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Preface to ”Bioprocess Monitoring and Control”

Bioprocesses have been carried out for thousands of years. When they were first used, based

on experience, one knew how to carry out these processes so that the required product, mainly

food, was obtained in the desired quality. In the time of Antoni van Leeuwenhoek (1632–1723),

the important protagonists of bioprocesses (microorganisms) became accessible. In particular, the

production of beer, i.e. ethanol, was one major player, which gave rise to the improvement of our

knowledge of bioprocesses significantly. That temperature is one of the most important process

variable was recognized very early. However, during the 20th century, a lot of improvements in

process development were gained. At the beginning of that century, examples were the development

of a fed-batch process for baker yeast production and the patent of the production process of

acetone and butanol (1915). In 1949, Monod published his model for the specific growth rate of

microorganism. Not only did process development evolve, but process measurement systems such

as spectroscopy also did, at BASF in 1938. These are important for the collection of on-line process

information. From 1941 to 1944, industrial penicillin, i.e. medication drugs, began to be used, and

glutamic acid production began in 1957. Around that time (1960), Rudolf E. Kalman published a new

approach to linear filtering and prediction problems, i.e. the Kalman filter.

That all these themes are still of high importance is obvious. In particular, due to the initiative

“A European Green Deal” of the European Commission, the further development and optimization

of the bioprocesses involved in the bioeconomy are of fundamental importance. For a sustainable

economy, bioprocesses must be central. They must be carried out in an optimal way, so that resources

are saved.

In this book, methods and techniques are provided for the monitoring and control

of bioprocesses. From new developments for sensors, the application of spectroscopy and

modelling approaches, the estimation and observer implementation for ethanol production and

the development and scale-up of various bioprocesses and their closed loop control information is

presented. The processes discussed here are very diverse. The major applications are cultivation

processes, where microorganism were grown, but also, the incubation process of birds’ eggs, as

well as an indoor climate control for humans, will be discussed. Altogether, in 12 chapters, nine

original research papers and three reviews are presented. In the first chapter, a model-based soft

sensor is presented, which is based on the adjustable structure geometric observer, and can be used to

estimate important variables in a bioreactor. The performance of this approach was compared to the

performance of an extended Kalman filter. In the second chapter, a new control method for a fed-batch

yeast cultivation is discussed, based on dielectric spectroscopy to control the specific growth rate at

different set points. Siderophores are important in areas where the availability of iron is low, because

iron is one of the critical growth limiting factors for mainly all aerobic microorganisms. How the

production of siderophores can be carried out is demonstrated in the third chapter. The production

of an antimicrobial agent is discussed in the fourth chapter, as well as its inhibitory properties

against different microorganisms. In the fifth chapter, the effect of nitrate and perchlorate on selenate

reduction in a batch reactor is presented. A study of a bioleaching process for the extraction of metals

from a flotation concentrate is discussed in the sixth chapter. In this contribution, results regarding the

influence of two typical flotation frothers on the sensitivity of bacteria in the mesophilic mixed culture

are presented. Due to coronavirus medication, drugs are more important than ever. The monitoring of

monoclonal antibody breakthrough curves in chromatographic downstream operations is presented
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in chapter seven. As a measurement system, a Raman spectrometer is used and complemented with

an extended Kalman filter. It is demonstrated that this approach allows the estimation of the antibody

concentrations with reduced noise and increased robustness. In the eighth chapter, a model predictive

controller is presented, which can regulate the heating power of an incubator for bird eggs. It is

demonstrated that the air temperature can be kept constant, although the eggshell temperatures are

different in different zones of the incubator. An adaptive occupant-based predictive controller for a

heating, ventilation, and air conditioning system using a predictive classification model to provide an

optimal indoor climate with respect to temperature and humidity is discussed in the ninth chapter.

As mentioned already, sensors are fundamental for an optimal process performance. In chapter ten,

examples of well-defined conjugated macromolecules based on oligo(arylene ethynylene) skeletons

are reviewed for their use in sensor applications. In chapter eleven, the most important models for

physiological, biochemical, and physical properties governed by temperature are discussed. In the

review, a toolset for the future exploitation of temperature as a control variable for optimization,

monitoring, and control applications in bioprocess engineering is presented. The importance of the

control of the specific growth rate to enable the improvement of the quality and reproducibility of

bioprocesses is reviewed in the last chapter. Requirements are given that must be met to successfully

implement the specific growth rate control system. Furthermore, recommendations are presented for

the selection of particular control systems for specific biotechnological processes.

I would like to thank the authors of the chapters for their excellent work, as well as the stuff of

MDPI, who supported me in making this book a reality.-Summer 2020 Bernd Hitzmann

Bernd Hitzmann

Editor
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Bioprocesses can be found in different areas such as the production of food, feed, energy,
chemicals, and pharmaceuticals. From bio-catalysis to fermentation processes or mammalian cell
cultures, different reaction systems are applied. Due to the bio-economy initiatives in different countries,
the number of bioprocesses will grow further in the future. One characteristic feature of all these
different bioprocesses is a complex reaction matrix where different substances play an important
role. Frequently, one must deal with a three-phase system, i.e., a liquid, a gas, and a solid phase.
For the optimal operation of these processes, monitoring and supervision systems are required for all
phases. Additionally—although bioprocesses have been applied for several thousand years, such as
the fermentation of dough—on-line measurement systems for important process variables are still rare.
Although the measurement of key variables is a challenge, the control of them to guarantee optimal
yields is an even greater challenge.

This Special Issue of Processes entitled “Bioprocess Monitoring and Control” presents novel
examples of on-line monitoring and closed loop control techniques applied to different bioprocesses.
The accepted manuscripts cover a range of important topics in different bioprocess areas,
where microorganisms, bird’s eggs, and humans are involved. Different techniques such as those for
the construction of sensors, the production of a biocontrol agent, scaling up procedures, the application
of observers, closed loop control, and the model-based monitoring of a downstream process are
presented. The accepted manuscripts are nine original research papers and three reviews, which are
summarized below.

Lisci et al. [1] studied a model-based soft sensor, which is based on the adjustable-structure
geometric observer and can be used to estimate important variables in a bioreactor. The performance
of this approach was compared to the performance of an extended Kalman filter. Using simulations,
they were able to show that both estimators lead to good estimation performance. The geometric
observer estimation is more sensitive to measurement noise, probably because of the presence of the
Lie derivative in the correction term. Lisci et al. concluded that the systematic geometric approach
led to the best solution for the estimation problem, giving a structure that did not depend on the
correction algorithm.

Brignoli et al. [2] present a new control method for the fed-batch cultivation of Kluyveromyces Marxianus.
They counter the problem of noise and oscillations in the control variable and address the exponential
growth dynamics more effectively. Based on dielectric spectroscopy for the on-line biomass concentration
measurements, the specific growth rate was estimated. Using a feedforward-feedback controller,
the authors could demonstrate that the specific growth rate could be maintained at different set point
values. Therefore, the feasibility of the closed loop control of the specific growth rate of yeast in
long-duration fed-batch cultures was demonstrated successfully.

Abo-Zaid et al. [3] present results from tests of twenty fluorescent Pseudomonas isolates for their
ability to produce siderophores. The assessment of their antagonistic activity against six plant pathogenic
fungal isolates is demonstrated. For the promising strains, a scaling-up production of siderophores from
fluorescent Pseudomonads was carried out. They could show that the exponential fed-batch fermentation
of P. aeruginosa F2 and P. fluorescens JY3 gave higher concentrations of siderophores and biomass than

Processes 2020, 8, 854; doi:10.3390/pr8070854 www.mdpi.com/journal/processes1
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batch fermentation. Furthermore, they demonstrated that formulations of siderophore-producing
fluorescent Pseudomonads were effective in controlling soil-borne fungi and for the stimulation of plant
growth. Therefore, they concluded that bio-friendly formulations of siderophore-producing fluorescent
Pseudomonas isolates could be used as biocontrol agents for controlling some plant fungal diseases.

Zhang et al. [4] isolated from the commercial Yanjing Natto food a bactericide-secreting Bacillus
strain, i.e., Bacillus subtilis natto, which is potentially useful as a biocontrol agent. Upon the optimization
of the growth medium for optimal bactericide secretion, the antimicrobial activity of the strain was
enhanced significantly. They could demonstrate the inhibitory properties of the obtained agent against
S. aureus, E. coli, and S. typhimurium. Using HPLC, 13C-nuclear magnetic resonance, and mass spectral
analyses, the structure of the purified new bactericides could be identified.

The effect of nitrate and perchlorate on selenate reduction in a batch reactor was investigated by
Kim et al. [5]. They selectively enriched selenate-reducing bacteria in bench-scale sequencing batch
reactors, which were seeded with activated sludge, and operated them semi-continuously in parallel
for more than one and a half months. They show that complete selenate and nitrate reduction can
be accomplished simultaneously. Kim et al. concluded that selenate-reducing bacteria are capable
of enduring the competition associated with the reduction of other oxyanions and electron donors
without significant inhibition after appropriate acclimation.

Jafari et al. [6] studied a bioleaching process for the extraction of metals from a flotation
concentrate. In their contribution, results regarding the influence of two typical flotation frothers
on the sensitivity of bacteria in the mesophilic mixed culture are presented. As a traditional
mixed mesophilic microorganism culture, Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans,
and Acidithiobacillus thiooxidans were used. By increasing the dosage of the frothers, they could show
a negative correlation with bacterial activities. However, the mixed culture showed a lower sensitivity
to the toxicity of the frothers than the examined pure cultures.

Feidl et al. [7] investigated the monitoring of monoclonal antibody breakthrough curves in
chromatographic downstream operations. As a measurement system, they used a Raman spectrometer
connected to the process by a self-developed flow cell. An extended Kalman filter was developed by
complementing the measurement information with information coming from a lumped kinetic model.
Feidl et al. demonstrate in their contribution that this approach allows the estimation of the antibody
concentrations with reduced noise and increased robustness.

For the incubation of bird eggs, Youssef et al. [8] developed a model predictive controller to
regulate the heating power. They used several IR radiators divided into three zones to adjust the
eggshell temperatures individually in each zone. To test and implement the developed controller,
four full incubation trials were performed. The authors could demonstrate that the controllers were
able to follow the reference trajectory defined for each individual zone. They could keep the air
temperature constant, although the eggshell temperatures within the middle zone were different from
those in the sidelong zones.

That we as humans are also part of a kind of bioprocess and have to be maintained under optimal
conditions is considered by Youssef et al. [9]. They propose an adaptive occupant-based predictive
controller for a heating, ventilation, and air conditioning system using a predictive classification
model to provide an optimal indoor climate with respect to temperature and humidity. To estimate
the individual metabolic rates of 25 participants, three input variables—aural temperature, heart rate,
and average skin heat-flux—were used. The least squares support vector machine technique was
applied to predict the individual’s thermal sensation. Based on that, they recommend an adaptive
model predictive controller to adjust the indoor climate.

Without reliable sensors, the control of processes is not possible. Krywko-Cendrowska et al. [10]
emphasize the importance of monitoring in general but also for bioprocesses. They review examples
of well-defined conjugated macromolecules based on an oligo(arylene-ethynylene) skeleton used for
sensor applications and discuss their relevance and their perspectives, not only for biological samples.
In the review, they focus exclusively on examples of uniform macromolecules.
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Noll et al. [11] summarize the most important models for physiological, biochemical, and physical
properties governed by temperature. A timeline of the publication of different temperature models is
presented as are the pro and cons of mechanistic and empirical models. In their review, a toolset for
the future exploitation of temperature as a control variable for optimization, monitoring, and control
applications in bioprocess engineering is presented.

Galvanauskas et al. [12] emphasize in their review the importance of the control of the specific
growth rate because this enables the improvement of the quality and reproducibility of bioprocesses.
Requirements are given that must be met to successfully implement the specific growth rate control
system. Furthermore, recommendations are presented for the selection of particular control systems
for specific biotechnological processes.

The articles in this Special Issue highlight the diversity of bioprocesses and new applications in
the development and management of these processes. Especially for closed loop control, the reliability
of the measurements is central. Beside the measurements, the applicability of the models is equally
important. They must provide the required accuracy in estimating bioprocess variables. The articles in
this Special Issue show a major step forward towards efficient bioprocesses but in the future further
research is still needed. The papers from this Special Issue can be accessed at the following link:
https://www.mdpi.com/journal/processes/special_issues/bioprocess_control.
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Abstract: In this work, a systematic approach based on the geometric observer is proposed to design
a model-based soft sensor, which allows the estimation of quality indexes in a bioreactor. The study
is focused on the structure design problem where the set of innovated states has to be chosen. On the
basis of robust exponential estimability arguments, it is found that it is possible to distinguish all the
unmeasured states if temperature and dissolved oxygen concentration measurements are combined
with substrate concentrations. The proposed estimator structure is then validated through numerical
simulation considering two different measurement processor algorithms: the geometric observer and
the extended Kalman filter.

Keywords: nonlinear state estimation; geometric observer; bioreactor; continuous system; extended
Kalman filter; model-based sensor

1. Introduction

Bioreactors are units where a wide variety of products are made in industrial plants and where a
diversity of important processes, such as fermentation, occur. Usually, the control of bioreactors is
accomplished through the regulation of variables, such as pH and temperature, for optimizing the
microbial growth [1,2]. Product quality indexes such as biomass, substrate, product or by-product,
and dissolved oxygen concentrations are not usually controlled, because they are difficult to measure
in real-time [3]. Even though many works report the availability and advantages of monitoring
techniques, industrial biotechnology processes have a scarce capacity for real-time monitoring, which
implies a limited implementation of efficient control of the process [4,5]. Because an unpredicted
perturbation may lead to significant changes in the qualitative behavior of the system [6–8], it is crucial
to accurately monitor the process.

Model-driven soft sensors can be a possible approach to estimate variables from secondary
measurements. They rely on first principles process models and on algorithms that reconcile the
available measurements with predictions carried out by the model. Several estimation techniques
have been proposed in the literature for chemical and biochemical processes. Among them, the
following have been recognized to have strong potential in the online estimation of nonlinear systems:
(i) extended Kalman filter [9], (ii) high gain observer [10], (iii) sliding mode observer [11], (iv) geometric
observer [12,13]. Many of the strategies to estimate unmeasurable states and disturbances for partially
known systems are based on the extended Kalman filter (EKF) because its design is quite simple and it
is widely accepted by relevant industries [14,15].

In this paper, the problem of estimating unmeasured states in a bioreactor is addressed. The study
is based on the detailed model proposed by [16], which is considered as the virtual plant. The main
objective is to compare different estimation solutions depending on the available measurements and the

Processes 2020, 8, 480; doi:10.3390/pr8040480 www.mdpi.com/journal/processes5
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characteristics of the sensors. An adjustable-structure geometric estimation approach is implemented,
considering the estimator structure as a degree of freedom in the design with the aim of improving
performance versus robustness estimation behavior [13,17,18]. The used estimation algorithm is the
geometric observer (GO) with proportional innovation [19], which offers the simplicity of tuning and
implementation. In order to show that the proposed procedure for choosing the estimation structure
can be applied to other estimation techniques, the extended Kalman filter (EKF) is also used as the
measurement processor algorithm.

2. Process Model

The biochemical process considered in the present paper is a fermentation reactor for the
production of ethanol. The model was developed by [16] and, for the sake of clarity, it is hereafter
reported (Equations (1)–(6)). It is assumed there is a perfect mixing in the reactor (constant pH
and constant volume). The dynamics of biomass (CX), substrate (CS), ethanol (CP), along with the
oxygen concentration (CO2 ) are considered. Energy balances are also taken into account describing
the reactor temperature (Tr) and jacket temperature (Tag) dynamics. A low dilution rate has been
considered allowing a balance between the biomass exiting from the system and the biomass produced
in the reactor.

dCX

dt
= μX CX

CS
KS + CS

e−KPCP − Fe

V
CX (1)

dCP

dt
= μPCX

CS
KS1 + CS

e−KP1 Cp − Fe

V
CP (2)

dCS
dt

= − 1
RSX
μXCX

CS
KS + CS

e−KPCP − 1
RSP
μPCX

CS
KS1 + CS

e−KP1CP +
Fi
V

CS,in − Fe

V
CS (3)

dCO2

dt
= kla

(
C∗O2
−CO2

)
− μO2

1
YO2

CX
CO2

KO2 + CO2

(4)

dTr

dt
=
(Fi

V

)
(Tin + 273) −

(Fe

V

)
(Tr + 273) − μO2

1
YO2

CX
CO2

KO2 + CO2

ΔHr

32 ρr Cheat,r
−

KTAT
(
Tr − Tag

)
V ρr Cheat,r

(5)

dTag

dt
=

(
Fag

Vj

)(
Tin,ag − Tag

)
+

KTAT
(
Tr − Tag

)
VjρagCheat,ag

(6)

The oxygen equilibrium concentration is affected by the inorganic salts, which are added to the
solution as source of inorganic nitrogen. The dependence is reported in Equation (7)

C∗O2
= C∗O2, 0·10−

∑
HiIi (7)

where the equilibrium concentration as a function of temperature has been calculated using the
equation proposed by [20] for distilled water

C∗O2, 0 = 14.6− 0.3943Tr + 0.007714 T2
r − 0.0000646T3

r (8)

In the present work, the distillation strength
∑

HiIi is kept constant and it has been calculated
using the equations reported in [16].

The model is here used to simulate a real process and to develop the model-based soft sensor
(estimator). Because the aim of the work is to mimic a real situation, the simulation using the model
parameters reported in [16] is considered as the real plant (hereafter referred to as the virtual plant).
On the other hand, some of the parameters used for the model in the estimator algorithm have been
modified. The aim was to insert modeling errors to simulate what usually happens in a real situation
where parameter uncertainty is present. This is often the case when dealing with complex systems such
as biological reactors [21]. A Monte Carlo method has been used to produce empirical error estimates
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on the model parameters, using a uniform noise distribution with a maximum deviation equal to
±8%. Table 1 summarizes the parameters of the model used in the estimator algorithm obtained by
performing 100 simulations and leading to the maximum error calculated on the trajectories of the six
states. The other parameters of the model are the same as reported in [16]. The nominal conditions of
the virtual plant are reported in Table 2.

Table 1. Parameters for the virtual plant and for the estimator.

Virtual Plant Estimator

μp 1.790 1.7465

Ks 1.030 1.0248

Kp 0.139 0.1281

Ks1 1.680 1.8090

Kp1 0.070 0.0692

Rsx 0.607 0.6274

Rsp 0.435 0.4549

Table 2. Nominal operating conditions of the process.

CO2 = 2.5 mg/L pH = 6

CP = 13 g/L Tag = 29 ◦C
CS = 27 g/L Tin = 25 ◦C

CS,in = 60 g/L Tin,ag = 15 ◦C
CX = 1 g/L Tr = 26 ◦C

Fag = 18 L/h V = 1000 L

Fi = Fe = 51 L/h -

The model simulations have also been made more realistic by adding noise to the available
measurements, and the precision of the sensors is reported in Table 3.

Table 3. Noise for the different measuring sensors.

CX CS CO2 Tr Tag

±2.5% ±2.5% ±2.5% ±0.1 ◦C ±0.1 ◦C

It is important to specify that all tests performed in the following have been carried out by
imposing step changes to three inputs of the system (CS,in, Tin,ag, Tin). The description of input
variations is reported in Table 4.

Table 4. Step changes of input variables.

Input t = 0 h t = 100 h t = 200 h

T1 CS,in (g/L) 60 45 75

T2 Tin,ag (◦C) 15 10 20

T3 Tin (◦C) 25 20 30

3. Estimation Problem

The current real-time monitoring methods used in ethanol production consist of secondary
measurements such as pH, turbidity, gas composition and temperature [4]. Even if such variables
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provide important information about the process, they do not directly relate to the state of the
system, making it difficult to apply advanced control strategies. Furthermore, even the best process
measurements are corrupted by some amount of signal noise and their true values are somewhat
uncertain. State estimation techniques can be used to improve the output signal of measured process
states in the presence of uncertainty and when it is not possible to directly measure all the variables
of interest.

The estimation problem consists of jointly designing the estimation structure (i.e., estimator model,
sensors, innovated states and data assimilation mechanisms), and the estimation algorithm (i.e., the
dynamic data processor), to infer some or all the states of the bioreactor on the basis of the available
model in conjunction with available measurements, according to a specific estimation objective. In the
present fermentation reactor estimation study, the emphasis has been placed on: (i) the detection of the
more adequate measured outputs leading to the best performance, (ii) the selection of the innovated
states, meaning the states which are updated by using the available measurement.

For simplifying the formulation of the problem, the model in Equations (1)–(6) is written in
compact form as reported in Equation (9)

.
x = f(x, u), x(t0) = x0 (9a)

y = h(x) (9b)

where x is the n-dimensional state vector, equal to x0 at the initial time t0, u is the p-dimensional input
vector, f is the n-dimensional vector fields, y is the m–dimensional vector of the measured outputs and
h is the map relating states and measurements. The dimension of the measured outputs is less than
the number of states, that is m < n. Using the geometric approach [19,22], it is possible to define the
nonlinear estimation map φ as Equation (10)

φ(x, u) = [φ1, . . . ,φi, . . . , φm]T (10a)

φi =
(
hi, L f hi, . . . , Lκi−1

f hi

)
(10b)

where the Lj
f hi is the jth Lie derivative of the time-varying scalar field hi along the vector f, κi is the

observability index of the ith output and κ is the estimator order defined in Equation (11)

κ1 + κ2 + . . .+ κm = κ = n (11)

If the map φ(x, u) is invertible with respect to x (Equation (12)), the system is observable, and the
states can be reconstructed using the available model (Equations (1)–(6)) and a proper measurement
processor algorithm [14].

rank(∂xφ(x, u)) = n (12)

If the Jacobian matrix ∂xφ(x, u) is rank deficient, there are unobservable states. In this case, the
system is detectable only if all the unobservable modes have negative real parts [19].

3.1. Robust Estimability and Robust Detectability

If all states can be fully observable, the observability matrix should be full-rank, but practical
observability can be assessed if the condition number of the observability matrix (Σ) is small [23].
Furthermore, a small singular value of the observability matrix implies the worst estimate of the
states [24]

rank(Υ) = n,Υ = ∂xφ(x, u) (13a)

σ(Υ)

σ(Υ)
= Σ < Ξ, (13b)
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avg
t
σ(Υ) ≥ ε0 (13c)

where Ξ and ε0 are, respectively, the selected thresholds.
On the other hand, if matrix Υ is rank deficient and the unobservable states are stable, it is

necessary to distinguish between states that can be innovated (distinguishable states) and states that
cannot (undistinguishable states). In this case, the dimension of the map in Equation (10) is equal to
the dimension of the distinguishable states, and robust detectability can be assessed if the following
conditions are satisfied (Equation (14))

σ
(
Υp

)
σ
(
Υp

) = Σi < Ξp (14a)

avg
t
σ
(
Υp

)
≥ εp0 (14b)

Υp = ∂xφp(x, u) (14c)

φp =
(
h1, . . . , Lκ1−1

f h1, . . . , hm, . . . , Lκm−1
f hm

)
(14d)

κ1 + κ2 + . . .+ κm = κ = p (14e)

The constants Ξp and εp0 are, again, the selected thresholds.

3.2. Selection of the Estimator Structure

The performance of an estimator is obviously strongly affected by the model of the process and the
quality of the available measurements. Biological processes are complex systems, therefore the presence
of model uncertainty in terms of parameters and neglected dynamics is, in general, to be expected [21].
This means that the complete reconstruction of the states requires, in general, a combination of different
measurements [4]. Within this framework, it is important to underline that there is still a gap between
the sensors for laboratory use and large scale monitoring in real-time [4]. The selection of the estimator
structure is therefore focused on the choice of the best monitoring strategies, by considering which are
the most representative measured outputs and the presence of parameter errors in the model used
in the estimator. It is considered that system monitoring can be expensive, in terms of both fixed
and operation costs, therefore it could be useful to optimize performance with the least number of
sensors. This analysis has been carried out comparing condition number and minimum singular
values of the matrix Υ or Υp (Equations (13) and (14)). The performances have also been evaluated by
simulating different trajectories, from which the convergence rate, presence of off-set and signal noise
have been evaluated.

3.3. Algorithms for the Estimation Problem

In this study, two different algorithms have been selected and compared. The first one is the
geometric observer [19], which is formally connected with the observability properties reported in the
previous section. The geometric observer (GO) can be applied also to detectable systems [13], and it
demonstrated to be simple to implement and tune [18,22]. The geometric approach is also used to
select the estimator structure, in terms of the selection of measurements and states to be innovated.

The geometric observer algorithm is reported in Equation (15), where it is assumed that some
states are not innovated. This choice may depend on the rank deficiency of the observability matrix or
a design choice intended to improve the robustness and efficiency of the estimator.

.
x̂i = f̂i(x̂, u) + (∂xiφ(x̂, u))−1K(y− h(x̂)), xi0 = xi(t0) (15a)

.
x̂u = f̂u(x̂, u), xu0 = xu(t0) (15b)

9
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The inverse of the observability matrix ∂xiφ(x, u) in Equation (15a) is calculated at each time step
and K is a block diagonal matrix (Equation (16)), whose coefficients are constant tuning parameters.
The estimated states x̂ in Equation (15) are the innovated states (x̂i), where the dynamics predicted by
the model are adjusted by means of the available measurements y, and the not innovated states (x̂u),
which are only predicted by the model (referred to in the following as open-loop states).

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 0

0 B2

. . . 0

. . . 0
...

...
0 0

. . .
...

. . . Bm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k11

...
k1ν1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k21

...
k2ν2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Bm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
km1

...
kmνm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
νi = κi−1

(16)

Tuning guidelines are provided by [17], proving that a set of tuning parameters kij is required for
every measurement. For observability indexes equal to 1 or 2 (κi = 1, 2), the proportional gains can be
obtained by considering Equation (17).

ki1 = 2ζω0, ki2 = ω0
2 (17a)

ω0 ∈ [10ωc, 30ωc], ζ = [1, 3] (17b)

The GO has then been compared with the extended Kalman filter (EKF), which is the most used
estimator algorithm in the industry because of its straightforward construction [17]. Even if the EKF is
usually applied to complete observability systems, in this investigation it has been used also when the
choice of measurements leads to a rank deficient observability matrix. The EKF algorithm has been
applied in the continuous form, reported in the following Equation (18).

.
x̂i = f̂i(x̂, u) + KEKF(y− h(x̂)), xi0 = xi(t0) (18a)

.
x̂u = f̂u(x̂, u), xu0 = xu(t0) (18b)

KEKF = P(t)HTR−1 (18c)
.
P(t) = P(t)F(t) + FT(t)P(t) + Q(t) −KEKFHP, P(t0) = P0 (18d)

F(t) is the Jacobian of the vector field f̂i, calculated with respect to the innovated states, P is the
error covariance matrix of the innovated states, H is the matrix of the derivative of the map h with
respect to the states, Q and R are, respectively, the covariance matrix of the model and measurements
errors [9]. The constant matrix Q, R, and P0 are tuning parameters of the estimation model and they
have been calculated minimizing the error between the states calculated with the simulated plant and
the estimator along a reference trajectory.

4. Results

4.1. Estimation Structure

The choice of the estimation structure has been carried out considering: (i) condition number and
the minimum singular value of the Jacobian matrix Υ (or Υp) for a different choice of measurements
and innovated states and (ii) evaluating the responses of the reconstructed states for a given trajectory.
Temperature and dissolved oxygen measurements have always been considered available, according
to the laboratory and industrial practice. On the other hand, sensors suited for ethanol measurements
as well as substrate and biomass are not always available for large scale real-time applications [4].
According to the analysis reported in [3], two possible scenarios have been considered: (i) biomass
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concentration in the reactor is measured online or (ii) substrate concentration in the reactor is measured
online. Using the representation in (9), the considered cases are reported in Equation (19):

y =
(
Cx, CO2 , Tr, Tag

)
(19a)

y =
(
Cs, CO2 , Tr, Tag

)
(19b)

where y represents the measured output vector.
According to Equation (13), it is easy to demonstrate that no combination of indexes κi satisfies

the observability property for the output vector in Equation (19a). This implies that a full order
observer is possible if the substrate concentration is measured online and therefore when using the
output configuration reported in Equation (19b). In this case, the nonlinear estimation maps satisfying
Equation (13a) are reported in Equation (20)

φ1 =
[
CS, L f CS, CO2 , L f CO2 , Tr, Tag

]
, φ2 =

[
CS, L f CS, CO2 , Tr, L f CTr , Tag

]
(20)

A first comparison of the two structures can be carried out by considering the values of condition
number and minimum singular value for the Jacobian of the maps (20), calculated by averaging
along the trajectories obtained with input step changes T1 and T2 (Table 4) and reported in Table 5.
The structure φ2 seems to be more robust (lower condition number), but it shows a lower minimum
singular value, indicating that changes in the states should affect the outputs to a lesser extent.

Table 5. Condition number and minimum singular value with four measurements.

φ1 φ2

Σ 1802.6 71.37
σ 0.086 0.03

The reconstruction capabilities of the two structures using the geometric observer are therefore
calculated, using the input variations T1 and T2, reported in Table 4. Results are shown in Figures 1–4,
only for the unmeasured variables, which are ethanol and biomass concentration. It is worth noticing
that also the state values calculated only with the model used in the estimation algorithm (open-loop
model), but without innovation are reported in order to better highlight the correction provided by the
estimation algorithm.

It is possible to observe that using the map φ1, allows a good reconstruction of the biomass
behavior (Figure 1), while there is a large mismatch between the ethanol concentration obtained with
the virtual plant and the reconstructed one (Figure 2).

When using the second configuration, results worsen, both for biomass (Figure 3) and for ethanol
(Figure 4) concentration. It is worth noticing that the state’s values estimated with map φ2 are more
corrupted by the measurement noise because in this case a greater observer gain has been used to
decrease the offset.
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Figure 1. Dynamic response of biomass concentration calculated with the virtual plant (continuous line),
open-loop model (dashed line) and geometric observer (GO) (dotted grey line) for structure φ1 along
trajectory T1 (left panel) and T2 (right panel).

Figure 2. Dynamic response of ethanol concentration calculated with the virtual plant (continuous line),
open-loop model (dashed line) and GO (dotted grey line) for structure φ1 along trajectory T1 (left panel)
and T2 (right panel).

Figure 3. Dynamic response of biomass concentration calculated with the virtual plant (continuous line),
open-loop model (dashed line) and GO (dotted grey line) for structure φ2 along trajectory T1 (left panel)
and T2 (right panel).
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Figure 4. Dynamic response of ethanol concentration calculated with the virtual plant (continuous line),
open-loop model (dashed line) and GO (dotted grey line) for structure φ2 along trajectory T1 (left panel)
and T2 (right panel).

The two full order structures are not able to adequately estimate the product of the reactor,
therefore a different solution is required to improve ethanol concentration. Using the same measured
outputs, it is possible to improve estimation performance by reducing the order of the observer using
only one Lie’s derivative [22]. The maps reported in Equation (21) lead to five observable states and
only one detectable.

φp3 =
[

Cs, CO2 , Tr, L f Tr, Tag
]
, φp4 =

[
Cs, L f Cs, CO2, Tr, Tag

]
(21)

The rank of the Jacobian of the maps φpi (i = 3, 4) depends on the choice of the non innovated
state (x̂u) between the two that are not measured, which are ethanol and biomass concentration. It can
be verified that the map φp3 can be inverted only if Cx is innovated and Cp is not. On the other hand,
the Jacobian of map φp4 always has a rank equal to five, regardless of the choice of the innovated
states. Recalling Equation (15), the following partitions are considered:

xi =
[
Cx, Cs, CO2 , Tr, Tag

]
, xu =

[
Cp
]

(22a)

xi =
[
Cp, Cs, CO2 , Tr, Tag

]
(22b)

The map φp3 can be used with the partition in Equation (22a), while the map φp4 can be used
with both partitions in Equation (22a,b). Therefore, two different solutions are identified: φp4,1 for
partition (22b) and φp4,2 for partition (22a). A first analysis of the possible configurations can be
obtained by considering the minimum singular value and condition number reported in Table 6.
The indexes’ values are comparable; therefore, the evaluation of the best structure has been performed
analyzing the reconstruction performance. Figures 5 and 6 represent the estimation of the unmeasured
states (ethanol and biomass concentration) for the input step change T1 and T2 described in Table 4.
The best reconstruction capabilities are shown by configuration φp3 for both the states. This result may
suggest that conditions calculated with Equation (14) are informative when the magnitude between the
different configurations is significantly different, otherwise, it is necessary to evaluate the estimation
capabilities by evaluating the estimator response for given input changes.

Table 6. Mean condition number and minimum singular value for low order structures.

φp3 (CP open loop) φp4,1 (Cx open loop) φp4,2 (CP open loop)

Σ 2.15 8.75 1.53
σ
¯

0.47 0.12 0.99
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Figure 5. Dynamic response of the biomass concentration calculated with the virtual plant (continuous
black line), GO with map φp3 (dashed dark grey line), GO φp4,1 (dotted black line), GO with map
φp4,2 (dashed-dotted grey line) along the trajectory T1 (left panel) and T2 (right panel).

Figure 6. Dynamic response of the product concentration calculated with the virtual plant (continuous
line), GO with map φp3 (dashed black line), GO with map φp4,1 (dotted black line), GO with map
φp4,2 (dashed-dotted grey line) along trajectory T1 (left panel) and T2 (right panel).

4.2. Validation

The analysis carried out in the previous section indicates the best estimation structure with four
measured outputs. In order to validate the obtained results, a new test was carried out considering as
reference trajectory the variation of the input temperature (Tin) as shown in Table 4 (Case T3). Figure 7
shows the dynamic behavior of biomass and product concentration and confirms that the proposed
structure can effectively reconstruct the unmeasured states also with different process conditions. It is
worth noticing that the ethanol concentration is not innovated, and the correction of the other states
also has a positive impact on its estimation.

Using the same number and choice of measured outputs Equation (19b) and partition between
innovated and not innovated states Equation (22a), the estimation task has been addressed using the
extended Kalman filter (Figure 8). The main reason for using another algorithm as a measurement
processor is to demonstrate that the estimator performance depends on the structure selection rather
than estimation algorithm. EKF has been preferred for this validation because it is usually preferred in
the industrial practice as it is easy to implement and robust if adequately calibrated [25,26].
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Figure 7. Dynamic response of biomass concentration (left panel) and ethanol concentration
(right panel) calculated with the virtual plant (continuous line), open-loop model (dashed line)
and GO (dotted grey line) for structure φp3 along the trajectory T3.

Figure 8. Dynamic response of biomass concentration and ethanol concentration calculated with
the virtual plant (continuous line), open-loop model (dashed line) and extended Kalman filter (EKF)
(dotted line) for structure φp3 along the trajectory T3.

Results show that EKF can effectively reconstruct the unmeasured states, revealing that estimator
structure design is the key step for a successful achievement of the estimation goals. The only difference
between the two approaches is that the biomass calculated with the geometric observer is more affected
by noise. This behavior can be explained by the presence of the Lie derivative in GO, which implies a
higher sensitivity to measurement noise with respect to the EKF.

5. Conclusions

The problem of estimating unmeasured states in a bioreactor was addressed, and it was
demonstrated that the estimation performance relies on an appropriate structure selection rather
than the chosen measurement processor algorithm. An adjustable-structure geometric estimation
approach was used, and the estimator structure constituted a design degree of freedom to improve its
performance versus robustness behavior. The estimation structure design was based on estimability
and detectability properties used together with a geometric approach. The analysis of the estimability
measures showed the ill- and well-conditioned structures (condition number of the observability
matrix), and the poorest estimation performance for the given structure (minimum singular value
of the observability matrix). From the implementation stage with simulations, it was found that the
results agreed with the ones obtained from the structural assessment when estimability measure values
calculated for the different structures were significantly different. The used estimation algorithm
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was the geometric observer with proportional innovation, which offers simplicity of tuning and
implementation. With the aim of showing that the proposed procedure for choosing the estimation
structure can be applied to other estimation techniques, the extended Kalman filter was also used
as measurement processor algorithm. The obtained results showed that the two estimators lead to
good estimation performance, with the only difference that the geometric observer estimation is more
sensitive to measurement noise, probably because of the presence of the Lie derivative in the correction
term. Summarizing, the systematic geometric approach led to the best solution for the estimation
problem, giving a structure that did not depend on the correction algorithm. The latter can be chosen
according to the wishes of the personnel of the plant or developer experience. It is worth noticing
that the systematic tuning procedure of the geometric approach was very useful for comparing the
reconstruction capabilities of the different structures. The results obtained in this paper in terms of
methodology could be applied to more complex biotechnological processes, such as the obtainment
of ethanol from cellulosic material, where the measurement devices for real-time application in the
industry are still missing. In this case, the proposed approach can be used to detect the measurements
that lead to the best reconstruction capabilities and invest in them.
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Abstract: Accurate control of the specific growth rate (μ) of microorganisms is dependent on the
ability to quantify the evolution of biomass reliably in real time. Biomass concentration can be
monitored online using various tools and methods, but the obtained signal is often very noisy
and unstable, leading to inaccuracies in the estimation of μ. Furthermore, controlling the growth
rate is challenging as the process evolves nonlinearly and is subject to unpredictable disturbances
originating from the culture’s metabolism. In this work, a novel feedforward-feedback controller
logic is presented to counter the problem of noise and oscillations in the control variable and to
address the exponential growth dynamics more effectively. The controller was tested on fed-batch
cultures of Kluyveromyces marxianus, during which μ was estimated in real time from online biomass
concentration measurements obtained with dielectric spectroscopy. It is shown that the specific
growth rate can be maintained at different setpoint values with an average root mean square control
error of 23 ± 6%.

Keywords: bioprocess monitoring and control; specific growth rate control; signal noise management;
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1. Introduction

The field of biotechnology is experiencing continued progress, owing to advances in online process
monitoring and control. The application of various process analytical technologies enables researchers
and end users to have insight into the process and to monitor its substrate uptake, biomass evolution,
and cell metabolism. Traditionally, cultures were mostly performed in batch mode. One of the main
drawbacks of this mode is that the growth dynamics cannot be controlled during the culture [1,2].
Significant improvement in this respect can be achieved by switching to the fed-batch mode and
putting in place appropriate process supervision methodologies. In addition to greater control over the
product quality, the cost efficiency of the process increases along with the enhancement of the culture
yield [1,3,4].

The key variable that can be controlled in a fed-batch culture is the specific growth rate, μ. This
variable has a direct effect upon the cell metabolism, and controlling it can be used to supress or
to induce, depending on the need, the formation of secondary metabolites [3,5–8]. The challenge
to control the specific growth rate comes from the fact that the determination of its instantaneous
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value is dependent on the online estimation of the biomass concentration. Indeed, there does not
yet exist a direct online measurement tool for cell concentration. All the currently used technologies
offer an indirect estimation, where the measured signal is correlated to the biomass concentration
through an external calibration [9]. Two different monitoring approaches can be identified. The first
approach is noninvasive towards the process and typically involves the use of off-gas analysis combined
with a metabolic model to estimate the biomass concentration and its evolution [10–12]. The second
approach, invasive to the process, includes the application of an in-situ optical density probe [13–15],
dielectric (capacitance) spectroscopy [16–18], or fluorescence spectroscopy [19,20] to monitor biomass.
Other methods rely on a significant capital investment, including biocalorimetry [21]. The main issue
with the in-situ monitoring technologies is their sensitivity to the process conditions. In particular,
aeration and agitation interfere with the probe, and thus create noise in the signal [16,19]. Noise and
instabilities in the biomass concentration signal are directly propagated to the estimation of μ, making
control of the latter a challenging task. For these reasons, biomass measuring technologies require
appropriate data treatment methods, ranging from basic signal smoothing and baseline adjustment
to complex filtering algorithms such as Kalman filter [22]. Signal filtering always involves a tradeoff
between reducing noise and minimizing measurement delay which are both undesirable in process
control applications.

With the appropriate tools set in place to estimate the cell concentration online, several
methodologies are available to control the specific growth rate. The easiest approach is the application
of a predetermined exponential feed. Here, the initial conditions of the fed-batch phase are used to
calculate the feed rate profile corresponding to the specific growth rate setpoint, and a feedforward
controller is used to implement the profile [1]. However, no feedback action is available to intervene
in case the process does not follow the desired growth rate. Feedback control typically involves the
use of the following two classical types of controllers: proportional (P) and proportional-integral (PI)
(and, more rarely, proportional integral derivative (PID)). They are considered to be simple gains
controllers since they are not based on a model [6,23–25]. Dabros et al. [24] showed that the use of a
mixed, feedforward-feedback controller reduced the mean control error by 32% as compared with
applying a purely feedforward exponential feed profile. As mentioned above, the noise present in
the biomass measurement and in the μ estimation, in particular, is a challenge when using feedback
controllers to regulate the specific growth rate. Both the proportional and the integral parts of the
controller are predisposed to amplify the noise and induce undesirable oscillations to the process.
Therefore, the data must be treated and smoothed prior to use [26].

More advanced controllers are often model-based, and include the popular model predictive
controller (MPC) and artificial neural networks [1,2]. These control approaches require extensive
process knowledge in order to build and validate a data-driven model [1,27,28], which can be difficult
to achieve as part of a new project or cell strain. Recently, successful implementation of growth rate
controllers based on MPC, where noninvasive Process Analytical Technology (PAT) tools were applied
towards microbial cultures, has been reported [29–32]. In addition, multisensor techniques have been
applied by combining dielectric capacitance monitoring with biocalorimetry to reduce measurement
noise [33]. However, these approaches add an extra layer of process complexity, resulting either from
the extra modeling effort required or from the application of additional PAT tools. A critical advantage
of dielectric capacitance monitoring is that it offers a direct and easily scalable method of biomass
estimation [34,35] that can also be applied to single-use bioreactors [36,37]. Indeed, the signal-to-noise
ratio often increases with scale, due to the reduced effect of bubbles on the probe, and therefore fast
process development from bench scale to pilot scale [34]. Thus, control applications that require
process scale-up would benefit from the reduced process complexity by applying dielectric capacitance
as compared with utilizing multivariate approaches or biocalorimetry monitoring, where significant
investment is required on scale-up [38]. Additionally, as no modeling is involved to implement direct
dielectric monitoring based control, the systems developed should be easily transferable to other
organisms, as previously demonstrated [24,39].
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The technique used to control the specific growth rate depends on the ability to monitor the
biomass and to manage the nonlinear growth dynamics of the process. A simple exponential feed
cannot cope with unforeseen metabolic changes or process variability, while P or PI feedback controllers
can have issues dealing with the exponential nature of cellular growth and with signal noise. Ensuring
reliable biomass monitoring and a robust way of estimating μ is essential, as is the proper design of a
controller capable of addressing the particularities of the process.

In this work, a revised control logic is presented to counter the above-mentioned issues. Biomass
concentration measurements, provided by a dielectric spectroscopy probe, are smoothed with the
Savitzky–Golay algorithm and used to estimate the current specific growth rate of the process.
A modified feedforward-feedback controller is designed and optimized to maintain μ at the desired
setpoint. The novel control design is adapted to the culture’s exponential dynamics, resulting in
improved noise management.

2. Materials and Methods

2.1. Cell Strain and Culture Conditions

In this study, the fed-batch cultures were performed with the wild type strain of Kluyveromyces
marxianus DSMZ 5422. This strain was chosen mainly for its fast growth dynamics and easy cultivation
conditions. A cell bank of 24 cryovials was prepared from four colonies of K. marxianus isolated
on a fresh YPLA (yeast extract 10 g/L, peptone 20 g/L, lactose 40 g/L, and agar 20 g/L) petri dish.
Each colony was inoculated in a sterile tube with 5 mL of YPL (yeast extract 10 g/L, peptone 20 g/L,
and lactose 40 g/L), previously autoclaved at 121 ◦C for 15 min, and cultivated overnight at 30 ◦C
and 150 rpm. The 5 mL of media were transferred to a 500 mL conical flask containing 100 mL of the
previously described YPL medium and cultivated overnight at 30 ◦C and 150 rpm. Then, the cultures
were transferred into four sterile tubes of 25 mL and centrifuged at 3500 rpm for 3 min. The biomass
deposited in the four tubes was resuspended in a 5.5 mL solution of NaCl 0.9% and peptone 0.1%,
and a 5.5 mL solution of glycerol 40%, reaching a total volume of 12 mL. Finally, sterile cryovials were
filled with 2 mL each and stored in the freezer at −18 ◦C.

All the precultures were inoculated with a frozen vial retrieved from the cell bank. The cells were
grown for 24 h at 30 ◦C and 120 rpm in a 1000 mL baffled conical flask containing 200 mL of YPL
solution cited above. The preculture media were autoclaved for 10 min at 115 ◦C. After 24 h, the cells
were isolated by centrifugation at 3500 rpm for 3 min and resuspended in a 4.5 mL solution of NaCl
0.9% and peptone 0.1%, then transferred to a 10 mL sterile syringe for inoculation.

The cultures were performed at 30 ◦C in a 3.6 L bench scale bioreactor (KLF, BioEngineering AG,
Wald, Switzerland), with a working volume of 2.5 L. The agitation rate was set to 1000 rpm and the air
flow rate to 250 NL/h, corresponding to 2 vvm, to maintain the dissolved oxygen (DO) levels above
20% throughout the experiments. In addition, to accommodate the strains particularly high respiration
demands, a sintered sparger was used to enhance oxygen transfer and obtain a kLa value of 0.06 s−1.
The bioreactor was equipped with a double 6-blade Rushton type agitator, a PT-100 temperature probe,
pH and DO probes (Mettler-Toledo, Columbus, OH, USA), inlet gas flow controller, exhaust gas port,
acid and base ports, a feed port, an antifoam port, and a sampling port, as illustrated in Figure 1.
The exhaust gas passed through a condenser cooled to 4 ◦C to minimize liquid loss. Temperature, pH,
and pO2 were controlled using the software provided by BioEngineering. Medium pH was controlled
at 5 using solutions of NaOH 3 M and HCl 1 M. A solution of 10% antifoam in water was used to
prevent foam formation.
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Figure 1. Fed-batch bioreactor setup.

Biomass concentration was monitored with a dielectric spectroscopy probe (ABER Instruments
Ltd., Aberystwyth, UK). The probe was used in dual-frequency mode at 580 and 15,650 Hz with
the polarization correction BM220 PolC tuned on and the filter value set at 140 to decrease the
impact of aeration on the reading. Using the dual-frequency mode is more reliable because it
minimizes the influence of baseline shifts and medium conductivity changes on the dielectric signal.
Feeding was performed with a Peripex W2 pump (BioEngineering), which was controlled analogically
between 4 and 20 mA by the current loop box ED-550 (Brainboxes, Liverpool, UK). Oxygen and CO2

concentration levels in the exhaust gas were analyzed using a Tandem Pro gas analyzer (Magellan
BioTech, Borehamwood, UK).

The cells were first grown in batch mode until depletion of the carbon source (which was detected
by monitoring the dissolved oxygen and off-gas analysis signals), and then in fed-batch mode. Table 1
shows the semi-defined batch and feed media composition. Yeast extract was used as an iron and
vitamin source [40–42], whereas peptone was used as an additional source of vitamins and protein,
replacing a trace elements solution typically used [16,24,43].

Table 1. Composition of the batch and feed media.

Component Batch Medium g/L Feed Medium g/L

Lactose 5 300
(NH4)2SO4 5 50

KH2PO4 3 25
MgSO4·7H2O 0.5 3

Peptone 5 25
Yeast extract 5 25

Antifoam 2 3

2.2. Signal Filtering and Smoothing

A data acquisition program was developed using LabVIEW 18 (National Instruments, Austin, TX,
USA) to handle all data communications between the KLF bioreactor and process analyzers (dielectric
probe and off-gas analyzer). The program also treated the dielectric signal, reducing measured noise
online. Basic moving average and the Savitzky–Golay smoothing algorithms were implemented and
evaluated, with the latter showing better performance in terms of striking a compromise between
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minimizing signal delay and maximizing the accuracy of the filtered signal. A window of 121 data
points and a first-order polynomial fit was used within the Savitzky–Golay algorithm to smooth the
dielectric signal ahead of the specific growth rate estimation.

2.3. Dielectric Spectroscopy Adaptive Calibration

The technology of dielectric spectroscopy, when used in dual-frequency mode, measures the drop
in the medium permittivity between the two electrical field frequencies. This drop is assumed to be
linearly proportional to the concentration of live cells; however, the correlation is different for each cell
strain and culture conditions [44]. The magnetic field used by the sensor is sensitive to the average
bubble size, medium conductivity and, to some extent, fluid viscosity. In order to maintain the sensor’s
response accuracy to these changing parameters, the probe was recalibrated for each culture using the
cell concentration data acquired at the end of batch phase. The adapted calibration model was included
within the LabVIEW on-line monitoring program prior to fed-batch phase, accounting for changes in
medium conductivity and fluid viscosity, and applied for the fed-batch segment of the experiment.

For the purpose of reference, cell concentration was measured off-line by dry cell weight, at intervals
of 60 min during the batch phase and 3 h during the fed-batch phases. Samples of 5 mL of broth were
filtered through a prescaled membrane filter. Then, the filter was dried until constant weight, the yeast
mass was calculated and converted to grams per litre.

2.4. Specific Growth Rate Estimation

The filtered biomass signal was used to calculate the estimated specific growth rate. As cell
growth is an exponential process, the linearization involves the use of a logarithm within the derivative.
The theoretical way of calculating μ is given in Equation (1), where Cx is the current biomass
concentration and V the medium volume.

μ(t) =
d ln(CXV)

dt
(1)

Specific growth rate values obtained with Equation (1) are, however, very sensitive to any residual
noise in the biomass measurement. In order to minimize this effect, a Δt window of 15 min was used
in this work to calculate μ, as shown in Equation (2). This window size was the result of a compromise
between reducing noise and minimizing signal delay.

μest(t) =
ln
(

CX,tVt
CX,t−15minVt−15min

)
Δt

(2)

Throughout the batch phase, the volume of the medium remained constant; however, during the
fed-batch phase, the culture volume increased as a function of the feed flow rate. The instantaneous
value of the volume was updated by monitoring the mass of medium fed into the reactor and taking
into account media density. Equation (3) shows the calculation used to correct the medium volume, Vt,
throughout the culture. Here Vini is the initial volume of the batch medium, mfed is the mass of the feed
solution fed into the vessel, as recorded by the scale, and ρfeed is the feed density.

Vt = Vini +
m f ed

ρ f eed
(3)

2.5. Controller Design

The classic method of regulating the specific growth rate is open-loop (feed-forward) control;
this technology implies implementing a predefined, exponential feed rate of medium to the culture.
However, using this approach does not allow reacting to any potential process disturbances or
deviations from the setpoint. In order to enhance the open-loop action, a feedback logic can be
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implemented [5,6,8]. Dabros et al. [24] proposed a new type of PI controller where the controller gains
were included within the exponential term of the control equation. The advantage with this control
logic is that it is well adapted to the exponential dynamics of the culture, making it more effective and
robust over the course of the fed-batch culture.

In this work, we demonstrate the use of a similar feedforward-feedback controller, as the one
proposed in [24], but with a slight modification. The proposed control logic alteration allows for
greater noise management and makes the controller more robust, particularly for long-duration
fed-batch cultures.

