimisa-
tion procedure using the fmincon algorithm, also implemented in MATLAB [The MathWorks
Inc., 2013].

minimize — (P(U)M(U))
U (8.2)
subject to Umm S U S Uma:m .f(U) S 0

In this case, U is defined as the inputs to the process, namely the feed rate, stirrer speed,
headspace pressure, and aeration rate (F, N, P and Q). These four inputs were solved
simultaneously, subject to constraints. Constraints were applied to the minimum and maximum
dissolved oxygen concentration, as 20% and 100% respectively. The maximum mass in the
system was 410 kg, and the maximum operating conditions were as defined in Table 8.1.

8.2.5 On-line measurements

The start fills were applied to two reference experiments, and in this case on-line data was
measured from the processes. On-line data was logged by a data acquisition system. Dissolved
oxygen concentration was measured on-line, where the probes were calibrated to the same %
saturation at the same processing conditions prior to the process. Other on-line measured
variables include the mass, feed flow rate and base flow rate, as well as the operating conditions
for the processes. The oxygen uptake rate was calculated on-line, based on the oxygen difference
in the oxygen partial pressure in the inlet and outlet gas flows, and knowing the air flow rate.
The carbon dioxide evolution rate was calculated in the same manner. An additional on-line
measurement was the on-line viscosity, which was measured using a Hydramotion XL7A probe.

8.2.6 Off-line sample analysis

The biomass concentration was measured by dry mass determination, by drying at 105°C for
48 hours. The biomass sample was washed twice with deionised water to remove soluble media
components. The product concentration was determined based on a generic protein assay used
at Novozymes A/S. Viscosity was measured off-line in an AR-G2 rheometer from TA instruments
using a vane-and-cup geometry. The vane consists of four blades at right angles (14 mm x 42
mm), the cup had a 15 mm radius, and the gap between the vane and cup was 4000 pm.
Measurements were taken in the interval of 10 to 600 1/s and the Bingham plastic model was
applied to describe the rheological behaviour [Bingham, 1916]. The shear rate for apparent
viscosity determination was found by the approach of Metzner and Otto, ksIN, where ks is 11.
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8.3 Results and discussion

8.3.1 Start fill determination

The start fill was calculated for the four different sets of operating conditions as shown in Table
8.1. For each tank, the full process is simulated based on the desired dissolved oxygen pro-
file, and the defined process operating conditions, as well as fixed parameters for the outside
air temperature and relative humidity, which along with the operating conditions, define the
evaporation rate from the system. Figure 8.1 shows an example simulation of the full process
time for Tank 4, showing the start fill, in order to reach the desired maximum fill in a defined
process time, as shown in Figure 8.1 by the asterisk.
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Feed flow rate Apparent viscosity (Pa-s) Mass transfer coefficient pCO2 mbar
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0 1 0 1 ] 1 0 1
Time Time Time Time

Figure 8.1: Example of the results of batch planning for Tank 4. Provided with the process operating
conditions, and a desired dissolved oxygen profile, the model is solved by manipulating the feed rate at
each hour. This results inn a mass trajectory which is compared to the desired mass target in order
to identify an appropriate starting mass. Where axis labels are missing it is for confidentiality reasons.
Note, the batch-phase of the process is not included, only the fed-phase is shown.

The full process simulation shows how the dissolved oxygen set point is achieved by manipulat-
ing the feed rate, for given process operating conditions. The dissolved oxygen profile is shown,
as well as the ramp in the headspace pressure, which is predefined, in order to reach the desired
operating condition in a fixed time after feeding is initiated.
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The same result is shown for Tank 1 in Figure 8.2, which is that with maximum process condi-
tions for agitation, aeration and headspace pressure (+ + +). In this case it is necessary to be
critical of the result. This is due to the very high oxygen transfer rate obtained in the initial
hours of the fed-phase, where there is limited biomass for oxygen uptake, but increasing oxygen
transfer due to the increasing set points for the process conditions. This leads to an excessively
high feed rate in order to solve the model for the desired dissolved oxygen profile. In the real
process operation this effect is also experienced when using a dissolved oxygen feedback con-
troller, as there can be overfeeding in the initial hours of the batch, where the dissolved oxygen
concentration is above set point, but the limiting factor is not the availability of substrate, but
instead the concentration of biomass for oxidative metabolism of the substrate which is present.
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Figure 8.2: Results of batch planning for Tank 1, where the process operating conditions are defined,
and the feed rate is solved every hour in order to obtain a desired dissolved oxygen profile. This results
in a mass trajectory which is compared to the desired mass target in order to identify an appropriate
starting mass. Where axis labels are missing it is for confidentiality reasons. Note, the batch-phase of
the process is not included, only the fed-phase is shown.

In order to obtain an estimate of an appropriate start fill in this case it is also possible to allow
manipulation of the operating conditions, such that the oxygen transfer rate is only increased
as necessary. This is implemented as a non-linear optimisation problem with input constraints
and non-linear model constraints. Constraints are provided for the process condition as defined
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in Table 8.1, as well as a minimum dissolved oxygen concentration of 20% saturation, in order
to be similar to the dissolved oxygen profile. This is shown for Tank 1 in Figure 8.3. The set
points for all three of the process parameters is delayed, and increases more gradually than when
the fixed ramp is applied. The feed flow rate follows the maximum ramp until the point where
the process conditions are at their maximum values, and the oxygen becomes limiting, and then
the feed rate is reduced to maintain aerobic conditions. It is also seen that the agitation is
reduced once the maximum weight is reached, in order to reduce the feed rate applied. Also,
the headspace pressure is reduced in order to increase the evaporation rate in the system, and
maintain the fill despite the feed being added.

This provides a better estimate of an appropriate start fill, as it does not allow for over feeding
in the beginning of the feeding time. It could have been possible to solve the dissolved oxygen
profile, as described in Section 8.2.4, but also applying constraints on the feed rate only, how-
ever this led to model instabilities, as it is not possible to achieve the desired dissolved oxygen
profile, with a limited feed addition. It was for this reason that the other process parameters
were also solved simultaneously. For the systems with high headspace pressure set point this
comparison between the two methods has been made in order to obtain an appropriate start
fill estimate. The results are not greatly different, as the issue only occurs for a short part
of the process time, however it is interesting from a perspective of understanding the process
operation, and identifying opportunities for future improvements, for example in the set point
profiles for the process variables.

Table 8.2 shows the results of the start fill calculation which was obtained by simulating the
full process using the four different sets of operating conditions. It is seen that the difference in
the stirrer speed has the greatest impact on the start fill, as it has the greatest impact on the
oxygen transfer. Of course, without absolute values of the process parameters, this is of limited
value to the reader, however it will be important to identify if this trend is also represented in
the experimental data. For example, if the lowest start fill is also the lowest end fill, then it
is likely that the start fill was not appropriately determined. The start fill ranges from 39%
to 77% of the target fill depending on the processing conditions. In order to validate if this
difference is of correct magnitude, it is necessary to run experiments utilising the different start
fills. It is not desirable to run the model-based controller for this purpose, as we wish to identify
the variation in final fill for the given start fills. Therefore dissolved oxygen control is applied,
as a reference PI controller, using the feed rate as manipulated variable.

Table 8.2: Start fill calculation using mechanistic process model for different processing conditions.
Process conditions are not shown for confidentiality reasons. Start fill shown as a percentage of the
target fill.

Plot colowr ~ Tank  Stirrer speed  Aeration rate Pressure Start fill
1 + + + 39%
2 + - - 49%
3 - + - 77%

4 - - + 67%
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Figure 8.3: Results of batch planning for Tank 1, where the feed rate, agitation rate, aeration rate
and headspace pressure are solved simultaneously, subject to input constraints (blue dashed lines) and
the non-linear model constraint in order to maximise total product at each time point. This results in a
mass trajectory which is compared to the desired mass target in order to identify an appropriate starting
mass. Where axis labels are missing it is for confidentiality reasons. Note, the data shows only the phase
of operation when feeding has been initiated.



