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ABSTRACT

Information security is very important in today’s society. Computer intru-

sion is one type of security infraction that poses a threat to all of us. Almost every

person in modern parts of the world depend upon automated information. Infor-

mation systems deliver paychecks on time, manage taxes, transfer funds, deliver

important information that enables decisions, and maintain situational awareness

in many different ways. Interrupting, corrupting, or destroying this information

is a real threat. Computer attackers, often posing as intruders masquerading as

authentic users, are the nucleus of this threat. Preventive computer security mea-

sures often do not provide enough; digital firms need methods to detect attackers

who have breached firewalls or other barriers. This thesis explores techniques to

detect computer intruders based upon UNIX command usage of authentic users

compared against command usage of attackers. The hypothesis is that computing

behavior of authentic users differs from the computing behavior of attackers. In

order to explore this hypothesis, seven different variables that measure computing

commands are created and utilized to perform predictive modeling to determine the

presence or absence of a attacker. This is a classification problem that involves two

known groups: intruders and non intruders. Techniques explored include a proven

algorithm published by Matthius Schonlau in [17] and several predictive model vari-

ations utilizing the aforementioned seven variables; predictive models include linear

discrimination analysis, clustering, kernel partial least squares learning machines.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

Security poses a problem for today’s society. Numerous threats from our envi-

ronment aim to breach security, and since 9-11, the importance of vigilant security

measures has escalated. There is a very serious threat that exists today that is silent,

virtually transparent, and seemingly anonymous; this threat is computer intrusion.

Society today depends on an uninterrupted flow of vital information. Malicious at-

tackers intend to stop, interrupt, and alter this flow of information. As society grows

increasingly reliant on computers, the importance of computer security grows.

There are numerous techniques used to enhance the security of information

and computers. Many of these techniques attempt to block or deter attackers,

preventing them from intruding in the first place. These techniques include many of

our everyday encounters such as user-accounts and passwords, firewalls, and VPN

encryption. All of these techniques aim to keep the wrong people out and the right

people in. However, attackers continually strive to break through these barriers and

invade protected information. These barriers are preventive measures, and digital

firms must augment these preventive measures by implementing intrusion detection

systems (IDS) that monitor the network and detect fraudulent or unusual activity.

This thesis explores a computer security problem known as host based intrusion

detection, and in particular, masquerade detection. This is a binary classification

problem that involves authentic users and low instances of masqueraders posing

as authentic users. Utilizing captured command usage logs of UNIX users, statis-

tics that measure these commands serve as a platform for classification. Some of

the statistics created included recent published methods by other researchers, and

several of the statistics are novel. The goal of this thesis involves:

1. Replicating work performed by other researchers with this data to capture

proven successful techniques and statistics for the masquerade detection problem.

2. Merge these successful proven statistics with independently developed

1
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statistics and explore interaction with multivariate statistics.

3. Applying proven cutting edge supervised classification models to achieve

superior classification rates.

The purpose of a host based IDS is to detect malicious use of user privileges,

often detected as novelties or anomalies. Certain characteristics of computer IDS

define their effectiveness. The typical measures of an IDS involve accuracy of detec-

tion, often expressed as a true positive rating and false positive rating. The overall

effectiveness of an IDS can be shown on a receiver operating characteristic (ROC)

curve, which will be explained later in detail. A typical problem with intrusion

detection involves minimizing false positive alarms while maintaining an acceptable

rate of true positives. For example, if an IDS identifies 50% of users as intruders,

but less than 10% of those identified are actual intruders, the digital firm will inves-

tigate the activities of one half of all users and consider suspending user accounts

until the investigation is complete. Examining 50% of all user activities and creat-

ing frustration for 50% of all users is not acceptable for most digital firms, realizing

that only a fraction of the 50% are attackers. Minimizing false positive ratings is a

key criterion when evaluating an IDS, even while realizing that a lower true positive

rating will occur.

Intrusion detection is inherently a statistical problem [5]. The problem involves

collecting a sample of data, describing the data through statistical attributes, and

then classifying the data based upon these attributes. Oftentimes intrusion detection

involves identifying intruders without any training data and without any indication

of their intrusion technique. The brand of intrusion detection explored in this project

is driven by developing profiles of authentic users and developing methods to detect

anomalies based upon a stream of new data that may or may not be from the

authentic user. If the attributes of the new stream of data significantly strays from

a particular user’s typical patterns of behavior, then the models explored should

indicate an intruder.
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1.2 Recent Work

Schonlau et. al. [5, 6, 7, 17, 16] conducted the original work with the data

examined in this thesis. Their contributions included a thorough analysis of sev-

eral statistical techniques for identifying masqueraders. Schonlau et. al. explored

approaches that include: Bayes one-step Markov model, hybrid multistep Markov

model, text compression, Incremental Probabilistic Action Modeling (IPAM), se-

quence matching, and a uniqueness algorithm[5]. Schonlau stressed the importance

of minimizing false positives, setting a goal of 1% or less for all of his classification

techniques. Schonlau’s uniqueness algorithm, explained in [17], achieved a 40% true

positive rating before crossing the 1% false positive boundary. Wang [19] used one-

class training based on data representative of only one user and demonstrated that

it worked as well as multi-class training. Coull [4] applied bioinformatics matching

algorithm for a semi-global alignment to this problem. Lee [12] built a data mining

framework for constructing features and model for intrusion detection.

Roy Maxion contributed insightful work with this data that challenged both

the design of the data set and previous techniques used on this data [14, 13]. Maxion

uses a 1v49 approach in [14], where he trains a Naive Bayes Classifier one user

at a time using the training data from one user as true negative examples versus

data from the forty-nine other users (hence 1v49) as true positive (masquerader)

examples. Maxion claimed the best performance to date in [14], achieving a true

positive rating of 60% while maintaining a false positive rating of 1% or less. Maxion

also examines masquerade detection with a similar data set that contain command

arguments in [13].

1.2.1 The Necessity to Investigate Supervised Learning Approaches for

Intrusion Detection

The research documented in this thesis differs from the abovementioned au-

thors for several reasons. The prediction model or learning machine used for our

experiments is Rosipal’s Kernel Partial Least Squares (KPLS) [15]. As the title indi-

cates, it is based upon the partial least squares techniques popularized in chemomet-

rics. KPLS is an extremely efficient learning machine, especially for high dimensional
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data, but it only applies to the supervised learning domain. The existing literature

that explores the Schonlau et. al. (SEA) dataset exclusively considers unsupervised

learning. Intrusion detection, and masquerade detection, should be considered as

both a supervised and unsupervised learning problem. Supervised and unsupervised

learning represent two domains of learning theory that should contribute and pro-

vide synergy to each other. The criticism for using supervised learning for intrusion

detection, specifically in the masquerade detection scenario, is that we never know

what the masquerader actually does, so it is impossible to train with true positive

examples. The SEA dataset, along with other masquerade detection datasets that

were constructed in a similar fashion, is a complete anomaly to this criticism. The

SEA dataset utilizes surrogate masqueraders. The masquerading incidents within

the SEA test data are nothing more than commands taken from another user’s

stream of authentic, non-malicious commands and probabilistically inserted (at a

very sparse rate) in place of another user’s authentic commands. Therefore, this

dataset does not contain authentic masquerading data. The SEA dataset short-

comings also include a lack of context over objects as indicated by Maxion in [13].

However, the extensive research based upon this dataset proves that the SEA data

poses a non-trivial problem. The underlying assumption surrounding the examina-

tion of these surrogate masqueraders is that techniques that work well with these

surrogates should extend into the real domain.

The argument behind using a supervised learning approach with this dataset

ties directly to this assumption. An assumption is that simulating true positive

examples, or using existing true positive examples from this data set for training is

valid. Therefore, I propose that a supervised learning machine can and should be

applied with this data.

1.2.2 Schonlau’s Analysis

Matthius Schonlau is the researcher who created the dataset analyzed in this

thesis. Schonlau developed, analyzed, and compared numerous detection algorithms

which have already been mentioned.

Particular attention is given to the uniqueness algorithm (which is based on
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unpopular commands)[17], replicating this technique with several programs written

in perl. Following the work of Schonlau accomplished two critical goals: by repli-

cating his work and achieving the same results through new text mining programs,

a validity check for the programs is accomplished. Secondly, his work with this

dataset is comprehensive, and understanding and replicating his work provides a

solid foundation of knowledge that enables further exploration of this dataset.

Shortly after finishing the initial programming and validity check with Schon-

lau’s algorithm based upon unpopular commands[17], new techniques were explored.

It is possible to measure this data in numerous ways and provide quantities that a

learning machine can use to predict outcomes. After creating a new set of variables

that measure user behavior, these variables serve as a basis for experimentation

in predictive modeling with learning machines. The learning machine utilized in

this article is Rosipal’s K-PLS[15]. With numerous combinations of variables pre-

sented to the learning machine with different preprocessing techniques, exploration

of improved classification begins.



CHAPTER 2

ANALYSIS OF THE DATA

2.1 Understanding the Dataset

Understanding the structure of the data is necessary before any programming

or initial analysis can be conducted. Schonlau collected this data from an AT&T

lab in New Jersey, observing the computing behavior of 50 users. The data set

consists of 50 users with each user contributing a stream of 15,000 truncated UNIX

commands. The user’s data stream is further divided into blocks of 100 commands,

thus creating 150 blocks of commands for each user. The first 50 blocks of data is

training data only (contains no masquerading data), and the remaining 100 blocks

of data contains masquerading data that appears based on a probability. Given

that there are 50 users, this implies that in total there are 5,000 tuples of data

in the non-intruded initial set and 10,000 tuples of data that potentially contain

intrusion data. Since the true outcome of each of these subsequent 10,000 tuples

is known, understand that there are only 256 intruded tuples. Only 2.56% of the

data contains intruders, which makes this a very difficult problem. It is a very

unbalanced classification problem. The objective is to determine if a block of data

contains masquerading data or not.