The feed-forward part of the controller action, for a given specific growth rate setpoint, μsp,
is given by the following expression:

FFF(t) = F0 exp
(
μspt

)
(4)

where F0 is the theoretical initial feed flow rate, calculated as follows:

F0 = CX,0V0
μsp

YX/S SF
(5)

Here, CX,0 is the initial biomass concentration, V0 the initial volume of the culture, YX/S is the
biomass yield coefficient, and SF is the substrate concentration in the feed medium. The initial biomass
concentration is obtained with the dielectric measurement, while the biomass yield is determined at
the end of the initial batch phase.

The feedback action of the controller is based on the process control error, calculated as follows:

ε(t) = μsp − μest(t) (6)

The feedback controller contains proportional and integral gains (respectively, Kp and Ki). In order
to avoid the use of adaptive gains, both Kp and Ki were included within the exponential term of the
feedback control equation, FFB, as shown in the following expression:

FFB(t) = F0 exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎝Kpε(t) + Ki

t∫
0

ε(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠t
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (7)

Both parts of the controller, feedforward and feedback, are used simultaneously and can be written
in the same and final control equation given below:

F(t) = F0 exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎝μsp + Kpε(t) + Ki

t∫
0

ε(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠t
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (8)

This form of feedforward-feedback controller was used by Dabros et al. [24]. Its main drawbacks
include sensitivity to noise and oscillatory behavior, observed to increase in time. Indeed, if the error
term is unstable and noisy, the controller action can intensify the problem. To reduce the oscillations,
the controller gains have to be chosen meticulously. In this work, two different methods were applied
to tune the gains’ values. The first approach involved manual tuning from the initial values reported
in [24], which were 1.5 [-] for Kp and 0.5 h−1 for Ki. After several cultures, the gains were adapted
according to a manual tuning methodology [45] as follows: Kp was reduced to 0.75 [-] and Ki increased
to 1 h−1. The second method used to calculate the controller gains was the Ziegler–Nichols open-loop
tuning table [46]. This approach is based on the system’s response following a step input applied to
the control variable. In this work, a predefined feed flow rate was applied according to Equation (4),
and the specific growth rate response was used to determine the proportional and integral terms.
The calculated Kp was 0.66 [-] and Ki was 0.6 h−1, both values relatively close to the ones obtained with
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manual tuning. The two sets of gains were tried in order to make the final choice: 0.75 [-] and 1 h−1 for
Kp and Ki, respectively.

By analyzing Equation (8), it can be noted that the proportional and integral terms of the controller
are time dependent. This design effectively makes the weights of the two terms increase with time.
Indeed, in this work, it was noticed that the oscillatory behavior increased with time not only in the
control variable, μ, but also in the manipulated variable, F(t). This meant that the oscillations were time
dependent, and therefore the controller logic needed to be changed to remove the gains’ dependence
on time. To address this issue, a novel approach is proposed as follows.

First, only the proportional term was changed, yielding the following expression:

F(t) = F0 exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎝μsp +

Kp

t
ε(t) + Ki

t∫
0

ε(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠t
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (9)

By dividing Kp by the time, the effect of this term becomes constant over time. This change should
increase the performance of the controller by reducing the high-frequency oscillations in the control
and manipulated variables.

Similarly, the time dependence of the integral term was suspected to induce increasing oscillations
in the control and the manipulated variables. In this case, the disturbance was expected to be low
in frequency, since the integral term’s effect is delayed in time. Thus, by making the integral term
constant, the low-frequency oscillations should be reduced. To verify this hypothesis, Equation (9) was
adapted as follows:

F(t) = F0 exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝μspt + Kpε(t) + Ki

t∫
0

ε(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (10)

This last modification was thought to be necessary particularly for long-duration fed-batch
cultures. It should be noted that with the final controller logic (Equation (10)), both parts of the feedback
controller have a constant weight over time, but they are still included in the exponential term of the
equation. This is important because it allows for exponential gain scheduling, making the otherwise
linear PI controller robust with respect to the exponential growth dynamics of the fed-batch culture.

Each time a new specific growth rate setpoint was defined during a running culture, the initial
feed flow rate, F0, was calculated anew using Equation (5), applying the latest value of the biomass
concentration, CX,t, and the current volume, Vt. To prevent integral windup, the window of integration
was limited to 3 h. This limitation allowed maintaining the controller action continuous throughout
the culture without having to reset the integral term between two setpoints.

Figure 2 shows the controller block diagram used in this work. The final μ controller logic is given
by Equation (10). The control loop was executed every 20 s by the LabVIEW supervision program,
registering all the process measurements and sending commands to the feed pump.

The performance of the controller was assessed, at each setpoint, by calculating the root mean
square error (RMSE, Equation (11)). In order to allow for adequate stabilization time, the calculation
window started one hour from the moment when the setpoint was initially applied and continued until
the next setpoint change. The stabilization time was necessary because the dielectric signal showed
signs of increased disturbance resulting from the metabolic adjustments following each setpoint change.

RMSE =

√∑n
i

(
μesti − μsp

)2
n

(11)
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Figure 2. Controller block diagram.

3. Results

First, the performance of the original, unmodified feedforward-feedback PI controller
(Equation (8), [24]) was assessed by analyzing the profiles of the specific growth rate and of the
feed flow rate over the duration of a fed-batch culture. Analyzing the μ profile, shown in Figure 3, it can
be observed that the process showed increasing oscillations starting after two hours of the fed-batch
culture. The RMSE for this experiment was 0.063 h−1, corresponding to a mean controller error of 32%.

Figure 3. Setpoint (dash line) and estimated specific growth rate (solid line) during a controlled
fed-batch culture, controller logic (Equation (8)).

To improve the controller and reduce the amplified oscillations, it was necessary to reduce the
effect of the part of the controller action that reacts fast to the evolution of the error, ε(t). Indeed,
Figure 4 confirms that oscillations were equally present in the manipulated variable. This meant that
the action responsible for this behavior was dictated by the proportional term.
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Figure 4. Feed flow rate applied during a controlled fed-batch culture, controller logic (Equation (8)).

For the subsequent experiment, the controller logic was changed to the one given by Equation (9).
By maintaining the proportional gain, Kp, constant overtime, the high-frequency oscillatory behavior
was reduced. In order to assess the controller’s improvement, a longer step was performed. Figure 5
shows the specific growth rate profile over a nine-hour duration fed-batch culture. The process still
shows oscillations, but ones that are constant and not amplified over time. In this experiment, the root
mean square error (RMSE) was 0.072 h−1 which corresponded to a mean controller error of 36%. It was
stipulated that the controller still could be improved by examining the corresponding feed flow rate
profile, shown in Figure 6. The oscillatory behavior was still present in this signal, but its frequency
was lower (~0.5 h−1) than that observed previously (Figure 3, ~1 h−1). Nevertheless, the amplitude of
the oscillations did increase in time.

Figure 5. Setpoint (dash line) and estimated specific growth rate (solid line) during a controlled
fed-batch culture, controller logic (Equation (9)).
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Figure 6. Feed flow rate profile obtained during a controlled fed-batch culture, controller logic
(Equation (9)).

As the proportional gain remained constant, it could not be responsible for amplifying the
oscillations in the feed rate. On the other hand, the integral term was still time dependent, its effect
increasing over time. Moreover, since the oscillatory frequency was lower, suggesting that the term
responsible for inducing them was a slow-acting term, it pointed at the integral term. Following this
consideration, the controller logic was changed to that given in Equation (10).

To assess the improvement in the controller’s performance, another experiment was performed
where the specific growth rate setpoint was changed mid-culture. With the theoretical maximal specific
growth rate of K. marxianus being close to 0.6 h−1, it was decided to control the growth rate at a high
and a low setpoint within the same culture [40,47,48].

Figure 7 shows the specific growth rate obtained during this fed-batch experiment. It was possible
to control the growth rate at 0.4 h−1; however, the culture could not be run at that setpoint for a
long time. Indeed, the cell concentration increased too rapidly to allow for full aerobic conditions
(DO > 20%). After 3 h, the limit of 20% DO was reached, and the setpoint was lowered to maintain the
culture in aerobic respiration. It is unclear whether the remaining mild oscillatory behavior was caused
by the residual noise in the filtered dielectric signal or by the controller itself. Figure 8 shows the feed
flow rate applied throughout the culture; this time, little oscillation was observed in the manipulated
variable. The resulting smooth control action allowed the controller to reach and maintain the growth
very close to the setpoint throughout the experiment. The root mean square error (RMSE) for the μ
setpoint of 0.4 h−1 was 0.061 h−1 and for the setpoint of 0.1 h−1, the RMSE was 0.019 h−1. The combined
mean controller error for this culture was 17% which was the half compared to the errors observed
during the cultures where the controllers given by Equations (8) and (9) were used (Figures 3 and 5,
combined mean controller error of 32% and 36%, respectively).
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Figure 7. Setpoint (dash line) and estimated specific growth rate (solid line) during a controlled
fed-batch culture, controller logic (Equation (10)).

Figure 8. Feed flow rate profile during a controlled fed-batch culture, controller logic (Equation (10)).

Figure 9 shows the evolution of the biomass concentration during this fed-batch culture.
The individual stages of the culture can easily be identified, i.e., the initial batch phase (until
culture time of 4.4 h), followed by the two fed-batch phases at μ setpoints of 0.4 h−1 and 0.1 h−1.
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Figure 9. Evolution of biomass concentration (raw signal in solid line, filtered signal in dashed line)
during the initial batch phase (blue) and two fed-batch phases at μsp = 0.4 h−1 (red) and 0.1 h−1 (black).

4. Discussion

In this work, it was demonstrated that the logic of the specific growth rate controller was equally,
if not more, important than the controller gains. Indeed, the control performance changed significantly
depending on the approach chosen.

As a first step in the study, we have addressed the weakest element in the control loop, namely,
the biomass measurement and the specific growth rate estimation. The biomass measurement signal
was inherently noisy and sensitive to process conditions, such as aeration and agitation. The filtering
approach was optimized to minimize the effect of the bubbles without inducing too long a lag time.
The window of 15 min chosen for the specific growth rate estimator was a trade-off with respect to the
lag time of the filtering algorithm and the remaining noise on the biomass signal.

Secondly, it was illustrated that by adjusting the controller logic, the signal oscillations could be
managed effectively, and the controller stability improved. Using the original controller (Equation (8)),
a fed-batch culture lasting longer than 2 h was difficult to achieve because of increasing oscillations in
both the control and the manipulated variables. With the new control logic, the experiment was shown
to be stable in time, and the mean controller error was reduced to 17%. The remaining error seems to
be limited by the residual noise amplitude on the biomass measurement.

Finally, the reproducibility of the controller’s performance was assessed by comparing three
fed-batch cultures run at the same specific growth setpoint (0.1 h−1). The result, shown in Figure 10,
demonstrates that after the initial period of instability (1 h), the estimated μ tracked the assigned
setpoint in all three runs. The level of accuracy was similar, showing an average relative RMSE of
23% ± 6% (1σ) despite the variable starting biomass concentration, indicating controller robustness.

All fed-batch cultures were run between 6 and 9 h in total duration, with variable μ setpoints.
Throughout this work, the maximum biomass concentration allowing aerobic conditions was around
25 g/L of dry cell weight. Above this concentration, regardless of the specific growth rate setpoint,
the oxygen transfer rate was insufficient to allow purely aerobic respiration of the cells. The aim of
fed-batch cultures is to ensure a permanent state of substrate limitation. If the culture conditions
changed from aerobic to anaerobic, the limiting factor would be a combination of substrate and oxygen.
The agitation rate could be increased to enhance the oxygen transfer and allow for higher biomass
concentrations. However, this change was observed to deteriorate the growth rate estimation by
increasing significantly the noise in the biomass concentration measurement.
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Figure 10. Biomass concentration profiles (a) and specific growth rate estimates (b) during three
fed-batch phases run at μsp = 0.1 h−1.

5. Conclusions

The aim of this work was to implement and optimize a novel proportional-integral (PI)
feedforward-feedback controller, designed to maintain a desired specific growth rate of a microbial
culture. The proposed new control logic provides robust setpoint tracking of an exponentially
evolving fed-batch culture, while ensuring improved noise and oscillation management. To reduce the
noise present in the biomass measurement, the filtering approach was optimized using a first-order
Savitzky–Golay algorithm instead of a simple moving average. Then, to limit the oscillations in
the manipulated and control variables, the time dependency of the P and I feedback terms was
removed, as shown in Equation (10). This change enhanced the stability of the system for longer
processes without any noticeable increase in signal oscillations, as was previously observed. Despite
the remaining noise in the biomass measurement, the controller was able to cope with this issue and
maintain the desired specific growth rate over the duration of the culture. In conclusion, it was shown
that a strain of K. marxianus could be grown successfully in fed-batch mode, under substrate-limited,
aerobic conditions, at different setpoints ranging from 0.1 h−1 to 0.4 h−1.

Some aspects could still be improved, particularly the biomass measurement signal filtration.
In order to diminish the undesired effect of aeration on the dielectric signal, two possibilities become
apparent. The first solution is to work under a slight pressure in the reactor, which would increase the
solubility of oxygen, and thereby reach aerobic conditions with a reduced aeration rate. The second
solution is to use an external bypass (flow-through cell) where the probe could be installed to
measure the medium permittivity without the presence of bubbles. The latter approach would require
modifications to the existing bioreactor. Finally, a more powerful signal filtration technique could be
applied, such as the Kalman filter [22].

It was noticed that the biomass yield varied between the fed-batch cultures that were performed.
Depending on the specific growth rate, the obtained biomass yield, YX/S, varied from 0.3 to 0.65 g/g.
This fact complicated the use of the initial feed flow rate calculation, (F0, Equation (5)) since both terms,
μsp and YX/S, are present in this equation and yet, they are interdependent. It could be interesting to
investigate more in depth the effect of the specific growth rate on the biomass yield, as suggested in [5].
By knowing at which growth rate a particular strain is more productive, industrial applications could
be optimized and their costs reduced.

This work highlighted the feasibility of controlling the specific growth rate of yeast in long-duration
fed-batch cultures and in spite of a noisy biomass measurement signal. The proposed approach should
be applicable to other microbial systems, as well as to mammalian cell cultures. In the latter case,
it is expected that the slower growth dynamics should allow a further reduction in signal noise
and oscillations.
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Abstract: Twenty fluorescent Pseudomonas isolates were tested for their ability to produce siderophores
on chrome azurol S (CAS) agar plates and their antagonistic activity against six plant pathogenic fungal
isolates was assessed. Scaling-up production of siderophores from the promising isolates, P. aeruginosa
F2 and P. fluorescens JY3 was performed using batch and exponential fed-batch fermentation. Finally,
culture broth of the investigated bacterial isolates was used for the preparation of two economical
bioformulations for controlling Fusarium oxysporum and Rhizoctonia solani. The results showed that
both isolates yielded high siderophore production and they were more effective in inhibiting the
mycelial growth of the tested fungi compared to the other bacterial isolates. Exponential fed-batch
fermentation gave higher siderophore concentrations (estimated in 10 μL), which reached 67.05% at
46 h and 45.59% at 48 h for isolates F2 and JY3, respectively, than batch fermentation. Formulated
P. aeruginosa F2 and P. fluorescens JY3 decreased the damping-off percentage caused by F. oxysporum
with the same percentage (80%), while, the reduction in damping-off percentage caused by R. solani
reached 87.49% and 62.5% for F2 and JY3, respectively. Furthermore, both formulations increased the
fresh and dry weight of shoots and roots of wheat plants. In conclusion, bio-friendly formulations
of siderophore-producing fluorescent Pseudomonas isolates can be used as biocontrol agents for
controlling some plant fungal diseases.

Keywords: Pseudomonas; siderophores; antagonism; batch fermentation; exponential fed-batch
fermentation; bio-friendly formulations; biocontrol

1. Introduction

Siderophores are a group of low-molecular-weight molecules (400–1500 Da) with a high affinity to
ferric ions. These molecules are secreted by different microorganisms in response to low-iron conditions;
a siderophore molecule forms a Fe-siderophore complex, which is recognized by membrane-receptor
proteins within the microorganism. After that, Fe-siderophore complex is transported into cell
periplasm, wherever it facilitates iron uptake [1,2]. Siderophores are iron chelators that have many
applications, such as iron chelation therapy, antibiotic carriers, inhibitors of metalloenzymes, promotion
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of plant growth, biocontrol of plant and fish pathogens, biocontrol of algal blooms, removal of petroleum
hydrocarbons from the marine environment, soil bioremediation, recovery of unusual earth elements
and modification of surfaces [3]. The role of siderophore production in the biocontrol of Erwinia
carotovora was demonstrated by Kloepper et al., 1980, who were the first to use pseudobactin-producing
Pseudomonas fluorescens, a type of siderophore, as a biocontrol agent. Several species of fluorescent
pseudomonads are able to secrete siderophores such as P. aeruginosa, P. fluorescens and P. syringae [4,5].
P. fluorescens, which secretes a hydroxamate-type siderophore revealed a high efficiency against
Macrophomina phaseolina, the pathogen causing peanut charcoal rot [6], while a catechol-type siderophore
produced by P. syringae had inhibitory effects on spore germination and mycelium morphology of
Fusarium oxysporum [7]. Maximization of siderophore production from fluorescent pseudomonad
isolates is performed in the bioreactor using different fermentation strategies [8–10]. There are three
common operational modes of fermentation process: batch, fed-batch and continuous fermentation [11].
Batch fermentation is a very simple process, where all the medium components are sterilized in the
vessel of bioreactor; however, some sensitive components might be sterilized separately and then added
after sterilization to the bioreactor. Then, the organism is inoculated into the vessel and its growth
is maintained inside this closed system until the end of the run without any further modification.
The main objective of the fermentation process is maximizing production of the biological product
or biomass, so that the process ends when the yield or products are achieved, when consumption
of nutrients and minerals has occurred, or when toxic products accumulate [11,12]. Fed-batch
fermentation is started with a batch phase and accomplished with a fed-batch phase by adding a
carbon source or any other nutrients to the bioreactor at the end of the exponential phase of the culture
growth (after consumption of the initial carbon source) without any removal of the fermentation
products until the end of the fermentation process. The medium components could be added to
the vessel according to designated feed rate (according model) to avoid the inhibitory effect of the
initial high concentration of any medium component that occurs in batch fermentation. This ensures
that the fed-batch fermentation process achieves high concentrations of the desired products [13].
There are different types of fed-batch fermentation according to the feeding strategy: constant [12],
exponential [14,15], linear [16], pulse [12], and feeding based on other models [17]. Both batch and
fed-batch strategies have been used for maximizing pyocyanin production from P. aeruginosa JY21 [12],
and to improve the production of biosurfactant from P. aeruginosa USM AR2 and MR01 [18,19].
In addition, these strategies have also been used for increasing the production of acetyl esterase from
Pseudomonas sp. ECU1011 [20]. Radha et al., 2014 enhanced the production of alkaline protease using
batch and fed-batch fermentation strategies from a mixed culture of P. putida and Staphylococcus aureus.
They reported1.18-fold increases in the activity of alkaline protease when the enzyme was produced
in a fed-batch fermentation compared to batch fermentation process [21]. Siderophores, which have
high affinity to ferric irons, are naturally produced by microorganisms under low-iron conditions.
The resulting Fe-siderophore complex becomes unavailable to other organisms, but the producing
strain can uptake this complex via a very specific receptor in its outercellular membrane [22,23]. By this
strategy, siderophores producing fluorescent Pseudomonas can restrict the growth of plant pathogens in
the rhizospher of plants. This mechanism is known as competition for iron nutrition, which is one of
the most important mechanisms of biological control of plant pathogens. Pyoverdin, a siderophore
produced by P. putida WCS358, was effective in controlling radish fusarium wilt disease, which is
caused by F. oxysporum f. sp. raphani [24]. In addition, P. fluorescens strains SPs9 and SPs20 that
produced siderophores were effective in the inhibition of tomato wilt pathogen, F. oxysporum f. sp.
lycopersici [5]. Siderophores play an imperative role in iron nutrition of plants, and consequently,
promote plant growth. Iron uptake by plants is usually enhanced by microbial siderophores, when the
plant is able to recognize the bacterial ferric-siderophore complex. Plants take in iron from bacterial
siderophores by means of different mechanisms, for example, chelation and release of iron, the direct
uptake of siderophore-Fe complexes, or by aligand exchange reaction [25]. Arabidopsis thaliana took up
Fe-pyoverdine complex synthesized by P. fluorescens C7, resulting in an increase in iron concentration
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inside the plant, and hence, improved plant growth [26]. The main goal of our study is maximizing the
production of siderophores from two Pseudomonas species, P. aeruginosa and P. fluorescens using batch
and exponential fed-batch fermentation strategies. We then test the ability of siderophore-producing
fluorescent pseudomonads to act as biocontrol agents against soil-borne fungi such as F. oxysporum
and Rhizoctonia solani, the major agents of damping off and root rot diseases for many different plant
crops that cause severe loss in the productivity of food and feed crops.

2. Materials and Methods

2.1. Bacterial and Fungal Isolates

2.1.1. Isolation of Fluorescent Pseudomonas Isolates

Isolation was carried out by the serial dilution method from forty soil samples of wheat, corn,
eggplant, cotton, pepper and clover collected from Alexandria, Monufia and Sohag in Egypt. Ten grams
of soil were suspended in 90 mL of sterile double distilled water and shaken for 1 h at 200 rpm.
Next, 200 μL of 10−5 and 10−6 dilutions were spread onto King’s B medium plates. After inoculation,
plates were incubated at 28 to 30 ◦C for 1 to 2 days. Fluorescent Pseudomonas isolates were recognized
by the formation of green fluorescence pigments in and around the colonies when exposed to ultraviolet
light. Fluorescent Pseudomonas cultures were purified using the single colony technique and examined
under light microscope after staining by Gram stain to confirm their purity.

2.1.2. Bacterial and Fungal Isolates from Culture Collection

Four fluorescent pseudomonad isolates, P. fluorescens JY3, JY7, JY8 and JY13 (GenBank accession
number, KF922490, KF922494, KF922495 and KF922500, respectively) (Table 1), and six fungal isolates,
Alternaria spp., F. culmorum, F. oxysporum isolate A, F. oxysporum isolate B, F. solani and R. solani
used in the current study were kindly provided by the City of Scientific Research and Technological
Applications (SRTA-City).

Table 1. Fluorescent Pseudomonas isolates used in the current study.

Fluorescent Pseudomonas Isolates Isolated in the Current Study

Isolate Code Plant Rhizosphere Isolation Governorate
GPS Coordinates

GenBank Accession Number
Latitude Longitude

F1 Corn Monufia 30.5972455 30.9876321
F2 Eggplant Monufia 30.5972455 30.9876321 MG210480
F3 Pepper Alexandria 31.200092 29.918739
F4 Pepper Alexandria 31.200092 29.918739
F5 Eggplant Alexandria 31.200092 29.918739
F6 Eggplant Alexandria 31.200092 29.918739
F7 Cotton Sohag 26.549999 31.700001 MG076939
F8 Corn Sohag 26.549999 31.700001 MG210481
F9 Cotton Sohag 26.549999 31.700001

F10 Corn Sohag 26.549999 31.700001
F11 Corn Sohag 26.549999 31.700001
F12 Corn Sohag 26.549999 31.700001
F13 Wheat Sohag 26.549999 31.700001
F14 Clover Sohag 26.549999 31.700001
F15 Wheat Sohag 26.549999 31.700001
F16 Clover Sohag 26.549999 31.700001

Pseudomonas fluorescens Isolates Provided from Culture Collection

Isolate Code GenBank Accession Number

JY3 KF922490
JY7 KF922494
JY8 KF922495
JY13 KF922500
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2.2. Screening for Siderophores Production Using CAS Assay

2.2.1. Qualitative Assay

All fluorescent Pseudomonas isolates were checked for their capability to secrete siderophores.
Detection of siderophores was performed on chrome azurol S CAS agar plates [27] where the detection
depends on the high affinity of siderophores to chelate iron, so that, in the presence of siderophores the
colure of medium changes from greenish blue to orange. Pseudomonas isolates were grown in succinic
medium contained 4 g succinic acid; 6 g KH2PO4; 4 g K2HPO4; 0.2 g MgSO47H2O; 1 g (NH4)2SO4 and
dH2O up to 1000 mL [28] for 24 h at 200 rpm and 30 ◦C. Next, 10 mL of each culture was centrifuged
at 10,000 rpm for 10 min and then the supernatant was filtrated throughout a 0.2 μ syringe filter.
Five wells were made in each CAS agar plate and each well was filled with 80 μL of culture filtrate.
Plates were then incubated at 30 ◦C for 24 h and the presence of siderophores was detected visually.

2.2.2. Quantitative Assay

Pseudomonas isolates were cultured in succinic medium for 24 h at 200 rpm and 30 ◦C. A 1.5 mL
volume of each culture was centrifuged at 10,000 rpm for 10 min. The relative level of siderophores
was measured in a fixed volume of supernatant (10 μL) using the CAS assay method according to
Schywan and Neilands (1987) [27]. Next, a 0.5 mL CAS assay solution was added to 10 μL of culture
supernatant and mixed well, then 10 μL of Shuttle solution was added, mixed, and the mixture was
left at room temperature for few minutes. The disappearance of the blue color relates to the presence
of siderophores. The absorbance was measured at 630 nm using the media as blank. The relative level
of siderophores was calculated based on the following formula:

Relative level of siderophores % = Ar − As/Ar × 100

Ar refers to absorption of CAS solution plus media plus shuttle solution whereas, As refers to
absorption of CAS solution plus culture supernatant plus shuttle solution.

2.3. Antagonistic Effect of Fluorescent Pseudomonad Isolates (Dual Culture Method)

Antagonistic effects of all fluorescent pseudomonad isolates were tested against Alternaria spp.,
F. culmorum, F. oxysporum isolate A, F. oxysporum isolate B, F. solani and R. solani using the dual culture
method according to Toure et al., 2004 [29]. Antagonistic isolates were streaked as a streak line with a
loopfull of 2 day-old culture on potato dextrose agar plates, and incubated for 48 h prior inoculation by
any tested fungus. A mycelial disc (5 mm in diameter) of an actively growing culture of the checked
fungus was placed in the center at a standard distance close the other edge of the Petri plate and
incubated at 30 ◦C for 3–7 days. Inhibition zones (the distance among the edge of antagonistic bacterial
growth and the edge of fungal growth) were measured. All experiments were carried out in three
replicates for each fungus.

2.4. Molecular Identification of Bacterial Isolates

Total DNA was extracted according to Istock et al., 2001 [30] from fluorescent Pseudomonas
isolates F2, F7 and F8, which produced a higher percentage of siderophores production than the other
Pseudomonas isolates that were isolated in the current investigation. The complete length of the 16S rRNA
gene was amplified according to Matar et al., 2009 [31] using two universal primers, Start (forward)
5′ AGAGTTTGATCMTGGCTCAG 3′ and End (reverse) 5′ TACGGYACCTTGTTACGACTT 3′.
The amplified 16S rRNA gene of Pseudomonas isolates was purified and sequenced based on enzymatic
chain terminator technique by the use of a Big Dye terminator sequencing kit. After that, the nucleotide
sequences were aligned with pseudomonad 16S rRNA gene sequences obtained from GenBank database
(http://www.ncbi.nlm.nih.gov). The phylogenetic tree was constructed with the UPGMA method using
MEGA software version 5 and the number of bootstraps replications was 2000.
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2.5. Fermentation Experiments

2.5.1. Bioreactor

Fermentation experiments were carried out in a 10-L bench-top bioreactor (Cleaver, Saratoga, CA,
USA) [26]. Temperature was monitored at 25 ◦C while the pH was adjusted to 7 by adding HCl 2 N
and NaOH 2 N using feeding pumps. Aeration was performed using sterilized air that was supplied at
0.5 VVM (air volume per broth volume per minute). Agitation speed ranged between 200 to 600 rpm to
keep the percentage of dissolved oxygen more than 30%. DO percentage and pH values were recorded
automatically using the online module.

2.5.2. Batch Fermentation

P. aeruginosa F2 and P. fluorescens JY3 (GenBank accession number, MG210480 and KF922490),
which have the greatest percentage of siderophores, were cultivated in the bioreactor using a volume
of 5 L of optimized medium for siderophore production. The medium contained 20 mL glycerol;
14.5 g glucose; 1 g glutamic acid; 4 g sodium succinate; 5 g asparagine; 0.1 g urea; 1 g (NH4)2SO4; 1 g
kH2PO4; 3.5 g K2HPO4; 1 g MgSO4; 0.5 μM FeCl3 and dH2O up to 1000 mL, pH 7 for P. aeruginosa
F2 [27]. However, P. fluorescens JY3 was cultivated on optimized medium contained 10 mL glycerol; 1 g
glucose; 0.5 g glutamic acid, 3.14 g sodium succinate; 1 g asparagine; 0.1 g urea; 0.1 g (NH4)2SO4; 6 g
kH2PO4; 4 g K2HPO4; 0.1 g MgSO4; 0.62 μM FeCl3 and dH2O up to 1000 mL, pH 7 [32]. Cultivation
of P. aeruginosa F2 and P. fluorescens JY3 in the bioreactor started with optical density (O.D600nm) of
0.3 as an inoculum size by inoculation from seed culture of LB broth of each strain. Several samples
from each culture were taken at time intervals for the determination of relative level of siderophores,
biomass, glucose and glycerol.

2.5.3. Fed-batch Fermentation

Fed-batch fermentation was initiated with batch phase using 5 L of optimized medium as
previously described. At the end of exponential phase, a feeding step was created by adding the
feeding medium of that every 1-L of optimized medium, including 10-fold of each medium component
except kH2PO4 and K2HPO4, which were added with original weights shown in the optimized
media and without 10-fold increase . The feeding strategy for each strain was accomplished using a
exponential programmed feed rate that was initialized with a rate of 1.5 mL min−1 to finish at rate of
22.5 mL min−1 [15].

2.6. Analytical Procedures

2.6.1. Relative Level of Siderophores

Relative level of siderophores was determined by CAS assay method according to Schywan and
Neilands (1987) as mentioned before [27].

2.6.2. Biomass Estimation

Dry cell weight was estimated according to Van Dam-Mieras et al., 1992 [33].

2.6.3. Glucose Estimation

Glucose concentration was estimated using enzymatic colorimetric kit (Diamond
Diagnostics, Egypt).

2.6.4. Glycerol Estimation

Glycerol concentration was estimated by the method developed by Bok and Demain (1977) [34].
One mL of supernatant containing glycerol was added to 1 mL of 15 mM sodium metaperiodate in
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0.12 M HCl in a test tube and incubated at room temperature for 10 min. After oxidation of periodate,
2 mL of 0.1% (w/v) L-rhamnose solution was added to the test tube in order to remove the excessive
periodate ions. After mixing, 4 mL of Nash reagent containing ammonium acetate (150 g mL−1),
acetic acid (0.2%, v/v) and acetylacetone (0.2%, v/v) were added. The color of the mixture was allowed
to develop for 15 min in a water bath at 53 ◦C. After cooling, the optical density of the mixture was
measured at 412 nm using a spectrophotometer and converted into glycerol concentration (g L−1)
according to a calibration curve (ranging from 0 to 40 mg L−1).

2.7. Application of Siderophores-Producing Pseudomonas Isolates as Biocontrol Agents

2.7.1. Formulation Experiment

Culture broth of P. aeruginosa F2 and P. fluorescens JY3 obtained from fed-batch fermentation
containing 2.0×109cfu mL−1 was formulated using talc powder (TP) as a carrier with some other
additives that include glycerol or glucose as a carbon source and carboxymethylcellulose (CMC) as an
adhesive. Also, calcium carbonate was added to the mixture for adjusting the pH to 7 [35].

2.7.2. Fungal Inoculum Preparation

Inoculums of F. oxysporum and R. solani were prepared using sorghum/coarse sand/water
(2:1:2 v/v/m) medium. All components were combined, packed and sterilized for 2 h. Agar discs,
obtained from the edge of 5-day-old culture of each investigated fungus were inoculated into the
sterilized medium. After two weeks of incubation at 30 ◦C, fungal inoculums became available for soil
infestation [36].

2.7.3. Soil Infestation

Inoculums of F. oxysporum and R. solani were added independently to the soil surface of each
pot at the rate of 2% w/w, and then coated with a thin film of autoclaved soil. The infested pots were
irrigated and reserved for 7 days before sowing.

2.7.4. Disease Assessment

Disease assessment was estimated as a percentage of damping-off (pre- and post-emergence) after
7 and 21 days from sowing, respectively, using the following formula:

% Pre-emergence = No. of non-emerged seedlings/No. of sown seeds × 100

% Post-emergence = No. of dead emerged seedlings/No. of sown seeds × 100

% Damping-off =% Pre-emergence +% Post-emergence

2.7.5. Greenhouse Experiment

A pots experiment was performed to study the effect of the formulated P. aeruginosa F2 and
P. fluorescens JY3 for the biocontrol of F. oxysporum isolate A and R. solani. Pots (18 × 18 cm diameter)
containing sterilized soil infested as previously declared. Nine treatments were performed as follows:
(1) F. oxysporum; (2) R. solani; (3) untreated and uninfected control (healthy); (4) P. aeruginosa F2
formulation; (5) P. fluorescens JY3 formulation; (6) F2 formulation + F. oxysporum; (7) JY3 formulation +
F. oxysporum; (8) F2 formulation + R. solani and (9) JY3 formulation + R. solani. Five wheat seeds were
sown per pot, three replicate (pots) were used for each treatment. Seeds of wheat were treated with the
formulations as seed drench at a dose of 10 g kg−1 of seeds. Formulations were applied twice at a dose
of 3 kg acre−1, 15 and 30 days after seed sowing as a soil drench.
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2.8. Statistical Analysis

Analysis of variance (ANOVA) was used to analyze the results achieved in this study using CoStat
software. The least significant difference (LSD) at P ≤ 0.05 level of probability was utilized for detecting
significant differences among treatments.

3. Results

3.1. Isolation of Fluorescent Pseudomonas Isolates

Sixteen fluorescent Pseudomonas isolates were isolated using King’s B medium (Table 1). The green
fluorescent colonies were picked up under UV light, and further purified by repeated streaking (single
colony) on the same medium, and examined under light microscope.

3.2. Screening for Siderophores Production

All bacterial isolates were screened qualitatively and quantitatively for siderophore production.
In a primary step, qualitative screening has been performed using CAS agar plates. All isolates that

formed a yellow to orange zone around the pure colony indicated a positive siderophore production.
In addition, in the agar well diffusion method, when cell-free supernatant of each culture was applied to
the wells of CAS agar plates, a yellow to orange halo was observed around the wells that indicates the
production of siderophores (Figure 1A). In order to confirm previously obtained results, siderophores
produced by all bacterial isolates were quantitatively measured in liquid cultures. P. fluorescens JY3
and P. aeruginosa F2 showed the highest production of siderophores (1.758% and 1.749%, respectively).
Also, P. aeruginosa F7 and F8 that were isolated in the current work gave a high percentage of siderophore
production but P. fluorescens JY8 showed the lowest production of siderophores (0.011%) in a fixed
10 μL using succinic medium (Figure 1B).

Table 2. Antagonistic effects of fluorescent Pseudomonas isolates against growth of some phytopathogenic
fungi using the dual culture method.

Pseudomonas Isolates

Vertical Distance of Inhibition Diameter (cm)

Alternaria Sp F. culmorum F. oxysporum
Isolate A

F. oxysporum
Isolate B

F. solani R. solani

F1 *2.00 ± 0.17 bcd** 2.13 ± 0.45 abcd 2.20 ± 0.10 a 1.70 ± 0.10 a 2.07 ± 0.21 abc 1.63 ± 0.15 e

F2 2.23 ± 0.21 ab 2.47 ± 0.06 a 2.10 ± 0.29 abc 1.70 ± 0.20 a 2.23 ± 0.30 a 2.23 ± 0.21 a

F3 1.37 ± 0.32 e 1.87 ± 021 de 1.60 ± 0.10 fg 1.43 ± 0.06 abc 1.37 ± 0.32 gh 1.77 ± 0.21 de

F4 1.80 ± 0.26 d 1.90 ± 0.26 de 1.80 ± 0.20 def 1.60 ± 0.10 ab 1.80 ± 0.26 cde 2.10 ± 0.36 abc

F5 2.27 ± 0.25 a 2.10 ± 0.17 bcd 1.80 ± 0.10 def 1.60 ± 0.00 ab 2.13 ± 0.25 ab 2.10 ± 0.15 abc

F6 1.43 ± 0.12 e 1.80 ± 0.10 de 1.67 ± 0.15 efg 1.53 ± 0.15 abc 1.47 ± 0.15 fg 2.10 ± 0.10 abc

F7 2.13 ± 0.06 abc 2.27 ± 0.15 abc 2.17 ± 0.15 ab 1.57 ± 0.11 abc 2.13 ± 0.21 ab 2.10 ± 0.35 abc

F8 2.00 ± 0.10 bcd 2.13 ± 0.15 abcd 1.97 ± 0.12 bcd 1.57 ± 0.49 abc 2.00 ± 0.10 abcd 2.00 ± 0.36 abcd

F9 2.17 ± 0.25 ab 2.33 ± 0.25 ab 1.63 ± 0.12 efg 0.87 ± 0.32 d 2.07 ± 0.25 abc 2.07 ± 0.15 abc

F10 2.23 ± 0.12 ab 2.00 ± 0.10 bcde 1.93 ± 0.15 cd 1.43 ± 0.15 abc 2.23 ± 0.12 a 2.17 ± 0.20 ab

F11 2.10 ± 0.26 abc 2.07 ± 0.21 bcd 1.53 ± 0.15 gh 1.23 ± 0.06 c 2.10 ± 0.10 ab 2.23 ± 0.21 a

F12 1.90 ± 0.10 cd 1.97 ± 0.06 cde 1.27 ± 0.21 ij 1.27 ± 0.59 bc 1.90 ± 0.10 bcde 1.90 ± 0.26 bcde

F13 2.10 ± 0.26 abc 1.70 ± 0.36 e 1.83 ± 0.21 de 1.50 ± 0.10 abc 2.10 ± 0.26 ab 1.90 ± 0.20 bcde

F14 0.00 ± 0.00 g 2.10 ± 0.10 bcd 1.60 ± 0.10 fg 0.00 ± 0.00 e 0.00 ± 0.00 j 1.63 ± 0.15 e

F15 0.00 ± 0.00 g 0.00 ± 0.00 h 1.33 ± 0.15 hi 0.00 ± 0.00 e 0.00 ± 0.00 j 0.00 ± 0.00 h

F16 0.00 ± 0.00 g 1.33 ± 0.42 f 0.00 ± 0.00 k 0.00 ± 0.00 e 0.67 ± 0.31 i 1.83 ± 0.25 cde

P. fluorescens JY3 0.63 ± 0.15 f 1.07 ± 0.15 fg 1.07 ± 0.15 j 1.23 ± 0.15 c 1.77 ± 0.38 de 0.63 ± 0.10 g

P. fluorescens JY7 0.10 ± 0.00 g 0.77 ± 0.21 g 0.00 ± 0.00 k 0.30 ± 0.10 e 1.17 ± 0.10 h 0.00 ± 0.00 h

P. fluorescens JY8 0.13 ± 0.00 g 0.00 ± 0.00 h 0.00 ± 0.00 k 0.00 ± 0.00 e 1.40 ± 0.10 fgh 1.07 ± 0.06 f

P. fluorescens JY13 0.00 ± 0.00 g 0.93 ± 0.25 g 0.00 ± 0.00 k 0.00 ± 0.00 e 1.67 ± 0.15 ef 0.00 ± 0.00 h

L.S.D 0.266 0.360 0.222 0.342 0.276 0.296

* Means in each column followed by the identical letter do not differ significantly at P≤ 0.05 level; ** Significant letters.
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Figure 1. (A) Qualitative assay of siderophore production on chrome azurol S (CAS) agar plates using
supernatant of some fluorescent Pseudomonas isolates; (B) Relative level of siderophores produced by
fluorescent Pseudomonas isolates grown on succinic medium using CAS assay and (C) antagonistic
effect of Pseudomonas aeruginosa F2 and Pseudomonas fluorescens JY3 against Fusarium solani, plate on the
left in each photo is the corresponding control without the antagonist (data are presented in Table 2).

3.3. Antagonistic Effect of Fluorescent Pseudomonad Isolates (Dual Culture Method)

This experiment aimed to investigate the antagonistic effect of the experimental Pseudomonas
isolates on the growth of some tested plant pathogenic fungi using dual culture technique. Isolate F2
was the most efficient isolate in inhibiting the mycelial growth of all tested pathogens. On the other
hand, isolates F14, F15, F16, JY7, JY8 and JY13 showed a weak antagonistic activity (Table 2). All tested
Pseudomonas isolates showed antagonistic activity against Alternaria sp. except Pseudomonas isolates F14,
F15, F16 and JY13. Pseudomonas isolate F5 followed by isolates F2, F9 and F10, which showed
no significant differences among each other, were the most effective isolates in inhibiting the
mycelial growth of Alternaria sp. Meanwhile, F2 had more antagonistic activity than the other
fluorescent Pseudomonas isolates on F. calmorum. All Pseudomonas isolates showed antagonistic activity
against F. oxysporum isolate A except F16, JY7, JY8 and JY13, where Pseudomonas isolate F1 had a
more-antagonistic effect on F. oxysporum isolate A compared to the other isolates followed by F7.
Pseudomonas isolates F1 and F2 followed by F4 and F5 followed by F7 and F8 were the most effective
isolates in inhibiting the mycelial growth of F. oxysporum isolate B, but Pseudomonas isolate F2 had
more antagonistic activity than the other fluorescent Pseudomonas isolates on F. solani and R. solani
(Figure 1C).

3.4. Molecular Identification of Bacterial Isolates

Pseudomonas isolates F2, F7 and F8, which produced a higher percentage of siderophore production
than the other Pseudomonas isolates isolated in the current study, were identified based on sequencing
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of 16S rRNA gene. A database search to identify the bacterial isolates was achieved in BLAST search at
the National Center for Biotechnology Information site (http://www.ncbi.nlm.nih.gov). Blast results
revealed that sequences of isolates F2, F7 and F8 were almost similar to several P. aeruginosa strains with
homology percentage of 99%. Pseudomonas isolates F2, F7 and F8 were identified as P. aeruginosa with
accession numbers of MG210480, MG076939 and MG210481, respectively (Table 1). A phylogenetic tree
of the 16S rRNA gene that was generated using the nucleotide sequences of the fluorescent Pseudomonas
isolates F2, F7 and F8 (obtained in the current investigation) and other pseudomonad 16S rRNA gene
sequences (obtained from GenBank database) revealed that two major clusters exist. Cluster 1 included
Cellvibrio ostraviensis, while all fluorescent Pseudomonas isolates obtained in this study and provided
from GenBank database were clustered in cluster 2. This cluster is divided into two groups: the first
group included P. aeruginosa F2, F7 and F8 with the other P. aeruginosa strains provided from GenBank;
while the second group contained P. fluorescens, P. putida, P. chlororaphis, P. syringae and P. meliae
(Figure 2).

Figure 2. Phylogenetic tree of fluorescent Pseudomonas isolates F2, F7 and F8 obtained in the current
study and validly described members of the genus Pseudomonas based on the nucleotide sequences of
the 16S rRNA gene. Phylogenetic tree was constructed with UPGMA method using MEGA version 5
and the number of bootstraps replications is 2000.

3.5. Batch Fermentation

Batch fermentation technique in the bioreactor was used in this study to enhance siderophores
production from P. aeruginosa F2 and P. fluorescens JY3 compared to cultivation in shake flasks,
which produced a low relative level of siderophores in our previous study. Batch fermentation
was performed using P. aeruginosa F2 and P. fluorescens JY3 in a 10-L bench-top bioreactor (Cleaver,
Saratoga, CA, USA), where both isolates produced a higher percentage of siderophores production
than the other Pseudomonas isolates that were screened in the current work. Figure 3A shows the
relative level of siderophores, cell biomass, glucose and glycerol concentrations of the culture broth
of P. aeruginosa F2 plotted against time. Cell biomass of P. aeruginosa F2 increased slowly during lag
phase, which continued for 5 h. After that, the culture entered exponential phase (log phase) where the
biomass increased rapidly with a constant specific growth rate, μ of 0.043 h−1. The dissolved oxygen
decreased as a result of the increasing demand for O2 that is required for bacterial growth (Figure 3B).
To assure sufficient oxygen provided, oxygen was maintained at over 30% by increasing the agitation
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rate. After 41 h the dissolved oxygen was increased gradually until the end of the run. The maximum
biomass achieved was 10.3 g L−1 at 38 h. Relative level of siderophores reached 1.91% at 12 h but it
accomplished its maximum value of 31.9% at 40 h. Glycerol concentration decreased slowly and it was
not fully consumed as its value reached 4.5 g L−1 at 50 h but glucose concentration decreased rapidly
and it was fully consumed at 26 h. Relative level of siderophores, biomass and glycerol concentration
in the culture broth of P. fluorescens JY3 against time are shown in Figure 4A, where relative level of
siderophores achieved was 1.97% at 12 h, reaching its maximum value of 23.9% at 48 h. Moreover,
the maximum biomass achieved was 5.2 g L−1 at 24 h and glycerol concentration decreased gradually
to reach 0.25 g L−1 at 52 h. P. fluorescens JY3 cell biomass increased exponentially with specific growth
rate, μ of 0.096 h−1. The dissolved oxygen decreased rapidly and reached 30% in the first hour, so that,
motor speed was increased and accordingly agitation rate increased until 6 h, consequently, dissolved
oxygen increased rapidly as a result of increasing agitation speed (Figure 4B).

Figure 3. (A) Relative level of siderophores, biomass, glucose concentration and glycerol concentration
as a function of time for batch fermentation culture broth of Pseudomonas aeruginosa F2 and (B) dissolved
oxygen, agitation and aeration as a function of time during batch fermentation of Pseudomonas
aeruginosa F2.
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Figure 4. (A) Relative level of siderophores, biomass and glycerol concentration as a function of time
for batch fermentation culture broth of Pseudomonas fluorescens JY3 and (B) dissolved oxygen, agitation
and aeration as a function of time during batch fermentation of Pseudomonas fluorescens JY3.

3.6. Fed-Batch Fermentation

Maximization of siderophores production from P. aeruginosa F2 and P. fluorescens JY3 was
completed using fed-batch technique. Fed-batch fermentation was carried out in a 10-L bench-top
bioreactor (Cleaver, Saratoga, USA) using P. aeruginosa F2 and P. fluorescens JY3, which produced the
highest percentage of siderophores production compared to other Pseudomonas isolates screened in this
study. The fed-batch process was started with a batch phase and completed using a fed-batch phase
using exponential feed rate. The fed-batch stage initiated with the addition of the feeding medium
using an exponential feeding type of prearranged feed rate. The feeding started with an initial rate of
1.5 mL min−1 until it reached the final rate of 22.5 mL min−1. Figure 5A illustrates relative level of
siderophores, biomass and glucose/glycerol concentration of the culture broth of P. aeruginosa F2 as a
function of time. During the batch step, the culture grew exponentially with a constant specific growth
rate. Dissolved oxygen decreased quickly during the exponential phase due to the increasing demand
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for O2 that is required for the growing cell mass. The oxygen was held in reserve at above 30% by
controlling motor speed and consequently agitation rate (Figure 5B).

 

Figure 5. (A) Relative level of siderophores, biomass, glucose concentration and glycerol concentration
as a function of time for fed-batch fermentation culture broth of Pseudomonas aeruginosa F2 and
(B) dissolved oxygen, agitation and aeration as a function of time during fed-batch fermentation of
Pseudomonas aeruginosa F2.

The relative level of siderophores reached 1.8% at 18 h and then increased rapidly to achieve 37.8%
at 40 h but it reached its maximum value of 67.05% at 46 h. The maximum biomass was 15.8 g L−1 at
39 h. Glucose concentration decreased rapidly and it was fully consumed at 24 h. In addition, glycerol
concentration decreased slowly and was not fully consumed at 24 h; its value reached 10.36 g L−1.
After feeding, the glycerol concentration increased for a short period and then decreased rapidly to
near zero at the end of the run.

In thecase of P. fluorescens JY3, cell biomass increased exponentially with a specific growth rate.
The relative level of siderophores, biomass and glycerol concentration against time are shown in
Figure 6A. The relative level of siderophores reached 1.92% at 16 h and increased rapidly to reach
19.24% at 36 h, achieving its maximum value of 45.59% at 48 h. The maximum biomass achieved
was 13.7 g L−1 at 44 h. Glycerol concentration decreased gradually and reached 2.89 g L−1 at 24 h.
After feeding, glycerol concentration increased gradually for some time to reach 4.75 g L−1 at 42 h and
decreased again to reach 2.85 g L−1 at the end of the process. The dissolved oxygen decreased rapidly,

46



Processes 2020, 8, 455

therefore the concentration of oxygen was restricted to a value of 30% by increasing the speed of motor
to the desired agitation rate. The rise of the agitation rate resulted in an increase in the dissolved
oxygen concentration in the medium until 8 h; after this point dissolved oxygen increased gradually.
Once feeding starts, the dissolved oxygen decreased rapidly, and consequently the agitation speed was
increased gradually (Figure 6B). The fed-batch fermentation technique produced the highest percentage
of relative level of siderophores of all methods, so cultures of P. aeruginosa F2 and P. fluorescens JY3
obtained by fed-batch fermentation were used for the preparation of talc formulations to be utilized as
biocontrol agents.

 

Figure 6. (A) Relative level of siderophores, biomass and glycerol concentration as a function of time for
fed-batch fermentation culture broth of Pseudomonas fluorescens JY3 and (B) dissolved oxygen, agitation
and aeration as a function of time during fed-batch fermentation of Pseudomonas fluorescens JY3.