100

8.3.2 Dissolved oxygen controlled experiments
Final fill

The results for the two DO controlled experiments (Experiments 1 and 2) are shown in Figure
8.4. The start fill and final fill is shown for the two experiments, each run with the four different
operating conditions, as described in Table 8.2. It is seen that the final fill of Experiment 2 is
noticeably lower for all conditions than Experiment 1, despite the very similar start fills. This
emphasises the relevance of the evaporation rate, in long running aerated processes as described
in Chapter 6.

Due to the high fill levels seen in Experiment 1, some manual interventions were made to
ensure that the tanks would not in fact overfill, which is a serious problem in a production
facility where biological material must be contained at all times. For this reason, tanks 2 and 3
had small reductions (<25% change) in their stirrer speeds in experiment 1, since they reached
the point where they were 10% over the target fill. This was done as a safety precaution. This
also highlights the need for control of the fill in a tank, as it can be hazardous to allow the tank
to become over full.
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Figure 8.4: Start mass and end mass for experiments 1 and 2 and tanks 1-4. Solid line shows the target
fill, and dashed lines show 5% and 10% deviation from the target end weight

Despite the need to intervene, it is considered that the start fills are of a suitable magnitude,
and the model captures the different oxygen transfer rates due to the process operating condi-
tions with a suitable accuracy. Focusing on Experiment 2, where no changes were made to the
operating conditions specified, the difference in start fill of 156 kg was reduced to a difference of
only 24 kg in the final fill. This large reduction in variance shows that there is indeed a robust
process model which is applicable to defining an appropriate start fill given a set of operating
conditions. However, these two experiments have also emphasised that the evaporation rate
is of significance and should not be considered constant between experiments. For this reason
also, the start fill is not fixed at an optimum, but will be dependent on the relative humidity
and temperature of the outside air.
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Evaporation

The two experiments were operated three months apart, and so it would be expected that they
are subject to different air conditions. In order to assess the difference in the evaporation rates
at the two experiments, it is possible to look at the batch phase of the experiment, and see
the difference in mass change over this period of the operation. In this phase there is no mass
addition as no feed is added, and all experiments have the same operating conditions; it is only
after the feed start that the process conditions are adjusted for the different tank numbers.
Figure 8.5 shows the batch phase mass change for the two experiments and for all batches.
Although it is acknowledged that there is significant variation between the tanks in a single
experiment, it is seen that Experiment 2 has a greater mass change than Experiment 1 for all
tanks. This can partly explain the deviation in final mass between the experiments in Figure 8.4.

Batch phase mass change
10 T . T r

Time

Figure 8.5: Batch phase mass change (kg) for experiment 1 (solid lines) and Experiment 2 (dashed
lines). In the batch phase of the operation all the tanks have the same operating conditions and no mass
is added, so this mass change is due to evaporation. Time not shown for confidentiality reasons.

In addition to looking at the data, it is also important to ensure that the model is able to cap-
ture this difference. When the actual air temperature and humidity was used as input to the
evaporation model, the average rate of evaporation from Experiment 2 is around 10% greater
than Experiment 3 due to the air conditions, so the model is seen to reproduce the trend in the
data.

Viscosity

For filamentous fungal fermentation systems the viscosity of the broth is a very interesting
process parameter to monitor. The viscosity is typically high for these processes due to the fila-
mentous morphology of the biomass. This high viscosity can be problematic from a processing
perspective, as it contributes to the oxygen transfer limitations experienced in such processes,
and this is discussed in more detail in Section 7.1.1. In addition, the fluid shows non-Newtonian
behaviour, meaning that the viscosity is shear rate dependent, and this causes challenges for
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the measurement.

The on-line viscosity has been measured using an in-line viscometer, in addition to the off-
line sample analysis. It is clear from Figure 8.6 that it is hard to relate these two measured
parameters. The viscosity measurement which is commonly used for describing the fermenta-
tion broth is the apparent viscosity, which is the viscosity at a shear rate which is selected to
represent the average conditions in the tank at a given stirrer speed. The on-line viscosity mea-
surement however, is the value measured at very high shear rate, and due to the non-Newtonian
property of the fluid, is of a different scale to that which is measured off-line. This is not a
disadvantage, however it makes it challenging to interpret the data.

Online viscosity (Pa-s) Apparent viscosity (Pa-s)
0.035 0.25
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Figure 8.6: On-line and off-line viscosity comparison, for the dissolved oxygen controlled experiments.
Absolute values of time not shown for confidentiality reasons.

It is seen from the off-line viscosity data that there is a sharp increase in the viscosity at the
end of the fermentation for Experiment 2, Tanks 3 and 4 (2.3 and 2.4 in Figure 8.6). For fila-
mentous fungi, the viscosity is not only dependent of the biomass concentration, but also on the
morphology of the biomass. It is expected that this rapid increase is a result of morphological or
structural changes in the biomass, rather than the amount of biomass. This cannot be modelled
with the current empirical formula used. It is beyond the scope of this work to try to model
morphological changes in the biomass, however it is important to realise the model limitations,
as this will impact the performance of the model prediction. If the viscosity in the system is
underestimated, then the oxygen transfer rate is over predicted and this may lead to issues with
the controller algorithm if not identified.

The dataset used to develop the original mechanistic model did not show this form of trend.
This suggests that this is a characteristic of the strain applied in this work, which results in
this behaviour. The hypothesis is that this is due to morphology, but it is difficult to confirm
without dedicated studies. The result of this however, is that the viscosity prediction for the
strain used in this work is very poor for the conditions of low oxygen transfer, Tanks 3 and
4, as shown in Figure 8.7. The prediction is acceptable for tanks 1 and 2, but is considered
unacceptable for Tanks 3 and 4, where this sharp increase in the viscosity is not captured. It is,
however, beyond the scope of this work to incorporate morphological changes into the model.

Due to the limitations in the viscosity model, it is interesting to investigate the on-line viscosity
measurements further, as it is very valuable for monitoring purposes if it is indeed a robust
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Figure 8.7: Dissolved oxygen controlled experiments apparent viscosity data and model prediction,
shown for Experiment 1 (top row) and Experiment 2 (bottom row). The results show that the simple
empirical correlation describes Tanks 1 and 2 to an acceptable accuracy, however in Tanks 3 and 4 the
prediction is very poor.

measure of the viscosity of the system. Viscosity is currently modelled in order to understand
the oxygen mass transfer rate in the system, kra. Figure 8.8 shows the log-log plot of the mea-
sured kra obtained by the direct method, and the measured on-line viscosity. There is a strong
correlation meaning that the kra is related to the on-line measured viscosity to the power of
the slope of the curve, in this case -0.8. This is in the form of the current empirical relation
used to estimate the kra, in the system:

Ptotal®
oa vgviscosity? (8.3)

kra=a

The correlation seems to hold very well, other than for Tanks 3 and 4 at the end of the ex-
periments, when the kpa falls rapidly, and this is not captured in the on-line viscosity. This is
the period of the batch where the off-line viscosity shows a sharp increase. This suggests that
the on-line viscosity measurement also does not capture the phenomenon which causes this. As
previously described, it is proposed that this is due to morphological changes. This is an area
which should be further investigated in relation in order to better understand the strain used
in this work. Additional discussion of the viscosity measurements for the reference experiments
is provided in the Appendix.
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Figure 8.8: Log-log plot of kya vs on-line viscosity for the dissolved oxygen controlled batches. A linear
correlation is shown, with a slope of -0.8.