The initial programming effort involved determining the data dictionary (list

of every unique command). In addition to generating this list, the programs also

report the frequency of the commands and the popularity of the commands (number

of users who use distinct command). In an effort to validate the data dictionary,

frequency, and popularity of the commands, I relied upon a graph that plots distinct

commands vs. unique commands[17] and collaboration with Yongqiang Zhang based

upon his work in [18].

6
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Figure 2.1: I plotted the above left graph based upon results from Perl
programs that develop the data dictionary, frequency, and
popularity of the commands (based upon all 50 users). The
above right graph comes directly from Schonlau’s analysis of
the data[17]. As you can see, these two graphs (for approxi-
mately 50 users) are virtually identical.

The above graphs illustrate the uniqueness (1 - (total users of that command

/ total users)) of the distinct commands. As you can see, almost 50% of the dis-

tinct commands have a uniqueness of .98, meaning that almost 50% of the distinct

commands are used by only one user. In addition to gleaning this useful analysis

describing the popularity of the commands, replicating Schonlau’s graph reinforces

the validity of the Perl programs. In total, there are 856 distinct commands within

the entire data set, and within the training data set (first 5000 commands for each

user) there are 635 distinct commands.

2.2 Schonlau’s Algorithm

Now that the structure of this data is understood, this section will explain

how Schonlau utilized some of the variables and properties mentioned above to

predict intrusion or non intrusion for each test data tuple[17]. He utilizes a creative

algorithm for this. The algorithm truly formed the basis for this project, providing

an example of a successful technique that predicts the presence or absence of an

intruder.
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xu =
1

nu

K∑
k=1

Wuk(1 − Uk

U
)nuk , (2.1)

where the weights Wuk are

Wuk =

⎧⎨
⎩

vuk

vk
if user u’s training data contains command k

−1 otherwise

where vuk = Nuk

Nu
and vk =

∑
u vuk

Table 2.1: Description of Schonlau’s variables

Name of Variable Description
Nu Number of commands in training data (5000)
nu Number of commands in test data (100)
Nuk Number of times user uses command k in training data
nuk Number of times user uses command k in test data
U Number of users (50)
Uk Number of users who use command k
K Number of distinct commands in training data (635)

A toy problem illustrating this algorithm is in Appendix A. The algorithm

computation follows:

1. Preprocess the training data (initial 5000 commands from each user) to

determine number of distinct commands, uniqueness of each command (number of

users who use command k), and command frequency for population and each user.

2. For each tuple of test data, calculate xu value (intruded data should score

close to -1, authentic data close to 1).

3. Determine acceptable threshold (between -1 and 1) and calculate confusion

matrix.

This technique is fundamentally different from typical machine learning meth-

ods; it is simply a fancy statistic. This technique calculates a test statistic xu,

which is based upon command history and uniqueness properties of the commands

in the dataset. Schonlau utilizes both the command usage history of the particular

user and the entire population to predict on the test data. The first 5000 tuples of
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data are training data, and there is no intrusion present. This is the data utilized

to develop the data dictionary, uniqueness, and frequencies. When the xu value is

calculated for a tuple of test data, the algorithm relies upon the uniqueness and fre-

quency of commands seen from both the user and the population to determine each

summed value. Unique commands never used by the user tend to drive the summa-

tion towards -1, where commands that are typical of the user drive the summation

towards +1.

The algorithm achieves exceptional results considering the unsupervised nature

of the learning. In order to better understand the algorithm and the dataset, I wrote

several perl programs that created the necessary data dictionary and executed the

above algorithm.

These programs will generate the xu value, a number between -1 and 1 for each

stream of 100 commands. The total output is an array of 5000 numbers between -1

and 1 (50 users, each user has 100 data-blocks (100 commands each) of test data,

thus an array of length 5000). Based upon the algorithm, a user whose data-block

contains commands similar to those used in the training data will tend to score

high, whereas a data block containing commands previously unused by the user

(especially if unpopular) will tend to score negative values. Once the array of 5000

test statistics is built, a single classification threshold can be determined in order

to develop a confusion matrix. If the test statistic is less than the threshold, the

program predicts an intruder; if the statistic is above the threshold, the program

predicts no intruder. Figure 2 illustrates three different confusion matrices produced

by the program that analyzes the 5000 test statistics.

The confusion matrix shows the performance of the IDS at a particular oper-

ating point, however an ROC curve is necessary to illustrate the overall performance

of the IDS. In order to build the data for an ROC curve, the technique utilized gen-

erated results for 1600 incremental values of the classification threshold (increments

of .001 from -.89 to .7). This essentially generated 1600 confusion matrices, and

when listed in an array format one can easily calculate points along the ROC curve

for the system. The below ROC curves represent the results of two algorithms that

I analyzed (the second algorithm is a very slight modification of the original).
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Figure 2.2: The confusion matrices shown above were generated by a Perl
program that analyzes the 5000 test statistics. From top to
bottom, the corresponding classification thresholds are -.3,
-.25, and -.28.

ROC curves measure the false positive rating vs. the true positive rating (see

Appendix B). In order to compare two ROC curves, the area under the curve (AUC)

represents the comparative measure. Since an ROC curve represents a classification

system, the AUC is a comparative measure for several classification systems. The

AUC is an overall performance measure of a classifier, however it is important to

understand that minimal false positives is paramount with IDS. I will illustrate with

the best ROC curve attained that the AUC is equivalent to Schonlau’s uniqueness

algorithm AUC, however a false positive rate of 0 is maintained for much higher

true positives. This indicates a better classifier. The next section describes the

development of new variables that describe user behavior and explores the statistical

nature and predictive power of these variables.

2.3 Programming in Perl

Several programs written in perl enabled the analysis of this dataset. perl is

designed to manipulate and mine textual data, which was ideal for this dataset.

There are six programs that formed the basis for the analysis of this dataset. Each

user’s commands existed in a single file, and the Perl programs opened these files and

extracted the statistics necessary to describe user behavior and perform predictive

modeling. The first program, dictionarytrain, analyzes the initial 5000 commands
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Figure 2.3: The above ROC curves represent results from the Perl pro-
grams written to execute and analyze the performance of
Schonlau’s uniqueness algorithm which is based on unpopu-
lar commands.

of each user and creates a data dictionary of distinct commands. The program also

determines the overall frequency an popularity of commands. The program called

user popularity determines the number of times each user utilized each distinct

command. There is also a program that calculates Schonlau’s algorithm, and this

program titled algorithm debug creates a file that contains the xu value for the 5000

tuples of test data. The next step involves analyzing the xu values, the the program

results analysis debug calculates the confusion matrices and the true positive / false

positive ratings necessary to build the ROC curve. Chapter 3 discusses several

new variables introduced to provide further insight and explore the possibility of

building a more powerful prediction model. There are two programs that support

the analysis of these new variables, titled features and 601features. The below figure

illustrates the flow of data and through the Perl programs, and Appendix C contains

the source code of these programs.
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RAW DATA
50 different files, each containing 15,0000 truncated Unix commands from a single 
user, provide the raw data necessary to begin the analysis.  The first 5,000 commands 
of each file are known to be authentic, however the last 10,000 commands could 
contain the presence of an intruder.

PREPROCESSING
The dictionarytrain program reads every file and creates an output file that contains a 
dictionary of distinct commands and the frequency and popularity of each distinct 
command.  The userpopularity program determines the number of times each user 
utilized each distinct command. 

CALCULATING SCHONLAU’S ALGORITHM
The algorithm_debug program calculates 
Schonlau’s algorithm, producing an xu value for 
each of the 5000 tuples of test data.  The 
results_analysis_debug program calculated the 
confusion matrices and true positive / false 
positive ratings to build an ROC curve.

PREDICTION MODELING WITH NEW 
VARIABLES AND A K-PLS LEARNING 

MACHINE
The programs titled features and 601features
calculate variable for newly created variables, built 
largely from the statistics produced by 
dictionarytrain and userpopularity, and creates 
output files in MetaNeural format prepared to feed 
into the Analyze software for prediction modeling 
using a K-PLS learning machine.   

Figure 2.4: Flow chart of Perl programs



CHAPTER 3

INTRODUCTION AND ANALYSIS OF NEW

VARIABLES

3.1 The New Variables

After validating the Perl programs and developing a solid understanding of the

dataset, new variables were necessary to create different techniques that accurately

predict the presence or absence of an intruder. Several of these variables are also

utilized in Schonlau’s algorithm, but generally in a different manner. These variables

were created with the goal of developing a technique to measure the behavior of

computer users in a manner that captures the differences between intruders and

authentic users. There are a number of techniques available to capture computer

user behavior and/or network behavior. This technique is largely a function of the

dataset utilized. Remember that the dataset contains truncated UNIX commands

collected from fifty different users. Out of the 15,000 commands contributed from a

user, the first 5,000 commands are untouched and the latter 10,000 contain intrusion

data based upon a low probability. The new variables and the prediction models

involving these new variables work primarily with this latter 10,000 commands from

each user. Therefore, with each user contributing 100 tuples of data for this section,

there are a total of 5,000 tuples that we will examine. Typically, these 5,000 tuples

will be scrambled, divided into a training set and test set, and fed into a learning

machine. These new variables we are discussing measure the overall characteristics

of the 100 commands contained within the tuple, and these variables can be seen in

Table 1.