3.7. In-Vivo Antagonistic Effect of P. aeruginosa F2 and P. fluorescens JY3 against Some Phytopathogenic Fungi

Formulations of siderophores-producing Pseudomonas isolates using talc powder as a carrier were
applied as biocontrol agents in a soil infested with F. oxysporum and R. solani. Wheat seeds were
treated with the formula and sown after seven days of soil infestation. Damping-off percentage and
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reduction percentage were evaluated. In addition, fresh and dry weights of shoots and roots were
weighed. Formulations of P. aeruginosa F2 and P. fluorescens JY3, which produced a higher percentage of
siderophores production than other Pseudomonas isolates used in this work, were effective in reducing
damping-off caused by F. oxysporum and R. solani compared to the control infested with plant pathogens.
Damping-off percentage caused by F. oxysporum and R. solani reached 33.3% and 53.3%, respectively.
Meanwhile, treatments using formulations of F2 and JY3 in a soil infected with F. oxysporum were
effective in reducing damping-off percentage, which was decreased to reach 6.67% with a reduction
percentage of 80%. Formulation of P. aeruginosa F2 in a soil infected with R. solani was more effective in
reducing damping-off percentage compared to the formulation of P. fluorescens JY3, as the damping-off
percentage recorded 6.67% and 20% with a reduction percentage of 87.49% and 62.5%, respectively
(Table 3). Both formulations stimulated the growth of wheat plants in a soil infected with F. oxysporum
and R. solani compared to the other control treatments inoculated with each fungus alone. Fresh and
dry weights of shoots and roots increased significantly in treatments with formulations of P. aeruginosa
F2 and P. fluorescens JY3 in a soil infected with plant pathogenic fungi. Treatment using formulation of
F2 in a soil infected with F. oxysporum increased the fresh weights of shoots and roots of wheat plants,
which reached 3.77 g and 3.3 g with increase percentages of 45.09% and 49.39%, respectively. Whereas,
there was a 3.33 g and 2.93 g increase in fresh weights of shoots and roots, with increased percentage
to 37.84% and 43%, respectively, in the case of treatment using JY3 formulation. In comparison with
F. oxysporum treatment alone, fresh weights of shoots and roots reached 2.07 g and 1.67 g, respectively.
Fresh weights of shoots were 3.53 g and 3.27 g with increase percentage of 72.52% and 70.34% in
treatments using F2 and JY3 formulation in a soil infected with R. solani, respectively, compared to
treatment using the fungus alone that recorded 0.97 g. The fresh weights of roots reached 3.1 g and
2.83 g with an increased percentage of 80.65% and 78.8% using the same formulations in comparison
with treatment using the fungus alone that reached 0.6 g (Table 4). The results of dry weights of
shoots and roots obtained in this study elucidated the efficiency of treatments using formulations of
P. aeruginosa F2 and P. fluorescens JY3 in increasing the dry weights of shoots in a soil infected with
F. oxysporum and R. solani. The increase in shoot dry weight reached 2.83 g, 2.47 g, 2.63 g and 2.37 g,
with increased percentage of 63.6%, 58.3%, 87.45% and 86.08%, respectively while the dry weights of
shoots in the case of treatments using F. oxysporum and R. solani reached 1.03 g and 0.33 g, respectively.
The dry weights of roots recorded 2.3 g, 2.03 g, 2.2 g and 1.83 g, with increase percentage of 55.22%,
49.26%, 91.82% and 90.16%, respectively. Whereas treatments using F. oxysporum and R. solani recorded
1.03 g and 0.18 g, respectively (Table 4).

Table 3. Effect of culture formulations of Pseudomonas aeruginosa F2 and Pseudomonas fluorescens JY3 on
damping-off of wheat plants caused by Fusarium oxysporum and Rhizoctonia solani.

Treatment Damping Off (%)
Reduction W

(%)
Reduction X

(%)

1. F. oxysporum (check) *33.33 ± 11.55 ab** 0 n.d.
2. R. solani (check) 53.33 ± 23.09 a n.d. 0
3. Control 20.00 ± 00.00 b 40 62.50
4. P. aeruginosa F2 13.33 ± 11.55 b 60 75
5. P. fluorescens JY3 13.33 ± 11.55 b 60 75
6. F2 + F. oxysporum 06.67 ± 11.55 b 80 n.d.
7. JY3 + F. oxysporum 06.67 ± 11.55 b 80 n.d.
8. F2 + R. solani 06.67 ± 11.55 b n.d. 87.49
9. JY3 + R. solani 20.00 ± 00.00 b n.d. 62.50
L.S.D 28.78

W Reduction % (in case of F. oxysporum) = [check-treatment]/check × 100; X Reduction % (in case of R. solani) =
[check-treatment]/check × 100; * Means in each column followed by the identical letter do not differ significantly at
P ≤ 0.05 level; ** Significant letters; “n.d.” not determined.
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4. Discussion

Siderophores are produced by several microorganisms such as Pseudomonas, Enterobacter and
Escherichia coli [5,8,37,38]. In our study, twenty siderophores-producing Pseudomonas isolates were
evaluated as biocontrol agents for their in-vitro antagonistic effect against the growth of some plant
pathogenic fungi (Alternaria spp., F. culmorum, F. oxysporum isolate A, F. oxysporum isolate B, F. solani
and R. solani). P. aeruginosa isolate F2 was more effective in significantly inhibiting the mycelial
growth of all the tested fungi than other Pseudomonas isolates. These results are in harmony with
the results obtained by Pàez et al., 2005 who reported that P. aeruginosa was more efficient than
P. fluorescens in inhibiting some plant pathogenic fungi [39]. Also, Sasirekha and Srividya (2016)
reported that siderophores-producing P. aeruginosa FP6 had antagonistic activity against R. solani [40].
Also, Islam et al., 2018 showed that P. aeruginosa RKA5 inhibited mycelia growth of F. oxysporum f. sp.
cucumerinum [41]. On the other hand, Ahmedzedah et al., 2006 reported that 13 out of 47 fluorescent
Pseudomonas isolates showed antagonistic effects against Fusarium sp. and R. solani [42].

The optimal performance of the upstream processing using on-line and off-line sensors in the
two basic types of fermentation (batch, and fed-batch) was studied. Batch and fed-batch fermentation
processes were accomplished to enhance the cell biomass and to achieve high concentrations of
siderophores. In batch fermentation of P. aeruginosa F2 and P. fluorescens JY3, cells grew rapidly
after the lag phase, which continued for 5 h. Biomass was subsequently increased exponentially
with a constant specific growth rate of 0.043 h−1 and 0.096 h−1, respectively, within the exponential
phase. Batch fermentation of isolates F2 and JY3 in the bioreactor produced the highest concentration
of biomass and siderophores. In isolate F2, maximum values of 10.3 g L−1 at 38 h and 31.9% at
40 h, respectively, were reached, while values of 5.2 g L−1 at 42 h and 23.9% at 48 h were recorded
for isolate JY3, respectively. On the other hand, maximum biomass of P. aeruginosa PAO1 and
P. fluorescens NCIM5096 was 1.6 and 1.96 g L−1, respectively [8,43]. Maximization of biomass and
siderophores concentration in the bioreactor may be related to optimal conditions of pH, agitation,
and aeration, which are provided by the bioreactor for cell growth and production of siderophores.
Batch fermentation could not obtain high cell density and high concentration of product because
cells suffer from substrate inhibition and catabolite repression. Accumulation of by-products such
as acetic acid and propionic acid during batch fermentation was documented [9,44,45]. High partial
pressure of CO2, high concentration of carbon source and high specific growth rate might be responsible
for the accumulation of by-products that cause suppression of bacterial growth and production of
products [46]. So, to obtain high cell density and high concentrations of siderophores, fed-batch
fermentation is favored to reduce by-products production and to get rid of substrate suppression.
Exponential fed-batch fermentation of P. aeruginosa F2 and P. fluorescens JY3 gave higher cell mass
and siderophores concentration than batch fermentation. Biomass and siderophore estimation of
P. aeruginosa F2 reached its maximum value of 15.8 g L−1 at 39 h and 67.05% at 46 h, respectively while
they reached 13.7 g L−1 at 44 h and 45.59% at 48 h by P. fluorescens JY3, respectively. Sarma et al., 2010,
obtained high cell density from fluorescent pseudomonad R81 using fed-batch fermentation [9].

The fact that P. aeruginosa is classified as a risk group 2 biological agent that rarely represents
a serious health threat to human is evident [47–49]. In addition, the fact that this organism was
isolated from the rhizosphere of edible plants from agricultural fields, as a member of the natural
microflora found in the native soil, gave us confidence to continue working with this microorganism.
Therefore, the current study used P. aeruginosa, as an effective biocontrol agent. Formulations
of siderophores-producing Pseudomonas isolates, which were used as biocontrol agents in a soil
infected with F. oxysporum and R. solani, were efficient in decreasing damping-off. The biocontrol
mechanism of siderophores-producing fluorescent pseudomonads could be explained by their
ability to chelate and reduce the amount of ferric ions available in rhizosphere (competition for
iron nutrition). By this means, siderophores-producing fluorescent pseudomonads may restrict
plant pathogens in the rhizosphere and reduce their ability to colonize plant roots. In addition,
siderophores-producing fluorescent pseudomonads can induce plant systemic resistance, which reduces
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the pathogen infection. Other mechanisms, in addition to siderophores production by fluorescent
pseudomonads, were reported that may help in suppressing and controlling fungal pathogens, such as
the production of antifungal compounds and lytic enzymes. Solans et al., 2016 studied the role
of siderophores as biocontrol agents [50] whereas Arya et al., 2018 revealed that tomato seedlings
inoculated with P. fluorescens strains SPs9 and SPs20, which are able to produce siderophores in
the soil infected with F. oxysporum, succeeded in controlling wilt disease with high efficiency [5].
Leeman et al., 1996 reported that siderophore-producing P. fluorescens induced systemic resistance
against Fusarium wilt of radish [51]. Formulation of siderophores-producing P. aeruginosa F2 and
P. fluorescens JY3 were sufficient in increasing fresh and dry weights of shoots and roots of wheat
plants. These results may due to the ability of both isolates to induce the plant to produce some
phytohormones such as auxin, cytokinin, and gibberellins. Also, may be related to the capability of
plant to recognize the microbial Fe-siderophores complex and consequently iron uptake from this
complex (iron nutrition). In an agreement with the current findings, Sharma et al., 2003 showed
increasing iron, chlorophyll a, and chlorophyll b concentrations of Vigna radiate plants when they were
inoculated with siderophore-producing Pseudomonas strain GRP3 [52]. Additionally, our results were
in agreement with Sayyed et al., 2005 and Manwar et al., 2000, who documented that inoculation
with P. fluorescens enhanced seed germination, shoot and root length of wheat [8,53]. Arya et al., 2018,
reported that siderophores-producing P. fluorescens strain SPs9 and SPs20 were effective in increasing
fresh and dry weight of tomato plants in a soil infected with F. oxysporum [5]. The same results were
obtained by inoculating Triticum aestivum with fluorescent pseudomonad R62 [54].

5. Conclusions

In this study, scaling-up production of siderophores from fluorescent pseudomonads was
accomplished using fermentation technology. Exponential fed-batch fermentation of P. aeruginosa F2
and P. fluorescens JY3 gave higher concentrations of siderophores and biomass than batch fermentation.
Formulations of siderophores-producing fluorescent pseudomonads were effective in controlling
soil-borne fungi and for stimulation of plant growth. These formulations can therefore be utilized as
plant growth promoters and biocontrol agents.
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Abstract: Herein, a bactericide-secreting Bacillus strain, potentially useful as a biocontrol agent, was
isolated from the commercial Yanjing Natto food. Following the biochemical and physiological
evaluation, the molecular identification was performed using 16S rDNA sequencing of polymerase
chain reaction-amplified DNA that confirmed the natto isolate as Bacillus subtilis natto (B. subtilis
natto). The biocontrol (microbial inhibitory) capability of B. subtilis natto was investigated against
Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and yeast (Yarrowia lipolytica) and
recorded. The antimicrobial activity of B. subtilis natto was further enhanced by optimizing the
growth medium for optimal bactericides secretion. Under optimized conditions, B. subtilis natto
exhibited much higher inhibitory activity against S. aureus with a zone of inhibition diameter up to
27 mm. After 48 h incubation, the optimally yielded B. subtilis natto broth was used to extract and
purify the responsible bactericides by silica gel column chromatography, gel column chromatography,
and semi-preparative high-performance liquid chromatography. Structural identification of purified
bactericides (designated as NT-5, NT-6, and NT-7) from B. subtilis natto was performed by 13C-nuclear
magnetic resonance (NMR) and mass spectral analyses. The NMR comparison also revealed that NT-5,
NT-6, and NT-7 had identical structures, except for the fatty chain. In summary, the present study
suggests the improved biocontrol and/or microbial inhibitory potential of newly isolated bactericides
secreting B. subtilis natto.

Keywords: biocontrol agent; Bacillus subtilis natto; isolation; molecular identification; medium
optimization; antimicrobial activity; bactericides; spectral analyses

1. Introduction

Natto as a traditional food with a history of two thousand years has various healthcare
functions such as prevention of osteoporosis, procoagulant, antimicrobial, anti-aging, anti-cancer, and
gastrointestinal activities [1–3]. Bacillus subtilis natto (B. subtilis natto) is an aerobic Gram-positive
probiotic that possesses a strong heat and acid-base stability [4]. This edible strain is claimed to be the
organism primarily responsible for natto fermentation. It has a variety of functions including promoting
the absorption of iron, calcium, and vitamin D by generating intestinal acidification [5]. B. subtilis natto
metabolites also have antihypertensive, anti-tumor, anti-oxidation, thrombolytic and other functions.
Among all these properties, potent antibacterial activity is one of the most important functions of
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B. subtilis natto and might be due to the production of bacitracin, polymyxin, 2,6-pyridine dicarboxylic
acid, and other antibiotics. It has the role of inhibiting pathogens such as Salmonella typhimurium and
dysentery bacteria. Along with a broad antimicrobial spectrum, B. subtilis natto-derived antimicrobial
substances are safe for humans as compared to other drugs [3,6,7].

A pronounced antibacterial activity against Helicobacter pylori has been found in B. subtilis natto
cells. Through the minimum inhibitory concentration (MIC) tests, it was confirmed that B. subtilis
natto possessed anti-platelet aggregation and anti-H. pylori activity due to the presence of dipicolinic
acid [8]. Based on morphological studies, a bacterial isolate BH072 from a honey sample exhibited
a broad-spectrum inhibitory activity against a range of molds including Aspergillus niger, Botrytis
cinerea, and Pythium [9]. A lipopeptide biosurfactant was purified from B. natto TK-1 by acidic
precipitation, methanol extraction, and thin-layer chromatography (TLC) system, and its in-vitro
anti-adhesion activity was investigated. Results indicated that lipopeptide presented noteworthy
antimicrobial properties and significantly inhibited the adhesion of Escherichia coli, Staphylococcus
aureus, and S. typhimurium [3]. Vibrio parahaemolyticus is an emerging foodborne pathogen in seafood
products. Effective measures to prevent V. parahaemolyticus in seafood would help minimize the
probability of foodborne illness and large outbreaks of Vibrio. B. subtilis NT-6 isolated from natto
secretes a novel antibacterial peptide AMPNT-6 that is a potent inhibitor of V. parahaemolyticus (up
to 15.5 mm diameter). These results manifested that AMPNT-6 might be potentially employed as a
natural inhibitor of V. parahaemolyticus on shrimp substrates [10].

Due to increasing people’s health requirements, food safety standards have become more
stringent, and considerable attention has been focused on food preservatives. Low-cost natural and
broad-spectrum food preservatives are an emerging trend around the world. Compared with chemical
preservatives, food preservatives produced using traditional fermented foods are newer, safer and
more effective. Antibacterial substances in natto not only have the advantages of high safety, broad
antibacterial spectrum but also rich in nutrition and functionality [11,12]. Nevertheless, there are few
reports on the antibacterial activity of B. subtilis natto. Moreover, the main components and structure
of the antibacterial substances are still unclear, and the antibacterial ability is weak. This study aims to
isolate and purify the bactericides secreting B. subtilis natto. The biocontrol capability of B. subtilis natto
was also evaluated against E. coli, S. aureus, S. typhimurium, and yeast (Y. lipolytica). Moreover, advanced
instrumental techniques were used to elucidate the structural features of bactericides extracted from
B. subtilis natto. The research of antibacterial baring compounds extraction and purification promoted
its application in medicines and preservatives and expected to develop into new antibacterial drugs.

2. Materials and Methods

2.1. Materials, Chemicals, and Reagents

The natto food was obtained from Beijing Yanjing Zhongwu Material Technology Co., Ltd. (Beijing,
China). Ethylenediaminetetraacetic acid (EDTA), glucose, cornflour, sucrose, soluble starch, soy flour,
NaCl, tryptone, beef cream, ammonium nitrate, ZnSO4, FeSO4, and K2SO4 were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Shanghai Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China) provided n-hexane, ethyl acetate, methylene dichloride, and methanol. All
aqueous solutions were prepared with deionized water. All other chemicals/reagents used in this study
were the highest quality and used as received without any further processing unless otherwise stated.

2.2. Microbial Strains

Escherichia coli, S. aureus, S. typhimurium, and Y. lipolytica were procured from Shanghai Luwei
Microbial Science and Technology Co. Ltd. (Shanghai, China). B. subtilis natto strain was isolated from
natto food. All collected and isolated microbial cultures were maintained on nutrient agar slopes at
37 ◦C for 24 h. After the stipulated period of 24 h incubation, the viable cultures were preserved at
4 ◦C and sub-cultured periodically every two weeks to maintain the viability.
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2.3. Isolation and Screening of B. subtilis Natto

As received natto was washed twice with warm water to eliminate the dust particles. One-gram
natto was soaked in 10 mL sterile saline solution and heated in a water bath at 80 ◦C for 1.0 h. The natto
mixture with the elimination of solid matters was allowed to cool at room temperature (25 ± 3 ◦C)
and used as a bacterial suspension. The bacterial suspension was then serially diluted from 10−1

to 10−9 to reduce the concentration of microorganisms and spread on a sterile agar plate containing
20 mL of solidified screening medium. The freshly inoculated plates were placed at 37 ◦C for a time
of 24 h. The resulting bacterial colonies were further purified by streaking on a screening medium,
Gram-stained and observed under an optical microscope using the oil-immersion lens. A single
bacterial colony was further subjected to a series of physiological and biochemical identification tests.
Following Bergey’s Manual of Determinative Bacteriology, catalase test, starch hydrolysis, salt tolerance
(i.e., 2%, 5%, 7%, and 10%), gelatin liquefaction, acetyl methyl, Voges-Proskauer (VP), D-glucose and
D-mannitol fermentation, and nitrate reduction were performed.

2.4. Molecular Identification: DNA Extraction and PCR Amplification

A bacterial genomic DNA extraction kit (EasyTaq® DNA Polymerase, Transgen Biotech, Beijing,
China) was used for molecular identification purposes. Briefly, an overnight grown B. subtilis natto
was centrifuged at 4000× g for 10 min. The extracted DNA was used as a template for polymerase
chain reaction (PCR) to amplify about 500 or 1500 bp segment of the 16S rRNA gene sequence
using the universal primers 27F (5′-AGAGTTTGTCCTGGCTCAG-3′), 1492R (5′-TACGGCTACCTT
GTTACGACTT-3′). PCR amplification system (50 μL) contains; 1 μL genomic DNA, 1 μL each of
upstream and downstream primers, 1 μL EasyTaq DNA Polymerase, 4 μL High pure dNTPs (EasyPure
Genomic DNA Kit, Transgen Biotech), 5 μL 10× EasyTaq Buffer and ddH2O. The amplification was
performed in a thermal cycler (Thermo Fisher Scientific, Waltham, MA, USA) by DNA denaturation
at 94 ◦C for 3 min followed by 30 cycles of 30 s at 94 ◦C, 30 s at 55 ◦C (Tm), and 30 s at 72 ◦C and an
ultimate extension of 5–10 min at 72 ◦C.

2.5. S rDNA Sequencing and Data Analysis

Samples were prepared and sequenced by the Shanghai Bioengineering Co., Ltd. China accredited
laboratory. The target gel band was purified using the TaKaRa MiniBEST Purification Kit. The sequences
obtained with the 1492R primer were aligned and compared with other partial 16S rDNA sequences in
the GenBank database (http://www.ncbi.nlm.nih.gov/BLAST). The obtained 16S rDNA sequence was
deposited to GenBank for assigning accession numbers by NCBI.

2.6. Microbial Cultural Conditions

B. subtilis natto strain was cultivated in seed culture medium (pH 7.2–7.4) containing peptone
10 g/L; beef extract 5 g/L, NaCl 6 g/L, and glucose 5 g/L at 37 ◦C for 24 h. The screening medium
includes skim milk powder 50 g/L, NaCl 5 g/L, glucose 10 g/L, agar 20 g/L. The medium was sterilized
in a laboratory-scale autoclave at 115 ◦C and 15 psi for 30 min. The agar medium contained 0.1 MPa
and water addition and sterilized at 121 ◦C for 15 min. After cooling slightly, both were uniformly
mixed. Constant temperature and humidity culture at 37 ◦C for 24 h. The fermentation medium
comprises peptone 5 g/L, sodium chloride 5 g/L, glucose 20 g/L, KH2PO4 2 g/L, and K2HPO2 4 g/L.
The medium was sterilized at 115 ◦C for 30 min. The culture was incubated at 37 ◦C at 150 rpm. Potato
dextrose agar (PDA) containing potato 200 g/L, glucose 20 g/L and agar 15~20 g/L was used for the
cultivation of yeast. Whereas medium comprised of tryptone 10 g/L, yeast extract 5 g/L, and NaCl
10 g/L was used for S. typhimurium cultivation.
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2.7. Antimicrobial Activity of B. subtilis Natto Extract

B. subtilis natto has a unique potential to secrete bactericidal compounds of high interest. For such
reason, a cell-free extract of freshly grown B. subtilis natto was used to test the inhibitory activity
towards E. coli, S. aureus, S. typhimurium, and yeast. Briefly, around 100 mL liquid seed medium was
inoculated with a 5% of freshly grown B. subtilis natto inoculum suspension. The inoculated seed
medium was incubated at 37 ◦C for up to 48 h under uninterrupted shaking at 160 rpm. After 48 h
incubation, the fermented broth was centrifuged at 4000× g for 15 min, and the cell-free supernatant
was further filtered through a 0.45μm polysulphonate membrane filter. The resulting filtered cell-free
supernatant was considered as a bactericidal containing crude extract and tested using the agar well
diffusion assay against selected strains. Briefly, sterilized discs were gently placed onto the center of
the agar plate with sterile forceps following the addition of 20 μL of bactericidal containing cell-free
supernatant to the discs. The inhibition zone diameter (mm) formed around the disks was recorded
after the plate’s incubation at 37 ◦C for 24 h [13]. Kanamycin at the concentration of 30 μg/mL, and water
ware used as a positive and negative control, respectively.

2.8. Minimal Inhibitory Concentration of B. subtilis Natto against Pathogenic Bacteria

The broth dilution method, in test tubes, was adopted to record the minimum inhibitory
concentration (MIC) of pathogenic bacteria, according to the procedure described earlier [14–16] with
some modifications. Briefly, different extract preparations were serially diluted using sterile nutrient
broth medium as a diluent to prepare a final crude extract concentration between 0.578 and 2400 μg/mL.
All the tubes were inoculated with the bacterial suspension (adjusted to 107 CFU/mL broth), mixed and
incubated for 24 h at 37 ◦C. The lowest concentration of B. subtilis natto (highest dilution), displaying
no noticeable growth of pathogenic bacteria was defined as MIC. A tube with an equal volume of
water was used as a control in parallel to evaluate the influence of the sterile medium on the growth of
the test bacteria.

2.9. Optimization of Growth Medium to Induce the Antibacterial Activity of B. subtilis Natto

The types of carbon, nitrogen and inorganic salts in the fermentation medium also have a certain
influence on the metabolism of the bacteria. Therefore, in this experiment, different carbon sources
(2.0% corn flour, glucose, sucrose, and soluble starch), nitrogen source (0.5% soy flour, tryptone,
beef extract, ammonium nitrate, and inorganic salts (0.5% potassium dihydrogen phosphate, zinc
sulfate, ferrous sulfate, potassium sulfate) were screened and optimized by a single factor optimization.
The size of the inhibition zone was measured after 48 h of culture.

2.10. Extraction and Purification of Bactericides from B. subtilis Natto

According to the results of orthogonal experiments, B. subtilis natto was aerobically grown in an
Erlenmeyer flask (250-mL capacity) containing sucrose 1%, soy flour 0.8%, potassium sulfate 0.2%,
sodium chloride 0.5%, and water 1 L under optimized culture conditions at 37 ◦C for 36 h on a
rotary shaker (120 rpm). After cultivation, the fermentation broth was harvested by centrifugation at
4000× g and 4 ◦C for 20 min. The fermentation broth was added with ethyl acetate in a ratio of 1:1,
thoroughly mixed, and allowed to stand in a separating funnel for two h. The extract was collected and
concentrated using a rotary evaporator. The resulting brown extract (10.1 g) was purified by silica gel
vacuum liquid chromatography using a 20 × 8 cm column eluted with gradient solvents of increasing
polarity (n-hexane−EtOAc, 9:1, 7:3, 1:1, 3:7; CH2Cl2−MeOH, 15:1, 9:1, 7:3, 0:10; 600 mL each gradient)
yielding a total of three fractions. Fractions A-4 and A-5 exhibiting antibacterial activity against E. coli
and S. aureus were chosen for additional separation. Fraction A-4 (280.7 mg) and A-5 were passed
through a Sephadex LH-20 column (60 × 3 cm) using methanol as a mobile phase to remove pigments,
and then purified by a semi-preparative high-performance liquid chromatography (Eurospher C18
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column) giving NT-5 (15.3 mg), NT-6 (45.5 mg) and NT-7 (51 mg) (MeOH−H2O: 0 min, 20%; 2 min:
30%; 7 min: 50%; 10 min-15 min: 100%).

2.11. Structural Identification of Bactericides from B. subtilis Natto

The samples were dissolved in 2% C5D5N or CDCl3. 13C-NMR spectra were obtained at 150 MHz
on a Bruker Avance III NMR spectrometer (Bremen, Germany). HRESIMS (High-resolution electrospray
ionization mass spectrometry) data were obtained from an ultra-high-resolution quadrupole
time-of-flight (UHR-qTOF) Maxis 4G mass spectrometer (Bruker Daltonics, Bremen, Germany).

3. Results and Discussion

3.1. Isolation and Purification of B. subtilis Natto

For initial isolate screening, Gram staining was performed on a 24 h B. subtilis natto culture
incubated at 37 ◦C under uninterrupted shaking (150-rpm) using LB liquid medium. According to the
characteristics of protease secreted by Bacillus natto, protease-producing Bacillus was isolated using
a milk culture medium (Figure 1A). The Gram-stained isolate was then subjected to a microscopic
observation that revealed following characteristics, Gram+, rod-like in shape, flagella to form buds
(full or sub-elastic), and elliptical with no obvious swelling (Figure 1B). After that, the second screening
was performed covering various physiological and biochemical parameters and the results obtained are
listed in Table 1. Based on the recorded characteristics during the first and second screening, the isolate
was assumed to be Bacillus subtilis natto, which was further subjected to a molecular identification via
agarose gel electrophoresis and 16S rDNA sequencing data analysis.

 

Figure 1. (A) Milk screening medium at 37 ◦C for 48 h; (B) Microscopic morphology of bacterial isolate
cultured in LB liquid medium at 37 ◦C, 150 rpm for 24 h.

Table 1. Physiological and biochemical identification tests to identify B. subtilis natto.

Parameter Reaction Response Parameter Reaction Response

Sportiness + Peroxidase +
Anaerobic culture - Hydrogen sulfide
Salt tolerance 1% + Lecithinase +

3% + Using citrate +
5% + Use of malonate +
7% + Nitrate reduction +
9% - Indigo matrix production -

V-P experiment + Sticky brushed +
Starch hydrolysis + Catalase +

Gelatin liquefaction +
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3.2. Molecular Identification: 16S Ribosomal DNA Sequence Analysis

The molecular identification of bacterial isolate from natto food was carried out based on 16S
rDNA sequencing data analysis. The 16S rDNA sequence of the amplified PCR product was found to
be about 1500 bp long. Comparative analysis of the 16S rDNA nucleotide sequence from the newly
isolated strain with the GenBank database sequences showed 99% similarity with the equivalent
sequences from the species B. subtilis. According to the Berger’s Bacterial Identification Manual and
16s rRNA results, the bacterium is B. subtilis natto.

3.3. Antibacterial Activity of B. subtilis Natto

The antibacterial activity spectrum of B. subtilis natto was evaluated based on the extent of
growth-inhibiting potential of four microbes, i.e., S. aureus, E. coli, S. typhimurium, and yeast by direct
antagonism on agar plates using a two-layer plate method. Results revealed that B. subtilis natto has
significant inhibitory activity against S. aureus and E. coli (Figure 2). Whereas, the antibacterial activity
against S. typhimurium was observed to be very weak, and there was almost no inhibitory activity on
yeast (Figure 2). In addition, MIC test results showed that the MIC value of B. subtilis natto against
E. coli was 6.1 μg/mL, and the MIC value against S. aureus was 8.9 μg/mL.

 

Figure 2. Inhibition zone of pathogenic bacteria, (A) Staphylococcus aureus, (B) Escherichia coli, (C) Yeast,
(D) Salmonella typhimurium (E) Water, and (F) Kanamycin.
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3.4. Optimization of Growth Medium to Induce the Antibacterial Activity of B. subtilis Natto

A classical optimization method (one factor at a time) was performed to induce the growth of
B. subtilis natto for optimum performance. For such reason, the influence of various carbon sources,
nitrogen sources and inorganic salt on the growth of bactericide secreting B. subtilis natto was evaluated,
and the results obtained are shown in Figure 3A–C. Among different carbon sources, sucrose had the
greatest effect on the antibacterial activity of B. subtilis natto (inhibition zone, 21.1 mm) followed by
soluble starch, D-glucose and corn flour (Figure 3A). Similarly, the addition of ammonium nitrate and
potassium dihydrogen phosphate showed a profound inhibitory effect with a diameter zone of 23.0 mm
and 20.1 mm among the nitrogen sources (Figure 3B) and inorganic salts (Figure 3C), respectively. Based
on the single factor screening results, ammonium nitrate (nitrogen source) had the greatest influence
on the antimicrobial activity of different pathogenic strains, followed by sucrose (carbon source) and
KH2PO4 (inorganic salt) (Figure 3C). Therefore, these selected factors were further optimized using three
levels for each factor in nine experimental runs designed according to the Taguchi’s orthogonal method
(orthogonal layout L9). The three variables and their respective levels (coded as 1, 2, 3) are listed in
Table 2. Response results in terms of the inhibition zone diameter of all these different combinations of
the three factors were appraised using the analysis of variance (ANOVA). Scores (response results) are
summed up for each factor and each level (k 1, k 2 and k 3 for levels 1, 2 and 3, respectively) as well as
averaged (K 1, K 2 and K3 for levels 1, 2 and 3, respectively). It can be observed from the orthogonal
array experiment that the inhibition zone reached 27 mm under the optimized medium combination of
experiment 6 (Table 3). The optimization scheme was AB3C1 indicating that sucrose 1%, 2%, 3% can be
used, whereas soy flour 0.8%, and potassium sulfate 0.2% showed the best antibacterial effect. Notably,
the bacteriostatic effect was significantly improved after the optimization of medium components. Most
of the previous reports have shown that B. natto has the ability to inhibit E. coli and S. aureus, but its
antibacterial activity was found to be very weak. Through the optimization of the medium, B. subtilis
natto exhibited a potent inhibitory activity towards S. aureus with an antibacterial diameter of up to
27 mm (Figure 4, Table 3). Earlier studies have mainly focused on the antifungal or antitumor activity of
B. natto, and there are few reports on inhibition of S. aureus and E. coli.

Table 2. Factors and their respective assigned levels.

Level
Factor

Sucrose Soy Flour Potassium Sulfate

1 1% 0.20% 0.20%
2 2% 0.50% 0.50%
3 3% 0.80% 0.80%

Table 3. Results of the L9 (3 × 3) orthogonal array experiment.

Factor Sucrose (A) Ammonium Nitrate (B) KH2PO4 (C) Inhibition Zone (mm)

Experiment 1 1.0 1.0 1.0 19

Experiment 2 1.0 2.0 2.0 23

Experiment 3 1.0 3.0 3.0 22

Experiment 4 2.0 1.0 2.0 16

Experiment 5 2.0 2.0 3.0 20

Experiment 6 2.0 3.0 1.0 27

Experiment 7 3.0 1.0 3.0 21

Experiment 8 3.0 2.0 1.0 22

Experiment 9 3.0 3.0 2.0 20

K1 6.0 5.5 6.3 -

K2 6.0 6.1 5.7 -

K3 6.0 6.4 6.0 -
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Table 3. Cont.

Factor Sucrose (A) Ammonium Nitrate (B) KH2PO4 (C) Inhibition Zone (mm)

k1 2.0 1.83 2.1 -

k2 2.0 2.03 1.9 -

k3 2.0 2.13 2.0 -

R 0.0 0.90 0.6 -

 
 

 
 

 

Figure 3. Effects of different (A) carbon sources (B) nitrogen sources and (C) inorganic salts on the
antibacterial potential of B. subtilis natto.
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Figure 4. The optimal medium of fermentation broth against the inhibition zone diameter of
Staphylococcus aureus.

3.5. Purification of Bactericides from B. subtilis Natto

The fermentation broth obtained from B. subtilis natto under optimized cultivation conditions
was harvested by centrifugation at 4000× g and 4 ◦C for 15 min. The resultant cell-free supernatant
was mixed with ethyl acetate and subjected to the rotary evaporator to obtain a concentrated extract.
The resulting extract was subjected to silica gel vacuum liquid chromatography, which yielded three
fractions. Among these, fractions A-4 and A-5 presenting inhibitory activity towards E. coli and
S. aureus were further separated using a Sephadex LH-20 column to remove pigments and then purified
by a semi-preparative HPLC into three fractions designating as NT-5, NT-6, and NT-7 (Figure 5).
As evident from the HPLC pattern, the fractions NT-5, NT-6 and NT-7 were 100% purified with the
retention time of 30.613, 35.583 and 36.067 min, respectively.

Figure 5. Cont.
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Figure 5. HPLC patterns; (A) NT-5, (B) NT-6 and (C) NT-7.

3.6. Structural Elucidation by 13C-NMR and Mass Spectral Analyses

The structural elucidation of purified bactericides designated as NT-5, NT-6 and NT-7 were further
confirmed by 13C NMR analysis at 150 MHz. 13C-NMR displayed different peaks for each tested
fraction, which are summarized in Table 4. Compound NT-5 eluting at 30.613 min in the HPLC analysis
displayed a protonated molecular ion [M+H]+ at m/z 1008.6 (Figure 6A). Compound NT-6 eluting at
35.583 min in the HPLC analysis showed a protonated molecular ion [M +H]+ at m/z 1022.5 (Figure 6B).
Compound NT-7 eluting at 36.067 min in the HPLC analysis and revealed a protonated molecular ion
[M +H]+ at m/z 1036.8 (Figure 6C). The NMR data of NT-5, NT-6, and NT-7 summarized in Table 4
were consistent with the literature [17] and verified that NT-5, NT-6, and NT-7 has an inhibitory effect
on E. coli and Staphylococcus aureus (Figure 7). The proposed structures of three active compounds are
portrayed in Figure 8.

Table 4. 13C-NMR data for NT-5, NT-6, and NT-7 fractions.

Position NT6 NT-7 NT-5

1 Glu C = O 171.0 171.0 171.0

α-C 52.4 52.4 52.4

β-C 27.1 27.1 27.1

γ-C 29.7 29.7 29.7

δ-C = O 173.9 173.9 173.9

-OCH3 - - -

2 Leu C = O 172.6 172.6 172.6

α-C 51.9 51.9 51.9

β-C 40.0 40.0 40.0

γ-C 24.2 24.2 24.2

δ-C 23.0/22.9 23.0/22.9 23.0/22.9

3 Leu C = O 172.9 172.9 172.9

α-C 51.8 51.8 51.8

β-C 38.9 38.9 38.9

γ-C 24.2 24.2 24.2

δ-C 22.9/22.6 22.9/22.6 22.9/22.6
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Table 4. Cont.

Position NT6 NT-7 NT-5

4 Val C = O 170.7 170.7 170.7

α-C 58.6 58.6 58.6

β-C 30.1 30.1 30.1

γ-C 19.1/17.9 19.1/17.9 19.1/17.9

5 Asp C = O 169.9 169.9 169.9

α-C 49.6 49.6 49.6

β-C 35.7 35.7 35.7

γ-C = O 171.7 171.7 171.7

-OCH3 - - -

6 Leu C = O 171.6 171.6 171.6

α-C 50.8 50.8 50.8

β-C 41.6 41.6 41.6

γ-C 24.2 24.2 24.2

δ-C 21.7/21.7 21.7/21.7 21.7/21.7

7 Leu/Val C = O 171.9 171.9 171.9

α-C 50.8 50.8 50.8

β-C 38.8 38.8 38.8

γ-C 24.0 24.0 24.0

δ-C 21.2/21.1 21.2/21.1 21.2/21.1

Fatty acid-1 169.9 169.9 169.9

2 41.1 41.1 36.0

3 71.4 71.4 71.4

4 33.6 33.6 33.6

5 24.3 24.3 24.3

6 28.6-29.3 28.6-29.4 28.6-29.4

7 28.6-29.3 28.6-29.4 28.6-29.4

8 28.6-29.3 28.6-29.4 28.6-29.4

9 28.6-29.3 28.6-29.4 28.6-29.4

10 26.8 28.6-29.4 33.7

11 38.5 36.0 26.4

12 27.4 33.7 11.2

13 22.5 26.4 19.1

14 22.5 11.2 -

15 - 19.1 -
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Figure 6. Mass spectral analyses (A) NT-5, (B) NT-6 and (C) NT-7.

 

Figure 7. Inhibition zone of pathogenic bacteria, (1) Staphylococcus aureus, (2) Escherichia coli. (A) NT-5,
(B) NT-6 and (C) NT-7.
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Figure 8. Proposed structures of three active compounds.

Antagonism is omnipresent in Nature among diverse species. People have remained interested
for a long time in realistically using it in the areas of agricultural defense, disease therapy, and
food preservation. Bacterial reproduction is challenging to control and can cause massive food
losses. Extensive use of food additives is another serious problem that may cause harm to people’s
bodies. Using a biological antibacterial agent to control bacterial diseases is a widespread theme
that has been widely investigated [18–24]. In contrast to chemical biocides, numerous antibiotics
produced by antagonistic strains present the advantage of being decomposable leaving no detrimental
residues. The rapid emergence of resistant pathogenic strains and the identification of adverse chemical
moieties in the food chain has rekindled the researcher’s attention towards green approaches to
effectively tackling pathogenic bacteria. Among the alternatives, biological control by means of natural
antagonistic microorganisms has been widely deliberated, and some Bacillus strains are effective
against various microbial pathogens under the optimal medium composition [3,9,20]. For example,
Tabbene et al. [25] found that nutrients such as carbon, nitrogen sources, and inorganic salts enhanced
the antimicrobial activity by B. subtilis B38 against pathogenic Salmonella enteridis, Listeria monocytogenes,
and methicillin-resistant Staphylococcus species. In comparison to basal medium, the antibacterial
activity was 2- to 4-fold improved in the modified culture medium consisting of 0.15% (w/v) ammonium
succinate, 1.5% (w/v) lactose, and 0.3 mg/L manganese. The results indicate that the nutrients act
as environmental factors, qualitatively and quantitatively influencing the synthesis of antimicrobial
compounds by B. subtilis B38.

Antimicrobial peptides secreted by Bacillus spp. have been demonstrated as potent biocontrol
candidates against a plethora of phytopathogens [26,27]. This study isolated and identified a strain
that has shown significant inhibitory activity against various bacterial strains, and also has shown
potential for the synthesis of antimicrobial agents. A novel antibacterial peptide, AMPNT-6, secreted
by B. subtilis NT-6 showed an evident inhibitory activity against Vibrio parahaemolyticus with a diameter
and MIC of 15.5 mm and 1.25 mg/mL, respectively. In comparison to the control, the significant
bactericidal activity through the changes of V. parahaemolyticus growth curve indicate that AMPNT-6
can potentially be used as a natural inhibitor to reduce the likelihood of foodborne outbreaks of
Vibrio [10]. Wang et al. [28] isolated a B. subtilis natto CSUF5 strain and its antifungal metabolites were
extracted from the medium of the inhibition zone on the dual culture plate. The identified V7-surfactins
and I/L7-surfactins exhibited slight antifungal activities against Aspergillus Niger, and their MIC50
reduced in the order V7 > I/L7. Microscopic analysis revealed that surfactin variants delayed the fungal
spore germination and thus suppressed the hyphae growth, mainly displayed in hyphal shriveling
and distortion [28]. Surfactin is a biosurfactant produced by B. subtilis was first observed in 1968
in a culture broth of B. subtilis and was initially purified as a fibrin-clotting inhibitor. It is one of
the most effective and potent lipopeptide-type biosurfactants produced by different Gram-positive
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and endospore-producing B. subtilis strains [28–30]. It is a cyclic lipopeptide characterized by a
9-hydroxycarbonic acid moiety with profound surface activities as well as antibiotic activity [31]. Cyclic
lipopeptides including fengycin, iturin, lichenysin, and surfactin are among the major categories of
biosurfactants secreted by Bacillus species [32]. Biosurfactants from Bacillus strains have been reported
to exhibit profound antibacterial and antifungal activities, and the antimicrobial activity was increased
with increasing concentration of biosurfactants. A lipopeptide biosurfactant produced by B. natto
TK-1 showed strong antimicrobial activity against Botrytis cinerea, Fusarium moniliforme, Micrococcus
luteus and S. typhimurium. The biosurfactant also significantly reduced the tumor cell viability in a
dose-responsive manner [3]. Various lipopeptide biosurfactants secreted by B. licheniformis [33,34]
and B. subtilis [35,36] have also revealed antimicrobial activities. For instance, antimicrobial activities
of surfactin and iturin produced by Bacillus strains to inhibit phytopathogenic fungi have been
described [34,37,38]. Standard surfactin, which was originally purified from B. subtilis, contained
macrolide with the heptapeptide sequenced Glu-Leu-Leu-Val-Asp-Leu-Leu and a lipid fraction that
consists of a mixture of several hydroxy-fatty acids (chain length of 13-15 carbon atoms) [39]. Taken
together, the present results revealed that the lipopeptide surfactants produced by the Bacillus genus
display a high perspective for biopharmaceutical and biotechnological applications owing to their
biocontrol activities.

4. Conclusions

In conclusion, a Gram+ bacterial strain isolated from the commercially available natto and
identified as B. subtilis natto has considerable inhibitory properties against S. aureus, E. coli, and S.
typhimurium. The bactericide’s secretion potential of B. subtilis natto was further optimized via the
classical approach under different growth conditions. Through the optimization of the growth medium,
its bacteriostatic performance was reaffirmed and found the highest against S. aureus. The previous
reports have shown that B. subtilis natto can inhibit E. coli and S. aureus, but its antibacterial potential is
weak. However, herein, we have eliminated this limited/weak activity drawback, and under-optimized
environment, B. subtilis natto exhibited much higher inhibitory activity towards S. aureus with a zone of
inhibition diameter up to 27 mm. The fermentation broth of B. subtilis natto was purified via silica gel
and Sephadex column chromatography to extract bactericide baring active compounds and designated
as NT-5, NT-6, and NT-7. HPLC, MS, and 13C-NMR further analyzed the active compound fractions to
elucidate their structural features. Comparison of the NMR data of NT-5, NT-6, and NT-7 indicated
that they share the same structure except for the fatty chain. Future studies are ongoing in our lab to
scrutinize the exact chemical structure and cellular toxicity of these compounds as potential candidates
for biomedical purposes.
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Abstract: Selenate removal from a water body is being vigorously debated owing to severe health
impact, but inhibitions of coexisting anions have been reported. To suggest a viable treatment option,
this study investigates the effect of nitrate and perchlorate on selenate reduction in a laboratory-scale
sequencing batch reactor. The experimental design tests how competing electron acceptors (NO3

−
and ClO4

−) and electron donor (acetate) limitations affect selenate reduction in the reactor. Results
show that the reactor achieves almost complete selenate reduction within the initial concentration
ranges of 0.1–1 mM by enriching selenate-reducing bacteria with appropriate temperature (30 ◦C)
and acclimation period (50 days). We monitored simultaneous selenate and nitrate reduction in the
reactor without specific inhibition due to a difference in microbial growth strategy related to electron
donor status. Lack of perchlorate-reducing bacteria makes perchlorate addition (0.2 mM) not to be
closely associated with dissimilative perchlorate reduction. These results provide information that
can help us to understand the effect of competing electron acceptors on selenate reduction and the
kinetics of potential parallel reactions in the reactor.

Keywords: biological selenate reduction; electron donor competition; nitrate; perchlorate;
sequencing batch

1. Introduction

Selenium (Se) is an essential micronutrient but can cause adverse health effects (e.g. hair loss,
fingernail loss, numbness in fingers or toes, and circulatory problems) with long-term and heavy
exposure [1,2]. Since Se in water originates from not only geological sources such as weathering of
seleniferous soils/rocks but also anthropogenic processes such as mining, fossil fuel combustion, and
other industrial activities [3], the World Health Organization has set a provisional total Se guideline
of 40 μg/L in drinking water [4]. The United States Environmental Protection Agency permits the
maximum concentration limit (MCL) of total Se as 50 μg/L and the regulations of national primary
drinking water as 5 μg/L [2]. Likewise, the Korean Ministry of Environment is reducing the MCL to
10 μgSe/L in drinking water [5].

Se has four oxidation states (−II, 0, IV, VI) and forms several organic complexes [6]. In surface
water, most Se primarily exists either selenate (SeO4

2−) or selenite (SeO3
2−). Both oxyanions are toxic

to living organisms thus various treatment technologies have been investigated to remove Se from
water [7]. Although physicochemical technologies effectively separate Se from the water supplied for
domestic and industrial use, eventual post-treatments for the byproducts are required and technical
limitations are still existing [8]. Fortunately, biological treatment can reduce selenate and selenite
to insoluble elemental Se (Se0) via anaerobic microbial metabolisms [6,9]. From a wide variety of
environments, selenate- or selenite-reducing bacteria have been isolated [10,11].
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When selenate or selenite coexist with other anions such as nitrate (NO3
−), sulfate (SO4

2−),
and perchlorate (ClO4

−), biological Se reduction can be inhibited by the electron scavenging
of denitrifying bacteria, sulfate-reducing bacteria, or perchlorate-reducing bacteria because most
selenate-reducing bacteria are heterotrophic facultative anaerobes which compete for electron donors
under anoxic or anaerobic conditions. Another limiting factor might be the drastic change of selenate
in the water body due to irrigated agricultural drainage [11], sedimentary soil erosion [3], surface
mining [12], coal-fired power plants [13], and so on.

Most biological selenate reductions are targeted for either pure culture or up-flow anaerobic
sludge blanket process [14]. Relatively little reports are available about the simultaneous reduction of
selenate in a mixed culture when competing anions exist [14–17]. This study, therefore, investigates the
feasibility of simultaneous selenate, nitrate, and perchlorate reduction in a sequencing batch reactor
(SBR) and evaluate the inhibitory effects of nitrate and perchlorate on biological selenate reduction.

2. Materials and Methods

2.1. Selective Enrichment of Selenate-Reducing Bacteria

To selectively enrich selenate-reducing bacteria, bench-scale SBRs were semi-continuously operated
in parallel for more than one and a half months. Seed sludge was activated sludge taken from a local
municipal wastewater treatment plant with a treatment capacity of 30,000 m3/d in the northern part
of I-city, Korea. Using selenate as a sole electron acceptor, the enrichment period was kept under
anoxic conditions. To support selective pressure on selenate-reducing bacteria, the temperature was
controlled to 30 ◦C by aquarium heaters following previous literature [18].

2.2. Operating Condition of SBRs

Figure 1 shows the schematic diagram of the triplicate SBRs. The working volume of each SBR was
5 L. To verify the proper temperature condition (25 ◦C and 30 ◦C), SBRs were continuously monitored
for more than 200 h until complete selenate reduction at the first batch. And then all the reactors were
operated with 24 h sequence with the optimal temperature condition using the pre-acclimated biomass
for 30 ◦C. Each SBR was completely mixed for 23 h. And then, an hour of settling period followed by
rapid draw sequence of the upper liquid (2.5 L) and fill sequence with fresh feed solution. The feed
solution contains selenate, acetate (CH3COO−), buffer, and essential minerals: 50 mg/L of SeO4

2−,
200 mg/L of CH3COO−, 46 mg/L of (NH4)2SO4, 13.7 mg/L of K2HPO4, 84 mg/L of NaHCO3, 51.3 mg/L
of MgSO4·7H2O, 43 mg/L of CaSO4·2H2O, and 2.5 mg/L of FeSO4·7H2O. Other micronutrients were
available from inoculum and endogenous cell decay. Acetate was a sole carbon source (electron donor).
To test the effects of nitrate and perchlorate on selenate reduction, we designed the experiments as
shown in Table 1.

Figure 1. Schematic diagram of triplicate sequencing batch reactors (SBRs).
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Table 1. Operating conditions of SBRs according to experimental design.

Division
Initial Concentration of Target Contaminants C: N

(CH3COO−-C:
NO3-N)

Selenate
(mM SeO4

2−)
Nitrate

(mM NO3
−)

Perchlorate
(mM ClO4

−)
Acetate

(mM CH3COO−)

Phase 0 a 0.35 0.00 0.0 3.4 N.A.

Phase 1 0.1 1.0 0.0 3.4 6.7: 1

Phase 2 1.0 1.0 0.0 5.1 11.1: 1

Phase 3 0.1 1.0 0.0 0.6 1.2: 1

Phase 4 1.0 1.0 0.0 0.9 2.3: 1

Phase 5 0.1 1.0 0.2 3.4 5.8: 1
a Initial acclimation period.

2.3. Analytical Methods

Influent and effluent liquid samples were filtered using a 0.2 μm syringe filter (Whatman,
GE Healthcare Life Sciences, Marlborough, MA, USA) and kept in a refrigerator at 4 ◦C before analysis.
Selenate was determined by using an ion chromatograph (Dionex ICX-1100, Dionex, Sunnyvale, CA,
USA) equipped with an IonPac AS15 analytical column and AG15 guard column. The used eluent
was a 36.5 mM NaOH solution (Daejung Chemicals, Siheung, Korea). The volume of the used sample
loop for selenate determination was 100 μL. For perchlorate determination, we used the same ion
chromatograph equipped with IonPac AS16 analytical column and AG16 guard column (Dionex,
Thermo Fisher Scientific, Waltham, MA, USA). In this case, we used the sample loop volume of 1000 μL
with the same 50 mM NaOH eluent. Nitrate and acetate concentrations were monitored by using an
IonPac AS9-HC analytical and AG9-HC guard column with 9 mM Na2CO3 eluent and a 25 μL sample
loop. The detection limits for selenate and perchlorate were 5 μg/L each. And those of acetate and
nitrate were 0.5 mg/L. All the regressions for experimental data were conducted by Sigmaplot software
(Systat Software Inc., San Jose, CA, USA) based on the assumption of first-order removal [19].

3. Results and Discussion

3.1. Appropriate Temperature for Selenate-Reducing Bacteria Acclimation in SBRs

To increase the activity of selenate-reducing bacteria in the seed sludge, initial acclimation (phase
0) was conducted for about 50 days using two sets of triplicate SBRs. Figure 2a shows the variations
of selenate concentrations at the very first batch of the SBRs. During nine days of phase 0, only 27%
of initial selenate (0.72 mM SeO4

2−) was reduced on average at the SBRs of 25 ◦C. However, in the
SBRs at 30 ◦C selenate was reduced to below detection level after nine days. This result indicates that
30 ◦C, higher than room temperature, is more appropriate for the growth of selenate-reducing bacteria,
which is consistent with previous literature [14,20,21]. With the revealed temperature condition, all the
SBRs enriched selenate-reducing bacteria at 30 ◦C for the rest of phase 0 for further experiments.

At the end of phase 0, monitoring results indicate that SBRs could reduce selenate (0.9 mM) to
below detection level in less than four hours. This enhancement indicates that phase 0 must have made
the selenate-reducing bacteria successfully acclimated to start instantaneous selenate reduction right
after fill-sequence without lag-period. Figure 2b demonstrates that enriched microorganisms actively
reduce selenate to Se0 biologically at the last batch of phase 0, consistent with the literature [6,14,22,23].
Regression indicates that the observed selenate reduction rate was revealed as rapid as 0.96 h−1.
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Figure 2. Dynamics of selenate concentration in SBRs of phase 0: (a) before acclimation,
(b) after acclimation.