Dissolved oxygen concentration

The dissolved oxygen concentration is measured on-line in all batches, and in these experiments
it has been controlled to a predefined set-point ramp using the feed rate as the manipulated
variable. Figure 8.9 shows the dissolved oxygen profiles for the four tanks and the two experi-
ments.

It is seen from Figure 8.9 that there is a trend of over feeding in the initial stages of the
fermentation, which is seen by an under shoot in the dissolved oxygen concentration. This is
most pronounced in Tank 1, and also significant in Tank 4. This is due to the headspace pres-
sure increasing to the operating condition for the batch, following a ramp over a fixed number
of hours. The headspace pressure has a direct impact on the oxygen solubility and therefore the
dissolved oxygen concentration rises by up to 20% over a few hours. This causes some issues
for the dissolved oxygen controller which over feeds the system, resulting then in a drop below
set point before the stable operation is reached. This is since the initial hours of the fed phase
of the batch are not oxygen limited but limited by the biomass concentration.

Another observation from the DO controlled batches is that the dissolved oxygen is not able
to be controlled for the full process time in the experiments with poor oxygen transfer. It is
seen in Figure 8.9, that in the final stages of the batch, for Tanks 3 and 4, the oxygen transfer
is insufficient to maintain the DO at the required level and oxygen limitation occurs. In Ex-
periment 1 the minimum feed rate was not zero but instead a minimal feed rate value, so in
Experiment 2 the minimum feed rate was changed to zero to see if the dissolved oxygen could
then be controlled to set point, but the same trend is seen. This is a result of the extreme
conditions which are being tested in Tanks 3 and 4. The low stirrer speed, in addition to a
low headspace pressure for tank 3, and a low aeration rate for Tank 4 results in conditions
where the oxygen transfer is too low at the end of the batch where the viscosity is high and
therefore the oxygen concentration falls rapidly. This is not desirable, however this is also
the purpose of running the DO batches as a reference case, so that it is possible to identify
limitations in the operation. It is therefore also not expected that any other control operation
should be able to maintain aerobic conditions at this late stage in the process for Tanks 3 and 4.
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The reason for the high dissolved oxygen concentration in Tank 1 Experiment 1, in the middle
of the fermentation time was due to a maximum feed rate being too low in order to reach the
set point. This was corrected once it was identified, and the process was able to return to set
point in a very short time.
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Figure 8.9: Dissolved oxygen profile for experiment 1 and 2. Red line shows the dissolved oxygen set
point. Tanks 3 and 4 have poor oxygen transfer conditions (shown in Table 8.1), which is shown to cause
oxygen limitation in the final hours of the fermentation despite the use of dissolved oxygen control. Time
not shown for confidentiality reasons.

8.3.3 Comparison of batch planning results and experimental data

In order to critically evaluate the batch planning process it is possible to compare the off-line
batch planning results to the measured data from the two experiments utilising the calculated
start fills and the dissolved oxygen controller. The data is provided for the dissolved oxygen
concentration (Figure 8.9), the oxygen uptake rate (Figure 8.10) and the feed rate (Figure 8.11),
as it is mostly the physical oxygen transfer dynamics which are tested in the batch planning
process.

The results show that the model is able to capture, to an acceptable accuracy, the different
oxygen transfer rates in the system, based on the different process operating conditions, as
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shown in Table 8.1. It has already been discussed, that the dissolved oxygen concentration
becomes limiting at the end of the batch for the tanks with a low stirrer speed (3 and 4), and
this is not predicted in the model. Despite this, the calculated feed rate is of correct magnitude
for the four different tanks, and this shows that the model is of suitable accuracy for application
as a batch planning tool, at different process conditions.

When analysing the results for the feed rate in Figure 8.11 it is also important to remember
that the model is solving the feed rate at each time point, but this does not include controller
dynamics which are present in the on-line system. This was done as the model will also be
used in a model-based control strategy and it is therefore not desirable to include feedback
controller dynamics at the batch planning stage. The measured data includes the dynamics of
the feedback controller, where it has also been discussed that there is overfeeding in the initial
experiment time. It is for this reason that there is a fluctuating feed rate in the data shown. It
does appear, however, that the predicted feed rate in the final hours of the batch is too high,
not only for Tanks 3 and 4 but for all tanks. This suggests that the oxygen transfer rate falls
more greatly than is predicted in the model. This has already been discussed in relation to the

viscosity model.
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Figure 8.10: Oxygen uptake rate data from Experiment 1 and 2 (colours and tank conditions as shown
in Table 8.1), with the corresponding prediction from the batch planning phase (red). Axis values not
shown for confidentiality reasons.
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Figure 8.11: Feed rate data from Experiment 1 and 2 (colours and tank conditions as shown in Table
8.1), with the corresponding prediction from the batch planning phase (red). Axis values not shown for
confidentiality reasons.
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8.4 Conclusions and future work

The start fill calculation has been successfully applied on-line at 550L scale utilising four dif-
ferent sets of process operating conditions and two reference experiments. The results from
Experiment 1 and Experiment 2 show that the calculated start fills are of suitable magnitude
given the different operating conditions. In Experiment 2, it is shown that the start fill variation
of 156 kg was reduced to a difference of only 24 kg in final fill. This large reduction in variance
shows that there is indeed a robust process model which is applicable to defining an appropriate
start fill given a set of operating conditions.

The two experiments have also emphasised that the evaporation rate is of significance and
should not be considered constant over the year. For this reason also, the start fill is not fixed
at an optimum, but will be dependent on the outside air conditions at the time the experiment
is operated. This shows that it is relevant to consider batch planning as an independent phase,
as it is not a single solution, but should be repeated not only based on the strain of interest
and the operating conditions but also external factors such as the outside air temperature and
relative humidity.

Despite the success of the batch planning, there are some limitations to the model predic-
tion in this strain. The complex fluid properties are not captured using the simple viscosity
model. This has been thoroughly investigated by looking at both on-line and off-line viscosity
trends. It is very difficult to capture such complex phenomena. Despite the issues predicting
the viscosity in the second half of the batch, the start fill prediction was good enough to capture
the process trends and identify a suitable start fill. It is a concern however, for future use of
the model for this strain, and it should be considered in control strategy development where
the model is applied. For example, it is seen already in this planning work that the modelled
feed rate at the end of the batch time is too high. Future work includes a detailed investigation
of the on-line viscosity, off-line viscosity and additional studies of the morphology in order to
better understand the complex rheological properties exhibited by this strain. In general, focus
should also be put on an understanding of the relationship between the on-line and off-line
viscosity measurements in the system.

Finally, it has been observed that in tanks 3 and 4 it is not possible to maintain the dissolved
oxygen concentration set point in the final hours of the batch. This is due to high viscosity and
low oxygen transfer in the system. This will be a consideration for the model-based controller
as it is not expected that the model-based controller will prevent oxygen limitation if the DO
controlled operation does not.



9 Model-based control strategy

9.1 Introduction

A novel model-based control strategy is developed in order to drive a process to maximum tank
fill, subject to the oxygen transfer limitations in a given system. A summary of the control
strategy development process and the objectives is provided in detail in Chapter 7. The oxygen
transfer rates are dependent on the strain of interest and the viscosity of the fermentation broth,
as well as the process conditions. In this work, four sets of process operating conditions are
tested in order to challenge the control strategy. In order to achieve the desired tank fill in the
defined process time, it must be ensured that the start fill is appropriate for the given operating
conditions. This has been discussed thoroughly in Chapter 8.