An important aspect that remained true throughout the search for effective

classification involved the importance of Mahalanobis scaling the data - essentially

normalizing every entry in the data matrix - subtracting the mean and dividing

by the standard deviation of the variable. This was due to the extreme ranges

of different variables; with similar reasoning, the covariance matrix provides little

useful information, however the correlation matrix provides a true measure of the

13
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Table 3.1: Description of new variables

Name of Variable Description
1 % of Unix commands Percent of commands that are Unix
2 % Top 20 most popular commands Fraction of commands that are within the

top 20 most popular commands in the data
set

3 % of internet commands Fraction of commands that are in-
ternet/email commands (sendmail and
netscape)

4 Average Uniqueness Averages Uniqueness (number between .02
and .98 ) for entire data set

5 Average Frequency Averages the frequency of each command
in the dataset

6 % of foreign commands Percent of commands never seen before -
this will be zero for all training data

7 xu value xu value from Schonlau’s algorithm[17], es-
sentially providing a signature index that
is based upon usage pattern of that partic-
ular user

interaction between variables.

3.2 Correlation Matrices

The correlation matrix is a scaled representation of the covariance; correlation

is the scaled linear association between two variables eliminating the impact of units

of measure. The correlation matrix shows that there is a definite relationship be-

tween the ”% foreign commands” and the ”% of UNIX commands” since the value of

this coefficient is very close to -1. One other pair of variables, ”% Top 20” and ”Aver-

age Frequency”, were highly correlated at a value of .7. In order to create a physical

representation of the correlation matrix, an option in Analyze(computational in-

telligence software package written by Professor Mark Embrechts, RPI) produced

the below colored representation of the correlation matrix. The highly correlated

variables - coefficients that take on values close to 1 and -1 - were represented as

darker colors, while the uncorrelated variables - coefficients that take on values close
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to zero - were represented as light colors such as white. The software created a color

coded matrix that was mostly light colored with a couple spots of darker colors,

confirming the numerical observations of the correlation coefficients.

1 2 3 4 5 6 7
1 1 0.214 0.047 0.243 0.196 -0.998 0.018
2 0.214 1 0.298 0.391 0.686 -0.202 0.178
3 0.047 0.298 1 0.154 0.341 -0.049 -0.117
4 0.243 0.391 0.154 1 0.47 -0.245 -0.196
5 0.196 0.686 0.341 0.47 1 -0.194 0.056
6 -0.998 -0.202 -0.049 -0.245 -0.194 1 -0.011
7 0.018 0.178 -0.117 -0.196 0.056 -0.011 1

Correlation Matrix

Figure 3.1: Numerical and Colored Correlation Matrices

3.3 Color Description of Variables

It is sometimes possible to predict a response directly from the values of the

variables, without any learning machine or algorithm.

Fisher’s Iris data

Computer Intrusion Detection Data

Figure 3.2: Colored Description of Variables

If a variable takes on a certain range of values for one response, and a separate

range for another response, it is sometimes possible to infer with a good degree of

certainty the response based on a single variable or multiple variables that have this
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property. ”Fisher’s Iris data” is a great illustration of this point. Four predictor

variables - petal length, petal width, sepal length, and sepal width are used to

determine the type of iris. The Analyze software package is used to color code

observations from the dataset.

In the Iris dataset it is apparent that the sepal length and width (first two

variables) cannot be used to determine the type of iris since the colors do not

have a distinct similarity with those in the response column. On the other hand,

the colors generated for the petal length and width are distinctly similar to the

response column. So we can say that petal length or petal width can be used to

fairly accurately predict the type of iris. The computer intrusion dataset was sorted

by the ”Intrusion/ Non-Intrusion” column and color coded in the same way as the

Iris data set. These new variables introduced for the computer intrusion detection

problem do not exhibit this type of behavior.
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3.4 Principal Component Analysis

The primary purpose of principal component analysis is to determine the util-

ity in reducing the variables into linear combinations that explain the majority of

variance from the dataset; this is essentially a technique in reducing dimensionality.

Additionally, one can observe that principle components often naturally segregate or

cluster groups within the data. This natural clustering or grouping was the purpose

behind the principal component analysis conducted on this data set. It is possi-

ble that the score plot of the principal component loadings from a data set would

naturally discriminate. Unfortunately, this phenomenon did not occur. As seen in

the below graphs, the intrusion points (red) are centered near the centroid of all

points. These plots do not provide good discrimination between intrusion and non

intrusion.

Figure 3.3: Principal component score plots for the 1st PC vs 2nd PC
and 1st PC vs 3rd PC. Red dots indicate intruders, blue dots
are authentic users.

3.5 Linear Discrimination Analysis

Prediction modeling was the next effort to follow the initial exploration of the

data. An obvious technique to explore for the classification of two groups from a

multivariate data set is discrimination analysis. We explore discrimination analysis
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as a first step in prediction modeling of this data. If a simple linear discrimination

model can sufficiently predict the groups of this data set, there may be no need

to explore further. Secondly, linear discrimination analysis could expose charac-

teristics of this data not seen before. Linear discrimination analysis proved more

effective than quadratic discrimination analysis, with linear discrimination analysis

consistently providing superior true positive and false positive rates. This is likely

due to the fact that although the correlation matrices of these two groups are not

identical, they are similar enough to gain significant predictive power through linear

discrimination analysis. The linear discrimination rule can be succinctly stated as

follows[11]:

Let x̄1 represent the mean vector of intruded training data, and let x̄2 represent

the mean vector of non intruded training data. Allocate test data tuple x0 to non

intrusion if:

(x̄1 − x̄2)
T (S−1

pooled)x0 − 1

2
(x̄1 − x̄2)

T (S−1
pooled)(x̄1 − x̄2) ≥ ln w (3.1)

where

w =
cost(1|2)

cost(2|1)

probability(no intrusion)

probability(intrusion)

The general procedure for applying this discrimination rule involves utilizing

a training set to develop the mean vectors and the pooled correlation matrix. The

classification step proceeded with introducing a tuple from the test data and ap-

plying the above rule. The results from testing 1000 tuples of test data produces

a confusion matrix, essentially itemizing the number of correct classifications vs.

incorrect classifications in accordance with the groups. The below figure illustrates

and example of a confusion matrix. (note: we use a binary value to denote an in-

truder or non intruder; a binary value of 0 represents no intrusion, where a value of

1 represents an intruder).

This particular confusion matrix represents the performance of the linear dis-

crimination analysis when the probabilities for each type of group are equal (.5 for

each group). We’ll explain the significance of examining multiple ranges of proba-
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pred 0 pred 1
act 0 799 165
act 1 21 15

TP% 0.416667
FP% 0.171162

Figure 3.4: Confusion matrix for Linear Discrimination Analysis

bilities below. The above confusion matrix captures an important result from the

classification procedure: it enables the calculation of true positive and false positive

which forms the basis for comparing classification systems. We define true positive

as correctly classifying an intruder (predict 1 when actually 1), and a false positive

is defined is incorrectly classifying a non-intruder (predict 1 when actually 0).

The above discrimination rule enables classification for a certain operating

point, where the costs and probabilities are fixed. However, comparing classifica-

tion systems at one operating point does not provide sufficient comparison. The

performance of classification systems must be considered across a sufficient range of

operating characteristics, providing a thorough representation of the systems per-

formance. Therefore, the range of consideration could be explored by varying the

probability of intrusion and probability of no intrusion. Changing these probabili-

ties by subtracting .1 from one and adding .1 to the other produced changes in the

confusion matrix; this essentially changes the tolerance of the test, allowing analysis

across a range of operating points. The result of this range of operating points is

a Receiver Operating Characteristic Curve, or ROC curve, that plots false positive

on the x axis and true positive on the y axis. Plotting the operating characteristics

of several confusion matrices produces an ROC curve as shown below. A common

method of evaluating a classification system is to measure the area under the curve

(AUC).

The area under the curve for the Linear Discrimination Analysis classification

system is .702, which illustrates an effective classification system. Throughout this

report the area under the curve will serve as a measure to compare alternative

classification systems.
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ROC Curve for Discriminant Analysis (AUC = .702)
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Figure 3.5: ROC Curve for Linear Discrimination Analysis

3.6 Clustering

Clustering is a technique commonly used for more than two groups or when

the number of groups is unknown. However, due to the nature of clustering (deter-

mining a measure or method to separate groups), clustering can serve as an effective

tool for discrimination. An initial clustering attempt applied K-means clustering to

this data set, however poor results occurred. The next technique explored involved

distance comparisons, using distance to the centroid of each group as a similarity

measure. An initial attempt comparing Euclidean distances to the centroid of each

group produced an interesting result that is commonly known as the curse of dimen-

sionality. Every point in this seven dimensional hyperspace was almost equidistant

from another point! The next obvious step involved reducing dimensionality by

choosing only two variables that produced a good clustering of the groups. Through

trial and error, we determined that the variable measuring the percent of internet

commands and the xu value from Schonlau’s algorithm produced good separation

between the groups. Euclidean distance measurements provided adequate classifi-
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cation, however Minkoski’s equation for distance provided the best classification,

utilizing a value of 5 for m. For each tuple of data in the test data, we measure

Minkoski’s distance to the centroid observed in the training data, and classify into

the group that measures the closest[11].

d(x, x̄no int) = [

p∑
i=1

|xi − x̄no int|m]1/m (3.2)

d(x, x̄int) = [

p∑
i=1

|xi − x̄
int|m]1/m (3.3)

The above equations represent Minkoski’s distance equation, where x̄int rep-

resents the centroid of intrusion training data, and x̄no int represents the centroid of

non intrusion training data. p is the number of variables measured (p = 2 provided

the best results).