3.2. Effect of Nitrate on Selenate Reduction

At phase 1 and phase 2, this study tests the effect of most probable electron-competing anion,
nitrate, on selenate reduction (Table 1). We artificially constitute low (0.1 mM, phase 1) and high
(1 mM, phase 2) selenate conditions for better interpretation. Figure 3 illustrates the dynamics of
average (n = 3) selenate and nitrate in a whole sequence of SBRs at a steady state. When 3.8 mM
CH3COO− was added to 0.1 mM SeO4

2− (phase 1) as an excess electron donor in the presence of
0.96 mM NO3

−-N (approximately 1:10 of influent SeO4
2−: NO3

− mole ratio), selenate and nitrate were
simultaneously reduced to below detection level within six hours in SBRs (Figure 3a). In the case of
phase 2, nitrate was completely reduced to below detection level, whereas a small amount of selenate
was detected (0.02 mM, 98% reduction) after six hours in SBRs (Figure 3b). Close to the end of the
sequence, the selenate concentration decreased to below detection level.

Within the ratio of SeO4
2−: NO3

− between 1:1 and 1:10 tested in this study, both selenate and
nitrate could be simultaneously reduced without significant inhibition. The selenate reduction rate
was maintained at 0.55–0.57 h−1 regardless of initial concentration. This result indicates that selective
enrichment and long acclimation (>30 days) could make selenate-reducing bacteria endure competitive
inhibition, described previously [24]. In addition, it was noticed that the denitrification rate was not
interrelated with the selenate concentration and kept the rate as 0.88 h−1 almost constantly, which
supports simultaneous selenate and nitrate reduction under excess electron donor condition.

Figure 3. Dynamics of SeO4
2− and NO3

− in SBRs: (a) SeO4
2−:NO3

− = 1:10 (phase 1) and (b)
SeO4

2−:NO3
− = 1:1 (phase 2).
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3.3. Effect of External Carbon Limitation on Selenate Reduction

Two sets of experiments were performed to investigate the effect of carbon source limitation
on simultaneous selenate and nitrate reduction in the SBRs under low (0.1 mM, phase 3) and high
selenate (1 mM, phase 4) conditions. Acetate concentration was limited to 0.8 mM for phase 3 when
the initial SeO4

2− concentration was 0.1 mM. Keeping the nitrate concentration as 1.0 mM results in
the decrease of C:N ratio from 6.7:1 to 1.2:1 compared to phase 1. Phase 4 was conducted with 1 mM of
SeO4

2− reducing C:N ratio from 11.1:1 (phase 2) to 2.3:1 (phase 4). Phase 3 and phase 4 were directly
comparable to phase 1 and phase 2, respectively. Figure 4a,b demonstrate the variations of selenate,
nitrate, and acetate concentrations in SBRs at phase 3 and 4, respectively, as described in Table 1.

Figure 4a (phase 3) shows that all the selenate was reduced instantaneously within two hours
but the accompanying nitrate reduction significantly decelerates when the acetate was depleted at
around 3 h. Figure 4b (phase 4) illustrates that nitrate reduction similarly stops when the acetate was
depleted, but selenate reduction gradually progressed further despite the depletion of external carbon
sources. This result indicates that denitrifying bacteria are more sensitive to electron donor compared
to selenate-reducing bacteria. The increase of acetate concentration from 0.7 mM to 1.2 mM enhanced
the nitrate reduction rate about 80% (from 0.79 hr−1 to 1.42 hr−1) at phase 4 but the nitrate reduction rate
drastically ceased as the carbon source depleted. Selenate reduction rate was also decreased by 27.4%
(from 0.95 h−1 to 0.69 h−1) possibly owing to inhibition associated with carbon source competition.

Figure 4. Dynamics of SeO4
2−, NO3

−, and CH3COO− under carbon limitation condition: (a) phase 3,
(b) phase 4.

When the selenate and nitrates are coexisting, selenate-reducing bacteria might present the ability
to compete successfully for limited carbon resources like K-strategist microorganisms [25] while
nitrate-reducing bacteria exploit relative offspring trends like r-strategist microorganisms [26] in this
study. This result suggests that selenate-reducing bacteria has a more competitive advantage over
withstanding harsh carbon-limiting condition than nitrate-reducing bacteria.

3.4. Nitrate and Perchlorate Effect on Selenate Reduction in SBRs

To investigate the effect of another oxyanion, perchlorate, on the simultaneous selenate reduction,
SBRs were operated with a feed solution containing selenate (0.1 mM), nitrate (1.0 mM), and perchlorate
(0.15 mM) with an excess amount of external carbon source (3.4 mM).

Figure 5 demonstrates that selenate and nitrate reduction are not affected by perchlorate
significantly. It was observed that 38% of perchlorate (reduction rate of 0.02 h−1) can be reduced
together with selenate and nitrate in the SBRs during 24 h of a sequence. This result indicates that
dissimilatory perchlorate-reducing bacteria can grow together with selenate- and nitrate-reducing
bacteria under anaerobic conditions if the carbon source (electron donor) is not limiting [27]. In this
study, an insufficient population of perchlorate-reducing bacteria might have prevented the perchlorate
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from being a competitive inhibitor of selenate or nitrate reduction under excess electron donor
conditions. Owing to perchlorate, the reduction rate of nitrate was significantly reduced from
0.9~1.4 h−1(excess electron donor condition) to 0.5 h−1 at phase 5. However, that of selenate did not
decline but maintained to around 0.7–1.3 h−1, which evidences the ability of selenate-reducing bacteria
to endure harmful perchlorate as well as electron donor competition without significant inhibition.
This result also means that selenate-reducing bacteria can be dominantly enriched from activated
sludge within a reasonable period of time if the carbon source is not limiting.

Figure 5. Dynamics of SeO4
2−, NO3

−, and ClO4
− with excess carbon source in SBRs.

4. Conclusions

This research provides information about how competing anions, nitrate, and perchlorate, affect
selenate reduction in SBRs which are seeded with activated sludge. Based on the observed data from
this research, the following conclusions are drawn as below:

(1) SBRs can rapidly enrich selenate-reducing bacteria from the activated sludge by using the
selective pressure of temperature (30 ◦C) and sufficient acclimation period of >40 days.

(2) Complete selenate and nitrate reduction can be accomplished simultaneously in anaerobic
SBRs by supplying the excess amount of electron donor. Limitation of electron donor may decrease the
activity of nitrate-reducing bacteria instantaneously while selenate-reducing bacteria responds slowly
using the limited resources more efficiently.

(3) Coexistence of perchlorate in the feed did not affect selenate reduction significantly owing
to the shortage of dissimilatory perchlorate reducing bacteria. However, together with selenate and
nitrate, 38% of perchlorate could be reduced without acclimation when electron donor is not limited.

Overall, these results evidence that selenate-reducing bacteria are capable of enduring competitions
associated with other oxyanions reduction and electron donor without significant inhibition after
appropriate acclimation. This study may contribute to understanding biological Se reduction better in
relation to competing anions and electron donor conditions.
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Abstract: Bioleaching is an environment-friendly and low-investment process for the extraction
of metals from flotation concentrate. Surfactants such as collectors and frothers are widely used
in the flotation process. These chemical reagents may have inhibitory effects on the activity of
microorganisms through a bioleaching process; however, there is no report indicating influences of
reagents on the activity of microorganisms in the mixed culture which is mostly used in the industry.
In this investigation, influences of typical flotation frothers (methyl isobutyl carbinol and pine oil)
in different concentrations (0.01, 0.10, and 1.00 g/L) were examined on activates of bacteria in the
mesophilic mixed culture (Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, and Acidithiobacillus
thiooxidans). For comparison purposes, experiments were repeated by pure cultures of Acidithiobacillus
ferrooxidans and Leptospirillum ferrooxidans in the same conditions. Results indicated that increasing
the dosage of frothers has a negative correlation with bacteria activities while the mixed culture
showed a lower sensitivity to the toxicity of these frothers in comparison with examined pure cultures.
Outcomes showed the toxicity of Pine oil is lower than methyl isobutyl carbinol (MIBC). These results
can be used for designing flotation separation procedures and to produce cleaner products for bio
extraction of metals.

Keywords: flotation; bioleaching; frother; mixed culture; machine learning

1. Introduction

Pyrometallurgy and high-pressure leaching are two typical methods used for the extraction of
metals from concentrates of flotation separation [1–3]. These methods have several disadvantages such
as high investment and operation costs, environmental pollution (chemical reagents in the waste waters
of hydrometallurgical plants and SO2 gas generation from pyrometallurgical plants), high energy
consumption in the pyrometallurgy processes, high technology requirements for pyro/hydro-metallurgy
process, and finally special expertise for system operators [4,5]. Variations in the metal price have
caused very intense competition among the high prestigious mining companies (Anglo American,
BHP, Rio Tinto, Glencore, etc.) to revise their feasibility studies where the feasibility of mining
projects has significantly depended on the project costs. Moreover, the problem of global warming
and environmental pollution has led the mineral processing industry to focus on the use of low-cost,
low-energy, and environmentally friendly methods [4,6–10]. Thus, several investigations have been
focused on the operation and optimization of the bioleaching processes for the extraction of metals from

Processes 2019, 7, 653; doi:10.3390/pr7100653 www.mdpi.com/journal/processes79
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low-grade deposits (by heap bioleaching [11,12]), waste (by columns [13,14]), and concentrates (by
bioleaching tanks [13,15,16]) which considerably have lower costs and environment effects [11,16–24].

However, on one hand, few investigations studied the effects of flotation reagents on the
bioleaching of sulfide flotation concentrates [25–32]. On the other hand, those studies (Table 1) are
mainly focused on the cultures consisted one specific microorganism while in the industry, mixed
microorganisms are mostly used for the bioleaching process [33]. Where using a mixed culture with
different microorganisms can lead to the cooperative effects and bioleaching may show a higher
efficiency than pure cultures [34–40].
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This study investigated influences of two typical flotation frothers pine oil (PO) and methyl
isobutyl carbinol (MIBC) on a population (microorganisms count) of a traditional mixed mesophilic
microorganisms culture (Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, and Acidithiobacillus
thiooxidans). This is because there is a direct relationship between bioleaching rate (recovery of valuable
metals from ores) and the population of microorganisms [46]. Three different concentrations of frothers
were examined (0.01, 0.10, and 1.00 g/L). For comparison purposes, outcomes were compared with results
of the same conditionings on pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans.
Various parameters were measured in the control tests: pH, ORP (oxidation-reduction potential), total
iron (FeT) in the solution, and DO (dissolved oxygen in the media). Mutual Information (MI) assisted
by Pearson correlation was used to explore the relationship among these measured variables and select
the most important parameters for further assessments. Outputs of this investigation can be used
for mineral processing plants which flotation separation is their main beneficiation method to design
ambient conditions. This method helps to produce cleaner products by a leaching tank. The most
efficient route for processing of flotation concentrate is a leaching tank where it can process high-grade
feeds and it has a high process recovery [15], for the downstream processes and environment.

2. Materials and Methods

2.1. Bacterial Strain and Growth Conditions

Pure strains of Acidithiobacillus ferrooxidans (T.f), Leptospirillum ferrooxidans (L.f), and Acidithiobacillus
thiooxidans (T.t) which have different oxidation abilities (Table 2) were obtained from the research and
development center of Sarcheshmeh mine, Kerman, Iran. Microorganism strains were cultivated in the
environment presented in Table 3. 5 cc of each pure culture was selected to build the mixed culture.

Table 2. Oxidation ability of microorganisms.

Microorganism S0→SO4 FeII→FeIII

Acidithiobacillus ferrooxidans (T.f)
√ √

Leptospirillum ferrooxidans (L.f) -
√

Acidithiobacillus thiooxidans (T.f)
√

-

Table 3. Cultivating environment parameters.

9K Culture
pH 1 FeSO4

·7H2O S0
Incubation

Temperature
Rotation

Speed(NH4)2SO4
MgSO4

·7H2O
K2HPO4 KCL

Ca (NO3)2

·H2O

3.00 g/L 0.50 g/L 0.50 g/L 1.00 g/L 0.01 g/L 1.80 44.22 g/L 10.00 g/L 34.00 ◦C 140 rpm
1 pH adjusted by 98% acid sulfuric.

2.2. Flotation Reagents

Flotation frothers (MIBC and PO) were prepared in the mineral processing laboratory at the
University of Tehran, Iran. A wide range of their concentrations which are common in the various
flotation plants (0.01, 0.10, and 1.00 g/L) was used and their influences were explored by different analyses.

2.3. Experimental Procedure

Twenty-one experiments, nine tests for each frother (three different dosages and three different
cultures) and one control test (without frother) for each culture, were conducted. To do experiments,
microorganisms were cultivated in a 9K medium containing five different mineral salts ((NH4)2SO4:
3 g/L, MgSO4·7H2O: 0.5 g/L, K2HPO4: 0.5 g/L, KCl: 1 g/L, and Ca (NO3)2·H2O: 0.01 g/L). The initial pH
of the media was adjusted to 1.8 with H2SO4. As a source of energy 44.22 g/L FeSO4·7H2O and 10 g/L
sulfur were added to the media. Incubation was performed at 34 ◦C in an incubator shaker having the
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rotation speed of 140 rpm. Effects of MIBC and PO on microorganisms count and their activities in the
various cultures are assessed by measuring different parameters (pH, ORP, FeT, and DO) (Table 4).
All the cultures were monitored and the mentioned parameters were measured for 21 days. To save
time and cost, mutual information and Pearson correlation were used for the feature selection (FS). FS
indicates the relationship among parameters and can be used to rank them.

Table 4. Methods for measuring of various parameters.

Parameter Definition

pH The pH and ORP value of tests were measured by pH-ORP analyzer (Mettler Toledo).
ORP

DO An oxygen-meter (Model JENWEY) was used to measure the amount of dissolved oxygen in
the media.

FeT The amounts of FeT were determined by atomic adsorption Spectro-photometer (AAS).

Count
The bacterial number (growth) was determined by using a Neubauer lam and 100 ×

magnification under a Zeiss biological microscope (Bacterial count per mL = N × 400 × 104),
it could be indirect evidence of cell activity and cannot capture the non-culturable cells.

2.4. Feature Selection

Feature or variable selection is used to select the most effective variables on specific responses.
It assists to optimize the number of variables which typically have to be measured during a process,
reduce the number of parameters, and to save cost and time. In other words, collinearity may lead to
measuring various parameters that show the same concept [47–49]. Therefore, FS was used through
the value of measured parameters (pH, ORP, FeT, and DO) in the control tests to find the most effective
parameters on microorganisms count (MC). The selected parameters were used as indicative factors
for further assessments.

2.4.1. Pearson Correlation

Pearson correlation (r) categorizes the magnitude and value of the linear relationship between
two variables. “r” statistically determines the strength of a correlation and donates negative values
(−1 ≤ r < 0) when by increasing one variable another one decreases and positive values (0 < r ≤1)
when they have the same orientation. “r” close to 0 means there is no relationship [50,51]. Pearson
correlation was used to explore linear correlations between the measured parameters (pH, ORP, FeT,
and DO) in the control tests through 21 days of monitoring.

2.4.2. Mutual Information

Mutual information (MI) is a unique method which can determine both the linear and nonlinear
correlation between variables. MI between two variables (x;y) is non-negative and is defined as:

MI(x; y) =
∑
y∈R

∑
x∈S

p(x, y) log2
p (x, y)
p(x)p(y)

, (1)

where p(x) and p(y) are probability density functions and p(x,y) means the joint probability of a
given stimulus.

3. Results

3.1. Control Test

Exploring MC in three different cultures and in the absence of frothers (Figure 1a) shows that
the MC is increasing during 21 day activities, and the MC after 21 days

Initial MC ratio for the mixed culture is
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higher than T.f and L.f cultures ( 6.4
0.66 vs. 6.8

0.78 and 3.2
0.76 , respectively). These results indicate that the MC

grows faster in the mixed culture than two other cultures and/or bacteria may have higher activities
in the mixed culture. Figure 1b shows that the ORP after 21 days

Initial ORP ratio is higher for the mixed culture
than T.f and L.f cultures ( 680

335 vs. 652
408 and 675

376 , respectively). The mixed culture has the lowest DO
and FeT while T.f culture has the lowest pH through assessments (Figure 1c–e). These results show
correlations among these measured variables (pH, ORP, FeT, and DO). Statistical analyses were used
to do variable importance measurement (VIM) and to select the most representative parameters for
further evaluations.

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 1. Exploring variation of process parameters in three different cultures for control tests during
21 days monitoring. (a) Bacterial count; (b) ORP; (c) DO; (d) FeT; (e) pH.
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Feature Selection

Exploring linear relationships by Pearson correlation through various measured parameters in
three different cultures over 21 days indicate that the pH and FeT have the highest negative “r” value
with MC (Figure 2) while DO shows an insignificant correlation. In other words, when pH and FeT

decrease, MC increases (Figure 2). Moreover, Pearson correlation shows a high relationship between
ORP and FeT. MI was used to explore nonlinear relationships between parameters and rank them
based on their importance. If the MI was close to 1, it means there is a high correlation between
X and Y, and a value close to 0 means there is no relationship. MI can be used to rank variables
based on their effectiveness on a dependent variable and rank independent variables based on their
importance (VIM) [52]. In this study, MI was used to rank the measured parameters (pH, ORP, FeT,
and DO) in the control tests and rank them based on their effects that may receive from the MC value
(VIM). Using VIM by MI and Pearson correlation together provides a direct determination to decide
whether to add an additional variable for assessments or not. MI results (Figure 3) illustrate that pH
and FeT receive the highest effectiveness from MC among all measured parameters. Thus, these two
parameters are selected to study the effect of the conventional flotation frothers (MIBC and PO) on the
different cultures.

     

     

     

     

     

     

 

 

 

 

Figure 2. Pearson correlations between the measured parameters in the control tests.

0 0.5 1 1.5

DO

ORP

FeT

pH

Figure 3. Ranking effectiveness of the measured parameters on microorganism population by
Mutual Information.
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3.2. Frothers

3.2.1. Population of Microorganisms

A comparison between the population ratio of microorganisms ( MC after 21 days
Initial MC ) in the absence

(control tests) with the presence of frothers indicates (Table 5) that MIBC and PO reduce the MC
during the process. In other words, generally by increasing the frother dosages the MC is decreased.
This decrease in the highest examined dosage (1 g/L) was considerably higher than the other dosages
while in the case of L.f and mixed culture the population is even lower than the initial day (MC ratio < 1)
(Table 5). In the presence of frothers and their different dosages, the MC ratio has the following order:
T.f >mixed > L.f. In general, the MC ratio is higher in the presence of PO compering with MIBC.

Table 5. The MC after 21 days
Initial MC ratio in various conditions.

MIBC (g/L)

Culture Control 0.01 0.1 1

T.f 7.8 5.4 6.3 3.1
L.f 4.2 2.4 2.1 0.5

Mixed 9.7 5.9 1.2 0.6

PO (g/L)

Culture Control 0.01 0.1 1

T.f 7.8 6.2 7.6 3.9
L.f 4.2 5.3 3.7 0.8

Mixed 9.7 6 8.5 1.8

3.2.2. Fe Total

Figure 4 shows the negative relationship between FeT and MC for three different cultures in all
tests where by increasing bacteria population the FeT is decreasing. In general, by increasing the
dosages of frothers, by stopping the growth MC, the amount of FeT in the solution remains high
through the process (Figure 4). Furthermore, these results illustrate that, after 21-day measurement,
the amount of FeT in the solution for T.f culture is higher than two other cultures since there is a
moderate slope of reduction between MC and FeT for T.f culture in all experiments. The mixed culture
generally shows the highest FeT reduction in the solution compared with two other cultures and the
FeT reduction ratio during the process has the following order: mixed > T.f > L.f. The FeT in the
solution is approximately lower in the presence of MC.
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(a) (b) 

(c) (d) 

  
(e) (f) 

Figure 4. Cont.
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(g) 

Figure 4. Relationship between population of bacteria and Fe total in different conditions. (a) 0.01 g/L
MIBC; (b) 0.01 g/L PO; (c) 0.1 g/L MIBC; (d) 0.1 g/L PO; (e) 1 g/L MIBC; (f) 1 g/L PO; (g) Control test.

3.2.3. pH

Figure 5 illustrates the negative relationship between pH and MC for three different cultures in all
conditions where by increasing bacteria population (MC) the pH value is decreasing. In other words,
by increasing MC and as a result of their activities, the pH value is reducing. In general, the rate of pH
reduction is decreased by increasing the dosages of frothers (Figure 5). These results indicate that L.f
has the highest and T.f has the lowest pH value during the process monitoring (L.f > mixed > T.f).
In the presence of PO, the pH reduction is moderately continuous for all cultures while in the presence
of MIBC (above 0.01 g/L), the pH reduction is only detectable for the T.f culture (Figure 5).

 

(a) (b) 

Figure 5. Cont.
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(c) (d) 

  
(e) (f) 

 
(g) 

Figure 5. Relationship between population of bacteria and pH in different conditions. (a) 0.01 g/L
MIBC; (b) 0.01 g/L PO; (c) 0.1 g/L MIBC; (d) 0.1 g/L PO; (e) 1 g/L MIBC; (f) 1 g/L PO; (g) Control test.

4. Discussion

Oxidizing metal sulfides to sulfate via contact between bacteria and mineral (direct) and oxidizing
Fe2+ to Fe3+ or/and So to SO4 (without contact: indirect) are the main mechanisms of metal extraction
in the bioleaching process [53–59]. Moreover, it was well understood that oxidation of Fe2+ to Fe3+
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during bioprocess decreases pH values and FeT in the solution (precipitation of iron as jarosite and
other iron oxides/hydroxides: Equations (2)–(4)) [60–62]. These phenomena lead to both direct and
indirect bioleaching mechanisms [63–69]. Moreover, increasing bacteria population (MC) plays a
fundamental role in the bioleaching process, mostly affecting pH and FeT. Thus, there should be
negative correlations between MC-pH, and MC-FeT during bio-activities (Figures 2 and 3). On the
other hand, there should be also a positive relationship between pH and FeT (Figure 2). Akinci et al.
demonstrated that the rate of pH reduction during bioleaching in different bacterial cultures have a
decreasing order as follows: A. thiooxidans >mixed culture > A. ferooxidans [70] that supports outcomes
presented in Table 5.

Fe3+ + 2H2O→ FeOOH ↓ +3H+, (2)

Fe3+ + 3H2O→ Fe(OH)3 ↓ +3H+, (3)

3Fe3+ + M+ + 2HSO−4 + 6H2O→MFe3(SO4)2(OH)6 ↓ +8H+. (4)

The toxicity of flotation reagents is well documented and the presence of their substrates
in the flotation products indicated many environmental issues which may inactivate bacteria
metabolism [71–73]. Thus, frothers can change the surface properties of energy resources in
the culture, limit the surface tension of the media, and inhibit microorganism activities [74,75].
The toxicity of flotation reagents depends on their chemical composition, and their dosages [25–27,32,76].
When flotation concentrate of sulfides is subjected for metal extraction via bioleaching, presence of
frothers in the solution can increase the pH at the initial stage of the process [28,29,43,77]. Loon and
Madgwick reported that flotation reagents reduced the bacteria growth and limited the formation of
soluble iron in the bioleaching process. Since MIBC and PO are unstable at pH below 3, therefore,
they may consume H+ from the solution, decompose, and increase the pH. Thus, presented results in
Figures 4 and 5 are in good agreement with the literature where by increasing the dosages of these
frothers, the rate of decreasing in pH and FeT value into the solutions are slowing down [29].

It was reported that the growth rate of L.f is lower than T.f (around half of T.f) [58]. This can
translate as the rate of its activities also lower than two other examined cultures in a certain period
(21 days) of the process (Figure 1 and Table 5). These mean that the rate of the negative effect of reagents
can be related to the bacteria sensitivity. Okibe and Johnson reported that L.f is more sensitive than
T.f in the presence of flotation reagents which comprises the presented results in Figures 4 and 5 [45].
In general, in the mixed culture, bacteria show a better activity and lower sensitivity than other cultures
to the toxicity of frothers while the sensitivity of T.f to the frothers in their highest dosages (1 g/L) is
lower than two other bacteria (Figures 4 and 5). This can be as a result of the simultaneous presence
of iron and sulfur-oxidizing bacteria in the mixed culture that positively improves microorganism
activities. Zhang et al. reported that the oxidation activity of the mixed culture (Acidithiobacillus
ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum) is higher than that of the pure culture,
and the mixed culture has the highest adaptability to the bioleaching conditions [78]. Furthermore,
meanwhile, the solubility of MIBC is six times higher than PO (at the same condition) [47], its inhibitory
effect on bacteria activity can be higher than PO. This also is in a good agreement with the outcome
of analyses (Figures 4 and 5). Thus, although PO produces larger and less stable bubbles than MIBC
within flotation separation, its toxicity in terms of bioleaching and environmental issues is lower
than MIBC.

5. Conclusions

A comparison between the mixed and pure cultures during 21 days of monitoring indicated that
bacteria concentration of the mixed culture is higher than pure ones. These results indicated that the
insensitivity of the mixed culture to the toxicity of MIBC and PO as conventional flotation frothers in
low dosages (0.001 and 0.01 g/L) is more than pure cultures. MC showed the highest population in
the presence of frothers (0.001 and 0.01 g/L). Mutual information and Pearson correlation assessments
released that pH value and total iron in the solution are the main parameters during bacteria activities.

91



Processes 2019, 7, 653

There is a significant negative correlation between bacteria population and pH (as the most important
factor of bioleaching). Presence of frothers disrupted bacteria activities; thus, the rate of pH reduction
and oxidation-reduction of iron were decreasing by increasing the dosage of frothers. In the absence
and presence (0.001 g/L) of the flotation frothers the rate of pH reduction during the process has the
following order for the examined cultures: mixed > T.f > L.f. In general, the mixed culture has the
highest Fe oxidation-reduction ratio in both the absence and presence of frothers. Results demonstrated
that although during flotation MIBC can produce smaller and more stable bubbles than PO, its toxicity
is higher than PO for various microorganisms.
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Abstract: Chromatography is widely used in biotherapeutics manufacturing, and the corresponding
underlying mechanisms are well understood. To enable process control and automation, spectroscopic
techniques are very convenient as on-line sensors, but their application is often limited by their
sensitivity. In this work, we investigate the implementation of Raman spectroscopy to monitor
monoclonal antibody (mAb) breakthrough (BT) curves in chromatographic operations with a low titer
harvest. A state estimation procedure is developed by combining information coming from a lumped
kinetic model (LKM) and a Raman analyzer in the frame of an extended Kalman filter approach (EKF).
A comparison with suitable experimental data shows that this approach allows for the obtainment of
reliable estimates of antibody concentrations with reduced noise and increased robustness.

Keywords: Raman spectroscopy; downstream processing; chromatography; flow cell; extended
Kalman filter

1. Introduction

The application of spectroscopic techniques to monitor chromatographic processes in the
frame of the so-called process analytical technology (PAT) initiative is very promising due to its
potential for gathering important on-line process information in a non-invasive way [1–5]. Available
spectroscopic techniques range from UV/vis and Fourier transform infrared spectroscopy to dynamic
light scattering [6]. Several applications of Raman spectroscopy have been reported in upstream
processing [7–9], showing the potential of this technology, which often requires specific modeling
techniques, such as partial least squares (PLS) regression, to extract the desired information from
the measured spectra. Recently, a successful implementation of Raman spectroscopy for the on-line
monitoring of monoclonal antibody (mAb) concentrations in downstream processing was reported by
Feidl et al [10]. An ad hoc developed flow cell enabled the integration of the Raman technology into
the capture (protein A) step of a mAb manufacturing process, providing accurate on-line estimates of
mAb concentration. However, in spite of these results, the use of this technology remains limited due
to the intrinsic weakness of the Raman signal [11–13].

In this work, we explore the possibility of overcoming these difficulties by combining estimates
from the Raman signal with the predictions of a mechanistic model. This is particularly convenient in
the chromatographic purification of mAbs because these processes are well understood and reliable
mechanistic simulation models are available [14]. It has been already shown in many other areas that
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the combination of deterministic knowledge and on-line measurements can lead to more accurate
and reliable estimates [15–18], e.g., by using extended Kalman filtering (EKF) [19]. While a general
introduction to Kalman filtering is given in [20], a more detailed description is provided in [21].

In this work, the implementation of an EKF for a chromatographic capture step to estimate
antibody concentration is shown by combining the information of a deterministic chromatographic
model with on-line information derived from Raman-based PLS estimates. In particular, the objective
is to monitor the chromatographic breakthrough curves of a low-concentrated monoclonal antibody
harvest. The beneficial effect of the combination of the two approaches with respect to the stand-alone
Raman and chromatographic model is discussed.

2. Materials and Methods

2.1. Raman Spectral Acquisition and Flow Cell

Raman spectra were acquired with a Kaiser RamanRxn2 analyzer (Kaiser Optical Systems, Inc.,
Ann Arbor, MI, USA), including a 785 nm laser at 400 mW and a cooled charged-coupled device (CCD)
detector, measuring inelastic photon scattering across a 150–3425 cm−1 wavenumber range. A laser
exposure time of 30 s was chosen to collect the single scan spectra. A flow cell with an optimized
flow characteristic, signal enhancement, pressure tolerance, and a single use potential was developed.
A schematic illustration of the flow cell is shown in Figure 1. It includes four main modules: (A) An
analyzer adapter, which connects the flow cell to the Raman analyzer via a fiber cable; (B) a non-contact
objective to focus the laser beam within the flow path; (C) a flow path, which guides the sample
longitudinally to the laser beam; and (D) a reflector, reflecting scattered and unscattered light to the
analyzer via the flow path. In the application to chromatographic purifications, the inlet connection is
coupled to the elution stream, and the outlet connection is linked to the sample fractionator.

Figure 1. Schematic illustration of the developed flow cell.

2.2. Cell Culture Supernatant

Two cell culture supernatant pools containing a recombinant mAb with product concentrations
between 0.30 and 0.60 mg/mL were obtained from a CHO cell perfusion process, as reported in [22].
Besides cell filtering through the perfusion hollow fiber module (0.5μm pore size, Spectrum Laboratories,
Netherlands), no other treatment was applied to the supernatant, which therefore contained a large
quantity of impurities, e.g., media components, host cell proteins (HCP, 3× 105 ppm), DNA (4× 104 ppm)
and high molecular weight (HMW) species (1.1%).

2.3. Breakthrough Runs and Reference Analytic

Fifteen breakthrough (BT) runs were performed on MabSelect SuRe columns (GE Healthcare,
Uppsala, Sweden), prepacked by Repligen GmbH (Ravensburg, Germany, 0.5 × 5 cm), as described
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in [10]. The feed concentration, flow rate, and the fraction duration were changed between the different
BT runs, as described in Table 1. Since several Raman measurements were acquired while collecting
the sample of a single fraction (between 4 and 16 spectra per fraction), a spline approach was applied
to interpolate missing reference measurements for each Raman spectrum.

Table 1. Chromatographic settings and Raman measurements availability of performed
breakthrough curves.

Breakthrough
Curve ID

Feed Conc.
(mg/mL)

Feed Flow Rate
(mL/Min)

Run Duration
(Min)

Fraction
Duration (Min)

Raman
Measurements

Used for PLS
and EKF

BT#1 0.34 1.0 200 8 +
BT#2 0.34 1.5 230 4 +
BT#3 0.34 1.0 250 6 +
BT#4 0.42 1.5 130 2 +
BT#5 0.42 1.0 120 3.5 +
BT#6 0.42 1.0 170 3.5 +

Used for
LKM fitting

BT#7 0.43 1.0 240 4 -
BT#8 0.43 1.5 160 4 -
BT#9 0.43 0.5 480 4 -

BT#10 0.30 0.5 690 10 -
BT#11 0.30 1.5 230 10 -
BT#12 0.30 1.0 340 10 -
BT#13 0.60 0.5 200 3 -
BT#14 0.60 1.5 80 3.5 -
BT#15 0.60 1.0 120 3.5 -

The mAb concentrations were determined off-line by HPLC with an analytical standard deviation
of 0.01 mg/mL as described in [23]. The HMW, HCP, and DNA content of the harvest were determined
as described in [10]. A schematic illustration of the experimental set-up is shown in Figure 2.

Figure 2. Schematic illustration of the experimental set up to perform chromatographic breakthrough
runs and collecting synchronized Raman measurements and breakthrough fractions.

2.4. Chemometric Modeling Procedure

All calculations were performed with MATLAB R2018a (Mathworks, Natick, MA, USA) using
in-house developed routines, if not stated otherwise. The modeling procedure included Savitzky–Golay
smoothing with a second polynomial order and a frame size of 51 Raman shift wavenumbers [24],
spectrum wise standard normal variate (SNV) processing [25], and Raman shift wavenumber wise mean
centering on spectra and reference values [26]. The removal of spectral regions based on the bioprocess
modeling experience resulted in spectral ranges of 450–1820 cm−1, 1880–2530 cm−1 and 2590–3100 cm−1

to eliminate interferences with the window material and water as well as non-informative regions.
No derivative, Raman shift wavenumber selection, or automated outlier removal tools were applied.
The nonlinear iterative partial least squares (NIPALS) algorithm [27] was used to calibrate predictive
PLS models, which regressed spectral data on HPLC reference values, including a threefold cross
validation (CV) [28]. The optimal number of latent variables (LV) was determined based on the
minimum CV error.

After calibrating the model on five different BT runs, the model was tested on an external BT
run, i.e., not included in the calibration. In order to evaluate the model performance, the root mean
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square error was calculated for both cross validation (RMSECV) and external prediction (RMSEP),
using Equation (1), where ŷi is the predicted value of the i-th observation, yi is the corresponding
measured value, and n is the total number of observations:

RMSE =

√
1
n

∑n

i=1
(yi − ŷi)

2 (1)

Furthermore, the coefficient of determination (R2) was calculated for the external prediction as
follows:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2 (2)

A rotational approach was used to judge upon the model transferability and data set similarity.
Hence, sets were rotated in order to have every BT run in the external prediction set once, as shown in
Table 2. As an example, to build the model for rotation 1 (ROT1), the data of BT#2–6 were used for
model calibration and tested on BT#1 (for further details, see [10]).

Table 2. Modeling procedure including the Raman-PLS (partial least squares) calibration, mechanistic
model fitting, as well as the tuning, validation and perturbation of the extended Kalman filtering (EKF).

For a given Rot i

1. Raman-PLS calibration:

PLSRot i ← calibrate Raman-PLS on BT#1–6 except BT#i

2. Mechanistic model fitting:

LKM← fit LKM on BT#7–15 with respective process inputs (PIBT#7−15)
3. EKF tuning:

EKFRot i ← tune EKF (Q, R, kRot i
Q ) on BT#1–6 except BT#i

for n = BT#1–6 except BT#i

kn
Qbest

= minkQ RMSEPEKFn

end for

kRot i
Q = average kn

Qbest
for all n

4. EKF validation:

Run EKFRot i with inputs LKM, PIRot i, PLSRot i and kRot i
Q

5. EKF perturbation:

for n = 1–200 simulations
PIRS = random sampling of ε, cin, Q f low from Gaussian probability distribution
Run EKFRot i with inputs LKM, PIRS, PLSRot i and kRot i

Q
end for

2.5. Deterministic Modeling Procedure

The chromatographic process was modelled using the lumped kinetic model (LKM) [14,29]:

∂c
∂t

= −v
∂c
∂x

+ DL
∂2c
∂x2 −ϕ

∂q
∂t

t ∈ [0, tend], x ∈ [0, LCol] (3)

∂q
∂t

= km(q∗ − q) (4)

where c is the liquid phase concentration of the protein, t is the time, tend is the end of the BT run, v is the

interstitial velocity (v =
Q f low
Acol ε

), Q f low is the volumetric flow rate (see Table 1), Acol is the column cross

sectional area (Acol= 0.196 cm2), ε is the bed porosity (ε= 0.36 [30]), x is the coordinate along the column
longitudinal axis, LCol is the column length (LCol= 5 cm), DL is the apparent axial dispersion coefficient,
ϕ = (1− ε)/ε is the phase ratio of the column, q is the solid phase concentration of the protein, km is
the mass transfer coefficient, and q∗ is the equilibrium solid phase concentration of the protein.
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The following initial conditions were applied:

c(t = 0, x) = c0(x) (5)

q(t = 0, x) = q0(x) (6)

They were then combined with the classical Danckwerts’ boundary conditions:

c(t > 0, x = 0) = cin(t) +
DL

v
∂c
∂x

]
x=0

(7)

∂c
∂x

]
x=Lcol

= 0 (8)

where cin(t) is the feed concentration (see Table 1). Both c0(x) and q0(x) are zero for all values of x. The
apparent axial dispersion coefficient DL can be estimated from the reduced van Deemter equation [31]:

DL = A
dp

2
v (9)

where A is the intercept of the reduced van Deemter equation, dp the average particle diameter (dp =

85 μm). The van Deemter eddy diffusion coefficient A was experimentally determined from pulse
injection experiments at different flow rates with mAb under non-adsorbing conditions (A = 17.15;
data not shown). An empirical correlation was used for the mass transfer coefficient km, approximating
hindered mass transfer due to pore blockage and other effects [32]:

km = kmax
m

⎛⎜⎜⎜⎜⎝S1 + (1− S1)

(
1− q

qsat

)S2
⎞⎟⎟⎟⎟⎠ (10)

where kmax
m is the maximum mass transfer coefficient, qsat is the saturation capacity of the resin, and

S1 is a maximum hindrance coefficient (0 < S1 ≤ 1). The coefficient S2 (with S2 > 0) accounts for the
nonlinear increase of the hindrance. The protein adsorption process was described using a Langmuir
isotherm, where H is the Henry coefficient:

q∗ = H c
1 + H c

qsat

(11)

Coefficients km, S1, S2, qsat and H were fitted on BT#7–15 using the corresponding process inputs
(PI), such as ε, cin and Q f low, as shown in Table 2. The partial differential equations were discretized
along the x coordinate using a first order central finite difference method, and the resulting system of
ordinary differential equations was solved using 100 grid points.

2.6. Extended Kalman Filter Tuning, Validation and Perturbation

A prerequisite for this technique is a general nonlinear time-invariant system in continuous time,
which generates measurements at discrete time steps tk = kΔt [33,34]:

∂x
∂t

= f (x(t), u(t), p) + w(t) (12)

y(tk) = h(x(tk)) + v(tk) (13)

where x denotes the states, u is the deterministic inputs, p is the time-invariant parameters, and y is
the measurements of the system. The nonlinear function f () describes the state dynamics, and h()
is the measurement function that relates state x with measurement y. The process noise w and the
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measurement noise v are assumed to be uncorrelated zero-mean Gaussian random processes with
covariances Q(t) and R(t), respectively (E =̂ expectation operator):

E[w(t)] = E[v(tk)] = 0 (14)

E
[
w(t)wT(τ)

]
= Q(t)δ(t− τ) (15)

E
[
v(tk)vT(tk)

]
= R(tk) (16)

E
[
w(τ)vT(tk)

]
= 0 (17)

Given such a system, the EKF can estimate states from noisy measurements through a recursive
procedure, including two main steps [34,35]. In the first step (prediction step), the a posteriori state
estimate x̂

(
t+k−1

)
and covariance matrix P

(
t+k−1

)
are propagated from t+k−1 to t−k , leading to the a priori

state estimate and covariance matrix (superscripts indicate values before (-) and (+) after measurement
update):

x̂
(
t−k
)
= x̂

(
t+k−1

)
+

∫ t−k

t+k−1

f (x̂(τ), u(τ), p)dτ (18)

ŷ
(
t−k
)
= h

(
x̂
(
t−k
))

(19)

As well as the state covariance matrix:

P
(
t−k
)
= P

(
t+k−1

)
+

∫ t−k

t+k−1

(
Z(τ)P(τ) + P(τ)ZT(τ) + Q(τ)

)
dτ (20)

The EKF formulation uses linearized models of the nonlinear system for state estimation. Hence,
the system is linearized at each time tk to obtain local state–space matrices:

Z(t) =
(
∂ f
∂x

)
x̂(t),u(t),p

(21)

C(tk) =

(
∂h
∂x

)
x̂(t−k )

(22)

In the second step (update step), conducted as soon as a new measurement y(tk) becomes available,
the Kalman filter gain K(tk) is calculated and used to update the a priori state estimates and covariance
matrix to the a posteriori values:

K(tk) = P
(
t−k
)
C(tk)

T
(
C(tk)P

(
t−k
)
C(tk)

T + R(tk)
)−1

(23)

x̂
(
t+k
)
= x̂

(
t−k
)
+ K(tk)

(
y(tk) − h

(
x̂
(
t−k
)))

(24)

P
(
t+k
)
= (I −K(tk)C(tk))P

(
t−k
)

(25)

The aim of the procedure is to obtain improved state estimates x̂
(
t+k
)
, characterized by small

values of the covariance matrix P
(
t+k
)
. In order to achieve this for a specific application, the design

parameters of the EKF, such as the measurement noise covariance R, the initial state estimates x̂
(
t+0
)

the corresponding covariance P0, and the process noise covariance Q need to be carefully selected.
To initialize the filter, a consistent pair of x̂0 and P0 needs to be selected to enable a fast convergence to
the correct estimate [36].

In this work, the in-built KF toolbox of MATLAB was used. The discretized lumped kinetic
model served as state transition function f (), and the Raman-PLS results were used as physical
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measurements of the outlet concentration of the column. The corresponding variance of the rotation
specific RMSEP multiplied by the identity matrix was used as the error covariance matrix R. The
time-varying process noise covariance Q was computed on-line at any given time tk using a Monte
Carlo approach, as reported in [33]. This takes the knowledge from the LKM parameter identification
step into account by using the nominal parameter values and its parameter covariance matrix, resulting
in QMC. Additionally, a model mismatch factor kQ [34] was used and tuned for each rotation.

Q = QMC kQ (26)

For a certain rotation, as shown in Table 2, the EKF approach was separately applied to all n BT
curves of the calibration set. For each BT curve, kQ was optimized (kn

Qbest
) based on the respective

prediction error (RMSEPEKFn). Subsequently, the received kn
Qbest

of all n BT curves of the calibration

set were averaged, resulting in the rotational specific model mismatch factor (kRot i
Q ). The EKF was

applied to the external BT curve, which was included in neither the Raman-PLS calibration nor the
EKF tuning, to externally validate its effect. In a perturbation study, 200 simulations of the mechanistic
model were ran with random process input values (PIRS) for bed porosity ε, the feed concentration
cin as well as the volumetric flow rate Q f low sampled from a Gaussian probability distribution with
a standard deviation of 5% to compare the robustness of the LKM and EKF.

3. Results and Discussion

3.1. Partial Least Squares Raman Modeling

The acquired Raman spectra of the BT curves are comparable with the spectra described in [10]
and are shown in Figure S1A. Due to the high impurity content in the harvest, the spectral features of
different species (i.e., target mAb, media components, HCPs, DNA and HMW) overlapped, leading to
broad bands and no distinct peak profiles within single spectra. Hence, only small variations between
different spectra could be observed, and a suitable data pretreatment and multivariate model calibration
were needed to extract useful information, such as the target protein titer. This had an obvious influence
on the spectral appearance shown in Figure S1B. The variable importance in projection (VIP), shown in
Figure S1C, indicates the regions between 2300 and 2700 cm−1 as well as between 2900 and 3000 cm−1

as very important. This is in line with the fact that proteins exhibit several Raman bands in the region
between 2500–4000 cm−1 [37]. Results of the PLS modeling for different rotations are shown in Table 3.
Though the number of observations in the calibration set varied slightly between rotations, the optimal
number of selected latent variables (LVs) was consistent among rotations and was either 11 or 12.
The RMSECV was constant around 0.040 mg/mL on a calibration range from 0 to 0.42 mg/mL and was
thus almost independent of the rotation scheme. However, variations in the RMSEP between 0.045
and 0.072 mg/mL as well as varying values of R2 between 0.70 and 0.86 indicated slight differences
between the BT runs.

Table 3. Data set information and PLS modeling results of all rotations.

Calibr.set
(# Obs)

Pred.set
(# Obs)

Opt. num.
of LV

RMSECV
(mg/mL)

RMSEP
(mg/mL)

R2

ROT1 1755 398 12 0.042 0.051 0.80
ROT2 1711 442 12 0.042 0.047 0.86
ROT3 1656 497 12 0.040 0.061 0.78
ROT4 1906 247 12 0.041 0.072 0.70
ROT5 1918 235 11 0.042 0.045 0.84
ROT6 1819 334 12 0.041 0.055 0.82

The prediction of titer as a function of time for ROT1 is exemplarily shown in Figure 3. The red
dots represent the off-line HPLC titer measurements for each fraction, whereas the continuous blue line
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represents the Raman-PLS-based prediction. It can be seen that the trend of the BT curve was generally
well captured by Raman. However, the predictions were clearly scattered around the reference values.
It is worth mentioning that increasing the number of scans per Raman measurement could improve
the signal-to-noise ratio. However, this would extend the measurement duration, which is critical in
most of the downstream processing applications.

Figure 3. Time evolutions of Raman-PLS predictions (blue) for rotation 1 (ROT1) compared to off-line
HPLC measurements (red).

As for other rotations, shown in Figure 4, one can observe a clear offset of the predictions at the
initial phase (i.e., before breakthrough started). In spite of an optimized laser exposure time, signal
enhancement through the flow cell and spectral pretreatment methods, the signal-to-noise ratio was
rather small and probably close to the detection limit. Though the obtained averaged RMSEP of
0.05 mg/mL and averaged R2 of 0.8 is remarkable, one must probably conclude that Raman-PLS is
insufficient for a precise monitoring of a breakthrough at such small concentrations.

3.2. Mechanistic Modeling

As a next step, an additional set of nine BT runs (BT#7–15) were used to fit the LKM parameters by
minimizing the RMSE with the measured concentration values in the breakthrough. The corresponding
estimated values (along with 95% confidence intervals) are reported in Table 4 and contain the Henry
coefficient H, saturation capacity qsat, the maximum mass transfer coefficient kmax

m , maximum hindrance
coefficient S1, and the nonlinearity increase of hindrance coefficient S2.

Table 4. Fitting parameter of the lumped kinetic model (LKM) optimized on breakthrough (BT)#7–BT#15
(ε = 0.36; A = 17.15; dp = 85 μm).

H(−) qsat(mg/mL) kmax
m (min−1) S1(−) S2(−)

449.3 ± 31.5 109.7 ± 4.7 8.37 ×10−4 ± 0.94 ×10−4 0.36 ± 0.24 1.76 ± 1.38

The corresponding model predictions of the breakthrough together with the fitting data sets are
shown in Figure 5. The red dots represent the HPLC titer measurements, whereas the continuous blue
lines represent the predictions of the LKM. Additionally, the RMSE in fitting (RMSEF) is indicated.
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Figure 4. Titer predictions of Raman-PLS (grey), the LKM (green), the EKF model with tuned kQ (black)
and HPLC off-line measurements (red) for rotations 1–6 (A–F).

Figure 5. Internal mechanistic model (LKM) predictions of titer for BT#7–15 (blue) and corresponding
HPLC off-line measurements (red).

It can be seen that the shapes of BT curves vary in steepness, inflection point and saturation
level. This is due to the differences in feed concentration and loading flow rate. At complete column
saturation, the asymptotic value of the outlet concentration in the BT tended to the feed concentration.
Moreover, higher feed concentrations generally produced earlier breakthroughs. Similarly, larger
flow rates not only reduced the residence time in the column but also increased the convection rate
along the column with respect to the diffusion rate to the resin, thus producing faster and flatter BT
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curves. In most cases, the LKM was able to closely predict the trend of the reference measurements.
The worst results were obtained in the case of BT#10–12, where RMSEF ranged from 0.016 to 0.026
mg/mL. For such runs, which correspond to the smaller feed concentrations, the error was mostly
due to a shift of the predicted BT time with respect to the measured one. In spite of this, it appears
that the slope of the predicted BT curves in the inflection point was very similar to the measured one.
This result could be explained by an underestimation of the effective column capacity. However, it is
difficult to identify the exact origin of this disagreement.

The model ability of predicting new runs was tested by applying the LKM to the first six BT curves
(BT#1–6), which were not included in the fitting process of the LKM. The results of the predictions
are shown in Figure 6, where the red dots represent HPLC measurements and the blue line the
LKM predictions.

Figure 6. Mechanistic model (LKM) predictions of titer for BT# 1–6 with parameter values fitted on
BT# 7–15 (blue) compared to HPLC off-line measurements (red).

It can be observed that the model was able to predict the shape of the BT curves and, in particular,
the steepness, indicating a good estimation of the mass transport properties. Additionally, the
saturation level seemed to be well predicted, since there is no significant mismatch between estimated
and measured times for reaching saturation conditions. However, BT#1–4 showed a significant offset,
leading to RMSEP values up to 0.039 mg/mL. This may be related to the fact that the model might not
have precisely captured the adsorption mechanism at lower feed concentrations, which could also
explain the offsets in Figure 5. Moreover, one can also observe a different behavior in the curves at
early BT times. The measured BT curves seem sharper than what was predicted by the model. Again,
this might be due to unaccounted differences in the feed composition, resin aging, column packing
quality or a more complex behavior of the system than described by the model. Of course, more
complex models could be introduced to improve the description of, particularly, the mass transfer
process [31,38]. On the contrary, the good ability of the model to predict the shape of the BT curve well
in spite of its generality and simplicity makes it a good candidate for its application in the frame of the
EKF, where such inaccuracies could be corrected in real-time by experimental measurements.

3.3. Extended Kalman Filter Tuning

Before applying the EKF concept, the filter design parameters R, x̂
(
t+0
)
, Q and kQ needed to be

carefully selected and tuned. For this, the variance of the Raman-PLS model (RMSECVPLS
2) was

used as the measurement noise R, while the process noise Q was computed on-line at any given tk,
as described in Section 2.6. Since mismatches between the LKM predictions and external data set were
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expected, a rotation specific mismatch factor kQ was applied. In the following, the determination of kQ
for ROT1 (kRot 1

Q ) is described: The EKF was applied for each BT curve of the calibration set of ROT1,
i.e., BT#2–6, using the Raman-PLS calibrated for ROT1, LKM predicting the distinct BT curve and
varying kQ in a range between 10 and 1 × 106. The resulting RMSEPEKF as a function of kQ for each BT
curve of the training set is shown in Figure 7.

Figure 7. Error in the EKF prediction of the monoclonal antibody (mAb) concentration as a function of
the model mismatch factor kQ for each of the BT curves of the calibration set of ROT1.

It can be seen that a minimal RMSEPEKF could be obtained by selecting kQ around 1 × 104 for
all BT curves. Note that kQ can be regarded as a measure of the confidence in Raman measurements
versus the confidence in the mechanistic model. The higher kQ, the more the EKF relied on Raman-PLS,
while for small kQ, the LKM was considered as more trustworthy. It is also important to note that the
absolute value of kQ depended strongly on the absolute values of the estimation of both measurement
and process noise. The presence of the minimum in the middle of the investigated kQ range indicates
the beneficial effect of considering both types of information in producing the estimates, thus indicating
that this approach is better than using only the LKM (small kQ) or the Raman-PLS model (large kQ).
It can be assumed that by further increasing kQ above 1 × 106, even higher RMSEP could be obtained,
since the filter would singly rely on Raman-PLS. In contrast, when kQ tended towards 10, it singly
relied on the LKM. This procedure was repeated for all rotations, and the resulting rotation-specific
model mismatch factors (kRot i

Q ) are summarized in Table 5. It can be seen that the values of kRot i
Q

were similar for all rotations, thus indicating a robust confidence balancing between Raman-PLS and
LKM predictions.

