4,221 research outputs found

    Structural fingerprints of transcription factor binding site regions

    Get PDF
    Fourier transforms are a powerful tool in the prediction of DNA sequence properties, such as the presence/absence of codons. We have previously compiled a database of the structural properties of all 32,896 unique DNA octamers. In this work we apply Fourier techniques to the analysis of the structural properties of human chromosomes 21 and 22 and also to three sets of transcription factor binding sites within these chromosomes. We find that, for a given structural property, the structural property power spectra of chromosomes 21 and 22 are strikingly similar. We find common peaks in their power spectra for both Sp1 and p53 transcription factor binding sites. We use the power spectra as a structural fingerprint and perform similarity searching in order to find transcription factor binding site regions. This approach provides a new strategy for searching the genome data for information. Although it is difficult to understand the relationship between specific functional properties and the set of structural parameters in our database, our structural fingerprints nevertheless provide a useful tool for searching for function information in sequence data. The power spectrum fingerprints provide a simple, fast method for comparing a set of functional sequences, in this case transcription factor binding site regions, with the sequences of whole chromosomes. On its own, the power spectrum fingerprint does not find all transcription factor binding sites in a chromosome, but the results presented here show that in combination with other approaches, this technique will improve the chances of identifying functional sequences hidden in genomic data

    Structural attributes of nucleotide sequences in promoter regions of supercoiling-sensitive genes: how to relate microarray expression data with genomic sequences

    Get PDF
    The level of supercoiling in the chromosome can affect gene expression. To clarify the basis of supercoiling sensitivity, we analyzed the structural features of nucleotide sequences in the vicinity of promoters for the genes with expression enhanced and decreased in response to loss of chromosomal supercoiling in E. coli. Fourier analysis of promoter sequences for supercoiling-sensitive genes reveals the tendency in selection of sequences with helical periodicities close to 10 nt for relaxation-induced genes and to 11 nt for relaxation-repressed genes. The helical periodicities in the subsets of promoters recognized by RNA polymerase with different sigma factors were also studied. A special procedure was developed for study of correlations between the intensities of periodicities in promoter sequences and the expression levels of corresponding genes. Significant correlations of expression with the AT content and with AT periodicities about 10, 11, and 50 nt indicate their role in regulation of supercoiling-sensitive genes.Comment: 38 pages, 12 figure

    Human Promoter Prediction Using DNA Numerical Representation

    Get PDF
    With the emergence of genomic signal processing, numerical representation techniques for DNA alphabet set {A, G, C, T} play a key role in applying digital signal processing and machine learning techniques for processing and analysis of DNA sequences. The choice of the numerical representation of a DNA sequence affects how well the biological properties can be reflected in the numerical domain for the detection and identification of the characteristics of special regions of interest within the DNA sequence. This dissertation presents a comprehensive study of various DNA numerical and graphical representation methods and their applications in processing and analyzing long DNA sequences. Discussions on the relative merits and demerits of the various methods, experimental results and possible future developments have also been included. Another area of the research focus is on promoter prediction in human (Homo Sapiens) DNA sequences with neural network based multi classifier system using DNA numerical representation methods. In spite of the recent development of several computational methods for human promoter prediction, there is a need for performance improvement. In particular, the high false positive rate of the feature-based approaches decreases the prediction reliability and leads to erroneous results in gene annotation.To improve the prediction accuracy and reliability, DigiPromPred a numerical representation based promoter prediction system is proposed to characterize DNA alphabets in different regions of a DNA sequence.The DigiPromPred system is found to be able to predict promoters with a sensitivity of 90.8% while reducing false prediction rate for non-promoter sequences with a specificity of 90.4%. The comparative study with state-of-the-art promoter prediction systems for human chromosome 22 shows that our proposed system maintains a good balance between prediction accuracy and reliability. To reduce the system architecture and computational complexity compared to the existing system, a simple feed forward neural network classifier known as SDigiPromPred is proposed. The SDigiPromPred system is found to be able to predict promoters with a sensitivity of 87%, 87%, 99% while reducing false prediction rate for non-promoter sequences with a specificity of 92%, 94%, 99% for Human, Drosophila, and Arabidopsis sequences respectively with reconfigurable capability compared to existing system

    Information decomposition of symbolic sequences

    Full text link
    We developed a non-parametric method of Information Decomposition (ID) of a content of any symbolical sequence. The method is based on the calculation of Shannon mutual information between analyzed and artificial symbolical sequences, and allows the revealing of latent periodicity in any symbolical sequence. We show the stability of the ID method in the case of a large number of random letter changes in an analyzed symbolic sequence. We demonstrate the possibilities of the method, analyzing both poems, and DNA and protein sequences. In DNA and protein sequences we show the existence of many DNA and amino acid sequences with different types and lengths of latent periodicity. The possible origin of latent periodicity for different symbolical sequences is discussed.Comment: 18 pages, 8 figure