Once again, it was important to collect a range of values for this classification

tool in order to evaluate overall performance of the system. In order to obtain a

range of confusion matrices, we introduced an offset value. Initially, if d(x, x̄int)

represents the distance between a test data point and the centroid of intrusion data,

if d(x, x̄int) was greater than d(x, x̄no int) then the decision rule was to classify the

point as a non intruder. However, by introducing an offset variable w, the new

rule assigned a point as a non intruder if d(x, x̄no int) < d(x, x̄no int) − w, where w

ranged from .2 to 1.2. This range of values for w produced an array of confusion

matrices, again providing a method of plotting an ROC curve. The ROC curve for

our clustering analysis with Minkoski’s distance metric is shown below.

The area under the curve is .722, which shows a slight improvement from

our discrimination analysis. Of particular interest in this ROC curve is the very

steep slope for small values of the false positive. An important aspect of computer

intrusion detection involves minimizing false positive. A false positive indicates that

some authentic user has been targeted as a attacker. The implications of this could

involve temporary suspension of user privileges until the situation is resolved or the

employment of manual inspection to determine the accuracy of this classification

(most intrusion detection systems pass all reports of an intruder on to an employee
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Minkoski Distance Clustering (AUC = .722)
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Figure 3.6: ROC Curve for Clustering with Minkoski’s Distance Metric

who manually inspects the case; a high number of false positives is costly for this

reason).



CHAPTER 4

APPLICATION OF KERNEL PARTIAL LEAST

SQUARES

4.1 Kernel Partial Least Squares

Partial Least Squares Regression (PLS) was conceived by the Swedish statis-

tician Herman Wold for econometrics modeling of multi-variate time series[20]. The

first PLS publication was a sociology application in 1975[21]. His son, Svante Wold,

applied PLS to chemometrics in the early eighties [23, 22] and currently PLS has

become one of the most popular and powerful tools in chemometrics, mainly because

of the quality of building models with many variables. PLS is not easy to explain

and the mathematics involved is far from transparent. Partially for that reason PLS

has a low emphasis in mainstream statistics and machine learning.

KPLS is a technique that has grown from partial least squares analysis. The

study of partial least squares(PLS) is similar to principal components analysis

(PCA).

PLS analysis considers the response vector (or matrix for multiple responses),

typically denoted as Y. PLS regression is a technique that maximizes latent variable

correlation with the response vector. Therefore, the first latent variable (which is

again a linear combination of the input variables), possesses maximum correlation

with the response variable while remaining orthogonal to the remaining latent vari-

ables. Since the first few partial least squares components or latent variables capture

the majority of correlation with the response variable, powerful prediction models

result with desirable dimension reduction properties.

Rosipal explains in [15] how to extract these PLS components. Utilizing the

NIPALs approach, this is the algorithm that Rosipal discusses:

1. randomly initialize u

2. w = XTu

3. t = Xw, t ← t
‖t‖

23
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4. c = YT t

5. u = Yc, u ← u
‖u‖

6. continue to repeat steps 2-5 until t and u converge within a specified

tolerance.

7. deflate X,Y:

X ←X−ttTX

Y ←Y−ttTY

After step 7, the first PLS component is found and the next PLS component

can be extracted from the deflated X and Y matrices using the same algorithm.

At each full iteration (completion of step 7), store the t,u,w and c vectors.

These vectors will create matrices T,U,W and C which will be used to complete

the PLS regression model. Writing the typical regression model as

Y = XB +F

where B is our regression matrix and F is the residual matrix, Rosipal shows

in [15] the following:

B = XTU(TTXXTU)−1TTY

The key to Kernel PLS (KPLS) is realizing the kernel matrix formed in the

algorithm shown above between steps 2 and 3. The algorithm for KPLS is no

different than what is shown for the PLS algorithm, except steps 2 and 3 combine

to create:

t = φφTu, t ← t
‖t‖

φ represents the nonlinear function, or kernel function, that transforms the

input variables into feature space. φφT is the well known kernel matrix. KPLS

provides the attractive aspect of feature reduction while also combining the powerful

similarity technique that exists within nonlinear kernels. Our typical choice for the
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kernel function is the gaussian kernel, defined as:

K(xi, xj) = e
‖xi−xj‖

2σ2

The free parameter σ is necessary with this kernel, requiring minimal tuning.

4.2 Seven Feature Model

The analysis of the new variables in chapter 3 provides insight into the relation-

ship between the variables and the descriptive power of these variables. Exploring

fundamental properties such as correlation, principal components, and colored de-

scriptive plots often reveals dynamics amongst the variables that is simple but not

intuitive or obvious. If a response could be predicted simply from one variable or

a linear combination that reduces dimensionality, there is no need to use learning

machines - it is a simple problem. Unfortunately, this is not a simple problem.

Further analysis is required.

The AnalyzeTM software package is the primary vehicle for analysis from this

point forward [8]. Previous analysis and preprocessing utilized Perl programs and

some simple spreadsheet calculations, however now that all of the variables have been

produced and represented in the MetaNeural format required by AnalyzeTMAnalyze,

predictive modeling can begin.

The most obvious method for prediction modeling given the set of new vari-

ables described is to simply represent each tuple of data with a combination of these

seven variables. Let us call this the seven feature model. This is the initial approach.

The file to be processed by the learning machine contained 5000 tuples of data, each

containing 7 feature variables, the outcome (0 for non intrusion, 1 for intrusion),

and an identification number. The identification number is a six digit number that

uniquely identifies each tuple. Here is an example of a tuple of preprocessed data:

% Top 20 
most 

popular 
commands 

% internet 
commands 

Average 
uniqueness 

Average 
frequency 

% of 
foreign 

commands 
XU Intrusion/Not 

Intrusion ID# 

0.61 0 0.8549 6309.74 0 -0.2784 0 143101 

 

Figure 4.1: A example tuple of preprocessed data with the new variables



26

One final crucial step in data preprocessing consisted of the scaling of the data.

During the previous discussion of principal components and the correlation matrix,

I indicated that the relationship between variables is much more meaningful with

scaled data. Learning machines also require scaled data to extract meaning and ac-

curately learn and predict. Each variable, to include the response, was Mahalonobis

scaled. After scaling the variables, the final step involved splitting the data into a

training and testing set (4000 tuples were used for training, 1000 tuples for testing),

and then the learning machines processed the information. Once the raw data is in

MetaNeural format, Analyze operators perform and provide the scaling, splitting,

and predictive modeling, and all necessary analytical results.

The ROC curve for the seven feature model is illustrated below. The AUC is

.907.

 

Figure 4.2: The ROC curve for the seven feature model. The AUC is
.907.

4.3 601 feature model

In addition to the seven feature model, I expanded the detail of the features in

an attempt to improve the prediction. Each variable in the seven feature model is

an average or percentage for the entire tuple of 100 commands considered. The only

exception to this is the xu value, which is a measure of the entire tuple. Therefore,
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each command can be represented by six different values, each value representing

variables one through six. The result of this approach is a tuple of 601 features (the

extra feature is Schonlau’s xu value). The results of this 601 feature model were

surprisingly not better than the seven feature model. The 601 feature model was

cumbersome because of its size, required a much longer processing time, and did

not predict as well. I have two educated guesses why this model did not predict as

well:

1. Consider each variable as some type of random variable that could be

modeled with a probability density function. The original seven feature

model contained averages and percentages - a function of a summation

of each variable for each command of the tuple of 100 commands. This

average or percentage represents a statistic, and it is likely that these

statistics are functions of sufficient statistics, which implies that re-

gardless of how the observations are manipulated, further information

regarding the true parameters of the underlying probability density

functions that form these statistics cannot be obtained. Therefore,

improvement is not an option if the variables calculated are already

functions of sufficient statistics. The theory of sufficient statistics is

addressed in [1]

2. This file is too large and cumbersome for the KPLS learning machine.

There is a curse of dimensionality. When the dimensionality grows too

large, classification becomes very difficult because every tuple becomes

equally dissimilar. Reduced and meaningful dimensions provide much

more predictive power.

The discussion of the performance of Rosipal’s KPLS with these two models

introduces again the topic of the σ tuning parameter. This parameter greatly im-

pacts the performance. This model utilizes Gaussian kernels. The Gaussian kernels

represent a dissimilarity measure as seen in the below equation.

kij ≡ e−
‖ �xj− �xl‖2

2σ2 (4.1)

The σ value in this equation is a tuning parameter - it needs to be adjusted to
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create optimal performance. The tuning of this σ value proved critical for achiev-

ing optimal performance with Rosipal’s KPLS learning machine. Consider the 601

feature model. Rosipal’s KPLS achieved a number of different values as I modified

the sigma value. The below table illustrates the impact of tuning sigma with all

other conditions remaining constant. The table shows a range of sigma values and

the observed AUC of the ROC curve.

Table 4.1: Illustration of the impact of the sigma value against the per-
formance of the learning machine, measured here through the
AUC

σ value Area under the curve (AUC)
1 .6505
2 .7036
3 .7084
4 .6954
5 .7443
6 .7738
8 .6956
9 .7383
10 .7658
15 .7653
30 .7545
100 .7745
500 .7379

Although this table illustrates only integer values for sigma, sigma can actually

take any real number value. The purpose of the table is to illustrate the impact of

changes in sigma. The table also illustrates how much worse the 601 feature model

performed vs. the seven feature model. As you can see, the best AUC for the 601

feature model was .7745.

4.4 IMPROVING THE MODEL

The previous analysis indicates that KPLS is a robust learning machine that

captures all of the relevant information presented by the variables, regardless of

the form of the variables presented. This is similar to the logical argument regard-
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ing sufficient statistics previously mentioned. In order to improve the performance

of the model, the data needed to improve with the addition of relevant variables

that uncover information that is not contained in the previous variables. Two new

variables are presented.