Table 5. Rotational specific model mismatch factor kRot i
Q for all rotations.

ROT1 ROT2 ROT3 ROT4 ROT5 ROT6

kRot i
Q 1.35 × 104 1.92 × 104 1.92 × 104 2.15 × 104 1.92 × 104 1.07 × 104

3.4. Extended Kalman Filter Validation

To externally validate the EKF, the rotational approach explained in Section 2.6 and Table 2, was
applied for all rotations. In Figure 4A–F, the final results of Raman-PLS, the LKM and EKF for ROT1-6
are shown, respectively.

The red dots represent the off-line HPLC measurements; the continuous grey and green lines
represent the Raman-PLS and LKM predictions, respectively; the black line represents the results of
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the EKF. As mentioned above, the Raman-PLS predictions showed significant noise, although they
captured the trend of the actual BT curve. A significant prediction offset can be seen in ranges at the
beginning of the breakthrough. Here, the Raman-PLS prediction was rather untrustworthy, which
might be explained through difficulties in training the model on samples which did not contain the
target molecule or contained a very small amount of it, close to the limit of detection. On the other hand,
the LKM was able to smoothly predict the shape of the BT curve, although it showed a constant and
significant error. As also noted before, the LKM tended to anticipate the onset of breakthrough, which
appeared sharper in the experiments. The line of the EKF seemed, as expected, to be a combination of
the curves above, with the beneficial effect of eliminating the mechanistic model offsets on one hand
and smoothening the high noise of the Raman predictions on the other. The EKF was particularly
reliable in the region of the incipient breakthrough, where its predictions relied mostly on the LKM
results, thus eliminating the negative concentration values predicted by the Raman-PLS. On the other
hand, at concentration values of 0.1 mg/mL, the offset with respect to the off-line measurements was
eliminated and simultaneously reduced the noise. This same pattern exists in all other rotations, as seen
by the data summarized in Table 6, where the errors in terms of RMSEP for Raman-PLS, LKM and EKF
predictions are compared for all considered rotations.

Table 6. Prediction errors of the Raman-PLS, the LKM and EKF model for all rotations.

Raman-PLS RMSEP
(mg/mL)

LKM RMSEP
(mg/mL)

EKF RMSEP
(mg/mL)

ROT1 0.051 0.038 0.019
ROT2 0.047 0.023 0.021
ROT3 0.061 0.030 0.035
ROT4 0.072 0.030 0.024
ROT5 0.045 0.037 0.028
ROT6 0.055 0.045 0.029

Mean: 0.055 0.034 0.026

As can be observed in Table 6, the RMSEPPLS and RMSEPLKM could be reduced by applying the
EKF. The only exception to this trend was ROT3, where the LKM was slightly better. In this case, both
the Raman-PLS and the LKM both largely anticipated the BT time. Nevertheless, the advantage of
using an EKF estimator appears very clear from this table, especially in significantly reducing the error
of those rotations exhibiting a large Raman-PLS model error.

3.5. Extended Kalman Filter Perturbation

One of the major drawbacks of the LKM approach is its sensitivity to the input process parameters.
This is illustrated in Figure 8 with reference to ROT1, where the effect of a 5% Gaussian distributed
perturbation in feed concentration and flow rate, as well as bed porosity on the predictions of the
LKM and the EKF, is compared for 200 simulations. The selected perturbed process parameters are
representative of the variables that are actually subject to perturbations in real applications.

The solid line indicates the mean of the predictions of all 200 simulations using the LKM (red) and
EKF (blue), whereas the shaded areas show the corresponding 68% confidence intervals, respectively.
While the red shaded area is broad and clearly deviates from the reference off-line HPLC measurements,
the blue shaded area is rather narrow and distributed around the reference values. It can be concluded
that the LKM was strongly affected by perturbations of its input parameters, while this sensitivity was
reduced for the EKF predictions due to the influence of the Raman-based estimates.
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Figure 8. Effect of 5% Gaussian distributed perturbations in feed concentration and flow rate, as well as
bed porosity on the predictions of the LKM (mean = dark red; standard deviation interval = light red)
and the EKF (mean = dark blue; standard deviation interval = light blue) of ROT1 in 200 simulations.

4. Conclusions

In this work, an EKF estimator of the monoclonal antibody concentration at the outlet of
a chromatographic column was developed. Its predictions considerably improved with respect to the
use of the single Raman-PLS or the LKM. This was demonstrated for the case of a low titer harvest
(mAb conc. < 0.42 mg/mL), which is typical for perfusion bioreactors. In general, the PLS-based
predictive Raman models were able to capture the shape of the breakthrough curves, but the obtained
results were too noisy for practical applications—for example, in the direction of process control. On
the other hand, the mechanistic LKM, properly tuned on an external data set, was able to capture
the qualitative shape of the breakthrough curves, but it exhibited deviations that were too large
with respect to the off-line reference measurements. The proper application of the EKF requires the
preliminary estimation of the parameter kQ, which is responsible for weighting the contribution of the
Raman-PLS and the LKM predictions in the final estimate of the filter. By applying the tuned EKF
to an external data set, its superiority as compared to Raman-PLS and LKM became obvious. While
the LKM predictions served as a solid backbone for the EKF, the Raman-PLS real-time information
updated the state estimates and significantly reduced the LKM offset. Though the LKM showed, in
some cases, comparable prediction errors, the perturbation analysis showed the additional benefit of
EKF through the increased robustness with respect to the model input parameter values. It is worth
noting that the RMSE-EKF of 0.026 mg/mL on a range of 0–0.42 mg/mL is very close to the analytical
standard deviation of the reference off-line HPLC measurements (0.01 mg/mL). However, it needs
to be mentioned that the low detection limit of Raman spectroscopy becomes critical at very low
protein concentrations. Here, the LKM could of course be of help, and the EKF predictions should rely
mostly on these values. To fully benefit from the LKM, it should be specifically tuned in the region
of low concentrations, which is at the incipient breakthrough. Nevertheless, the EKF performance
reported in this work is already sufficient for the implementation in the frame of the control of a capture
chromatographic step, where the range of interest is around 70% of the breakthrough value [39].
It can be concluded that the EKF is a powerful tool for smart sensors and should be considered more
often for monitoring and control within bioprocesses. In the future, this approach might be extended
to other applications where deterministic knowledge is available, like in the monitoring of protein
aggregation [40], crystallization [41] or in-line buffer preparation. At the same time, research activities
on the different components of a Raman analyzer towards increased signal intensities should be
continued to further increase the prediction accuracy and reduce the measurement duration.
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Abstract: The main objective of any bioenvironmental controller is to create favourable bioenvironmental
conditions around the living-system. In industrial incubation practice of chicken embryo, it is sometimes
difficult to fill large incubators with uniform eggs, which leads to suboptimal results. The ideal incubation
solution is a machine that is capable of coping with all sorts of variabilities in eggs. This can be realised
in practice by creating different zones of different environmental conditions within the same machine.
In the present study, a two-levels controller was designed and implemented to combine both convective
and radiative heating to incubate eggs. On the higher level, three model-predictive-control (MPC)
constrained controllers were developed to regulate the power applied to nine IR-radiators divided into
three zones based on continuous feedback of the eggshell temperatures in each zone. On the lower
level, a PID controller was used to maintain the air temperature within an experimental incubator at a
fixed level (34 ◦C) lower than the standard incubation temperature. Four full incubation trials were
carried out to test and implement the developed zonal controllers. The implementation results showed
that the developed controllers were able to follow the reference trajectory defined for each zone. It was
possible to keep the eggshell temperatures within the middle region (zone) different from the sidelong
regions (zones) while the air temperature kept constant at 34 ◦C. The average hatching result (HOF) of
the four full incubation trial was 84.0% (±0.5). The developed two-levels control system is a promising
technique for demand-based climate controller and to optimizing energy use by using multi-objectives
MPCs with constraint on total energy consumption.

Keywords: bioenvironmental control; model-predictive controller; zonal controlling; dynamic modelling

1. Introduction

The production of meat and eggs worldwide is increasing because of the growing population
and the high demand of animal proteins [1]. In the poultry industry, meat and egg production
sectors require large-scale incubation of eggs at a hatchery and a well-controlled and monitored
environment [2].

Eggs of different origins and with different pre-incubation treatments are put together in
an incubator, resulting in a non-uniformity between the hatching times of the different eggs [3].
This non-synchronised time of hatch, referred to as a large hatch window, is negative in terms of animal
welfare and post-hatching performance, as the chicks are deprived from food and water (until the rest
of the eggs are hatched and transferred to the farm) [4–7]. Hatcheries therefore have a strong objective
to synchronise the hatch time.

In practice, the incubation process takes place in two different machines, namely, (i) the setter
(from incubation day 0 to day 16–18) where the embryos stay during the largest part of their development
and (ii) the hatcher (day 17–19 to day 20) where the embryos hatch.
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In practice, today’s tendency is that incubators are becoming larger. This has however implications
on hatchery management. In practice, as hen houses are not increasing in size, it becomes more
difficult to fill such larger incubators with uniform eggs from a single flock and storage time. Therefore,
it regularly happens that eggs from two or three different flocks are combined in one machine, which
can lead to sub-optimal results. For instance, putting eggs from a flock with an age of 30 weeks with
those from another flock of 60 weeks of age in the same incubator will certainly lead to a decrease in
the number of hatched chicks, poorer chick quality, higher post-hatch mortality, etc., under present
conditions where all eggs in the machine are treated equally [8–10].

The ideal incubation solution is a machine that is capable of coping with all sorts of variabilities in
eggs (e.g., flock age, strain, storage time, etc.,). This can be realised in practice by creating different
zones with different environmental conditions within the same machine. Localised manipulation of
the environmental variables inside the incubator (mainly temperature) is a potential solution to create
different zones within the incubator space. The creation of different temperature zones by means of
air-heat flow control is a very complex and expensive process [11–14]. The best option, according to
many scientists, is the radiation (radiant) method of heating. In practice, for the creation of localized
zones with a higher temperature, heating systems based on electric radiation (infrared) heaters have
been widely used [11]. Radiation (infrared) heating systems radiantly heat surfaces rather than air
volumes, which allows them to be used to heat individual zones of eggs, which cannot be achieved
with conventional forced convective heating.

During incubation, the thermoregulatory system of the chicken embryo evolves through different
stages from a poikilothermic to a homeothermic system [15,16]. The incubated egg is considered
as a complex, individually different, time varying and dynamic (CITD) system as introduced by
Berckmans et al. (e.g., [15,17,18]). Hence, the dynamic thermal response of the fertile egg to changes in
ambient temperature is different from one day to another during the embryonic development [15].
As such, modelling and controlling a biological system such as the fertile incubated eggs is more
complex than modelling of non-living physical systems (such as electric circuits). Most of the biological
responses including heat production of incubated eggs are results of a complex network of interactions
among many components inside the egg. We have ([12]) successfully implemented the multi-zonal
controlling in an empty ventilated chamber using a multi-objective proportional-integral-plus (PIP).
However, implementing such multi-zonal controller in a bio-environment around living systems
(e.g., incubated embryo) is a great challenge because of the inherent non-linearity of the system. One of
the challenges that are engaged with controlling different thermal zones simultaneously (multi-zonal
control) is the controllability of the system under question. The controllability property of the system
plays a crucial role in many control problems, such as stabilization of unstable systems by feedback, or
optimal control [19,20]. The system’s controllability can be roughly defined as an ability to do whatever
we want with our system, or in more technical terms, the ability to transfer our system from any initial
state to any desired final state in a finite time [18]. The challenge facing us to control multi-thermal-zones
was to control the temperature in a certain number of zones inside the test chamber with a minimal
number of control variables. Model-based control techniques, such as model-predictive-control (MPC)
are suitable approaches to handle the inherent nonlinearity of the living systems and the interaction of
the different thermal zones. The MPC is well-known and frequently used in the industry for optimal
control of time-varying systems with constraints [21]. MPC benefits from simple and intuitive tuning
and the ability to control a range of simple and complex phenomena, including systems with time
delays, non-minimum phase dynamics, and instability [22]. Additionally, the framework of MPC
incorporates straightforwardly system’s constraints and multiple operating conditions, exhibits an
intrinsic compensation for dead time, and provides the flexibility to formulate and tailor a control
objective [21,22].

The main objective of this paper is to investigate the possibility of zonal controlling the
bio-environment of incubated chicken embryo by combining forced convection and localised infrared
heat using adaptive predictive-controlling approach.
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2. Materials and Methods

2.1. Experimental Setup

2.1.1. Experimental Incubator

Experiments were carried out in a small-scale experimental incubator (see Figure 1) at the division
of Measure, Model and Manage Bio-responses (M3-BIORES), Leuven University (KU Leuven), Belgium.
The experimental incubator is composed of the main chamber and the air preparation chamber whose
inner dimension is 0.8 × 0.6 × 0.4 m and 0.8 × 0.25 × 0.4 m (l × w × h), respectively (Figure 1).
Both chambers have 0.04 m thick surrounding walls made of propylene. The air preparation chamber
is equipped with an air re-circulation, one inlet opening for fresh air, four re-circulation openings, and
a pipe system (Figure 1) with a three-way valve to regulate the flow rate of fresh air (refreshment) and
re-circulated air coming from the main chamber. The fresh air and re-circulated air were mixed within
the air preparation chamber to be pumped into the main chamber through two inlet pipes (Figure 1).
Volumetric flow rate, of fresh air versus that of the re-circulated air, into the main chamber is conditioned
by the open degree of the three-way valve. With 100% valve open, maximum ventilation rate of 0.17 m3

h−1 (0.885 volume refreshment per hour) was achieved with no air re-circulation. The main chamber is
equipped with two heater fans connected to the two inlet pipes, which create forced air ventilation and
supply maximum total heat of 200 W in the system (Figure 1). The prepared air (in the air preparation
chamber) is pumped through the heater fan to be heated up, if the heaters were on, before flowing
into the main chamber (Figure 1). The air inside the main chamber is exhausted through the four
openings on the top sidewall. Portion of the exhausted air (based on the control suggestion) was
mixed with the fresh inlet air and the rest was removed out of the incubator through the main outlet
opening. A mixing fan was positioned in the middle of the main chamber to accelerate the mixing
of the inlet air with the air inside the chamber. The main chamber was designed to hold a standard
incubation egg tray above the mixing fan and the air inlet pipes. The used egg tray was a Petersime
N.V. standard setter tray (B00568) for chicken eggs with 150 egg places arranged in a 10 × 15 matrix
and made of polypropylene. Air temperature, eggshell temperature and relative humidity inside the
test chamber were automatically controlled using the Petersime FocusTM controller. Control actions are
calculated based on continuous feedback from a temperature/humidity probe, which is placed inside
the main chamber. The controller compares the measurements from these sensors with the set points
to make the decision of heating up by turning on the heater fan, cooling down by cool air ventilation
or humidifying by supply steam from the steam generator or dehumidifying by dry air ventilation.
The Petersime FocusTM control box is connected to the data acquisition and control PC where the
incubation process and control actions were programmed using the Petersime Focus Software (v.2.0).

Figure 1. Schematic representation of the experimental incubator showing the main chamber, air preparation
chamber, and the infrared cover.
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2.1.2. Infrared Cover

The cover of the experimental incubator was designed to provide infrared heating in the top of
the incubated eggs. The infrared cover was equipped of nine ceramic infrared (IR) radiators (lamps),
of the type Elstein® IOT/75. The used Elstein IOT/75 lamps were ceramic infrared dark radiators
with maximum power of 100 Watts and operating infrared wavelength range of 3–10 μm. The IR
lamps were equipped with E27 threads that can be screwed-in like bulbs into porcelain sockets. Nine
porcelain sockets were fixed on three metal bars with three sockets each (Figure 2). The three metal
bars were fixed to the inner side of a wooden frame (with an inner dimension 0.8 × 0.60 × 0.20 m)
in such a way that the IR lamps were facing downward (Figure 2). The distance (h) between the IR
lamps and the eggs was adjustable, within the range h = 0.1 and 0.3 m, using four adjustment knobs
(Figure 2, top view). A plexiglass cover was placed on the top of the wooden frame. A rubber washer
was placed between the wooden frame and the incubator chamber to prevent air leakage. The nine IR
lamps were divided into three groups, each consisting of three IR lamps. The power applied to each of
the three groups were individually controlled via a model-predictive-controller (MPC) designed for
this purpose (see Section 2.4).

Figure 2. Schematic representation of the infrared cover showing the nine IR lamps (top view graph)
and the adjustable distance from the eggs (h) using the adjustment knob (cross section graph).

2.2. Measurements and Data Acquisition

Measurements from incubator’s built-in air temperature/humidity probe and CO2 were recorded
every two minutes and saved together with the controller set points in the data acquisition PC. The egg
tray was spatially divided (through the short side) into three regions, each of which consisted of 50 eggs
and facing one corresponding group of three IR lamps (Figure 3). In each region, two thermocouples
(type-T) were placed on the equators of two eggs to represent the average eggshell temperature
within each region (Figure 3). All the sensors were covered with aluminium foil for protection from
overheating caused by the direct exposition to radiation heating.

Figure 3. The location of the eggshell temperature sensors within each region (I, II and III) in the
experimental incubator (left picture) and the temperature sensor placed on the equator of the eggshell
covered with an aluminium foil to be protected from the IR heating (right picture).
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2.3. Experiments

2.3.1. Pilot Experiments

In total, 12 pilot experiments were conducted to investigate the thermal profile (i.e., the main
effective diameter of thermal radiation over the eggs surface, which is a function of the distance h
between the lamp and the eggs) of the IR lamps. Additionally, these pilot experiments were conducted
to investigate the maximal allowable operating power applied to the IR lamps to avoid over heating
of the incubated eggs (to define the controller constraints). To investigate the thermal profile of the
IR lamps over the incubated eggs a thermal camera (VarioCAM®, InfraTech) with 640 × 480 thermal
resolution, is used. Two infertile eggs were placed on a small tray and one IR lamp was suspended
from the top with an adjustable distance (h) from the surface of the two eggs.

Two infertile eggs (“equipped eggs”) were equipped with two thermocouples. One thermocouple
was fixed to the eggshell on the equator to measure the eggshell temperature (Tegg) and another was
inserted 2 cm inside the egg, through a drilled hole in the narrow end of the egg (Figure 4), to measure
the egg core temperature. The equipped eggs (Figure 4) were used to investigate how much the egg’s
internal temperature differs from the eggshell temperature and how fast the heat transferred from the
eggshell to the internal parts of the eggs when using the IR heating. This enables the definition of the
optimal constraints necessary for designing the IR controller to avoid any harms to the living embryo
during incubation.

Figure 4. The “equipped egg” is an infertile egg, which was equipped with two thermocouples (type-T),
one being placed on the equator of the egg, and the other one placed inside the egg through a drilled
hole in the narrow end of the egg.

2.3.2. Control and System Identification Experiments

During the course of the research work reported in this paper, a set of five-step experiments
were conducted to model the dynamic responses of eggshell temperatures to changes in the power
(pulse width modulation, or PWM) applied to the IR radiators. The main goal was to develop a model
predictive controller (MPC) to regulate, locally, the eggshell temperature of the incubated eggs within
the incubator. The power applied to the IR radiators was manipulated by changing the duty cycle
(percentage) of the PWM signals. The step experiments were carried out by applying step changes in
the PWM duty cycle (percentage) to the IR radiators over the range 10–20%, while maintaining a fixed
distance (h = 0.15 m, obtained from the pilot experiments) between the radiators and the eggs and
constant air temperature (Tair ≈34 ◦C). Figure 5 shows an example of the applied step changes in the
power applied to the IR radiators and the corresponding dynamic response of the eggshell temperature
for two incubated eggs in region II.
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2.3.3. Full Incubation Trials and Controller Implementation

Four full incubation trials were carried out to implement the developed MPCs. In order to test the
performance of the developed predictive controllers in regulating the eggshell temperatures within the
three regions (I, II and III) of the experimental incubator, 150 eggs were incubated with 50 eggs per
region until hatching. During each incubation trial, reference trajectories of different set points were
applied to evaluate the performance of each controller. To test the capability of the developed MPCs to
create different thermal zones of eggshell temperature within the IRinc1 the reference trajectories to the
three MPC’s were defined in such a way that the eggshell temperatures within the middle regions
(region II) was kept different (from day 10 until day 6) from the two sidelong regions (regions I and III).

Figure 5. Step changes in the pulse width modulation (PWM) duty cycle (%) and the corresponding
responses of the eggshell temperatures of two eggs in region II.

2.4. Model Predictive Controller (MPC) and System Identification

The proposed control strategy in this paper is based on controlling the temperature of the incubated
eggs by combining the convective and radiative heating mechanisms (Figure 6). The forced convective
heating/cooling was controlled using the Petersime FocusTM controller and set to maintain the air
temperature (Tair), within the main chamber, at a lower value (set point ≈ 34 ◦C) than the standard
temperature for egg incubation (Tstd = 37.8 ◦C). The radiative heating, using the IR radiators, was used
to bring the eggshell temperature (Tegg) to the desired reference value RTegg(k) at time k. A model
predictive controller (MPC) was developed with the objective of maintaining the eggshell temperature
(Tegg) around a certain predefined desired reference trajectory (RTegg) along the incubation period,
which was achieved by actively manipulating the power applied to the IR radiators. The input power
applied to the IR radiators was implemented through the pulse-widths modulated (PWM) signals
generated using NI USB6251 interface.

Figure 6. Block diagram representing the control strategy to combine both convective and radiative
heating to control the eggshell temperature using model-predictive-controller (MPC) to regulate the
eggshell temperature of incubated eggs.
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2.4.1. System Identification and Parameter Estimation

A single-input, single-output (SISO) discrete transfer function (DTF) model was used to describe
the static and dynamic responses of the eggshell temperature (Tegg) to step changes in the power (PWM
duty cycle ‘%’) applied to the IR radiators. The model has the following general structure [23]:

Tegg(k) =
B
(
z−1

)
A(z−1)

u(k− δ) − ξ(k) (1)

where: Tegg(k) is the output (average eggshell temperature per region) at time k; u(k) is the input
(PWM duty cycle to the IR radiators) at time k (min); ξ(k) is additive noise, assumed to be a zero mean,
serially uncorrelated sequence of random variables with variance σ2 accounting for measurement
noise, modelling errors and effects of unmeasured inputs to the process.

The two polynomials A
(
z−1

)
and B

(
z−1

)
are given by:

A
(
z−1

)
= 1 + a1z−1 + a2z−2 + . . .+ anz−na

B
(
z−1

)
= b0 + b1z−1 + b2z−2 + . . .+ bmz−nb (2)

where ai and bi are the model parameters to be estimated; z−i is the backward shift operator, z−1·y(k) =
y(k− 1); and n, m are the orders of the respective polynomials. In the present paper, the simplified
refined Instrumental variable (SRIV) algorithm was utilised in the identification and estimation of the
models [24]. The appropriate model structure was identified, i.e., the most appropriate values for the
triad [n, m, δ] (see Equation (1)). Two main statistical measures were employed to determine the most
appropriate values of this triad. Namely, the coefficient of determination RT

2 , based on the response
error; and YIC (Young’s information criterion), which provides a combined measure of model fit and
parametric efficiency, with large negative values indicating a model which explains the output data
well and yet avoids over-parameterisation [25,26].

2.4.2. MPC and Cost Function Formulation

The general idea behind any MPC design is to select a sequence of Nc future control moves to
minimise a cost function J (Equation (3)) over a prediction horizon of Np sample times [27]. In this
paper, a quadratic programming cost function with quadratic objective function and linear constraints
was used. The quadratic programming form leads to smoother control actions in comparison to the
linear form. The model predictive controller uses the model (Equation (1)) to predict the response of
the system based on the past measured inputs and outputs. This predicted output (T̂egg) was then
used to calculate the optimal input by mathematical optimisation techniques in order to reduce the
difference between this output and the desired one (RTegg). This optimal input was calculated by
minimizing the following cost function [21]:

J
(
N1, Np, Nc

)
=

Np∑
j=N1

α j
[
T̂egg

(
k + j

∣∣∣k) −RTegg[k + j]
]2
+

Nc∑
j=1

λ j[Δu[k + j− 1]]2 (3)

where, Δu(k) is the change in input (power applied to the IR radiators), T̂egg(k + j|k) is the predicted
output (eggshell temperature) sequence, RTegg(k) is the desired value of the output, N1 is the minimum
of the prediction horizon, α and λ are the weighting factors. The block diagram depicted in Figure 7.
shows the basic structure of the designed MPC system in the present work to control the eggshell
temperature using localised IR heating.
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Figure 7. Block diagram representing the basic structure of the proposed MPC system to control the
eggshell temperature of incubated eggs.

The model (Equation (1)) is the cornerstone of the MPC system and should be robust enough to
fully capture the process dynamics [21]. In other words, the identified model should be able to describe
the dynamic responses of the eggshell temperature to changes in the control input (i.e., power applied
to the IR radiators). There is a wide family of MPC algorithms, each member of which is defined by
the choice of the prediction model, the cost function and obtaining the control law [21]. In the present
paper, the dynamic matrix control (DMC) algorithm was considered. The DMC formulation uses the
step response to model the process [21,28]. The process model employed in this formulation is the
step response of the eggshell temperature to step increase in the input, while the disturbance was
considered constant along the prediction horizon (Np). The procedure to obtain the predictions is as
follows. As a step response model (Equation (1)) was employed:

Tegg(k + j) =
∞∑

j=1

gjΔu(k + j− 1) (4)

where gj is the step response coefficient.
The predicted eggshell temperature along the prediction horizon is:

T̂egg(k + j|k) =
Np∑
j=1

gjΔu(k + j− 1) + f (k + j) (5)

where the f (k + j) is the free response of the system.
Equation (5) can be written as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
T̂egg[k + 1|k]
T̂egg[k + 2|k]

. . .

T̂egg
[
k + Np

∣∣∣k]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 0 . . . 0
g2 g1 . . . 0
...

...
. . .

...
gNp gNp−1 . . . g1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δu[k]

Δu[k + 1]
. . .

Δu[k + Nc − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f [k]
f [k + 1]
. . .

f
[
k + Np − 1

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

or
T̂ = Gu + f (7)

where G is the Np × Nc dynamic matrix, T̂ is the Np-dimension vector contains the predicted eggshell
temperatures along the prediction horizon, u represents the Nc-dimension vector of the control inputs
and f is the free response vector. Hence, using Equation (7) the cost Function (3) can be represented in
the following form [21]:

J = (Gu + f−R)T(Gu + f−R) + λuTu (8)
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J =
1
2

uTHu + bTu + f0 (9)

with H = 2
(
GTG + λI

)
, bT = 2(f−R)T

G and f0 = (f−R)T(f−R).
The cost Function (9) is quadratic, therefore, the minimum is unique. The optimal input change

can be calculated by setting the derivative equal to zero:

dJ
du

= 2
(
GTG + λI

)
u + 2GT(f−R) = 0 (10)

Then the optimal input change is given by:

u =
(
GTG + λI

)−1
GT(R− f) (11)

For the control law, as such, only the first element of vector u was implemented.

3. Results

3.1. Pilot Experiments

The results of the conducted experiments have shown that the optimal thermal profile of the IR
lamps was achieved at distance (h) of 0.15 m, which corresponds to an effective diameter of 0.30 m.

Figure 8 shows a comparison between the temperature responses of the equipped eggs under
convective heating and radiative heating (at PWM of 10%). The results (an example is shown in
Figure 8) have shown that the temperature difference between the egg-core and the eggshell was
vanishing (quasi zero) faster (5.2 ± 1.5 min) in case of radiative heating in comparison to convective
heating (9.4 ± 1.8 min). The average time constants of eggshell temperature in case of radiative and
convective heating were 7.6 ± 1.2 min and 7.45 ± 1.23 min, respectively. The steady-state eggshell
temperature at different power levels (PWM) applied to the radiative lamps are shown in Figure 9.
A linear regression model was fit the relation between the eggshell temperature (◦C) and PWM (%)
with a slope of 0.42.

Figure 8. Step responses of eggshell and egg core temperatures to step up increases in convective-heating
(left graphs) and radiative-heating (right graphs), with PWM = 10%, inside the experimental incubator.
The ‘temperature diff’ is the difference between the egg-core and the eggshell temperatures.
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Figure 9. The resulted steady-state temperature of the eggshell at different PWM (%) to the IR lamps at
distance h = 0.15 m.

3.2. System Identification and Predictive Model Generation

It should be stated here that the objective of this stage was to identify an approximation mode of
the incubated fertile-egg system. The identification step in the present paper was tuned towards the
main objective of control-oriented model design.

The SRIV algorithm, combined with the YIC and RT
2 , suggested that a second-order (number of

poles, n = 2) DTF model with one minute pure delay (δ = 1 min) was most suitable (i.e., RT
2 = 0.98 ± 0.01

and YIC = −13.00 ± 1.45) to describe the dynamic responses of the eggshell temperature (Tegg(k)) to
step changes in the power applied to the IR radiators (u(k)). More specifically, the SRIV algorithm
identified the following general DTF model structure (denoted by the triad [2 2 2], i.e., n = 2, m = 2
and δ = 2),

Tegg(k) =
b1z−1 + b2z−2

1 + a1z−1 + a2z−2
u(k− δ) (12)

or in the following difference equation form,

Tegg(k) = −a1.Tegg(k− 1) − a2.Tegg(k− 2) + b1.u(k− δ− 1) + b2.u(k− δ− 2) (13)

Table 1 shows the average parameter estimates for the identified model structure for the three eggs.

Table 1. The resulted model parameter estimates (average and ± standard error) obtained from 15
incubated eggs at embryonic day (ED) 15.

A
(
z−1

)
B
(
z−1

)
R2

T YIC

a1 a2 b1 b2
0.98 (± 0.01) −13.00 (± 1.45)−1.997 (± 0.003) 0.997 (± 0.003) 0.0010 (± 0.0017) −0.0010 (± 0.0017)

3.3. Model Predictive Control Design

3.3.1. MPC Cost Function and Constraints

During the incubation process, the thermoregulatory system of the chicken embryo evolves
through different stages from a poikilothermic to a homeothermic system. Hence, the thermal response
of the fertile egg to changes in ambient temperature is different from one day to another during the
embryonic development [15]. Such a complex and sensitive process is subject to a number of limitations
and constraints pertaining to the ranges of tolerable eggshell temperatures and acceptable IR operating
power range. Table 2 shows the applied constraints on the controlled, Tegg, and the manipulated, u(k),
variables during designing the MPC system. Based on the results of pilot experiments, the control
signal, u(k), was constrained within the allowable PWM range between 0 and 20%. In order to prevent
large increments in the rate of change in the manipulated variable Δu(k), the maximum boundary was
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set as small as 0.5%. On the other hand, to prevent overheating a fast decrease in the IR heating was
allowed by setting the minimum boundary to −2%. Additionally, the controlled variable, Tegg(k), was
constrained within the allowable incubation range between 36 and 40 ◦C.

Table 2. The predefined constraints on both the controlled and manipulated variables, which should
be considered for designing the MPC system.

Constraints

Manipulated variable (power to the IR, PWM, %) u(k) = (0, 20)

Change in the Manipulated variable (%) Δu(k) = (−2, 0.5)
Controlled variable (average eggshell temperature, ◦C) Tegg(k) = (34, 40)

The developed MPC system should anticipate constraint violations and correct them in an
appropriate way. Therefore, the minimization of the cost Function (9) is subject to constraints on the
output (Tegg(k), eggshell temperature), input (u(k), power applied to the IR radiators) and changes in
the input, Δu(k), as the quadratic programing (QP) formulation:

min
u

1
2

uTHu + bTu, subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ u{k ≤ 20
−2 ≤ Δu{k ≤ 0.5
34 ≤ Tegg{k ≤ 40

(14)

3.3.2. MPC Simulation

To simulate the closed-loop MPC of the eggshell temperature (controlled variable, Tegg(k)) using
the power applied to the IR radiators (manipulated variable, u(k)) the following design parameters
were defined:

1. Sampling time (or period) ts, which determines the rate at which the control algorithm was
executed. The shorter the sampling period the better controller performance to deal with fast
disturbances. On the other hand, diminishing ts can increase the computational burden. In any
case, ts should not exceed the maximal expected time necessary for running one iteration of
the MPC algorithm [29]. In the current study the sampling time was chosen to be one sample
(ts = 1 min), which corresponds to a value ten times smaller than the average observed rise time
(tr = 10.12 ± 0.22 min).

2. Defining the prediction and control horizons, which should be at least same or larger than the
settling time of the system. The control horizon in general should be less than the defined
prediction horizon and based on many applications an optimal control horizon should be between
20–30% of the prediction horizon to ensure smooth control actions and yet low computational
costs. In the current study, the prediction Np and control Nc horizons were set to 20 samples
(Np > average settling time = 16.20 ± 1.13 min) and five samples (25% of the prediction horizon).

3. To achieve a balanced performance between the competing control objectives (i.e., a close tracking
of the set-point together with smooth control moves), the weighting factors α and λ were set to
0.9 and 0.8, respectively [30], to avoid any conflict between the control objectives.

The controller algorithm is initialized by computing the dynamic matrix G for the system (13),
which is defined, based on (6), as follows:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
g1 0 0
g2 g1 0
g3 g2 g1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15)
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where,
g1 = −a1.Tegg(k− 1) − a2.Tegg(k− 2) + b1.u(k− δ− 1) + b2.u(k− δ− 2)

g2 = −a1.Tegg(k) − a2.Tegg(k− 1) + b1.u(k− δ) + b2.u(k− δ− 1)
g3 = −a1.Tegg(k + 1) − a2.Tegg(k) + b1.u(k− δ+ 1) + b2.u(k− δ)

and computing the control gain matrix K, which is defined as follows:

K =
(
GTG + λI

)−1
GT

A zero mean (μ = 0) white noise term with variance (σ) of 0.1 was added to both output Tegg(k)
and input u(k) signals to simulate the measurement and actuator noises (unmeasured disturbances),
respectively. A simulation example of the closed-loop response of the designed MPC controller based
on the DTF model (12) is depicted in Figure 10. Despite the added disturbances in both input and
output signals, the simulation of the MPC closed-loop response was able to follow the reference signal
(set point) efficiently with max error (Tegg −RTegg) of ±0.4 ◦C.

Figure 10. A simulation example of the closed-loop step response Tegg(k) (upper graph) and unmeasured
disturbances in both input and output using the designed constrained MPC controller based on the
general TF model structure (12), showing the control signal u(k) (lower graph). The closed-loop
simulation of the developed MPC was implemented on MATLAB on a computer with Intel® 8 core i7
(2.7 GHz) processor and 16GB RAM. The average computational time for one iteration on this computer
was 15.6 s.

3.3.3. MPC Implementation and Full Incubation Experiments

A two-level zonal control system was developed combining both convective and radiative heating
to regulate the eggshell temperatures within three different zones (region I, II and III) simultaneously.
On the higher-level three MPC systems were used to regulate the eggshell temperatures within the
three regions. Additionally, a PID controller (Petersime FocusTM) was employed in the lower level to
regulate the incubation air temperature within the experimental incubator.

Four full incubation trials were carried out to implement and tune the developed MPC system to
regulate the eggshell temperatures of incubated eggs in three different zones inside the experimental
incubator (see Figure 11). To investigate the possibility of the controllers to regulate the eggshell
temperatures within the three regions, the reference trajectory for region II (middle region) was different
from those for sidelong regions (i.e., region I and III). The programmed reference trajectories were
including some extreme set points (e.g., 34 ◦C), which do not follow the standard eggshell temperature
(around 38 ◦C). Therefore, it was expected that such treatments might affect the final hatching results.
Figure 11 shows an example of the implementation results of the developed MPCs to regulate the
eggshell temperatures inside the experimental incubator IRin1. By employing different set points,
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it was possible to create two thermal zones, between days 0 and 6, (at region I and III) of incubated eggs
with more or less same eggshell temperature sandwiching another with different eggshell temperature.

Figure 11. Example of the implementation results of the developed MPCs to regulate the eggshell temperatures
at three different regions, I (upper graphs), II (middle graphs) and II (lower graphs) simultaneously.

Although the controllers were able to follow the reference trajectories in each zone (region), it was
noticed (Figure 11) that the responses of the eggshell temperatures in each zone exhibited an oscillation
around the set point values with an average error of ±0.5 ◦C. This can be attributed to the unmeasured
disturbances resulting from the interaction between adjacent zones with different temperatures and
to the control actions of the PID (Petersime FocusTM) controller, which regulates the incubation air
temperature around the eggs in the whole incubator. Another possible reason for such oscillated
deviation between the actual eggshell temperature and the set point is the fact that, during this study,
we have designed the MPCs based on one predictive model (12). That with the assumption that the
DTF model (12) is representative of the controlled dynamic system (incubated embryo). However, in
reality as shown in previous studies (e.g., [15]) the incubated embryo is inherently a nonlinear system,
which exhibits different dynamics and responses almost every embryonic day. Therefore, we are
proposing for future work an adaptive control approach, in which a linear model (with a fixed model
structure as (12)) is estimated on the fly as the operation conditions are changing, hence the internal
system-model of the MPC is updated at each scheduled time period (e.g., each day).

Previous studies (e.g., [31–34]) showed that the incubated chicken embryos are evolving at early
stage of development (between incubation days ED 5–7) from an ectothermic (gaining its required heat
from the surrounding environment) organism to an endothermic (produces its own heat) organism.
Hence, in practice of industrial incubation, most of the energy is used to cool down the incubated
embryo to the standard eggshell temperature (~38 ◦C). Therefore, the proposed two-level control
system, which combine convective and radiative heating, is believed to be a promising technique
to use the energy more efficiently during incubation. This can be achieved by locally heating up
the required zones using localized IR heating (i.e., demand-based climate controlling). Additionally,
a multi-objective cost function can be used to optimize the energy used by including an extra constraint
on total energy consumption.

The results of the four full incubation trials showed that combining both convective and
radiative heating mechanisms was successful to hatch the incubated eggs with average hatch-of-fertile
(HOF = (hatched chicks/number of true fertile eggs)× 100) of 84.0% (±0.5). A breakout of the unhatched
eggs was performed [35,36] in the end of each incubation trial. The average breakout results of the
unhatched eggs are shown in Figure 12.
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Figure 12. Average breakout results of the unhatched eggs during the four full incubation trials showing
the percentage of hatched, infertile (inf), contaminated (Cont.), early death (Er. Death), middle death
(M.D) and malformed embryo.

4. Conclusions

During the present study, a two-levels controller was designed and implemented to combine
both convective and radiative heating to incubate eggs. On the higher level, three MPC constrained
controllers were developed to regulate the power applied to nine IR-radiators divided into three zones
based on continuous feedback of the eggshell temperatures in each zone. On the lower level, a PID
controller (Petersime FocusTM) was used to maintain the air temperature within an experimental
incubator at a fixed level (34 ◦C) lower than the standard incubation temperature. Four full incubation
trials were carried out to test and implement the developed zonal controllers. The implementation
results showed that the developed controllers were able to follow the reference trajectory defined for
each zone. It was possible to keep the eggshell temperatures within the middle region (zone) different
from the sidelong regions (zones) while the air temperature kept fixed at 34 ◦C. The average hatching
result (HOF) of the four full incubation trial was 84.0% (±0.5). The developed two-levels control system
is a promising technique for demand-based climate controller and to optimize energy use by using
multi-objectives MPCs with constraint on total energy consumption.
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Abstract: Conventional indoor climate design and control approaches are based on static thermal
comfort/sensation models that view the building occupants as passive recipients of their thermal
environment. Recent advances in wearable sensing technologies and their generated streaming data
are providing a unique opportunity to understand the user’s behaviour and to predict future needs.
Estimation of thermal comfort is a challenging task given the subjectivity of human perception; this
subjectivity is reflected in the statistical nature of comfort models, as well as the plethora of comfort
models available. Additionally, such models are using not-easily or invasively measured variables (e.g.,
core temperatures and metabolic rate), which are often not practical and undesirable measurements.
The main goal of this paper was to develop dynamic model-based monitoring system of the occupant’s
thermal state and their thermoregulation responses under two different activity levels. In total,
25 participants were subjected to three different environmental temperatures at two different activity
levels. The results have shown that a reduced-ordered (second-order) multi-inputs-single-output
discrete-time transfer function (MISO-DTF), including three input variables (wearables), namely,
aural temperature, heart rate, and average skin heat-flux, is best to estimate the individual’s metabolic
rate (non-wearable) with a mean absolute percentage error of 8.7%. A general classification model
based on a least squares support vector machine (LS-SVM) technique is developed to predict the
individual’s thermal sensation. For a seven-class classification problem, the results have shown
that the overall model accuracy of the developed classifier is 76% with an F1-score value of 84%.
The developed LS-SVM classification model for prediction of occupant’s thermal sensation can be
integrated in the heating, ventilation and air conditioning (HVAC) system to provide an occupant
thermal state-based climate controller. In this paper, we introduced an adaptive occupant-based
HVAC predictive controller using the developed LS-SVM predictive classification model.

Keywords: thermal sensation; thermal comfort; machine-learning; prediction; adaptive controlling

1. Introduction

Thermal comfort (TC) is an ergonomic aspect determining the satisfaction about the surrounding
environment and is defined as “that condition of mind which expresses satisfaction with the thermal
environment and is assessed by subjective evaluation” [1]. The effect of thermal environments on
occupants might also be assessed in terms of thermal sensation (TS), which can be defined as “a
conscious feeling commonly graded into the categories cold, cool, slightly cool, neutral, slightly warm,
warm, and hot” [1]. Thermal sensation and thermal comfort are both subjective judgments, however,
thermal sensation is related to the perception of one’s thermal state, and thermal comfort to the
evaluation of this perception [2]. The assessment of thermal sensation has been regarded as more
reliable and. as such. is often used to estimate thermal comfort [3].
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Human thermal sensation mainly depends on the human body temperature (core body
temperature), which is a function of sets of comfort factors [4,5]. These comfort factors include
indoor environmental factors, namely the mean air temperature around the body, relative air velocity
around the body, humidity, and the mean radiant temperature to the body [5]. Additionally, some
personal (individual-related) factors, namely, metabolic rate or internal heat production in the body,
which vary with the activity level and clothing thermal-physical properties (such as clothing insulation
and vapour clothing resistance), are included. It should be mentioned that the individual thermal
perception is deepening, as well, on psychological factors, including naturalness (an environment
where the people tolerate wide changes of the physical environment), expectations and short/long-term
experience, which directly affect individuals’ perceptions, time of exposure, perceived control and
environmental stimulation [6]. The most considered method to have an accurate assessment of TS
is to ask the individuals directly about their thermal sensation perception [4,5]. Thermal sensation
mathematical models have been developed in order to overcome the difficulties of direct enquiry of
subjects. The development of such models is mostly dependent on statistical approaches that correlates
experimental conditions (i.e., environmental and person-related variables) data to thermal sensation
votes obtained from human subjects [3,5]. Most of these models (e.g., predicted mean vote, PMV) are
static in the sense that they predict the average vote of a large group of people based on the seven-point
thermal sensation scale. Instead of individual thermal comfort, they only describe the overall thermal
sensation of multiple occupants in a shared thermal environment. To overcome the disadvantages of
static models, adaptive thermal comfort models aim to provide insights in increasing opportunities
for personal and responsive control, thermal comfort enhancement, energy consumption reduction
and climatically responsive and environmentally responsible building design [7,8]. The idea behind
adaptive model is that occupants and individuals are no longer regarded as passive recipients of the
thermal environment but, rather, play an active role in creating their own thermal preferences [8].
In addition to regression analysis, thermal sensation prediction can also be seen as a classification
problem where various classification algorithms can be implemented [7]. Recently, a number of studies
(e.g., [9–13]) have demonstrated the possibility of using machine learning techniques, such as a support
vector machine (SVM), to assess and predict human thermal sensation. It can be concluded based on
the published work (see the recent literature review [7] showing that classification-based models have
performed so well as regression models).

Recent advances in mobile technologies in healthcare, in particular wearable technologies
(m-health) and smart clothing, have positively contributed to new possibilities in controlling and
monitoring health conditions and human wellbeing in daily life applications. The wearable sensing
technologies and their generated streaming data are providing a unique opportunity to understand the
user’s behaviour and to predict future needs [14]. The generated streaming data is unique due to the
personal nature of the wearable devices. However, the generated streaming data is forming a challenge
pertaining to the need of personalized adaptive models that can handle newly arrived personal data.

Current heating, ventilation, and air conditioning (HVAC) control systems can be divided into
two types: air temperature regulator (ATR) and thermal comfort regulator (TCR). Most TCR controllers
use static models, mainly PMV, as a performance criterion.

This paper aims to develop an adaptive model for real-time monitoring of human thermal states
using personal non-intrusive sensing techniques. The developed model should be suitable for real-time
adaptive control of indoor climate systems and smart wearable applications.

2. Materials and Methods

2.1. Experiments and Experimental Setup

2.1.1. Climate Chambers (Body and Mind Room)

The “Body and Mind Room” consists of three climate-controlled chambers (A, B and C) designed
and built to investigate the dynamic mental and physiological responses of humans to specific indoor
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climate conditions. The Body and Mind rooms are experimental facilities at the M3-BIORES laboratory
(Animal and Human Health Engineering Division, KU Leuven, Leuven, Belgium). The three rooms
are dimensionally identical; however, each room is designed to provide different ranges of climate
conditions, as shown in Table 1.

Table 1. The different temperature and relative humidity ranges that can be provided by the different
Body and Mind rooms (A, B and C).

Room Air Temperature Range (◦C) Relative Humidity Range (%)

A +23–+37 50–80
B +10–+25 50–80
C −5–+10 40–60

The three rooms are equipped with axial fans to simulate wind velocities between 2.5 and 50 km·h−1.

2.1.2. Experimental Protocol

The experimental protocol used in the present study is designed in such way to investigate the
subjects’ thermal and physiological responses to predefined three different temperature (low, normal
and high) that under two levels of physical activities (seated = low and cycling = high). The three
predefined temperatures (low = 5 ◦C, normal = 24 ◦C and high = 37 ◦C) are chosen based on the
thermal comfort chart from [15] and the effects on health according to the Wind Chill Chart for cold
exposure (National Weather Service of the US) and for hot temperatures exposure according to [16].
The conducted experiments consist of two phases (Figure 1, upper graph), namely, low activity and
high activity phases. During the first experimental phase, low activity phase, the test subjects (while
being seated = low activity) are exposed, for 55 min, to three levels of temperatures in the following
order: normal, low, high and normal again (Figure 1). During the high activity phase, the test subjects
is exposed to a 15 min of light physical stress (80 W of cycling on a fastened racing bicycle). During the
course (75 min) of the active phase, each test subject is exposed to the predefined three temperature
levels (Figure 1, lower graph). During each temperature level, starting from the normal level (24 ◦C),
the test subjects are performed 15 min of cycling (with 80 W power) and followed 4 min of resting
(seated). During the course of conducted experiments, the clothing insulation factor (Col) is kept
constant at Col = 0.34, which accounts for a cotton short and t-shirt as standard clothing for all test
subjects. The experimental protocol is approved by the SMEC (Sociaal-Maatschappelijke Ethische
Comissie) on 16 January 2019 with number G-2018-12-1464.

2.1.3. Test Subjects

In total, 25 healthy participants (six females and 19 males were asked before the experiments if
they had been diagnosed with any cardiac problems, diabetic or any other health problems), between
the age of 25 and 35 (average age 26 ± 4.2) years, with average weight and height of 70.90 (±12.70) kg
and 1.74 (±0.10) m, respectively, volunteered to perform the aforementioned experimental protocol.

2.1.4. Measurements and Gold Standards

During the course of the experiments, participants’ heart rate, metabolic rate, average skin
temperature, heat flux between the skin and the ambient air and core body temperature represented
by the aural temperature are measured continuously. Heart rate monitoring is performed using
a Polar H7 ECG (Polar, Kempele, Finland) strap that is placed under the chest, with a sampling
frequency of 128 Hz. The metabolic rate, as metabolic equivalent tasks (METs) of each test subject,
is calculated based on indirect calorimetry using a MetaMAX 3B (CORTEX-Medical, Leipzig, Germany)
spiroergometer sensor. The average skin temperature is calculated based on measurements from three
body-placed sensors, namely, scapula, chest and arm (Figure 2). The skin temperature measurements
are performed using one Shimmer (Shimmer-Sensing, Dublin, Ireland) temperature sensor and two
gSKIN® bodyTEMP patches (greenTEG, Zurich, Switzerland). Two heat flux gSKIN® patches are
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placed on both the chest and the left arm (Figure 2). The skin temperatures and heat flux measurements
are acquired at a sampling frequency of 1 Hz. All the measured from the wearable sensors were
received and saved on a smart phone. Core body temperature is estimated based on aural temperature
measure measurements, which is performed using in-ear wireless (Bluetooth) temperature sensor
(Cosinuss One, Düsseldorf, Germany) with a sampling rate if 1 Hz. At the end of each applied
temperature level during the course of both experimental phases, a thermal sensation questionnaire,
based on ASHRAE seven-point thermal scale, is performed for each test subject.

Figure 1. Plots showing the climate chambers’ set-point temperatures programed during the 55 min
low activity phase (upper graph) and the 75 min high activity phase (lower graph).

Figure 2. Sensor placement. (A) Ear channel for aural temperature measurement via the Cosinuss
One; (B) upper arm where the skin temperature and heat flux are measured with the gSKIN patch;
(C) middle upper chest where the skin temperature and heat flux are measured with the gSKIN patch;
(D) lower chest where the heart rate is measured with the Polar H7; (E) scapula where skin temperature
is measured with the Shimmer sensor; (F) mouth and nose where metabolic rate is measured via a
MetaMAX-3B spiroergometer sensor.

2.2. Modelling and Classification

For the sake of present study, the measured variables are divided into wearables, which are easily
measured variables using wearable sensors and gold standards (reference) variables, which are not
suitable for wearable technologies. The wearables include heart rate HR, aural temperature Ter, average
skin temperature Tsk, skin heat flux qsk and ambient air temperature T∞. On the other hand, the gold
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standards consist of the core temperature Tc, which is driven from the aural temperature [Tc = f (Ter)],
metabolic rate Mr and personal thermal sensation votes TS. The ultimate goal of this work is to develop
an adaptive classification model to predict the individual thermal sensation depending, solely, on
the wearables or estimated variables. Hence, both of the metabolic rate and core body temperature
are estimated using an online dynamic modelling approach (Figure 3). Then, the individual thermal
sensation is predicted using a classification model (classifier) whose inputs are the wearables and
estimated the metabolic rate and core body temperature (Figure 3).

Figure 3. Overview of the main steps to predict the individual thermal sensation.