The model-based control strategy is a form of predictive control, whereby the model is used to
simulate the system to the end of the batch time at every time point. Based on the current
mass, and the predicted final mass, the feed rate is manipulated to drive the process to a target
fill at the target end time. In addition to the feed rate, the head space pressure is manipulated
using a simple rule-based approach. The control strategy is applied on-line in two experiments
at 550L scale.

A mechanistic model-based control strategy is desirable, as it also allows for future devel-
opment, and extrapolation to other scales, strains and processes by adaptation of the model.
As described in the literature review, it is also a benefit that this method allows for a user to
obtain insight into the process by application of the method. It is possible to see how the current
process operation compares to the expected process development by the model simulation for
example. It is also possible to continually develop the model as additional data becomes avail-
able, and new process knowledge is obtained. For industrial application, it is highly valuable to
have a mechanistic model available for such process development work.

9.2 Methods

The following section provides a fermentation process description, model description, control
algorithm description, and the analytical methods applied.

9.2.1 Process operation

The process operation is defined in Section 8.2.2.

9.2.2 Process conditions

The process conditions are defined in Section 8.2.3.

109
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9.2.3 Off-line sample analysis

The procedures for sample analysis are defined in Section 8.2.6.

9.2.4 Controller algorithm

The concept of the controller is to simulate the process model until the end of the batch time
in order to identify if the current batch fill is expected to be above or below the fill target.
This simulation is achieved by solving the feed rate necessary to achieve the dissolved oxygen
reference trajectory, as shown in Figure 9.1. Adjustments are then made to the feed rate to
drive the process towards a desired tank fill (410 kg) in a set process time. This is by adjusting
the next feed rate predicted by the model by the error in the final fill divided by the time
remaining of the batch. In this way the controller is a form of predictive control, as the model
simulates the process to the end of the batch, and then the next control step is implemented.
This process is iterated every hour, and is referred to as the supervisory layer.

80 —set point
70 Min

60 Max

50

40

30

20 1 e s

10

Dissolved oxygen concentration %

0
0 1

Figure 9.1: Dissolved oxygen control set point ramp, and the maximum and minimum boundary which
are required for the regulatory layer.

In order to solve the model every hour, this requires that the initial conditions are specified.
The mass and dissolved oxygen concentration is measured directly from the process, and in this
way the true initial condition is known. The biomass concentration is not measured on-line, and
therefore the mechanistic model based monitoring tool is applied, as described in Chapter 6.
The biomass concentration is very central to the prediction of the other model parameters, as
it affects the viscosity and therefore the oxygen transfer rate, so it is important for the control
strategy that this is the best possible estimate. The other states, for substrate concentration
and product concentration may also be found in this way, however they have no impact on the
model prediction of the oxygen transfer or mass trajectory in future, and so they are not used
in the controller implementation.

When the regulatory layer is also added, the controller will respond to adjust the feed rate
applied to the system if the dissolved oxygen goes outside of a specified dead-band. The calcu-
lated feed rate from the supervisory layer is adjusted by a proportional controller, in order to
avoid oxygen limitation. This regulatory layer is only applied in a specified dead band, between
a maximum and minimum dissolved oxygen concentration, as shown in Figure 9.1. This is
because it is not necessary to strictly regulate the oxygen profile, but just to avoid over and



9. Model-based control strategy 111

under feeding. This may occur due to process model mismatch, but should be avoided in order
to maintain a productive process.

Model-based control
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Figure 9.2: Diagram showing the control structure for the model based controller (top) and the model-
based controller with regulatory layer (bottom).

In addition to the feed rate, the control strategy includes rule-based control of the headspace
pressure set point. This is due to observations that the rapid headspace pressure increase at
the start of the process is unnecessary, as the process is not oxygen limited at this stage. This
was discussed in detail in Chapter 8. It can also lead to challenges for the controller implemen-
tation, as the dissolved oxygen concentration becomes well over the desired set-point which can
lead to a response in the controller to over feed. For these reasons, a rule-based approach is
adopted, where the headspace pressure is increased in step increments, as the dissolved oxygen
falls below a certain level. It is seen that there is an immediate and predictable response in the
dissolved oxygen concentration when a step change is applied in the headspace pressure. This is
shown clearly in Figure A6. This makes the headspace pressure a good choice for manipulated
variable, and also means that it is easy to implement a rule-based control approach, as the gain
is clearly observable from the step tests.

The control strategy is best described in Figure 9.3, where the full controller algorithm is
shown in detail. The controller is implemented in MATLAB [The MathWorks Inc., 2013], and
consists of timers which run scripts for the measurement data collection, supervisory layer model
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simulation, and the regulatory layer. There is a Matlab connection to the OPC server in order
to access on-line measurement data, and also to write set points which are then applied to
the system via the distributed control system (DCS). In experiment 3, the supervisory layer is
implemented and this feed is applied directly to the process. In experiment 4, the supervisory
layer and the regulatory layer is implemented, as shown in Figure 9.2.

The controller implementation requires two parameters to be specified; F'Opnie and K.. These
were defined based on process knowledge, but they provide an area for tuning of the controller
response. The FOyjpg: term is applied in order to define a maximum feed rate at the start
of the fermentation, based on observed over feeding in the DO controller. It was seen from
analysis of past data that the increasing oxygen uptake rate is a reliable measurement to show
the exponentially increasing capacity for feed at the start of the fermentation. For this reason
the maximum feed rate at the start of the fermentation is defined in terms of the OUR. The
parameter K. is the controller gain, which determines how aggressively the controller responds
when the dissolved oxygen concentration is outside of the dead-band. This was also fixed in this
work by simple analysis of the response of the reference dissolved oxygen controller response
applied in Chapter 8. The sensitivity of the dissolved oxygen concentration to the feed rate at
the end of the fermentation was observed. This could also have been found by model analysis.
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Figure 9.3: Controller algorithm, described in terms of the timers which are implemented in Matlab
R2013b. The values of the controller parameters F'Oy;p,i; and K, are not provided for confidentiality
reasons. They were determined based on experience with the process.
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9.3 Results and discussion

In Chapter 8 the start fill calculation has been verified by experiments, and we also have a
reference operation performance for the controller. This can then provide a reference case with
which to compare the results of the model-based control strategy. Two experiments were con-
ducted using the model-based control strategy as described in Section 9.2. In the following
results section, the experiments are described by an experiment number as follows:

Experiment 1: DO controller trial (reference)
Experiment 2: DO controller trial (reference)
Experiment 3: Model based control

Experiment 4: Model based control with regulatory layer

9.3.1 Final fill

The results for the final batch fill are shown in Figure 9.4. Experiment 3, tank 1 is not shown,
as this batch was lost due to technical issues, not related to the controller implementation. It is
seen that the variation in final fill is reduced to within 5% of the target, and only under filling
occurs. In the DO controlled batches both over and under filling of around 10% of the target is
seen, and as previously described, the level of over filling would have been greater if there was
not manual intervention. This shows that the combination of the calculated start fill and the
model-based control is successful to reliably target a desired tank fill. The variation in the final
fill is reduced by 74% compared to the dissolved oxygen controlled batches.

There is a difference in the results for the model based control (experiment 3) compared to
the model based control with regulatory layer (Experiment 4). The target fill is achieved in the
designated batch time with an accuracy of 0.5% for all tanks in Experiment 3, whereas there
is under filling of around 5% in Experiment 4. This is due to the trade-off between the fill and
the oxygen limitations.
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Figure 9.4: End weight of the four experiments conducted. The target fill is shown as a solid line, and
5% and 10% deviations from the target are shown as dashed lines.
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9.3.2 Dissolved oxygen concentration

Figure 9.5 shows the dissolved oxygen profiles for experiment 3 and experiment 4, where Tank
2 is shown for comparison. The two different controller implementations, with and without the
regulatory layer, may then be directly compared. Beneath the dissolved oxygen profile, the
corresponding feed rate profiles are shown.