A simple transition probability matrix model can be constructed to capture

the likelihood of a user transitioning from one command to the next based upon

previous behavior. For every user, given that there are 635 distinct commands, a

transition matrix, T ∈ R
635×635, is created. Allowing tij to represent the ith row and

jth column, this value is equivalent to the probability of transitioning from the ith

command to the jth command. Given the kth test tuple of l = 1...100 commands,

the probability can be calculated as the following:

Pk =
100∏
l=1

tl where tl = tij when i = l − 1, j = l (4.2)

For each test tuple we calculate this variable that we will refer to as the

transition variable. This variable is different from previous variables created in that

it measures patterns; the order of the commands presented matters.

The other variable created is a very simple measurement inspired by the xu

variable. Referred to as the new variable, it is a count of how many new commands

are in the test tuple that have never been used by the user. Ranging from 1 to 100,

this variable has a surprising predictive power.

This variable by itself performs better as a single scalar predictor than any

of the previously mentioned techniques with the exclusion of the xu variable. This

certainly reinforces the cliche of “garbage in - garbage out”. However, it is interesting

to see what occurs when this variable is combined with the others. The AUC

jumps to .95, which is equivalent to the xu variable, however notice the value of the

true positive axis when the false positive rate increases from 0. The true positive

rate is slightly greater than .7 at this point. This illustrates the caution that is

necessary when considering the AUC as the overall performance measure. The

AUC is largely considered the best scalar performance measure for binary classifiers

[2, 9]. However, caution must be taken before selecting this as the one and only
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Figure 4.3: ROC curve illustrating the predictive power of solely the new
variable

measure of performance. If minimizing false positives is important, a false positive

boundary can be chosen, such as FP = 1% as indicated by Schonlau in [5]; the

IDS is measured by the true positive rate that it achieves before crossing the false

positive threshold of 1%.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis addresses a unique dataset that provides opportunity for the appli-

cation of data mining, statistics, and state of the art learning methods. Fundamen-

tal theoretical concepts of multivariate statistics have been discussed, and advanced

learning methods such as Kernel Partial Least Squares demonstrated remarkable

performance. Regardless of the models utilized and manipulation of statistics, it

was also reinforced that independent statistics with strong correlation with the de-

pendent variable consistently improve the model. The ROC curve is an invaluable

tool for the measurement of an IDS. It is an elegant, concise description of perfor-

mance. The area under the ROC curve (AUC) is an excellent scalar measurement of

the performance of a binary classifier, however the AUC has limitations. Two curve

of equivalent AUC may not represent equivalent classifiers in the eyes of a decision

maker. If maximizing performance in the low false positive range is a priority, or

perhaps maximizing true positives is a priority as it is in the medical field, other

metrics must be considered.

The significance of research in this field expands well beyond the digital realm

and computer intrusion detection. Intrusion detection is a security problem. This

security could involve an airport, a national asset, vital infrastructure, or even the

physical borders of our country. Every day Americans spend millions of dollars to

secure their way of life, and this research presents innovative techniques to provide

enhanced security. Although the vehicle of this research involves computer intrusion

and attackers, these same techniques could be generalized to enhance the security

of any important resource.

5.2 Future Work

An approach yet to be explored extensively involves combining several ROC

curves in an attempt to achieve a synergistic effect that results in optimal perfor-

32



33

mance beyond the capabilities of any single classification system.

1

1

An overall 
system of IDS 
that generates 
a synergistic 
curve from 
component 
systems. 

T
R

U
E
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O

S
IT

IV
E

FALSE POSITIVE

Figure 5.1: The above graph represents three ROC curves. The two black
curves are component algorithms or component systems, and
the dashed ROC curve represents a system that combines the
component systems and generates a synergistic effect with
improved performance.

The above illustrated approach differs from several alternatives that have been

explored by others. This chart, showing multiple ROC curves and an optimal syner-

gistic ROC curve, represents a proposal to search for an optimal classification system

by combining several systems. The vehicle for this research is intrusion detection

systems, however the potential application is much broader.

Utilizing multiple IDS to devise a superior hybrid system is not a new idea.

Tom Fawcett and Foster Provost explored the concept of an ROC convex hull. This

approach essentially maps several ROC curves onto one graph, and depending upon

the tolerance accepted by the digital firm, the optimal operating position is derived

from the convex hull of the ROC curves [10]. Huseyin Cavusoglu, Birendra Mishra,

and Srinivasan Raghunathan also analyze several IDS as an overall system, and

they describe optimal operating conditions based upon variables devised from a

game theory approach[3]. This game theory approach views the digital firm and the

attacker partaking in a game where they each stand to gain or lose, and based upon

the cost benefit ratio of both the digital firm and the attacker, there is an optimal

operating condition for the overall system. Both of these approaches mentioned



34

above combine IDS algorithms in a parallel fashion, which differs from the in series

approach that I will take. Several IDS algorithms placed in series could also be

viewed as several filters placed in series. Each filter will classify data, but subsequent

filters will only classify data passed from previous filters. Any filter has the authority

to classify data as containing negative intrusion and authentic, and if this is the case

that user is classified as authentic and will not be analyzed any further. However, if

a filter classifies data as containing an intruder then the next filter will also analyze

this data.
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APPENDIX A

Tutorial in Calculating the xu Value

A.1 A Toy Problem with Five Commands

The calculation of Schonlau’s xu is not entirely intuitive. It is also helpful to

discuss why this statistic is so powerful for anomaly detection and exactly where this

predictive power is contained. In chapter 2, we presented the xu value as follows:

xu =
1

nu

K∑
k=1

Wuk(1 − Uk

U
)nuk , (A.1)

where the weights Wuk are

Wuk =

⎧⎨
⎩

vuk

vk
if user u’s training data contains command k

−1 otherwise

where vuk = Nuk

Nu
and vk =

∑
u vuk

Table A.1: Description of Schonlau’s variables for Toy Problem

Name of Variable Description
Nu Number of commands in training data (5000)
nu Number of commands in test data (5)
Nuk Number of times user uses command k in training data
nuk Number of times user uses command k in test data
U Number of users (50)
Uk Number of users who use command k
K Number of distinct commands in training data (635)

Now let us consider an example that contains only five commands in the test

tuple, as reflected above. These commands are cpp, sh, xrdb, cpp, sh, in that order.

There are three distinct commands within these five, and we can begin to calculate

the necessary variables as shown in figure A.1.

In calculating Wuk, notice that the behavior of the other users influences the
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calculation. This is shown in figure A.2. This is a consistent theme with Schonlau’s

uniqueness approach. The power of the approach comes from measuring one users

behavior not only against her own previous behavior but also against the behavior

of the population. A strong penalty occurs if a command that has never been used

by a user appears in the test data. We will see in step three how this penalty is

magnified or dampened depending on the popularity of the new command seen.

Figure A.3 illustrates how the popularity of a command influences the calcu-

lation. Popular commands receive minimal weight, assuming that it is more likely

for a user to suddenly start using a popular command rather than an unpopular

command. Notice from the calculation how a string of unpopular commands never

used by a user can drive the xu value in the negative direction.

The final step involves a simple summation. This short toy problem has a

positive value, indicating an authentic user, which it is.
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a.    Tuple is:  cpp, sh, xrdb, cpp, sh
3 distinct commands; user 1’s first 5 
commands.

122nuk

434945Uk

3839438Nuk

xrdbshcpp

122nuk

434945Uk

3839438Nuk

xrdbshcpp

Figure A.1: Step 1 of the toy problem

b.    Calculate Wuk for each command:
Consider cpp:
Wuk = (Nuk / Nu) / ∑uvuk

Wuk = (38 / 5000) / (2225 / 5000) = .01708

Notice from algorithm that if a distinct 
command is not used, null effect…if 
user never used command in training, 
but it shows up in test data,  Wuk = -1

.06518.01809.01708Wuk

434945Uk

122nuk

3839438Nuk

xrdbshcpp

.06518.01809.01708Wuk

434945Uk

122nuk

3839438Nuk

xrdbshcpp

Figure A.2: Step 2 of the toy problem
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c. Let y = Wuk (1 – (Uk/U)) nuk (for notation)
Calculate y for each distinct command:
Consider cpp:
y = .01708 ( 1 – (45 / 50)) 2 = .00342

Notice from algorithm that if many users 
use command, impact minimal…

Notice that although xrdb is only used 
once, the impact is the most 
significant…this is because xrdb is 
more unique than other commands

.06518.01809.01708Wuk

.00913.00072.00342y

434945Uk

122nuk

3839438Nuk

xrdbshcpp

.06518.01809.01708Wuk

.00913.00072.00342y

434945Uk

122nuk

3839438Nuk

xrdbshcpp

Figure A.3: Step 3 of the toy problem

d.
xu = 1/5 (∑ y) = .002654

.06518.01809.01708Wuk

.00913.00072.00342y

434945Uk

122nuk

3839438Nuk

xrdbshcpp

.06518.01809.01708Wuk

.00913.00072.00342y

434945Uk

122nuk

3839438Nuk

xrdbshcpp

Figure A.4: Step 4 of the toy problem



APPENDIX B

RECEIVER OPERATING CHARACTERISTIC (ROC)

CURVES

B.1 The Confusion Matrix and Hypothesis Testing Defini-

tions

Confusion matrices, ROC curves, and hypothesis testing have very much in

common. Many of the terms used with these tools are synonymous, and often these

terms are misunderstood. The below matrix which illustrates the four regions of a

typical hypothesis testing problem defines the applicable terms.