2.2.1. Dynamic Modelling

Although the system under study (occupant’s thermoregulation) is inherently a non-linear system,
the essential perturbation behaviour can often be approximated well by simple linearized transfer
function (TF) models [17–19]. For the purposes of the present paper, therefore, the following linear,
multi-input, single-output (MISO) discrete time systems are considered to estimate metabolic rate and
core body temperature [18]:

y(k) =
r=R∑
r=1

Br
(
z−1

)
Ar(z−1)

ur(k− δr) + ξ(k), (1)

where k denotes the value of the associated variable at the kth sampling instant; y(k) is the output
variable; ur(k), r = 1, 2, . . . , R are input variables, while A

(
z−1

)
and B

(
z−1

)
are appropriately defined

polynomials in the backshift operator z−1, i.e., z−iy(k) = y(k− i) and ξ(k) is additive noise, a serially
uncorrelated sequence of random variables with variance σ2 that accounts for measurement noise.
The simplified refined instrumental variable (SRIV) algorithm was utilised in the identification
and estimation of the models (model parameters and model structure) [20]. Two main statistical
measures were employed to determine the most appropriate model structure. Namely, the coefficient
of determination RT

2 , based on the response error; and YIC (Young’s information criterion), which
provides a combined measure of model fit and parametric efficiency, with large negative values
indicating a model which explains the output data well and yet avoids over-parameterisation [21].
Additionally, the estimation performance of the selected models is evaluated used the mean absolute
error (MAE) value.

2.2.2. Classification Model

To predict the individual thermal sensation, a classification model (classifier) is developed and
trained based on the wearables and estimated variables (metabolic rate and core body temperature),
together with the thermal sensation votes (gold standard). A modified support vector machine (SVM)
technique, namely, the least squares support vector machine (LS-SVM), is used to develop and train
the thermal sensation classifier [22,23]. SVMs are originally presented as binary classifiers [22] that
assign each data instance X ∈ Rd to one of two classes described by a class label y ∈ {−1, 1} based on
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the decision boundary that maximises the margin 2/‖w‖2 between the two classes. Generally, a feature
map ϕ : R

d ⇒ R
p is used to transform the geometric boundary between the two classes to a linear

boundary L : wTϕ(x) + b = 0 in feature space, for some weight vector w ∈ Rp×1 and b ∈ R. The class
of each instance can then be found by y = sign

(
wTϕ(x) + b

)
, where sign refers to the sign function.

Due to some computational complexities of standard SVM because of the quadratic programming
problem, the least squares support vector machine (LS-SVM) is presented to overcome such problem.
LS-SVM, in contrast with standard SVM, relies on a least squares cost function as follows:

min
w, b; e

1
2

wTw + γ

N∑
i=1

e2
i , (2)

such that yi
(
wTϕ(xi) + b

)
≥ 1− ei and ei ≥ 0, i = 1, 2, . . . , N, where ei errors such that 1 − ei is

proportional to the signed distance of xi from the decision boundary, and γ represents the regularisation
constant. In LS-SVM, instead of solving the quadratic programming problem, a set of linear equations
to be solved is sufficient to find the optimal solution of the classifier. The LS-SVMlab (Least Squares
Support Vector Machine lab) Matlab-based toolbox is used to implement the LS-SVM classification
algorithm [22].

The performance of the classification model is determined based on accuracy, sensitivity, precision
and F1-score as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, Sensitivity =

TP
TP + FN

Precision =
TP

TP + FP
, F1Score =

2 ∗ Precision ∗ Sensitivity
Precision + Sensitivty

where TP, TN, FP and FN are the true positive, true negative, false positive and false negative,
respectively.

3. Results and Discussion

3.1. Dynamic Modelling and Estimation of an Individual’s Metabolic Rate

The average metabolic rate obtained from the 25 participants at the temperature levels (24, 5 and
37 ◦C) during low and high activity phases are presented in Table 2.

Table 2. Average (±standard deviation) of the measured metabolic rate obtained from the 25 test
subjects during low and high activity phases.

Measured Metabolic Rate (MET *)

Temperature Low Activity Phase High Activity Phase

24 ◦C 1.19 ± 0.19 5.11 ± 1.18
5 ◦C 1.18 ± 0.23 5.32 ± 1.24
37 ◦C 1.22 ± 0.17 5.48 ± 1.20

* 1MET = 1.163 W·kg−1.

Different combinations of input variables (wearables) are tested for the best estimation of an
individual’s metabolic rate. The SRIV algorithm, combined with YIC and RT

2 selection criteria,
suggested that a second-order MISO discrete-time TF with heart rate (HR), average skin heat flux
(qsk) and aural temperature (Ter) as input variables is the best (with average RT

2 = 0.89 ± 0.04 and
YIC = −13.62 ± 2.33) to describe and estimate the dynamic behaviour of the individual’s metabolic
rate. More specifically, the SRIV algorithm identified the following general MISO discrete-time TF
model structure:
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M̂r(k) =

⎡⎢⎢⎢⎢⎢⎢⎣B1
(
z−1

)
A(z−1)

B2
(
z−1

)
A(z−1)

B3
(
z−1

)
A(z−1)

⎤⎥⎥⎥⎥⎥⎥⎦·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ter(k− δ1)

HR(k− δ2)

qsk(k− δ3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+ ξ(k) (3)

where M̂r(k) is the estimated metabolic rate and the numerator polynomials B1, B2 and B3 are of the
following orders (number of zeros) 2, 3 and 2, respectively. The system delays δ1, δ2 and δ3 are varied
from person to another (inter-personal) with average values of 1.4, 0.20 and 0.21 min, respectively
(Table 3). A simulation example of the developed estimation model (Equation (3)) for one test subject
during the low activity experimental phase at normal temperature (24 ◦C) is depicted in Figure 4.

Table 3. Average RT
2 , YIC, model delays and MAPE for the selected MISO-DTF model to estimate the

individual’s metabolic rate obtained from the 25 test subjects during low and high activity phases.

Average RT
2 ± std Average YIC ± std

Model Delays
Average [δ1 δ2 δ3]

Average
MAPE ± std

Low activity phase 0.85 ± 0.02 −12.32 ± 3.4 [1.5 0.3 0.25] min 10 ± 2.2%
High activity phase 0.94 ± 0.03 −14.43 ± 2.8 [1.2 0.18 0.20] min 7.6 ± 2.6%

Figure 4. A simulation example of the developed MISO-DTF model (Equation (3)) to estimate the
metabolic rate during the low activity experimental phase at normal temperature (24 ◦C).

The estimation performance of the selected general MISO-DTF (Equation (3)) is evaluated based

on the mean absolute percentage error (MAPE = 100%
N

∑N
k=1

∣∣∣∣ M̂r(k)−Mr(k)
Mr(k)

∣∣∣∣) value.
The results have shown that the developed general model (Table 3), for all test subjects, a higher

average MAPE value (10 ± 2.2%) during the low activity phases than the average MAPE value
(7.6 ± 2.6%) resulted during the high activity phases. The METs (metabolic equivalent tasks) are a
measure which accounts for a normalized form of energy expenditure per kilogram of mass. There is a
consensus that the measurement of the metabolic rate might vary among individuals (interpersonal) up
to 75% [24], even within the same day from morning to afternoon for the same subject (intrapersonal)
up to 6%, though measurements on different days might be comparable on fasted subjects [25]. Hence,
a general estimation model of individual metabolic rate will not be efficient in this case. However, the
general estimation performance of the suggested general MISO model can be enhanced by using the
online adaptive form of the SRIV algorithm [26]. The online adaptive (closed-loop) SRIV algorithm
provides the possibility to personalise the developed general model by retuning the model parameters
and model delays based on the streaming data acquired from the wearable sensors.
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3.2. Classification Model and Prediction of Individual’s Thermal Sensation

In order to give an idea about the interaction relationship between considered variables, the
correlation between all measured variables are calculated and represented in a colour-map Pearson
correlation coefficient (r) matrix, as shown in Figure 5. High positive or negative correlation coefficient
values, such as that between heat flux and skin temperature, are reflected as a strong interaction
between these variables, which can affect the feature selection of the classification model.

Figure 5. Colour-map of the correlation matrix representing the correlation levels (r ∈ [−1, 1]) between
the mean values of all measured variables, namely, heart rate (HR), aural (core) temperature, arm
temperature, chest temperature, scapula temperature, heat flux from the arm skin (Arm HF), heat flux
from the chest skin (Chest HF) and metabolic rate (METs).

The classification model for predicting the individual’s thermal sensation is developed, based on
the LS-SVM approach, by training the classifier on 80% of the data points, while the rest of the data
(20%) is used for testing. The model accuracy, sensitivity F1-score and overall confusion matrix are
computed to evaluate the performance of the developed classifier. The feature space includes all the
measured and estimated input variables, namely, Ter, HR, qsk, Tsk, ΔT = Ter − Tsk and M̂r. Additionally,
other features are extracted by computing the variance, min, max, root mean squares (RMS) and first
derivative ( dx

dt , where x is the variable) of the aforementioned measured and estimated variables. The
age and gender of the test subjects are also included in the feature spaces.

Figure 6 is showing the distribution of the participants’ thermal sensation votes at the three
environment temperatures (24, 5 and 37 ◦C). The aforementioned figure shows the ‘confusion space’,
or the area in which the reported thermal sensation votes at the three environmental temperatures
are overlapping. Such observation shows that the thermal perception may overlap even with large
differences in the surrounding environmental temperatures. Such a confusion space is a great challenge
for any predictive model of thermal sensation, especially for static models such as PMV.

For the sake of the main objective of the present work, the computational cost of the developed
algorithm should be low enough to be compatible with wearable technology and online modelling.
Hence, a feature selection procedure is employed to obtain the most reduced-dimension model yet
with the best error performance. Feature selection here is based on evaluating all possible feature
combinations and selecting the combination with best error performance. The feature selection step
results in a feature space including 25 features, as shown in Table 4.
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Figure 6. Distribution (distrib.) of the participants’ (25) thermal sensation votes at the three environment
temperatures (24, 5 and 37 ◦C) showing the confusion space.

Table 4. An overview of the selected feature space including the measured and estimated variables (six
variables) and some operations on these variables (× = selected).

Variance Min Max RMS d
dt

Ter × × × × -

HR × × × × -

qsk × × × × ×
Tsk × - - × -

ΔT × × × × -

M̂r - - - - -

A classification model is developed based on the selected 25 input features and trained using the
LS-SVM approach. The resulting confusion matrix from the developed classification model based on
the selected feature space is shown in Figure 7.

The overall error performance results of the developed classification model are presented in
Table 5. For a seven-class classification problem, the developed classifier have shown an overall
accuracy of 76% to predict the individual’s thermal sensation. The developed classifier has shown a
high (84%) F1-score, which reflects low false-positives and -negatives.

Table 5. Overall error performance (accuracy, sensitivity, precision and F1-score) of the developed
general LS-SVM classification model.

Measure Value

Accuracy 0.76
Sensitivity 0.82
Precision 0.87
F1 score 0.84
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Figure 7. The resulted confusion matrix from testing the developed LS-SVM classifier. The diagonal
represents the correctly-classified data points.

The error performance results of the developed general classification for each class separately
are shown in Table 6. The results showed that the error performances of classes 1, 2, 6 and 7 are very
low (see Table 6), which can be attributed to the low number (0, 2, 4 and 2, respectively) of obtained
votes for these classes, or, in other words, due to the uneven class distribution. Therefore, the overall
F1-score is a more reliable and efficient measure of performance than the accuracy in this case.

Table 6. The error performance (precision, sensitivity and F1-score) of the developed general LS-SVM
model for the seven-class classification problem.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Sensitivty - 0 0.75 0.88 0.80 0.60 0.50
Precision 0 0 0.86 0.82 0.80 0.75 0.50
F1-score 0 0 0.80 0.85 0.80 0.67 0.50

SVM is used in recent studies to assess the occupant’s thermal demands [12] and to predict
thermal comfort/sensation [11]. In these studies, the results have shown that SVM is able to predict
thermal comfort/sensation with accuracy and F1 scores of 76.7% and 84%, respectively. However, these
results is only obtained by reducing the seven-class classification problem to a three-class problem.
Hence, we believe that reducing the number of classes will improve our suggested general model
performance. Moreover, based on streaming data obtained from wearable sensor technologies, a
personalised adaptive classification model, based on the same extracted features, will enhance the
model performance to predict the individual’s thermal sensation. Different related works investigated
the problem of thermal sensation and comfort prediction via machine learning algorithms. Ghahramani
et al. [27] applied the hidden Markov model (HMM) technique to the thermal comfort prediction
problem with three levels of thermal comfort. The main issue in the used dataset in this study is the
class imbalance, which is not tackled by the proposed methodology. A recent study by Lu et al. [7]
proposed a personalised model, however, the study strictly investigated two subjects and developed a
dedicated model for each subject.

Testing of the trained model for each test subject was implemented using the Matlab platform on
a computer with Intel® 8 Core i7 (2.7 GHz) processor and 16 GB of RAM. The average computational
time for one test run on this computer was 100 ms. The developed model should be trained using
data from different populations (e.g., different ages, ethnicities and physical conditions) and different
environmental conditions (e.g., broader ranges of temperature and humidity). In future research, the
mental status of the participants should be taken into the account to investigate the capability of the
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developed model to comply with different mental conditions (e.g., stresses). Moreover, a sensitivity
analysis should be performed considering different accuracy and sensitivity levels of the wearable
sensors. On the other hand, the LS-SVM approach used in this paper is suitable for online adaptation
with a flexibility to receive new data (streaming data) variables. Hence, the developed model can be
used for adaptive real-time mode-based monitoring of individual thermal sensation. Additionally,
as such, the developed mode is suitable for different applications such as the simulation of the human
thermal state under different environmental conditions and for building design and control. In this
paper, we present the possibility of using this model for adaptive HVAC control systems.

3.3. Adaptive Occupant-Based HVAC Predictive Controller

In modern buildings, it is very common that HVAC control systems are designed in such way to
ensure parsimonious energy use and cost-effective building operation. This often happens by tuning
HVAC control parameters (e.g., set points) to exploit the inherent trade-off between energy consumption
and thermal comfort, with the latter acting as a constraint defining a theoretical and practical upper
bound on potential energy savings [28–30]. In this paper, we suggested a model-predictive control
(MPC) strategy, which is based on continuous feedback of occupant’s thermal state (sensation/comfort)
with main control objective to achieve occupant’s thermal comfort. Then the energy use can be
employed in the controller’s cost-function as constraints.

In this section, we introduced to an adaptive occupant-based HVAC predictive controller using
the developed LS-SVM predictive classification model. The general framework of the proposed HVAC
predictive controller approach is depicted in Figure 8. In this paper, we only describe the main
methodology to use the LS-SVM predictive classification model for the occupant’s thermal state in the
generalized predictive control (GPC) scheme, which will be studied and investigated further in future
work. The GPC is one of the most popular model predictive controlling (MPC) methods in broad
number of fields. The basic principle of GPC is to calculate a sequence (control horizon, Nc) of future
control signals that minimizes a cost function defined over a prediction horizon (Np) [31]. In general,
the GPC algorithm consists of two main subsystems, namely, a prediction model and an optimizer.
As shown in Figure 8, two main components, namely, the adaptive algorithm for LS-SVM predictive
model and the GPC algorithm, are suggested.

Figure 8. Block diagram of the proposed adaptive HVAC LS-SVM-based model predictive controller.

3.3.1. Adaptive LS-SVM-Based Algorithm for Predicting the Occupant’s Thermal Sensation

The availability of the real-time sensors data, from the wearable technologies, has given the
possibility of streaming data, which are processed via the proposed online streaming algorithm to adapt
the classifier model. This adaptive algorithm is needed to handle the newly arrived data (streaming
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data) in the training set. Different approaches are available in the literature to handle these challenges,
such as incremental learning methods [32], which work on adapting and retuning the parameters of the
general model based on the newly collected data. Another approach is the localized learning, which
is based on developing a local model for each test point or subset of the test set [33]. The streaming
data includes:

i. Wearable sensor data, which consists of the continuously (easily) measured variables,
namely, occupant’s heart rate, skin heat flux, skin temperature, ambient temperature and
aural temperature.

ii. Data obtained from the interactive mobile application, which consists of the occupant’s data,
namely, age and gender. Additionally, the occupant’s thermal sensation vote (TS) is to be
obtained via mobile application-based questioner (interactive application).

3.3.2. The GPC Algorithm

In general, the goal of any controller is to calculate the input (control signal) to the controlled
system (plant) such that the output follows the desired reference. However, in case of the predictive
controller, the GPC algorithm aims to find the best-predicted output sequence (using the prediction
model) that is the closest to a predefined reference trajectory (desired thermal state in our case). The
prediction model in our case is the adaptive LS-SVM classification model that predicts the occupant’s
thermal sensation (TS). The algorithm simulates multiple future scenarios (predicted output sequence)
in a systematic way using the optimizer, then the predicted output T̂S(k + Np|k) is used to calculate the
optimal future input (ambient temperature, T̂a(k + Nc|k)). The optimizer solves an online optimization
problem based on a defined cost function (Figure 8), which minimizes the predicted error ê(k + Np|k)
between the reference RS(k) and the predicted output T̂S(k + Np|k). The cost-function is given as
follows [34]:

J
(
N1, Np, Nc

)
=

Np∑
j=N1

α j
[
T̂S(k + j | k) −RS(k + j)

]2
+

Nc∑
j=1

λ j[ΔTa(k + j− 1)]2 (4)

where ΔTa(k) is the change in the control signal (ambient temperature), T̂S(k + j | k) is the predicted
output (thermal sensation) sequence, RS(k) is the reference (desired level of thermal sensation), N1

is the minimum of the prediction horizon and α and λ are the weighting factors. The suggested
control signal (T̂a) can be incorporated into the HVAC system by feeding it as a set-point to the HVAC
controller. The sequence of predicted thermal sensation is crucial in the optimisation (cost function) of
the control (manipulated) variables [35,36]. In the presented approach, we have considered the air
temperature as the only manipulated variable; however, more HVAC-related variables can be added to
the optimisation step (e.g., ventilation rate and energy consumption).

The proposed approach (Figure 8) depends on the extracted features from easily measured
variables (Ter, HR, qsk and Tsk,) that can be collected from already available (off-the-shelf) wearable
sensors (e.g., smart watches and on-body smart tags). As such, this proposed approach has the
advantage over other models (e.g., [37]), which depend on difficult and/or invasive measurements (core
body temperature and metabolic rate) and, consequently, not convenient for long-term monitoring.
Moreover, the used LS-SVM used in this approach is suitable for online prediction of an individual’s
thermal state with minimum computational cost (100 ms for the prediction of the thermal sensation of
each individual).

4. Conclusions

In this present paper, 25 participants are subjected to three different environmental temperatures,
namely 5 ◦C (cold), 20 ◦C (moderate) and 37 ◦C (hot), at two different activity levels, namely, at low
level (rest) and high level (cycling at 80 W power). Metabolic rate, heart rate, average skin temperature

140



Processes 2019, 7, 720

(from three different body locations), heat flux and aural temperature are measured continuously
during the course of the experiments. The thermal sensation votes are collected from each test subject
based on the ASHRAE seven-point questionnaire. The results have shown that a reduced-ordered
(second-order) MISO-DTF including three input variables (wearables), namely, aural temperature,
heart rate and average heat flux, is best to estimate the individual’s metabolic rate (non-wearable) with
an average MAPE of 8.7%. A general classification model based on the LS-SVM technique is developed
to predict the individual’s thermal sensation. For a seven-class classification problem, the results have
shown that the overall model accuracy and F1-score of the developed classifier are 76% and 84%,
respectively. It is suggested in this paper that the overall performance of the model can be enhanced
by using a personalised adaptive classification algorithm based on streaming data from wearable
sensors. The developed LS-SVM classification model for the prediction of the occupant’s thermal
sensation can be integrated in the HVAC system to provide an occupant thermal state-based climate
controller. In this paper, we introduced an adaptive occupant-based HVAC predictive controller using
the developed LS-SVM predictive classification model.
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Abstract: Macromolecules with well-defined structures in terms of molar mass and monomer sequence
became interesting building blocks for modern materials. The precision of the macromolecular
structure makes fine-tuning of the properties of resulting materials possible. Conjugated
macromolecules exhibit excellent optoelectronic properties that make them exceptional candidates for
sensor construction. The importance of chain length and monomer sequence is particularly important
in conjugated systems. The oligomer length, monomer sequence, and structural modification often
influence the energy bang gap between the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) of the molecules that reflect in their properties. Moreover,
the supramolecular aggregation that is often observed in oligo-conjugated systems is usually strongly
affected by even minor structural changes that are used for sensor designs. This review discusses the
examples of well-defined conjugated macromolecules based on oligo(arylene ethynylene) skeleton
used for sensor applications. Here, exclusively examples of uniform macromolecules are summarized.
The sensing mechanisms and importance of uniformity of structure are deliberated.

Keywords: well-defined macromolecules; sequence-defined macromolecules; sequence-defined
polymers; conjugated oligomers; oligo(arylene ethynylene)s; biosensors; sensors; process monitoring

1. Introduction

Nowadays, facing the development of precise polymer chemistry, in particular new synthetic
methods that allow for monomer sequence control we are looking for new areas of application of
macromolecules where the sequence matters. To design new applications of macromolecules the
sequence–property relationship has to be well understood. Sensing and process monitoring are
expanding areas where the structure of macromolecules and the sequence of monomers became a
crucial parameter to achieve specificity and selectivity of the detection and bioprocess monitoring.

The monitoring of bioprocesses in an organism is performed by cascade communication between
the network of biomolecules [1]. Biological components often react very sensitively to environmental
changes (e.g., pH, temperature, nutrients), which may result in adverse effects on the activity of
the cells or the reproducibility of the process. Uniform, sequence-defined macromolecules such as
proteins and DNA are key features in the regulation of biological processes. The well-defined and
sequence-controlled structures of those biomolecules enable precise recognition of specific molecular
patterns or environmental changes (e.g., temperature, pH) to regulate the cascade events in the living
organisms. The monomer sequence, for instance, amino acids in proteins or nucleotides in DNA,
determines functions and is responsible for regulation of thousands of cascade events in our body. The
whole mammalian immune system relies on a large array of nucleic acid sensors [2,3].
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The precision of the primary structure is also very important in man-made (bio)sensor systems
based on conjugated macromolecules [4]. Over the last years, the synthetic strategies leading
to well/sequence-defined macromolecules, that enable better control of the properties of resulting
materials, were developed [5]. The monomer composition [6–19], sequence [4,6,12,19], and the oligomer
length [6,9] are parameters that influence the energy levels of HOMO and LUMO orbitals in conjugated
molecules. The structure indicates the energy gap between HOMO and LUMO, absorption, and
emission properties in conjugated systems [6,19]. Even a slight modification of oligomer structure, e.g.,
in the side [20] or end groups [21,22], can affect its optoelectronic properties and influence sensing.

Conjugated macromolecules, due to their excellent optoelectronic properties, found great use
in the construction of different types of sensors [23–25], e.g., monitoring of enzymatic activity [26],
chirality sensors [27], protein sensing [28], material self-healing [29], diagnosis and drug discovery [25],
biosensing and therapeutics [30]. The π-conjugated structure, allowing communication between
monomers in molecules backbone, is responsible for excellent optoelectronic properties susceptible
to environmental changes. The signal can be revealed in one or more dimensions [24] that induce
selectivity of the read-out, e.g., chemical nose approach [25,31]. Multidimensional sensor response
delivered by multiple sensor elements can selectively interact with the sample and produce a distinct
pattern of response enabling specific identification of target components.

Among conjugated macromolecules, oligo(arylene ethynylene)s (OArEs) have gained considerable
attention due to their excellent optoelectronic properties and emerging applications [32–35]. The current
synthesis methods provide access to uniform OArEs of precise length and full sequence control [6,12,36].
OArEs are an important class of sensory materials [26,30,37–40]. OArEs sensors can be used in organic
solvents as well as in the aqueous environment or as solid films. Their sensing mechanism usually
takes advantage of their fluorescence properties, but not exclusively.

This review aims to summarize the examples of linear oligo(arylene ethynylene)s applied in sensing
and to discuss their relevance and perspectives. Our study highlights the importance of adjustment and
manipulation of their sequence and length to improve the performance of oligomer-based fluorescent
sensors. The OArEs sensors in solution and solid films are discussed in the context of their applications
in detection and process monitoring. The examples of oligomers that change properties upon the
presence of a particular analyte or environmental changes are also included. Here, we focused on
well-defined, uniform oligomers built from at least three arylene units connected via ethynylene linkage.

2. Synthesis of Well-Defined Conjugated Macromolecules

The synthetic strategies leading to uniform macromolecules that enable control over the monomer
sequence have been introduced to polymer science during the last decades [41–43]. The nature-inspired
need of defined macromolecular structures was a driving force to develop new synthetic methodologies,
that combine current achievements of polymer chemistry, organic synthesis, and biochemistry to
develop methods yielding uniform, sequence-defined macromolecules (Figure 1) [41,42,44,45].

In general, discrete macromolecules can be accessed by iterative synthesis. In principle,
the synthesis relay on the stepwise attachment of protected monomers followed by deprotection. These
two steps are repeated cyclically until the desired molecule is obtained. When the monomers are
equipped with orthogonal functional groups there is no need for use of protecting groups [46,47].
Three main approaches can be distinguished: classical solution synthesis (Figure 1b), synthesis using
a soluble polymer as a support (Figure 1c), or solid-phase synthesis (Figure 1d) [48]. The syntheses
performed by classical organic chemistry methods are associated with cumbersome purification after
each step. The use of polymeric supports in a soluble [6] or a solid phase [49] significantly simplifies
the purification process.

In iterative synthesis it is very important to achieve high stepwise yields. The physical limitation
of iterative synthesis is stepwise yield that determines possible length of macromolecules. The total
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yield equals the product of actual step yield multiplying and, thus its value decreases dramatically
with the number of steps, according to the formula:

Ytotal[%] =
n∏

i=1

(
Yn

Ynth
× 100

)
(1)

where: n—number of steps, Yn—actual yield of step n [g], Ynth—theoretical yield of step n expressed in
mass units.

The Ytotal drops dramatically with the number of steps. For example, if the stepwise yield Yn will
be 95%, after 50 steps total yield will be only 7%.

 

Figure 1. (a) The main approaches for the synthesis of sequence-defined conjugated macromolecules.
Sequence-defined macromolecules can be obtained by multistep-growth synthesis using three main
approaches: solid-phase synthesis, synthesis on soluble support, or solution synthesis. The monomers
are used in a protected form that demands performance of the deprotection step after each coupling or
by chemoselective reactions where monomers are equipped with orthogonal functional groups. The
examples are of (b) solution synthesis [42], (c) synthesis on soluble support [6], and (d) solid-phase
synthesis [11].

To obtain discrete conjugated oligomers (COs) based on oligo(arylene ethynylene)s skeleton,
several stepwise synthetic strategies have been developed [42,50]. Usually, the oligomers are obtained
by iterative solution synthesis that involves protected monomers. Due to poor solubility of arylene
ethynylene oligomers they are usually synthesized from monomers functionalized by solubilizing
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substituents. Oligomers are produced by successive coupling and deprotection steps that are repeated
in the cycle until the preferred macromolecule is obtained [8,9,11,51–53]. An interesting alternative to
classical solution-phase synthesis is the use of soluble or solid supports [7,10], in particular for longer
oligomers synthesis. Those approaches significantly simplify purification after each step. The synthesis
can be facilitated by divergent/convergent approaches [54] of bidirectional growth [55].

For example, the group of M.A.R. Meier established a solution synthesis protocol for
sequence-ordered, uniform pentamers built from five different monomers [12]. The oligomers
were synthesized by Sonogashira cross-coupling reaction followed by deprotection (Figure 1b).
The photophysical properties of the monodisperse oligomers differed only slightly, but the sequence
had an impact on their thermal properties and the hydrodynamic volume.

Oligo(arylene ethynylene)s without solubilizing substituents can be obtained by a soluble-support
approach. An interesting example of the polystyrene-tethered synthesis of uniform and
sequence-defined oligomers without solubilizing substituents was reported by R. Szweda et al. [6].
The use of an ATRP-made, tailored polystyrene support enabled the synthesis of OArEs containing
sequence ordered pyridine and benzene units. For oligomer synthesis, Sonogashira cross-coupling
reaction was used (Figure 1c). The use of the soluble support approach gave access to the unsubstituted
oligomers that are inaccessible using other methods due to their limited solubility. The UV and
fluorescent properties were changing with the oligomer length and composition.

The solid-phase synthesis of oligo(phenylene ethylene)s (OPEs) was reported by the group
of J. M. Tour [9]. The synthesis of 16-units oligo(phenylene ethylene)s was demonstrated [9].
The authors applied an iterative divergent/convergent approach on Merrifield resin leading to
oligo(2-alkyl-1,4-phenylene ethynylene)s. At each stage of the iteration, the length of the oligomer
doubled. Another example of solid-phase synthesis leading to oligomers of 18 repeating units was
developed by J. Moore [11]. In this approach, the monoprotected bisethynylarene and a 3-bromo-5-iodo
arene monomers bearing orthogonal reactivity were used.

Alternatively, the discrete conjugated macromolecules can be obtained by purification of oligomers
mixtures e.g., using reverse-phase chromatography [56] or automated flash chromatography [19] as
demonstrated by the group of C. J. Hawker. The automated flash chromatography is an efficient
separation method and can be used for the separation of thiophene oligomers of 2–14 units in grams
scale [19].

Other methods often employed for the synthesis of COs as step-growth polymerization lead to
mixtures of products of dispersity often higher than 1.2 [57]. Dispersity polymers consist of a mixture
of structures which has a significant impact on the properties and optical behavior that may influence
their sensing performance [58–60]. Moreover, the polymerization technique is not easily reproducible
and in the context of sensor application that might be a crucial factor to obtain the same properties of
materials. The resulting polymer even in the best-controlled conditions does not consist of uniform
macromolecules. It is unlikely to obtain exactly the same mixture of macromolecules in two different
polymerization processes.

Although lots of effort has been made, all of the existing methods show many limitations. The usual
problems are low yields, limited molar mass (chain length), small synthesis scale, high synthesis cost,
time, and labor consumption, etc. In the context of applications, those problems pose new challenges
to the chemists to optimize the synthetic strategies, that will overcome existing limitations and enable
further development of the field.
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3. Macromolecular Conjugated Sensor Probes

Sequence-defined, uniform macromolecules based on linear oligo(arylene ethynylene)s backbone
have been used in different types of sensors that can be classified into two main approaches: (i)
solution probes, where oligomers are dissolved in a medium (Section 3.1) and (ii) solid-phase probes
(Section 3.2), where oligomers are used as films or they are immobilized on a solid support. In the
solution phase, we can distinguish two main sensor categories: classical OArEs (Section 3.1.1) and
oligo(arylene ethynylene) electrolytes (Section 3.1.2), that possess ionic side-chains or end groups and
exhibit water solubility. In this review, the compounds were divided according to the applied approach.

The oligo(arylene ethynylene)-based sensors can be also categorized according to the type of
signal used in sensing, e.g., fluorescence, electrochemical, UV-vis, circularly polarized light (CD).
Among the typical detection methods, the most popular is based on fluorescence that takes advantage
of excellent optoelectronic properties of OArEs.

The sensing properties of OArEs strongly depends on their structure and chosen monomers.
It was demonstrated that certain oligomers have specific structures and can selectively respond to
the presence of particular species, e.g., selective detection of fibrillar and prefibrillar amyloid protein
aggregates [61]. Sensing can be influenced even by little structural changes like oligomers length and
monomer composition. In the following sections, the examples presenting the influence of structural
factors on detection efficiency are discussed.

The examples of linear, discrete oligo(arylene ethynylene)s applied in sensing for detection and
process monitoring are listed in Table 1. The oligomers that change properties upon the presence of a
particular analyte or environmental changes are also included.
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3.1. Oligo(Arylene Ethynylene)s as Sensors Probes in Solution

3.1.1. Oligo(Arylene Ethynylene) Sensors

Oligo(arylene ethynylene)s have been used as sensors to detect different species e.g., chemicals [65],
saccharides [38,62], amino acids [63], explosives [84], ions [66], and physical changes e.g.,
temperature [67] or solvent polarity [67]. OArEs were also used for process monitoring to track
self-healing of polymers [29].

For example, the oligo(phenylene ethynylene)s foldamers with urea end-groups (Table 1, no.
4) were used for the detection of chiral carboxylic acids e.g., tartaric acid. [64] The stereodynamic
oligomer-carboxylic acid complexes formed chiral structures easily detectable by CD measurements.
It was demonstrated that the chiroptical signal could be used for quantitative analyses providing a fast
and simple method for chirality sensing assays (Figure 2).

Figure 2. Circular dichroism (CD) spectra of the mixture obtained with oligo(phenylene ethynylene)s
(Table 1, no. 4), Et3N, and samples of tartaric acid and linear relationship between the CD amplitude at
370 nm and the sample enantiomeric excess. Reprinted from [64] with permission from Elsevier.

For instance, conjugated oligomers functionalized by boronic acid have been used as sensors to
detect different saccharides: D-fructose, D-galactose, D-ribose, and D-glucose, in potassium phosphate
buffer/DMSO (99/1, v/v) [38]. By the addition of saccharides, significant fluorescence enhancement was
observed, and the response was different depending on saccharide. However, it was shown that the
fluorescence response can be observed only for well-designed oligomer structures. The oligo(phenylene
ethynylene)s with –OC10H21 side chains (Table 1, no. 1) and boronic acid groups attached via triazole
linker were sensitive exclusively to fructose presence. It was found that the fluorescence response
depends on supramolecular interactions between sensors and analyte molecules which are very
structure dependent. This study highlighted the need for a specific design of oligomer fluorophore in
the development of effective saccharide sensors.

Ortho-oligo(phenylene ethynylene)s (Table 1, no. 7, 8) were used as a circularly polarized
luminescence probe for the detection of silver ions [66]. The enantiopure helical core has been prepared
by a new macrocyclization reaction. The combination of such o-OPE helical skeleton and pyrene
reporter units lead to two characteristic circularly polarized emission features. The intensity of the
bands linearly corresponds with silver(I) concentration.

Interestingly, the temperature change that is a physical process can be followed by oligo(arylene
ethynylene)s [67]. The acetylene-bridged pentiptycene (n = 2, 3, and 4) (Table 1, no. 9) and
phenylene−pentiptycene−phenylene three-ring system (Table 1, no. 10) were evaluated as fluorescent
temperature sensors. The trimer and tetramer showed a unique response to temperature and solvent
polarity driven by intramolecular interactions (Figure 3). It was found that the twisted region of their
rotational potentials occurs at the local energy minimum, and the distribution of rotational conformers
is sensitive to the temperature and solvent polarity. Twisting of the π-conjugated backbones reflected
in 40 nm blue-shifted fluorescence spectra. It was demonstrated that upon temperature change in the
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range between 80 and 320 K, the fluorescence emission of acetylene-bridged pentiptycene tetramer
shifted significantly. This property can be used for the development of low-temperature sensors.

 

Figure 3. The change of conformation caused by temperature difference influence the fluorescence
properties. Temperature dependence of fluorescence spectra (ʎ ex = 303 nm) of tetramer in
methylotetrafuran at 20- and 10-K intervals, respectively, between 80 and 320 K. Reprinted with
permission from [67]. Copyright 2006 American Chemical Society.

Recently it was demonstrated that oligo(arylene ethynylene)s (Table 1, no. 11) can be used
as a fluorescent probe for monitoring of the self-healing process [29]. The OPE incorporated
into a mussel-inspired scratch-healing polymer network helped to determine detailed depth- and
time-dependent self-healing efficiency using confocal laser scanning microscopy (Figure 4). The damage
of the network resulted in decreased fluorescence emission of polymer within the scratch. The mobility
of the fluorescence marker is connected with the plasticity of the polymeric material, thus during
scratch refilling, no independent migration of dye within the polymeric material was detected.

3.1.2. Oligo(Arylene Ethynylene) Electrolytes

Oligo(arylene ethynylene) electrolytes are very attractive macromolecules for application in sensing.
As sensor probes, they combine the excellent fluorescence properties of a conjugated aryl-alkyne
system with electrolyte advantages especially water solubility [35]. Due to the presence of ionic groups,
these oligomers are very sensitive to the environment changes, e.g., ionic strength, pH, presence of
ions, presence of electrolytes. The charged pendant groups can induce electrostatic interactions
with oppositely charged (macro)molecules that reflect in fluorescence properties variation [37].
Moreover, the charges distributed along the oligomer molecules affect their aggregation thus
they exhibit high fluorescence response to alterations of aggregates structure and conformational
changes. Those changes caused by the presence of individual charged molecules may reveal a
unique response in the photophysical properties of the conjugated chromophore. The resulting
fluorescence quenching or enhanced emission can indicate presence of ions [70], oxygen [71],
surfactants [70,72,75,79,92], detergents [76,79], MV2+ ions [68], solvent polarity [80], anionic biopolymer
carboxymethylcellulose [77,78], biomolecules [93], and bacteria [69]. The oligomers were used for
processes monitoring of e.g., amyloid formation [61,73], enzymatic activity [74], and photochemical
reaction processes [71].
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Figure 4. Time- and depth-dependent confocal laser scanning microscopy (CLSM) measurements in
fluorescence mode (λex = 405 nm) with the fluorescence channel (λem = 406−510 nm) monitoring
thermally triggered self-healing procedure, in particular the virgin damaged cross-linked copolymer
film, after 1, 2, and 8 h of thermal treatment at 60 ◦C: (red) homogeneous area within the scratch,
(yellow) heterogeneous area covering the majority of the analyzed defect, (orange) specific area with
residual removed film material, (blue) intact and undamaged reference area for each measurement, and
(green) photo-bleached marker area. Reprinted with permission from [29]. Copyright 2018 American
Chemical Society.

For instance, the oligo(p-phenylene ethynylene) electrolytes (OPE) were successfully applied
to track amyloid formation [61,73]. Oligomers with ester terminal moieties and positively charged
–(CH2)3N(CH3)3+ pendant groups of different length OPEn (n = 1, 2, and 3) (Table 1, no. 21) and
OPE1 negatively charged with pendant –(CH2)3SO3− groups (Table 1, no. 22) were evaluated as
probes for monitoring of the fibrillation process (Figure 5) [61,73]. The carboxyester terminal groups
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of OPEs cause high fluorescence quenching due to the strong interactions with the solvent, on the
other hand, the oligomers show strong fluorescence emission when in a water-poor environment.
These environment-dependent fluorescence properties were used for the sensor design. It was
demonstrated that positively charged OPEs used in 10:1 (protein:OPE) molar ratio are effective
molecular taggants for selective sensing of the amyloid fibril of the model protein HEWL. Upon fibril
formation, OPEs form clusters with the fibrils, where the carboxyester terminal groups are isolated from
water. In a non-water environment, they form superluminescent chiral J aggregates [94] and significant
fluorescence enhancement is observed (Figure 5). It was found that due to the energy transfer the
excitation at 280 nm characteristic for HEWL results in the emission of OPE only in solutions containing
OPEs and HEWL amyloids that indicate amyloid formation.

Figure 5. Oligo(p-phenylene ethynylene) (OPEs) electrolytes are forming specific chiral constructs
together with amyloid fibrils. The construct exhibits enhanced fluorescence quenching and a unique
CD signal. Circular dichroism spectra of OPE n = 3 (10 μM) in phosphate buffer with hen egg white
lysozyme (HEWL) monomer (black trace) and with HEWL (10 μM) amyloid (red trace). Emission
spectra of OPE n = 3 in phosphate buffer (PB, pH 7.4, 10 mM) alone (black long dashed line) with
HEWL monomers (red short dashed line) and with HEWL amyloids (blue solid line), concentration:
500 nM, protein concentration: 5 μM monomer basis/0.25 mg/mL. Reprinted with permission from [73].
Copyright 2015 American Chemical Society.

p-Phenylene ethynylene oligomers can be also used for monitoring of enzymatic processes.
Complexes of oligomers (Table, no. 24, 25) with enzyme substrates were successfully used to follow
activity and inhibition of two biomarkers, phospholipase indicating heart and circulatory disease,
and acetylcholinesterase for Alzheimer’s diagnosis (Figure 6) [74]. In a buffer solution, oligomers
form complexes with positively charged substrates e.g., 1,2-dilauroyl-sn-glycero-3-phosphoglycerol
(DLPG) and lauroyl choline (LaCh). The DLPG-oligomer (Table, no. 24) complex upon phospholipases
undergoes transformation due to the cleavage of DLPG phosphate bond that resulted in a swift of the
fluorescence quenching. The aggregates of an anionic oligomer (Table, no. 25) with lauroyl choline
were used as a sensor to detect the activity and inhibition of acetylcholinesterase.
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Figure 6. (A) Fluorescence of the oligomer/1,2-dilauroyl-sn-glycero-3-phosphoglycerol (DLPG) (Table 1,
no. 24) aggregates over the course of Phospholipase A1 activity with 1.4 μMOPE and a DLPG
concentration of 7.27 μM, with enzyme added ranging from 0.5 to 5 mU of Phospholipase A1.
(B) A concentration of 1.4 μM of +2C with DLPG at a series of concentrations from 10.6 to 35.6 μM
(7.5−25.4 DLPG:OPE ratio), followed by the addition of 4 mU of Phospholipase A1. (C) Fluorescence of
the oligomer/DLPG aggregates over the course of Phospholipase A2 activity with 1.4 μM oligomer and
a DLPG concentration of 7.27 μM, with enzyme added ranging from 0.5 to 5 mU of Phospholipase A2.
(D) A concentration of 1.4 μM of +2C with DLPG at a series of concentrations from 2.37 to 17.8 μM
(1.7−12.7 DLPG:oligomer ratio), followed by addition of 40 mU of Phospholipase A2. t = −1 s is the
time of enzyme addition. Wavelength of excitation is 375 nm, emission is 440 nm. Reprinted with
permission from [74]. Copyright 2015 American Chemical Society.

OArEs (Table 1, no. 18) can be used to monitor chemical processes, e.g., photolysis [71].
For example, the photo-induced degradation process of oligomer (Table 1, no. 18) occurred by three
main routes: the photoprotonation of the triple bond followed by the addition of water, the addition
of singlet oxygen across the triple-bond, and the cleavage of the quaternary ammonium side-chains.
The degradation led to the formation of different products depending on the reaction atmosphere
(argon or oxygen). All those structural changes reflected in fluorescence properties indicating the rate
and mechanism of the degradation. Whenever the process was performed in the presence or absence
of oxygen, different products of different fluorescence properties were formed. The dependence of
fluorescence properties on the reaction atmosphere led to developing an oxygen-sensing methodology
based on fluorescence read-out of OArE photo-degradation.

Constructs of oligo(phenylene ethynylene)s electrolyte and gold nanoparticles can be used for
selective bacteria identification using the “chemical nose” sensing concept (Table 1, no. 14) [69].
In a solution, positively charged gold nanoparticles form complexes with negatively charged
oligo(phenylene ethynylene)s, and oligomer fluorescence is quenched. In the presence of bacteria,
some OPEs are released to the solution and fluorescence is restored as a consequence of the presence
of free oligomers (Figure 7). The applied oligomer with branched oligo(ethylene glycol) side chain
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reduces the non-specific interaction of oligomer and bacteria. Depending on bacteria the oligomer
replacement is different which results in selective fluorescence response.

 

Figure 7. (a) Fluorescence intensity patterns of nanoparticle–oligomer (Table 1, no. 14) constructs in the
presence of various bacteria strains. (b) The schematic presentation of sensor design. Bacteria interact
with gold nanoparticle-oligomer construct and as oligomers macromolecules are released to the solution,
fluorescence enhancement is observed. For each bacteria, interactions with nanoparticles are unique. In
the figure, columns represent bacteria of different types, and rows represent the oligomer–nanoparticle
constructs. Reprinted with permission from [69]. Copyright 2008 John Wiley and Sons.

The π-conjugated oligo(phenylene ethynylene) backbones with two negatively charged
−CH2COO– groups on each repeating unit and lengths of n = 5, 7, and 9 (Table 1, no. 13) were
used to detect Ca2+ ions and quenching ionic agents [68]. In the presence of bivalent calcium
ions, the oligomers aggregated causing fluorescence shift. The shift depended on oligomer length
and for the shorter oligomers (n = 5, 7), the effects are less pronounced than for longer ones
n = 9. This shift can be explained by the planarization of the phenylene ethynylene backbone
and formation of “excimer-like” excited states, that are not observed in the absence of Cu2+ ions.
The ligomers were also evaluated for fluorescence quenching in the presence of methyl viologen
and 3,3′-diethyloxacarbocyanine–well-known fluorescence quenching agents. It was found that the
quenching efficiency depends on oligomer length. Taken together, the elongation of oligomer increased
the ionic charge of macromolecules that in presence of counter ions favor the formation of ordered and
backbone-overlapped aggregates.

For example, while the fluorescence of cationic OPEs with amine end groups is quenched in
water, the addition of a small amount of oppositely charged detergent, sodium dodecyl sulfate (SDS),
causes a significant increase in the OPE fluorescence due to the formation of a complex (Table 1,
no. 16, 17) [35]. These OPE-detergent complexes exhibited antimicrobial properties [95], which, in
addition to the fluorescence emission during their formation, can be utilized for the development of
multifunctional biosensors.

3.2. Oligo(Arylene Ethynylene) Sensor Films

Oligo(arylene ethynylene) films consist of packed macromolecules with π-conjugated backbone
thus exhibit high fluorescence emission which can be altered upon binding of an analyte
molecule. OArEs films are an excellent materials for detection of amino acids [63], bacteria [81,82],
explosives [35,83,84,87], pH [86], inorganic acids [85], gas [88], digital information [89], or
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chemicals [90,91]. Usually, the detection of an analyte is based on fluorescence changes, its
enhancement or quenching upon binding of the sensed molecule. The OArEs films can be obtained by
covalent immobilization e.g., reaction between an aldehyde and amine-functionalized surface [85,87],
triethoxysilane group and glass [86], electrostatic binding [96], or drop-casting [90].

For instance, oligo(phenylene ethynylene)s bearing 4-aminophenyl-D-mannopyranoside groups
(Table 1, no. 36, 37) in combination with laser scanning confocal microscopy have been used for the
detection of E. coli bacteria [81]. Oligomer probes with two mannose groups enable discrimination
between uropathogenic and the non-uropathogenic E. coli mutant. Moreover, the films of oligomer
on aluminum support together with SPR allowed for quantitative biosensing of uropathogenic E. coli
achieving a LOD of 104 CFU/mL. Those findings showed the direction towards robust biochips to
detect bacteria.

For example, oligo(p-phenylene ethynylene) (Table 1, no. 44, 45) films have been examined in
sensing of common explosive nitroaromatic compounds (NACs) i.e., 2,4,6-trinitrophenol (picric acid,
PA), 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB) [87]. Interestingly,
the film with cholesterol side groups (Table 1, no. 45) exhibited sensitivity to changes of water/THF
solvents ratio (Figure 8a). In water, the film adapted a compacted structure causing a decrease in
fluorescence intensity whereas in THF the chains attained extended conformation. In the presence
of NACs molecules, complete fluorescence quenching was observed as the effect of the formation
of nonfluorescent OPE-NACs complexes. This effect was not interfered by the presence of other
compounds, including methanol, THF, toluene, dichloromethane, ammonia, HCl, NaOH, NaCl, copper
salts, or seawater (Figure 8b). The experiments revealed that the cholesterol chains incorporated in the
oligomer structure induced the sensitivity of the films towards the detected molecules by at least one
order of magnitude. Thus, the films of oligo(p-phenylene ethynylene) with cholesterol groups can be
used as an effective sensor for explosives.

Surface-immobilized monolayers of defined in length, short oligo(p-phenylene ethynylene)
oligomers end-capped by fluorescein (Table 1, no. 43) have been used as narrow-range threshold
fluorescent pH indicators (Figure 9a) [86]. At low pH, fluorescein was in its lactone form and the
observed emission mostly originated from the oligomer. Upon pH increase fluorescein form change to
anionic that favors electron delocalization with a respective decrease in HOMO-LUMO gap. A smaller
energy gap facilitates the exciton migration that results in fluorescence enhancement. Moreover, an
increase of pH causes a bathochromic shift of oligomer emission due to energy transfer from the
oligomer backbone to fluorescein (Figure 9b). This unique pH-dependent response was observed
only for oligomer-fluorescein dyad structures immobilized on the surface. The dyad structure was
crucial for sensor selectivity. Experiments performed for immobilized fluorescein did not reveal such a
selective sensor response. For comparison the same experiment was performed for dyad oligomers in
solution, however, the fluorescence signal was much weaker in intensity and the pH validation range
was significantly narrowed (pH 8 to 10).
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Figure 8. (a) The two states adopted by the oligomers containing cholesterol side chains (Table 1,
no. 45) in water and tetrahydrofuran (THF), respectively. THF is a good solvent for oligomer and
its cholesterol side chains and macromolecules in the film attain extended conformation. In contrast,
water is a poor solvent for both the oligomer backbone and the side chains, thus the oligomer film is
collapsed. Plots of the ratios of Ix/Iy of a given fluorescent film (Film 1-oligo(p-phenyleneethynylene)
with cholesterol moieties and Film 2-pristin oligo(p-phenyleneethynylene)) against the compositions of
the mixture solvents in which the fluorescence measurements were conducted (for Film 1 (Table 1, no.
45), ʎ em = 445 nm, y ʎ ex 500 nm; for Film 2 (Table 1, no. 44), ʎ em 374 nm, ʎ ex 420 nm). (b) Quenching
efficiencies of various common explosive nitroaromatic compounds (NACs) on the fluorescence
emission of Film 1 and Film 2 in water and THF, respectively, and the interferences of commonly found
interferents in the sensing of Film 1 (concentration of NACs and interferents are 50 mM). Adapted
from [87] with permission from The Royal Society of Chemistry.
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Figure 9. (a) Structure of the sensor and its assembly into a surface-immobilized monolayer. (b) The
general principle of generating pH-dependent fluorescent response. (c) pH-dependent absorption (left)
and fluorescence (right) spectra of monolayer fluorescein-oligomer film. Reprinted with permission
from [86]. Copyright 2013 John Wiley and Sons.

Additionally, immobilized oligo(p-phenylene ethynylene) can act as chemosensors for the detection
of polar species in an aprotic solvent. For example, a self-assembled monolayer of oligo(p-phenylene
ethynylene) with cholic acid moieties (Table 1, no. 42) immobilized onto a glass slide, has been used
as a sensor for trace amounts of inorganic acids, such as HCl, H2SO4, HNO3, and H3PO4, in acetone
medium [85]. The presence of a cholic acid unit induced the formation of hydrophobic pockets in
the upper part of the layer (Figure 10a). This pocket containing imino group was able to trap ions
that interacted with the imino groups. Basing on the comparative studies performed for different
acids, it was revealed that for the anaerobic acids, the quenching efficiency depended on the size of the
molecule and hydrogen bonds between the anions (Figure 10b). In other words, to observe efficient
quenching the acid ions had to fit the cavity of the hydrophilic pocket. When chloride anion was
trapped in the pocket the fluorescence quenching originated from the protonation of the imino group
next to the phenylene ethynylene segment was observed.
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Figure 10. (a) Illustration of immobilized oligomer (Table 1, no. 42) conformations in different medium
representing good (acetone as an example) or poor solvent (water, for example). In a good solvent,
the hydrophilic pocket is formed as an upper layer of the film. (b) Quenching efficiencies of various
acids to the fluorescence emission of Film 1-oligo(p-phenylene ethynylene) with cholic acid side chains
(Table 1, no. 42) and Film 2-oligo(p-phenylene ethynylene) (Table 1, no. 41) in water and acetone,
respectively (concentration of acids are 20 μM). Reprinted with permission from [85]. Copyright 2012
American Chemical Society.