    Hierarchical structure of cascade of primary and secondary periodicities in Fourier power spectrum of alphoid higher order repeats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of approximate tandem repeats is an important task of broad significance and still remains a challenging problem of computational genomics. Often there is no single best approach to periodicity detection and a combination of different methods may improve the prediction accuracy. Discrete Fourier transform (DFT) has been extensively used to study primary periodicities in DNA sequences. Here we investigate the application of DFT method to identify and study alphoid higher order repeats.</p> <p>Results</p> <p>We used method based on DFT with mapping of symbolic into numerical sequence to identify and study alphoid higher order repeats (HOR). For HORs the power spectrum shows equidistant frequency pattern, with characteristic two-level hierarchical organization as signature of HOR. Our case study was the 16 mer HOR tandem in AC017075.8 from human chromosome 7. Very long array of equidistant peaks at multiple frequencies (more than a thousand higher harmonics) is based on fundamental frequency of 16 mer HOR. Pronounced subset of equidistant peaks is based on multiples of the fundamental HOR frequency (multiplication factor <it>n </it>for <it>n</it>mer) and higher harmonics. In general, <it>n</it>mer HOR-pattern contains equidistant secondary periodicity peaks, having a pronounced subset of equidistant primary periodicity peaks. This hierarchical pattern as signature for HOR detection is robust with respect to monomer insertions and deletions, random sequence insertions etc. For a monomeric alphoid sequence only primary periodicity peaks are present. The 1/<it>f</it><sup><it>β </it></sup>– noise and periodicity three pattern are missing from power spectra in alphoid regions, in accordance with expectations.</p> <p>Conclusion</p> <p>DFT provides a robust detection method for higher order periodicity. Easily recognizable HOR power spectrum is characterized by hierarchical two-level equidistant pattern: higher harmonics of the fundamental HOR-frequency (secondary periodicity) and a subset of pronounced peaks corresponding to constituent monomers (primary periodicity). The number of lower frequency peaks (secondary periodicity) below the frequency of the first primary periodicity peak reveals the size of <it>n</it>mer HOR, i.e., the number <it>n </it>of monomers contained in consensus HOR.</p

    Quantumlike Chaos in the Frequency Distributions of the Bases A, C, G, T in Drosophila DNA

    Get PDF
    Continuous periodogram power spectral analyses of fractal fluctuations of frequency distributions of bases A, C, G, T in Drosophila DNA show that the power spectra follow the universal inverse power-law form of the statistical normal distribution. Inverse power-law form for power spectra of space-time fluctuations is generic to dynamical systems in nature and is identified as self-organized criticality. The author has developed a general systems theory, which provides universal quantification for observed self-organized criticality in terms of the statistical normal distribution. The long-range correlations intrinsic to self-organized criticality in macro-scale dynamical systems are a signature of quantumlike chaos. The fractal fluctuations self-organize to form an overall logarithmic spiral trajectory with the quasiperiodic Penrose tiling pattern for the internal structure. Power spectral analysis resolves such a spiral trajectory as an eddy continuum with embedded dominant wavebands. The dominant peak periodicities are functions of the golden mean. The observed fractal frequency distributions of the Drosophila DNA base sequences exhibit quasicrystalline structure with long-range spatial correlations or self-organized criticality. Modification of the DNA base sequence structure at any location may have significant noticeable effects on the function of the DNA molecule as a whole. The presence of non-coding introns may not be redundant, but serve to organize the effective functioning of the coding exons in the DNA molecule as a complete unit.Comment: 46 pages, 9 figure

    Demarcation of coding and non-coding regions of DNA using linear transforms

    Get PDF
    Deoxyribonucleic Acid (DNA) strand carries genetic information in the cell. A strand of DNA consists of nitrogenous molecules called nucleotides. Nucleotides triplets, or the codons, code for amino acids. There are two distinct regions in DNA, the gene and the intergenic DNA, or the junk DNA. Two regions can be distinguished in the gene- the exons, or the regions that code for amino acid, and the introns, or the regions that do not code for amino acid. The main aim of the thesis is to study signal processing techniques that help distinguish between the regions of the exons and the introns. Previous research has shown the fact that the exons can be considered as a sequence of signal and noise, whereas introns are noise-like sequences. Fourier Transform of an exonic sequence exhibits a peak at frequency sample value k N/3 where N is the length of the FFT transform. This property is referred to as the period -3 property. Unlike exons, introns have a noise-like spectrum. The factor that determines the performance efficiency of a transform is the figure of merit, defined as the ratio of the peak value to the arithmetic mean of all the values. A comparative study was conducted for the application of the Discrete Fourier Transform and the Karhunen Loeve Transform. Though both DFT and KLT of an exon sequence produce a higher figure of merit than that for an intron sequence, it is interesting to note that the difference in the figure of merits of exons and introns was higher when the KLT was applied to the sequence than when the DFT was applied. The two transforms were also applied on entire sequences in a sliding window fashion. Finally, the two transforms were applied on a large number of sequences from a variety of organisms. A Neyman Pearson based detector was used to obtain receiver operating curves, i.e., probability of detection versus probability of false alarm. When a transform is applied as a sliding window, the values for exons and introns are taken separately. The exons and the introns served as the two hypotheses of the detector. The Neyman Pearson detector helped indicate the fact the KLT worked better on a variety of organisms than the DFT