Experiment 4:
Model-based control
with regulatory layer

Experiment 3:
Model-based control

DOT (%) DOT (%)
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[%0]

401

20

Feed rate
Feed rate

Figure 9.5: Dissolved oxygen profile(top) and feed rate (bottom) for model based control strategy
(experiment 3, left) and the model based control strategy with regulatory layer (experiment 4, right).
The results show that the addition of the regulatory layer successfully adjusts the model-calculated feed
rate in order to avoid oxygen limited conditions.

In experiment 3, the feed rate is solved by the model and applied directly to the system. The
feed rate is very accurately determined for the first three quarters of the batch time, with the
trend following around the dissolved oxygen set point. However, it is seen that in the final
quater of the batch time, the feed rate is too high for the oxygen transfer rates in the system,
resulting in dissolved oxygen limitations. The calculated feed rate is significantly higher than
that applied when using the dissolved oxygen controller. As previously explained, the aim is not
to achieve a certain oxygen profile, but to avoid complete oxygen limitation, and therefore the
feed rate should be close to that of the DO controller. When the regulatory layer is incorporated
into the controller algorithm, the feed rate is successfully reduced at the end of the batch in
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order to avoid limitation conditions.

It is possible to adjust the DOmax and DOmin ramps in order to adjust at which point the
regulatory layer will be applied. It is also possible to tune the controller gain, in order to re-
spond faster and more aggressively to a value outside of the DOmax and DOmin ramps. The
response of the controller in Experiment 4 is considered to meet the purpose of this exercise, as
the mass target is met to within 5%, and complete oxygen limitation is avoided.

The response of the controller can however be manipulated by the user depending on the
requirements. For example, it could be considered to increase the controller gain, as it is seen
that the dissolved oxygen concentration continues to fall below 20% saturation. With a larger
gain, this could be avoided. Although, as mentioned, this would also lead to larger errors in
the final mass, and it is not clear that the product concentration is significantly affected by
operating at 10% dissolved oxygen concentration at the end of the batch compared to 20%.
This is an area of future development for this method, to better understand this trade off, and
define a more analytical solution to the balance between product concentration and total mass.

An additional benefit of the model-based feed rate control is that the initial over feeding is
avoided. It is seen that the DO controller feeds aggressively in the initial phases of the exper-
iment, since the oxygen level is higher than the set point, however there is limited biomass at
this stage, and therefore increasing the feed rate is not the correct action at this stage. There
is then an overshoot in the dissolved oxygen concentration when the biomass concentration has
increased, and the substrate in the system is consumed. This phenomenon is not experienced
with the model-based controller applied in either experiment 3 or experiment 4. This is due to
the incorporation of the F'Oy;pir term, which was added in order to control the feed rate in the
initial batch hours.

As described previously, the concept of the controller algorithm was to reduce the variance
in the mass, and as a trade off this would lead to an increase in the variance in another variable.
This was defined to be the dissolved oxygen concentration. However it is seen that in fact
the variance in the dissolved oxygen concentration is acceptable, and the trend is more similar
between the batches for the model based controller than the dissolved oxygen controller. This
is due to the overfeeding experienced in the initial phase of the fed-batch process, as previously
described. Overall, the results of this control algorithm are seen to be highly favourable; achiev-
ing a low variance in the final mass, achieving the target fill to within 5% under the target, and
resulting in acceptable variance in the dissolved oxygen profile.
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Experiment 4:
Model-based control
with regulatory layer

Experiments 1 & 2:
DO control
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Figure 9.6: Dissolved oxygen profile(top) and mass (bottom) for DO control experiments (Experiments
1 and 2, left) and the model based control strategy with regulatory layer (Experiment 4, right). The
results show that the model based controller with regulatory layer successfully targets the target fill,
shown with an asterisk (*), and also provides a desirable dissolved oxygen profile.
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9.3.3 Headspace pressure

In addition to the feed rate, the headspace pressure set point is also defined by the model
based controller. This is due to the observation of very high dissolved oxygen concentrations
in experiments 1 and 2 in the beginning of the batch. This occurs for tanks 1 and 4 when the
headspace pressure set point is reached using a defined ramp after the feed is started. This
high dissolved oxygen concentration is not necessary, since at this stage of the fermentation
the process is limited by the biomass concentration. A high dissolved oxygen concentration at
this stage is considered a waste of energy, as the increase in pressure also results in an increase
in the compressor power required. As is seen in the methods section, the headspace pressure
is increased in increments every hour if the measured dissolved oxygen concentration is below
set point. In this way the pressure is used in order to increase oxygen supply only when it is
required. The result of this is seen in Figure 9.7. The dissolved oxygen control experiments are
seen on the left where the pressure is seen to increase in a fixed ramp for tanks 1 and 2. On the
right, the headspace pressure is seen to increase only as needed. This results in a very late rise
of pressure to the maximum value in tank 1, as the measured dissolved oxygen is within the
bounds. The fact that the headspace pressure rises this late may suggest that the start fill was
too high in this case, and there was capacity for more feed addition to the system. However, the
response of the controller is suitable in this case, as the pressure rises as a response to oxygen
becoming limited, but not before it is necessary.
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Figure 9.7: Headspace pressure measured for the DO controller experiments (left) and for the model
based control with regulatory layer (right). The model based controller also includes adaption of the
headspace pressure setpoint. This is to avoid excessively high dissolved oxygen concentrations in the
beginning of the batch.
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9.3.4 Product concentration

The overall objective for the control strategy is to maximise the total product mass from the
system, so it is important to ensure that applying the model-based control strategy does not
have a detrimental effect on the product concentration. Figure 9.8 shows the final measured
product concentrations for all experiments and all tanks in this work, arranged by tank num-
ber for easier comparison. The results show that there is no significant effect, either positive
or negative, on the product concentration between the control strategies applied in this work.
There is of course batch-to-batch variation in the concentration achieved, but there is no trend
which suggests the application of the model-based control strategy has a negative affect on the
product concentration which can be achieved for a given set of process conditions. The single
outlier is seen in Experiment 2 batch 2, where a high product concentration is measured. This
can not be specifically explained. Overall the standard deviation as a percentage of the mean of
the product concentration achieved for tanks 1-4 are 4.1%, 7.8%, 1.0% and 5.0% respectively.
There is therefore a low variance in the concentrations achieved when applying the different
control strategies.

The low product concentration variance means that it would be expected that with repeated
application of the control strategy, the final total product achieved per batch would have a lower
variance, due to the lower variance in the final fill. The benefit of reducing variance from a
control perspective is that it is then possible to be closer to the optimal [Liibbert and Jorgensen,
2001]. In this case it is hoped that the reduced variance in the final mass will allow a more
consistent and optimal final total product to be achieved.

End product concentration

1.1 21 41 12 22 32 42 13 23 33 43 14 24 34 44

Figure 9.8: The end product concentration for experiments 1-4 and tanks 1-4 where the results are
arranged by the tank number for easier comparison. The standard deviation on the mean for the final
product concentrations is 4.1%, 7.8%, 1.0% and 5.0% for tanks 1, 2, 3 and 4 respectively. This shows
that the product concentration is not significantly affected either positively or negatively by the model
based control strategy.
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9.4 Conclusions and future work

In this work a novel control strategy was developed in order to maximise the fill in aerobic
fed-batch fermentation processes. The target fill was achieved accurately, and with high repro-
ducibility when tested with different process operating conditions, and different meteorological
conditions. This is achieved by targeting a desired tank fill in a specified time, whilst avoiding
oxygen transfer limitations during progression of batch operation. It also included a model-
based batch planning stage where the initial batch fill is defined. This is a novel control concept.

