24 research outputs found

    BindingDB: a web-accessible database of experimentally determined proteinā€“ligand binding affinities

    Get PDF
    BindingDB () is a publicly accessible database currently containing āˆ¼20ā€‰000 experimentally determined binding affinities of proteinā€“ligand complexes, for 110 protein targets including isoforms and mutational variants, and āˆ¼11ā€‰000 small molecule ligands. The data are extracted from the scientific literature, data collection focusing on proteins that are drug-targets or candidate drug-targets and for which structural data are present in the Protein Data Bank. The BindingDB website supports a range of query types, including searches by chemical structure, substructure and similarity; protein sequence; ligand and protein names; affinity ranges and molecular weight. Data sets generated by BindingDB queries can be downloaded in the form of annotated SDfiles for further analysis, or used as the basis for virtual screening of a compound database uploaded by the user. The data in BindingDB are linked both to structural data in the PDB via PDB IDs and chemical and sequence searches, and to the literature in PubMed via PubMed IDs

    Ligand-based virtual screening using binary kernel discrimination

    Get PDF
    This paper discusses the use of a machine-learning technique called binary kernel discrimination (BKD) for virtual screening in drug- and pesticide-discovery programmes. BKD is compared with several other ligand-based tools for virtual screening in databases of 2D structures represented by fragment bit-strings, and is shown to provide an effective, and reasonably efficient, way of prioritising compounds for biological screening

    Similarity-based virtual screening using 2D fingerprints

    Get PDF
    This paper summarises recent work at the University of Sheffield on virtual screening methods that use 2D fingerprint measures of structural similarity. A detailed comparison of a large number of similarity coefficients demonstrates that the well-known Tanimoto coefficient remains the method of choice for the computation of fingerprint-based similarity, despite possessing some inherent biases related to the sizes of the molecules that are being sought. Group fusion involves combining the results of similarity searches based on multiple reference structures and a single similarity measure. We demonstrate the effectiveness of this approach to screening, and also describe an approximate form of group fusion, turbo similarity searching, that can be used when just a single reference structure is available

    BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology.

    Get PDF
    BindingDB, www.bindingdb.org, is a publicly accessible database of experimental protein-small molecule interaction data. Its collection of over a million data entries derives primarily from scientific articles and, increasingly, US patents. BindingDB provides many ways to browse and search for data of interest, including an advanced search tool, which can cross searches of multiple query types, including text, chemical structure, protein sequence and numerical affinities. The PDB and PubMed provide links to data in BindingDB, and vice versa; and BindingDB provides links to pathway information, the ZINC catalog of available compounds, and other resources. The BindingDB website offers specialized tools that take advantage of its large data collection, including ones to generate hypotheses for the protein targets bound by a bioactive compound, and for the compounds bound by a new protein of known sequence; and virtual compound screening by maximal chemical similarity, binary kernel discrimination, and support vector machine methods. Specialized data sets are also available, such as binding data for hundreds of congeneric series of ligands, drawn from BindingDB and organized for use in validating drug design methods. BindingDB offers several forms of programmatic access, and comes with extensive background material and documentation. Here, we provide the first update of BindingDB since 2007, focusing on new and unique features and highlighting directions of importance to the field as a whole

    An activity prediction model using shape-based descriptor method

    Get PDF
    Similarity searching, the activity of an unknown compound (target) is predicted through the comparison of an unknown compound with a set of known activities of compounds. The known activities of the most similar compounds are assigned to the unknown compound. Different machine learning methods and Multilevel Neighborhoods of Atoms (MNA) structure descriptors have been applied for the activities prediction. In this paper, we introduced a new activity prediction model with Shape-Based Descriptor Method (SBDM). Experimental results show that SBDM-MNA provides a useful method of using the prior knowledge of target class information (active and inactive compounds) of predicting the activity of orphan compounds. To validate our method, we have applied the SBDM-MNA to different established data sets from literature and compare its performance with the classical MNA descriptor for activity prediction