Good
Probability = 1 – α
Frequently called Confidence
(This will be referred to as True 
Positive when discussing ROC 
curves; an alternative term is 
sensitivity, typically used by 
the medical community.)

Bad – Type I Error
Probability = α

H0 is True
(Intrusion)

Bad – Type II Error
Probability = β
(This will be referred to as a 
False Positive – medical 
community often plots this on 
the x axis as 1-specificity.)

Good
Probability = 1 – β
Frequently called Power
(The medical community refers 
to this as specificity.)

H0 is False
(No Intrusion)

Do Not Reject H0

(Predict Intrusion)
Reject H0

(Predict No Intrusion)

DECISION:

STATE OF 
NATURE:

Good
Probability = 1 – α
Frequently called Confidence
(This will be referred to as True 
Positive when discussing ROC 
curves; an alternative term is 
sensitivity, typically used by 
the medical community.)

Bad – Type I Error
Probability = α

H0 is True
(Intrusion)

Bad – Type II Error
Probability = β
(This will be referred to as a 
False Positive – medical 
community often plots this on 
the x axis as 1-specificity.)

Good
Probability = 1 – β
Frequently called Power
(The medical community refers 
to this as specificity.)

H0 is False
(No Intrusion)

Do Not Reject H0

(Predict Intrusion)
Reject H0

(Predict No Intrusion)

DECISION:

STATE OF 
NATURE:

Figure B.1: Hypothesis testing regions and terms

As seen in the above figure, there are numerous terms used to describe the

performance of a classification system. The medical community uses only specificity

and sensitivity. For our purposes, we will use false positive and true positive.

The confusion matrix stems directly from the above discussion. A confusion

matrix represents the outcome of an attempt to classify known groups. When dealing

with an IDS, there are only two groups: intruders or non intruders. Therefore,
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a confusion matrix for an IDS would contain four regions, representing the four

potential types of classification. The below confusion matrix illustrates this point.

dc1 (Positive)

ba0 (Negative)

1 (Positive)0 (Negative)
PREDICTED:

ACTUAL:

dc1 (Positive)

ba0 (Negative)

1 (Positive)0 (Negative)
PREDICTED:

ACTUAL:

Figure B.2: Hypothesis testing regions and terms

From a confusion matrix, one can calculate both the false positive rating and

the true positive rating. These calculations follow:

TRUE POSITIVE:
d

c + d

FALSE POSITIVE:
b

a + b

B.2 The ROC Curve

A Receiver Operating Characteristics Curve is a very complete, simple, and

elegant way to display the performance of a classification system. An ROC curve is a

graphic representation of the relationship between the probability of a true positive

outcome (sensitivity, 1-α error) and the probability of a false positive outcome (Type

II error(β) or 1-specificity). The earliest use of ROC curves can be traced back to

World War II during initial implementation of radar systems. It was very important

for radar systems to accurately detect aircraft. Radar systems could be set to a very

high and sensitive level, where every aircraft would definitely be detected, however

this would result in a tremendous number of false positives. Imagine the number of

false air alarms that could have been sounded over Great Britain if the Allied Forces

did not carefully manage the sensitivity setting of their radar systems! ROC curves

represent reality, where perfect detection or classification is usually not a possibility.

Users must determine classification settings, depending on a cost-benefit analysis of

what they are willing to accept as a true positive rating and a false positive rating.
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An ROC curve is a representation of the entire range of operating points that

a classification system has the capability to attain, and typically the user has the

flexibility to decide where to operate on the curve. The overall curve reflects the

quality of the classification system. The Area under the curve (AUC) is typically

used as method of comparing alternate ROC curves; the better ROC curve typically

has more AUC.

general threshhold, t, used to trigger IDS alarm This t corresponds to a point on the ROC curve, perhaps here.

Probability Density 
Function of Legal 

transactions

Probability Density 
Function of Illegal 

transactions

general threshhold, t, used to trigger IDS alarm This t corresponds to a point on the ROC curve, perhaps here.

Probability Density 
Function of Legal 

transactions

Probability Density 
Function of Illegal 

transactions

Figure B.3: The plot on the left shows the PDFs of legal and illegal
transactions (non intruders and intruders), respectively. The
ROC curve on the right shows the possible operating point
represented by the tolerance threshold shown on the PDF
plots.

The plot of the PDFs illustrates the idea of false positives and true positives.

The hashed area represents the probability of a true positive, and the small red area

represents a false positive. Imagine shifting the threshold, t, to the left. The true

positive rating would definitely increase, but so would the false positive. The user

must identify what point on the curve is acceptable, and this is usually accomplished

through a cost-benefit analysis.



APPENDIX C

Perl Programs

C.1 Introduction to the Programs

This appendix contains the source code from the six primary Perl programs

that the calculations necessary to analyze both Schonlau’s algorithm and prediction

models using the new variables. The following table briefly describes each program.

Table C.1: Description of Perl Programs

Name of Program Description
dictionarytrain This program analyzes each users initial

5000 commands and creates a data dictio-
nary of distinct commands. This program
also determines the overall frequency and
popularity of commands.

user popularity This program determines the number of
time each user utilized each distinct com-
mand.

algorithm debug This program calculates Schonlau’s algo-
rithm. The majority of variables from his
algorithm should look similar to the Perl
variables. This program creates a file that
contains the xu value for the 5000 tuples
of test data.

results analysis debug This program calculates the confusion ma-
trices and data necessary to build the ROC
curve from Schonlau’s algorithm.

features This program creates seven features for
each tuple of test data (5000 tuples).

601features This program creates 601 features for each
tuple of test data (5000 tuples).
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C.2 Source Code

C.2.1 The dictionarytrain program

open (traintotal,">traintotal"); open (trainvar,">trainvar"); $j=1;

@total=@_;

for($j=1;$j<51;$j++) #loops one time for each user (1-50)

{

$fh="user$j";

open $fh,"$fh";

@all_lines=<$fh>;

$i=0;

for($i=0;$i<5000;$i++)

{

$a=(5000*($j-1));

@total[$i+$a]=@all_lines[$i]

}

print traintotal @total; #saves every command as an array

length 250K

}

$count=0; $a=1; $b=2; for ($i=0;$i<250000;$i++) {

if ($count==0) #initiates cmd dictionary with first command

{

$count=count+1;

$k=$count-1;

$dictionary[$k][$a]=@total[$i];

$dictionary[$k][$b]=1;

}

$j=0;

$z=0;

for ($j=0;$j<$count;$j++) #determines if cmd is already in

dictionary

{ if (@total[$i] eq $dictionary[$j][$a])

{

$dictionary[$j][$b]=($dictionary[$j][$b])+1;

$z=$z+1;

}

}

if ($z==0) #if new cmd, adds to dictionary
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{

$count=$count+1;

$k=$count-1;

$dictionary[$k][$a]=@total[$i];

$dictionary[$k][$b]=1;

}

}

$i=0; for ($i=0;$i<$count;$i++) {

chomp $dictionary[$i][$a];

print "$dictionary[$i][$a] $dictionary[$i][$b] \n";

}

$i=0; for ($i=0;$i<$count;$i++) {

print trainvar "$dictionary[$i][$a],$dictionary[$i][$b]\n";

}

print "\n"; print "$count distinct commands."; print "\n";

$total=@total; print "$total total commands.\n"; print "\n";

open (traincmddict,">traincmddict"); open

(traincmdcount,">traincmdcount");

$i=1; for ($i=0;$i<$count;$i++) {

print traincmddict "$dictionary[$i][$a]\n";

print traincmdcount "$dictionary[$i][$a]\n";

}

##Below lines determine the popularity of the commands.

open (traincmddict,"traincmddict"); open (popular, ">popular"); open

(popvar,">popvar");

$j=1; @total=@_; @popularity=@_;

$k=0; for ($k=0;$k<635;$k++) {

@popularity[$k]=0;

}

for($j=1;$j<51;$j++) #loops one time for each user (1-50) {

$fh="user$j";

open $fh,"$fh";

@all_lines=<$fh>;
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$i=0;

for($i=0;$i<5000;$i++)

{

$k=0;

$count=0;

for ($k=0;$j<635;$j++)

{

if (@all_lines[$i] eq @traincmddict[$j])

{

@popularity[$j]=@popularity[$j]+1;

$j=635;

}

}

}

}

$i=0; for ($i=0;$i<635;$i++) {

print popular @popular[$i];

print popvar "@popularity[$i],\n";

}

C.2.2 The user popularity program

open (traincmddict,"traincmddict"); open (popular, ">popular"); open

(popvar,">popvar");

$j=1; @total=@_; @popularity=@_;

@traincmddict=<traincmddict>;

$k=0; for ($k=0;$k<635;$k++) {

@popularity[$k]=0;

}

for ($i=0;$i<50;$i++) {

$k=0;

for ($k=0;$k<635;$k++)

{

$usertraindict[$k][$i]=0;

}

}
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for($j=1;$j<51;$j++) #loops one time for each user (1-50) {

@counter=@_;

$fh="user$j";

open $fh,"$fh";

@all_lines=<$fh>;

$i=0;

for($i=0;$i<5000;$i++)

{

$k=0;

for ($k=0;$k<635;$k++)

{

if (@all_lines[$i] eq @traincmddict[$k])

{ if (@counter[$k]!=1)

{

@popularity[$k]=@popularity[$k]+1;

@counter[$k]=1;

}

$usertraindict[$k][$j-1]=

$usertraindict[$k][$j-1]+1;

}

}

}

}

$i=0; for ($i=0;$i<635;$i++) {

print popular "@popularity[$i]";

print popvar "@popularity[$i]\n";