The control strategy has been rigorously and successfully tested in pilot scale (550 L) stud-
ies by performing in total 16 runs, including the reference control strategy, under four different
industrially relevant process operating conditions. The results for the model-based control strat-
egy with regulatory layer has been shown to meet the objective, with the target mass reached
to within 5% under the target, and over filling was avoided. The reduction in variance of the
final fill of over 74% is not only beneficial for the final product mass, but also for planning and
scheduling in a multi-product facility, where downstream operations must also be scheduled.
With a reliable product mass flow to recovery, resource allocation is more predictable.

In conclusion, focusing on final batch fill is considered to be a highly valuable control objective,
especially in industry where highly optimised strains are applied. In the fermentation control
literature, there are often references to control methods to obtain high product concentration,
however in highly engineered industrial hosts we feel there are greater benefits in optimising
total mass, than optimising product mass fraction. In this way it is not only possible to achieve
maximum product mass in a batch operation, but it allows for predictable product mass to the
downstream operations, which allows for improved scheduling and capacity planning.

Future work for this project includes a consideration of gas hold up in the fermentation system,
to determine the optimal maximum fill, which in this work has been fixed based on prior expe-
rience. This adds a lot of complexity to the problem, as the gas hold up is hard to define, and
also changes over time based on the processing conditions and the rheological properties of the
fluid. It is however very important to consider this as an approach to determine the optimal
target fill in a dynamic process. In this work, the target fill was fixed, and as discussed, this also
has the added benefit for the full process, that the downstream scheduling operations are more
simple when the total mass is fixed. However, it could lead to an even better use of available
capacity if the maximum fill could be solved for a system on-line.

Other developments to this method could be implemented if there is a better understanding of
how the metabolic rates are affected by the processing conditions. This specifically relates to
the relationship between the dissolved oxygen concentration and the rate of product formation.
There is an opinion that the level of dissolved oxygen should be kept above zero in order to
avoid oxygen limited conditions, as this will affect the product formation. There is however no
specific understanding of this which may be implemented in the model. Also this is hard to
verify, for example Figure 9.5 shows that in Experiment 3, oxygen limitation occurs, however in
Figure 9.8 there is no reduction in the product concentration. This lack of mechanistic under-
standing limits the application of the model-based approach. For example, it is not possible to
make more defined rules about the trade off between the final fill and the product concentration.

If this knowledge was available, it would be possible to run a full process optimisation, where
the objective is explicitly to maximise the total product achieved at the end of the batch. The
optimal dissolved oxygen profile would then be obtained, and the trade-off would be implicit in
the optimisation problem. If we implement this full process optimisation using the mechanistic
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model in this work, we have to specify a minimum dissolved oxygen level, and then the solution
is to feed at the maximum rate until the maximum tank fill is reached, and then the feed is set
to a minimal level in balance with the evaporation rate until the end of the batch. In conclusion,
if the model complexity is increased, it can also allow for more optimal control algorithms to
be developed.



Overall conclusions and suggestions for future work

For each chapter in this thesis, the conclusions and relevant future work are described. This
chapter brings together these considerations, and also provides a broader perspective on the
different approaches which could be considered to improve on this work in the future.

Modelling and monitoring

With respect to modelling of fermentation processes, two approaches have been considered;
multivariate analysis and mechanistic modelling. Multivariate analysis provided a faster ap-
proach to modelling of the production scale process, for which there was no available process
model. The resulting model provided possible leads for future process optimisation, by analysis
of the regression coefficients. There is a huge potential for these data analysis tools to be ap-
plied in industry, where there is a vast amount of historical data available. There is however,
a genuine challenge in organising, aggregating, and aligning the relevant data, due to the mul-
tiple systems used for data collection and storage. If the historical datasets were more readily
accessible, such tools may be applied more routinely in industry. The multivariate analysis
methods are well established, and the focus going forward should be on the integration of data
from different sources and the development of front end tools for users. In this way the tools
available, and for example the methodology developed in Chapter 4, may be applied more widely.

Despite the benefits of the data-driven approach for data mining and providing process in-
sight, a mechanistic model is desirable for control purposes, as it is predictive and better able
to be applied to conditions outside of those used to develop the model. In this way, a mecha-
nistic model approach is considered more flexible and robust for many applications, as shown
graphically in Figure 5.1. In order to re-use and further develop existing mechanistic models it
is important to employ good modelling practices and document the model thoroughly in order
to allow for sharing of model code [Sin et al., 2009]. A part of good modelling practice is also to
conduct uncertainty analysis in order to determine the limitations of the model, and to interpret
the model results in an objective way. This also allows the user to judge for what applications
the model may be applied.

In this work it was shown that there was some lack of understanding which led to a poor
prediction of some model outputs. Firstly, the uncertainty analysis showed a high uncertainty
in the model parameters related to yield and maintenance terms. Considering the benefits and
disadvantages of both black-box models and mechanistic models, hybrid modelling may provide
a very promising approach to modelling of biological systems [von Stosch et al., 2014]. In this
way, the phenomena which are well understood, may be described by a fundamental mechanistic
model, and the model parts for which there is a lack of understanding may be modelled using a
data driven approach. This results in a model which has better extrapolation capabilities than
a black-box model, due to the fundamental model basis. It may also allow for better prediction
capabilities, by replacing an area of the model which is poorly described with a data-driven
model. This approach has been successfully applied to fermentation processes, and a detailed
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description of the field is described in von Stosch et al. (2014).

In this work, it could be interesting to compare the results of the monitoring tool described in
Chapter 6 with a hybrid modelling approach, where the rates are defined by a purely data-driven
model. In an industrial setting, this may be particularly valuable, where there may be multiple
production strains being tested in the same equipment. In this way, a hybrid model may be well
suited, as the physical model is defined by the reactor configuration and the physical process
parameters and may therefore be described mechanistically. In contrast, the strain-specific pa-
rameters are unknown for each strain, and these may then be identified using past experimental
data. A hybrid approach may be well suited for expanding the model application range to new
strains in this way.

When discussing the broader application of mechanistic models, the scale of application must
be considered. In this work, the mechanistic model was applied at pilot scale only, however
future work should consider application at production scale, to allow for application of the
batch planning tool (Chapter 8) and the control strategy (Chapter 9) to the production scale
processes. A challenge related to modelling at larger scale is the lack of understanding of
the heterogeneities which may be influencing the system [Gernaey et al., 2010]. This type of
understanding may come through specific experimentation, ideally in collaboration with com-
putational fluid dynamics (CFD) studies. This is outside the scope of this work, however in
future as this understanding becomes available, it may guide model development, to allow a
better model prediction at larger scale. For example, CFD studies may aid the development of
appropriate compartment models to capture the gradients in these large systems using mecha-
nistic models.

Control

The introduction to this project included a literature review covering some approaches which
have been employed in order to control the feed rate to a fed-batch fermentation process. Over
the development of this work however, an approach has been developed which does not strictly
fit to any of the control strategy types described in the review. Although the method is a
model-based approach which uses a future prediction in order to solve the next control action,
this approach is not model predictive control, as we do not solve an optimisation problem at
each iteration, and there is no penalty on the magnitude of the control action taken. The control
strategy was developed as a natural continuation of the monitoring strategy, where the model
was already implemented on-line in the pilot facilities at Novozymes A/S, and the controller
algorithm then utilised this on-line application, and extended the simulation time until the end
of the batch time. This has shown to be a successful method, and has met the objectives for this
work, however control engineers will likely not be completely satisfied with the very objective
and applied control strategy development process.