    Large scale study of multiple-molecule queries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In ligand-based screening, as well as in other chemoinformatics applications, one seeks to effectively search large repositories of molecules in order to retrieve molecules that are similar typically to a single molecule lead. However, in some case, multiple molecules from the same family are available to seed the query and search for other members of the same family.</p> <p>Multiple-molecule query methods have been less studied than single-molecule query methods. Furthermore, the previous studies have relied on proprietary data and sometimes have not used proper cross-validation methods to assess the results. In contrast, here we develop and compare multiple-molecule query methods using several large publicly available data sets and background. We also create a framework based on a strict cross-validation protocol to allow unbiased benchmarking for direct comparison in future studies across several performance metrics.</p> <p>Results</p> <p>Fourteen different multiple-molecule query methods were defined and benchmarked using: (1) 41 publicly available data sets of related molecules with similar biological activity; and (2) publicly available background data sets consisting of up to 175,000 molecules randomly extracted from the ChemDB database and other sources. Eight of the fourteen methods were parameter free, and six of them fit one or two free parameters to the data using a careful cross-validation protocol. All the methods were assessed and compared for their ability to retrieve members of the same family against the background data set by using several performance metrics including the Area Under the Accumulation Curve (AUAC), Area Under the Curve (AUC), F1-measure, and BEDROC metrics.</p> <p>Consistent with the previous literature, the best parameter-free methods are the MAX-SIM and MIN-RANK methods, which score a molecule to a family by the maximum similarity, or minimum ranking, obtained across the family. One new parameterized method introduced in this study and two previously defined methods, the Exponential Tanimoto Discriminant (ETD), the Tanimoto Power Discriminant (TPD), and the Binary Kernel Discriminant (<b>BKD</b>), outperform most other methods but are more complex, requiring one or two parameters to be fit to the data.</p> <p>Conclusion</p> <p>Fourteen methods for multiple-molecule querying of chemical databases, including novel methods, (ETD) and (TPD), are validated using publicly available data sets, standard cross-validation protocols, and established metrics. The best results are obtained with ETD, TPD, BKD, MAX-SIM, and MIN-RANK. These results can be replicated and compared with the results of future studies using data freely downloadable from <url>http://cdb.ics.uci.edu/</url>.</p

    Effect of missing data on multitask prediction methods

    Get PDF
    There has been a growing interest in multitask prediction in chemoinformatics, helped by the increasing use of deep neural networks in this field. This technique is applied to multitarget data sets, where compounds have been tested against different targets, with the aim of developing models to predict a profile of biological activities for a given compound. However, multitarget data sets tend to be sparse; i.e., not all compound-target combinations have experimental values. There has been little research on the effect of missing data on the performance of multitask methods. We have used two complete data sets to simulate sparseness by removing data from the training set. Different models to remove the data were compared. These sparse sets were used to train two different multitask methods, deep neural networks and Macau, which is a Bayesian probabilistic matrix factorization technique. Results from both methods were remarkably similar and showed that the performance decrease because of missing data is at first small before accelerating after large amounts of data are removed. This work provides a first approximation to assess how much data is required to produce good performance in multitask prediction exercises

    New similarity measures for ligand-based virtual screening

    Get PDF
    The process of drug discovery using virtual screening techniques relies on ā€œmolecular similarity principleā€ which states that structurally similar molecules tend to have similar physicochemical and biological properties in comparison to other dissimilar molecules. Most of the existing virtual screening methods use similarity measures such as the standard Tanimoto coefficient. However, these conventional similarity measures are inadequate, and their results are not satisfactory to researchers. This research investigated new similarity measures. It developed a novel similarity measure and molecules ranking method to retrieve molecules more efficiently. Firstly, a new similarity measure was derived from existing similarity measures, besides focusing on preferred similarity concepts. Secondly, new similarity measures were developed by reweighting some bit-strings, where features present in the compared molecules, and features not present in both compared molecules were given strong consideration. The final approach investigated ranking methods to develop a substitutional ranking method. The study compared the similarity measures and ranking methods with benchmark coefficients such as Tanimoto, Cosine, Dice, and Simple Matching (SM). The approaches were tested using standard data sets such as MDL Drug Data Report (MDDR), Directory of Useful Decoys (DUD) and Maximum Unbiased Validation (MUV). The overall results of this research showed that the new similarity measures and ranking methods outperformed the conventional industry- standard Tanimoto-based similarity search approach. The similarity measures are thus likely to support lead optimization and lead identification process better than methods based on Tanimoto coefficients
    corecore