}

open (usertraindict,">usertraindict");

for ($i=0;$i<=50;$i++) {

$k=0;

for ($k=0;$k<635;$k++)

{

print usertraindict "$usertraindict[$k][$i]\n";

}

}

C.2.3 The algorithm debug program

$start=time(); print "Start time: $start\n"; open

(usertraindict,"usertraindict"); @utraintotal=<usertraindict>;
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$i=0; for ($i=0;$i<50;$i++) {

$j=0;

for ($j=0;$j<635;$j++)

{

$cmd=(635*$i)+$j;

$usertraindict[$j][$i]=@utraintotal[$cmd];

}

}

open (userpop,">userpop"); $i=0; for ($i=0;$i<635;$i++) {

$j=0;

for ($j=0;$j<49;$j++)

{

chomp $usertraindict[$i][$j];

print userpop "$usertraindict[$i][$j],";

}

print userpop "$usertraindict[$i][49]";

}

$i=1; for ($i=1;$i<51;$i++) {

$fh="user$i";

open $fh, "$fh";

@all_lines=<$fh>;

$j=0;

for($j=0;$j<100;$j++)

{

$k=0;

for($k=0;$k<100;$k++)

{

$line=5000+(($j*100)+$k);

$testblock[$i-1][$j][$k]=@all_lines[$line];

#this nested loop creates 100 arrays of test data

for every user

}

}

} print "User test blocks complete.\n"; $time=(time()-$start)/60;

$time=sprintf("%.2f",$time);

print "Total elapsed time: $time min\n"; print "Now comparing test

blocks with user training dictionary...\n\n"; print @all_lines[0];

open (traincmddict,"traincmddict"); @traincmddict=<traincmddict>;

$i=1; for ($i=0;$i<50;$i++) {

@vk[$i]=0;

$j=0;
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for ($j=0;$j<100;$j++)

{

$l=0;

for($l=0;$l<635;$l++)

{

$nuk[$i][$l][$j]=0;

$wuk[$i][$l][$j]=-1;

$vuk[$l][$i]=0;

$modwuk[$i][$l][$j]=1;

}

$l=0;

for($l=0;$l<635;$l++)

{

$k=0;

for($k=0;$k<100;$k++)

{

if($testblock[$i][$j][$k] eq $traincmddict[$l])

{

$nuk[$i][$l][$j]=($nuk[$i][$l][$j])+1;

$vuk[$l][$i]=($usertraindict[$l][$i])/5000;

}

}

}

}

}

print "Test blocks analyzed against user training dictionary.\n";

$time=(time()-$start)/60;

$time=sprintf("%.2f",$time);

print "Total elapsed time: $time min\n"; print "Now computing

algorithm...\n";

$i=0; for ($i=0;$i<635;$i++) {

$j=0;

for ($j=0;$j<50;$j++)

{

@vk[$i]=@vk[$i]+$vuk[$i][$j];

}

}

open (popvar,"popvar"); @userpopularity=<popvar>;

$i=0; for ($i=0;$i<50;$i++) {

$j=0;
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for ($j=0;$j<100;$j++)

{

$l=0;

for($l=0;$l<635;$l++)

{

if(($vuk[$l][$i]==0) and ($nuk[$i][$l][$j]>0))

{

$modwuk[$i][$l][$j]=-1;

}

if($vuk[$l][$i]==0)

{

$wuk[$i][$l][$j]=-1;

}

if($vuk[$l][$i] > 0)

{

$wuk[$i][$l][$j]=$vuk[$l][$i]/@vk[$l];

}

$calcxu=.01*(($wuk[$i][$l][$j])*($nuk[$i][$l][$j])*

(1-(@userpopularity[$l]/50)));

$xu[$j][$i]=$xu[$j][$i]+$calcxu;

$modcalcxu=.01*(($modwuk[$i][$l][$j])*($nuk[$i][$l][$j])*

(1-(@userpopularity[$l]/50)));

$modxu[$j][$i]=$modxu[$j][$i]+$modcalcxu;

}

}

}

open (xu,">xu"); $i=0; for ($i=0;$i<50;$i++) {

$k=0;

for ($k=0;$k<100;$k++)

{

print xu "$xu[$k][$i]\n";

}

}

open (modxu,">modxu"); $i=0; for ($i=0;$i<50;$i++) {

$k=0;

for ($k=0;$k<100;$k++)

{

print modxu "$modxu[$k][$i]\n";

}

}
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print "Program complete.\n"; $time=(time()-$start)/60;

$time=sprintf("%.2f",$time);

print "Total elapsed time: $time min\n";

C.2.4 The results analysis debug program

$start=time(); print "Start time: $start\n";

open (xu,"xu"); @xu=<xu>; open

(masquerade_summary,"masquerade_summary.txt"); open

(masq_summary,">masq_summary"); print masq_summary

<masquerade_summary>; open (masq_summary,"masq_summary");

@trueresults=<masq_summary>;

open(trueresults,">trueresults");

print trueresults @trueresults;

$test=substr(@trueresults[99],1,1); print $test; #print

@trueresults[99];

@true=@_; $i=0; for($i=0;$i<50;$i++) {

$j=0;

for($j=0;$j<100;$j++)

{

$cmd=(($i*100)+$j);

$length=$i*2;

@true[$cmd]=substr(@trueresults[$j],$length,1);

}

}

open(true,">true");

$i=0; for($i=0;$i<5000;$i++) {

print true "@true[$i]\n";

}

$i=0; $tolerance=-.25; for($i=0;$i<5000;$i++) {

if (@xu[$i]<$tolerance)

{

@testresult[$i]=1;

}

if (@xu[$i]>=$tolerance)
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{

@testresult[$i]=0;

}

}

$truepositive=0; $falsepositive=0; $falsenegative=0;

$truenegative=0; for ($i=0;$i<5000;$i++) {

if (@testresult[$i]==@true[$i])

{

@finalresult[$i]=1;

}

if (@testresult[$i]!=@true[$i])

{

@finalresult[$i]=0;

}

if (@testresult[$i]==1 && @true[$i]==1)

{

$truepositive=$truepositive+1;

}

if (@testresult[$i]==0 && @true[$i]==0)

{

$truenegative=$truenegative+1;

}

if (@testresult[$i]==1 && @true[$i]==0)

{

$falsepositive=$falsepositive+1;

}

if (@testresult[$i]==0 && @true[$i]==1)

{

$falsenegative=$falsenegative+1;

}

}

print " predicted positive predicted negative"; print "\n";

print "actual positive $truepositive $falsenegative\n"; print

"actual negative $falsepositive $truenegative\n";

open (ROC,">ROC"); $j=0; for ($j=0;$j<1600;$j++) {

$i=.3;

$tolerance=-.8963+($j*.001);

for($i=0;$i<5000;$i++)

{

if (@xu[$i]<$tolerance)

{
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@testresult[$i]=1;

}

if (@xu[$i]>=$tolerance)

{

@testresult[$i]=0;

}

}

$truepositive=0;

$falsepositive=0;

$falsenegative=0;

$truenegative=0;

for ($i=0;$i<5000;$i++)

{

if (@testresult[$i]==@true[$i])

{

@finalresult[$i]=1;

}

if (@testresult[$i]!=@true[$i])

{

@finalresult[$i]=0;

}

if (@testresult[$i]==1 && @true[$i]==1)

{

$truepositive=$truepositive+1;

}

if (@testresult[$i]==0 && @true[$i]==0)

{

$truenegative=$truenegative+1;

}

if (@testresult[$i]==1 && @true[$i]==0)

{

$falsepositive=$falsepositive+1;

}

if (@testresult[$i]==0 && @true[$i]==1)

{

$falsenegative=$falsenegative+1;

}

}

@truepositive[$j]=

($truepositive/($truepositive+$falsenegative));

@falsepositive[$j]=

($falsepositive/($truenegative+$falsepositive));

print ROC "@falsepositive[$j],@truepositive[$j]\n";
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}

print "Program complete.\n"; $time=(time()-$start)/60;

$time=sprintf("%.2f",$time);

print "Total elapsed time: $time min\n";

C.2.5 The features program

$start=time(); $now=time()-$start; print "Start time: ($now)\n";

open (unix_commands,"unix_commands.txt"); open (traincmddict,

"traincmddict"); @unix_commands=<unix_commands>;

@traincmddict=<traincmddict>; $i=0; @traindict_unix=@_; for

($i=0;$i<635;$i++) {

@dict_unix[$i]=0;

$j=0;

for ($j=0;$j<2006;$j++)

{

if (@traincmddict[$i] == @unix_commands[$j])

{

@traindict_unix[$i]=1;

$j=2007;

}

}

}

open (traindict_unix, ">traindict_unix"); $i=0; for

($i=0;$i<635;$i++) {

print traindict_unix "@traindict_unix[$i]\n";

}

open (toptwenty,">toptwenty"); @toptwenty=@_; $i=0; for

($i=0;$i<635;$i++) {

@toptwenty[$i]=0;

}

@toptwenty[1]=1; @toptwenty[12]=1; @toptwenty[47]=1;

@toptwenty[35]=1; @toptwenty[26]=1; @toptwenty[59]=1;

@toptwenty[48]=1; @toptwenty[31]=1; @toptwenty[22]=1;

@toptwenty[25]=1; @toptwenty[139]=1; @toptwenty[36]=1;

@toptwenty[18]=1; @toptwenty[68]=1; @toptwenty[155]=1;

@toptwenty[175]=1; @toptwenty[15]=1; @toptwenty[32]=1;

@toptwenty[21]=1; @toptwenty[40]=1;
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open (internet_cmd,">internet_cmd"); @internet_cmd=@_; $i=0; for

($i=0;$i<635;$i++) {

@internet_cmd[$i]=0;

