98,526 research outputs found

    Computer Intrusion Detection Through Statistical Analysis and Prediction Modeling

    Get PDF
    Information security is very important in today’s society. Computer intrusion is one type of security infraction that poses a threat to all of us. Almost every person in modern parts of the world depend upon automated information. Information systems deliver paychecks on time, manage taxes, transfer funds, deliver important information that enables decisions, and maintain situational awareness in many different ways. Interrupting, corrupting, or destroying this information is a real threat. Computer attackers, often posing as intruders masquerading as authentic users, are the nucleus of this threat. Preventive computer security measures often do not provide enough; digital firms need methods to detect attackers who have breached firewalls or other barriers. This thesis explores techniques to detect computer intruders based upon UNIX command usage of authentic users compared against command usage of attackers. The hypothesis is that computing behavior of authentic users differs from the computing behavior of attackers. In order to explore this hypothesis, seven different variables that measure computing commands are created and utilized to perform predictive modeling to determine the presence or absence of a attacker. This is a classification problem that involves two known groups: intruders and non intruders. Techniques explored include a proven algorithm published by Matthius Schonlau in [17] and several predictive model variations utilizing the aforementioned seven variables; predictive models include linear discrimination analysis, clustering, kernel partial least squares learning machines

    Career Transitions and Trajectories: A Case Study in Computing

    Full text link
    From artificial intelligence to network security to hardware design, it is well-known that computing research drives many important technological and societal advancements. However, less is known about the long-term career paths of the people behind these innovations. What do their careers reveal about the evolution of computing research? Which institutions were and are the most important in this field, and for what reasons? Can insights into computing career trajectories help predict employer retention? In this paper we analyze several decades of post-PhD computing careers using a large new dataset rich with professional information, and propose a versatile career network model, R^3, that captures temporal career dynamics. With R^3 we track important organizations in computing research history, analyze career movement between industry, academia, and government, and build a powerful predictive model for individual career transitions. Our study, the first of its kind, is a starting point for understanding computing research careers, and may inform employer recruitment and retention mechanisms at a time when the demand for specialized computational expertise far exceeds supply.Comment: To appear in KDD 201

    Using Measures of Risk Perception to Predict Information Security Behavior: Insights from Electroencephalography (EEG)

    Get PDF
    Users’ perceptions of risks have important implications for information security because individual users’ actions can compromise entire systems. Therefore, there is a critical need to understand how users perceive and respond to information security risks. Previous research on perceptions of information security risk has chiefly relied on self-reported measures. Although these studies are valuable, risk perceptions are often associated with feelings—such as fear or doubt—that are difficult to measure accurately using survey instruments. Additionally, it is unclear how these self-reported measures map to actual security behavior. This paper contributes to this topic by demonstrating that risk-taking behavior is effectively predicted using electroencephalography (EEG) via event-related potentials (ERPs). Using the Iowa Gambling Task, a widely used technique shown to be correlated with real-world risky behaviors, we show that the differences in neural responses to positive and negative feedback strongly predict users’ information security behavior in a separate laboratory-based computing task. In addition, we compare the predictive validity of EEG measures to that of self-reported measures of information security risk perceptions. Our experiments show that self-reported measures are ineffective in predicting security behaviors under a condition in which information security is not salient. However, we show that, when security concerns become salient, self-reported measures do predict security behavior. Interestingly, EEG measures significantly predict behavior in both salient and non-salient conditions, which indicates that EEG measures are a robust predictor of security behavior

    A novel neural network based system for assessing risks associated with information technology security breaches

    Get PDF
    Security remains a top priority for organizations as their information systems continue to be plagued by security breaches. This dissertation developed a unique approach to assess the security risks associated with information systems based on dynamic neural network architecture. The risks that are considered encompass the production computing environment and the client machine environment. The risks are established as metrics that define how susceptible each of the computing environments is to security breaches. The merit of the approach developed in this dissertation is based on the design and implementation of Artificial Neural Networks to assess the risks in the computing and client machine environments. The datasets that were utilized in the implementation and validation of the model were obtained from business organizations using a web survey tool hosted by Microsoft. This site was designed as a host site for anonymous surveys that were devised specifically as part of this dissertation. Microsoft customers can login to the website and submit their responses to the questionnaire. This work asserted that security in information systems is not dependent exclusively on technology but rather on the triumvirate people, process and technology. The questionnaire and consequently the developed neural network architecture accounted for all three key factors that impact information systems security. As part of the study, a methodology on how to develop, train and validate such a predictive model was devised and successfully deployed. This methodology prescribed how to determine the optimal topology, activation function, and associated parameters for this security based scenario. The assessment of the effects of security breaches to the information systems has traditionally been post-mortem whereas this dissertation provided a predictive solution where organizations can determine how susceptible their environments are to security breaches in a proactive way