    Genetic Algorithms for the Imitation of Genomic Styles in Protein Backtranslation

    Get PDF
    Several technological applications require the translation of a protein into a nucleic acid that codes for it (``backtranslation''). The degeneracy of the genetic code makes this translation ambiguous; moreover, not every translation is equally viable. The common answer to this problem is the imitation of the codon usage of the target species. Here we discuss several other features of coding sequences (``coding statistics'') that are relevant for the ``genomic style'' of different species. A genetic algorithm is then used to obtain backtranslations that mimic these styles, by minimizing the difference in the coding statistics. Possible improvements and applications are discussed.Comment: 17 pages, 13 figures. Submitted to Theor. Comp. Scienc

    Identification of exonic regions in DNA sequences using cross-correlation and noise suppression by discrete wavelet transform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of protein coding regions (exons) in DNA sequences using signal processing techniques is an important component of bioinformatics and biological signal processing. In this paper, a new method is presented for the identification of exonic regions in DNA sequences. This method is based on the cross-correlation technique that can identify periodic regions in DNA sequences.</p> <p>Results</p> <p>The method reduces the dependency of window length on identification accuracy. The proposed algorithm is applied to different eukaryotic datasets and the output results are compared with those of other established methods. The proposed method increased the accuracy of exon detection by 4% to 41% relative to the most common digital signal processing methods for exon prediction.</p> <p>Conclusions</p> <p>We demonstrated that periodic signals can be estimated using cross-correlation. In addition, discrete wavelet transform (DWT) can minimise noise while maintaining the signal. The proposed algorithm, which combines cross-correlation and DWT, significantly increases the accuracy of exonic region identification.</p

    Analysis of Genomic and Proteomic Signals Using Signal Processing and Soft Computing Techniques

    Get PDF
    Bioinformatics is a data rich field which provides unique opportunities to use computational techniques to understand and organize information associated with biomolecules such as DNA, RNA, and Proteins. It involves in-depth study in the areas of genomics and proteomics and requires techniques from computer science,statistics and engineering to identify, model, extract features and to process data for analysis and interpretation of results in a biologically meaningful manner.In engineering methods the signal processing techniques such as transformation,filtering, pattern analysis and soft-computing techniques like multi layer perceptron(MLP) and radial basis function neural network (RBFNN) play vital role to effectively resolve many challenging issues associated with genomics and proteomics. In this dissertation, a sincere attempt has been made to investigate on some challenging problems of bioinformatics by employing some efficient signal and soft computing methods. Some of the specific issues, which have been attempted are protein coding region identification in DNA sequence, hot spot identification in protein, prediction of protein structural class and classification of microarray gene expression data. The dissertation presents some novel methods to measure and to extract features from the genomic sequences using time-frequency analysis and machine intelligence techniques.The problems investigated and the contribution made in the thesis are presented here in a concise manner. The S-transform, a powerful time-frequency representation technique, possesses superior property over the wavelet transform and short time Fourier transform as the exponential function is fixed with respect to time axis while the localizing scalable Gaussian window dilates and translates. The S-transform uses an analysis window whose width is decreasing with frequency providing a frequency dependent resolution. The invertible property of S-transform makes it suitable for time-band filtering application. Gene prediction and protein coding region identification have been always a challenging task in computational biology,especially in eukaryote genomes due to its complex structure. This issue is resolved using a S-transform based time-band filtering approach by localizing the period-3 property present in the DNA sequence which forms the basis for the identification.Similarly, hot spot identification in protein is a burning issue in protein science due to its importance in binding and interaction between proteins. A novel S-transform based time-frequency filtering approach is proposed for efficient identification of the hot spots. Prediction of structural class of protein has been a challenging problem in bioinformatics.A novel feature representation scheme is proposed to efficiently represent the protein, thereby improves the prediction accuracy. The high dimension and low sample size of microarray data lead to curse of dimensionality problem which affects the classification performance.In this dissertation an efficient hybrid feature extraction method is proposed to overcome the dimensionality issue and a RBFNN is introduced to efficiently classify the microarray samples
    corecore