As discussed in Chapter 9, there are limitations to the model which limit the ability to im-
plement full process optimisation on-line. This is mainly due to a lack of understanding of
how the dissolved oxygen concentration and the substrate concentration affects the metabolic
rates in the system. If the model is applied for process optimisation in the current form, the
feed will be added at the maximum rate until the oxygen concentration goes to zero. This is
since there is no relation between the oxygen concentration, the substrate concentration and
the rates. This requires a more complex model, however there is a lack of understanding in
order to implement this. Ideally, with a more complex model approach, the aim would be to
implement a full process optimisation where the feed rate is solved at each iteration in order to
maximise the total product achieved in a fixed time.
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Another improvement to the control strategy is to account for gas-hold up in the optimisa-
tion. As described in Chapter 9, it would be beneficial to have the maximum mass in the
system determined on-line based on the gas hold up, as the maximum fill in a fed-batch system
is dependent also on the gas-hold up in the system. This adds significant complexity to the
control problem. Gas hold up is challenging to define, and there is no available measure for this
parameter. There is a current lack of understanding of the factors affecting the level of gas hold
up, so modelling is also very challenging.

Finally, this work has also discussed the importance of accounting for evaporation in an in-
dustrial fed-batch process. With relation to this, if a model predictive control approach was
implemented, all operating conditions could be optimised on-line, including the headspace pres-
sure and the aeration rate, which could also allow the control problem to be extended to account
for evaporation. With the ultimate goal to achieve the maximum total product mass in a fixed
process time, this could also then allow for on-line adaptation to manipulate the evaporation
rate. For example, for a process which is almost at the maximum tank fill with remaining
process time, the head space pressure could be reduced to increase evaporation and allow for
additional feed to be added, and converted to product. This would of course lead to a de-
crease in the oxygen availability, but with a comprehensive process model this trade-off could
be addressed.
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Table Al: Adaptive control literature review. Asterisk indicates a variable which is calculated (soft
sensor approach).

Control Basis cv MV  MeV Objective D Testing

(Oliveiraet al., 2004)

Model Reference Adaptive Control (MRAC). Indirect adaption refers to the estimation of unknown process parameter

(8). The reference model is then tracked by tuning of the controller parameters. 30% DO set point.

DOSP — DO v DO F DO, Max OTR kLa Pilot
"9+ D0 OTR step simulation

F:OTR—(
T

Where 0 is solved for as an unknown and t is tuned.
(Jenzsch et al.,, 2006)
X7ota1 trajectory calculated from an optimal p trajectory. ANN trained on 26 batches used to estimate X from 3 inputs.

Control law parameter a then adapted based on the error between the X7, and Xy, set point.

" Xrotal CER,  Control Xy F 15L
_ Hset- ATotal OUR, trajectory
(Yys —a).S¢ Base

Where a is tuned based on X error

(Duan et al,, 2006)

ANN network trained on pH and DO data used to define 2 physiological states; substrate starvation or excess. Feed

rate adapted based on this state of the system. Final biomass obtained by ANNPR controls increased about 47-55%,

and the cultivation time was also shortened 20-43%.
F(k) =F(k—1)(1+ oT)

Where § denotes positive step size

T defines increase/decrease in pump setting

ANN F DO, Max X, - 5L
state pH Min Xal

(Soons et al., 2006)
MRAC method based on a dual substrate model compared to a reference p model for B. pertussis cultivation.
Controller gains, K; and K, are updated every minute based on the estimated states (p, X and V).

ac + bd n F Do, Constant p DO, 5L
Fie= gpR YVt (Hsee — 1) OUR* F
t X*
+ sz (Hsee —p) dt \
0

Two substrates, given here as F,,,. Where a, b, ¢, and
d are constants, calculated based on the model
equations and the desired growth rate set point.

K, and K, are tuning parameters.
(Jenzsch et al., 2007)
Feedforward ANN with single hidden layer used to determine the total cumulative CER set point based on X,
induction time, and . A form of adaptive PI control then updates feed rate. tcCER control variable chosen as it is
measured in line, no time delay, no heterogeneity issues with measurement and robust to X deviations/u deviations.
F = y Freference, Where tcCER F CER Reproducible - 15L
¢ batches

¥y =1+ ky AtcCER + k; fAtcCER dt
ts

Where tcCER is total cumulative CER. k; and k,
tuning parameters.

(Oliveiraet al., 2005)

Paper describes both a MRAC and an integral feedback with adaptive control method, which is considered more

effective and is described in the table. Control was found to be more stable with an OTR estimate rather than
measurement due to delays.

T DO F DO Max OTR DO, 50L
Fit+1)= F() - m (DOser — DO) OTR
ttc
noise

Where T is the time step, 6, is the unknown state

variable, and 72 is the controller time constant.
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Table A2: Model predictive control (MPC) literature review. Asterisk indicates a variable which is
calculated (soft sensor approach).

Optimisation problem Objective cv MV MeV Testing

(Zhang and Lennox, 2004)
Multivariate Partial least squares based on 20 batches used as a soft sensor for biomass concentration. MPLS then
integrated into a MPC technique, to control the X trajectory. Tested on a simulated penicillin fed batch process.

E Qi
Agitator power
Set point tracking Reproduce X profile  X* F Substrate temperature, ~ simulation
5,DO, V, T, pH,
heat generated

(Kuprijanov et al., 2013)

Adaptive MPC used to follow optimal X profile from a ‘golden batch’. Offline X and S measurements were required as
inputs to the system. Aim of the paper is to show the MPC method implemented simply in a standard industrial
control system. E. coli system.

Set point tracking Reproduce X profile X F MXS 10L

(Cravenetal., 2014)

Non linear MPC, applied to mammalian fed batch process. In situ ramen spectrometer used for metabolite
measurement. Fixed glucose concentration set point of 11mM with a planned step change to 15mM after 100 hours.
Simulation studies to tune the controller before lab testing at 15L scale.

Set point tracking Maintain S S F S, P 15L

(Santos et al,, 2012)
Non linear MPC. Cost function aims to maximise glucose oxidation, and minimise glucose fermentation at a kinetic

level.
OTR

Maximise variable Max glucose oxidation F CER simulation
OUR

(Kovarova-Kovar et al., 2000)
ANN combined with MPC. ANN used in place of a model for product formation, which is not currently able to be
modelled reliably. Objective function to maximise total product and yield of product. Increase yield by 10%.
CER

F

Nitrogen added

Maximise product

Maximise variable yield and total P F . 15L
Glucose utilized
product i
Cumulative CO,
pH

(Chang et al,, 2016)
Dynamic flux balance model applied to S. cerevisiae. Optimised feed rate and dissolved oxygen set point

v
- . F X . .
Maximise variable product P X simulation
DO setpoint P

S

Maximise ethanol

concentration
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Table A3: Fuzzy control literature review. Asterisk indicates a variable which is calculated (soft sensor
approach).

Control Basis or linguistic variables | cv MV MeV  Objective D Testing

(Zhang et al,, 1994)
Two fuzzy sets were used for different phases of the fermentation. During the initial alcohol production phase a set of

rules were used with the error in RQ being the control variable. The next phase, the pmax was the set point for the

system, and the calculated p compared to the optimal pmax provided the error input to the fuzzy controller.
F=(Q+aF=+={t-1ifRQ<1
F=(1Q-aF+-1DifRQ>1

RO, RS:l (phase1l), . -
B = Wmax - Simulation
(later phases)

RQ
. p i
Where ais the output of the fuzzy rules
and F* is the calculated optimal feed rate.
(Horiuchi and Hiraga, 1999)

The process is defined as consisting of four phases of operation, where fuzzy logic is applied to identify the current

phase. Each state variable, process time, DO, CER and CER total were assigned a trapezoid membership function. F
and pH controlled together. Total product increased 6-16% compared to manual control, and has been in operation
for two years.