Very sensitive sensor response can be achieved using electrochemical sensing methods.
An electrochemical sensor based on an oligo(phenylene ethynylene) (Table 1, no. 49) and chemically
reduced graphene oxide (rGO) nanocomposite was used for the quantification of dopamine (DA) [90].
This nanocomposite was synthesized by a simple ultrasonication method and then drop-casted onto
a polished glassy carbon electrode and followed by casting of a Nafion ethanol solution (0.25 wt%).
The formation of the oligomer nanocomposite was attributed to the π–π stacking interaction between
the conjugated structure of oligo(phenylene ethynylene) and rGO as well as the electrostatic force
between the amino group of oligomer and the carboxyl group on rGO. Anchoring of the oligomer
changed the configuration of the multiple bonds so that a conjugated system represented a characteristic
feature of conducting polymers. The developed sensor exhibited significantly enhanced electrocatalytic
activity toward the oxidation of DA in a human serum PBS solution in the concentration range of
0.01–60 μM with LOD of 5 nM, a significantly lower value than those reported for the other DA
sensors [97].
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A chemical sensor based on GO-oligo(phenylene ethynylene) (Table 1, no. 48) nanocomposites
was developed for amino acid detection [63]. The oligo(phenylene ethynylene) with cyanoacrylate
groups in presence of cysteine residue change fluorescence properties. As a result of the interaction
between oligomer and cysteine blue-shifted and decreased fluorescence emission was observed.
For oligomer-GO nanocomposite the behavior was opposite and fluorescence enhancement occurred.
The strong response of oligomer to cysteine can be used as a highly sensitive sensor.

Oligo(phenylene ethynylene)-based temperature sensors have been used to encode digital
information [89]. The oligomers (Table 1, no. 47) were used as junctions between two Au electrodes
(Figure 11a). Interestingly, during local temperature changes, the oligomers were able to change their
structure between norbornadiene (NB)-state and quadricyclane (QC)-state (Figure 11d). The molecule
states exhibited different conductance values that can be assigned to “1” and “0” digital symbols.
The temperature-dependent conducting properties of oligomers could be used for local temperature
monitoring. This system due to the clear response, translated into two states can be further exploited
as a new approach for encoding digital information.

Figure 11. (a) Schematic of the molecular device with a modulating bias. (b) Reversible switching
behavior of single-molecule devices and the applied waveform. (c) Energy landscape of isomerization
processes. Blue and orange arrows indicate the electrically controlled forward and reverse switching
processes, respectively. (d) Schematic describing the processes for controlling the norbornadiene
(NB)-quadricyclane (QC) switching within a molecular junction (blue and orange arrows). The switching
processes within a molecular junction are controlled in the forward direction (NB to QC) by electrically
controlling the local temperature and in the reverse process (QC to NB) by catalyzing the reaction
through a single electron transfer (SET) process. These two states possess different conductance values
and can be used to encode digital information. Reprinted with permission from [89]. Copyright 2020
John Wiley and Sons.
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4. Conclusions

Uniform, π-conjugated oligomers based on an arylene ethynylene core are attractive sensory
materials. They can respond to the environment changes (polarity, temperature), presence of chemicals
(amino acids, saccharides, ions), macromolecules (proteins, polymers), bacteria, and process monitoring.
The successfully designed oligo(arylene ethynylene)-based sensors can be used as selective probes
to detect particular analytes in the mixture and they can be used for selective process monitoring.
However, their huge potential has not been explored, yet.

Well-defined conjugated arylene ethynylene can be accessed by iterative chemistry protocols
that permit for full structure precision and sequence definition. The solubility issues occurring for
oligo(arylene ethynylene)s can be overcome by the synthesis approach that uses soluble support.
Nevertheless, the high synthesis scale and yields remain a challenge.

The sensing parameters (sensitivity, selectivity, specificity) are strongly connected with the
oligomer structure. Even a small difference in structure, e.g., one unit length difference may result in
loss of sensor selectivity and sensitivity. Although a variety of examples were described, it has been
still difficult to rationally design the arylene ethynylene oligomers with high selectivity and affinity,
though more systematic studies in the field are needed.

In the near future sensing and process monitoring can become an interesting and emerging
application for sequence-defined polymers built from π-conjugated segments. As it was shown by
many examples in this review sensing is one of the applications where monomer sequence, composition,
and length matter. Systematic studies on the sequence–property relationship can open an avenue for
more specific and selective sensors relevant to biological samples.
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Abstract: Temperature is an important parameter in bioprocesses, influencing the structure and
functionality of almost every biomolecule, as well as affecting metabolic reaction rates. In industrial
biotechnology, the temperature is usually tightly controlled at an optimum value. Smart variation
of the temperature to optimize the performance of a bioprocess brings about multiple complex and
interconnected metabolic changes and is so far only rarely applied. Mathematical descriptions and
models facilitate a reduction in complexity, as well as an understanding, of these interconnections.
Starting in the 19th century with the “primal” temperature model of Svante Arrhenius, a variety
of models have evolved over time to describe growth and enzymatic reaction rates as functions of
temperature. Data-driven empirical approaches, as well as complex mechanistic models based on
thermodynamic knowledge of biomolecular behavior at different temperatures, have been developed.
Even though underlying biological mechanisms and mathematical models have been well-described,
temperature as a control variable is only scarcely applied in bioprocess engineering, and as a
conclusion, an exploitation strategy merging both in context has not yet been established. In this
review, the most important models for physiological, biochemical, and physical properties governed
by temperature are presented and discussed, along with application perspectives. As such, this review
provides a toolset for future exploitation perspectives of temperature in bioprocess engineering.

Keywords: thermal growth curve; temperature modeling; thermoregulation; monitoring and control;
bioprocess engineering; calorimetry

1. Introduction

Predetermined by the applied system, bioprocesses are generally very sensitive to most changes
in environmental conditions. It is for this reason that conditions such as temperature, pO2, or pH are
generally tightly controlled. In most cases, even small deviations from optimum values may lead to a
significant reduction in the overall productivity and reproducibility of the process. Therefore, special
consideration must be given to control tasks, which are typically defined by maintaining process
variables within a narrow optimum [1]. In contrast to artificial laboratory conditions, microorganisms
are usually exposed to a changing environment, with changes in pH, nutrient availability, competitors,
and elevated or decreased temperature, etc. A crucial environmental factor for microorganisms is
temperature. It affects the folding, structure, and stability of almost every biomolecule, as well as
the metabolic reaction rate. Detection of temperature changes and subsequent adaptation of the
metabolism are essential for microbial survival, such as by pathogens sensing intrusion into a host.
Organisms can sense temperature shifts indirectly or by specialized sensing systems that evolved to
detect changes in temperature in order to respond with adapted gene expression. This was extensively
reviewed by Klinkert and Narberhaus [2]. Indirect temperature sensing is possible via the accumulation
of aggregated proteins after a heat shock and via stalled ribosomes after a cold shock. Molecular
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thermosensors may consist of DNA, RNA, proteins, or lipids. DNA topology changes, e.g., supercoiling
caused by heat stress, stable RNA structures preventing translation at sub-optimal temperatures,
temperature-responsive regulatory proteins, and alterations in lipid membrane stability with respective
to fluidity are just a few examples for direct temperature sensing. Temperature plays an essential role
and has a crucial effect on biological processes. Targeted temperature adjustments for triggering a
desired response may also be exploited for biotechnological applications. Noll et al. published an
example for a thermosensitive structure to direct the carbon flow of a substrate into a product rather
than into biomass, by exploiting an RNA thermometer to optimize the heterologous production of
rhamnolipid biosurfactants [3].

Alterations in temperature lead to multiple, often complex, interconnected metabolic changes.
Models describing a biological process as a function of temperature are therefore indispensable
to reducing complexity and facilitating understanding of those interconnections. Mathematical
descriptions of how (bio-)chemical reactions respond to high or low temperatures emerged as early
as in the 1900s with the “primal” temperature model of Arrhenius [4]. He investigated the reaction
kinetics for sugar cane inversion by acids, depending on temperature. Popularized by Arrhenius, a
variety of temperature models evolved over time, as shown in Figure 1. These models range from
data-driven empirical approaches to complex mechanistic models that are based on thermodynamic
knowledge of biomolecular behavior at different temperatures. Models are readily available to be used
as a tool for process control and design. An overview of the current state of thermo-modeling is crucial
to reasonably selecting a suitable model for the bioprocess to be monitored or optimized. The aim of this
review is to provide an overview of available temperature models to facilitate understanding of model
intention and reasonable selection for application. So far, only a few applications for temperature in
(industrial) process design, monitoring, and control have been described. Applied model approaches
are usually based on fuzzy logic or artificial neural networks and do not harvest the full potential of
deterministic approaches. There are a few examples for applied model-assisted temperature control
strategies in industrial biotechnology. These include heat balancing for an estimation of metabolic
activity to improve batch-to-batch reproducibility by applying a process control module which uses
the difference between the culture temperature and temperature of a coolant to predict oxygen mass
transfer rates and kLa values [5–7]. Furthermore, deterministic process models can be used to describe
a biological process as a function of a physical condition, like the temperature. They may be used in
the food sector to estimate product shelf life, determining critical control points of a process, or to
maximize productivities and ensure safe distribution chains [8]. These examples highlight a potential
for temperature and deterministic models in process design. An approach for experimental design
to optimize processes depending on multiple parameters is the Response Surface Method (RSM):
“RSM is a collection of statistical techniques used for studying the relationships between measured
responses and independent input variables” [9]. This method may be used for optimization purposes
in experimental design in the shape of a metamodel. It connects the response of an objective function
to input variables and determines its relations, for example, by the means of first- or second-order
polynomial equations. The Matlab software package from The Mathworks, Inc. (Natick, MA, USA) [10]
or the Minitab statistic software (GMSL s.r.l., UK) [11] may be used to conduct an RSM analysis.
In bioprocesses, usually very few process variables are available online that continuously display a
process course. Furthermore, arguably the only control variable to direct a bioprocess towards a desired
outcome is, in most cases, the addition of fresh media. Other variables like pH, temperature, or pO2

are typically controlled at a constant value. Therefore, investigating and exploiting novel potentially
available monitoring and control variables like temperature is a reasonable strategy to extend existing
toolsets of bioprocess monitoring and control. Even though several systems inducible by temperature
have been discovered and made available to biotechnologists in the last decades, only a few have
been exploited for practical purposes, such as for process design or optimization [12]. For monitoring
and control purposes, calorimetric approaches have been presented [5,6,13,14]. For control purposes,
temperature may be used to directly address biological traits like RNA-thermometers to provoke a
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desired response, as previously evaluated [3]. Furthermore, indirect metabolic effects may be exploited,
like elevated metabolic rates at high temperatures or the correct folding of proteins at low temperatures.
Even though knowledge on microbial temperature responses and adaptation, along with descriptions
developed by mathematical means, is available, its potential for applied industrial bioprocesses has
not been sufficiently exploited. This review provides an overview on available thermo-models with
the potential to develop model-assisted or model-derived process control strategies using temperature
as a crucial parameter.
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2. History of Temperature Modeling—17th–20th Century

As early as the 17th century, there were theories on temperature being a form of particle movement.
The kinetic theory of gases, with its origins in the 18th century, first specifically associated translational
motions of molecules with heat and not with their vibrational or rotational motions [15]. Daniel
Bernoulli was the pioneer of the kinetic theory of gases. He hypothesized that gases consist of a
finite number of small spherical particles, which move through space along a straight line with high
velocities. He assumed that heat increases the particle speed (v) and demonstrated that air pressure
correlates with v2. Air temperature can therefore be measured by this pressure at a constant density,
making temperature proportional to v2 [16,17]. The kinetic energies of the molecules are correlated
with the ideal gas law of Equation (1), whose history began with the French engineer Émile Clapeyron
in 1834 [18,19]. In the following, only SI units are used. Parameters with non-SI units, used by cited
authors, were converted into SI units.

p · V = n · R · T (1)

where p is the pressure, Pa; V is the volume, m3; n is the amount of substance, mol; R is the universal
gas constant ~8.314, J mol−1 K−1; and T is the absolute temperature, K. The Dutch chemist and first
Nobel Prize laureate J. H. Van’t Hoff observed that the chemical reaction rate doubles or triples when
the temperature is increased by 10 K, which he expressed with the following equation:

Q10=

(
k2

k1

) 10
T2−T1

(2)

This “rule of thumb” for chemical kinetics allows estimations for various phenomena in chemistry,
biochemistry, and ecology. He furthermore described the change in the equilibrium constant K of a
chemical reaction with respect to the change in temperature at constant pressure with the Van’t Hoff
Equation (3):

d
dT

ln Keq=
ΔH

R ·T2 (3)

where K is the dimensionless equilibrium constant; ΔH is the standard enthalpy change, J mol−1; R
is the universal gas constant ~8.314, J mol−1 K−1; and T is the absolute temperature, K. Van’t Hoff’s
student and the father of temperature models Svante Arrhenius continued the work of his teacher on
the description of temperature-dependent specific reaction rate constants in chemical reactions with
his essay “On the Reaction Velocity of the Inversion of Cane Sugars by Acids” [4]. Arrhenius observed
that the reaction velocity of chemical reactions increased between 10% and 15% for each degree of
rising temperature and postulated a semi-empirical model based on the Van’t Hoff equation, which is
shown in its integrated form in Equation (4).

k = A·e−Ea
R·T (4)

where k is the rate constant, s−1, for a first-order rate constant; A is called a pre-exponential frequency
or collision factor, s−1, for a first-order rate constant; Ea is an empirical parameter, the (Arrhenius)
activation energy, J mol−1, characterizing the exponential temperature dependence of k; R is the
universal gas constant ~8.314, J mol−1 K−1; and T is the absolute temperature, K. In 1935, Henry
Eyring formulated a statistical mechanistic equation following the transition state theory (former
activated-complex theory) that assumed a transition state complex (‡TC) and a quasi-type equilibrium
between educts (e1; e2), the transition state, and the product (P) [20,21]. The model has a similar
way of describing the variance of the rate of a chemical reaction with temperature as the equation
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of Arrhenius. Therefore, it underlined Arrhenius’ previous observations and assumptions with a
mechanistic approach.

e1+e2

k1

�
k2

‡TC
k3→ P (5)

According to the transition state theory, the rate constant can be described as follows:

k(T)=
kB·T

h
·K‡ (6)

where kB is the Boltzmann constant ~1.381 ·10−23, J K−1; T is the absolute temperature, K; h is the
Planck’s constant ~6.626·10−34, J s−1; and K‡ is the dimensionless equilibrium constant. A different
way to express the rate constant is by replacing the equilibrium constant with a term containing the
standard molar changes of entropy and enthalpy:

k(T)=
kB·T

h
·eΔ‡S◦/R·e−Δ‡H◦/(R·T) (7)

where the entropy and enthalpy of activation are the standard molar change of entropy Δ‡S◦ , J K−1

mol−1, when reactants form the transition state (activated) complex and standard molar change of
enthalpy Δ‡H◦

, respectively, J mol−1. R is the universal gas constant ~8.314, J mol−1 K−1. The (Arrhenius)
activation energy (Ea) and enthalpy of activation are not the same, but approximately equal, as they
are convertible, depending on the molecularity [22].

2.1. Temperature in Biological Systems—The History Began with Arrhenius

Microbiologists have noticed a major effect of temperature on the growth rate of microbial
populations and described this effect with the Arrhenius equation by simply replacing the rate constant
k in Equation (4) with the growth rate (μ), meaning the reciprocal of the generation time. The so-called
Arrhenius plot, where ln(μ) is plotted against the reciprocal temperature, was used in the past and
is still applied today to describe a relation between the temperature and growth of different bacteria
and molds [23–26]. From this plot, Arrhenius parameters can easily be derived. Their plots show a
good fit for lower temperatures. The Arrhenius model does not represent cell death, so a decrease
of the growth curve at non-physiological temperatures. The lack of fit of the Arrhenius model for
some temperature-dependent biological processes gave rise to the development of improved models
describing growth as a function of temperature. Most of these models are based on Arrhenius’ parental
model and evolved over time.

2.2. Biological Mechanisms Involved in Temperature Responses

Microorganisms have developed molecular traits to respond to changing environmental
temperatures. These traits have been extensively reviewed [2,27,28]. The principles of microbial
thermo responses range from changing DNA topology, e.g., supercoiling caused by heat stress,
stalled ribosomes, or stable RNA preventing translation during cold stress to proper folding of
proteins, working optima of enzymes, or lipid membrane stability and fluidity. Biomolecules are
generally thermos-sensitive. Therefore, various options for direct molecular thermosensing are
possible. Molecular thermosensors may consist of DNA, RNA, proteins, or lipids [2]. The accessibility
of DNA for the transcriptional machinery is crucial for transferring genetic information via RNA
into a protein and is influenced by DNA topology [29]. DNA supercoiling, and thus accessibility,
is altered in response to a shifting temperature, as has been reported for the plasmic DNA of meso-
and thermophiles [30]. Mesophiles have negatively supercoiled plasmic DNA and hyperthermophilic
archaea with a growth optimum ≥80 ◦C have relaxed or positively supercoiled plasmic DNA [30–32].
Proteins such as the histone-like structuring proteins (H-NS) work as temperature-dependent regulators,
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governing >200 temperature-regulated genes in Salmonella sp. and more than two third of E. coli K-12
temperature-regulated genes, respectively [33,34]. The inhibition of gene expression by H-NS is caused
by trapping RNA polymerase and mediating DNA looping, thereby disturbing the progression of RNA
polymerase [35–38]. Temperature-dependent gene expression is also influenced on the RNA level,
where RNA can form inhibitory loop structures called RNA-thermometers (RNAT). Here, base pairing
blocks the Shine-Dalgarno-sequence (SD) and AUG start codons, inhibiting ribosomal binding and
translation initiation. By raising the temperature to a threshold (melting temperature), the hairpin
structure opens and permits the access of ribosomes to the translation initiation site [2,39]. The secondary
structure and thereby functionality of RNAT is characterized by canonical or non-canonical base paring,
internal loops or mismatches, and the total number of loop structures. Based on these characteristics,
RNA thermometers may be subdivided into three categories: (i) ROSE-like RNATs (repression of heat
shock gene expression), (ii) FourU RNATs, and (iii) additional types of RNATs [40]. Most RNATs
have been identified in the 5′-UTR of mRNA. The ROSE-like RNAT family is probably the most
abundant temperature-sensing mRNA structure. ROSE-like RNATs usually control the repression
of heat shock gene expression, but have also been reported to control expression of the rhamnosyl
transferase, which is associated with Pseudomonas aeruginosa virulence [41]. ROSE-RNATs are located in
the 5′UTR, are between 60 and 100 nt in length, and consist of 2–4 loop structures [41–43]. The majority
of described RNATs of the second family, the FourU RNATs, govern the gene expression of virulence
genes, and only two FourU RNAT’s are known to control heat shock protein formation. FourU
RNATs contain a sequence of four Uridines that occlude the SD sequence by canonical A-U and/or
non-canonical G-U base pairing [40]. The virulence gene lcrF (virF) of Yersina pestis and the agsA
small heat shock gene of Salmonella enterica were among the first genes described to be governed
by a FourU RNAT [44]. Furthermore, attempts have been made to design synthetic RNATs with
tailor-made characteristics to differ in up to 10-fold sensitivity- and around 3-fold threshold changes
compared to a starting thermometer sequence [45]. On the protein level, global repressors, sensor
kinases, methyl-accepting chemotaxis proteins (MCPs), M-like proteins, chaperones, and proteases
are involved in microbial temperature responses [2]. The global transcriptional repressor CtsR
has been termed a “protein thermosensor”, and liberates DNA upon an up-shift in temperature
connected to the expression of heat shock proteins. Due to a glycine-rich loop structure, CtsR exhibits
intrinsic heat-sensing characteristics [46]. MCPs function as transmembrane receptors and consist of
a periplasmic ligand-binding domain and a signaling domain in the cytosol that can interact with
cytosolic sensor kinases [47]. The Tar MCP, for example, is convertible from a heat to a cold sensor
in the presence of aspartate and consequent methylation at up to four sites [48]. The surface M and
M-like proteins of the human pathogens group A streptococci bind to a variety of human plasma
proteins in a temperature-dependent manner. The affinity of the M-like coild-coil protein Arp4 to IgA,
is high at 10 and 20 ◦C, but low at 37 ◦C, due to a conformational change of Arp4 and consequent
loss of the coild-coil conformation and binding activity [49]. The diverse class of small heat shock
proteins (sHsp) can act as molecular chaperones upon heat shock. They are temperature sensors with
different molecular mechanisms. For example, the sHsp Hsp26 of Saccharomyces cerevisiae consists of 24
subunits and changes its affinity state towards unfolded proteins at high temperatures by undergoing
a conformational change [50,51].

2.3. Characteristic Graph for Growth as a Function of Temperature

Representative curvature of a model depicting the specific growth rate as a function of temperature,
called the thermal growth curve, is shown in Figure 2. The simulated optimal specific growth rate
(μopt) with the maximum turning point at the temperature optimum (Topt) and growth rate at half of
μopt (μ50%opt) are marked in the model of a thermal growth curve. It has been pointed out that the term
“optimal temperature” may need further specification to distinguish between the temperature for the
optimal growth rate and the optimal temperature of the maximum biomass yield [52]. The minimum
and maximum temperatures (Tmin and Tmax, respectively) for growth flank the asymmetric function
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and mark the thermal tolerance or thermal niche of an organism [53,54]. These three temperatures
(Tmin, Topt, and Tmax) are commonly referred to as cardinal temperatures. Bacteria can adapt to
changing temperatures in the short run by producing cold- or heat-shock proteins. Furthermore, it
was reported that the performance optimum of E. coli can be shifted when exposed to suboptimal
temperatures for ~2000 generations. Conversely, the thermal niche breadth remained constant in
that case [54]. The result is a reshaped thermal growth curve with the same upper and lower limits.
The asymmetry of the thermal growth curve indicates that bacteria, which may be adapted to high
temperatures, can survive in lower temperatures quite well. In contrary, fitness decreases sharply
when temperatures exceed the optimum, resulting in thermal shock [55,56]. In one of the most recent
approaches, the growth of psychrophiles, mesophiles, thermophiles, and hyperthermophiles was
modeled, covering a temperature range of 124 ◦C, from −2 to +122 ◦C. The model was applied to 230
different strains of uni- and multicellular organisms with growth temperatures below freezing and the
highest known temperature for biological growth so far [57,58].

 
Figure 2. Scheme of the thermal growth curve where the temperature (K) is plotted against the growth
rate (s−1). Cardinal temperatures (Tmin, Topt, and Tmax) with their corresponding growth rates (μopt and
μ50%opt) are indicated.

2.4. Mechanistic Versus Empirical Models

An often cited empirical approach for modeling the thermal growth curve of microorganisms is
the approach of Ratkowsky et al. [59] (Scopus: cited by 615, 6 November 2019) and the semi-empirical
model of Arrhenius. The development of mechanistic approaches for modeling the thermal growth
curve of microorganisms started with the master reaction model of Johnson et al. in 1946 [60] (Scopus:
cited by 80, 6 November 2019). The mechanistic models consider the description of single essential
protein thermal stability (master reaction model) or the thermal stability of the whole proteome (the
proteome model) as key for modeling the thermal growth curve. The transition of the native to an
active and/or inactive state of the protein is considered. Grimaud et al. have extensively reviewed
temperature growth models and concluded that empirical models display a better fit for balanced
growth in non-limiting conditions than mechanistic models. Conversely, mechanistic models offer a
complementary point of view for modeling thermal growth and can accurately represent temperature
responses for growth under non-balanced conditions [61].
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3. Temperature Modeling—From the 20th Century until Today

3.1. The Model of Hinshelwood (1946)

Hinshelwood expanded Arrhenius’ model by adding a temperature-dependent term describing a
“rate of degeneration” that becomes relevant at temperatures above Topt [62]. Hinshelwood assumes
a balanced growth for his model, saying that the total amount of compounds in a cell is constant.
The model is based on the assumptions that just one enzymatic reaction is rate-controlling and the
product of this reaction is a thermosensitive essential biomolecule which denatures irreversibly when
temperatures are raised beyond the optimum. Temperature dependency and denaturation at high
temperatures are of zero order and exhibit a temperature dependency similar to the Arrhenius model.
The model represents the rate of synthesis in the minuend and degeneration in the subtrahend. At low
temperatures, the subtrahend term is insignificantly small; in a small temperature region, both terms
are almost equal, canceling each other out; and at high temperatures, the subtrahend term mostly
accounts for the rapid decrease of the rate to zero.

u(T) = A1·e−
E1
R·T −A2·e−

E2
R·T (8)

where A1, and A2 are referred to as pre/non-exponential, collision, or frequency actors, s−1, related to
entropy [62]; E1 and E2 are related to enthalpy [22], representing activation energies, J mol−1, of the
rate-determining enzyme reaction and high-temperature denaturation, respectively; R is the universal
gas constant ~8.314, J mol−1 K−1; and T is the temperature, K.

3.2. The Model of Johnson (1946)

In the same year, Johnson and Lewin [60] proposed another mechanistic model, which also
assumes a simple case of a single reaction controlling growth, and called it their “master reaction
model”. In contrast to Hinshelwood, they assumed that a reversibly denaturable “master enzyme”
E0 controls an essential reaction for growth (assuming no substrate limitation). They reported their
observation that E. coli stopped growing at non-viable 45 ◦C, but started growing exponentially again
when transferred back to 37 ◦C. Increasing the exposition time of E. coli to non-viable temperatures
led to lowered growth rates at 37 ◦C compared to the control. Hence, they assumed and described
reversible protein denaturation damage as part of their model by integrating an equilibrium constant
(K1). The constant accounts for the equilibrium of reversibly denatured inactive (Ed) to native active
enzymes (En).

K1=
Ed
En

(9)

Hence, the amount of native active enzyme is given by Equation (10), with E0 being the total
amount of enzyme (native and denatured, mol).

En=
E0

1 + K1
=

E0

1 + e
−ΔH
R·T ·e ΔS

R

(10)

Johnson and Lewin then referred to Equation (7) proposed by Eyring, adding Equation (10) to
account for the amount of active enzyme and substrate concentration and yielding Equation (11) for
the temperature-dependent specific reaction rate (k).

k(T)=
kB·T

h
·eΔ‡S◦/R·e−Δ‡H◦/(R·T)·[S]·[En] (11)
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By assuming that one single enzymatic reaction governs temperature-dependent growth at a
constant substrate concentration and by substituting En in Equation (11) with rearranged Equation
(10), temperature-dependent growth can be described as Equation (12):

u(T) = c ·T· E0·eΔ‡S◦/R ·e−Δ‡H◦/(R·T)· 1

1 + e−(ΔH−T·ΔS)/(R·T) (12)

where c is a derived Boltzmann/Plancks constant, s K−1, from the Eyring model of Equation (7);
Δ‡H◦

and Δ‡S◦ are the standard molar change of enthalpy and entropy of activation, respectively (as
described for Equation (7)); ΔH and ΔS are the enthalpy, J, and entropy change, J K−1, respectively,
between native and denatured enzymes; R is the universal gas constant ~8.314, J mol−1 K−1; and T is
the absolute temperature, K. The equation can then be shortened to the model in Equation (14) using
the expression for Gibbs free energy change (between a catalytically active and reversibly denatured
inactive state) at a constant temperature (Equation (13)):

ΔG = ΔH − T·ΔS (13)

u(T) = C·T ·e−Δ‡H◦/(R·T)· 1

1 + e−ΔG/(R·T) (14)

where E0 is assumed to be constant and c·eΔ‡S◦/R·E0 is compressed to C. The fraction term containing
the Gibbs free energy change can be assumed as the probability that the enzyme is in its native, and not
its inactive, state. In the temperature region for a catalytically active enzyme, ΔG, J, has high positive
values, yielding almost zero for the exponential term in the denominator of the probability term, and
thus one for the probability for a catalytically active enzyme.

3.3. The Model of Sharpe (1977)

In 1977, Sharpe et al. [63,64] merged the models of Johnson and Lewin with the model of Hultin,
which were both founded on Eyring’s theory and modeled on the activated complex in chemical
reactions [20,60,65,66]. The result was a unified rate model for the description of biological processes
at physiological temperatures. Sharpe’s model was originally developed for poikilotherms. Sharpe
assumed balanced growth with a constant total amount of compounds per cell and just a single
rate-controlling enzyme determining the development rate at all temperatures. Its reaction rate is of
a zero order. The total concentration of enzyme (active + inactive) is assumed to be constant at all
temperatures. Three enzyme states are considered and described: an inactivation state at low and high
temperatures, as well as an active development state. Sharpe described transition between the states
by his model, which depicts the thermal growth curve with the following equation:

u(T) =
T·e(Φ− Δ‡H◦/T)/R

1 + e(ΔSL− ΔHL/T)/R+e(ΔSH− ΔHH/T)/R
(15)

where T is the temperature, K; is the universal gas constant ~8.314, J mol−1 K−1; and the other parameters
describe the rate-controlling enzyme reaction, where Φ is a dimensionless conversion factor; Δ‡H◦

is the
enthalpy of activation of the reaction catalyzed by the rate-controlling enzyme, J mol−1; the subscript L
accounts for low-temperature inactivation and the subscript H for high-temperature inactivation; and
ΔS∗, J K−1 mol−1, and ΔH∗, J mol−1, mark the entropic and enthalpic change, respectively, upon high-
or low-temperature inactivation specified by the subscript. In 1991, Zwietering et al. [8] rewrote the
model of Sharpe exhibiting an Arrhenius-type of temperature dependency using activation energies
rather than changes in enthalpy to describe growth. As described by the International Union of Pure
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and Applied Chemistry, IUPAC, the (Arrhenius) activation energy (Ea) and enthalpy of activation are
not the same, but approximately equal, as they are convertible, depending on the molecularity [22].

u(T) =
ka·e−Ea

R·T

1 + kl·e−
El

R·T +kh·e−
Eh
R·T

(16)

where ka (s−1), kl (-), and kh (-) are collision factors that are dimensionless in the denominator, as described
by Zwietering et al. [8]; E, J mol−1, represents the activation energy; subscript a accounts for the
rate-determining enzyme reaction; subscripts h and l describe high- and low-temperature inactivation,
respectively; R is the gas constant ~8.314, J mol−1 K−1; and T is the temperature, K.

3.4. The Model of Mohr (1980)

Mohr and Krawiec [24] analyzed the thermal growth curves for 12 bacterial species. Among them
were thermophiles, mesophiles, and psychrophiles. They used the Arrhenius plot for their data, where
ln(μ) is plotted against the reciprocal temperature in Kelvin. They reported two different slopes for the
Arrhenius profiles for some mesophiles and thermophiles at suboptimal temperatures. The temperature
at the interception point were both slopes meet is referred to as the “critical temperature” (Tcrit) [24,67].
This point marks the turning point where the organization of an organism, and hence it growth behavior,
changes. In order to describe the two different slopes, they proposed two equations, which they
reduced to one with the assumption that “[ . . . ] a balance of organizations exists at any temperature”:

u(T)= A1·e−E1/R·T −A2·e−E2/R·T Tcrit < T < Tmax (17)

u(T)= A′1·eE′1/R·T Tmin < T < Tcrit (18)

u(T)=
1

A∗1·eE′1/R·T+A∗∗1 ·eE1/R·T−A2·e−E2/R·T (19)

where A1, A′1, and A2 are referred to as pre/non-exponential, collision, or frequency actors, s−1;
E1, E′1, and E2 are referred to as temperature characteristics, J mol−1; R is the gas constant ~8.314,
J mol−1 K−1; and T is the temperature, K. The parameters marked with a “ ’ ” are used to describe
temperature-dependent growth for Tmin < T < Tcrit, whereas parameters without “ ’ ” are used to
describe temperature-dependent growth for Tcrit < T < Tmax, A∗1 = 1/A′1, and A∗∗1 = 1/A1.

3.5. The Model of Schoolfield (1981)

Schoolfield developed a non-linear regression model [68] based on the model proposed by
Sharpe. His group reformulated the model of Sharpe and eliminated the high correlations of Sharpe’s
parameters (e.g., 0.9996). Furthermore, Schoolfield et al. argued that there is no “readily apparent”
initial guess for beginning iterations for parameter estimation. Hence, they also aimed to facilitate the
regression process and parameter estimation.

u(T) =
u25· T

298 ·e[
Δ‡H

◦
R ·( 1

298− 1
T )]

1 + e
[

ΔHL
R ·( 1

T1/2L
− 1

T )]
+e

[
ΔHH

R ·( 1
T1/2H

− 1
T )]

(20)

Schoolfield et al. chose 25 ◦C (298 K) and the respective specific growth rate u25, s−1, as a reference
because enzyme inactivation would be low or not present at that temperature in most biological systems.
Δ‡H◦

is the enthalpy of activation of the reaction catalyzed by the rate-controlling enzyme, J mol−1;
the subscript L accounts for low-temperature inactivation and the subscript H for high-temperature
inactivation of the enzyme; and ΔH∗ marks the enthalpic change upon high- or low-temperature
inactivation specified by the subscript, J mol−1. With an increasing or decreasing temperature, 50%
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of the rate-controlling enzyme is inactivated by either a high T1/2H , K or low temperature T1/2L , K,
as previously described by Hultin [66] and adopted by Schoolfield et al. [68].

3.6. The Models of Ratkowsky and Zwietering (1982–1991)

As extensively reviewed by Grimaud et al. [61], several models for temperature-dependent growth
in biological systems have been developed. Most of these models were developed to describe food
spoilage and medical applications. One often cited (802, Scopus, 8 August 2019) empirical model is
the square root model proposed by Ratkowsky et al., as an alternative to the widely used Arrhenius
model, to describe growth as a function of temperature [26]:

u(T) = [b1·(T − Tmin)]
2 (21)

where b1 is a Ratkowsky parameter, K−1 s−0.5, and Tmin is the minimum temperature of growth, K.
This model was extended to the complete bio-kinetic range in 1983 by the same author [59]:

u(T) =
(
b2·(T − Tmin)·

{
1− e[c2·(T−Tmax)]

})2
(22)

where c is a Ratkowsky parameter, K−1, and Tmax is the maximum temperature, K, at which growth is
observed. Zwietering et al. [8] argued that Ratkowsky’s model could not be used for temperatures
above Tmax because the model predicted positive values for growth rates beyond the high-temperature
end of the thermal niche. They therefore adapted the model accordingly and the result is shown in
Equation (23).

u(T) = [b3·(T − Tmin)]
2·
{
1− e[c3·(T−Tmax)]

}
(23)

3.7. The Model of Roels (1983)

In 1983, Roels et al. [69] developed a model to describe the growth rate as a function of temperature.
The numerator has an Arrhenius-type appearance and the energy for activation was replaced by the
Gibbs free energy change upon denaturation of a rate-controlling enzyme in the denumerator.

u(T) =
A·e( −EG

RT )

1 + B·e( −ΔGd
RT )

(24)

where A and B are pre-exponential factors, s−1; R is the gas constant ~8.314, J mol−1 K−1; and T is the
temperature, K.

3.8. The Model of Davey (1989)

Davey proposed an empirical generalized predictive model based on a modified linear-Arrhenius
equation, which combined the influence of temperature and water activity to describe microbial
growth [70]. The activation energy parameter from the original Arrhenius model was replaced
in Davey’s model by two coefficients of inverse temperature. In his work, Davey provided and
evaluated models for the influence of environmental factors like the aw value or pH in combination
with temperature, as well as temperature as the sole influencing factor, on growth [70–72]. The model
describing temperature as the sole environmental factor is shown in Equation (25):

u(T)= eC0+C1/T+C2/T2
(25)

where C0–C2 are dimensionless Davey coefficients, - and the energy of activation given in the Arrhenius
equation is replaced by two parameters of reciprocal temperature, K. Two years later, in 1991, Davey
used the model for predicting the temperature-dependent lag time [72].
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3.9. The Models of Lobry and Rosso (1991–1993)

In 1991, Lobry [73] developed an empirical model that includes the three cardinal temperatures
(Tmin, Topt, and Tmax) as parameters. The cardinal temperature model (CTM) estimates positive values
for growth rates at temperatures between the low temperature and high temperature end (Tmin and
Tmax), with the highest growth rate (uopt (s−1)) at Topt. Outside the thermal niche (T < Tmin; T > Tmax),
negative values are predicted. Each microbial species exhibits these three characteristic cardinal
temperatures, which permits direct biological interpretation of the model parameters and facilitates
parameter estimation using experimental data for Lobry’s CTM-model Equation (26). The authors
emphasize the “absence of high structural correlations” between parameters of their model. In 1991,
Rosso et al. [74] further elaborated Lobry’s empirical model by including the point of inflection
in the suboptimal range of temperatures, which was experimentally determined. Following this,
the so-called cardinal temperature model with inflection (CTMI; Equation (27)) could be used to
accurately predict growth in the suboptimal range of temperature. Rosso’s group noted an “unexpected”
high linear correlation between cardinal temperatures, especially between Tmax and Topt, with r = 0.991.
They then argued that due to the correlations found, one instead of three cardinal temperatures could
sufficiently describe the permissive temperature range for growth. They also mentioned an exception
for the stated relationships between the cardinal temperatures for the growth behavior of Vibrio sp.
In total, they analyzed 47 different data sets describing the growth of psychrophilic, mesophilic, and
thermophilic strains.

u(T)= uopt·
⎡⎢⎢⎢⎢⎢⎢⎢⎣1−

(
T − Topt

)2
(
T − Topt

)2
+T·(Tmax+Tmin − T) − Tmax·Tmin

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (26)

u(T)= uopt· (T − Tmax)·(T − Tmin)
2(

Topt − Tmin
)
·
[(

Topt − Tmin
)
·
(
T − Topt

)
−
(
Topt − Tmax

)
·
(
Topt+Tmin − 2·T

)] (27)

3.10. The Model of Blanchard (1996)

Blanchard et al. [75] originally developed their model to quantify the short-term temperature
effect on natural assemblages of microphytobenthos’ photosynthetic capacity. Blanchard described
a progressive increase in photosynthetic capacity during a temperature increase up to an optimum
temperature, with a rapid decrease when the temperature was raised beyond the optimum. For the
model, cardinal temperatures (Tmin, Topt, and Tmax) with a biological meaning are used to facilitate a
reasonable initial guess for parameter estimation. Grimaud et al. [61] rewrote the Blanchard model
to represent growth as a function of temperature instead of photosynthetic capacity, as shown in
Equation (28):

u(T)= uopt

(
Tmax − T

Tmax − Topt

)β
·e−β·(Topt−T)/(Tmax−Topt) (28)

where μopt, s−1, is the maximal specific growth rate at optimal temperature Topt, K; Tmax, K, is the
maximum temperature where growth is observed; and β is a dimensionless Blanchard parameter.

3.11. The Models of Eppley and Norberg (2004)

Eppley [76] proposed a simple function with a positive exponential correlation between
temperature and maximum expected growth, as shown in Equation (29). He stated that this model
may be used for a generalized estimate for μmax in unicellular algae for temperatures <40 ◦C.

u(T) = 0.851·1.066T (29)
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The proposed Eppley curve or envelope function of Equation (29) shows the evolutionary
interspecific upper limit for the maximum specific growth rate at any temperature up to 40 ◦C. The limit
for the maximum growth rate increases exponentially until 40 ◦C in Eppley’s function. For model
assembly, Eppley used almost 200 data points of different species of unicellular algae [76]. Based on
Eppley’s findings, Jon Norberg developed a model for temperature-dependent growth in 2004 [77],
shown in Equation (30).

u(T) =
[
1−

(T −Z
w

)2]
·0.59·e0.0633·T (30)

An envelope function 0.59 × e0.0633T according to Eppley is contained in Norberg’s model for
temperature-dependent growth, where T, K, is the ambient temperature and Z, K, is the temperature with
the maximum specific growth rate derived from the envelope function representing Topt respectively.
The width of the temperature response function is determined by the parameter w, K, meaning the
width of the thermal niche. A generalized form of the Eppley–Norberg model Equation (31) would
add a and b as dimensionless parameters, -, generalizing the Eppley envelope function.

u(T) =
[
1−

(T −Z
w

)2]
·a·eb·T (31)

3.12. The Modified Master Reaction Model (2005)

In 1967, Brandts recognized that the master reaction model proposed by Johnson and Lewin
(see Equation (12)) failed to describe enzymatic reactions adequately when applied to the full bio
kinetic temperature range [78,79]. Arguably, the limitations of the model arise from the assumed
temperature independence of ΔG in the master reaction model upon protein denaturation. Therefore,
Brandts et al. attributed the temperature dependency to ΔG by simply using an empirical polynomial
expression relating ΔG to T. In 1974, Privalov et al. [80] reported a linear relation between enthalpy
and entropy and temperature upon protein unfolding when assuming a specific constant heat capacity
change for a specific protein. Almost 20 years later, it was reported that the change in enthalpy
upon denaturation (ΔHd) normalized to the number of amino acid residues (or molecular weight,
respectively) at a specific temperature (T∗H ~373 K) converged to a common value (ΔH∗). Likewise,
the same convergence behavior to one common value (ΔS∗) at a specific temperature (T∗S ~385 K) for
entropy upon denaturation (ΔSd) normalized to the number of amino acid residues was described for
a number of homologous compounds [80–83]. The so-called convergence temperatures (T∗H and T∗S)
were obtained as the temperatures where the apolar contributions (apolar hydrogen atoms CH) to the
corresponding changes in entropy or enthalpy, respectively, upon denaturation approach zero [81,82,84].
Therefore, ΔH∗ describes only polar and van der Waals interactions and ΔS∗ primarily accounts for
configurational entropy [83]. In 1990, Murphy et al. [81] analyzed the convergence behavior by plotting
ΔHd or ΔSd normalized to mol amino acid residue against the normalized heat capacity change (ΔCp)
upon denaturation and obtained the following correlations:

ΔSd = ΔS∗+ΔCp·ln
(

T
T∗S

)
(32)

ΔHd = ΔH∗+ΔCp·
(
T − T∗H

)
(33)

The above-mentioned equations describe a temperature-dependent enthalpic and entropic change
upon denaturation normalized to the number of amino acid residues in a protein (n). From Murphy’s
findings [81], the change in Gibbs free energy upon protein denaturation (~protein thermal stability) is
given by

ΔGd(T)= n·
[
ΔH∗ − T·ΔS∗ + ΔCp·

[(
T − T∗H

)
− T·ln

(
T
T∗S

)]]
(34)
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where ΔCp·
[(

T − T∗H
)
− T·ln

(
T
T∗S

)]
accounts for the hydrophobic contribution of the Gibbs free energy

change upon denaturation of the rate-determining “master enzyme”. Ross connected Murphy’s
findings with the rewritten master reaction model of Johnson and Lewis, where the change in enthalpy
between the catalytically active and inactive state of the rate-limiting enzyme was replaced by the
temperature-dependent Gibbs free energy change [79,85].

u(T) =
c·T·e(−Δ‡H◦/R·T)

1 + e(−ΔGd/R·T) (35)

Replacing the description of the Gibbs free energy in the denominator of Equation (35) with the
term in Equation (34) resulted in a modified master reaction model:

u(T) =
c·T·e(−Δ‡H◦/R·T)

1 + e(−n·{ΔH∗−T·ΔS∗+ΔCp·[(T−T∗H)−T·ln(T/T∗S)]}/R·T) . (36)

In the denominator of Equation (36), the thermodynamic parameters ΔH∗, ΔS∗, and ΔCp are
normalized to mol amino acid residue. In 2005, Ratkowsky et al. [79] reduced the eight-parameter
model given in Equation (36) to a five-parameter model by simply applying the universal constants for
globular proteins T∗H = 373.6 K, T∗S = 385.2 K, and ΔS∗ = 18.1 J K−1 found by Murphy et al. [81,82] to the
model. Ratkowsky’s group fitted the reduced five-parameter modified master reaction model to data
from 35 bacterial strains. The universal constant ΔH∗ suggested by Murphy’s group with 5640 J mol−1

amino acid residue was found to be unsuitable for representing bacterial growth when applied to five
data sets of Ross [86]. The reduced modified master reaction model with applied universal constants
evaluated in the work of Ratkowsky et al. [79] is given in Equation (37).

u(T) =
c·T·e(−Δ‡H◦/8.314·T)

1 + e(−n·{ΔH∗−T·18.1+ΔCp·[(T−373.6)−T·ln(T/385.2)]}/8.314·T) (37)

3.13. The Model of Zeldovich (2007–2016)

The group of Zeldovich [87] argued that the whole proteome has to be considered when describing
the temperature response and sensitivity of an organism. Ghosh and Dill [88] continued the work
of Zeldovich et al. and proposed a model that considers the folding stabilities across an organisms’
proteome to describe temperature-dependent growth rates of bacteria. They assumed that the growth
rate was a function of temperature composed of a product of two factors: First, Arrhenius-type
low-temperature activation for one or more activated metabolic processes controlling the increase of
growth rate at low temperatures, and second, a term accounting for the folded part of the proteome at
any temperature, which also depicts the “denaturation catastrophe” when reaching high temperatures.

u(T)= u0·e(
−Δ‡H

◦
k·T )

Γ∏
i=1

1

1 + e(−ΔGun(Ni,T)/R·T) , (38)

where μ0 is a growth rate reference, s−1. The parameter Δ‡H◦
, J mol−1, describes the activation

barrier for growth (e.g., an essential growth-limiting metabolic rate). The authors found that the
activation barrier for growth (~68.2 kJ mol−1) in E. coli approximately corresponds to the energy
needed by ribosomes to form a peptide bond. Hence, the authors identified ribosomal action to grow
protein chains as one of the key growth rate-limiting factors, along with protein motions necessary for
enzymatic reactions. Γ describes the amount of essential proteins required for growth. The product
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term accounts for the probability that the ith essential protein composed of Ni amino acids is in its
native state, which is expressed by ΔGun in Equation (39):

ΔGun = −kB·T0·n·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0+m1·c
kB·T0

+
ΔCp

kB·T0
·
(
T − T∗H

)
+ T

T0
·ln(z) − T

T0
·ΔCp·ln

(
T
T∗S

)
+

lb
2·n ·(

Qn
2

Rn·(1+κ·Rn)
− Qd

2

Rd·(1+κ·Rd)

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (39)

where kB is the Boltzmann constant ~1.381 · 10−23, J K−1; T0 = 300 K; n is the number of amino acids
with respective to the chain length of a protein; g0 is the free energy upon amino acid desolvation and
upon contact; c is the concentration of denaturant; ΔCp is the heat capacity change upon denaturation,
J K−1 mol-residue−1; T is the absolute temperature, K; T∗H = 373 K and T∗S = 385 K are the enthalpic and
entropic convergence temperatures, respectively; z is defined as the loss of average conformational
freedom per backbone bond; lb is the average Bjerrum length; Qn and Qd are the total net charge of
native and denatured protein, respectively; Rn and Rd account for the radii of native and denatured
protein, respectively; κ is the reciprocal of the Debye length (for further details, see [89,90]). To obtain
the probability distribution for protein stabilities of a proteome p(ΔG), Equation (39) can be used.
The equation accounts for the stability of an average single protein of length n and may be used in
combination with the distribution of protein chain lengths (P(n)) of a cell available for various cell
types from genomic/proteomic data in order to calculate temperature-dependent proteome stability.

3.14. The Model of Daniel (2010)

In 2010, Daniel et al. [91] proposed the equilibrium model to describe temperature-dependent
catalytic activity of enzymes in non-limiting conditions. The group reported that the decrease of
the catalytic rate constant (kcat) of tested enzymatic reactions above the optimal temperature (Topt)
does not entirely correspond to thermal stability data and irreversible denaturation. Furthermore,
they found that part of the activity loss above Topt was reversible and probably associated with a
“conformational, dynamic and solvent-based effect” altering the active site of the enzyme. To explain
the higher than expected decrease of kcat at a certain temperature, they suggested that an enzyme may
be present in three states: (i) catalytically active (Eact); (ii) catalytically inactive, but not (significantly)
unfolded (Einact); and (iii) irreversibly denatured (X). They rapid changes of the Michaelis constant
(Km), describing an enzyme’s affinity towards a substrate, that occur with temperature support their
hypothesis of an “Einact state”, where the active site is altered. They argue that the active site may
need a certain degree of flexibility to function properly and is therefore more prone to changes in
temperature affecting conformation and dynamics.

Eact

Keq

� Einact
kinact→ X (40)

Daniel’s group assumed a rapid equilibrium between Eact and Einact and time-dependent
denaturation at a certain temperature. The conversion rate of Eact to Einact is thereby assumed
to be faster than the rate of denaturation and catalytic reaction rate, respectively. The authors
investigated the applicability of the model for >50 datasets of >30 enzymes of different reaction classes
and structures (monomeric to hexameric) and concluded that their model is universally applicable and
independent of the reaction type and enzymatic structure [91]. The model may therefore be suitable
for describing a thermal growth curve, where a rate-controlling enzymatic reaction is often assumed to
describe temperature-dependent growth (e.g., master reaction model, [60]).

u(T) =
kB

h
·T·E0·e−(

ΔG∗cat
R·T )·e

[− kB
h ·T· e

−( ΔG∗inact
R·T ) ·e

(ΔHeq ·( 1
Teq
− 1

T )/R)·t

1+e
(ΔHeq ·( 1

Teq
− 1

T )/R)
]

·
[
1 + e

(ΔHeq·( 1
Teq − 1

T )/R)
]−1

(41)
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where kB is the Boltzmann constant ~1.381 · 10−23, J K−1; h is the Planck’s constant ~6.626·10−34, J s−1;
T is the absolute temperature, K; E0 is the total enzyme concentration composed of the sum of Eact,
Einact, and X, mol m−3; ΔG∗cat is the Gibbs free energy of activation of the enzymatic reaction; R is
the universal gas constant ~8.314, J mol−1 K−1; ΔG∗inact is the Gibbs free energy of activation for the
irreversible denaturation of the rate-controlling enzyme; ΔHeq is the enthalpic change between Eact

and Einact; Teq is the equilibrium temperature where the rate-controlling enzyme is present as 50:50 Eact

and Einact, K; and t is the time, s.

3.15. The Model of Kooijman (2010)

The DEB or Dynamic Energy Budget theory deals with the description of rates for physiological
processes. Assimilation, growth, respiration, maintenance, or reproduction in individual, not further
specified, “organisms” are analyzed and described by the generalized theory. The rates are described
as a function of the environment, like the temperature or nutrient availability, and the state of the
organism like size or age, for example. S.A.L.M. Kooijman, whose early concepts on energy budgets
were published in 1986 [92], summarized his work in “DEB theory for Metabolic Organization” in
2010 [93]. In DEB theory, temperature-dependent growth is described by a reformulated Arrhenius
equation in the numerator and complemented by a term inspired by Sharpe’s model [63] for reduced
rates at the high- and low-temperature end in the denominator. The equation therefore accounts for
the amount of enzyme in its native state and considers a possible transition to an inactive state via hot
and cold denaturation. Kooijman argues that Eyring’s thermodynamic interpretation of the Arrhenius
type of temperature dependence might only be understood as an approximation. It is an enormous
step from Eyring’s model, considering bimolecular reactions in the gas phase, to physiological rates
with many compounds [94].

u(T) =
k1·eTA/T1−TA/T

1 + eTAl/T−TAl/Tl+eTAh/Th−TAh/T
(42)

where T1 is a reference temperature, K, with the corresponding rate k1, s−1; TA is the Arrhenius
temperature (i.e., linear slope of the Arrhenius plot), K; Tl and Th mark the cardinal temperatures
flanking the thermal niche (low- and high-temperature denaturation, respectively), K; and TAl and TAh
account for Arrhenius temperatures at temperature boundaries of the thermal niche, K.