    Methodologies for innovation and best practices in Industry 4.0 for SMEs

    Get PDF
    Today, cyber physical systems are transforming the way in which industries operate, we call this Industry 4.0 or the fourth industrial revolution. Industry 4.0 involves the use of technologies such as Cloud Computing, Edge Computing, Internet of Things, Robotics and most of all Big Data. Big Data are the very basis of the Industry 4.0 paradigm, because they can provide crucial information on all the processes that take place within manufacturing (which helps optimize processes and prevent downtime), as well as provide information about the employees (performance, individual needs, safety in the workplace) as well as clients/customers (their needs and wants, trends, opinions) which helps businesses become competitive and expand on the international market. Current processing capabilities thanks to technologies such as Internet of Things, Cloud Computing and Edge Computing, mean that data can be processed much faster and with greater security. The implementation of Artificial Intelligence techniques, such as Machine Learning, can enable technologies, can help machines take certain decisions autonomously, or help humans make decisions much faster. Furthermore, data can be used to feed predictive models which can help businesses and manufacturers anticipate future changes and needs, address problems before they cause tangible harm

    Workshop on disruptive information and communication technologies for innovation and digital transformation

    Get PDF
    The workshop on Disruptive Information and Communication Technologies for Innovation and Digital transformation, organized under the scope of the DISRUPTIVE project (disruptive.usal.es) and held on December 20, 2019 in Bragança, aims to discuss problems, challenges and benefits of using disruptive digital technologies, namely Internet of Things, Big data, cloud computing, multi-agent systems, machine learning, virtual and augmented reality, and collaborative robotics, to support the on-going digital transformation in society. The main topics included: • Intelligent Manufacturing Systems • Industry 4.0 and digital transformation • Internet of Things • Cyber-security • Collaborative and intelligent robotics • Multi-Agent Systems • Industrial Cyber-Physical Systems • Virtualization and digital twins • Predictive maintenance • Virtual and augmented reality • Big Data and advanced data analytics • Edge and cloud computing • Digital Transformation The workshop program included 16 accepted technical papers, 2 invited talks and 1 technical demonstration of use cases. This volume contains six of the papers presented at the Workshop on Disruptive Information and Communication Technologies for Innovation and Digital Transformation.info:eu-repo/semantics/publishedVersio

    What role does corporate governance play in the intention to use cloud computing technology?

    Get PDF
    This paper aims to investigate the factors which promote the adoption of cloud-based technology. It strives for a better understanding of the impact of corporate governance on the adoption of this technology. This study concentrated on executives in companies where the use of cloud computing may give a competitive advantage. The main contribution of this work is to propose a model for the influence of corporate governance and other factors that determine the adoption of this technology. A questionnaire was prepared after taking into consideration the reviewed literature. The sample consisted of 164 technology companies from Southern Spain that already use the new economic models for digital solutions. The methodology used to analyze the structural model was the Structural Equation Model (SEM). The results of the survey showed the influence of Corporate Governance and the procedures and practices of the organization on the adoption of cloud computing and the associated business model. This study aims to point out the importance of corporate support and Knowledge Management for the correct and successful adoption of this technology and to show the effects on the new business model of billing for the use of available resources. View Full-Tex

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    How can SMEs benefit from big data? Challenges and a path forward

    Get PDF
    Big data is big news, and large companies in all sectors are making significant advances in their customer relations, product selection and development and consequent profitability through using this valuable commodity. Small and medium enterprises (SMEs) have proved themselves to be slow adopters of the new technology of big data analytics and are in danger of being left behind. In Europe, SMEs are a vital part of the economy, and the challenges they encounter need to be addressed as a matter of urgency. This paper identifies barriers to SME uptake of big data analytics and recognises their complex challenge to all stakeholders, including national and international policy makers, IT, business management and data science communities. The paper proposes a big data maturity model for SMEs as a first step towards an SME roadmap to data analytics. It considers the ‘state-of-the-art’ of IT with respect to usability and usefulness for SMEs and discusses how SMEs can overcome the barriers preventing them from adopting existing solutions. The paper then considers management perspectives and the role of maturity models in enhancing and structuring the adoption of data analytics in an organisation. The history of total quality management is reviewed to inform the core aspects of implanting a new paradigm. The paper concludes with recommendations to help SMEs develop their big data capability and enable them to continue as the engines of European industrial and business success. Copyright © 2016 John Wiley & Sons, Ltd.Peer ReviewedPostprint (author's final draft
    • …
    corecore