F(t)=Fy - aps +bea™t

Where all parameters are fixed for the F DO, Reliability and
four different phases of operation and - ’H CER,  optimal - Industrial
fuzzy logic is used to identify the phase of PHset pH operation (P)

operation.

(Hisbullah and Ramachandran, 2003)
Three control methods tested with the optimal being a hybrid fuzzy and PI control system with scheduled gain.
Reduced oscillations and set point tracking without offset. Set point of specific CER- specific OUR. Requires online
biomass measurement or estimate.

e = (QCER — QOUR)setpoint — Maintain
(QCER = QOUR), QCER X setpoint QCER ) )
— QOUR CER, (QCER - — QOUR Simulation
Error then defines the membership rules OUR QOUR) noise
and feed rate is defined from this.
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Table A4: Artificial Neural Network (ANN) control literature review. Asterisk indicates a variable
which is calculated (soft sensor approach).

Training
algorithm

Optimisation
algorithm

Inputs

Outputs

Objective D Testing

(Chen et al.,, 2004)

Cascade recurrent neural network for fed batch S. cerevisiae process. 2 blocks, where the F and V are used to first

estimate DO. The DO is then input to the second block which is used to estimate X. A genetic algorithm is used to
optimise a smooth feed profile. Volume can be measured or calculated.

Genetic

LMBP Algorithm

E
Vor V*

X

Max Xigial - Lab

(Penget al.,, 2013)

Modelled an ANN based on 5 batches, and later added an additional batch to improve performance. Created an
optimal trajectory using the Genetic Algorithm. Ran 25 batches using the optimal trajectory.

Back
propagation

Genetic
Algorithm

Time, pH, DO,
T, turbidity

Max P - 5L

(Ferreira etal,, 2001)

Multilayer ANN used to interpret biosensor signal for glucose and sucrose. Control of an alcohol fed batch
fermentation using ANN output and PI controller to control substrate concentration.

Conjugate
gradient

ES
(biosensor
output mV)

S

Meet S set
point

- Simulation
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Table A5: Probing control literature review.

Control Basis | cv MV MeV Objective D Testing

(Johnssonet al., 2013)

Power spectral density of the DO signal used to determine the frequency content, which is used directly in the control
algorithm. Aim to maximise the oxidative metabolism, whilst aveiding overflow metabolism. Parallel system controls
DO using N and Q;,, but with slow response, so it does not interact with feed controller.

K h
PO =3 (€ =)+ D (6 =)

157k
Where C is the frequency content of the DO
spectral data, calculated from the PSD#. E Max and
DO Qu» DO maintain E Xy 550L
Gain scheduling: N oxidative Qs

Fi—1
K=K |-
0 Fonin

(Henes and Sonnleitner, 2007)

Systematic underfeeding. Relative change in DO used, not absolute values, for robustness. Standard exponential feed
equation used as starting point, and adaptive strategy used to manipulate j1 (+1-5%) in the equation. Applied to S.
cerevisiae, E. coli, and P. pastoris. DO signal can be sensitive to antifoam addition.

. Xo Mo

— Mt
Yys- (Sp —So)

F(t) =
Max and
F DO maintain 30L

Where pis adapted based on underfeeding oxidative Qs

response:

F() = Fyeht

(Velut et al., 2007)

Probing control combine with temperature limited operation in order to limit the OUR. Initially probing control alone
implemented. When N is approaching the maximum, (hence OTR maximised) temperature control loop introduced.
Two SISO loops in cascade. Feed is adapted in proportion to the response, or reduced if no response in DO is
measured.

It Opulse < Oreactian)
Fle+1) = F(k) + Fdec

Else
Flk+1) = F(k) + K(Opuise (k) — Oges) E DO Max and E
- T, T ’ maintain Sf, 3L
Where N oxidative Qs X

Fyec = predefined constant
Ogetection = detection limit
Oges= desired response

#PSD= Power Spectral Density. Frequency content equations provided in Johnsson et al. 2013.
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Table A6: Statistical process control literature review.

Multivariate methods | MeV Objective Testing

(Albert and Kinley, 2001)
Paper from Eli Lilly and Co. Industrial application of multivariate analysis to provide online process control. Matlab

interface implemented for display to the user. PCA applied to 144 batches. 65 high yield batches defined as desirable
operation.5 principle components found to characterise the high yielding batches sufficiently.

PCA 17 online Follow high yielding

53 offline batches Industrial

(Duran-Villalobos et al., 2016)
PLS model developed and then applied to future batches using an optimisation function to determine the optimal
manipulated variables for the future batch based on their initial conditions. Successful results for two simulation case

studies.
Maximise biomass Two

MPLS model upto 15 formation/Maximise simulation
product formation studies
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Supplementary material: Chapter 8

In Chapter 8, the results of the reference DO controlled experiments are discussed. There is a
focus on the viscosity which is measured both in-line and off-line. The off-line measurements
are modelled using the Bingham model (Equation Al), as it was shown to provide the best fit
to the experimental data with two parameters, as shown in Figure A2.

_ Tot iy (A1)
Y

It is common to apply the Power law to viscosity measurements of fermentation broth, as there
is a shear thinning behaviour. This shear thinning behaviour can also been seen in Figure A2.
In this work, a wide range of shear rates were sampled for the off-line viscosity measurement,
however it is only the lower shear rates which are relevant for the conditions in the fermentation.
In future, it would be advisable to use the power law, fitted only to the shear rates in the range
relevant for the fermentation system of interest. The power law may be fitted to the data, if
only the low shear rate values are included in model fitting. It is shown in Figure Al that
this does not impact the values for the viscosity which are presented in this work, where both
methods result in the same apparent viscosity value at the given shear rate.

p=Ky"! (A2)

0.14 -
* Bingham model

0.12 1 Power Law (fitted at low shear rate) ¢
0.10 - *

0.08 -
0.06 -

0.04 - A

Apparent viscosity (Pa.s)
»

0.02 -

0.00 T T )

Figure A1: Viscosity obtained by the Bingham plastic viscosity model and the Power law fitted to low
shear rate data only. Data shown for Experiment 1, Tank 1.
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Figure A2: Bingham plastic viscosity model fitted to off-line measured data.
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Figure A3: Power law viscosity model fitted to off-line measured data.
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When a model is identified which provides a good fit to the experimental data, the model
parameters may be investigated to identify trends in the viscosity. This is useful in this work,
where two stirrer speeds are used in the experiments, and so there are two different shear rates
which represent the conditions in the tanks. For this reason, it is useful to directly compare
the viscosity model parameters, as they are independent of the stirrer speed for a given tank.
This may provide a more fundamental understanding of the rheological properties of the broth.
This may provide some insight into the potential for morphological changes in the system.
Figures A4 and A5 show the model parameters for the Bingham model and the Power law
model respectively. It is outside the scope of this work to analyse the results in depth, however
it is seen in both cases that tanks 1 and 2 have a similar behaviour, and tanks 3 and 4 also.
This implies that the stirrer speed has an effect on the rheological property of the broth.

Yield stress, T, Viscosity constant, |,
0.035 - 9
e 1.1 e-1.1
0.03 {* 12 8 1912 .
—e-13 / 7 1 —*13
0.025 | _g¢-1.4 —-14
E -
421 2.1
002 4_, 5, w5 o 2.2
(o] m
[« o
—&—2.3
0.015 | —&— 2.3 £
—&— 2.4 —&—2.4
3 -
0.01
2 -
0.005 -
1 -
Q 1 Q 1

Time

Figure A4: Bingham model parameters for off-line measured viscosity in dissolved oxygen controlled
reference experiments.
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Figure A5: Power law model parameters, fitted for low shear rate data only, for off-line measured
viscosity in dissolved oxygen controlled reference experiments.
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Supplementary material: Chapter 9
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