3.16. The Model of Huang (2011)

The group of Huang [95] developed a model by modifying and combining the Arrhenius equation
with the theory and model of Eyring et al. [4,20,65].

u(T) = A·T·e−( ΔG′
R·T )

α

(43)

where ΔG′, J mol−1, accounts for an energy term; R is the universal gas constant ~8.314, J mol−1

K−1; T is the absolute temperature, K; α is a Huang parameter, K−1; and A describes the collision or
frequency factor, s−1. Huang reports that their model can only sufficiently describe growth behavior at
a suboptimal temperature. To extend their model to the entire physiological temperature range, they
used an expression known from Ratkowsky et al. [59]:

u(T) = A·T·e−( ΔG′
R·T )

α

·
[
1− ec2·(T−Tmax)

]
(44)

where c2 is a Ratkowsky parameter, K−1, and Tmax is the maximum growth temperature, K. Huang’s
group reported good fits (R2 = 0.985) for their model using data for thermal growth rates from five
different bacteria.
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3.17. The Model of Corkrey (2014)

In 2014, Corkrey et al. attempted to build a universal mechanistic model [58]. It was used to
model the growth of 230 different strains of unicellular and multicellular organisms ranging from
psychrophilic to hyperthermophilic, covering a temperature range of 124 ◦C, from −2 ◦C to +122 ◦C.
They therefore argued that their findings might be used to model the dependence of the growth rate
on temperature for all unicellular and multicellular life forms. Being able to find a good fit for their
universal model to the thermal growth curves of various life forms, they concluded that there might be
evidence for the presence of a single highly conserved reaction in the last universal common ancestor.
Under all limiting conditions, a single-enzyme-catalyzed reaction rate, which controls the growth rate,
is described in the numerator of the Corkrey model by an Arrhenius type of temperature dependency.
The denominator accounts for the effects of temperature on protein conformation, which causes
alterations in catalytic activity of the putative enzyme and therefore a change in the expected rate.

u(T) =
T·e(c− Δ‡H

◦
R·T )

1 + e(−n· ΔH∗−T·ΔS∗+ΔCp ·(T−T∗H−T·ln(T/T∗S))
R·T )

(45)

where Δ‡H◦
is the enthalpy of activation, J/mol; R is the universal gas constant ~8.314, J mol−1 K−1; c is

a dimensionless scaling factor; T is the temperature, K; ΔCp is the heat capacity change, J K−1 mol−1

-amino acid residue, upon denaturation of the putative enzyme; ΔH∗ is the change of enthalpy, J mol−1

amino acid residue, at the convergence temperature T∗H, K, for enthalpy of protein unfolding; and
ΔS∗ is the change of entropy, J K−1, at the convergence temperature T∗S, K, for the entropy of protein
unfolding.

3.18. The Model of Hobbs (2014)

The heat capacity model or macromolecular rate theory was proposed by Hobbs et al. [96] and
applied by Schipper et al. [97]. They state that enzymatic rates show Arrhenius behavior when
increasing with temperature, until an optimum (Topt), but argue that decreasing rates above Topt cannot
sufficiently be explained only by denaturation of the enzymes. They have reported the effect of a
heat capacity change upon activation (between the ground state and transition state of a rate-limiting
enzyme) that shapes the thermal growth curve. The change in heat capacity affects the temperature
dependency of Δ‡G◦ (Gibbs free energy difference, between a ground state and transition state) that
is in turn responsible for determining the temperature dependency of enzymatic activity. They state
that the change in heat capacity influencing enzymatic rates implicates temperature dependence
for various biological rates, ranging from “enzymes to ecosystems”. Hobbs et al. formulated their
findings using Eying’s Equation (46) as a scaffold and a term to describe the degree of temperature
dependence of Δ‡G◦ with Δ‡C◦p Equation (47). Assuming Δ‡C◦p to be zero, Δ‡G◦ would be independent
from temperature and the reaction behavior of the growth rate-limiting enzyme would follow an
Arrhenius type of temperature dependence. Large negative values for Δ‡C◦p would lead to a significant
temperature dependence of Δ‡G◦ , leading to a non-Arrhenius behavior and explaining a decrease in
reaction rate above Topt, independent of denaturation. Compared to the master reaction model, heat
capacity theory takes into account that enzymes are in fast equilibrium with the transition state and
denaturation does not easily occur [61,96,97].

u(T)=
kB

h
·T·e(−Δ‡G◦ (T)/R·T) (46)

Δ‡G◦(T) = Δ‡H◦
T0

+ Δ‡C◦p ·(T − T0)+T·
(
Δ‡S◦T0

+ Δ‡C◦p·ln
(

T
T0

))
(47)
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where kB is the Boltzmann constant ~1.381 · 10−23, J K−1; h is the Planck’s constant ~6.626·10−34,
J s−1; Δ‡G◦ is the Gibbs free energy difference, between a ground state and transition state, J mol−1;
R is the universal gas constant ~8.314, J mol−1 K−1; T is the absolute temperature, K; T0 is a reference
temperature, K; Δ‡H◦

T0
and Δ‡S◦T0

are enthalpic and entropic change between reactants and the

transition state at the reference temperature T0; Δ‡C◦p is the heat capacity change between reactants
and the transition state, J mol−1 K−1.

3.19. The Model of DeLong (2017)

In 2017, DeLong et al. [98] argued that models describing the thermal growth curve lack the
assumption that the catalyzing enzyme lowers the activation energy of the rate-determining reaction.
They therefore introduced a model that describes the reduction of required activation energy for the
rate-determining reaction as a function of free energy (enzyme stability) of the catalyzing enzyme.
This term was incorporated into the dividend of the exponential term of the Arrhenius function.
The Arrhenius activation energy (Ea; see Equation (4)) was replaced with the difference of a baseline
energy (Eb, J), describing kinetic requirements as if the reaction would take place outside an organism,
lowered by the enzymatic contribution (Ec, J) inside an organism, yielding Equation (48):

u(T)= A·e
−(Eb−Ec)

kB ·T (48)

where the authors used the Boltzmann constant kB ~1.381 · 10−23, J K−1, instead of the universal gas
constant in the divisor of the exponential term and T is the absolute temperature, K. The dividend
of the exponential term then accounts for the activation energy lowered by the enzymatic action.
The extent of enzymatic contribution (Ec) depends on the activity status of the enzyme, which is given
by probability terms of protein stability. The temperature-dependent protein stability is given by ΔG
(Equation (49)), where ΔH, J, is the change of enthalpy and ΔCp, J mol−1 K−1, the change in heat capacity,
both relative to the melting temperature Tm, K, between the folded and unfolded state. At Tm, ΔH is by
definition zero and increases for temperatures below Tm. ΔCp reflects the extent of free energy that can
be kept by the enzyme without changing the temperature, which increases below Tm with a decreasing
temperature. The authors assumed that the probability of the maximum contribution of the enzyme to
reduce the activation energy by the amount EL approaches 1 at ΔGmax. Hence, the probability function
Equation (50) is composed of the maximum amount (EL) by which an active enzyme can lower the
activation energy and the probability of the enzyme being correctly folded and active, given by the
ratio of ΔG to ΔGmax. This transformation yields probability terms for each parameter in Equation (49),
as presented in Equations (51) and (52). Therefore, Equation (49) can be rewritten as Equation (53).

ΔG = ΔH·
(
1− T

Tm

)
+ ΔCp·

(
T − Tm − T·ln

( T
Tm

))
(49)

Ec= EL· ΔG
ΔGmax

(50)

EΔH= EL· ΔH
ΔGmax

(51)

EΔCp= EL·
ΔCp

ΔGmax
(52)

Ec= EΔH·
(
1− T

Tm

)
+EΔCp ·

(
T − Tm − T·ln

( T
Tm

))
(53)

Combining the probability function Equation (53) for the degree of enzymatic contribution to
lowering the baseline energy Eb of the rate-determining reaction with the Arrhenius-type Equation (48)
yields the enzyme-assisted Arrhenius model in Equation (54).
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u(T)= A·e
−(Eb−(EΔH ·(1− T

Tm
)+EΔCp ·(T−Tm−T·ln( T

Tm
))))

kB ·T (54)

3.20. Additional Temperature Models

In Table 1 further models describing a hunchback-shaped curve for temperature-dependent rates
are summarized.

Table 1. Models describing a hunchback-shaped curve of temperature-dependent rates (not explained
in the text).

Model Equation Source

Lehman et al. u(T)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e
−2.3·[ (T−Topt)

(Tmax−Topt)
]
2

, T > Topt

e
−2.3·[ (T−Topt)

(Tmin−Topt)
]
2

, T ≤ Topt

[99]

Moison et al. u(T)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log(2)·0.851·

(
1.066T

)
·e−|T−Topt | · 3

Tlow , T ≤ Topt

log(2)·0.851·
(
1.066T

)
·e−|T−Topt | · 3

Thigh , T > Topt

[100]

Bitaube Pérez et al. u(T)= A1·e(
E1
R·T ·

T−Tre f
Tre f

) − A2·e(
E2
R·T ·

T−Tre f
Tre f

) [101]

Alexandrov et al. u(T) = 2·e(
Ea

R·Topt
− Ea

R·T )⎛⎜⎜⎜⎜⎜⎝1+
⎛⎜⎜⎜⎜⎝e( Ea

R·Topt
− Ea

R·T )
⎞⎟⎟⎟⎟⎠

2⎞⎟⎟⎟⎟⎟⎠
[102,
103]

Tevatia et al. u(T)= uopt· e(
−Ea
R·T )

1+K·e(
−Ed
R·T )

[104]

T is the absolute temperature, K; Topt is the optimal growth temperature, K; Tmax and Tmin are the upper and lower
limit of the thermal curve, respectively; Tlow and Thigh are shaping parameters that determine asymmetry of the
growth curve, -; Ai represents frequency factors, s−1; Ei represents activation energies, J mol−1; R is the universal gas
constant ~8.314, J mol−1 K−1; Tref is a reference temperature, K; μopt is the optimal specific growth rate, s−1; Ed is the
activation energy for enzyme denaturation, J mol−1; K is a dimensionless inactivation constant.

4. Biotechnological Applications for Targeted Temperature Variation Assisted by Temperature
Models

4.1. Temperature with Potential for Bioprocess Design

Temperature is an easily measurable (continuously, in situ, and in real-time) and controllable
process variable. In most cases, temperature is controlled at constant values to maintain suitable
physiological conditions at a given optimum value. Besides temperature, these requirements are
also common for other basic physico-chemical characteristics, including dissolved oxygen and the
pH value, which are routinely controlled in most bioreactor cultivations. For bioprocess design and
optimization, very few correcting variables (e.g., the addition of fresh feed media) are available to direct
a bioprocess towards a desired outcome. There are two strategies for efficiently using the temperature
to influence the process outcome. First, alterations in the process temperature may be used to target
metabolism, deliberately trigger stress responses, modify enzymatic turnover, or activate existing
regulatory mechanisms. Secondly, natural or synthetic regulation mechanisms may be introduced to
engineer host microorganisms (see Section 2.2). As such, processes can be designed to include these
regulatory mechanisms as an effective tool to influence the process. Even though several systems
inducible by temperature have been discovered and made available to biotechnologists in the last
decades, only very few have been applied for process design or optimization [12].

4.2. Application of Temperature Models and Temperature for Bioprocesses Design

Mukhtar et al. modeled the temperature-dependent soil nitrification potential rate with the
square root model of Ratkowsky et al. and estimated the optimum temperature for the nitrification
potential rate with the heat capacity model. The authors suggest that the knowledge of thermodynamic
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properties of the soil nitrification response may be used to improve the application of large-scale
fertilization, while reducing eutrophication and connected negative environmental impacts [105].
For cleaning purposes of contaminated water with excess nitrogen, denitrifying fixed-bed bioreactors
can be used for NO3

− removal [106]. The group of Nordström et al. used the Eyring equation to
simulate the temperature dependency of NO3

− removal rates in a denitrifying fixed-bad wood chip
bioreactor [107]. They used the heat capacity model of Hobbs et al. [96] to derive the optimum
temperature for NO3

− removal by their bioreactor. Nordström et al. reported that NO3
− removal

rates of reducing microbial consortium change over time, while the temperature optimum is shifted
towards lower temperatures (from 24.2 to 16.0 ◦C) [107]. Downshifts in temperature may somewhat
be beneficial for a bioprocess, depending on the intended outcome. Seel et al. were able to increase
biomass yields to optimize nutrient assimilation at suboptimal temperatures (10 ◦C) for mesophilic
isolates from chilled foods and refrigerators in defined medium compared to their reference strains [52].
They emphasized the importance of defining the “optimum temperature”. Seel et al. distinguish
between the optimum temperature for the maximum growth rate and the optimum for the maximum
biomass yield. At 10 ◦C, which was around 15–25 ◦C below the optimum for the maximum growth rate
of isolates, they reported an increase of 20%–110% of biomass formation. They argue that the generally
assumed optimum growth temperature at μmax may not be the optimum for all biological processes
in the host. This has been described for protein production, membrane permeability, and cellular
stress [108–112]. The works of Corkrey et al. [58,113] thermodynamically justified the applied findings
of Seel et al. Corkrey’s model described the connection between the temperature stability of proteins
and the growth rate governed by an assumed essential enzymatic reaction, with the temperature for
optimal enzyme stability being 10–15 ◦C below the temperature of μmax. Seel et al. state that due to
correct protein folding and protein turnover, energy can be conserved and the biomass yield improved.
Perhaps the most popular example for altering temperature as a means of an optimized process outcome
can be found during the production of recombinant protein, such as by using E. coli as a heterologous
expression system [12]. During the process, typically at the stage of the induction of protein expression,
a temperature shift is performed, lowering the process temperature by several ◦C. This temperature
shift does not benefit overall transcription or translation activity, but instead, results in an increased
amount of correctly folded protein. This is due to lower amounts of recombinant protein being less
likely to form inactive, insoluble aggregates (inclusion bodies), and allowing more time for correct
folding after translation due to lower protein production rates. In the case of enzyme production,
correctly folded protein is a prerequisite of enzymatic activity, and therefore, in most cases, temperature
shifts are applied [114]. Another possibility for using temperature as a method for optimizing protein
production is the application of thermo-inducible promoter systems. Considering the perspective of
bioprocess engineering, it is of high interest to combine strain engineering and process development
approaches to maximize overall productivity and yields. Strong chemically inducible promoters
and expression systems that are commonly used in laboratory-scale protein expression [115] cause a
high degree of metabolic burden to the microorganisms, and as such, protein production results in a
simultaneous reduction of growth. It is therefore beneficial for optimized process design to be able to
uncouple biomass growth from protein biosynthesis. Furthermore, production of recombinant proteins
at early stages of cultivation often results in reduced overall yields, as many proteins are sensitive to
degradation by proteases [114,116]. To counteract this instability of recombinant proteins, inducible
promoter systems are a possible tool. Thermo-inducible promoter systems have the advantage of
not requiring intrusion into the process, as chemical inductors are not required. As such, the risk
of contamination, as well as the costs of the process, may be reduced. Nalley et al. evaluated the
effect of temperature on growth, fatty acid production, and the fatty acid profile for algae suitable for
mass cultivation and biofuel production [117]. They assessed the effect of temperature on microalgae
with the model of Norberg [77]. Nalley et al. report temperature-specific fatty acid production,
which is mostly controlled by the temperature-dependent growth rate. Furthermore, they found
that temperature dramatically influences the fatty acid profile, with an increase in polyunsaturated
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fatty acids and decrease in monounsaturated and short fatty acids when increasing the temperature.
The thermostable phosphotriesterase-like lactonases (PLLs) from hyperthermophilic Sulfolobus genera
present an industrially relevant molecule for bioremediation processes, such as in the degradation
of highly toxic pesticides like organophosphates [118]. Thermostable PLLs are of particular interest
due to their wide temperature and pH working range, as well as resistance to organic solvents.
In contrast to mesophilic enzyme isolates, the application of extremozymes is not prone to low stability
in solution or an elevated temperature (>30 ◦C) [119,120]. In the work of Restaino et al., a high-yield
pre-industrial-scale process with an optimized purification method for PLLs was developed [11].
The authors exploited the thermostability of PLLs in their downstream and recombinant PLL production
in fast-growing mesophilic E. coli for their upstream and bioproduction strategy. Impurities were
removed by a thermo-precipitation step (65–75 ◦C), which was optimized using a statistical response
surface method to compute optimal precipitation temperatures. The solubility of proteins can be altered
by different variables, like the pH, protein concentration, ionic strength, or temperature. Ethanol may
be used as a solvent for precipitation, but exhibits the tendency to denature proteins at temperatures
above 0 ◦C. Therefore, cold EtOH is often used for protein fractionation [121]. The authors Cimini
et al. investigated the influence of temperature on the industrially relevant capsular polysaccharide
(CPS) of E. coli, K4 [122]. It exhibits a high similarity to the economically valuable but only expensively
extractable chondroitin from animal tissue. Chondroitin is, for example, used in the pharmaceutical
sector to prevent osteoarthritis [123]. Cimini et al. found a positive correlation between CPS production
and temperature. As stated before, CPS production is thermoregulated and E. coli CPS are not
expressed at temperatures <20 ◦C [124]. Another pharmaceutically relevant product and precursor for
the commonly used anti-inflammatory drug desfluorotriamcinolone, is 16α-hydroxy hydrocortisone.
Hydrocortisone is converted in a temperature-dependent manor by Streptomyces roseochromogenes to
16α-hydroxy hydrocortisone. The group of Restaino et al. was able to maximize the bioconversion of
hydrocortisone to 16α-hydroxy hydrocortisone, while lowering side-product formation. By adjusting
the process temperature to 26 ◦C and pH to 6, they were able to almost entirely (95%) convert
hydrocortisone into the desired product 16α-hydroxy hydrocortisone [125]. Another example for
lowering the temperature to obtain optimal expression, correctly folded, and working recombinant
enzymes is the mammalian enzyme 6-O-sulfotransferase (6-OST). It can be recombinantly produced
in E. coli. 6-OST is of particular interest as it is required for the industrial and biotechnological
production of heparin. So far, the blood anticoagulant heparin has only been derived from animals.
6-OST side-specifically sulfonates a heparin precursor and marks a key step in heparin bioproduction.
The group of Restaino et al. reported high cell density cultivation of E. coli in which recombinant
mammalian 6-OST was produced using an induction strategy optimized for yield and productivity.
The strategy involved lowering the temperature (37 to 25 ◦C) upon induction and using a combination
of two inducer molecules to balance the metabolic burden. The combination of balanced biomass
growth and the induction strategy resulted in an optimal recombinant enzyme expression and enhanced
biomass productivity [126].

An interesting application involving measuring and controlling the temperature during
bioprocesses is the estimation of metabolic activity by heat balancing. In a partially isolated bioreactor
system, heat generation by metabolic processes can be calculated by measuring heat transfer from or
to the bioreactor [5]. This calorimetric technique typically involves the calculation of a heat balance
by calculating transfer from or to the heat exchanger, enthalpy balancing in exhaust gas, energy
dissipation by stirring, and monitoring the temperature of added liquids [6]. A calorimetric control
strategy for the growth rate of Escherichia coli [13] and Saccharomyces cerevisiae [14] by adjusting feed
rates was developed. The authors report the successful establishment and control of a high-cell density
cultivation, with the feed rate solely relying on heat balancing. Furthermore, besides applications
in process control, recently, a calorimetric approach for the detection of prophage activation and
release was proposed. The authors report that by evaluating differences in metabolic heat, reactivation
of dormant infected bacterial cells can be detected [127]. In general, however, the development of
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calorimetric control strategies at a laboratory scale is difficult, as sufficient isolation and sensitive
equipment to detect heat generated at a small-scale is required [128]. Even though, at a larger scale,
increasing ratios of volume to surface favor the sensitivity of calorimetric approaches, calorimetric
approaches are only scarcely applied in industrial biotechnology. Table 2 provides an overview of
biological traits, and temperature models and/or temperature adjustments used to achieve a desired
process outcome.

Table 2. Biological traits associated with modeling techniques and/or targeted temperature adjustments
for the control, monitoring, and optimization of biotechnological processes.

Purpose Process Biological Basis
Applied

Model/Temperature
Adjustment

Outcome Source

Control Rec. protein
production

Lower protein
production rates Downshift in T Correctly folded

proteins [114,116,126]

Control Rec. protein
production

Thermo-inducible
promotor Upshift in T Induced promoter [12]

Monitoring Antibiotic
biosynthesis

Metabolic heat ≈
metabolic state Calorimetry Estimation of

metabolic activity [5]

Monitoring and
control

Insecticidal
crystal proteins

production

Metabolic heat ≈
metabolic state Calorimetry

Estimation of
metabolic state,

control of nutrient
feed

[6]

Control Biomass
production

Metabolic heat ≈
metabolic state Calorimetry Calorimetric control

of nutrient feed [13,14]

Monitoring

Evaluating
prophage
activating
chemicals

Metabolic heat
difference ≈ activity

state of prophage
Calorimetry

Detection of
prophage activation

+ release
[127]

Optimization Denitrification
of wastewaters

Reducing microbial
consortia

Eyring model
(Equation (7))

Derive (shifts of) Topt
for NO3

− removal
rate

[106,107]

Control Biomass
production

Arguably more
stable RNA +

correctly folded
protein + lower

degradation rates at
low T

Downshift in T,
~Assumptions of

Corkrey’s model (see
3.17)

Increased biomass
yield, improved

nutrient assimilation
[52,129]

Control
Fatty acid

production for
biofuel

Shorter und more
unsaturated fatty

acids at low T
~modulate

membrane fluidity

Norberg model
(Equation (31))

Temperature-specific
fatty acid production

(profile)
[117]

Optimization Downstream
processing

Thermostable
extremozyme

RSM/Thermo
precipitation

Purified
phosphotriesterase-like

lactonases
[11]

5. Summary and Conclusions

In bioprocess engineering, very few process variables are usually available online. Therefore,
exploiting existing control variables to their full extent is a reasonable strategy for broadening existing
toolsets of monitoring and control. Both underlying biological mechanisms of temperature sensing
and adaptation and mathematical models for temperature effects have been well-described. However,
temperature as a control variable is only scarcely applied in bioprocess engineering, so an exploitation
strategy merging both in context has not yet been established.

This review presents and discusses the most important models for physiological, biochemical, and
physical properties governed by temperature, along with application perspectives. As such, this review
provides a toolset for the future exploitation of temperature as a control variable for optimization,
monitoring, and control applications in bioprocess engineering.
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Abstract: This contribution discusses the main challenges related to successful application of automatic
control systems used to control specific growth rate in industrial biotechnological processes. It is
emphasized that, after the implementation of basic automatic control systems, primary attention
shall be paid to the specific growth rate control systems because this process variable critically affects
the physiological state of microbial cultures and the formation of the desired product. Therefore,
control of the specific growth rate enables improvement of the quality and reproducibility of
the biotechnological processes. The main requirements have been formulated that shall be met to
successfully implement the specific growth rate control systems in industrial bioreactors. The relatively
easy-to-implement schemes of specific growth rate control systems have been reviewed and discussed.
The recommendations for selection of particular control systems for specific biotechnological processes
have been provided.

Keywords: biotechnological processes; bioreactor control; specific growth rate control; batch-to-batch
reproducibility

1. Introduction

Biotechnological processes play an increasingly important role in modern industry and health
sectors. Many of the important active pharmaceutical ingredients are recombinant therapeutic
proteins produced by the cultivation of genetically modified microorganisms or mammalian cells in
bioreactors. These biotechnological processes are highly nonlinear and non-stationary. Therefore,
modeling and control of the above bioprocesses are complicated control engineering tasks, especially in
industrial recombinant protein production processes, in which high safety requirements and operational
restrictions must be secured [1,2]. The goal of this contribution is to review and recommend practical
and easily implementable control system schemes for biomass specific growth rate (further referred
to as SGR or μ) control in industrial bioreactors. The recommendations are based on an analysis
of the existing SGR control solutions and availability of the control schemes suitable for practical
implementation in industrial bioreactors. The specific growth rate μ (1/h), is defined as the ratio of the
cell’s absolute growth rate and the amount of cells:

μ =
dX
dt

1
X

(1)

where X = xV (g) is the cell (biomass) amount; x (g/L) is the cell (biomass) concentration; and V (L) is
the cultivation broth volume. The SGR is the most important variable in biotechnological processes,
which influences the physiological state of microbial culture, production of cell biomass and desired
products, and quantity and quality of products [3–8].

The development of relatively simple and reliable methods for SGR monitoring and control
in industrial bioreactors is one of the most important control engineering tasks for successful

Processes 2019, 7, 693; doi:10.3390/pr7100693 www.mdpi.com/journal/processes207



Processes 2019, 7, 693

implementation of the Process Analytical Technology (PAT) framework in bioengineering [9,10].
However, to properly exploit the benefits of SGR control systems in microbial and mammalian cell
cultivation processes, basic bioprocess variables (temperature, pH, dissolved oxygen concentration,
etc.) need to be controlled by commonly available and well-functioning control systems. Unfortunately,
in many cases these systems do not ensure sufficient control quality [1,11,12] allowing to further
proceed with SGR monitoring and control.

This paper is structured as follows: In Section 2, importance of the control quality of the
basic control systems in the biotechnological processes is analyzed. Section 3 introduces important
preconditions for implementation of SGR control systems in industrial bioreactors. Section 4 expands on
strategies for SGR control suitable for industrial bioreactors. Finally, the authors give recommendations
for application of the discussed SGR control solutions in various biotechnological processes.

2. Quality of Basic Control Systems in Industrial Bioreactors

The performance quality of automatic control systems for basic process variables is still low
in most industrial microbial and mammalian cell cultivation processes [1,11]. Despite the fact
that sophisticated control strategies for microbial cultivation processes are widely discussed in the
academic community and research papers [2,13–15], the authors’ experience shows that, at present,
only simple, conventional automatic control systems are realized in the majority of industrial-scale
(bio)reactors [11,16]. This situation is related to a common underestimation of the control systems’
importance in improving the productivity and quality of the biotechnological processes. It is also
related to the relatively high costs of implementation and maintenance of these advanced control
systems and the resultant low acceptance of these systems by plant managers.

Bioreactors are the key operation units in biochemical and biopharmaceutical processes,
in which the basic control systems attempt to control the cultivation environment outside of the
cell. The commonly controlled variables of the cells’ environment are temperature, pressure, pH,
and dissolved oxygen concentration. The basic feedback control systems of industrial bioreactors for
controlling bacterial cell cultures that produce biopharmaceutical products are presented in Figure 1.
The temperature controller manipulates the flow rate of cooling water in the jacket. The pressure inside
the bioreactor is controlled by manipulation of the off-gas flow rate. The pH controller manipulates the
flow rate of ammonia solution (usually, the acid solution does not need to be added to bacterial cell
culture cultivations, unless compensation of base excess is required). The dissolved oxygen controller
output is split to manipulate the air flow rate and the agitation speed (at high cell density cultivation
the air flow may be enriched by additional oxygen).

Today, the most important industrial cultivations of microbial and mammalian cells are carried out
in the fed-batch mode. In fed-batch processes, one or more substrates are fed into the bioreactor during
the process. The product remains in the bioreactor until the end of the cultivation cycle. Fed-batch
processes overcome substrate inhibition and overflow effects. Such an operational mode allows a high
cell density and product concentrations to be achieved [6]. By controlling the substrate feeding rate,
the optimal conditions for the biotechnological process can be secured.

To realize the bacterial growth rate control systems, efficient glucose feeding algorithms need
to be implemented, and in the mammalian cell cultivation processes, additionally, the feeding rate
of glutamine needs to be controlled. It is important to note that modern industrial bioreactors are
equipped with inexpensive and reliable devices to measure the composition of aeration gas in the inlet
and outlet (fraction of O2, CO2) and the molar flow rate, Q. Hence, the oxygen uptake rate (OUR) and
the carbon dioxide production rate (CPR) can be calculated from the online measurements as follows:

OUR = Q
(
Oin

2 −Oout
2

)
, (2)

CPR = Q
(
COout

2 −COin
2

)
. (3)
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The above measurements allow an online estimation of the important process variables, OUR
and CPR, during bacterial and mammalian cell cultivation processes [17,18]. Because of the lower
cell density and respiratory intensity, OUR and CPR measurements based on the off-gas composition
may cause larger measurement errors in mammalian cell cultivation processes. As an alternative
technique, an OUR estimation using dissolved oxygen (DO) measurements may also be applied [19].
The OUR and CPR are the most important variables for indirect monitoring of the biomass growth rate
in industrial bioreactors, as they comprehensively reflect the physiological state and metabolic activity
of the aerobic biotechnological processes [1–3,11,20].

 

Figure 1. Basic control system loops for a typical microbial cultivation process.

Good performance of the basic control systems improves the batch-to-batch reproducibility/
repeatability of the processes [11,21]. The other advantage of a well-controlled bioreactor is the
possibility to run the bioreactor at higher capacity or with better efficiency by operating the process
closer to physical constraints. Good reproducibility is also an important condition for possible process
improvements and modifications, as improvement in reproducibility by means of well-operating
control systems allows a reduction in the number of expensive and time-consuming experiments
required to compare the performance indices of the modified processes and to optimize the controlled
technological regime [1].

The proportional-integral-derivative (PID) controllers are predominant controllers used in the
basic control systems of microbial and mammalian cell cultivation processes. Quality of the bioprocess
control depends on the complexity of the process dynamics, the process variable measurement noise
and errors, tuning of the system controllers, and performance accuracy of the executive devices (valves
and speed drives). Dynamics of the particular biotechnological parameter control process can be
characterized by three resulting dynamic parameters: dead time, time constant and process gain.
These parameters are commonly used to determine the tuning parameters of a PID controller. Control
quality of the bioreactor operation mode critically depends on how well the controllers are set up
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and tuned to deal with the sources of the process variability [1,2,11,13]. Because of the nonlinearity
and nonstationarity of the bioprocesses, proper tuning of the controllers requires appropriate efforts.
The performance of PID controllers with fixed tuning parameters are not sufficiently accurate because
of the significant variations in the process’ dynamics. Consequently, various approaches have been
proposed to tune the PID controller parameters in microbial cultivation processes under time-varying
operating conditions, including gain-scheduling methods [12,22–24], first-principle models [25],
tendency models [26], rule-based fuzzy systems [13], and other techniques [1,2,14,15]. The proposed
approaches give a sound theoretical and practical basis to implement adaptive control schemes in
bioreactor systems and show that implementation of the adaptive algorithms in basic control systems
can significantly increase the performance of the systems. Gain-scheduling methods and tendency
models are the most appropriate solutions for improving the quality of basic control systems in microbial
cultivation processes because they are relatively simple to implement and pose low requirements on
model complexity. The advantages have been extensively discussed and substantiated in previous
studies [12,22–24,26]. An important task now is to broaden implementation of these algorithms in
industrial bioreactors.

Well-functioning basic control systems create opportunities for further process improvements and
also for implementation of the SGR control systems in bioreactors [1,11]. Development of relatively
simple solutions to control the specific growth rate in fed-batch processes remains a timely and
important task in view of implementing the PAT framework in industrial biotechnological processes.

3. Preconditions for Implementation of SGR Control Systems in Industrial Bioreactors

The basic requirements for SGR control systems designed to control microbial and mammalian
cell cultivation processes can be formulated as follows:

• The systems should be as simple as possible and intuitive for the user. Process operators without
special modeling/control knowledge should be able to supervise these systems.

• The systems must be based on measurement and control equipment that is currently used standard
equipment in industrial bioreactors.

• Development time, cost, and benefits of the systems must be attractive to potential users.

According to the above requirements, most of the solutions for SGR control systems presented
in scientific literature [3,6] are not attractive enough for industrial implementation. More complex
monitoring and control systems, even if equipped with easy-to-use interfaces, may require retuning,
model identification, and maintenance tasks in case the operational modes or microbial cultures have
been changed. Often these tasks cannot be carried out by the biotechnology companies alone and may
cause additional expenses for outsourcing and production delays. In the authors’ opinion, this is the
main reason SGR control systems have rarely been used in industrial bioreactors so far.

In this contribution, the authors provide an overview of those SGR control systems that meet
the aforementioned requirements. In most widespread control systems, SGR is usually controlled
by manipulating the substrate feeding rate [6,27]. In recombinant protein production processes,
the temperature of the medium is also used to control cell growth [28]. Despite that the growth
rate could be controlled (e.g., by manipulating the dissolved oxygen concentration in cultivation
medium [29], temperature of the medium [28] or pH), to date these techniques have not been sufficiently
investigated and have not been widely implemented in industrial practice [11].

When the growth rate is controlled by manipulating the substrate feeding rate, the substrate
concentration in cultivation medium remains relatively low [30]. This allows avoiding production
of the overflow metabolites in some of the most important microbial expression systems, so-called
Crabtree-positive organisms, such as S. cerevisiae and E. coli. The presence of the overflow metabolites,
such as acetate or ethanol, frequently leads to inhibition of both the biomass growth and formation of
the proteins.
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To ensure controllability and batch-to-batch reproducibility, the SGR needs to be controlled during
the process at a level that is lower than the maximum SGR [11]. The maximum available SGR is
observed during particular growth phases of the process, when the growth is not limited by substrate
concentration [12,31], and depends on the specific culture, medium composition, concentrations of
biomass and metabolites, as well as the oxygen transfer capabilities of the bioreactor. It is worth
mentioning that direct control of the substrate concentration in bioreactor at the set-point does not
guarantee that a constant SGR will be kept. This is because [11]:

• Cell growth at a limited rate occurs under low substrate concentrations. Because of this, online
measurements, calibration of the measuring devices, and control of the substrate concentration
are difficult to implement in industrial bioreactors.

• Sensor readings of the substrate concentration reflect only the local substrate concentration
around the sensor, which may significantly differ from the average concentration in the bioreactor.
Therefore, the substrate concentration control system is not able to control the SGR in the entire
cultivation medium.

In the majority of recombinant protein production processes, the control objective is to maximize the
amount of target protein at the end of the process while maintaining high batch-to-batch reproducibility.
To achieve this goal, two steps most often are implemented for SGR control:

• During the first stage of the process, the SGR is kept at a trajectory that is 10–15% below the maximum
available SGR.

• During the second stage, the SGR is kept at a trajectory that leads to the maximum specific
production rate of the target product. Usually, the level of the SGR kept at this phase is significantly
lower compared to that maintained at the first stage.

SGR control systems can be realized using open-loop and closed-loop control systems [6,11].
In the following sections, the authors analyze and evaluate SGR control systems that are best suited for
industrial applications. The analyzed and evaluated control solutions are ordered in this review by
their complexity (i.e., starting with the simplest open-loop systems and ending up with the control
systems that employ cascade control schemes and SGR estimators).

4. Schemes for SGR Practical Control Systems

4.1. Open-Loop SGR Control Systems

The majority of industrial fed-batch microbial cultivation processes are operated using open-loop
SGR control systems [11], in which the time profile of the substrate feeding rate is calculated using
simple mass-balance models and a desired time profile of the SGR during the process. The desired
SGR values, μset, can be described by the following equation:

μset =

{
μset1 = (0.85 . . . 0.90)μmax f or growth phase,

μset2 = μopt f or production phase.
(4)

Based on the desired set values for SGR, the corresponding substrate feeding rate can be determined.
Accumulation of the total biomass during cultivation and the substrate feeding rate for both stages of
the process can be estimated from simple mass-balance equations:

dX
dt

= μsetiX, i = 1, 2. (5)

The amount of biomass accumulated in the growth stage can be calculated from the equation

X(t) = X0eμset1 t, (6)
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and the amount of biomass accumulated in the production stage can be calculated from the equation

X(t) = X0eμset1 tg · eμset2 (t−tg), (7)

where tg (h) is the end time of the growth stage.
Using the predicted time trajectories of the biomass accumulation, X(t), the substrate feeding rate

F1(t) in the growth stage can be derived from the dynamic mass-balance equation for the substrate
under steady-state conditions [2,6,8,20,30], which results in the following equation

F1(t) =
X0eμset1 tμset1

Yxs1SF
, (8)

and the substrate feeding rate F2(t) in the production stage can be estimated from the equation

F2(t) =
X0eμset1 tg eμset2 (t−tg)μset2

Yxs2SF
, (9)

where X0 (g) is the total amount of biomass in the bioreactor at the beginning of cultivation process;
X(t) (g) is the time trajectory of the total biomass accumulated during the process; SF (g/L) is the
concentration of the substrate in the feeding solution; and Yxs1 and Yxs2 (g/g) are the yields of biomass
on substrate in the growth and production phases, respectively. In substrate-limited processes,
the substrate concentration in the bioreactor is low. Therefore, this concentration is not taken into
account in Equations (8) and (9).

When the SGR control algorithm based on Equations (8) and (9) is developed, implementation of
the control system is straightforward. For this purpose, only an actuator to dose the feeding substrate
to the bioreactor is needed. For some recombinant protein production processes, the yield of biomass
on substrate can be different in the growth (Yxs1) and the production stages (Yxs2). In such cases, the
yields must be identified from experimental data for the particular process phase and must be taken
into account when using Equations (8) and (9) to estimate the substrate feeding rates. Additionally,
μmax and μopt may vary during the process because of the increasing concentrations of metabolites,
biomass, and other process variables. In this case, μmax(t) and μopt(t) should be presented as time
profiles, and a numerical integration procedure to predict the biomass growth and substrate feeding
time profiles needs to be applied.

The substrate feeding time profiles estimated from Equations (8) and (9) can be directly
used for implementing the open-loop SGR control systems in various biotechnological
processes [6,7,22,30,32,33]. Certainly, more sophisticated bioprocess models and optimization
procedures can be used to determine the feeding rate control algorithms in open-loop SGR control
systems. These methods are widely reviewed and analyzed in many research and academic
papers [3,6,8,27,34,35]. However, implementation of more sophisticated procedures in industrial
bioprocesses requires specific knowledge in process modeling and efforts to develop more accurate
models. Consequently, application of complex methods in industrial environment is not a commonplace.

The SGR open-loop control systems based on Equations (8) and (9) are easy to implement and do
not require additional measurements. On the other hand, open-loop systems do not compensate for
process disturbances. Consequently, possible variations in the substrate concentration of the feeding
solution or deviations of the feeding flow rate are not compensated. These disturbances can decrease
the performance of the biotechnological process. In the next sections, the authors analyze and provide
relatively simple and already existing solutions to overcome these problems.

4.2. SGR Control Systems Based on CPR/OUR Estimations

Reliability and accuracy of SGR control can be increased by employing closed-loop control systems.
One of the simplest closed-loop SGR control systems is proposed in Reference [27]. Here, based on a
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simplified assumption that the carbon dioxide production rate (CPR) during the process is in a linear
relationship with the biomass growth rate

CPR(t) = αμ(t)X(t), (10)

the specific growth rate μ can be estimated using the following equation

μ(t) =
CPR(t)∫ t

0 CPR(τ)dτ
, (11)

where α is a model parameter, and τ is the integration time variable.
If real-time estimation of SGR is available, feedback control systems can be developed to

automatically track a desired SGR time profile by manipulating the substrate feeding rate.
Results of the SGR control obtained in Reference [36] show that an acceptable control quality can

be obtained by applying a typical control system based on PI controllers. To achieve better control
quality, it is straightforward to adapt the controller parameters to the time-varying dynamics of the
controlled process by applying gain-scheduling algorithms mentioned in Section 2 and using the
CPR signal as a scheduling variable. The main drawback of the analyzed control approach is that,
during SGR estimation, an assumption is made that the CPR during the process is proportional to
the absolute biomass growth rate. In fact, it is known that more accurate results may be achieved
if the Luedeking–Piret-type relationship is applied to correlate the CPR and the biomass growth
rate [20,37]. This relationship additionally takes into account the CPR fraction that is related to the
maintenance of the cell’s vital functions and accounts for a significant part of the total CPR (for instance,
in high-cell-density bacterial cultivation processes). Figure 2 shows the simulated trajectories of the
biomass growth and the CPR of the recombinant E. coli cultivation process in a 1 m3 volume bioreactor
as well as the comparison of the actual and the estimated SGRs. The latter is calculated from Equations
(10) and (11). The actual CPR of the process is modeled using the equation

CPR(t) = αμ(t)X(t) + βX(t), (12)

where parameter β determines the CPR fraction related to maintenance of the cell’s vital functions.

(a) (b) 

Figure 2. Simulated trajectories of the biomass growth and carbon dioxide production rate (CPR) (a),
and the trajectories of the real specific growth rate (SGR) and that estimated from Equation (7) (b) in a
typical recombinant E. coli cultivation process in a 1 m3 bioreactor.

In the simulation experiment, values of the parameters α and β were used that are typical for
recombinant E. coli cultivation processes (α = 0.9 (gCO2/gX), and β = 0.1 (gCO2/(gX·h))), induction at
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t = 8 h) [38]. The simulation results, presented in Figure 2, show that the estimated SGR deviation
from the real trajectory increases with an increasing amount of biomass (the estimated rate at the
end of the process is 0.05 (1/h) higher than the real one). Hence, it is advantageous to introduce
empiric correlations correct the estimated SGR when applying this method in high-density cultivation
processes. The magnitude of correction should be defined from earlier cultivation experiments.

To estimate SGR, OUR data can also be used. However, the measurements related to OUR
estimation may be corrupted by the noise related to the off-gas composition, pressure, and the gas
flow rate fluctuations if additional oxygen is used enrich the aeration air. Therefore, to control the
high-density cultivation processes, it is recommended to use CPR data in SGR estimation relationships.

A more accurate SGR control system based on OUR or CPR measurements is proposed in
References [25,39]. Realization of the proposed control system does not require a mathematical model
and a priori knowledge of the culture of the microorganisms under control. It can be realized using
standard programmable controllers/measurement devices and is well suited for control of industrial
biotechnological processes. In the cited contributions, it is shown that if the substrate feeding rate is
manipulated to control OUR during the process, in such a way that the OUR data-based ratio R

R =
dOUR

dt
1

OUR
, (13)

is stabilized at the desired SGR set-point R = μset, then the specific growth rate μwill asymptotically
approach the set-point μset and will be controlled at that point. For control of the ratio R, the PI control
algorithm was recommended, and controller gain was adapted to the time-varying dynamics of the
controlled process using the gain-scheduling approach with the feeding rate as the scheduling variable.
The block-scheme of the SGR control system and the simulation results of the system’s performance
are presented in Figure 3. The simulation and experimental investigation tests of the proposed SGR
automatic control system have shown a stable performance and sufficiently accurate control of the SGR
under stepwise changes to the process parameter values and high-level noise of the feedback signal
measurements [25,39]. This control system can be efficiently applied in controlling biotechnological
processes, in which the SGR set-point is constant or changes slowly. For realization of the system,
either OUR or CPR online estimates can be used.

 

(a) (b) 

Figure 3. Block-scheme of the SGR control system (a) and the simulation results of the system
performance (b). Reproduced with permission from D. Levišauskas, Biotechnology Letters; published
by Springer Nature, 2001.

It should be stressed that the SGR control systems based on Equation (11), when applied in
high-density cultivation processes, cause noticeable deviations at high cell concentrations. SGR control
systems based on Equation (13) are less efficient when tracking time-varying SGR set-point profiles.

In the next sections, more complex control systems are discussed that overcome the
above shortcomings.
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4.3. SGR Control Systems Based on CPR/OUR Estimations and the Mass of CO2/O2 Produced/Consumed
During Cultivation

Robust control of the SGR is a crucial problem when designing an efficient process, in which
the SGR is to be controlled at the value μset < μmax in order to secure reproducibility of the processes.
However, the already discussed SGR closed-loop control systems have two shortcomings: (a) for
system implementation, an online estimation of the μ-values is required, and (b) high batch-to-batch
reproducibility is not guaranteed. For example, if disturbances occur during a process (e.g., variation
in the initial amount of biomass X0) or in the instrumentation (e.g., if the substrate feeding is shortly
interrupted), they cause slight deviations in the biomass growth trajectory from the desired trajectory,
and such an offset cannot be eliminated later on, even if the controller exactly tracks the predefined
μ-profile. An approach to cope with the disturbances that cause process reproducibility problems
is proposed in Reference [40]. In this work, a desired SGR time profile μset(t), the initial amount of
biomass X0, and Equation (1) were used to estimate the biomass growth time profile X(t) during the
process. If the biomass growth profile X(t) can be tightly controlled by manipulating the substrate
feeding rate, the corresponding SGR profile will follow the desired μset(t) profile. This control system
is more robust as compared to direct SGR control systems, as the short-term disturbances that occur in
the control equipment and the process itself are compensated by controlling an integral variable—the
amount of accumulated biomass X(t). However, implementation of the above control system requires
development of a reliable soft-sensor for the online estimation of the amount of accumulated biomass
during the process. Therefore, the X(t) online estimation problem complicates the practical realization
of this control approach. To eliminate this shortcoming, simplified SGR control systems were developed
and experimentally tested in bacterial and mammalian cell cultivation processes [41–43]. The main
idea behind these control systems is to use the predetermined time profiles of CPRset(t) as the system’s
time-varying set-point, and the mass of CO2(t) produced during the process (mCO2set) as an indirect
metric for SGR control purposes. CPR(t) is stoichiometrically related to the SGR and the biomass
(Equation (9)), and the integral of this equation gives the mass mCO2set(t) produced during the process.

By manipulating the substrate feeding rate to control the predetermined set-point time profile
mCO2set(t), the control system indirectly maintains the desired SGR during the process. The structure of
the discussed cascade control system is depicted in Figure 4. The PI controller of the inner loop controls
the CPRset(t) time profile, and the PI controller of the outer loop controls the set mCO2set(t) profile.

Figure 4. Cascade control system for indirect SGR control based on predetermined CPRset(t) and
mCO2set(t) time profiles.

If the controlled process is tightly kept on the CPRset(t) and mCO2set(t) time profiles, the process
will also follow the desired SGR time profile. The proposed control system ensures good quality of
the SGR control, and, because of the cumulative nature of the set-point variable mCO2(t), random
disturbances do not significantly distort the course and reproducibility of the process.

Implementation of the proposed control system can be realized in the following steps:
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• Choose a rational μset(t) time profile for the process. A proper profile can be estimated from expert
knowledge, mathematical model-based process optimization results, or from the analysis of a
successful “golden batch” experiment.

• Choose an appropriate inoculum size (initial amount of the total biomass X0) for the process
and estimate the biomass growth time profile X(t) using the μset(t) profile, Equation (4), and a
numerical integration procedure.

• Estimate the CPRset(t) time profile using Equation (10) and the identified parameter values α and
β. Note that the above parameter values may be different for the biomass growth and product
formation stages.

• Integrate the CPRset(t) time profile to get the corresponding profile mCO2set(t) for the controlled process.
• Control the process by tracking the estimated profiles CPRset(t) and mCO2set(t). Control is realized

using the cascade control system that manipulates the substrate feeding rate.

Various realizations of the above control system have been investigated by computer simulations
of the system’s performance and by controlling real processes of recombinant E. coli and mammalian
cells (CHO) [18,41,42]. Typical results of the applied control system for controlling the recombinant
E. coli fed-batch cultivation processes over six runs are presented in Figure 5. The laboratory-scale
experimental results show that the proposed control approach leads to a stable and robust behavior of
the controlled process. It should also be stressed that small variations in the initial amount of biomass
X0 and short instrumentation disturbances do not significantly affect the reproducibility of the process.

(a) (b) 

Figure 5. Typical experimental results of the total cumulative CPR (a) and SGR indirect control
(μset(t) = 0.5 1/h at the first process stage and μset(t) = 0.175 1/h at the second stage) (b) during the
recombinant E. coli cultivation process. Reproduced with permission from M. Jenzsch et al. J. of
Biotechnology; published by Elsevier, 2007.

Because of the significant changes in the process dynamics during cultivation, it is possible to
improve control quality of the cascade control system by adapting controller parameters. Tuning
parameters of the PI controllers can be adapted to time-varying dynamics of the controlled process
using the gain-scheduling approach. The controller adaptation scheme using the gain-scheduling
algorithm is shown in Figure 4 by the dashed lines. In the gain-scheduling algorithms, one can use
CPR or OUR measurements as the gain-scheduling variables.

Instead of using the OUR(t) or CPR(t) time profiles, the performance of the inner control loop
of the cascade control system can also be improved by implementing the SGR estimator, developed
from Equations (12) and (13) [44]. Investigation results presented in Reference [44] have shown that
the control system with the SGR estimator outperforms the control system depicted in Figure 4 when
the controlled process is affected by disturbances to the substrate feeding rate. On the other hand,
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implementation of the modified control system requires additional calculations related to online
estimation of the SGR.

The structure of the SGR control system presented in Figure 4 may be used as a basis for
development of closed-loop control systems for controlling the processes of various microbial cultures
in industrial bioreactors. Because it is technically simple to implement and possible to improve
batch-to-batch reproducibility, this system could be used as a benchmark to compare the control quality
of various SGR control systems and to evaluate their potential implementation in industrial bioreactors.

5. Concluding Remarks and Recommendations

In recent years, numerous research papers have been published, in which original solutions and
sophisticated control techniques were developed for the automatic control of microbial and mammalian
cell cultivations processes. However, the majority of the proposed control systems are too complicated
to be attractive for robust control of industrial biotechnological processes. Therefore, the well-known
statement of Luyben [16], “Complex elegant control systems look great on paper but soon end up on
‘manual’ in an industrial environment”, is also valid for the majority of the control systems developed
for biotechnological processes.

In this paper, relatively simple control approaches that can be applied in microbial and mammalian
cell cultivation processes are discussed and recommended for practical application. The reviewed
algorithms and systems designed for indirect control of the specific growth rate can significantly
increase robustness and batch-to-batch reproducibility of industrial-scale biotechnological processes.
The recommended control algorithms and systems are based on CPR or OUR online measurements
and on the total mass of oxygen consumed or the total mass of carbon dioxide produced during the
process. In the case when additional oxygen is used during the processes, it is recommended to use
the CPR and mCO2 signals in the control system algorithms because of their lower estimation errors
compared to those when using OUR and mO2 signals. To estimate oxygen uptake and carbon dioxide
production rates, several industrially well-established gas analyzers and mass flow meters are available.
Basic instrumentation for installation of the SGR control systems, the online gas analyzer, combines
parallel measurement of CO2 and O2 concentrations in the off-gas using two space-saving sensors.
The analyzer can be used both for lab- and industrial-scale bioreactors. In the industrial gas analyzers,
compensators for gas pressure and humidity are incorporated. Consequently, these analyzers ensure
good precision and reliability of the measurements.

The available instrumentation and discussed control methods and systems provide a possibility
for wider application of SGR control in biotechnological processes. At the very beginning of the
process, accuracy of the indirect measurements is usually low and insufficient to track exactly the
SGR set-point time profile in closed-loop control systems. Consequently, it is recommended to start
the process using the feeding rate open-loop control strategies determined by Equations (8) and (9)
and, after three to four hours, to switch the SGR control to the closed-loop control system. For the
low-density cell cultivation processes, the SGR control system based on Equation (11) is recommended.
For processes, in which the SGR set-point is kept constant, the control system based on Equation (13)
(Figure 3) is well suited. For more advanced applications, the SGR control system presented in Figure 4
is recommended. The above system can be applied as a benchmark to compare the control quality of
various SGR control systems.
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