}

@internet_cmd[47]=1; @internet_cmd[59]=1;

$i=0; for ($i=0;$i<635;$i++) {

print internet_cmd "@internet_cmd[$i]\n";

}

$i=1; for ($i=1;$i<51;$i++) {

$fh="user$i";

open $fh, "$fh";

@all_lines=<$fh>;

$j=0;

for($j=0;$j<150;$j++)

{

$utraindict_unix[$i][$j]=0;

$utoptwenty[$i][$j]=0;

$uinternet_cmd[$i][$j]=0;

$uuniqueness[$i][$j]=0;

$utrainfreq[$i][$j]=0;

$uforeign[$i][$j]=0;

$k=0;

for($k=0;$k<100;$k++)

{

$line=(($j*100)+$k);

$datablock[$i-1][$j][$k]=@all_lines[$line];

#this nested loop creates 150 arrays of total data

for every user

}

}

}

open (popvar,"popvar"); @popvar=<popvar>; open

(trainfreq,"trainfreq.txt"); @trainfreq=<trainfreq>;

$i=0; $j=0; for ($i=0;$i<50;$i++) {

$j=0;

for ($j=0;$j<150;$j++)

{

$k=0;

for ($k=0;$k<100;$k++)
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{

$z=0;

$l=0;

for ($l=0;$l<635;$l++)

{

if ($datablock[$i][$j][$k] eq @traincmddict[$l])

{

$utraindict_unix[$i][$j]=@traindict_unix[$l]+

$utraindict_unix[$i][$j];

$utoptwenty[$i][$j]=@toptwenty[$l]+

$utoptwenty[$i][$j];

$uinternet_cmd[$i][$j]=@internet_cmd[$l]+

$uinternet_cmd[$i][$j];

$uuniqueness[$i][$j]=$uuniqueness[$i][$j]+

@popvar[$l];

$utrainfreq[$i][$j]=$utrainfreq[$i][$j]+

$trainfreq[$l];

$l=700;

$z=1;

}

if (($l==634) && ($z==0))

{

$uforeign[$i][$j]=$uforeign[$i][$j]+1;

}

}

}

}

}

$now=time()-$start; print "features created for all training

commands;\n"; print "now measuring against data; time elapsed:

$now sec\n";

open (true,"true"); @true=<true>; open

(featurematrix,">featurematrix"); open

(testfeaturematrix,">testfeaturematrix"); open (xu,"xu"); @xu=<xu>;

$i=0; for ($i=0;$i<50;$i++) {

$j=0;

for ($j=0;$j<150;$j++)

{

$utraindict_unix[$i][$j]=($utraindict_unix[$i][$j])/100;

$utoptwenty[$i][$j]=($utoptwenty[$i][$j])/100;

$uinternet_cmd[$i][$j]=($uinternet_cmd[$i][$j])/100;

$uuniqueness[$i][$j]=(
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1-((50-($uuniqueness[$i][$j])/100))/100);

$utrainfreq[$i][$j]=($utrainfreq[$i][$j])/100;

$uforeign[$i][$j]=($uforeign[$i][$j])/100;

$id=((101+$i)*1000)+($j+1);

if ($j<50)

{

print featurematrix "$utraindict_unix[$i][$j]

$utoptwenty[$i][$j]

$uinternet_cmd[$i][$j] $uuniqueness[$i][$j]

$utrainfreq[$i][$j]

$uforeign[$i][$j] 0 $id\n";

}

if ($j>=50)

{

$result=($i*100)+($j-50);

chomp @true[$result];

chomp @xu[$result];

print featurematrix "$utraindict_unix[$i][$j]

$utoptwenty[$i][$j]

$uinternet_cmd[$i][$j] $uuniqueness[$i][$j]

$utrainfreq[$i][$j]

$uforeign[$i][$j] @true[$result] $id\n";

print testfeaturematrix "$utraindict_unix[$i][$j]

$utoptwenty[$i][$j]

$uinternet_cmd[$i][$j] $uuniqueness[$i][$j]

$utrainfreq[$i][$j]

$uforeign[$i][$j] @xu[$result]

@true[$result] $id\n";

}

}

}

$now=time()-$start; print "program complete; time elapsed: $now

sec\n";

C.2.6 The 601features program

$start=time(); $now=time()-$start; print "Start time: ($now)\n";

open (unix_commands,"unix_commands.txt"); open (traincmddict,

"traincmddict"); @unix_commands=<unix_commands>;

@traincmddict=<traincmddict>; $i=0; @traindict_unix=@_; for

($i=0;$i<635;$i++) {

$dict_unix[$i]=0;
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$j=0;

for ($j=0;$j<2006;$j++)

{

if ($traincmddict[$i] == $unix_commands[$j])

{

$traindict_unix[$i]=1;

$j=2007;

}

}

}

open (traindict_unix, ">traindict_unix"); $i=0; for

($i=0;$i<635;$i++) {

print traindict_unix "$traindict_unix[$i]\n";

}

open (toptwenty,">toptwenty"); @toptwenty=@_; $i=0; for

($i=0;$i<635;$i++) {

$toptwenty[$i]=0;

}

$toptwenty[1]=1; $toptwenty[12]=1; $toptwenty[47]=1;

$toptwenty[35]=1; $toptwenty[26]=1; $toptwenty[59]=1;

$toptwenty[48]=1; $toptwenty[31]=1; $toptwenty[22]=1;

$toptwenty[25]=1; $toptwenty[139]=1; $toptwenty[36]=1;

$toptwenty[18]=1; $toptwenty[68]=1; $toptwenty[155]=1;

$toptwenty[175]=1; $toptwenty[15]=1; $toptwenty[32]=1;

$toptwenty[21]=1; $toptwenty[40]=1;

open (internet_cmd,">internet_cmd"); @internet_cmd=@_; $i=0; for

($i=0;$i<635;$i++) {

$internet_cmd[$i]=0;

}

$internet_cmd[47]=1; $internet_cmd[59]=1;

$i=0; for ($i=0;$i<635;$i++) {

print internet_cmd "$internet_cmd[$i]\n";

}

$i=1; for ($i=1;$i<51;$i++) {

$fh="user$i";

open $fh, "$fh";

@all_lines=<$fh>;
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$j=0;

for($j=0;$j<150;$j++)

{

$k=0;

for($k=0;$k<100;$k++)

{

$line=(($j*100)+$k);

$datablock[$i-1][$j][$k]=@all_lines[$line];

#this nested loop creates 150 arrays of total data

for every user

$utraindict_unix[$i][$j][$k]=0;

$utoptwenty[$i][$j][$k]=0;

$uinternet_cmd[$i][$j][$k]=0;

$uuniqueness[$i][$j][$k]=0;

$utrainfreq[$i][$j][$k]=0;

$uforeign[$i][$j][$k]=0;

}

}

}

open (popvar,"popvar"); @popvar=<popvar>; open

(trainfreq,"trainfreq.txt"); @trainfreq=<trainfreq>;

$i=0; $j=0; for ($i=0;$i<50;$i++) {

$j=0;

for ($j=50;$j<150;$j++)

{

$k=0;

for ($k=0;$k<100;$k++)

{

$z=0;

$l=0;

for ($l=0;$l<635;$l++)

{

if ($datablock[$i][$j][$k] eq $traincmddict[$l])

{

$utraindict_unix[$i][$j][$k]=$traindict_unix[$l];

$utoptwenty[$i][$j][$k]=$toptwenty[$l];

$uinternet_cmd[$i][$j][$k]=$internet_cmd[$l];

$uuniqueness[$i][$j][$k]=$popvar[$l];

$utrainfreq[$i][$j][$k]=$trainfreq[$l];

$l=700;

$z=1;

}
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if (($l==634) && ($z==0))

{

$uforeign[$i][$j][$k]=1;

}

}

}

}

}

$now=time()-$start; print "features created for all training

commands;\n"; print "now measuring against data; time elapsed: $now

sec\n";

open (true,"true"); @true=<true>; open (sevenC,">sevenC"); open

(xu,"xu"); @xu=<xu>; $i=0; for ($i=0;$i<50;$i++) {

$j=50;

for ($j=50;$j<150;$j++)

{

$id=((101+$i)*1000)+($j+1);

$id=((101+$i)*1000)+($j+1);

if ($j>=50)

{

$result=($i*100)+($j-50);

chomp @true[$result];

chomp @xu[$result];

$x=@xu[$result];

$x=$x*1;

$k=0;

@a=@_;

$b=$_;

for ($k=0;$k<100;$k++)

{

$uuniqueness[$i][$j][$k]=

1*$uuniqueness[$i][$j][$k];

$utrainfreq[$i][$j][$k]=

1*$utrainfreq[$i][$j][$k];

$c=1*$utrainfreq[$i][$j][$k];

$utraindict_unix[$i][$j][$k]=

1*$utraindict_unix[$i][$j][$k];

$utoptwenty[$i][$j][$k]=

1*$utoptwenty[$i][$j][$k];

$uinternet_cmd[$i][$j][$k]=

1*$uinternet_cmd[$i][$j][$k];

$uforeign[$i][$j][$k]=
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1*$uforeign[$i][$j][$k];

$a[$k]=join (" ",$utraindict_unix[$i][$j][$k],

$utoptwenty[$i][$j][$k],

$uinternet_cmd[$i][$j][$k],

$uuniqueness[$i][$j][$k],$c,

$uforeign[$i][$j][$k]);

#print "@a[$k]\n";

}

$b=join (" ",@a);

print sevenC "$b $xu[$result]

$true[$result] $id\n";

}

}

}

$now=time()-$start; print "program complete; time elapsed: $now

sec\n";
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